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Abstract — In this paper we present the initial
stages of research aimed at developing a microscale
sensor based on the mode-localisation effect
seen in electrostatically coupled microresonators.
Mathematical and finite-element method (FEM)
models have been set up and used to analyse a
proposed device design. Biological functionalisation
of the proposed device is discussed.
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I — Introduction

There are many sensors that utilise microelectrome-
chanical systems (MEMS) components for various ap-
plications. Mass, force, stress, strain and acceleration
can be measured by exploiting the mechanical proper-
ties of microscale structures such as cantilevers, bridges
and rings, which are typically made of silicon. Thus
far, one of the most researched areas of MEMS sensors
has been the development of systems that can detect a
change in the resonant frequency of a microstructure
caused by the measurand, as has been demonstrated
previously [1].

The future development of microsensors will focus
on increasing their sensitivity. One application is bio-
logical sensing, which requires increased sensitivity in
order to discriminate between various viruses, bacteria
and other pathogens. In addition, MEMS-based sensors
are currently being developed that can detect DNA
strands [2, 3].

However, while frequency-shift resonant sensors
have been widely researched and developed, another
resonator sensing technique has emerged that utilises
two microstructures that are weakly coupled together
with an electric field [4]. As yet, mass detection with
an electrostatically coupled microresonators system
has not been demonstrated. In this paper, we report
on research that aims to exploit the properties of
electrostatically coupled microresonators to create
ultra-sensitive biological sensors.

II — Theory

Mode-localisation is a phenomenon that occurs in
arrays of resonant structures that are coupled together.
When disorder in the form of a change in the stiffness
or mass is introduced to a previously balanced system,
oscillation energy becomes confined or “localised” to

one of the resonators.

Consider a lumped-element representation of a two
degree-of-freedom (DOF) system with two coupled res-
onators (shown in figure 1). Each resonator is repre-
sented by a mass, m; or mp, and a stiffness, k; or k.
The two resonators are coupled together with a coupling
element represented by a spring k.. The displacement of
each resonator is given by x| and x;.
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Figure 1: Lumped element model of a 2-DOF system consist-
ing of two coupled resonators

To describe the vibration response of the system the
equations of motion can be written as

mxq + kx; +kc(x1 —xz) =0

mip +kxy + ke(xp —x1) =0 (1)

where m; = my = m and ki = ko = k for a balanced
system.

To obtain the mode frequencies and the mode shapes,
the following eigenvalue problem must be solved.

Kul- = liMI/li (2)

where K and M represents the stiffness and mass
matrices respectively and are given by

[ kthke  —k
K{ ke k+kc}
m 0
M= [ 0 m ] 3)

and A; and u; (i = 1, 2) represent the eigenvalues and
eigenvectors, respectively.

If the eigenvalue problem in (2) is solved, the follow-
ing eigenvalues and eigenvectors are calculated
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The eigenvalues give the mode frequencies (1; = ;%)
and the corresponding eigenvectors give the mode
shapes. If the mass of one of the resonators is increased
by Am, an imbalance is created and mode-localisation
will occur, as shown in the expression [4]
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where u, and ug, represents the perturbed and un-
perturbed eigenvectors, respectively. Therefore, the left
side of equation 5 represents the shift in the eigenvec-
tors relative to the unperturbed state. The shift in the
eigenvectors is deduced from the change in the ratio of
the oscillation amplitudes of the two resonators, x; and
X2.

Mode-localisation has been demonstrated previously
in microscale resonators that are coupled with both
mechanical [5] and electrostatic [4] elements. A main
advantage of forming the coupling element by applying
DC bias to the two resonators is that the strength of the
coupling can be easily varied.

It has been shown previously [4] that when the
stiffness of one of a pair of coupled resonators is varied,
the percentage change in mode shape ratio can be up
to four or five orders of magnitude higher than the
corresponding shift in resonant frequency of a single
resonator. Therefore, microscale sensors based on
the mode-localisation effect have the potential to be
successful in biological sensing applications.
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II1 - 2-DOF Model Simulation Details

A mathematical analysis of a coupled resonator sys-
tem has been performed. The model consists of two
rectangular silicon beams that are fixed at both ends,
with a length of 400 pum, width of 20 um and a
thickness of 25 um. The beams are spaced 1 um apart
and fixed electrodes (for actuation) are positioned with
a 1 um spacing on either side of the two beams. Next,
the values detailed in figure 1 have been calculated. The
effective value for m; and m, has been calculated as
follows [6]

my2 = 0.4pAL
= 0.4 x 2331kg/m> x 20pm x 25um x 400um
= 186ng (6)

where p is the density of silicon (2331 kg/m?), A is
the beam cross section and L is the beam length. The
effective spring constants of the beams, k; and k;, are
given by

kia = ao*m 7

where the resonant frequency, @, of each individual
beam, is given by
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E is the Young’s modulus and I is the moment of
inertia of the beam. For our model of silicon beams,
with the dimensions specified, the mechanical spring
constant is calculated

®)

_16.7 x 130GPa x 25um x (20um)*
N (400m)3

= 6784N /m

9

The coupling spring, k., is electrostatic and is in-
duced by applying DC voltages of -5 V and 5 V to the
two beams and is calculated by

(AV)*gA
ke = ~—1—
8
~ (10V)? x 8.85 x 1072 x 400pm x 25um
(1um)?
—=8.85N/m (10)

These values have been used with equation 5 to plot
the resulting change in eigenvectors for an increase in
mass on one of the resonators. The effect of adding an
additional mass of up to 46 pg to the beam has been
plotted and the result can be seen in figure 2. For the
observed region of small mass change (< 0.01%), an
approximately linear relationship can be seen. Also, the
eigenvectors can be used to derive the ratio of the vibra-
tion amplitudes (x| / x,) of the two resonators, which is
an alternative method of measuring the perturbation.
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Figure 2: Theoretical change in mode shape for a mass
perturbation

Finite-element method (FEM) simulations have been
performed in CoventorWare for the two coupled beams
model. A modal analysis of the two coupled rectangular
beams model has been performed. The mode shapes
(ratio of the amplitudes x; and x,) have been extracted
as shown in figure 3 and the change in the shape has
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Figure 3: FEM simulation of normalised mode-shape of dis-
ordered electrostatically coupled beams
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Figure 4: FEM simulation change in mode shape for a mass
addition to one resonator in 2-DOF system

been plotted as a function of the added mass up to 46 pg,
as shown in figure 4

The results show that CoventorWare can be used
effectively to model the mode-localisation effect. FEM
simulations more accurately model the changing shape
of the coupling gap as the beams bend during oscilla-
tion, yielding a more accurate result that can guide real-
world design and fabrication.

A further model has been used for FEM simulations
with a design that has a larger surface area for func-
tionalisation (Figure 5). It is our intention to fabricate
a device of this design. The mode shape variation as a
function of the added mass, up to 58 pg, is shown in
figure 6.

To compare with a previous result [7], which
used a resonant shift sensor and showed a sensitivity
of 50 pg/Hz (a percentage change in frequency of
0.003%), our simulation shows that an additional
mass of 50 pg should cause a variation in the ratio of
the modal amplitudes from 1:1 up to approximately
10:1, a ten-fold increase. The fabrication of actual
devices of the design in figure 5 is planned and the
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Figure 5: FEM simulation of normalised mode-shape of dis-
ordered coupled resonators of proposed fabrication design
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Figure 6: FEM simulation change in mode shape for a mass
addition to one resonator in proposed fabrication model

measurement set-up will be optimised to achieve the
best measurement resolution possible in order to detect
the smallest possible mass.

IV — 4-DOF Coupled Resonator Sensor

As a further improvement to the coupled resonator
system, a 4-DOF system has been considered for mass
sensing. The lumped mass model of the system is shown
is figure 7, and in this case each resonator is coupled to
two other adjacent resonators.

For the symmetric case where all the masses m; = m,
ki = k and kj = k¢, the mass and stiffness matrices are
given by

m 0 0 0
0 m 0 0
M=196% 0 m o
00 0 m
k+k % 0 ke
k=| 7 Ktk 5 0 (11
0 ko gtk K
k 0 ko ktke
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Figure 7: 4-DOF lumped-element model

Introducing a mass perturbation to resonator 1 and
taking m = k = 1, the amplitude ratios of the resonators
are shown in figure 8. It is observed that a general
improvement in terms of the system sensitivity can
be obtained for the 4-DOF system versus the 2-DOF
system.
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Figure 8: Amplitude ratio versus mass perturbation

V - Functionalisation for Biological Sensing

In a practical bio-sensor, the microstructure needs
to be functionalised so that the biological element is
attracted to and binds with the surface [8]. A previous
study [9] describes a silicon cantilever resonator that
has been functionalised to attract the bacteria Listeria
innocuous. The cantilever has been functionalised by
dispensing the bacteria antibody over the resonator sur-
face using micropipettes. Another study [10] showed
a cantilever array functionalised to detect the growth
of Escherichia coli. The cantilevers have a length of
500 pum, a width of 100 um and a thickness of 7 um.
They have been coated in the hyroxyl group Agarose
using microcapillaries.

For coupled microresonators, only one of the two

structures needs to be functionalised. To do this, it is
proposed to use micropipettes to precisely coat one
of a pair of closely spaced resonators with functional
material. A device of the design in figure 5 will be used
as the large surface area at the centre of the resonator
will aid successful functionalisation.

VI - Conclusion and Future Work

The behaviour of electrostatically coupled microres-
onators has been investigated as the first stage in the
design process of novel biological sensors. Mathemati-
cal and FEM models have been set-up to analyse these
microresonator Sensors.

The authors intend to fabricate actual coupled-
resonator devices and characterise them. Both
2-DOF and 4-DOF coupled resonator sensors will
be implemented using a silicon-on-insulator (SOI)
process. Techniques will be developed to enable the
functionalisation of the device so that a biological
element is attracted to only one of the coupled
resonators, allowing for the realisation of a bio-sensor
based on the mode-localisation effect.
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