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Abstract  

A nitric oxide synthase (NOS)-like activity has been demonstrated in human red blood cells 

(RBCs), but doubts about its functional significance, isoform identity and disease relevance 

remain. Using flow cytometry in combination with the NO-imaging probe DAF-FM we find 

that all blood cells form NO intracellularly, with a rank order of monocytes > neutrophils > 

lymphocytes > RBCs > platelets. The observation of a NO-related fluorescence within RBCs 

was unexpected given the abundance of the NO-scavenger oxyhemoglobin. Constitutive 

normoxic NO formation was abolished by NOS inhibition and intracellular NO scavenging, 

confirmed by laser-scanning microscopy and unequivocally validated by detection of the 

DAF-FM reaction product with NO using HPLC and LC-MS/MS. Employing 

immunoprecipitation, ESI-MS/MS-based peptide sequencing and enzymatic assay we 

further demonstrate that human RBCs contain an endothelial NOS (eNOS) that converts L-

3H-Arginine to L-3H-Citrulline in a Ca2+/Calmodulin-dependent fashion. Moreover, in patients 

with coronary artery disease, red cell eNOS expression and activity are both lower than in 

age-matched healthy individuals and correlate with the degree of endothelial dysfunction. 

Thus, human RBCs constitutively produce NO under normoxic conditions via an active 

eNOS isoform the activity of which is compromised in patients with coronary artery disease. 
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Title page notes 

Part of this work has been presented in abstract form at the Joint meeting of the societies of 

free radical biology and medicine and the free radical research international, Orlando, (FL, 

USA) November 2010 and Atlanta, (GE, USA) November 2011.   

The online version of the article contains a data supplement. 
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Introduction 

The key event in the pathogenesis of arteriosclerosis is believed to be a dysfunction of the 

endothelium with disruption of vascular homeostasis, predisposing blood vessels to 

vasoconstriction, inflammation, leukocyte adhesion, thrombosis, and proliferation of vascular 

smooth muscle cells. Red blood cells (RBCs) are typically considered as shuttles of 

respiratory gases and nutrients for tissues, less so as compartments important to vascular 

integrity. Patients with coronary artery disease (CAD) and concomitant anemia have a 

poorer prognosis following myocardial infarction, percutaneous coronary intervention, and 

coronary artery bypass grafting, and are more prone to developing heart failure with fatal 

outcomes 1-3. Surprisingly, erythropoietin treatment fails to improve diagnosis, indicating that 

a compromised gas exchange/nutrient transport capacity of blood is insufficient to explain 

this outcome. 

Nitric oxide (NO) is an essential short-lived signaling/regulatory product of a healthy 

endothelium that is critically important for vascular health. Decreased production and/or 

bioactivity of NO are a hallmark of endothelial dysfunction and have been shown to 

contribute to accelerated atherogenesis. In the cardiovascular system, NO is continuously 

produced in endothelial cells by the type III isoform of NO synthase (eNOS, NOS3; EC 

1.14.13.39)4. In addition to endothelial cells, some circulating blood cells also contain eNOS. 

It is an accepted dogma that RBCs take up and inactivate endothelium-derived NO 

via rapid reaction with oxyhemoglobin to form methemoglobin and nitrate, thereby limiting 

NO available for vasodilatation. Yet it has also been shown that RBCs not only act as “NO 

sinks” but synthesize, store, and transport NO metabolic products. Under hypoxic conditions 

in particular, it has been demonstrated that RBCs induce NO-dependent vasorelaxation.5;6 

Mechanisms of release and potential sources of NO in RBCs are still a matter of debate, but 

candidates include iron-nitrosyl-hemoglobin7, S-nitrosohemoglobin8-10, and nitrite. The latter 

may form NO either via deoxyhemoglobin5;11 or xanthine oxidoreductase (XOR)-mediated 

reduction6;12, or via spontaneous12 and carbonic anhydrase-facilitated disproportionation13. 

Most of these processes show a clear oxygen-dependence, and several are favoured by low 
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oxygen tensions. The relative contribution of either mechanism to NO formation varies with 

oxygen partial pressure along the vascular tree. In addition, RBCs release ATP when 

subjected to hypoxia, providing an alternative vasodilatory pathway14.    

In contrast to hypoxia-induced NO release from RBCs, their generation of NO under 

normoxic conditions is less well characterized. Data from our and other laboratories have 

demonstrated a NOS-dependent NO production from RBCs in normoxia, suggesting RBCs 

may contribute to the inhibition of platelet aggregation15;16, the circulating pool of NO 

metabolites15-18, and to overall tissue protection17;18. Treating RBCs with NOS inhibitors 

decreased accumulation of NO metabolites16;19 and citrulline 15;18 in the supernatant. 

However, Kang et al. failed to measure citrulline production in RBC lysates20, maybe 

because of loss of cellular structures or cofactors important for activity21. 

Another recent study failed to detect increases in15N-labelled nitrite/nitrate following 

addition of 15N-L-Arg to intact RBCs22. RBCs have been shown to express a protein 

containing epitopes of an eNOS6;15;16;20;23-25. However, positive staining with anti-iNOS 

antibodies has also been reported20;25, and others suggested that RBCs might express a 

novel NOS isoform.23;25 Thus, doubts about the functional significance of the NOS-like 

activity in RBCs remain, and little is known about NOS isoform identity and disease 

relevance.  

We therefore sought to definitively identify and characterize the activity of human red 

cell NOS using an advanced multilevel analytical approach. Using HPLC, LC-MS/MS, flow 

cytometry, laser scanning microscopy and enzymatic assay together with functional studies 

we here demonstrate that human RBCs contain an active eNOS that gives rise to 

constitutive intracellular NO formation under normoxic conditions. We further show that this 

activity is compromised in CAD and correlates with the degree of endothelial dysfunction. 
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Materials and methods 

Study subjects 

Blood drawn from human healthy subjects (25-33 ys) was used for biochemical 

characterization of human red cell eNOS. To compare NOS expression with vascular 

function, 10 patients with endothelial dysfunction due to coronary artery disease (CAD), as 

diagnosed by coronary angiography, and 9 age-matched healthy subjects were recruited 

from the outpatient clinic of the Department of Cardiology, Pulmonology and Angiology, 

Düsseldorf University Hospital. NOS activity was quantified in red cells from a randomized 

subset of the study population composed of 4 healthy individuals and 5 patients with CAD. 

All subjects provided written informed consent before enrollment. Procedures were 

conducted in accordance with the Declaration of Helsinki and approved by the local ethics 

committee of the Heinrich-Heine University of Düsseldorf. Endothelium-dependent dilation of 

the brachial artery was assessed non-invasively by measurement of flow-mediated dilatation 

(FMD) using high-resolution ultrasound (VIVID i, GE Healthcare)26. FMD and endothelium-

independent dilation were expressed as a percentage change from baseline. See 

supplemental methods for further details. 

Comparative flow cytometric analysis of blood cells 

Three aliquots of blood were processed for analysis of leukocytes, RBC and platelets, as 

described in supplemental methods. Briefly, each aliquot was loaded with 10 µM DAF-FM 

diacetate for 30 min at RT in the dark, or left untreated, washed in PBS and analyzed for 

DAF FM-associated fluorescence in a FACS Canto II flow cytometer. NO donors were 

applied to RBC preparations at the indicated concentrations after washing the DAF-FM-

loaded cells. For NOS inhibition, RBC suspensions were pre-incubated for 30 min with 3 mM 

L-NAME or 1 mM L-NIO. Intracellular NO was scavenged by incubation of RBC suspensions 

for 30 min at 37°C with 250 µM iron diethyldithiocarbamate (Fe[DETC]2) prepared as 

described,27 and then washed by centrifugation at 300xg for 10 min at 4°C. Aliquots from 

these preparations were analyzed within 15 min in a FACS Canto II flow cytometer after 
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further 1:3 dilution in PBS. Flow cytometric data were collected using the DIVA 5.0 software 

package and analyzed using FlowJo V7.5.5 (TreeStar). Median fluorescence intensity (MFI) 

was calculated from the histogram (distribution) plots of the green fluorescence signals (Ex 

488 nm, Em 530±30 nm) detected within the cell-specific gates (see Fig. 1A-C, panels I, 

gated cells are color-coded). MFIs of untreated samples served as autofluorescence 

controls. The acquisition voltage was adjusted before each measurement according to the 

position of the third fluorescence peak of standard latex beads (Rainbow beads, BD 

Bioscience).  

Visualization of DAF-FM fluorescence in RBC by laser-scanning microscopy  

Whole blood was diluted 1:10 in PBS and treated with 10-30 µM DAF-FM diacetate for 30 

min at RT or 37°C in the dark, washed and treated with 100 µM Spermine/NO (Sper/NO), or 

100 µM S-nitrosocysteine (SNOC) for 15 min. Unstained cells served as autofluorescence 

controls. Blood smears were analyzed 1-5 min after preparation under a Zeiss LSM 510 

confocal laser-scanning microscope using a Zeiss Plan Neofluar 63x/1.3 oil DIC objective 

and excitation (Ex) 488 nm with UV/488/543/633 nm beam splitter. Fluorescence was 

recorded using a 540-30 nm bandpass filter and micrographs were taken at 37°C. Images 

were processed with Adobe Photoshop CS5 (Adobe Systems GmbH). 

HPLC analysis of the nitrosation products of DAF-FM 

Red cell pellets were diluted 1:500 in PBS, pre-treated as described in the flow cytometry 

section, washed, and loaded by 30 min incubation with 10 µM DAF-FM diacetate at RT in 

the dark. After centrifugation at 300xg for 10 min at 4°C, pellets were incubated with HPLC-

grade DMSO for 30 min at RT in the dark and spun down at 13,000xg for 10 min. The 

supernatants were analyzed by reversed-phase high performance liquid chromatography 

(HPLC) applying a method described for DAF-228 with some modifications, using an Agilent 

1100 Series HPLC system (Agilent Technologies) with a diode array detector (set to 490 

nm) and a fluorescence detector (Ex 490, Em 517) connected in series. The column used 

was a Phenomenex Luna C18 (2)  (4.6 x 250 mm; 5 μm) fitted with a guard column, both 
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kept at 25°C. The mobile phase consisted of 0.05% TFA in water (A) and 0.05% TFA in 

acetonitrile (B), using the following gradient settings (time/%A): 0 min-95%, 40 min-60%, 45 

min-60% with a flow rate of 1 ml/min.  

Identification of DAF-FM reaction products by LC-MS/MS 

Mass spectra were run on an Agilent 6400 triple-quadrupole liquid chromatography mass 

spectrometry (LC-MS/MS) instrument operated in positive ion mode; samples were 

separated using a Kinetix C18(2) column (2 x 50 mm; Phenomenex) with 0.1% aqueous 

formic acid (A) and methanol (B) as mobile phase (flow rate 200 µL/min, gradient [time, %A]: 

0 min-80%, 1 min-80%, 2.1 min-30%. 3.1 min-30%, 3.5 min 80%, 5 min-80%). DAF-FM 

(transition 413.2 → 369.12) and DAF-FM-T (transition 424.2 → 380.1) were detected using 

selective-reaction monitoring.  

Immunoprecipitation, gel electrophoresis and western blot analysis 

Crude protein extract was obtained by lysis of RBC pellets (1 ml) with toluene29. EC were 

lysed as described30. Total protein concentration was determined by Lowry (DC Protein 

Assay, Bio-Rad). Probes (100 µg/µl protein) were incubated for 1 h at RT with a mouse anti-

human NOS3 antibody (40 µg, BD Bioscience). Immunocomplexes were isolated by 

magnetic separation using protein G Dynabeads (Invitrogen) following the manufacturer’s 

instruction. For gel electrophoresis, samples were loaded onto 7% NuPAGE Novex 

Tris/Acetate pre-cast gels (Invitrogen), and protein bands were stained with colloidal 

Coomassie Brilliant Blue31. Western blot analysis was performed as previously 

described30using rabbit anti-NOS3 antiserum (BD Bioscience) (1:1000) and HRP-conjugated 

goat anti-rabbit antibody (1:5000 Rockland). 

Peptide sequencing by ESI-MS/MS  

In-gel digestion and peptide separation was performed as described in supplemental 

methods. Eluting ions were transferred directly into a LTQ XL linear ion trap mass 

spectrometer (Thermo Fisher Scientific) equipped with an electrospray ionization device 

(spray voltage 1.8 kV, capillary temperature 180°C). Precursor ions were detected in a full 
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MS scan from 400 to 2000 m/z. Full MS/MS spectra were acquired for the 10 most intense 

signals using a fill time of 100 ms for each MS/MS µscan. MS/MS spectra were interpreted 

with the SEQUEST algorithm implemented in the Proteome Discoverer software (Thermo 

Fisher Scientific) and searched against the human Swiss-Prot database (release 15.6/57.6). 

Peptide mass accuracy for precursor ions and tolerance for fragment ions were respectively 

set to 2.5 and to 1 atomic mass units, allowing methionine oxidation as a possible chemical 

modification. 

Peptide alignments  

Peptide sequences were aligned with the sequences of all main NOS isoforms and eNOS 

splice variants using the constraint-based multiple alignment tool (COBALT) of the NCBI 

website (protein accession numbers NP_000611 = NOS1, nNOS; NP_000616= NOS2, 

iNOS; NP_000594 = NOS3, isoform 1; with splicing variants of NOS3 as NP_001153581 = 

NOS3, isoform 2, NP_001153582 = NOS3, isoform 3, and NP_001153583 = NOS3, isoform 

4). The position of the peptides in the conserved regions were visualized using Geneious 

v5.4 software (Biomatters Ltd). 

Determination of NOS activity 

The activity of the immunoprecipitated protein was determined by measuring the rate of 

conversion (fmol/min) of [3H] L-arginine to [3H] citrulline or [14C] L-arginine to [14C] citrulline 

as previously described32, in the presence or absence of the specific NOS inhibitors L-NAME 

(1 mM each), or of Ca2+ (75 µM) + calmodulin (0.04 µg/µl) (see supplemental methods for 

details).  
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Results 

RBCs loaded with DAF-FM are fluorescent  

To compare intracellular NO production between circulating blood cells, blood 

fractions enriched in leukocytes, platelets and erythrocytes were loaded with DAF-FM 

diacetate and analyzed by flow cytometry (Fig. 1). Individual cell subpopulations were 

identified by staining with specific surface markers and by analysis of scatter dot plots (Fig. 

1A-C, panels I). Monocytes revealed the highest intracellular fluorescence intensity, followed 

by neutrophils, lymphocytes, RBCs, and platelets (Fig 1D). Whether these variations are due 

to differences in NO and/or reactive oxygen species (ROS) production, or dye 

uptake/processing remains to be investigated. 

A DAF-FM-related fluorescence signal in RBCs was unexpected given the 

abundance of the NO scavenger oxyhemoglobin and the nitrosation scavengers glutathione 

and ascorbate in these cells. However, these original findings were confirmed by laser 

scanning microscopy (Fig. 2A). DAF-FM-associated fluorescence was remarkably uniform 

with a typical doughnut-shaped fluorescence pattern, and strongly increased following 

addition of the NO donors Sper/NO (Fig 2A bottom panel) or S-nitrosocysteine. 

Fluorescence intensity varied up to 5-fold between cells of the same preparation (see 

histogram plot in Fig. 1B, panel I and Fig. 2B), was sensitive to changes in incubation 

temperature (37°C >> RT), and oxygen tension (21% O2 > 5% O2). Median fluorescence 

intensity (MFI) increases were markedly (20-70%) inhibited by either pre-incubation of cells 

with the NOS-inhibitors, L-NAME (Fig. 2C) and L-NIO (n=6, p=0.048 vs. untreated control), 

or the lipophilic NO scavenger Fe[DETC]2 (Fig. 2D). This degree of inhibition is probably 

maximal considering the strong background fluorescence due to the formation of unspecific 

fluorescent adducts33 and the presence of fluorescence impurities in the DAF-FM DA stock 

solution (see below). Moreover, treating RBC with nitrite did not affect DAF-FM-dependent 

signal under neutral conditions, while at pH 5.5 only higher concentrations of nitrite (> 200 

µM) strongly increased intracellular fluorescence (data not shown). 
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Unexpectedly, MFI did not increase upon addition of L-arginine (3 mM) to intact cells. 

These findings are consistent with the lack of 15N-nitrite/nitrate production following 

incubation of RBCs with exogenous 15N-L-Arg34 and indicate that constitutive red cell NOS 

activity does not rely on extracellular substrate supply. By contrast, treatment with the 

nitrosating NO donor SNOC markedly increased fluorescence intensity in a concentration-

dependent manner (Fig 2B) and this was inhibited by addition of Fe[DETC]2 as assessed by 

fluorimetry (not shown). Intermediate SNOC concentrations produced fluorescence intensity 

distributions distinct from those at other concentrations, suggesting cell-to-cell differences in 

SNOC uptake and/or metabolism (Fig. 2B). Peak MFIs at maximal NO donor concentrations 

were similar and cell-to-cell variations small, indicative of comparable DAF-FM loading 

efficiencies. Thus fluorescence intensity variations at baseline likely reflect differences in 

constitutive NOS activity between cells. None of these treatments affected RBC morphology, 

as assessed in the transmitted light channel of the laser scanning microscope and by the 

lack of positional changes for the RBC population in the scatter dot plot using flow 

cytometry. Qualitatively identical results were obtained using fluorimetry (not shown). While 

no changes in cell morphology or hemolysis were observed with these treatments at the 

concentrations used (which could have impeded flow cytometric analysis), a high NO/NOS-

independent background signal was apparent using these techniques, even after correction 

for autofluorescence.  

DAF-FM-related fluorescence in RBCs originates from reaction with NOS-derived NO 

To confirm that the fluorescent signals detected by fluorimetry, laser scanning microscopy 

and flow cytometry were indeed due to intracellular nitrosation of DAF-FM to form DAF-FM-

T, we analyzed the products of this reaction by HPLC and LC-MS/MS. A peak corresponding 

to DAF-FM-T was detected in loaded RBCs by reversed phase HPLC (Fig 3A). Combined 

use of selected reaction monitoring (i.e., multiple reaction monitoring of the 413.1→369.1 

and 424.1→380.1 transitions) by LC-MS/MS in parallel with HPLC allowed us to detect both 

DAF-FM-T and unreacted DAF-FM in RBCs pre-loaded with DAF-FM diacetate, thus 

providing unequivocal evidence for formation of DAF-FM-T and, therefore, constitutive NO 
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production within RBCs (Fig 3B). Reassuringly, no peak corresponding to DAF-FM-T was 

detected in RBCs pre-treated with either the NOS inhibitor, L-NAME (Fig. 3A, panel II; Fig. 

3C 10 out of 12 samples; n=5 independent experiments) or the lipophilic NO scavenger, 

Fe[DETC]2 (Fig 3A, panel III; Fig. 3D). Fluorescence quenching effects of the dark-colored 

Fe[DETC]2 can be excluded because excess compound was removed by the washing steps 

before DAF-FM-T extraction. 

When plotting the area of the fluorescent peaks obtained by serial dilution of DAF-

FM-T standards in RBC lysates against triazole concentration (assuming 100% conversion 

efficiency of DAF-FM authentic standard into DAF-FM-T by reaction with SNOC) a linear 

relationship was apparent (Fig 3E; R = 0.9989; p<0.0001). By interpolating the areas of the 

DAF-FM-T related peaks observed in 1.2x107 DAF-FM-loaded RBCs under basal conditions, 

we estimated that the average concentration of DAF-FM-T in these samples was 64±12 nM 

(n=19). Assuming the reaction stoichiometry to be 1:1, the amounts of NO and/or nitrosating 

equivalents produced by a single RBC within 30 min at RT corresponds to at least 3.2x10-6 

fmoles (Fig. 3F). 

RBCs contain the “classical” eNOS isoform   

Having identified an intracellular constitutive NOS activity in RBCs, we next sought to isolate 

and identify the NOS isoform expressed in these cells. Crude hemolysates were prepared by 

osmotic lysis of RBC pellets with toluene/H2O 1:1, which preserves protein structure and 

activity and avoids excessive dilution. We succeeded in immunoprecipitating an eNOS-like 

protein employing a mouse monoclonal anti-eNOS antibody, either after enrichment of 

calmodulin-binding proteins by affinity chromatography (Fig. 4A, lanes 1+2) or directly from 

crude red cell lysates (Fig. 4A, lanes 3+4; Fig 4B). After separation of the proteins by SDS-

PAGE under reducing conditions followed by coomassie staining, a band of ~130kD was 

apparent in all samples (Fig 4A).  The identity of this 130kD band was confirmed by Western 

blotting using a polyclonal rabbit anti-human eNOS antibody (Fig. 4B). Similar results were 

obtained by using the rabbit antibody for immunoprecipitation and the mouse antibody for 

detection, as well as by staining the membrane with a mouse monoclonal anti-eNOS 
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antibody directed against a different epitope of eNOS. No high-molecular-weight bands were 

detected if a mouse anti-human iNOS antibody was used for immunoprecipitation, or by 

adding antibodies and beads to a serum albumin solution.  

To identify the immunoprecipitated protein(s), the 130kD bands of two independent 

coomassie-stained gels were excised (one of them shown in Fig 4C) and subjected to 

analysis by liquid chromatography-mass spectrometry (LC-MS/MS). Four different peptides 

all belonging to eNOS were identified. By alignment of the sequences of these peptides with 

those of the three NOS isoforms including all known splice variants of eNOS, we found that 

the identified peptides belong to two distinct, highly conserved regions of the reductase 

domain of the NOS protein (Fig. 4 D): the FMN reductase-like region (peptides 1 and 2) and 

the ferredoxin reductase (FNR)-like region (peptides 3 and 4) within the FAD-binding pocket 

(Fig. 4D). All four peptide sequences showed 100% pairwise identity only with the full eNOS 

sequence, with peptides 3 and 4 aligning within a region in the C-terminal domain that is 

absent in the truncated splice variants. Thus, these results show that human RBCs carry a 

NOS3, the “classical” eNOS isoform constitutively expressed in endothelial cells. 

Isolated red cell eNOS protein is catalytically active 

To verify that the erythrocytic eNOS identified is indeed active we measured the ability of the 

immunoprecipitated protein to catalyze the in vitro conversion of 3H-L-arginine to 3H-citrulline 

in the presence of NADPH, FAD, FMN, Ca2+ and calmodulin. Fig. 4E depicts the results from 

5 independent experiments (ANOVA p< 0.05).  We found that the protein is capable of 

producing 9.82 fmol/min citrulline under optimal substrate/cofactor supply conditions. 

Moreover, arginine to citrulline conversion was significantly inhibited by addition of the NOS 

inhibitor L-NAME (Fig 4E, IP vs. IP+L-NAME p<0.05) and markedly decreased in the 

absence of Ca2+/calmodulin (Fig. 4E IP vs. IP w/o Ca++/CaM; t-test p<0.05). Thus, the 

isolated eNOS is active and dependent on Ca2+/calmodulin interaction. 
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Red cell eNOS expression and activity are compromised in patients with coronary 

artery disease 

We explored endothelial function and erythrocytic eNOS expression levels and activity in 

patients with CAD, a condition associated with endothelial dysfunction, and age-matched 

healthy individuals. Clinical characteristics of the study population are summarized in Table 

S1. As expected, flow-mediated dilation of the brachial artery was significantly decreased in 

CAD patients, while maximal vasodilatation in response to GTN was not significantly 

different (Table S1). Patients with endothelial dysfunction showed a significantly lower 

expression of red cell eNOS compared to aged-matched healthy individuals (Fig. 5A; mean 

red cell eNOS expression was 0.519 ± 0.083 vs. 1.058 ± 0.55, unpaired T-test p < 0.0001). 

Furthermore, univariate regression analysis revealed that erythrocytic eNOS expression 

correlated with endothelial function in humans (R2 = 0.318 F=12.144 p=0.002) (Fig. 5A). Red 

cell eNOS activity was measured in a randomized subgroup of the study population by 

analyzing the conversion of 14C-Arginine into 14C-Citrulline catalyzed by the isolated protein 

(Fig. 5B). We found that red cell eNOS activity was also significantly decreased in patients 

with endothelial dysfunction as compared to the healthy control group (p= 0.0337, unpaired 

t-test) (Fig 5B). Taken together, these results indicate that human red cell eNOS activity 

mirrors vascular endothelial function.  
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Discussion 

The key findings of our study are: 1) formation of NO and related nitrosative species occurs 

constitutively in all subtypes of human blood cells, with cell-specific intensity differences; 2) 

intracellular NO formation can be visualized in RBCs using diaminofluoresceins despite the 

abundance of the NO scavenger oxyhemoglobin and the nitrosation scavengers glutathione 

and ascorbate; 3) human RBCs contain a catalytically active version of the classical 

endothelial NOS isoform (eNOS, NOS3) that converts L-arginine to L-citrulline in a 

Ca2+/calmodulin-dependent manner; 4) both expression and activity of red cell eNOS are 

compromised in CAD patients; and 5) the extent of eNOS impairment in RBCs correlates 

with the degree of endothelial dysfunction, demonstrating disease relevance of this blood 

cell derived NO activity. 

 

Visualization of NO formation in blood cells and fluorescent probe chemistry.  

By comparing intracellular fluorescence intensities of different cell subpopulations from the 

same blood sample loaded with DAF-FM diacetate, almost the same fluorescence intensity 

was apparent in RBCs as in lymphocytes, and only ~2-3 fold lower values than in neutrophils 

(granulocytes) or monocytes. In blood of healthy individuals, the number of RBCs is about 3 

orders of magnitude higher than the number of white cells. Our findings thus indicate that in 

the human circulation, RBCs not only transport the bulk of nitrite, the major intravascular NO 

storage form that becomes bioactivated under hypoxic conditions35, but also represent the 

largest cellular compartment in which NO is produced under normoxic conditions.   

Although diaminofluoresceins are the most frequently used and best investigated NO 

imaging probes36;37, they do not react with NO directly. Initially, it was proposed that DAF-

derivatives might interact with reactive nitrosating species derived from the reaction of NO 

with O2 such as N2O3
38 or nitrous acid 39, to form intermediary N-nitrosamines that are 

subsequently converted to the highly fluorescent triazole derivatives, DAF-2T or DAF-FM-

T37. However N2O3 is not likely to be formed efficiently in aqueous biological environments, 

except in lipid membranes40. Therefore, Wardman40 argued that DAFs may undergo one-
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electron oxidation to an anilinyl radical that subsequently reacts with NO in a radical-radical 

reaction. Both mechanisms are probably operating in concert inside cells. While the former 

may explain the abundance of DAF-FM related fluorescence in membrane-rich 

compartments, the latter complicates the interpretation of results solely based on DAF-FM 

related fluorescence due to dependence of the latter on ROS formation. Since RBCs are 

particularly rich in the NO-scavenger hemoglobin while also containing high concentrations 

of antioxidants, capable of scavenging nitrosating intermediates and/or reducing the oxidized 

probe, effective intracellular dye accumulation28 probably accounts for the ability of 

diaminofluoresceins to detect NO intracellularly. Nevertheless, its detection in the vicinity of 

millimolar Hb in RBCs would seem to be reason enough to question the universal validity of 

the classical “hemoglobin NO-scavening paradigm” (see below). 

 

Origin of constitutive NO synthesis within RBCs.  

Using an advanced multi-level analytical approach we here provided unequivocal evidence 

for the conversion of DAF-FM into DAF-FM-T by NO formed by RBCs under normoxic 

conditions. RBCs contain both a constitutive Ca2+-dependent NOS containing epitopes of an 

eNOS6;15;16;25 and an active XOR6. Thus, enzymatic NO synthesis in RBCs might occur either 

via NOS-catalyzed L-arginine to citrulline conversion15;16;18 or by XOR-mediated nitrite 

reduction6;12;41. We found that no DAF-FM-T was formed in the presence of the specific NOS 

inhibitors L-NAME and L-NIO, or by treating RBCs with Fe[DETC]2, which is commonly used 

as NO spin-trap in ESR studies 27. Similar results were obtained using flow cytometry. RBC 

preincubation with nitrite under normoxic conditions did not affect intracellular fluorescence 

either, ruling out a major role for nitrite in normoxic NO production detectable by DAF-FM. At 

pH 5.5 higher concentrations of nitrite (> 200 µM) strongly increased intracellular 

fluorescence.  Collectively, these results demonstrate that under normoxic conditions 

constitutive NO production in RBCs is largely NOS-dependent, while under hypoxic 

conditions it may involve nitrite reduction by deoxyhemoglobin5;11, XOR, carbonic anydrase13 

and/or eNOS itself6;12.   
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Activity of a red cell NOS may be involved in the regulation of RBC lifespan42, 

deformability16;43 44, and potentially red cell velocity and blood flow44. This notion is in line 

with previous findings showing that NOS inhibitors abolish the anti-platelet effects of RBCs 

in vitro15;16 and decrease the level of NO products released by isolated RBCs16;24, however 

do not affect intracellular nitrite concentrations45. Thus RBCs may also contribute to vascular 

homeostasis, independent of their “classical role” as transporters of oxygen, energy 

substrates and nutrients. Given the contribution RBCs make to the circulating NO pool and 

their role in hypoxic vasodilation46 further studies are warranted to address its functional 

significance for the regulation of RBC function and beyond. 

 

Isolation, isoform identification and activity of red cell eNOS.  

Previous studies have used antibodies directed against eNOS and iNOS epitopes for 

western blotting or immunocytochemistry to probe for the presence of a NOS in RBCs and 

activity assays to measure either the RBC-dependent conversion of radiolabelled arginine 

into citrulline or the formation of NO oxidation products. Deliconstantinos et al. isolated the 

protein by affinity chromatography using NADPH-binding protein affinity columns and 

measured L-NAME sensitive nitrite production by RBCs using a modified Griess reaction19. 

Using immunohistochemistry, Jubelin at al. found a protein that cross-reacted with 

antibodies directed against calmodulin, eNOS and iNOS25 whereas western blot analysis of 

RBC lysates15;20 and membranes6;16 confirmed the presence of a protein with eNOS 

epitopes. Two groups hypothesized that RBCs express a novel NOS isoform23;25, but no 

sequence confirmation analysis was provided.  

The main technical hurdle in the biochemical characterization of proteins in RBCs is 

the presence of overwhelmingly high level of hemoglobin, which represents a formidable 

obstacle to purification, activity determination, immunostaining, and colorimetric/fluorimetric 

assay. In this study, we chose to isolate NOS from hemolysates under native conditions to 

permit combined structural and functional analysis. After purification of calmodulin-binding 

enzyme by affinity chromatography and immunoprecipitation using anti-eNOS antibodies, we 
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identified a 130kD-band by SDS-PAGE, indicating that red cell NOS contains both a 

calmodulin binding site and eNOS-like epitopes. Similar results were obtained when 

immunoprecipitation was performed directly from crude RBC lysates using different 

antibodies. While these results strongly suggested that the 130kD band isolated from RBCs 

was indeed an eNOS protein, further analyses were performed to obtain peptide sequences 

of tryptic digests by LC-MS/MS. Obtaining the sequence of four different peptides from two 

independent analyses permitted unequivocal identification of the protein as the classical 

eNOS (NOS3) isoform. Two of the four sequenced peptides aligned with 100% homology to 

the C-terminal region of eNOS, which is absent in the NOS3A-C splice variants. Less 

homology was observed with the sequences related to nNOS (NOS1) and iNOS (NOS2). 

We thus conclude that RBCs contain eNOS, the same protein that is constitutively 

expressed in endothelial cells. Two earlier studies suggested that RBCs also contain 

iNOS20;25. We are unable to confirm these reports as we failed to isolate any iNOS from 

crude human RBC lysates of healthy donors using specific anti-NOS2 antibodies for 

immunoprecipitation. 

While a L-NNA/L-NAME-inhibitable NOS activity has been demonstrated by 

measuring NO metabolites or citrulline in the supernatant of intact erythrocytes15;16;19 2;16 and 

RBC membranes16;23, two reports suggested RBCs harbor an inactive NOS.20;34                            

It was important to confirm, therefore, that the protein identified as eNOS in our study was 

catalytically active, L-arginine:citrulline conversion was dependent on the presence of 

Ca2+/calmodulin, and activity was inhibited by L-NAME. While we cannot exclude the 

additional presence of minor amounts of other NOS isoforms in RBCs it appears that the 

majority of NO produced in these cells is generated by an active eNOS.  

 

Is red cell eNOS of relevance to cardiovascular disease?  

Perhaps one of the most surprising results from our studies is that red cell eNOS expression 

and activity significantly correlate with flow-mediated dilation, a diagnostic marker of 

endothelial function and eNOS activity. Similarly to endothelial eNOS dysfunction, red cell 
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eNOS dysfunction may dependent on both decreased protein levels, and changes in 

regulation/catalytic activity. Impaired endothelial function, decreased eNOS activity and/or 

NO bioavailability are conditions strongly related to cardiovascular disease26;47  Thus, a 

systemic eNOS deficiency and/or dysfunction appears to prevail in patients with 

cardiovascular disease the consequences of which are not limited to impaired vascular 

function, but may also affect function of platelets48 and red blood cells.  

A central challenge of any hypothesis proposing a role of RBC-derived NO in human 

(patho)physiology is to understand how NO formed by these cells can escape irreversible 

dioxygenation reaction with oxyhemoglobin, a rapid reaction known to convert NO to nitrate.  

A “metabolon complex” of deoxyhemoglobin, AE/band 3, carbonic anhydrase, aquaporin and 

Rh-protein channels was proposed to explain nitrite protonation and may serve to facilitate 

the export of NO or its metabolites.49 The localization of eNOS-immunoreactivity on the 

cytoplasmic side of the RBC membrane, as detected by immunogold-labelling and electron 

microscopy imaging16, supports the notion that the RBC membrane plays a central role in 

this process, possibly by effectively “compartmentalizing” NO production, signalling and 

scavenging machinery. Our results invite a rethink about the role of hemoglobin in NO 

biology, inasmuch as its oxygenated form is considered an NO scavenger under any 

condition. Several factors have been identified that explain why endothelial NO escapes 

scavenging by hemoglobin8;11;46;49;50, but those discussions did not consider the possibility 

that NO might be produced in RBCs themselves. The observation that NO formation can be 

detected in the vicinity of abundant oxyhemoglobin would seem to warrant a careful 

reassessment of this universally accepted paradigm. 

 

Summary and Outlook 

Only recently indices of RBC number, size, and function have emerged as independent risk 

factors of cardiovascular disease1-3. Besides endothelial cells RBCs may also contribute to 

NO-dependent regulation of vascular homeostasis. Our present findings suggest that red 

cell eNOS activity might serve the purpose of compensating for NO trapping by providing an 
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efficient “NO shield” that maintains effective intracellular signalling. Moreover, red cell eNOS 

expression/activity might be a complementary diagnostic tool to assess vascular 

homeostasis and provide new therapeutic strategies for fighting cardiovascular disease.
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Figure 1:  Hierarchy of DAF-FM-associated fluorescence intensity in human blood 

cells. (A-C) Blood was separated into platelet-rich plasma, leukocytes and red blood cell 

fractions and loaded with DAF-FM diacetate. Blood cell subpopulations within each fraction 

were identified by flow cytometry on the basis of their FSC/SSC distribution (panels I) and by 

surface marker discrimination (not shown). The distribution of the green fluorescence signal 

measured in each gate is depicted in panels II. L-lymphocytes, M-macrophages, PLT-

platelets, PMN-polymorphonuclear granulocytes, RBC-red blood cells; SSC-side scatter, 

FSC-forward scatter. (D) Specific intracellular fluorescence of blood cell subpopulations 
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(assessed as ΔMFI = median fluorescence intensity - background fluorescence) plotted in 

relation to blood composition (i.e., relative levels of each cell in blood; right y-axis) (n=4; 

ANOVA p= 0.0002: Bonferroni vs. monocytes **p< 0.01; ***p<0.001, # T-Test p<0.001).  
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Figure 2: Visualization of intracellular NO production in RBCs. (A) Laser scanning 

micrographs of RBCs loaded with DAF-FM before (top) or after pre-treatment with 3 mM L-

NAME (inset) and further incubation with 100 µM Sper/NO (bottom). (B) Fluorescence 

distribution plot of untreated cells (front lane), cells loaded with DAF-FM only (second lane), 

or further treated with 1-500 µM SNOC (other lanes). Representative data from 6 

experiments (C) Decrease in intracellular RBC fluorescence (ΔMFI) as assessed by flow 

cytometry following treatment with the NOS inhibitor L-NAME. (D) Intracellular RBC 

fluorescence (ΔMFI) after treatment with the NO scavenger Fe[DETC]2.  ΔMFI = median 

fluorescence intensity - background fluorescence. 
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Figure 3: Suppression of NOS-mediated constitutive DAF-FM-T formation within RBCs 

after inhibition of NO synthesis or NO scavenging. (A) RBCs were left either untreated or 

pretreated with the specific NOS inhibitor L-NAME or the NO scavenger Fe[DETC]2, 

washed, loaded with DAF-FM diacetate and analyzed by HPLC with fluorescence detection. 

(B) RBCs were treated as described in A and analyzed by LC-MS; The upper panel show 

the mass spectrum of the respective peaks at 4.2 min for DAF-FM and 4.4 min for DAF-FM-

T. The bottom panels shows the SRM chromatograms for DAF-FM-T, monitoring the 
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fragmentation from 424 to 380 due to the loss of a CO2 from the parent molecule, and DAF-

FM monitoring the transition from 413 to 369.  (C, D) DAF-FM-T related peak areas from 3-5 

independent experiments with different blood donors; samples treated as in A. (E, F) 

Estimation of the DAF-FM-T quantities formed by constitutive NOS activity in RBCs; E: 

regression curve obtained by diluting DAF-FM-T standards in RBC lysates. Measured peak 

areas were plotted against DAF-FM-T concentrations, assuming 100% conversion of DAF-

FM into DAF-FM-T. F: Calculated DAF-FM-T equivalents (eq) formed in ∼107 red cells 

loaded with DAF-FM diacetate and incubated for 30 min RT.  After removing the outlier 

(according to Tuckey, see box plot) the mean DAF-FM-T concentration in RBC was 64±12 

nM (n= 19). 
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Fig. 4:  Human RBCs contain an active NOS3. A) Constitutive NOS (130 kD) was isolated 

from human RBCs by affinity chromatography with a calmodulin (CaM)-binding column 
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followed by immunoprecipitation (IP) with a mouse anti-human NOS3 or directly by 

immunoprecipitation from crude RBC lysates (lanes 1 and 2 as well as 3 and 4 are 

independent samples) B) The NOS enzyme was isolated directly from crude red cell lysates 

by immunoprecipitation with a mouse anti-human eNOS antibody and analyzed by Western 

blotting. As a control a crude EC lysate was loaded in lane 5 (MWM = molecular weight 

marker). C) Coomassie gel used for identification purposes and representative example of 

peptide identification by LC-MS/MS sequencing; depicted is the fragmentation spectrum of 

the peptide AQSYAQQLGR. D) Alignment of peptides identified by LC-MS/MS with 

sequences of nNOS, iNOS and all known eNOS splice variants. Top panel: Peptides 1 and 2 

aligned within the FMN reductase-like region (FMN binding region), while peptides 3 and 4 

aligned with the ferredoxin reductase (FNR)-like region (FAD and NADPH binding region). 

CysJ = Sulfite reductase, alpha subunit (flavoprotein) region. NOS oxygenase: nitric oxide 

synthase eukaryotic oxygenase domain.Bottom panels: The sequences shown in detail and 

compared with the other NOS isoforms. The sequences of the peptides are identical with 

NOS3, isoform 1 only.  NP_000611 = NOS1, nNOS, NP000616= NOS2, iNOS, NP_000594 

= NOS3, isoform 1.  Splice variants of NOS3 are NP_001153581 = NOS3, isoform 2, 

NP_001153582 = NOS3, isoform 3, NP_001153583 = NOS3, isoform 4. E) Activity of 

immunoprecipitated red cell eNOS. The activity of NOS3 immunoprecipitated from RBCs 

was assessed by measuring the conversion of L-3H-arginine to L-3H-citrulline. Total 

radioactivity is expressed as counts per minute (cpm). (ANOVA p=0.0447; Tukey IP vs. 

IP+L-NAME *p<0.05; # IP vs. Ca++/CaM T-Test p=0.0394) 
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Fig.5: Changes in the red cell eNOS expression and activity in patients with 

endothelial dysfunction. A) Monovariate linear correlation analysis between red cell eNOS 

expression as evaluated by western blot analysis (see supplemental information) and 

endothelium-dependent flow mediated dilation (FMD) in patients affected with endothelial 

dysfunction and healthy individuals (healthy); B) The activity of red cell eNOS was evaluated 

in a randomized subset of the groups by evaluating the conversion of 14C-L-arg into 14C-L-

citrulline. Total radioactivity is expressed as counts per minute (cpm); T-Test * p = 0.0359 
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