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Recently there has been much interest in designing optical tapers for nonlinear pulse manipulation in
both standard[1] and semiconductor filled fibres[2]. Such tapers can be used to overcome the large linear
losses in semiconductor filled fibres while allowing parabolic pulse generation or soliton propagation
for example. However once the taper profile has been chosen to overcome the linear loss problem in
semiconductor filled fibres the problem of two photon absorption (TPA) and associated free carrier
effects remain. In this work we show that it is possible to use a genetic algorithm to design tapers that
alleviate both linear and nonlinear losses and hence should allow high quality pulse propagation over
several centimetres of semiconductor filled fibres.

In a tapered semiconductor filled optical fibre the pulse envelope obeys the modified nonlinear
Schrodinger equation with varying coeflicients[2]:
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where the normalised pulse envelope is given by ¢ while the effect of tapering is included in the position
dependent coefficients (s, 83 and «y. The effects of TPA are included by making v complex, whilst the
free carrier effects (absorption and dispersion) are described by oy. Full details of this along with the
associated evolution equation for the free carrier density are given in Ref. [2]. For the semiconductor filled
fibres treated here, the analytic solutions for the modes of a step index fibre[3] can be used to find values
for the different parameters once the core radius r is given (see Fig. 1la). Thus a taper is completely
described by the function r(z) which can take values between 200nm and 1.5 ym for the tapers under
consideration.

In contrast to previous work[1] where a genetic algorithm was used only to optimise 32 here we used a
genetic algorithm to optimise the core radius. This ensures that at all times the taper is physically real-
isable and that the correct values of higher order dispersion are used. In addition we allowed the genetic
algorithm to determine the input pulse width and amplitude. The genetic algorithm was implemented
using an OpenMPI implementation on a linux cluster and a typical run would use 400 processors and
take about 5 hours.

In order to compare our results with previous results we looked at two examples. The first being
parabolic pulse generation in a 2mm fibre taper and the second being soliton propagation through 2cm
of fibre using the same parameters as in Ref. [2]. Here the effects of TPA are fairly small and so the taper
designs are similar to those found previously however in each case the misfit parameter that describes the
output pulse mismatch has been reduced by at least an order of magnitude compared to previous results
(Ref. [2]).

In conclusion we have shown that it is possible to design tapers using a genetic algorithm to overcome
the effects of both extremely high linear loss and TPA. Using this algorithm in the future will result in
improved propagation characteristics in semiconductor filled fibres and thus increase their usefulness as
nonlinear waveguides.
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FIG. 1. (a) Effect of tapering on fibre parameters. (b) Parabolic pulse generating with (red line) and without
(black line) free carrier effects, (c) Soliton profile after 2cm of propagation. Green lines show the ideal shapes in

(b) and (c).



