UV-written Bragg gratings in a flat-fiber platform as a bending and twisting sensor
UV-written Bragg gratings in a flat-fiber platform as a bending and twisting sensor
High demand on structural health monitoring has encouraged the development of smart structure geometries to be more effective and competitive [1]. One of the technologies that has been integrated into these structures is the fiber Bragg grating (FBG) [2]. The FBG is a mature technology that has seen many applications, particularly the field of sensing where it has many advantages such as immunity to electromagnetic field, long lifetime, high sensitivity, lightweight and low loss. There are several types of optically based physical sensors. Most of which are fabricated in a standard dimension silica optical fiber which due to its cylindrical structure are unable to independently measure twist. Here we demonstrate a bending and twist sensor fabricated in a flat-fiber substrate. A Y-splitter and a series of Bragg gratings along the 50 mm length provides a differential signal providing distinction between bend and twist within the sample.
Ambran, S.
9dab29a4-1179-4e21-acf6-182c12d29998
Holmes, C.
16306bb8-8a46-4fd7-bb19-a146758e5263
Gates, J.C.
b71e31a1-8caa-477e-8556-b64f6cae0dc2
Webb, A.S.
ec165a7d-68cb-4dc6-8382-b529e217c659
Sahu, J.K.
009f5fb3-6555-411a-9a0c-9a1b5a29ceb2
Smith, P.G.R.
8979668a-8b7a-4838-9a74-1a7cfc6665f6
Ambran, S.
9dab29a4-1179-4e21-acf6-182c12d29998
Holmes, C.
16306bb8-8a46-4fd7-bb19-a146758e5263
Gates, J.C.
b71e31a1-8caa-477e-8556-b64f6cae0dc2
Webb, A.S.
ec165a7d-68cb-4dc6-8382-b529e217c659
Sahu, J.K.
009f5fb3-6555-411a-9a0c-9a1b5a29ceb2
Smith, P.G.R.
8979668a-8b7a-4838-9a74-1a7cfc6665f6
Ambran, S., Holmes, C., Gates, J.C., Webb, A.S., Sahu, J.K. and Smith, P.G.R.
(2011)
UV-written Bragg gratings in a flat-fiber platform as a bending and twisting sensor.
CLEO/EQEC 2011: Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, Munich, Germany.
22 - 26 May 2011.
(doi:10.1109/CLEOE.2011.5943097).
Record type:
Conference or Workshop Item
(Paper)
Abstract
High demand on structural health monitoring has encouraged the development of smart structure geometries to be more effective and competitive [1]. One of the technologies that has been integrated into these structures is the fiber Bragg grating (FBG) [2]. The FBG is a mature technology that has seen many applications, particularly the field of sensing where it has many advantages such as immunity to electromagnetic field, long lifetime, high sensitivity, lightweight and low loss. There are several types of optically based physical sensors. Most of which are fabricated in a standard dimension silica optical fiber which due to its cylindrical structure are unable to independently measure twist. Here we demonstrate a bending and twist sensor fabricated in a flat-fiber substrate. A Y-splitter and a series of Bragg gratings along the 50 mm length provides a differential signal providing distinction between bend and twist within the sample.
More information
e-pub ahead of print date: 2011
Venue - Dates:
CLEO/EQEC 2011: Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, Munich, Germany, 2011-05-22 - 2011-05-26
Organisations:
Optoelectronics Research Centre
Identifiers
Local EPrints ID: 343014
URI: http://eprints.soton.ac.uk/id/eprint/343014
PURE UUID: 44ee90e7-c0ab-4525-b9f4-8945682c3292
Catalogue record
Date deposited: 20 Sep 2012 13:53
Last modified: 15 Mar 2024 03:27
Export record
Altmetrics
Contributors
Author:
S. Ambran
Author:
J.C. Gates
Author:
A.S. Webb
Author:
J.K. Sahu
Author:
P.G.R. Smith
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics