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Abstract: Crystalline Bragg reflectors are of interest for high power, high 

temperature and integrated applications. We demonstrate the automated growth of 

such structures by shuttered multi-beam Pulsed Laser Deposition (PLD). Geometries 

include 145 layer stacks exhibiting >99.5% reflection and π phase-shifted designs. A 

crystalline grating strength-apodized sample was grown by mixing plumes to obtain 

layers with custom refractive indices. Peak reflection wavelength was tuneable with 

incident position, samples withstood temperatures of ~750 ºC and film and substrate 

have been shown to withstand incident pulsed laser fluences of up to ~33 Jcm
-2

. 

 

Bragg gratings are useful in a range of applications, from mirrors and filters to sensors. They 

are usually fabricated from amorphous materials, and hence their use can be limited in high 

power or high temperature applications. Epitaxial crystal Bragg structures however, with 

their generally higher melting points and thermal conductivities, should be much more 

resistant to such damage. Such structures are also of interest for integrated growth of hybrid 

laser crystals: epitaxial mirrors may be grown directly onto a thin-disc laser, for example. In 

this paper we present a method for the simple growth of such structures, suitable for rapid 

prototyping: shuttered multi-beam, multi-target Pulsed Laser Deposition (PLD). 
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Single-beam, single-target PLD has been used previously to demonstrate growth of both 

crystalline and amorphous Bragg multilayers [1-4]. In general however, little emphasis has 

been placed on speed or simplicity of fabrication, or on mirror or filter applications. As we 

demonstrate in this paper, shuttered multi-beam PLD extends the basic PLD setup to allow 

automated growth of epitaxial Bragg stacks in both simple quarter-wave (with over 100 

layers) and sophisticated apodized geometries, the latter of which in particular are very 

difficult to achieve by other methods.  

 

Depositions were carried out using the shuttered multi-beam PLD setup previously 

demonstrated for superlattice growth [5]. Bursts of pulses ablated each target in turn or 

simultaneously, with the number of pulses per burst determined by the shutter open/close 

timings. Samples were composed of Y3Al5O12 (YAG) and Gd3Ga5O12 (GGG) layers grown 

on single-crystal YAG substrates of size 10×10×1 mm
3
. Substrates were heated via CO2 laser 

to temperatures of ~750 ºC to obtain epitaxially-orientated crystal films. Deposition took 

place in an O2 gas pressure of 1×10
-2

 mbar and target-substrate distance was ~40 mm. 

Excimer (wavelength 248 nm) and frequency-quadrupled Nd:YAG (wavelength 266 nm)  

lasers of fluence ~2.5 Jcm
-2

 and 10 Hz repetition rate ablated single-crystal YAG  and GGG 

targets respectively. Targets were tilted over a range of 8º during deposition and the substrate 

was rotated to aid homogenous film growth. A compromised common set of deposition 

conditions was chosen for ease of fabrication and to allow mixed layer growth for grating-

strength apodisation. Layers consequently exhibited stoichiometry and hence refractive index 

n that did not match bulk values, due to gallium and aluminium loss in the cases of GGG and 

YAG respectively. Refractive index values were inferred by fitting of transmission spectra as 
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~1.9 and ~2.0 for YAG and GGG layers respectively, compared with bulk values of 

nYAG=1.82 [6] and nGGG=1.95 [7]. 

 

A number of designs were implemented. Quarter-wave stacks consisted of alternating layers 

of thickness λ/4n, while π phase-shifted structures consisted of quarter-wave stacks either 

side of a spacer layer of thickness λ/2n. These structures were grown automatically, with 

shutter open/close timing controlled via custom LabVIEW programs. Grating strength 

apodisation [8] was also achieved by mixing plumes to obtain layers with custom refractive 

indices. This sample consisted of alternating layers of YAG and mixed YAG/GGG, varied in 

ratios of 9:1, 8:2 and so on to 0:10 and back to 9:1 by changing the relative repetition rates of 

the ablating lasers using the shutters, to obtain an approximately Gaussian grating strength 

profile. The optical thickness was approximately the same for each layer, resulting in a 

structure that was grating-strength apodized only (not chirped-apodized). As such, the 

physical thickness of each mixed layer was varied to compensate for the change in index.  

 

With no in-situ diagnostics to measure thickness during deposition, deposition rates were 

inferred via spectrometry of single-material test films (a value for optical thickness can be 

obtained by comparing positions of interference peaks [9]). Models of quarter-wave and π 

phase-shifted geometries were created in MATLAB. These models incorporated chirp (i.e. a 

linear variation in thickness) and loss (absorption or scattering) but not fluctuations in 

thickness. 

 

The majority of spectra presented were obtained with a Varian Cary 500 white light 

spectrophotometer operating in transmission mode with a circular aperture of ~1 mm. Results 

were found to match those obtained using a CRAIC 20/20 PV microscope-coupled 
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spectrometer, used in reflection mode. Absorption and scattering were hence unlikely to be 

significant, and it was assumed that R=1-T, where R and T are reflection and transmission 

intensity coefficients respectively. In the case of π phase-shifted structures, where it was 

suspected that the short coherence length of white light was limiting feature resolution, a 

transmission spectrum was also obtained using a tuneable Ti:sapphire laser. X-ray diffraction 

was undertaken with a Siemens D5000 powder diffractometer. 

 

The transmission spectrum of an example of a quarter-wave Bragg stack with 67 layers and a 

design peak wavelength of 946 nm is shown in figure 1 along with an approximate fit for 

comparison. The model assumes no absorption or scattering loss and a slight chirp (a 

decrease in thickness of ~1% over the course of deposition). The measured peak is not 

completely symmetrical and hence cannot be fitted perfectly, and peak definition is also 

poorer than expected, suggesting that there may be significant factors that were not included 

in the model. These may include different chirp rates of the two materials, due to different 

laser energy drift or target degradation rates, and fluctuations in layer thickness due to 

corresponding fluctuations in pressure or laser energy during the deposition. 

 

 

Figure 1 Measured spectrum of a 67 layer quarter-wave stack with fit from MATLAB model for comparison 
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Figure 2 shows the transmission spectrum of a quarter-wave stack with 145 alternating layers, 

also with a design peak wavelength of 946 nm. Transmission is <0.5%, corresponding to a 

peak reflection of >99.5%. An approximate fit is shown for comparison, which implies that 

layer thicknesses decreases linearly by around 2% over the course of the ~6 hour deposition. 

Such a drift would be relatively easy to correct in the case of the excimer laser; however, the 

difficulty in quickly retuning the harmonic crystals in the case of the Nd:YAG lasers renders 

this more problematic. Sub-peaks such as those shown by the model cannot be observed 

easily in the measured data, and where small peaks can be seen (i.e. 1000-1100 nm region) 

the peak positions do not match those of the model. This latter may be the result of different 

chirping for each material or fluctuations in the growth rates.  

 

 

Figure 2 Measured spectrum of a 145 layer quarter-wave stack with fit from MATLAB model for comparison 

Peak wavelength can be tuned over ~60 nm due to a predictable change in film thickness 

across the sample surface (a result of film curvature). While control of this curvature is 

limited in the case of the YAG/GGG layers grown in this experiment, the use of materials 

with a wider window of overlapping conditions would allow much greater control. As 

expected, only peaks corresponding to the (400) and (800) peaks of YAG and GGG can be 

observed in X-ray diffraction spectra, confirming that crystal growth was epitaxial on the 
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YAG substrate, the XRD spectrum of which also showed only (400) and (800) peaks. The 

XRD spectrum of an example stack (145 layers) is displayed in figure 3. 

 

 

Figure 3 X-ray diffraction spectrum of an example stack (145 layers). Only (400) and (800) peaks can be 

observed, indicating that the film was epitaxially orientated. 

π phase-shifted stacks consisted of two 21 layer stacks of alternating YAG and GGG either 

side of a YAG layer of thickness λ /2n. An ideal structure acts as a Fabry-Perot cavity, 

resulting in a spectrally narrow reflection trough in the centre of an otherwise standard 

quarter-wave reflection peak [8]. The measured transmission spectrum is shown in figure 4. 

An increase of transmission of ~50% can be observed in the centre of the main transmission 

trough. Comparison with the model suggests that loss and chirp are not significant for this 

sample; however, the fact that the transmission value did not increase to that of the substrate 

only (~83%) implies that the structure is not a perfect cavity, and there were undesired 

fluctuations in the optical thicknesses of the stacks either side. The spectrum described in 

figure 4 was obtained using a tuneable Ti:sapphire laser.  
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Figure 4: Transmission spectrum of a π phase-shifted stack showing the characteristic increase in transmission 

at ~890nm, in the centre of the main peak. 

The spectra of the apodized sample, and a quarter-wave Bragg stack of similar peak height 

deposited under the same conditions, can be seen in figure 5. As expected, side bands are 

suppressed relative to the quarter-wave stack case without significant increase in central peak 

width. As previously, only XRD peaks corresponding to the (400) and (800) orientations of 

the YAG, GGG and mixed layers were observed, following the orientation of the substrate; 

the sample was hence epitaxially-orientated crystal. Peaks representing diffraction from each 

of the eleven materials in the sample (YAG, GGG and mixtures) can be observed in figure 6, 

as can a peak corresponding to the underlying substrate. 

 

 

Figure 5 Transmission spectra of apodized and quarter-wave stacks. Side bands are clearly suppressed in the 

apodized case.  
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Figure 6 Partial X-ray diffraction spectrum of an apodized sample showing (400) contributions from each of the 

mixed layers (ratios labelled) as well as the underlying YAG substrate. 

A 45-layer quarter-wave stack was subjected to preliminary pulsed laser damage testing using 

a 70 kHz SPI redENERGY fibre laser operating at ~1060 nm. Bursts of ~75 pulses irradiated 

a line on the sample surface and any subsequent damage was recorded. The probability of 

damage occurring was non-zero above a fluence of ~33 Jcm
-2

 for both the film and bulk 

substrate. This is already on a par with many of the best commercially available high-energy 

mirrors, and the threshold is expected to increase by at least a factor of two with the use of 

improved substrates (reported damage thresholds of bulk YAG range from 100 Jcm
-2 

[10] to 

an order of magnitude higher [11]). 

 

Samples are known to withstand heating to 750 ºC, the growth temperature. A 45-layer 

quarter-wave grating was subjected to CO2 laser annealing at ~1000 ºC for ~1 hour, with 

ramping periods of ~30 minutes. Annealing took place in an argon atmosphere at a pressure 

of 1×10
-2

 mbar. Transmission spectra before and after annealing are shown in figure 7. The 

difference in the pre- and post-annealing spectra suggests that some diffusion between layers 

has taken place, as might be expected for garnet layers at such temperatures [12]. This 

investigation should be extended to intermediate annealing temperatures with all three sample 

geometries to determine at what temperature interdiffusion begins to limit device 
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performance, and whether this critical temperature is the same for π phase-shifted and 

apodised stacks. A different choice of materials, sesquioxides for example, may also be 

investigated, as a grating composed of such material may be capable of withstanding 

temperatures at which significant interdiffusion of garnet layers occurs. 

 

 

Figure 7 Spectra of a quarter-wave stack before and after annealing in argon for one hour at ~1000ºC. 

As mentioned above, sample performance was likely limited by layer-to-layer thickness 

variation. These could be caused by a number of factors, including fluctuations in laser 

energy or ambient gas pressure, which influence both growth rate and stoichiometry. The 

introduction of in-situ diagnostics would help mitigate this problem: a low power laser could 

be used to perform reflectivity measurements during deposition [13] which could be 

combined with the LabVIEW control programs to automatically stop deposition when a layer 

has reached the desired thickness. It is important to remember when introducing additional 

diagnostics, however, that experimental flexibility or growth rate and/or turnaround time 

should ideally not be sacrificed: these are the real advantages of the shuttered PLD technique. 

 

To conclude, crystalline Bragg reflectors are of interest for high power, high temperature and 

integrated applications, due to the high damage thresholds and the potential for integrated 

epitaxial growth. Such structures have been fabricated quickly and easily in various 
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geometries via shuttered multi-beam PLD. Designs included 145 layer stacks 

exhibiting >99.5% reflection as well as π phase-shifted geometries. A crystalline apodized 

sample with an approximately Gaussian grating-strength profile was grown by mixing 

plumes to obtain a custom refractive index for each layer. Due to a predictable variation in 

layer thickness across the sample surface, peak reflection wavelength was tuneable via 

changing incident position. YAG and GGG were used as they had the largest index contrast 

of the garnets available, but the compromised conditions required for automated growth 

resulted in layers with stoichiometry far from bulk. While samples were grown at ~750 ºC, 

this choice of materials and conditions may have diminished the ability of the structures to 

withstand temperatures ~1000 ºC. High power laser damage testing, however, suggests that 

the damage threshold of the crystal mirrors should be very similar to that of bulk crystal. 

Samples have already been shown to withstand fluences of up to ~33 Jcm
-2

, and with the use 

of higher quality crystal substrates, damage thresholds expected to increase further.  
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