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Abstract

In the field of stochastic structural dynamics, perturbation methods are widely used to estimate the response
statistics of uncertain systems. When large built up systems are to be modelled in the mid-frequency range,
perturbation methods are often combined with finite element model reduction techniques in order to consid-
erably reduce the computation time of the response. Existing methods based on Component Mode Synthesis
(CMS) allow the uncertainties in the system parameters to be treated independently in each of the substruc-
tures and the perturbation in the local parameters to be propagated to the full system global parameters.
However, local treatment of damping uncertainty is usually avoided by assuming proportional damping.
Here, a perturbation method that includes local modal damping uncertainty and its propagation to the global
response is proposed. Local damping is accounted for in the CMS model by use of complex modes. A pertur-
bation relationship between local and global modal properties is stated for non-classically damped systems.
In this way, the response statistics for uncertain systems with localized damping can be computed at a low
computational cost. A numerical example is presented to illustrate the performance of the proposed method.

1 Introduction

In the design stage of mechanical structures computer-aided engineering (CAE) methodologies are used for
modelling the behaviour of the structures and optimising their performance. The vibrations of dynamic
structures are often analysed using the finite element (FE) method. For large built-up structures the FE
analysis computational cost raises dramatically as the analysis frequency increases. This happens because
the FE mesh has to be further refined to account for small wavelengths corresponding to high frequency
modes. Hence, modelling of large built-up structures is commonly addressed using finite element sub-
structuring and model reduction techniques like component mode synthesis (CMS), in order to considerably
reduce computation time.

Nevertheless, the high computational cost due to FE meshing requirements is not the only issue to be faced
when the analysis frequency increases. An FE model of a mechanical structure is characterized through its
physical parameters e.g. density, dimensions, Young’s modulus, etc. It is therefore a deterministic model
defined by certain nominal values of the parameters. In real structures, however, it is impossible to know with
infinite precision the value of those physical parameters. Moreover, the parameter values might be slightly
different for each instance of a manufactured structure. At low frequencies these tiny variations/errors in the
parameters do not produce significant errors in the FE solution. However, when the FE analysis frequency
increases, the modal frequencies and mode shapes become very sensitive to small variation in the parameter
values. This might give rise to major errors in the computed FE response. Consequently, at mid-frequencies
there is the need to account for the uncertainties in the physical parameters in order to compute robust
estimates of the response of a system. The so called mid-frequency range is the frequency range in which
uncertainties become significant but, yet, statistical methods, such as statistical energy analysis (SEA), do



not give accurate results due to the lack of modal density and modal overlap.

Stochastic Finite Element Method (SFEM) is the generic name given to the methods that introduce uncer-
tainties in an FE model and seek to compute not only the nominal response of the system but also its statistics
(mean responses, variances, covariances, confidence levels, etc). These SFEM methods involve the use of
Monte Carlo (MC) methods. That is, computing the system response for a large amount of slightly different
FE parameters sets, usually named Monte Carlo samples. As stated above, Conducting a single FE analysis
at mid-frequencies has a high computational cost, notwithstanding if FE analyses are to be run for a large
amount of MC samples. The required computational time then becomes impracticable. For this reason,
SFEM methods usually solve the nominal model once and then make use of approximations in order to
compute the rest of MC samples at a lower computational cost.

In this context, component mode synthesis has been identified to be a suitable framework for the quan-
tification and propagation of uncertainties [1]. On one hand CMS allows the uncertainties in the system
parameters to be treated independently in each of the substructures. This is convenient in many cases since it
is likely that the different parts of built up structures have distinct uncertain nature. On the other hand, the use
of perturbation methods on the CMS parameters makes it possible to drastically reduce the computational
effort of the Monte Carlo simulations. Nevertheless, existing CMS perturbation techniques avoid the local
treatment of damping by assuming proportional damping. When designing dynamic structures, however,
damping is usually added in localized zones in order to reduce their noise and vibration levels. Therefore,
the proportional damping assumption appears to be quite inaccurate in these cases.

This paper presents a perturbation method for SFEM based on complex component mode synthesis. The
main feature of this method is that complex modes are used for the CMS component modal basis. In this
way, damping and damping perturbations can be addressed at the component level. Then, perturbations in the
component parameters are propagated into full system modal parameters through a first order approximation
sensitivity relationship, so that the statistics of the frequency response functions for systems with localized
damping can be computed at a low computational cost.

2 Component mode synthesis, perturbations and damping

Component mode synthesis was introduced in the 1960’s by Hurty [2] and Craig and Bampton [3] and it is
nowadays a well established sub-structuring technique. Classical CMS methods are defined for undamped
systems, where the structure is divided into several components and their undamped free/fixed interface
modes are computed. Model reduction is obtained by truncating the series of undamped component modes.
Damping is assumed to be proportional and therefore it is introduced directly into the global modes once the
full structure undamped solution has been computed.

In uncertainty analysis, perturbation approaches have been often used together with component mode syn-
thesis [1, 4, 5]. In 1968 Fox and Kapoor [6] derived first and second order expressions for the rate of
change of modal frequencies and mode shapes due to perturbation in physical parameters. Based on Fox and
Kapoor, Mace and Shorter developed the local modal perturbational (LMP) method [4] in which the mass
and stiffness matrices expressed in fixed interface Craig-Bampton coordinates were introduced into the Fox
and Kapoor linear expressions. In this way they derived a simple sensitivity expression relating the pertur-
bations in component modes to the global modal frequencies and mode shapes. In this and other methods
classical CMS formulation is used, which implies that damping is not introduced at a component level.

Over the last decades, however, other CMS methods have been developed so that non-proportional damping
can be included at a component modal level. For example, Craig and Ni [7] developed the inertia-relief
attachment modes method based on a first order state-space formulation. Wang and Kirkhope [8] extended
the method using complex modes and complex coupling interfaces, naming it complex component mode
synthesis. More recently Morgan et al. [9] derived an alternative formulation using also complex modes that
is a direct extension to the non-proportionally damped case of the classical Craig-Bampton methods. Thus,



it should be possible to develop new perturbation based methods that include non-proportional damping
formulation. Indeed, Fox and Kapoor’s linear expressions were extended to the non-proportional viscous
damping case by Adhikari [10] some years ago. However, these expressions are not directly applicable to
CMS formulation.

Recently, Ouisse et al. [11] presented a robust CMS method for the optimization of stochastic damped
systems. In their work they work out an ad-hoc formulation for the fluid-structure coupling case. The Ritz
basis is enriched with static residuals associated with visco-elastic and poro-elastic behaviour, and with the
static response of residual forces due to structural modifications.

The purpose of this paper is to present an alternative method that is able to perform uncertainty analysis
based on perturbations using the CMS formulation that includes damping at a component level. The main
idea is to extend the LMP method for non-classically damped cases. This is done in a straightforward manner
by use of complex component mode synthesis.

3 Component mode synthesis

Component mode synthesis is a method to solve in an efficient way the finite element model of a system.
CMS performs modal analysis for the undamped system, and modal damping is later introduced into the
undamped modes. From the equations of motion of an undamped system

Mii+ Ku=f (1)

the modal parameters can be computed by solving the eigenvalue problem (EVP) for the homogeneous
equations of motion
K¢ =)\M¢ (2)

where A\ and ¢ are the eigenvalue and eigenvector solutions respectively. Each solution of the EVP is an
undamped mode m of vibration, with ¢,,, being its mode shape and, since Equation 1 is a set of second order
differential equations, \,, being its squared modal frequency w,,.

Am = w2 3)

Rather than solving the full system EVP (Equation 2), CMS splits the system into 7 subsystems or compo-
nents. Each component has N, degrees of freedom (DOFs), which are a subset of the NV DOFs of the FE
model. In turn, the component DOFs are split into N; ;- interior DOFs and N, coupling interface DOFs.
The displacement u, in each component reads

WZP1 )

By means of a coordinate transformation T",., each component’s displacement is posed in a component modal
basis.

w=ﬂ%=ﬂﬁﬂ )
clr

where g, , and g, correspond to the interior and coupling DOFs respectively. The basis consists of N,
local modes of the component. If all modes are used to create the basis the transformation in Equation 5
is exact. However, if the basis is truncated up to a smaller number of local modes the transformation is an
approximation that will give no significant error in the frequency range below the highest kept modes. In this

way model reduction is achieved. The components’ mass and stiffness matrices are transformed as well, i.e.

K!{=T'K,T,; M1=T'M,T, (6)



The components’ transformed response and matrices are later assembled together imposing continuity in the
coupling interfaces. This yields a full system reduced response ¢, and reduced mass M ? and stiffness K7
matrices. Hence, the equations of motion (Equation 1) can be posed in terms of the reduced basis, and the
modal analysis is performed by solving a reduced EVP

K" = AM"¢? (7

where the original mode shapes are recovered by using the transformation ¢ = T'¢9.

4 Complex component mode synthesis

Complex component mode synthesis (CCMS) considers the (viscously) damped equations of motion of the
FE system.
Mi+Cu+ Ku=Ff €))

In order to perform modal analysis over the damped model the equations of motion have to be posed in

state-space formulation.
0 M| |u n -M O] |u|l |0 )
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Equation 9 can be rewritten by introducing the state-space response vector & consisting of the velocity % and
displacement u vectors of the FE model.

Az + Bx = f* (10)
In this way, an EVP in state-space form can be solved in order to find the system modes.
B¢® = MNA¢” (11)

The solutions of this EVP are the complex eigenvalues \,, and complex eigenvectors ¢Z,. Here the bar
indicates that they are complex numbers. Due to the fact that state-space formulation has been introduced, the
number of degrees of freedom N doubles with respect to the EVP for undamped modal analysis (Equation
2). Hence, the number of modal solutions IV, is also doubled. Since Equation 10 is a set of first order
differential equations, the eigenvectors correspond to the system modal frequencies

Am = —i@n, (12)

and they come in complex conjugate pairs \,, and \%,, given that A and B are Hermitian matrices. The
eigenvectors come in complex conjugate pairs as well, and they consist of the displacement mode shapes ¢,
and velocity mode shapes 6,,,. -

- 0 .

P = [—m] ; 0=20 13)
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Analogously to classical CMS, component sub-structuring, component modal basis transformation (x =
T" ¢%), and model order reduction can be defined for the state-space EVP, so that a reduced complex EVP is

obtained. L o
B 1" = NAT o7 (14)



4.1 Complex component mode synthesis with fixed interface complex modes

One possible CCMS method is the one defined in [9], which is the direct extension to CCMS of the classical
Craig-Bampton free interface CMS. For the purpose of this paper, it is convenient to use a fixed interface
counterpart of this method. Therefore, the fixed interface CMS direct extension to CCMS is presented next.

Following the sub-structuring notation introduced in section 3, the state-space response vector for each com-

ponent reads
Ty = |: :| ; Ligp = |: l:| 3 ey = |: C:| (15)
u U; Uc
T T T

Then, the component response x, can be expressed in terms of a fixed interface complex modes basis.

— q:v q;s
x, =T,.q; ; qu[s] = (U, (16)
T
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The interior DOFs transformed response ¢ . is expressed in terms of the fixed interface complex modes. The
coupling interface DOFs response ., remain being the physical velocity . and displacement u, vectors.

The complex transformation matrix consists of two state-space sub-matrices, the fixed interface mode shapes
matrix @, and the constraint modes matrix ¥¥. The state-space fixed interface modes are computed by
solving the state-space EVP for the component interior DOFs.

Bn’,r&fﬂ» = A\ Aiir 07, (17

The state-space constraint modes are analogous to the the ones used in Craig-Bampton fixed interface CMS,

Yier =—-K ;%«K ic,r- This happens because the static constraint relation holds for the velocity DOFs as it
does for the displacement DOFs.
Ur = [‘}’zc:| Ucyr w, = |:‘§’w:| 'L.Lcm (18)
cC r cc r
Thus, the complex modes transformation matrix reads
@is \I’ic Oic
- - 0 I 0
T T 1 Yes cc cc
TT N [Qr ‘Ilr] N q)is Oic ‘I’ic (19)
OCS OCC ICC
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and, assuming i)f to be A, normalised, the component transformed matrices show the same structure as for
undamped fixed interface CMS

Br — |Bs Bl o ogr_ | L A (20)
r = T ) r —=q% T
Bgs BZC r AZS AgC r

with A ss,r a diagonal matrix containing the complex fixed interface eigenvalues 5\577", and I, an identity
matrix of the same size.

Finally, conveniently arranging together the interior modal responses ¢ = |J, g5, and the coupling re-
sponses . = |, zr, so that
¢ =% @
x,
the full system transformed matrices are obtained by assembly of the component transformed matrices.

‘/:\;.i Bj. o AT = 1:;2 A, . (22)
Bct Zr Bgc,r Act Zr Agc,r
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5 Local modal perturbational method

The LMP method [4] is a method that estimates the statistics of frequency response functions of a system at
small computational cost. In LMP the system is divided into CMS components and the uncertainty in each
component is assumed to be uncorrelated from the uncertainty in other components. Then, the uncertainty in
each component is quantified in terms of the local modal properties of the component. Then, the uncertainty
in the component modes is propagated to the full system modes based on Fox and Kapoor’s formulation [6].

Fox and Kapoor’s expressions describe the sensitivity of undamped modal frequencies and mode shapes of
the full system to the variation in a physical parameter ;1. For example, the linear expression for the m’th
eigenvalue relates the perturbation d A, in the eigenvalue due to a perturbation §x in the physical parameter

= ¢l [81{_)\ oM

i ] D Op (23)

and it follows from the partial derivative of Equation 2 with respect to the parameter y, with ¢,,, being M
normalised. If this expression is posed in terms of the CMS formulation, the perturbation of the m’th global
eigenvalue due to perturbation in the ¢’th local eigenvalue can be described

K1 oM 1

= o1, [8& —Am—7y— o } POAe (24)

where \; = Ag ;.

Now, for simplicity, assume that uncertainty is only present in the component modal frequencies, i.e. com-
ponents have deterministic mode shapes and coupling interfaces. Examining the system’s mass and stiffness
matrices in fixed interface Craig-Bampton form

Att 0 Itt Mq
q — . q _ tc
K B I:O Z KCCT:| 7 M |:Mgt Z Mccr (25)

only the eigenvalues sub-matrix Ay depends on ); under the assumptions above. Hence, all other sub-
matrices derivatives ai)\t in Equation 24 equal zero. Furthermore, since local eigenvalues are independent
one to another, Equation 24 reduces to a simple perturbation relationship.

SAm = (62 )2 6N, (26)

If all component local eigenvalues are perturbed, the total perturbation in the m’th global eigenvalue is given
by
O =D (8,)7 O\ (27)

t

Proceeding analogously, a similar relationship for the perturbation of global mode shape vectors due to
perturbations in local eigenvalues can be found from the respective Fox and Kapoor’s linear expression.
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6 Complex local modal perturbational method

In this section, the direct extension of the LMP method to CCMS is presented. In the same way the rate of
change of eigenvalues (Equation 23) is obtained from the derivation of the EVP in Equation 1 with respect to
1, the rate of change in CMS form (Equation 24) is derived from the derivation of the CMS-EVP in Equation
7 with respect to ;. Therefore, it is apparent that, by deriving the state-space EVP in Equation 14 with
respect to \;, an analogous expression for CCMS is obtained.

- _e1T [0BY - AT | e -
N = | DL N\ KDY 29
50| [mt mt]qsm ; 29)

Using the fixed interface complex modes method presented in section 4.1, the state-space transformed ma-

trices B” and A7 show the same characteristics as the transformed mass and stiffness matrices in the
undamped LMP method (cf. Equations 22 and 25). Therefore, under the assumptions considered in the LMP
method a simple perturbation relationship is derived for complex eigenvalues.

5 = (601) 6% (30)

Notice that complex conjugate eigenvalue pairs in Ay are also independent since for any complex number
z € C the partial derivative of the complex conjugate function is zero, <= = 0.

Thus, the complex local modal perturbational method uses the 51mple perturbation relationships for the
system’s complex eigenvalues and eigenvectors

A= (égftf S 31)
t
n;ém

to compute the statistics of the frequency response functions of the system.

6.1 Perturbation of local modal frequencies

A significant difference between the undamped and the damped LMP methods is that the local eigenvalues
\¢ and )\; do not represent the same physical quantity. (cf. Equations 3 and 12). A damped modal frequency
@y is determined by the corresponding undamped modal frequency w; and modal damping factor ;. If the
uncertainty in the w; and 7; parameters is assumed to be independent, these parameters might be perturbed
independently, i.e. dw; and &7, in order to perturb the complex damped eigenvalues, i.e.

St = M (wr + Swy, me + 0me) — e (we, me) (33)

For example, for viscously damped components the w; and 7; parameters can be obtained directly from the

nominal local eigenvalues -

9 Re { )\t }
Xl

so that independent perturbations can be applied to both parameters, from which the perturbed eigenvalues

follow.
A= —w (%) w1 — (Zt) (35)

wtz\M y e = — (34)



7 Numerical Example

The complex LMP (CLMP) method is illustrated in this section through a numerical example. The CLMP
method has been executed over the Z-shaped structure presented in Figure 1. The structure consist of three
aluminium tubes with rectangular cross section. The Z-shaped structure is simply supported at the end-
openings bottom corners. The physical properties of the structure are resumed in Table 1.

Damping is chosen to be of viscous kind. The tubes are mass and stiffness proportionally damped, i.e.
C = aM + BK, with the proportionality constants chosen so that the system is very lightly damped (modal
damping values below 0.1% in the mid-frequency range). Additionally, a point viscous damper (cy, c2, c3)
is applied to each of the tube sections as shown in Figure 1, so that the overall damping is increased and the
structure becomes non-classically damped.

The Z-shaped structure is assumed to be deterministic, except for the point viscous dampers which present
some uncertainty. Their damping value has a gaussian probability distribution function centered at the
dampers’ nominal value and with a relative standard deviation of 5% times the nominal value.

Figure 1: Z-shaped structure with 3 point dampers.

Parameter Value ‘ Units ‘
Elastic Modulus 2.11- 10 N/m?
Poisson Ratio 0.3
Shear Modulus 8.071 - 10 N/m?
Density 7800 kg/m?
Cross Section 0.04 x 0.06 m?
Length lh=13=0.7,1o=0.5 m
a =20 s71
Damping Factors B=4-10"6 s
c1=cp=c3=0.1 kg/s

Table 1: Physical parameters of the Z-shaped structure and lumped dampers.



7.1 Simulation description

The numerical simulation involved the following steps.

The structure’s FE model has been meshed using 1050 shell elements. Three substructures have been defined
corresponding to each of the tubes with local damper, giving rise to three components with 4800, 3360 and
4800 state-space degrees of freedom respectively.

Modal analysis has been performed using complex component mode synthesis as described in Section 4. The
first 100 fixed-interface complex modes (50 mode pairs) have been computed for each component (Equation
17), so that the FE model is transformed into CCMS coordinates. The reduced model has 300 local modal
degrees of freedom and 240 state-space coupling degrees of freedom. Then, the global eigenvalue problem
in CCMS coordinates (Equation 14) is solved to obtain the first 200 complex modes (100 mode pairs) of the
full structure.

Uncertainty analysis has been performed through Monte Carlo simulation. The statistics of the modal so-
Iution have been computed using 100 Monte Carlo samples. For each sample the fixed-interface complex
modal frequencies have been perturbed according to the damping uncertainty of the point dampers. Then,
the perturbation has been propagated to full system complex modal frequencies following Equation 31. No
perturbation of system’s modal vectors have been considered in this simulation. From the MC simulation,
the frequency and damping statistics of the components’ fixed-interface and the full structure complex modes
have been computed.

Figure 2: Forces and Response points defined over the structure with 3 lumped dampers.

Finally, point harmonic forces have been applied to the structure as shown in Figure 2 at mesh nodes 323 and
771. The velocity response (from 0 Hz to 2 kHz) at node 43 has been computed through modal summation
for all MC samples, from which the mean and extreme responses have been derived.



Damping factor of Component 1 first 50 local modes

100 -
F *
=)
A
= i . .
|- - * * -
g S
*
L(E * + * + .
h B - * + +
c R *
5 F . .
E + * +
m * . + *
o _—
m *
-8 01F *y * :+:
E : . * e et —ee
. . -t Lt 3 o
+ et
e M&*
-l — 4 — Z-gtructure without damper
. p
+  Z-structure with damper
0.0 | 1 | 1 T T 1
500 1000 1500 2000 2500 3000 3500

Modal Frequency [Hz]

Figure 3: Modal damping of Component 1 fixed-interface local modes. Red - System without point dampers.
Black - System with point dampers.
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7.2 Results

The effect of adding localized damping in the nominal structure is first evaluated. In order to do so, a
comparison of the modal solutions for two different cases is performed. The two cases are the Z-shape
structure without the point viscous dampers, and the Z-shape structure with the point viscous dampers.

In Figure 3 the modal damping values of the fixed-interface modes of Component 1 are shown for the two
cases. The modes locii in a frequency-damping coordinates system is plotted in red dots for the case without
dampers, and in black dots for the case with dampers. For the case without dampers the system is proportion-
ally damped, and the modes’ damping follows the typical stiffness controlled proportional damping curve.
On the contrary, when local damping is introduced the added damping gets unevenly distributed among
the different component modes depending on the mode shape amplitude of each mode at the placement of
the point damper. Some modes get highly damped, whereas others get almost no extra damping, and their
damping value remain close to the proportional damping values. For this reason the black dots get scattered,
making it apparent that the proportional damping assumption is far inappropriate for systems with localised
damping. Similar plots to the one in Figure 3 are obtained for Components 2 and 3.

In Figure 4 the modal damping values of the system global modes are shown for the two same cases. For the
case without dampers the values follow again the proportional damping curve, mass controlled below 300
Hz, stiffness controlled over 500 Hz. When local damping is introduced instead, the global modes get also
unevenly damped since they are a weighted combination of the local modes of the three components.

Next, the results of the Monte Carlo simulation are evaluated. The CLMP method has been applied to
the non-classically damped case. The perturbation of fixed-interface complex frequencies is defined in the
following way.

Only the point dampers present uncertainty. Therefore the frequencies perturbation depends only on the
randomness of the point dampers. Hence, the damping A7 added by the point damper ¢, to the sth mode
of component r is obtained by subtracting the proportional modal damping 7, 7 (red curve in Figure 3) to
the overall damping 7., (black dots in Figure 3):

Ang =g = Ny ref (36)

The uncertainty in the point damper perturbs only the added damping An?. Thus the perturbation in compo-
nents’ modal damping may be computed as:

ng,pert = ngmef + Anz (1 + 67") (37)

with €” a sample of a gaussian random variable with zero mean and standard deviation ¢” = 0.05, which is
the relative standard deviation of the point dampers. Finally,the perturbation in component complex modal
frequencies is computed following Equation 33, and the perturbation is propagated to global modes using
the CLMP expressions.

Figure 5 shows the modal damping relative standard deviation o, of the local modes in Component 1.
The relative standard deviation has been computed from the 100 perturbation samples of the Monte Carlo
simulation. Additionally, the absolute modal damping of the nominal model is indicated with red dots. It can
be observed that those modes that get highly damped by the point damper have a standard deviation close
to 5% of the point damper. Modes that get almost no damping increase with respect to the proportionally
damped case show consequently small relative standard deviation.

Figure 6 shows the modal damping relative standard deviation o,,,, of the full system modal modes. Due to
the non-proportional nature of the system damping, the global modes get perturbed in a significantly uneven
manner. Some global modes are very sensitive to the local damping perturbation (40% to 60% damping
relative STD). This modes happen to be modes which are still lightly damped (damping below 1%). This
may happen because the major contributions to their damping, althouh small, come from component local
modes that have high damping perturbation. Conversely, highly damped global modes end up having small
relative standard deviation, and they may not exceed the standard deviation of the point dampers.
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It is important to notice that the uncertainty in the point dampers induces large variation in lightly damped
modes. This means that the peaks levels of the structure’s frequency response functions present significant
uncertainty. Figure 7 shows the velocity response function with the forcing and response points as defined
in Figure 2. It can be observed that three of the peaks present large variation. These peaks correspond to
the four modes that show larger relative standard deviation (the second peak containing two of them). The
CLMP method makes it possible to estimate this damping uncertainty in the response functions.

Velocity Response Statistics from MC Simulation at Node 43
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Figure 7: Velocity response of the Z-shaped structure with 3 lumped dampers at node 43. Black line - Mean
response. Green dashed line - Minimum response. Red dashed line - Maximum response.

For the present simulation, the total time for perturbing component modes and propagating the uncertainty
to global modes for the 100 Monte Carlo samples was 2.86 s. In contrast, for solving once the FE model,
the components’ state-space EVP solving time was 14.46s, 13.19s and 14.56s for Component 1, 2 and 3
respectively. The global CCMS EVP solving time was 9.16s. Thus, using the CLMP method, the CCMS
modal analysis has to be performed only once, and the subsequent 99 Monte Carlo samples are obtained at a
negligible computational cost compared to solving 99 times the CCMS modal analysis.



8 Conclusions

A new perturbation method for SFEM based on complex component mode synthesis has been presented. The
method is an extension of the local modal perturbational method for non-classically damped systems. As in
the LMP method, the computational gain comes from the fact that the nominal FE model of the system has to
be solved only once, and all other Monte Carlo samples are computed using the computationally cheap modal
perturbation relationships. Introduction of the state-space formulation makes it possible to treat damping at
a component level. This is done at the price of doubling the number of degrees of freedom of the EVP to
solve. The computation time for propagating the perturbations is also increased with respect to undamped
LMP, since complex LMP presents twice as many eigenvalues and these are complex valued. Nevertheless,
the overall computation time is several orders of magnitude lower than performing a full system solving
Monte Carlo simulation.
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