The University of Southampton
University of Southampton Institutional Repository

Atomistic calculations of phonon frequencies and thermodynamic quantities for crystals of rigid organic molecules

Atomistic calculations of phonon frequencies and thermodynamic quantities for crystals of rigid organic molecules
Atomistic calculations of phonon frequencies and thermodynamic quantities for crystals of rigid organic molecules
Rigid-body, k = 0 phonon frequencies have been calculated within the crystal structure modeling program DMAREL, enabling the use of anisotropic atom-atom model potentials. Five organic crystals (hexamethylenetetramine, naphthalene, pyrazine, imidazole, and α-glycine) were chosen to sample a range of intermolecular interactions for determining the sensitivity of the calculated frequencies to changes in the empirical repulsion-dispersion parameters and the electrostatic model. A carefully parameterized simple exp-6 model can describe vibrations in simple van der Waals crystals and some hydrogen bonded crystals reasonably well. However, for weaker polar interactions, an accurate model of the electrostatics is needed. Bending of weak polar interactions and shearing of close contacts with delocalized π-systems are particularly sensitive to the description of electrostatic interactions. Point charge models generally underestimate the resistance to deforming hydrogen bonds, and a distributed multipole model stabilizes these interactions. Because of their statistical nature, vibrational contributions to the energy can be estimated more accurately than the frequencies of individual modes, and the best models give good estimates of zero-point energies and the vibrational partition function, which should be useful in predicting the relative stability of polymorphs
1520-6106
10919-10933
Day, Graeme M.
e3be79ba-ad12-4461-b735-74d5c4355636
Price, Sarah L.
ab33d469-c548-4a15-918f-b0614ce6129a
Leslie, Maurice
f9fe6245-b552-4ff2-9fba-1f6839e3270c
Day, Graeme M.
e3be79ba-ad12-4461-b735-74d5c4355636
Price, Sarah L.
ab33d469-c548-4a15-918f-b0614ce6129a
Leslie, Maurice
f9fe6245-b552-4ff2-9fba-1f6839e3270c

Day, Graeme M., Price, Sarah L. and Leslie, Maurice (2003) Atomistic calculations of phonon frequencies and thermodynamic quantities for crystals of rigid organic molecules. The Journal of Physical Chemistry B, 107 (39), 10919-10933. (doi:10.1021/jp035125f).

Record type: Article

Abstract

Rigid-body, k = 0 phonon frequencies have been calculated within the crystal structure modeling program DMAREL, enabling the use of anisotropic atom-atom model potentials. Five organic crystals (hexamethylenetetramine, naphthalene, pyrazine, imidazole, and α-glycine) were chosen to sample a range of intermolecular interactions for determining the sensitivity of the calculated frequencies to changes in the empirical repulsion-dispersion parameters and the electrostatic model. A carefully parameterized simple exp-6 model can describe vibrations in simple van der Waals crystals and some hydrogen bonded crystals reasonably well. However, for weaker polar interactions, an accurate model of the electrostatics is needed. Bending of weak polar interactions and shearing of close contacts with delocalized π-systems are particularly sensitive to the description of electrostatic interactions. Point charge models generally underestimate the resistance to deforming hydrogen bonds, and a distributed multipole model stabilizes these interactions. Because of their statistical nature, vibrational contributions to the energy can be estimated more accurately than the frequencies of individual modes, and the best models give good estimates of zero-point energies and the vibrational partition function, which should be useful in predicting the relative stability of polymorphs

This record has no associated files available for download.

More information

Published date: 2003
Organisations: Organic Chemistry: Synthesis, Catalysis and Flow, Computational Systems Chemistry

Identifiers

Local EPrints ID: 343462
URI: http://eprints.soton.ac.uk/id/eprint/343462
ISSN: 1520-6106
PURE UUID: 8ded53bc-f55f-4997-bcf7-3434e5fce79c
ORCID for Graeme M. Day: ORCID iD orcid.org/0000-0001-8396-2771

Catalogue record

Date deposited: 19 Oct 2012 14:13
Last modified: 15 Mar 2024 03:44

Export record

Altmetrics

Contributors

Author: Graeme M. Day ORCID iD
Author: Sarah L. Price
Author: Maurice Leslie

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×