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Introduction
The paper of Velle et al. (2010) has re-opened the 20 year old 
debate (Hann et al., 1992; Walker and Mathewes, 1989; Warwick, 
1989) concerning whether chironomid assemblages are reliable 
quantitative indicators of past summer temperatures. Velle et al. 
(2010) acknowledge that chironomid-based temperature records 
can provide reliable reconstructions of climatic variability during 
the Lateglacial period. They focus their discussion on temperature 
reconstruction during the climatologically more stable Holocene 
and discuss a subset of Holocene temperature reconstructions 
from Scandinavia, pointing out differences between these recon-
structions and arguing that parameters other than temperature 
may be responsible for these differences. They suggest that simi-
lar issues may detract from the reliability of chironomid-based 
Holocene temperature reconstructions in other regions.

We agree that, like all climate reconstruction methods based 
on proxies, chironomid-based temperature reconstructions can 
be influenced by confounding factors (Brooks, 2006; Heiri and 
Lotter, 2003, 2005). This has long been recognized and Velle  
et al. (2010) provide a useful review of some of the problems. 
However, we wish to clarify that there is no doubt that chirono-
mids can provide reliable estimates of past temperatures, includ-
ing robust estimates of the associated prediction error which 
incorporate the response to other variables. This is demonstrated 
by the many chironomid records that have provided accurate 
temperature reconstructions for the Lateglacial and Holocene, as 
evaluated by comparison with independent climate proxies (e.g. 
Brooks and Birks, 2000; Clegg et al., 2010; Heiri et al., 2007; 
Levesque et al., 1993), and that have reflected the small-scale 
fluctuations apparent in meteorological records over the last 
100+ years (Langdon et al., 2011; Larocque and Hall, 2003; 

Larocque et al., 2009). Chironomids offer several advantages 
over other quantitative temperature proxies (Brooks, 2003) and 
the requirement for multiproxy and multisite studies to separate 
signal from noise is equally true for other climate proxies, includ-
ing lacustrine proxies and proxies from other archives such as 
tree rings, peats, speleothems and ice cores.

Like any proxy method, chironomid-based temperature recon-
structions should not be applied uncritically. Analogue statistics 
are routinely calculated to detect non-analogue situations (e.g. 
Axford et al. 2011; Heiri et al., 2007; Larocque-Tobler et al., 
2010a), although WA-PLS methods work well in non-analogue 
situations (Birks et al., 2010). Telford and Birks (2011) have pro-
vided a method to test the statistical significance of a temperature 
reconstruction against random data, but the results of this test must 
be considered alongside other palaeoecological and environmental 
evidence because failure of the test does not necessarily mean a 
reconstruction is unusable, rather that it should be treated more 
cautiously. The challenge for palaeoecologists is to identify further 
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strategies that can detect non-temperature artefacts in chironomid-
based temperature records and to constrain a priori the types of 
environments in which chironomids perform well in tracking past 
temperature changes. Velle et al. (2010) provide a valuable set of 
recommendations for successful chironomid analysis which we 
largely endorse. However, the paper also makes several assertions 
that are not generally supported by the breadth of chironomid stud-
ies conducted over the past two decades. Here we seek to advance 
the discussion by providing another perspective on the utility of 
chironomids for reconstructing palaeotemperatures and evaluating 
some of the possible complications discussed by Velle et al. 
(2010).

Temperature as a driver of 
chironomid distribution and 
abundance
Calibration data sets based on samples of modern chironomids 
across long temperature gradients show a strong relationship 
between chironomid assemblage composition and summer air 
temperature (e.g. Brooks and Birks, 2001; Larocque et al., 2001; 
Lotter et al., 1997; Olander et al., 1999). For this reason chirono-
mid-based temperature inference models can be developed with 
excellent performance statistics. However, Velle et al. (2010) 
imply that the main reason for the high performance of these 
models is because the temperature gradient is maximised in the 
calibration data set and the gradients of other environmental vari-
ables are minimised, rather than temperature being a particularly 
significant variable in driving the composition of chironomid 
assemblages. The reader may gain the impression that chirono-
mids could be used to infer any variable provided the gradient 
length of the parameter is as long as possible and the influence of 
other variables is reduced. However, this overlooks the fact that 
the performance statistics of chironomid-based temperature infer-
ence models far exceed the performance statistics of other chiron-
omid-based models designed to infer other variables such as total 
phosphorus (Brooks et al., 2001; Langdon et al., 2006), total 
nitrogen (Brodersen and Anderson, 2002), dissolved oxygen 
(Quinlan and Smol, 2001), dissolved organic carbon (DOC) 
(Larocque et al., 2006), chlorophyll a (Brodersen and Lindegaard, 
1999) and lake depth (Korhola et al., 2000). These observations 
emphasise the over-riding influence of summer temperature on 
the distribution and abundance of chironomid species at the local 
to regional scale.

The influence of other 
environmental variables on 
chironomid distribution and 
abundance
Velle et al. (2010) discuss several environmental variables that 
can influence chironomid assemblages and potentially affect chi-
ronomid-based temperature estimates. We commend them on this 
discussion and agree that a better understanding of the influence 
of non-climatic parameters on chironomid-based temperature 
reconstruction is essential for further improvement of the method. 
However, we believe some of their discussion of how factors, 
such as trophic state and pH, influence chironomid-based tem-
perature estimates overlooks important points, so we provide a 
contrasting perspective on some specific issues below.

Lake trophic state
Velle et al. (2010) focus much of their discussion on the potential 
confounding effects of lake trophic change. They provide conceptual 

models that demonstrate different ways that lake trophic state and 
nutrient conditions may co-vary with temperature. We agree that 
there are situations in which it may be difficult to distinguish between 
responses to trophic change versus temperature, because taxa charac-
teristic of warm waters are also often characteristic of eutrophic 
waters, and taxa characteristic of cold waters are also often character-
istic of oligotrophic waters. Velle et al. (2010) suggest that this may 
be problematic for palaeoclimate reconstructions because relation-
ships between climate and trophic variables could change over time, 
especially in the earliest Holocene when nutrients may have been 
suddenly released following deglaciation. However, Velle et al. 
(2010) do not provide compelling evidence that this situation is com-
mon as only two (SPA and RAT) of the ten lakes they analyse include 
early-Holocene chironomid assemblages that may be indicative of 
enhanced lake productivity during that time. More generally, there 
are many chironomid-inferred temperature (C-IT) records from the 
early Holocene that capture climatic oscillations at 11.3, 10.3, 9.3 and 
8.2 ka BP (e.g. Axford et al., 2009; Brooks, 2003; Brooks and Birks, 
2000; Caseldine et al., 2006; Lang et al., 2010a), in agreement with 
reconstructions from Greenland ice cores and other climate proxy-
data. These examples demonstrate that trophic influences do not 
obscure the response of chironomids to climate changes at those sites 
during the early Holocene.

One circumstance in which lake trophic state may indeed 
decouple from climate, and obscure the chironomid-temperature 
relationship, is when local human activities strongly affect the 
nutrient-loading of lakes and lead to trophic shifts unrelated to 
climate. Gathorne-Hardy et al. (2007) showed that the trophic 
influence of early Viking settlements in the Faroe Islands was dis-
tinguishable in the chironomid record. Conversely, Gathorne-
Hardy et al. (2009) showed that during human settlement and tree 
clearance on Iceland chironomid assemblages were relatively 
complacent but did respond to climate cooling during the ‘Little 
Ice Age’. Similarly, Heiri and Lotter (2003, 2005) describe a chi-
ronomid record that was strongly affected by early human activity 
and the resulting lake anoxia during the Bronze Age. These stud-
ies demonstrate that human impacts can be discerned and distin-
guished from climate responses in chironomid records.

We would also emphasise that the correlation between lake tro-
phic state and temperature is not as universal as suggested by Velle 
et al. (2010) and therefore cannot be invoked to explain all of the 
chironomid-temperature correlations strongly expressed in many 
data sets. The authors cite a data set (Brodersen and Anderson, 
2002) from near Kangerlussuaq, western Greenland, which comes 
from a set of lakes exhibiting a wide range of catchment character-
istics, in some cases strongly influenced by evaporative enrich-
ment of nutrients, and representing a limited and unevenly 
distributed range of temperatures. This sampling strategy maxi-
mizes the statistical impact of lake catchment characteristics and 
minimizes the effect of temperature. At least partly because the 
warmer lakes are more affected by evaporative enrichment, nutri-
ent concentrations in the sampled lakes were strongly correlated 
with temperature (Anderson et al., 2001; Brodersen and Anderson, 
2002). Consequently, the calculated optima of individual chirono-
mid taxa with respect to nutrient concentrations and temperature 
are necessarily correlated as well. Notwithstanding the above, an 
indication of the underlying strength of the temperature gradient is 
that it still accounted for about 20% of the variability in the chi-
ronomid assemblages reported.

Velle et al. (2010) suggest that a data set in which lake nutrient 
concentrations are not correlated with temperature is needed to 
demonstrate the chironomid–temperature relationship. Such a data 
set is easily constructed from available chironomid-temperature 
calibration data sets. For example, if the chironomid-temperature 
calibration data set from the European Alps (Heiri and Lotter, 
2005, 2010) is truncated to include only lakes with total phospho-
rus concentrations below 50 μg/l and July air temperatures cooler 
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than 15°C (Figure 1a), then the relationship between lake total 
phosphorus and July temperature is effectively eliminated (r = 
0.15, p = 0.23; Figure 1c). Nevertheless, a chironomid-based infer-
ence model for reconstructing temperature can be developed from 
this restricted data set (n = 65) with an almost identical prediction 
error as in the original 100 lake inference model (Figure 1b) (boot-
strapped error statistics of r2 = 0.77 and RMSEP = 1.39°C, com-
pared with r2 = 0.89 and RMSEP = 1.41°C in the full model). The 
reduced r2 is related to the shorter temperature range included in 
the truncated model than in the full model. If the temperature 
optima of the chironomids are compared with the optima 

calculated for total phosphorus concentrations it becomes apparent 
that the relationship between the two is not nearly as strong as has 
been suggested (Figure 1c). No correlation is apparent if the 
optima of all taxa are examined (r = 0.04) and only a very weak 
relationship exists if only abundant taxa are examined (r = 0.26). 
This correlation occurs because cold lakes are typically nutrient-
poor and therefore only a few cold-adapted chironomids can be 
identified in the data set that have a preference for high nutrient 
concentrations. However, in warmer climates there are clearly chi-
ronomids that have a wide range of preferences with respect to 
trophic state.

Figure 1.  (a) Distribution of lakes in the modern Swiss calibration set showing relationship between altitude and temperature (above) and 
total phosphrus (TP) (below). The calibration set has been truncated to include only lakes with total phosphorus concentrations below 50 μg/l 
and July air temperatures cooler than 15°C. (b) Comparison of chironomid-inferred temperature and observed temperature in the truncated 
modern Swiss calibration set. The performance statistics of the chironomid-based temperature inference model from the truncated data set 
(65 lakes) are only slightly inferior to the full data set of 100 lakes. (c) Comparison of TP optima and temperature optima of the most abundant 
taxa (solid circles) (r = 0.26) and all taxa (open circles) in the truncated moderns Swiss calibration set (r = 0.04).
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These calculations clearly show that lake trophic state is not 
the driving force behind the relationship between chironomids 
and temperature in the European alpine region. Furthermore, 
since most of the chironomid taxa in the Alpine chironomid-based 
temperature inference model also occur in other European cali-
bration data sets and regions, our results contradict the assertion 
by Velle et al. (2010) that a close correlation between temperature 
and nutrient optima is the rule for chironomid taxa.

pH
At pristine sites on acid bedrock a more common reason for unre-
liable chironomid-inferred temperature estimates than trophic 
change may be the influence of pH change. In at least two of the 
examples chosen by Velle et al. (2010), Gilltjärnen (GIL) and 
Bjørnfjelltjønn (BJØ), the strong response of chironomids to pH 
change during the mid Holocene may have reduced the reliability 
of the chironomid-inferred temperature estimates. Other Holo-
cene sites that appear to have been influenced by pH change 
include Holebudalen (Velle et al., 2005) and Lochnagar (Dalton  
et al., 2005). These pH changes appear to be driven by forest or 
bog development in the lake catchment and so this problem could 
be avoided by studying lakes which remain above (or below) the 
treeline throughout the Holocene or which are buffered against 
pH change (e.g. carbonate lakes). The influence of pH on chirono-
mid assemblages is clearly identifiable by characteristic changes 
in the chironomid assemblage. Acid-tolerant chironomid assem-
blages often include both warm and cool stenothermic taxa, 
although they tend to be dominated by taxa that favour the oligo-
trophic conditions typical of acidified lakes. As a result, many 
acidophilic taxa have low temperature optima and chironomid 
assemblages in acidified lakes may be expected to underestimate 
summer air temperature. This is contrary to Velle et al. (2010) 
who state that these assemblages will produce unrealistically high 
temperature estimates. This conclusion is based on an analysis by 
Velle et al. (2010) of the response of the warm stenothermic 
Microtendipes pedellus-type, which is apparently acid-tolerant in 
cool temperatures. However, this assertion is not supported by 
published data (e.g. Brodin, 1986; Dalton et al., 2005; Schnell and 
Willassen, 1996), which suggest that this taxon is acid intolerant, 
or by Woodcock et al. (2005) (referred to by Velle et al., 2010) 
who do not discuss any species of Microtendipes. Furthermore, 
our analysis of the distribution of Microtendipes pedellus-type in 
the modern Norwegian calibration set does not show any evi-
dence for a positive relationship between Microtendipes pedellus-
type and pH at low temperatures (Figure 2).

Nevertheless, even in acidifying lakes, a response to tempera-
ture change may be discernable. For example, at Holebudalen, 
western Norway (Brooks, 2003), although the C-IT appears to 
underestimate summer temperature when compared to pollen-
inferred estimates, the C-IT trends reflect falling summer insola-
tion and the well-known temperature declines at around 4.6 ka 
and 2.7 ka BP are clearly indicated (Velle et al., 2005). Similarly, 
at Lochnagar, Scotland, the C-IT indicates cool phases in the mid 
Holocene which correlate well with independent records from 
elsewhere in northern Britain (Langdon et al., 2004).

Effects of lake depth
Lake shallowing, which naturally occurred in many lakes during 
the Holocene, may result in overestimates of summer temperature 
as shallowing lakes become dominated by littoral and semi- 
terrestrial taxa, which tend to have high temperature optima. Con-
versely, lake deepening may result in increasing abundance of 
profundal taxa, which tend to have cold temperature optima. Such 
changes are usually identifiable because of characteristic assem-
blage changes or can be detected by the combination of multiple 

proxies. For example, at Tsuolbmajavri (TSU) a shallowing of the 
lake in the late Holocene is thought to have contributed to the 
gradual rise in C-IT (Korhola et al., 2002). This problem was rec-
ognized in the original study, and otherwise the inferred trends 
from this site agree well with climate reconstructions from other 
independent proxies.

The C-IT from Toskaljavri, Finland (TOS) are lower than 
expected when considering terrestrial vegetation development at 
the site, and this may be because the lake is relatively deep (21.5 
m) and dominated by profundal taxa with low temperature optima. 
Nevertheless, the chironomid-inferred Holocene temperature 
trend derived from this site (Seppä et al., 2002) agrees closely 
with Holocene trends in the oxygen isotopes from Greenland.

Taxonomic resolution
Velle et al. (2010) suggest that taxonomic inconsistency, espe-
cially where this involves high taxonomic resolution, may lead to 
problems in quantitative and qualitative palaeoenvironmental 
interpretations. Unfortunately, they do not provide evidence to 
support this statement. We would argue that low taxonomic reso-
lution is more likely to cause unreliable temperature estimates 
than high taxonomic resolution, given that low resolution reduces 
the specificity of environmental information that may be gleaned 
from an assemblage. As taxonomic resolution is increased, the 
performance of chironomid-based inference models improves 
(Brooks, 2006; Larocque, 2008), as does the reliability of palaeo-
temperature reconstructions (Heiri and Lotter, 2010). Jones 
(2008) also emphasises that to detect small-scale processes taxo-
nomic resolution at species level is necessary. Given the evidence 
that increased taxonomic resolution can improve the reliability of 
chironomid-based temperature estimates, and the problems that 
have resulted from low resolution in the past, we encourage the 
pursuit and use of the highest taxonomic resolution possible.

Remarks on the Scandinavian 
data sets
Velle et al. (2010) state that correlation between chironomid-
inferred temperatures from different sites in the same climatic 
region should be expected if temperature has an over-riding 
influence and suggest this is not apparent in the Scandinavian 

Figure 2.  Mean July air temperature and pH of lakes in the 
modern Norwegian calibration set in which Microtendipes pedellus-
type occurs. The size of the circle is proportional to the abundance 
of M. pedellus-type in each lake.
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sites they review. However, we caution against assuming that 
modern correlation of year-to-year temperature variability within 
an area as large as Scandinavia should indicate that decadal-scale 
to centennial-scale temperature variability during the Holocene 
would have to correlate as well. In mountainous areas, such as 
Norway and Sweden, and at spatial scales of hundreds to thou-
sands of kilometres, changes in climatic forcing factors during 
the Holocene may well have led to differential regional climatic 
responses. Thus, it is not surprising that some of the records pre-
sented by Velle et al. (2010) show somewhat different recon-
structed temperature patterns. However, it is notable that records 
from sites in close vicinity of each other do largely show consis-
tent results, certainly within the prediction errors (about 1.0°C) 
of the applied temperature inference models and considering the 
chronological uncertainties (reaching 500 years in some cases). 
In Iceland two closely located sites showed almost identical 
early-Holocene chironomid-inferred temperature histories 
(Caseldine et al., 2006).

Conclusions
We agree with many of the recommendations made by Velle  
et al. (2010). Calibration data sets and sites for downcore 
records should be carefully selected, chironomid-based tem-
perature reconstruction should be undertaken within a multi-
proxy framework, chironomid data should be interpreted using 
autecological data, and fossil assemblages should be carefully 
evaluated for modern analogues and tested against random 
data (Telford and Birks, 2011). Most of these recommenda-
tions are already followed by many researchers employing 
chironomid-based temperature reconstructions. Several stud-
ies have incorporated multiple chironomid-based temperature 
records to generate robust regional palaeotemperature recon-
structions (e.g. Axford et al. 2007; Caseldine et al. 2006; Lang 
et al., 2010b; Larocque and Hall, 2004). In many studies  
chironomid-based temperature reconstructions are similar to 
independent temperature reconstructions based on other prox-
ies, such as glacial extent (e.g. Langdon et al., 2011; Larocque-
Tobler et al., 2010b), oxygen isotopes (e.g. Bedford et al., 
2004; Heiri and Millet, 2005), borehole palaeothermometry 
(Young et al., 2011), tree rings (Clegg et al., 2010) and treeline 
fluctuations (Heiri et al., 2004), and are supported by results 
from vegetation modelling (Heiri et al., 2006) and climate 
models (Renssen et al., 2009).

Evidence from studies over the past 20 years in Europe and 
North America overwhelmingly points to summer temperature as 
one of the dominant drivers governing the distribution and abun-
dance of lacustrine chironomid species in those regions. Chiron-
omids have been used at many sites to generate Lateglacial and 
Holocene summer air temperature estimates that are in close 
agreement to independent proxy-based reconstructions and 
instrumental data. Unlike some temperature proxies, chirono-
mids can be analyzed at geographically diverse and widespread 
sites, at high temporal resolution, and used to reconstruct both 
decadal-scale trends in recent centuries and millennial-scale tem-
perature trends over long timescales. Palaeoecologists would be 
ill-advised to dismiss this useful method, but rather should con-
tinue to refine their understanding of this proxy and use methods, 
such as careful site selection and model development, multisite 
consensus approaches, multiproxy comparisons and analogue 
tests, to alleviate or detect possible complications.
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Validation of results
Inconsistent temperature reconstructions
As Brooks et al. (2012) note, Velle et al. (2010a) have re-opened a 
20 year old debate on biological indicators. Twenty years ago there 
was an active discussion about whether chironomid assemblages 
are reliable indicators of past temperatures. There is, however, one 
important difference between the situation today and 20 years ago. 
Now, there are empirical data in the form of many chironomid-
based temperature reconstructions. So far, more than 20 Holocene 
chironomid-based temperature reconstructions have been pub-
lished from Norway, Sweden, and Finland (Antonsson et al., 2006; 
Bigler et al., 2002, 2003; Heider, 2004; Heinrichs et al., 2005; 
Korhola et al., 2002; Larocque and Bigler, 2004; Lüder, 2007; 
Luoto et al., 2010; Paus et al., 2011; Seppä et al., 2002; Velle et al., 
2005a, 2005b, 2010b, 2011). Many more have been published 
worldwide. The Velle et al. (2010a) Forum Article was written to 
shed light on a striking problem that empirical data and reconstruc-
tions have revealed: when Holocene temperature reconstructions 
from different sampling localities are compared there are many 
instances of strongly mismatching curves (Figure 1). We feel that 
many investigators have overlooked this problem and we hope that 
our Forum Article and ensuing discussion and research would con-
tribute towards resolving the problem. Similarities with other 
proxies or multiple sites are needed to confirm results, but the 
results are too uncertain to assess whether discordances are real or 
are caused by confounding factors.

Velle et al. (2010a) show ten reconstructions and argue that 
these are so different that it seems unlikely they can solely be 
attributed to local site differences in microclimate. Brooks et al. 
(2012) caution against assuming that decadal-scale to centennial-
scale temperature variability in Scandinavia should correlate. 
However, studies of the instrumental record of the last 100–250 
years (Casty et al., 2007; Dobrovolny et al., 2010; Jones and 
Moberg, 2003; Luterbacher et al., 2004; Meier et al., 2007; 

Moberg et al., 2005; Nordli et al., 2003) and of reconstructions 
from documentary proxy evidence during the last 500 years 
(Brazdil et al., 2010; Casty et al., 2005; Dobrovolny et al., 2010; 
Meier et al., 2007) suggest that temperatures do correlate, not 
only in Scandinavia, but also across Europe. Brooks et al. (2012) 
are rightly concerned that chronological uncertainties can obscure 
a comparison between sites. In a study on six Holocene chirono-
mid-stratigraphies, Velle et al. (2005a) tested the numerical rela-
tionship among unsmoothed and smoothed inferred temperature 
curves. Since only two of 15 comparisons were statistically sig-
nificantly positively correlated, uncertainties associated with 
chronologies were tested. The correlation analysis indicated no 
correlation, whereas by disregarding the dating model, there was 
series of matching temperatures events, but only when the origi-
nal age–depth models were displaced by more than 1000 years 
(Velle et al., 2005a: figure 11). In this context, it is of little mean-
ing to search for discordances that are, or are not, within the pre-
diction errors of the temperature inferences, as Brooks et al. 
(2012) do. At many sites, the chironomid-inferred temperatures 
are too erratic to be climatically useful. For most sites, it is of little 
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value to interpret temperature fluctuations that are inside the pre-
diction errors estimated by statistical cross-validation, as many 
chironomid workers continue to do.

Strong differences prevail when more sites than those pre-
sented in Velle et al. (2010a) are included in the comparison (i.e. 
three sites from western Norway (Velle et al., 2005a), two from 
southern Norway (Lüder, 2007), and two from southern Sweden 
(Heider, 2004); Figure 1). Chironomids have produced encourag-
ing results (Larocque et al., 2009), but there is no doubt that chi-
ronomids have also produced discouraging results Norway (Velle 
et al., 2005a). In all instances, quantitative proxies will only pro-
duce reliable estimates of past environmental conditions with 
robust errors if the assumptions of the reconstruction method are 
met (Birks et al., 2010). While Brooks et al. (2012) make some 
valuable comments, they fail to acknowledge the underlying con-
cern of Velle et al. (2010a): Why are the chironomid-inferred 
Holocene temperatures from Fennoscandia so different? We have 
initiated a re-analysis of most chironomid data sets from Norway, 
Sweden, Finland, Iceland, and UK. This is a joint project, includ-
ing some of the Comment authors and others, which hopefully 
will help to identify at what sites and at what periods the chirono-
mid approach is reliable (e.g. Figure 2).

Validation with instrumental records
As Brooks et al. (2012) point out, chironomids have been assessed 
as a palaeoclimatic proxy by comparing the reconstructed tem-
peratures with instrumental records for the last 100–150 years. 
This validation has given promising results, but studies that failed 
to find a correlation between chironomids and the instrumental 
temperature record should not be overlooked (e.g. Axford et al., 
2009; Cameron et al., 2002; Lotter et al., 2002). In addition, it is 
important to consider potential confounding factors when down-
core chironomids and the instrumental temperature record are 

compared: (1) Any comparison and numerical correlation should 
be corrected for temporal auto-correlation, as there is a lack of 
statistical independence in the fossil record and in the instrumen-
tal record (Tian et al., 2011). The auto-correlation violates the 
assumptions of many statistical tests and can cause overoptimistic 
estimates of the correlation coefficient. A correction for auto- 
correction is usually not performed in chironomid-temperature 
validation, but as Tian et al. (2011) show, such a correction can 
easily be achieved using a block bootstrap similar to h-block 
cross-validation (Burman et al., 1994). (2) A correlation during 
the instrumental record for the last 100–150 years does not imply 
that the chironomid record will provide reliable temperatures for 
the entire Holocene. This was very evident in Lake 850 in Swe-
den. Here, there was a good match between the instrumental 
record and inferred temperatures for the last 100 years (Larocque 
and Hall, 2003). However, based on inconsistencies in a Holocene 
multiproxy study, Larocque and Bigler (2004) concluded that 
temperature was not the most important factor to explain the dis-
tribution and abundance of chironomids prior to 2500 cal. yr BP.

Validation with independent proxies
Brooks et al. (2012) cite studies where results obtained from chi-
ronomids correspond well with the results obtained from other 
proxies or with independent records, such as the Greenland ice-
cores. We agree that a comparison with independent records is a 
principal assessment of results. However, we note the following: 
(1) it is unclear to us why Brooks et al. (2012) assume that tem-
peratures throughout Scandinavia should not necessarily correlate, 
while Scandinavian chironomid temperature reconstructions 
should correlate with ice-core records from Greenland. (2) We 
caution against the risk of circularity of argument. In their conclu-
sions, Brooks et al. (2012) write that chironomid-based tempera-
ture reconstructions are supported by results from vegetation 

Figure 1.  Chironomid-inferred mean July air temperatures adjusted for glacioisostatic rebound. BJO: Bjørnfjelltjønn (Brooks, 2006); BRU: 
Brurskardet (Velle et al., 2010b); FIN: Finse Stasjonsdam (Velle et al., 2005a); GIL, Gilltjärnen (Antonsson et al., 2006); HOL, Holebudalen (Velle  
et al., 2005a); ISB: Isbenttjønn (Lüder, 2007); L850: Lake 850 (Larocque and Bigler, 2004); NJU: Njulla (Bigler et al., 2003); OYK: Vestre Økjamyrtjønn 
(Velle et al., 2005a); RAT: Råtåsjøen (Velle et al., 2005b); REI: Reiardalsvatnet (Lüder, 2007); SKR: Stora Kroksjön (Heider, 2004); SPA: Spåime 
(Hammarlund et al., 2004); TOR: Lilla Torkelsjön (Heider, 2004); TOS: Toskaljavri (Seppä et al., 2002); TSU: Tsuolbmajavri (Korhola et al., 2002); VUO: 
Vuoskkujávri (Bigler et al., 2002).
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modelling. A correlation between inferred temperatures and vege-
tation modelling is not surprising given that the vegetation model 
they cite (Heiri et al., 2006) was driven by chironomid-inferred 
temperatures. Our interpretation is that Brooks et al. (2012) find 
the chironomid-inferred temperatures supported since the chirono-
mid temperature-driven vegetation model produced vegetation 
dynamics that mimic an independent pollen record. (3) A general 
visual similarity with independent climate proxies should also be 
quantified and assessed for statistical significance (e.g. Dobro-
volny et al., 2010: figure 6). According to Bennett (2002), testable 
hypotheses are needed or it becomes difficult or impossible to dis-
entangle what is based on data and what is based on opinions.  
(4) There are many multiproxy studies that have pointed out incon-
sistencies between temperatures obtained from chironomids and 
other proxies, or studies that have suggested temperature was not 
the main driver for the full or parts of the down-core chironomid 
distribution (Bigler et al., 2002; Dalton et al., 2005; Heinrichs et al., 
2005; Heiri and Lotter, 2003; Heiri et al., 2003; Korhola et al., 
2002; Larocque and Bigler, 2004; Lüder, 2007; Nyman  
et al., 2008; Velle et al., 2010b).

Gradient length and response to 
confounding variables
Gradient length in training-sets
We do not think that chironomids are a useful proxy for any envi-
ronmental variable provided the gradient is long enough, as 
Brooks et al. (2012) give the impression that we do. However, 
based on training-set statistics, any environmental variable will 
appear to be reconstructable if the gradient is long enough and 
other gradients are short. This is demonstrated by the many envi-
ronmental variables that chironomids appear to respond to in 
training-sets (Table 1).

Brooks et al. (2012) state that the performance statistics of 
chironomid-based temperature inference models exceeds by far 
the performance statistics of other chironomid-based models. We 
agree that the numerical performance of chironomid-based tem-
perature-inference models is good (Table 1), but miss data from 
Brooks et al. (2012) that confirm their statement. To our knowl-
edge it has not been tested whether temperature-inference models 
out-perform the numerical performance of training-sets based on 
other environmental variables. The coefficient of determination 
(r2) measures the strength of the relationship between observed 
and predicted values and will increase with gradient length, while 
RMSEP and bias statistics are not dependent on the range of the 
observed environmental gradient (Birks, 1998). Different units of 
measurement (e.g. chlorophyll a (μg/l), water depth (m) or tem-
perature (°C)) are not comparable unless standardised. Hence, a 
comparison among training-sets based on dissimilar environmen-
tal variables is valid if the gradient lengths are similar and the 
environmental data are standardised to a comparable unitless 
scale.

Relationship to temperature
Most chironomid-temperature training-sets show significant 
responses to temperature and to secondary variables, such as 
organic carbon, alkalinity, conductivity, solar radiation, magne-
sium, precipitation, altitude, lake depth, and lake productivity 
(e.g. Barley et al., 2006; Larocque et al., 2001, 2006; Lotter  
et al., 1997, 1998; Olander et al., 1999; Rees et al., 2008; Velle 
et al., 2005a). In surprisingly many training-sets designed for 
long temperature gradients, the response to environmental vari-
ables other than temperature overrides the response to tempera-
ture. Such variables include pH (Porinchu et al., 2009; Rees  
et al., 2008), loss-on-ignition (LOI) (Larocque et al., 2001; 
Olander et al., 1999), lake depth (Porinchu et al., 2009), total 
carbon (Langdon et al., 2008), or total nitrogen (Porinchu et al., 
2009). Chironomids in data sets that are not designed for train-
ing-set purposes will respond most significantly to one of sev-
eral environmental variables, such as tropho-dynamic status, 
DOC, sediment organic content, chlorophyll a, bottom oxygen 
content, lake size, location of the lake, water chemistry, or alti-
tude (Bigler et al., 2006; Brodersen and Lindegaard, 1999; Cata-
lan et al., 2009; Fjellheim et al., 2009; Kernan et al., 2009; 
Nyman et al., 2005; Real and Prat, 1992). Many of these envi-
ronmental variables co-vary with temperature or with one or 
more of the other variables listed above.

There is a lack of understanding on the relationship between 
chironomids and temperature, and it seems that indirect effects of 
temperature can play an important role (Eggermont and Heiri, 
2011). When this is the case, it is wise to interpret down-core 
reconstructions cautiously. All training-sets will produce results 
when applied down-core (Birks et al., 2010). Can chironomids 
provide reliable estimates for temperature change or for change 
along any of the other environmental variables from training-sets 
(Table 1) backwards in time? In principle yes, but only if the envi-
ronmental variable of interest is the dominating gradient at the 
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Figure 2.  (a) Non-metric multidimensional scaling (NMDS) of fos-
sil chironomids from Råtåsjøen (red line) added passively into the 
NMDS space of samples in the modern Norwegian calibration data 
set (grey dots). The contours (blue) represent temperature change 
(°C) of samples in the Norwegian calibration data set (Brooks and 
Birks, 2001, unpublished data, 2001–2010). The fossil samples change 
along some unknown secondary gradient, NMDS2. (b) Proportion 
of variance in the Råtåsjøen fossil data explained by environmen-
tal variables in the modern calibration data set. The only statistically 
significant environmental variable is lake depth, suggesting that the 
secondary gradient found from the NMDS is lake depth. The dashed 
line to the far right shows the proportion explained by the first axis 
of a PCA, while the red dashed line shows the threshold from which 
the environmental variables explains more of the variance than 95% 
of 999 random reconstructions. For details on the method, see Tel-
ford and Birks (2011).
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time of interest (Birks et al., 2010). Many chironomid researchers 
have been concerned about issues of confounding gradients. 
Brooks (2006) stressed that soil development and the resulting 
changes in pH, nutrients, dissolved oxygen (DO), and dissolved 
organic carbon (DOC) can have a greater influence than tempera-
ture on the composition of some midge assemblages. Larocque  
et al. (2006) suggested that it was hard to dissociate the combined 
effects of temperature, DOC, LOI, and depth when performing 
down-core temperature reconstructions. According to Langdon  
et al. (2008) it is a major challenge to separate the effects of tem-
perature, LOI, and lake depth on subfossil chironomid sequences.

Correlation between temperature optima and trophic 
optima
Brooks et al. (2012) agree that taxa characteristic of warm 
waters are also often characteristic of eutrophic waters, and taxa 
characteristic of cold waters are also often characteristic of oli-
gotrophic waters. However, based on optima in a truncated data 
set they argue the correlation between trophic optima and tem-
perature is not as universal as we suggested. First, we point out 

that a relationship between trophic optima and temperature 
optima should not be expected for all taxa in a data set since the 
optima for rare taxa are inevitably poorly defined. Only com-
mon taxa are relevant and performing a more robust correlation 
with outliers removed would drastically improve the correlation 
(see Brooks et al., 2012: figure 1). Second and most important, 
concerning the relationship between temperature and trophic 
status (nutrients, chlorophyll, Secchi-depth, DOC), it is not a 
matter of our opinion, or of transfer-function performance and 
statistical prediction errors, but a question of well-described 
ecological and limnological phenomena in nature (Brodersen 
and Anderson, 2002; Brodersen and Lindegaard, 1999; Brooks 
et al., 2001; Brundin, 1949, 1956; Lenz, 1925; Lotter et al., 
1997; Sæther, 1979; Thienemann, 1928, 1954; Walker et al., 
1991; Wiederholm and Erikson, 1979). Several examples of sig-
nificant positive correlations between temperature and trophic 
variables are reviewed by Eggermont and Heiri (2011). These 
relationships are responsible for the evolutionary outcome that 
warm-water taxa, with a higher metabolic activity, are also 
adapted to productive lakes (and streams, see Velle et al., 2010a: 
figure 6) rich in available food for growth. This should not be 

Figure 3.  (a) Rank correlation between chironomid altitudinal optima in the Swiss Alps (Lotter et al., 1997: figure 6) and trophic optima 
(Lotter et al., 1998: figure 6). The correlation between temperature and total phosphorus (TP) in the Swiss Alps is r = 0.57, p < 0.01 in the 
non-truncated data set. (b) Rank correlation between chironomid temperature optima for northwest North America (Barley et al., 2006) and 
trophic rank (Sæther, 1979). Average rank numbers for trophy were used where adjustment to subfossil genus/type was necessary.

Table 1.  Examples of chironomid training-sets developed to infer diverse environmental variables.

Environmental variable Region λ1/λ2 Model r2
jack Reference

July temperature Sweden WAinv 0.44 Rosén et al. (2001)
July temperature Norway and Switzerland 1.17 WA-PLS 2 0.87 Heiri et al. (2011)
Water T Sierra Nevada, USA 0.87 WAclassical 0.73 Porinchu et al. (2002)
Water depth Finland 0.68 PLS 2 0.70 Korhola et al. (2000)
Total phosphorus UK 1.21 WAinv 0.60 Brooks et al. (2001)
Salinity Tibetan plateau 0.73 WA-PLS 2 0.80 Zhang et al. (2007)
Late summer anoxia Ontario, Canada 0.40 WAinv tol 0.56 Quinlan and Smol (2001)
Late winter anoxia Southern Finland 0.77 WA-PLS 1 0.72 Luoto and Salonen (2010)
Stream flow/turbulence Finland, intra-lake 0.95 WAclassical 0.77 Luoto (2010)
Chlorophyll a Denmark 1.38 WA inv 0.67 Brodersen and Lindegaard (1999)
Continentality Russia and Norway 0.48 WA-PLS 2 0.73 Self et al. (2011)
Distance to littoral 
vegetation

Finland, intra-lake 0.77 WAclassical 0.71 Luoto (2010)

pH Tasmania 0.90 WA-PLS 1 0.74 Rees and Cwynar (2010)

For reference on model performance, the average r2
jack for 23 published chironomid–air temperature training-sets is 0.75. WA: weighted averaging; PLS: 

partial least squares; WA-PLS: weighted averaging partial least squares; inv: inverse deshrinking; classical: classical deshrinking; tol: tolerance downweight-
ing. The number after WA-PLS refers to the number of WA-PLS components considered.
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surprising and can be shown for many data sets (Figure 3a). 
Comparison of independent data will, in many cases, give the 
same rather convincing result (Figure 3b). However, even if we 
could succeed in selecting lakes to produce the ideal training-set 
with no correlations among the variables, as Brooks at al. (2012) 
attempt, nature will still expose the same relationship based on 
all the thousands of lakes that were not sampled for the opti-
mised data set. Modern data sets aimed and designed for high 
precision and accuracy for single variables may perform well 
for that purpose, but will not necessarily reflect the true com-
plexity in nature in space and time because they are optimised 
for a single variable at one point in time. If this ecological 
knowledge is acknowledged, it can be used positively to under-
stand palaeoecological records and contradictions in inferred 
environmental variables.

Trophic optima in a Greenland data set
Velle et al. (2010a) cite a study from West Greenland where B 
rodersen and Anderson (2002) demonstrate there is a strong cor-
relation between temperature optima and trophic optima. Brooks 
et al. (2012) argue that the West Greenland data set maximises the 
statistical impact of lake catchment characteristics (nutrients) and 
minimises the impact of temperature. If Brooks et al. (2012) see 
this as a problem, we point out that such a sampling strategy with 
single environmental gradients maximised is common in chirono-
mid temperature training-sets and other proxy-based training-sets 
(e.g. Brooks and Birks, 2001). Brodersen and Anderson (2002) 
realised that the nutrient gradient in the Greenland data was long 
and that temperature significantly explained 20% of the variation 
in the chironomid data. However, instead of publishing a seem-
ingly good temperature transfer function, they attempted to inter-
pret ecologically the multivariate complexity in their data set. 
Theoretically, Brodersen and Anderson (2002) could have maxi-
mised the temperature gradient simply by including an artificial 
climate gradient uphill. This would have been a classic example 
of a data set that would have obscured the strong local influence 
of catchment characteristics, and have ignored the true limnologi-
cal processes that probably also occurred in the lakes (down-core) 
over the Holocene in that region.

Trophic influence down-core
Brooks et al. (2012) provide examples of sites where trophic 
influence is thought not to obscure the response of chironomids to 
climate change during the early Holocene, and argue that trophic 
influence is therefore not a problem. We agree that sites with 
small confounding gradients are ideal candidates for quantitative 
palaeoecology (see Velle et al., 2010a: figure 5). However, it is 
important to be cautious with samples from the early Holocene 
and from sites formed in recent deglaciations given (1) the rela-
tionship between chironomid temperature optima and trophic 
optima (Figure 3) (Brodersen and Anderson, 2002; Velle et al., 
2010a), and (2) that leaching and lake-catchment nutrient- 
ontogeny is a natural process following deglaciation (Boyle, 
2007; Engstrom and Fritz, 2006; Engstrom et al., 2000; Norton  
et al., 2011; Reuss et al., 2010; Saros et al., 2010). A response of 
chironomids to the input of phosphorous in mineral colloids from 
glaciers was described more than 50 years ago (Brundin, 1956, 
1958). Of the ten sites presented by Velle et al. (2010a), multi-
proxy studies indicate that four of the chironomid-based tempera-
ture inferences, and not two as stated by Brooks et al. (2012), 
could be obscured by an early-Holocene increase in productivity 
(SPA: Hammarlund et al., 2004; L850: Larocque and Bigler, 
2004; RAT: Velle et al., 2005b; BRU: Velle et al., 2010b). Further-
more, an increase in rainfall may result in enhanced in-wash of 
nutrients into water bodies (Chang et al., 2001; Kundzewicz et al., 

2007). If this happened in the past, the chironomid-inferred tem-
peratures could accordingly be overestimated. A response to 
nutrient-input was illustrated in a study on experimental fertiliza-
tion in Alaska. During the six study years, the dominating chi-
ronomid genus in the fertilised side of the lake changed from 
Heterotrissocladius to Phaenopsectra (Hershey, 1992). There 
were no corresponding changes in the test side of the lake. 
Phaenopsectra has higher temperature optima than Heterotrisso-
cladius (Eggermont and Heiri, 2011), and any temperature infer-
ence at this site would accordingly be overestimated.

Down-core influence of human impact, pH, and 
depth
Brooks et al. (2012) recognise that human impact can influence 
the temperature reconstructions, but that the influence from 
humans can be discerned and distinguished from climate 
responses in chironomid records. We agree that potential human 
impact can be detected at sites where background information 
exists on the timing and extent of human influence and from mul-
tiproxy studies, such as those cited in Brooks et al. (2012). For 
many sites, however, information on human impact or impact 
along other confounding gradients is missing. At such sites, the 
confounding impact would potentially be interpreted as a tem-
perature signal. Because of biases in the inferred temperatures 
associated with human impact in the Alpine region, Heiri and  
Lotter (2005) recommended a multiproxy approach to palaeoen-
vironmental reconstruction. According to Heiri and Lotter (2005), 
it is clearly essential to keep a close control on changes in local 
human activity during the late Holocene, even at high elevations 
and in remote mountain lakes.

When it comes to the influence of lake depth and pH, Brooks 
et al. (2012) agree that there is a possible problem of confounding 
gradients that can cause unreliable chironomid-inferred tempera-
ture estimates.

Training-sets as representatives of 
true pattern in nature
The complexity and multidimensionality in chironomid responses 
to environmental variables in modern data sets and in down-core 
sequences, as demonstrated above and in Velle et al. (2010a), sug-
gest that transfer functions should not be interpreted as represen-
tatives of true ecological patterns in nature. Training-sets can help 
build ecological hypothesis, but should be seen as empirical mod-
els that mimic a small fraction of the biological response mecha-
nisms. It is important to separate responses in static and optimised 
training-sets in space, from responses along gradual changes 
within single lakes in time. As an example, Axford et al. (2009) 
found that some taxa appeared to exhibit different temperature 
preferences in a core from Iceland and in the Iceland calibration 
data set. We concur with Huntley (2012), who cautions against 
using biological proxies to reconstruct variables in isolation since 
most organisms respond concurrently to several variables. A 
strong implication is that chironomids can be used as a proxy for 
combinations of variables that often occur together, such as tro-
pho-dynamic status sensu Catalan et al. (2009). Tropho-dynamic 
status is a combination of variables, including productivity 
(DOC, total phosphorus), thermal conditions, and littoral habi-
tat features.

Concluding remarks
All scientific results should be subject to rigorous testing. This is 
not straightforward when we use proxies to infer some unknown 
environmental variable of the past (Birks et al., 2010). In this 
context, we do not see how Brooks et al. (2012) have provided 
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evidence that Holocene chironomid-based temperature recon-
structions are reliable, as they state. Similarities with other prox-
ies or multiple sites are needed to confirm results and the 
similarities should be tested for statistical significance. We do 
not believe these challenges involved are unique to chironomids 
as a palaeoenvironmental proxy (e.g. Huntley, 2012). This was 
highlighted in the title of the Velle et al. Forum Article as ‘les-
sons for palaeoecology’. As Brooks et al. (2012) noted ‘… 	t h e 
requirement for multiproxy and multisite studies to separate sig-
nal from noise is equally true for other climate proxies, including 
lacustrine proxies and proxies from other archives such as tree 
rings, peats, speleothems and ice cores’. These are general chal-
lenges that we hope experts in their respective fields of palaeoen-
vironmental sciences will take seriously. Recognising that other 
sciences have challenges is no excuse not to take these chal-
lenges seriously in chironomid research. We do not wish palaeo-
ecologists to dismiss their biological proxies, but rather to use 
more resources to understand the underlying ecological pro-
cesses and to refine their palaeoecological methods. Then, the 
resulting palaeoenvironmental inferences will hopefully be more 
robust.
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