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Abstract: A physically-based model to predict the increment of hardness and grain 

refinement of pure metals due to severe plastic deformation (SPD) by high pressure 

torsion (HPT) is proposed. The model incorporates volume-averaged thermally activated 

dislocation annihilation and grain boundary formation. Strengthening is caused by 

dislocations in the grain and by grain boundaries. The model is tested against a database 

containing all available reliable data on HPT processed pure metals. It is shown that the 

model accurately predicts hardening and grain size of the pure metals, irrespective of 

crystal structure (fcc, bcc and hcp). Also measured dislocation densities show a good 

correlation with predictions. The influence of stacking fault energy on hardening is very 

weak (of the order of -0.03 GPa per 100 J/mole).  
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1 Introduction 

Severe plastic deformation (SPD) has attracted wide attention as a means of improving 

properties of metals and alloys, and especially improvements in strength have been 

targeted [1 ,]. Over 20 years of research in SPD [1,2,3] has revealed that the strength 

increase of metals due to SPD is strongly dependent on material, with strength increases 
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in pure Al and Zn being very low (<30 MPa), whilst several pure metals with high 

melting temperature show very strong increases in yield strength (>500 MPa) [4,5].  

In the present work we will focus on high pressure torsion (HPT), which is an SPD 

method that is particularly effective in terms of the speed at which high deformation can 

be introduced in materials [6]. The working principle of HPT is depicted in Figure 1 

(from [7,]). Following extensive work in the field by a range of researchers, extensive 

data on the hardness and microstructure of HPT processed metals and alloys is now 

available (e.g. [4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]). Data on hardness 

increase due to HPT have been published for over 20 pure metals, and several of the 

factors influencing the hardness of HPT processed pure metals have been investigated in 

some detail by Edelati and Horita [4,5]. That work has indicated that these hardness 

values correlate to atomic bond parameters, stacking fault energy, specific heat capacity, 

specific latent heat of fusion, linear thermal expansion coefficient, activation energy for 

self-diffusion, melting temperature and shear modulus [5,23,24].   

 

Figure 1  The principle of high pressure torsion (HPT) (from [7]). 

 

To fully exploit the capabilities of SPD we need quantitative models that are able to 

predict the microstructure development during the process and predict resulting 

mechanical properties based on processing and materials parameters [19,25,26,27,28,29]. 

In particular, it is important to establish which SPD processed metals possess 

combinations of properties (for instance strength, density, cost) that are most attractive 

for application in devises and structures. However, little attention has been given to 

establishing a model for strengthening and grain refinement that predicts the differences 

between different metals. In the present work we aim to derive a physically-based model 

which captures the data on hardness increment and grain refinement of pure metals due to 

HPT. We will focus our attention on computationally efficient approaches that are based 

on volume averaged dislocation generation and annihilation, and volume averaged grain 

boundary creation. This means in practice that we will follow classical approaches to 
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strengthening (e.g. [30,31,32,33]) and recovery [34]; and include recent insights in the 

relation between dislocation generation and grain size [19,29]. We aim to show that these 

can explain published data on material dependence of hardening and grain size for HPT 

processed pure metals. 

 

2     A physically-based model 

2.1. Overview 

To provide a physically-based model for the hardness of HPT processed pure metals we 

construct a model that takes account of the main aspects of hardening and recovery, 

focusing particularly those aspects that cause the differences between the various metals.  

In a range of publications it has been shown that the strengthening of pure and 

commercially pure metals due to SPD processing is generally caused by dislocation 

hardening and grain boundary strengthening (e.g. [19,35,36]). In the present work we will 

incorporate both strengthening mechanisms.  

 

2.2 Dislocation generation and thermally activated dislocation annihilation 

To obtain expressions for the total dislocation line length involved in dislocation 

strengthening and grain size strengthening we proceed as follows. We define Lgen as the 

total cumulative dislocation linelength generated during the deformation processing. We 

consider that dislocation are either retained in the grains or subsumed in grain boundaries 

(existing or new ones) [19,37] or annihilated within the grain [40]. We will consider that 

the annihilation can be described through a temperature and material dependent 

annihilation fraction, fan, i.e.: 

Lgb + Lig = (1-fan)

 

Lgen (1)

  

where Lig is the total dislocation linelength of dislocations stored in the grain and Lgb is 

the total dislocation linelength of dislocations that have moved to grain boundaries and 
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have become part of the grain boundary (they are ‘subsumed’ in the grain boundaries 

[19,29]).  We will consider that the effective width of grain boundaries can be neglected 

(this is further discussed in section 5) and hence 

V

Lig

ig   (2)

 

where ig is the (average) dislocation density in the grain, and V is the sample volume. 

We will here not attempt to model details of the mechanisms of partitioning of 

dislocations between grain and grain boundary. Instead we will assume that both Lgb and 

Lig are effectively proportional to (1-fan) Lgen, i.e. it is assumed that the Lgb : Lig ratio is in 

good approximation constant for all the HPT processed pure metals considered. 

(Consequently, fan is the dominating factor determining the differences in Lig between the 

pure metals, see below.) The influence of this assumption will be further considered in 

Section 5. Similarly we will not attempt to include twinning or any other deformation 

induced defect creation in the model, i.e. we assume that if defects other than dislocations 

or grain boundaries are created, they do not substantially alter predictions. (For 

discussions on the effect of vacancies see Section 5 and [38,39].) 

Dislocation annihilation within grains can occur through several mechanisms. 

Particularly mutual annihilation of both screw and non-screw dislocations of opposite 

sign has been evidenced [40]. In the present work we will approximate the rate of 

dislocation annihilation using the generic exponential relaxation function given by Nes 

[34]: 

 1exp pan tf 

   (3) 

where tp is the time available for the dislocation annihilation process, 1, is the time 

constant of the process. In his work Nes showed that the latter exponential relaxation 

expression is a good approximation to the expression for network growth due to a range 

of processes [34]. 
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The main temperature and material dependent factors of this annihilation process can be 

obtained from the model by Nes [34], which indicates that the time constant of the 

process, 1, is of the form 













 


















RT

GbE
D

RT

C

RT

Gb
TD

RT

C xA

oxx

3

23,

,

1

3

2311

1 expexp)(




 (4) 

where Dx is the self-diffusion constant during the (dynamic) recovery,  EA,x is the 

activation energy for self-diffusion during the (dynamic) recovery, Dx,o is the pre-

exponential constant for self-diffusion during the (dynamic) recovery, 3, 2 and C1, are 

constants. Little is known about EA,x for recovery during HPT. It is expected that EA,x is 

substantially lower than the activation energy for self-diffusion due to the presence of a 

high density of defects, which include dislocations and vacancies [38,39]. In addition, it 

has been established in several works that the activation energy for self-diffusion 

generally increases linearly with the melting temperature of metals [41,42]. In this work 

we will adopt this linear relationship and we will obtain EA,x by introducing one fittable 

parameter:  

EA,x=C2 TM (5) 

 

where C2 is a fittable parameter. (Pressure also influences the activation energy for self-

diffusion [43]. The pressures applied in the HPT processing applied in the data used in 

this work is similar, and activation volumes are also likely to be similar. Hence 

differences between the HPT processed metals should not be related to pressure, and this 

effect is not further considered.)  

 

2.3  Sample heating 

In the model we will further consider that the sample temperature during HPT 

deformation can increase due to the work by deformation being converted into heat 

[44,45]. The temperature increase, T, is directly influenced by the ratio of mechanical 
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deformation energy imposed on the sample divided by the heat capacity, and can be 

approximated as: 

 
 


d

C

C
T

p

3  (6)

 

 

where Cp is the heat capacity,  is the mass density,  is the stress,  is the strain,  d  

reflects the total mechanical energy of deformation imposed on the sample and C3 is a 

constant close to unity. Finite element (FE) model predicting the temperature rise in Al, 

Cu and Fe during HPT processing is presented in [44,45]. We will show below that the 

effect of temperature increase during HPT on the hardness after HPT is relatively small, 

and we will here use an approximation to provide an analytical model. In this 

approximation we will consider that the total strain imposed on the periphery of the HPT 

sample on reaching saturation of hardness is about constant (it is about 6 [1]). 

Additionally we can with very limited loss of accuracy assume that local stress  has a 

similar dependency on  for each metal and that the average  is proportional to HV.  

Following these approximations we can take: 

pC

HV
CT




 4

 (7)

 

For Fe processed at 1 turn per minute, it has been shown [44,45] that T is 25C. Using 

that data we can determine C4. The calculated T increases nearly linearly with G/Cp 

ranging from 0.2C for Zn to 64C for Ta.   

 

2.4   Strengthening mechanisms: dislocation strengthening and grain boundary 

strengthening 

The increment of critical resolved shear stress due to dislocations, d, is given by [33]: 

igd Gb  1  (8)

 
where 1 is a constant equalling about 0.3 [33].  
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In addition to dislocation strengthening also grain size strengthening can occur. It has 

been shown that at the high strain characteristic for SPD, the total dislocation line length 

that is subsumed in grain boundaries, Lgb, is in good approximation proportional to the 

imposed effective strain, which is in turn inversely proportional to the grain size [19,29]. 

(For further discussion including the effect of average grain boundary misorientation 

angle see [19,29]). Hence, in good approximation we can take  

   1

15 exp


 ptCd  (9)

 
   

where d is the grain size. The value of C5 can be determined from the survey of data by 

Edelati and Horita [23], which shows that in the case of metals with high melting 

temperature d=0.18m, and hence C5 should equal 0.18m. (This means that within the 

present model d=0.18m can effectively be considered as a saturation for grain 

refinement in pure metals: decreasing T or increasing EA will not lead to any further grain 

refinement.)   

Grain boundary strengthening, GB, is mainly determined by G, b, and the grain size 

[33,46,47,48]. According to the Hall-Petch relation [30,31,49], it is proportional to d
-1/2

, 

i.e.: 

2/1

g

HP
GB

d

k


 

 (10)

  

with Hall-Petch constant, kHP. Four main groups of theories and models of the Hall-Petch 

equation can be identified: the classical pile-up models [50,51,52], those based on 

dislocation interactions [33,53,54], the grain boundary source theories [55] and, more 

recently, strain gradient crystal theories, which include aspects of the other three in a 

computationally demanding framework [ 56 , 57 ]. However, no clear experimental 

evidence has been able to support the exclusive validity of any of these models [56] for 

all metals. We will not consider grain boundary strengthening mechanisms in detail, 

instead we will use that according these theories in general kHP is proportional to Gb
1/2

 

(see e.g. [33,58]). We will obtain kHP using data on kHP for one metal (Ni) on which 

reliable and consistent data is available (both [59] and [60] independently provide kHP(Ni) 
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= 180 GPa.m
-1/2

) and data on G and b. (This simplifying assumption may introduce 

some level of inaccuracy in the strengthening prediction. This is further discussed in 

Section 5.) 

In the theories described above, the basic mechanism behind grain boundary 

strengthening is grain boundaries increasing the build-up of dislocations [61].  Hence the 

appropriate superposition rule for GB and d here is a quadratic one [62,63,64,65], e.g.: 

 

     222

dGB M  

  

 (11)

 
 

(For further discussion of superposition rules, see Section 5.4.)  

 

3 Data 

3.1 Hardness data of HPT processed metals 

The Vickers hardness at the saturated level (HV) of a wide range of pure metals and 

semi-metals with various crystal structures processed through severe plastic deformation 

(SPD) have been reported  [4-22,28,66]. In this work, we study the increment of hardness 

(∆HV) of 17 high purity (better than 99.9%) elements due to HPT reported in 

[4,5,9,10,23,28,66] (see Table 1).. In these studies sample were cut to discs 10 mm in 

diameter and 0.8 mm thick, under a selected pressure in the range P = 1–6 GPa for up to 

15 rotations. The 17 metals selected for the present modelling study, were arrived at by 

initially considering all metallic elements for which post HPT hardness data is available 

in [28], and deleting all elements for which only data for processing at elevated 

temperature (>300C) is available (Mo, W and Re) and metals which show a hardness 

decrease during HPT.  All hardness data was obtained from the work by Edelati and 

Horita [4,5,66].  

The increment of hardness (∆HV) after SPD is obtained by subtracting the hardness at 

annealed state (HVi) from the hardness at the saturated level (HVs). It would have been 

desirable to quantify all the data under identical experiment condition, however, no 
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systematic database on Vickers hardness data of the elements at annealed state before 

SPD (HVi) is available. We have performed exhaustive database searches as well as 

investigating the references in the present work which contain HVi data [4,5,23]. (Many 

online databases take data from [ 67 ]). These HVi data reflect various conditions 

including: ill defined ‘as-received’ or annealed, and.we use the smallest reported value 

one for each element which is closer to the true level of pure un-deformed metal (Table 

1). In the present work most data are adopted from the same source [67].   

3.2 Grain size of HPT processed metals 

Grain size data was obtained from the survey in [68]. 

 

 G Tm b Cp HVi HV T GB  HV grain 
size 

      measured model model model model model 

 GPa K nm J/kg.K GPa GPa K MPa 10
14

 m
2
 GPa m 

Mg 17.7 922 0.3197 1020 0.29 0.057 0 38 1.4 0.17 1.17 

Al 27.1 933 0.2864 900 0.167 0.15 1 58 1.6 0.25 1.17 

Ti 40.1 1933 0.2896 520 0.97 1.63 10 197 27.9 1.56 0.22 

V 47.4 2163 0.2618 490 0.63 1.73 15 243 33.3 1.82 0.20 

Cr 119 2133 0.2498 450 1.06 3.70 36 572 26.9 3.93 0.23 

Fe 83.1 1803 0.2482 440 0.61 2.41 25 376 21.6 2.44 0.26 

Co 77.9 1763 0.2506 420 1.04 2.50 26 347 20.3 2.24 0.27 

Ni 76.5 1723 0.2492 440 0.64 2.38 25 336 19.4 2.14 0.27 

Cu 46 1353 0.2556 380 0.37 0.93 12 171 10.6 0.97 0.38 

Zn 37.9 693 0.2665 390 0.35 0.009 0 35 0.2 0.11 6.24 

Zr 34.8 2123 0.3179 270 0.90 1.63 14 176 30.2 1.55 0.21 

Nb 38.2 2743 0.2864 260 0.35 2.00 20 204 37.8 1.71 0.19 

Pd 52.1 1823 0.2751 240 0.46 1.67 28 239 21.9 1.71 0.25 

Ag 29.2 1235 0.2889 235 0.25 0.69 8 98 7.0 0.57 0.47 

Ta 70 3273 0.2856 140 0.87 3.26 70 374 37.8 3.13 0.19 

Pt 62.2 2043 0.2775 130 0.55 1.98 56 289 22.9 2.10 0.24 

Au 28.1 1333 0.2884 128 0.216 0.59 17 102 9.2 0.63 0.40 

 

Table 1  Experimental data on hardness increment due to HPT processing, ∆HV, and hardness 

of pure undeformed metal, HVo. See text for source of data. Also displayed are 

predictions of GB, , ∆HV, ∆T and the grain size with the present model (see text) . 

Comparisons of measured and predicted , ∆HV and grain size are plotted in Figures 

2, 3 and 5. 
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3.3 Physical data  

Data for shear modulus, G, Burger’s vector, b, mass density and heat capacity, Cp, (in 

Table 1) were obtained from CES Edupack 2011 [69].  

 

4  Model calibration and modelling results 

We applied the above model to hardness and grain size data on the 17 pure metals by 

calibrating the 4 parameters Lgen, C1, C2, C6 (=32). (One iterative step is required, 

where ΔHV is needed to calculate T using Eq. 7. This is readily solved by first setting 

T=0 and optimizing the 4 parameters, and then using the calculated ΔHV in a next 

iteration.) Several ways of fitting have been tested, all with very similar results. We will 

here report the method that demonstrates most clearly the predictive capability of the 

present model. We select the 4 data that are considered the most reliable based on a 4 

criteria: availability of multiple measurements from different groups, low variability in 

measured values, good availability of the high purity metals involved (reducing potential 

of purity affecting data) and reasonable to good workability (reducing potential for 

slippage and microcracking influencing results). The 4 data selected are ΔHV for Al, Cu 

and Ni and the grain size for HPT Cu.   

The resulting model fit captures all the main variations (see Figure 2) and the RMSE for 

ΔHV for 17 elements is 0.14 GPa, which is 9% of the measured hardness averaged for the 

metallic elements. This remaining error is considered to be consistent with the 

measurement accuracy. The average prediction accuracy of grain size for 15 metallic 

elements is 15% (see Figure 3). Figure 4 presents the measured and predicted ΔHV as a 

function of the temperature. Also plotted is the predicted ratio of grain boundary 

strengthening to dislocation strengthening. 

 

Figure 2  ΔHV predicted by the physically-based model compared with experimentally 

measured ΔHV. Data for 17 pure metals. See text for source of experimental data.   
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Figure 3  Grain size predicted by the physically-based model compared with experimentally 

measured grain size. Data for pure metals. See text for source of experimental data. 

 

5.  Discussion 

5.1  Verifying the model 

The previous section shows that the model provides a very good accuracy for the 

database with hardness and grain sizes of pure metals; and that is achieved by using 4 

fittable parameters. This represents good evidence that the model is accurate and that the 

physical basis of the model, even though it may ignore some secondary effects, is 

essentially sound. To provide additional confidence in the physical basis of the model we 

will critically consider the various predictions on microstructure and dislocation 

annihilation kinetics. We will consider in more detail predictions of ig,  EA,x, 1 , which 

are the parameters most amenable to experimental assessment or comparison with 

available data.  

The physically-based model predicts grain sizes ranging from 0.18 m for Nb and Ta to 9 

m for Zn. In Figure 5 the predicted and measured grain sizes are plotted as a function of 

the homologous temperature. The average variation in the experimental data (where 2 

values for grain size after HPT) are available is 27%. Hence the accuracy of the 

predictions (15%) is fully consistent with the accuracy in the measured data. 

The physically-based model predicts dislocation densities ranging from 2 × 10
12

 m
-2

 (for 

Zn) to 3 × 10
15

 m
-2

 (for Nb and V). Data on dislocation densities in pure metals deformed 

by HPT or ECAP are available for Al, Ni, Cu, Ag, Au and Nb. We obtained published 

data on measured dislocation densities in these pure metals 

[35,38,70,71,72,73,74,75,76,77] 
*
. In Figure 6 the predicted dislocation densities from the 

                                                 
*
 If no literature data on dislocation densities in HPT processed pure metal is available, data on dislocation 

density obtained for ECAP processed samples at a number of passes leading to the peak in hardness was 

used. The obtained data was cleaned by the following procedure. If dislocation densities for one metal 

reported in multiple publications differ by factor of more than 4, and one of these data points is inconsistent 
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present model are compared with published data on measured dislocation densities. 

Averaged reported experimental dislocation densities generally correspond within a 

factor 2 with predicted ones. Considering that reported measured dislocation densities of 

nominally identical materials can sometimes differ by a factor 2 to 3, the level of 

correspondence shown in Figure 6 is considered consistent with the model. The present 

predicted averaged dislocation densities in grains are also broadly consistent with the 

predicted maximum dislocation densities for pure metals based on models incorporating 

the assessment of annihilation of individual dislocation of different character (screw and 

non-screw) [40].   

The predicted low dislocation density for Zn is consistent with Differential Scanning 

Calorimetry studies on Zn deformed at 77K which show that on linear heating the 

dislocation annihilation rate is substantial at room temperature [78]: clearly dislocation 

annihilation in Zn during SPD at room temperature will be very rapid. 

The highest value of EA,x obtained through fitting is 19 kJ/mole for Ta. This activation 

energy is substantially lower than the activation energy for self-diffusion in undeformed 

Ta and also for other metals EA,x is substantially lower than the activation energy for self-

diffusion in the corresponding undeformed metal. Within our model this means that the 

extensive amounts of defects introduced in the severe plastic deformation (dislocations, 

vacancies [40,38,39]) drastically reduce energy barriers for self-diffusion. The present 

activation energies are close to the range of activation energies found for radiation 

enhanced diffusion (for instance it is 36 kJ/mole for ion-beam-enhanced diffusion of Au 

in amorphous Si [79]) and diffusion in multilayer structures (20 kJ/mole for Ni diffusion 

into Ti in Ni-Ti multilayers [80]), both of which are characterized by high densities of 

defects. The activation energies for boundary diffusion in Ta and V determined from 

grain growth experiments on Ta and V produced by electron-beam evaporation and 

magnetron sputtering deposition have been reported as 30 and 20 kJ/mol [81], whilst 

binding energies for di-vacancies in metals is typically in the range 10 to 20 kJ/mol.  It is 

thus surmised that the thermally activated annihilation of dislocations during HPT is 

                                                                                                                                                  
with the dislocation hardening equation (Eq. 1) by over predicting measured strength/hardness by more 

than a factor 2, then that data point is deleted.  
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strongly influenced and aided by a high density of deformation induced defects such as 

vacancies and dislocations [38,39,82]. 

The model indicates that decreasing process time (e.g. increasing rotation rate) during 

HPT increases hardness. For an AZ31 Mg alloy, experiments have confirmed this [83]. 

The model indicates that increasing the process temperature decreases the hardening. For 

a 2024 Al alloy, experiments have confirmed this [84]. (It should be mentioned that in 

this alloy also precipitation hardening occurs, which provides an additional temperature 

dependent effect.) The model indicates that decreasing the process temperature increases 

the dislocation density. For a 2024 Al alloy processed at -196C and room temperature, 

TEM experiments have confirmed this relation [84]. 

Hard to deform high purity metals Mo and W can be HPT processed to obtain hardness 

values close to 1 GPA, however HPT processing needs to be conducted at elevated 

temperature, i.e. with heated anvils [85]. In this case the sample temperature during 

dislocation annealing is difficult to obtain. The present model can predict grain size and 

hardness of Mo and W processed at elevated temperature well provided that the effective 

temperature for the dislocation annihilation is taken as the average of anvil preheat 

temperature and room temperature. 

 

Figure 4  Measured and predicted ΔHV as a function of the temperature. Also plotted is the 

predicted ratio of grain boundary strengthening and dislocation strengthening. Data 

for 17 pure metals. See text for source of experimental data. 

 

Figure 5  Measured and predicted grain size as a function of the homologous temperature. Also 

plotted is the predicted ratio of grain boundary strengthening and dislocation 

strengthening. Data for pure metals. See text for source of experimental data. 

 

Figure 6  Measured dislocation densities for SPD processed pure metals compared with 

prediction from the present model. See text for source of experimental data.  
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5.2 Data accuracy 

To better understand the influence of data accuracy on the present model assessment we 

considered the accuracy of data on the main parameters in the model, i.e. G and Tm.  

Data on G of pure metals gathered from 4 handbooks and 4 Internet database, which span 

a period of decades, are generally inconsistent. (This is not uncommon, data on physical 

and chemical properties of several elements are inconsistent between different data 

sources, see e.g. [86].) The largest spread in reported values of G for pure metals occurs 

for Hf and this metal was removed from consideration in the present study. Further also 

Zn and Pd show significant variations (5 to 10%) in reported G. The impact of these 

variations was checked by inserting different reported G values, and it was found that the 

model accuracy is not significantly influenced. To understand the reasons behind the 

inconsistencies, we have to trace back to the original articles on experimental 

measurements of the shear moduli concerned. One issue that can be identified is that 

some data on G derives from measurements on single crystals. The shear modulus of 

polycrystalline materials can be derived from elastic constants of the single crystal, but 

the relation between elastic constants and shear modulus is not unique [44]. Two widely 

used averaging methods are the Voigt-Reuss-Hill [ 87 , 88 , 89 ] and Hershey-Kroner-

Eshelby method [90,91]. These issues are further investigated elsewhere [92]. 

The melting temperature of all metals is known to a high accuracy. Tm of Al, Co, Ni, Cu, 

Zn, Nb, Pd, Ag, Pt and Au is a defining fixed temperature of the International 

Temperature Scale of 1990 (ITS-90). 26 sources including 6 Internet databases and 17 

Handbooks with multiple tables have also been checked for the other 8 elements (Mg, Ti, 

V, Cr, Fe, Zr, Hf and Ta); they are all in good agreement with variations typically smaller 

than 2%. 

It is noted that the purity and testing atmosphere can cause variation of mechanical 

prosperities in nominally "pure" metals [43]. The data used in the present study is all for 

high purity metals and hence it is thought that these factors do not play a role in the 

present study.  
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5.3  Other correlations and adaptive models 

In parallel with the present study we conducted an adaptive numerical modelling (ANN)  

(see e.g. [86,93,94]) study of the ΔHV data, using as inputs 13 physical, chemical and 

mechanical parameters of pure metals, including the parameter that have recently been 

reported to show a correlation with HV of HPT processed pure metals [4,5,23,24]. Details 

of this ANN work are reported elsewhere [92]. The ANN assessment shows results that 

support the present physically-based model. In particular it identifies the shear modulus 

and melting temperature as being the main parameters influencing the hardness, with 

none of the other parameters having a statistically significant influence. As can be 

expected, the accuracy of the ANN model is almost the same as the physically-based-

model.  

It should be noted that some of the physical, chemical and mechanical parameters of 

metallic elements have strong correlations with the melting temperature, particularly heat 

of fusion, cohesive energy and thermal expansion coefficient show a strong correlation 

(correlation coefficients >0.9). This means that these parameters in themselves will show 

a correlation with ΔHV or ΔHV/G when plotted. However, both the ANN investigation 

[92] and the present model show that the data does not support any suggestion that there 

is a causal relation. The present physically-based model then indicates that the activation 

energy for a relaxation process (here considered to be dislocation network growth), which 

correlates to the melting temperature, is the main material-dependent parameter of the 

underlying process. 

We further investigated whether stacking fault energy (SFE) has a correlation with the 

HV data by determining the correlation between the residual error after application of 

the physically-based model and reported stacking fault energies of pure metals (using 

SFE data for 10 pure elements collated in [23], ranging from 16 for Ag to 240 for Zr 

mJ/m
2
). This analysis shows that there is a very weak correlation between SFE and the 

residual error in HV (correlation coefficient -0.3), with a linear fit suggesting a weak 

effect: the slope of a plot of residual error in HV vs. SFE is -0.03 GPa per 100 kJ/mol. 

As expected the negative slope indicates enhanced softening/recovery with increasing 

SFE. However, it should be stressed that the effect is very weak; it accounts for less than 
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2% of experimentally observed variation inHV between the pure metals, which is 

smaller than the expected experimental reproducibility. (Also if the residual errors are 

normalised by G correlation with SFE is very weak.) 

 

5.4  Alternative models and mechanisms 

As indicated in the introduction, the aim of the present work is to show that hardening of 

pure metals can be explained and predicted based on a model incorporating volume 

averaged dislocation generation and annihilation, and volume averaged grain boundary 

creation. Comparison with the available data shows that the present model has been 

successful in achieving this. It is evident that for a full model of all processes involved, 

further model refinement would be needed. Nevertheless the present model is valuable 

because it reveals the relative importance of the basic mechanisms (annihilation, grain 

refinement, dislocation hardening) to strengthening due to SPD. 

Partly as a result of the volume averaged approach, the present model makes a number of 

choices that appear to deviate from other models and analyses. For instance, the width of 

the grain boundary is taken to be negligible and only two destinations for dislocations are 

considered: a generic ‘subsumed in grain boundary’ (Lgb), which does not distinguish 

between low and high angle grain boundaries and ‘in grain’ (Lig). This should be 

considered as a simplification of more detailed assessments of dislocation structure which 

can identify dislocations i) subsumed in equilibrium high angle grain boundaries, ii) close 

to a grain boundary, forming a non-equilibrium boundary, iii) in low angle grain 

boundaries, iv) in cell walls and v) residing in the grain away from the boundaries/walls. 

The present model should not be taken as evidence against this complexity, rather the 

model should be taken as an indication that even though this range of complex structures 

exists, modelling of strengthening and grain size can be successfully achieved based on 

just two states (‘subsumed in grain boundary’ and ‘in grain’). The challenge for future 

assessment will be to clarify how this complex range of states maps onto the simplified 

two-state model, and on identifying whether 3 state and 4 state models can achieve 

similar or better model results.   
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Although grain refinement is often mentioned as being the main factor in strengthening of 

SPD processed metals, several more detailed analyses that incorporate strengthening 

models and dislocation density measurements have indicated that dislocation hardening is 

the main factor determining the strengthening of many SPD processed pure and 

commercially pure metals [19,35, 72,95,96]. The present model, and particularly Figure 4, 

indicates that dislocation hardening is indeed the main strengthening mechanism for pure 

metals. (The possible exception might be very low melting point metals such as Zn, 

where dislocation annihilation is nearly complete, and accurate measurement of 

hardening is not possible.) There is also a strong correlation between grain size and 

ΔHV/G (see Figure 7). However, this is predominantly an indirect, non-causal relation: 

both grain refinement and the main strengthening effect (dislocation strengthening) 

depend strongly on dislocation annihilation. 

One may consider that, even though it would appear to be inconsistent with the classical 

interpretations of Hall-Petch hardening, a linear superposition rule for the superposition 

of grain boundary strengthening and dislocation strengthening may be appropriate. This 

would modify Eq. 11. This model modification was checked and the main findings are 

that, after reoptimising of parameters: 

- the model accuracy reduces somewhat to a RMSE for ΔHV of 0.16 GPa (0.14 

GPa in the model with quadratic superposition), 

- the predicted ratio of grain boundary strengthening to dislocation strengthening 

changes: it reduces by a factor that is on average 0.7, 

- the prediction of dislocation density is very similar, 

- the prediction of grain size nearly identical. 

In our opinion this linear superposition is inconsistent with basic strengthening theory, 

but even if that was ignored and linear superposition is adopted, the above findings show 

that the influence on the present findings is very limited.  

It is noted that the present treatment of thermally activated dislocation annihilation using 

a single activation energy for each element is likely to be a simplification, as the rate of 

dislocation annihilation is likely to be influenced by multiple interacting thermally 

activated processes, e.g. vacancy generation following annihilation of dislocations [40], 
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vacancy annihilation, vacancy diffusion, dislocation network growth, self-diffusion. 

Future attempts at modelling process temperature dependence of the hardening would 

therefore need to consider multiple thermally activated processes. In refinements of the 

model also a detailed modelling of vacancy concentration and it effect on strength (see eg 

[39,97]) and dislocation annihilation should be considered. 

 

 

6  Conclusions 

A physically-based model to predict the increment of hardness and grain refinement of 

pure metals due to severe plastic deformation (SPD) by high pressure torsion (HPT) is 

proposed. The main factors included in the model are: 

-  volume-averaged thermally activated dislocation annihilation, which leads to a 

prediction of the total dislocation linelength of dislocations stored in the grain, Lig, and 

the total dislocation linelength of dislocations that are subsumed in the grain boundaries, 

Lgb; 

- volume-averaged grain boundary formation; 

- activation energy for dislocation annihilation which is proportional to the melting 

temperature; 

. strengthening due to grain boundaries, which is obtained using the classical Hall-Petch 

type expression, and strengthening by dislocations. 

The model is tested against a database containing all available reliable published data on 

HPT processed pure metals. It is found that even though the model only considers volume 

averaged evolution, it accurately predicts hardening and grain size of the pure metals, 

irrespective of crystal structure (fcc, bcc or hcp). Also measured dislocation densities 

show a good correlation with predictions.  
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Further analysis based on the present model indicated that the influence of stacking fault 

energy on hardening is very weak. Heat of fusion, cohesive energy and thermal expansion 

coefficient of the metals show a strong correlation with the melting temperature and 

hence also show a correlation with the hardness increase. However the present model 

indicates there is no evidence that this is a causal relation. 

 

Figure 7  Plot showing the correlation between ΔHV/G and 1/d. In the model the correlation is 

an indirect, mostly non-causal one. See text for source of experimental data. 
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Figure 1  The principle of high pressure torsion (HPT) (from [7]). 
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Figure 2  ΔHV predicted by the physically based model compared with experimentally 

measured ΔHV. Data for 17 pure metals. See text for source of experimental data.   
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Figure 3  Grain size predicted by the physically based model compared with experimentally 

measured grain size. Data for pure metals. See text for source of experimental data. 
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Figure 4  Measured and predicted ΔHV as a function of the temperature. Also plotted is the 

predicted ratio of grain boundary strengthening and dislocation strengthening. Data 

for 17 pure metals. See text for source of experimental data. 
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Figure 5  Measured and predicted grain size as a function of the homologous temperature. Also 

plotted is the predicted ratio of grain boundary strengthening and dislocation 

strengthening. Data for pure metals. See text for source of experimental data. 

 

 

Mg 

V 

Zn 

Nb 

Hf 

Ta 

Au 

Al 

Ni 

0.1

1

10

0 0.1 0.2 0.3 0.4 0.5

g
ra

in
 s

iz
e 

(m
m

) 

T/Tm 

predicted

measured

Series3

Poly. (predicted)

g
ra

in
 s

iz
e
 (


m
) 



Published as: Acta Materialia, 61 (2013) pp. 183-192 (dx.doi.org/10.1016/j.actamat.2012.09.048) 

 

25 

 

 

Figure 6  Measured dislocation densities for SPD processed pure metals compared with 

prediction from the present model. See text for source of experimental data.  
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Figure 7  Plot showing the correlation between ΔHV/G and 1/d. In the model the correlation is 

an indirect, mostly non-causal one. See text for source of experimental data. 
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