Elastic constant calculations for molecular organic crystals

Day, Graeme M., Price, Sarah L. and Leslie, Maurice (2001) Elastic constant calculations for molecular organic crystals Crystal Growth & Design, 1, (1), pp. 13-27. (doi:10.1021/cg0055070).


Full text not available from this repository.


Elastic constants of a set of molecular organic crystals have been calculated within the crystal modeling program DMAREL, which was developed to allow the use of highly accurate, anisotropic atom?atom potentials. A set of six molecular crystals (durene, m-dinitrobenzene, the ? form of resorcinol, pentaerythritol, urea, and hexamethylenetetramine) has been chosen to sample a range of intermolecular interactions and crystal symmetries. The sensitivity of such calculations to variations in empirical repulsion?dispersion parameters and the electrostatic model is determined and discussed relative to the other errors in the theoretical model and typical experimental uncertainties. We find that model potentials whose functional form has been simplified often reproduce crystal structures and lattice energies adequately but perform poorly when used to calculate elastic constants. This is because more theoretically justified potentials are required to satisfactorily model the curvature at the equilibrium geometries. The rigid-molecule approximation can result in exaggerated elastic constants, and the neglect of thermal effects also leads to significant overestimation of the stiffness constants

Item Type: Article
Digital Object Identifier (DOI): doi:10.1021/cg0055070
ISSNs: 1528-7483 (print)
Organisations: Organic Chemistry: Synthesis, Catalysis and Flow, Computational Systems Chemistry
ePrint ID: 343465
Date :
Date Event
Date Deposited: 19 Oct 2012 14:05
Last Modified: 17 Apr 2017 16:34
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/343465

Actions (login required)

View Item View Item