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UNIVERSITY of SOUTHAMPTON

Abstract

FACULTY of BUSINESS and LAW
SCHOOL of MANAGEMENT

Doctor of Philosophy

by Emrah DEMIR

This thesis is positioned within the field of green logistics with respect to CO, emissions in
road freight transportation. In order to examine the different aspects of CO, emissions of
freight transportation, three related, but different research questions are studied. Because
CO, emissions are proportional to the amount of the fuel consumed by vehicles, the first goal
of the thesis is to review and compare several available fuel emission models. The results
of extensive computational experiments show that all emission models tested are sensitive
to changes in load, speed and acceleration. Second, the dissertation studies the Pollution-
Routing Problem (PRP), an extension of the classical Vehicle Routing Problem with Time
Windows (VRPTW). The PRP consists of routing a number of vehicles to serve a set of cus-
tomers within preset time windows, and determining their speed on each route segment, so
as to minimise a function comprising fuel, emission and driver costs. A mathematical formu-
lation of this problem cannot be solved to optimality for medium to large scale instances. For
this reason, the thesis describes an adaptive large neighbourhood search (ALNS) based al-
gorithm to solve the PRP. The algorithm iterates between a VRPTW and a speed optimisation
problem, where the former is solved through an enhanced ALNS and the latter is solved using
a polynomial time speed optimisation algorithm (SOA). The third question relates to the PRP
and the two important objectives that should be taken into account, namely minimisation of
fuel consumption and total driving time. Computational results on a large set of PRP instances
show that the algorithm is both effective and efficient in solving instances of up to 200 nodes.
The thesis therefore studies the bi-objective PRP where one of the objectives is related to the
environment, namely fuel consumption (hence CO, emissions), and the other to driving time.
An enhanced ALNS algorithm is described to solve the bi-objective PRP. The algorithm inte-
grates the classical ALNS scheme with a specialized SOA. The results show that one need
not compromise greatly in terms of driving time in order to achieve a significant reduction in
fuel consumption and CO, emissions.
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Chapter 1. Introduction 2

1.1 Overview

Logistics is the management of the flow of goods, information and other resources, including
energy and people, between a point of origin and a point of consumption in order to meet the
requirements of end-users. Logistics activities comprise freight transportation, storage, inven-
tory management, materials handling and all the related information processing. The main
objective of logistics is to co-ordinate these activities in a way to meet customer requirements
at minimum cost to the service provider (Crainic and Laporte, 1997).

Green logistics is related to producing and dispatching goods in a sustainable way, while
playing attention to environmental and social factors. In a “green” context, the objectives
are not only based on economic considerations, but also aim at minimising other detrimental
effects on society, such as pollution, on the environment (Sbihi and Eglese, 2007a). These
effects include resource consumption, land use, acidification, toxic effects on ecosystems and
humans and greenhouse gas (GHG) emissions (Knorr, 2009).

With an ever growing concern for the environment by governments and other private entities
worldwide, several companies have started taking external costs of logistics into account, as-
sociated mainly with climate change, air pollution, noise, vibration and accidents (Forkenbrock,
2001; Rondinelli and Berry, 2000). Such factors should also be taken into account in the de-
sign of logistics activities,so as to yield environmental benefits, in particular the reduction of
GHG emissions.

GHGs absorb and emit radiations within the thermal infra-red range in the atmosphere. The
main GHGs are water vapour, CO,, methane, nitrous dioxide and ozone. GHGs affect the
temperature of the Earth significantly; without the Earth’s surface temperature would be 33°C
colder than at present on average. CO, levels were around 280 parts per million by volume
(ppmv) before the industrial revolution started. Human activities since the start of the industrial
era around 1750 have increased the levels of GHGs in the atmosphere. As of April 2012, CO,
levels are estimated to be at 393 ppvm and are constantly increasing (Komhyr et al., 1989).
Reducing CO, levels needs more attention from the scientific community.

Significant sources of GHG emissions are power stations, industrial processes and transporta-
tion. The transportation sector is responsible for 26% of the total emissions with an expected
increase to 41% by 2050 (Bristow et al., 2004). The United States (US) transportation system
is the world’s largest, and is emitting more than 1800 million metric tons of CO, per year (Lattin
and Utgikar, 2007). In California, the transportation sector is the largest contributor of GHG
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emissions, making up over 40% of the state’s total in 2006 (Yang et al., 2009). In United King-
dom (UK), the transportation sector is the third largest source of GHG emissions (Tight et al.,
2005). Freight transport in the UK is responsible for 22% of the CO, emissions from the trans-
portation sector, amounting to 33.7 million tonnes, or 6% of the CO, emissions in the country,
of which road transport accounts for a proportion of 92% (McKinnon, 2007). As a result of the
European Union (EU) enlargement, the European continental freight transportation demand
has risen by 40%. In 2001, this traffic was responsible for around 29% of transportation-related
CO, emissions or about 6% of total CO, emissions in Germany (Léonardi and Baumgartner,
2004).

The planning freight transportation activities has mainly focused on ways to save money or to
increase profitability by considering internal transportation costs only, e.g., fuel cost, drivers’
wages (see, e.g., Crainic, 2000; Forkenbrock, 1999, 2001). Green freight transportation con-
siders external costs besides the traditional costs. GHGs also have an estimated cost; these
costs are difficult, but not impossible, to quantify. Indeed, there exist several of published
studies on the estimation of the social costs of CO, emissions (Forkenbrock, 2001).

The social cost of carbon is the reduction in quality of the environment and life as a result
of carbon dioxide emissions (Price et al., 2007). Most of the published studies consider the
estimate of social cost to be approximately £70 per ton carbon (tC) for emissions in 2000
(Clarkson and Deyes, 2002). This figure increases by approximately £1/tC per year in real
terms for each subsequent year to account for the increasing social costs over time. A better
approach could be to use the £70/tC as an illustrative point estimate of marginal damages, but
to also use an upper value of £140/tC and a lower value of £35/tC for sensitivity analyses.

This chapter serves as an overview on the relevant body of literature to the thesis. Its structure
is as follows. Section 1.2 presents a brief review of the VRP. Section 1.3 provides an overview
of the existing green transportation planning literature. The overall structure of the thesis is
given in Section 1.4.

1.2 The Vehicle Routing Problem

Freight transportation has many facets, particularly when viewed from the multiple levels of
decision making. Arguably the most famous problem at the operational level is the Vehicle
Routing Problem (VRP) (Cordeau et al., 2007). In this section, an overview of the VRP and its
basic variants are presented.
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The VRP consists of designing optimal delivery or collection routes for a set of vehicles from
a central depot to a set of geographically scattered customers, subject to various constraints,
such as vehicle capacity, route length, time windows, precedence relations between cus-
tomers, etc. (Laporte, 2007). One of the first articles on the subject is due to Dantzig and
Ramser (1959). Several variants of the problem are still used widely to solve real life prob-
lems (Golden et al., 2008). The VRP arises naturally as a central problem in the fields of
transportation, distribution and logistics.

The most standard version of the VRP is the Capacitated Vehicle Routing Problem (CVRP),
which can be described as follows. Let G = (N, A) be a complete undirected graph with
node set N = {0, 1,2, ..., n}, where each node i € N\{0} represents a customer having a non-
negative demand q;, while node 0 corresponds to the depot. Each arc (i,j) € A = {i,j : i,j €
N,i # j}is associated a distance d,;. A fleet of m identical vehicles, each of capacity Q, is
available at the depot (Cordeau et al., 2007). The CVRP calls for the determination of a set
of m routes whose total distance is minimised and such that: (/) each customer belongs to
exactly one route, (ii) each route starts and ends at the depot, (iii) the total demand of the
customers served in a route does not exceed the vehicle capacity Q.

One variant of the VRP is the so-called Distance Constrained VRP (DVRP), where for each
route, the capacity constraint is replaced by a constraint such that (iv) the total length of any
vehicle route can not exceed a pre-determined limit (Laporte et al., 1984).

The VRP with backhauls (VRPB) is another extension of the CVRP in which the customer
set is partitioned into two subsets. The first subset, By, contains n; linehaul customers, each
requiring a given quantity of product to be delivered. The second subset, B;, contains n — ny
backhaul customers, where a given quantity of product must be picked up. Customers are
numbered so that B; = (1,...,np) and By = (np41,...,1). The VRPB includes constraints (i),
(i), and two extra constraints such that (v) the total demands of the linehaul and backhaul
customers visited in each route do not exceed the vehicle capacity Q, and (vi) all linehaul
customers must precede backhaul customers, if any, in every route (Toth and Vigo, 2001).

Another variant is the VRP with Pickup and Delivery (VRPPD), where a number of goods
need to move from certain pickup locations to delivery locations. Each customer i € N\{0}
is associated with two quantities ¢; and p;, representing the demand of a single commodity
deliver to and pick-up from customer i, respectively. For each customer i € N\{0}, O; denotes
the node corresponding to the origin of the delivery, and D, denotes the node corresponding
to the destination of the associated demand. The goal is to find optimal routes for a fleet of
vehicles to visit the pick-up and drop-off locations. The VRPPD includes constraints (i), (ii),
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(iii), and (vii) for each node i, the node O;, if different from the depot, must be served in the
same route and before node i, and also (viii) for each customer i, the customer D;, if different
from the depot, must be served in the same route and after customer i (Toth and Vigo, 2001).

An important extension of the VRP, and the one must relevant to the thesis, is the Vehicle
Routing Problem with Time Windows (VRPTW), where each customer should be served within
predefined time intervals. In addition to the above-mentioned features of the CVRP, this prob-
lem includes, for the depot and for each customer i (i € Ny), a time window [a;, b;] during
which this customer has to be served. Furthermore, ay denotes the earliest start time and
by denotes the latest return time to the depot for each vehicle. The additional constraints are
that service should begin at node i (i € Ny) anytime after a; but not later than b;. If the arrival
time at node i is earlier than a;, the vehicle can wait until time a; to start service. The VRPTW
includes constraints (i), (i), (iii), and (ix) for each customer i, the service starts within the time
window, [a;,b;], and the vehicle stops for t; time units (Cordeau et al., 2007; Toth and Vigo,
2001).

A graphical representation of a feasible VRPTW solution on 13 nodes and with four vehicles
is shown in Figure 1.1.

In the Time Dependent VRP (TDVRP), the travel time between two customers or between a
customer and the depot depends on the distance between the points and the time of day.
The goal is to minimise the total time spent on all routes, which also must ensure deliveries
to customers within prespecified time windows. The travelling time is calculated by using
information on the departure time and the possible speeds profiles on each arc (i, j), which is
assumed to be known at the beginning of the optimisation process (Malandraki and Daskin,
1992).

1.3 Review on Green Vehicle Route Planning

This section is concerned with studies on the VRP in which there is an explicit consideration
of environmental concerns, and in particular CO, emissions. We use the term green routing
to denote these type of problems. There exists an extensive amount of research on the VRP,
both theoretical and practical. However, the literature on the green routing is still young (Sbihi
and Eglese, 2007b). Similar to freight transportation, most of the published studies on the
VRP are concerned with an overall objective of minimising internal economic costs. However,
efforts are being made and research is beginning to emerge in this field (Sbihi and Eglese,
2007a).
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Ficure 1.1: A graphical representation of the VRPTW

One important work by Eglese and Black (2010) studies the emissions arising in routing and
lists some of the factors affecting fuel consumption. In contrast to the existing literature, the
authors argue that speed is a more important factor than distance travelled in estimating emis-
sions. Eglese and Black (2010) also mention other relevant factors such as load weight and
distribution, vehicle engine, vehicle design, driving style, engine size and road gradient.

This section presents a three-part review of such studies, in a chronological order. First,
methodological studies are reviewed. Then, studies using case studies are described. Finally,
other means of freight transportation are briefly mentioned in the context of green freight
transportation.

1.3.1 Methodological studies

This part of research reviews the methodological studies on the green VRP.
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Christie and Satir (2006) focus on the estimation of emission reduction benefits and the po-
tential energy savings that can be achieved through optimisation. The authors aim to quantify
the benefits and potential efficiency gains in terms of emissions reduction using a comput-
erised vehicle routing and scheduling optimisation (CVRSO) method. Fuel consumption is
estimated using a function of distance, calculated in a simple manner. Their results suggest
that reductions of up to 40% in energy consumption and GHG emissions can be achieved by
implementing the CVRSO in the trucking industry, compared with any other manual solution
techniques.

Palmer (2007) studies vehicle routing and CO, emissions models in his PhD thesis, with the
VRPTW as the underlying problem. The objective is to find an effective method of identifying
vehicle routes that minimise CO, emissions. The author considers two estimation models for
calculating CO, emissions. These are Akgelik’s elemental model (Akgelik, 1982) and Bowyer’s
model (Bowyer et al., 1985). These models are based mainly on the vehicle speed for esti-
mating CO, emissions. Palmer (2007) bases his work on Bowyer’'s model after a comparison
of two models. The proposed approach indicates that there exists a potential to reduce CO,
emissions by around 5% when one moves from time minimised to CO, minimised solutions.
As a consequence, the total time for traversing the routes rises by 4% and vehicle costs rise
by about 0.5%.

In a later work by Kara et al. (2007), the so-called Energy-Minimising VRP (EMVRP) is intro-
duced and formulated. The objective of the EMVRP is to minimise a weighted load function as
a way of estimating fuel consumption. The load function is based on the physics rule stating
work equals force times distance. The integer linear programming model proposed for the
EMVRP is based on that of the CVRP. Since the model minimises the total work done on the
road, the authors argue that this leads to minimising the total energy requirements, at least in
terms of total fuel consumption. They study the differences between distance-minimising and
energy-minimising solutions on benchmark CVRP instances from the literature and find that
energy usage increases as total distance decreases. They conclude that there is a consid-
erable difference between energy-minimising and distance-minimising solutions, and that the
cost of routes minimising total distance may be up to 13% less than those minimising energy.

A study by Jabali et al. (2012a) investigates travel times and CO, emissions in the context of
the TDVRP, where the effect of limiting vehicle speed is analysed. CO, emissions are modelled
as a function of speed as introduced in INFRAS (1995) and in the MEET report (Hickman et al.,
1999). This function estimates, in grams per kilometre, emissions for a vehicle travelling at an
average speed. Jabali et al. (2012a) also address the issue of congestion, where the vehicle
is forced to drive slower and therefore emits more CO,. The authors describe a formulation of
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the problem in which the costs of driving, fuel and CO, are included. Results of computational
experimentation on benchmark problem sets from Augerat et al. (1998) including between 32
and 80 customers suggest that achieving a reduction of 11.2% in CO, emissions on average
requires increasing the travel time by 14.8% under a 90 km/h speed profile. Furthermore, they
report that an increase of 4.7% in travel time achieves a reduction of 3.7% in CO, emissions.

Yong and Xiaofeng (2009) study the VRP to minimise the fuel consumption due to service
costs and the impact on the environment. The objective of the study is to minimise fuel con-
sumption only, where fuel consumption per kilometre travelled is assumed to be known in
advance. The authors do not consider the effect of vehicle load on fuel consumption. On a
small size example, the authors compare two solution approaches, distance minimisation and

fuel minimisation, with an enumerative method.

Another relevant study is by Maden et al. (2009), who look at the vehicle routing and schedul-
ing problem to minimise the total travel time under congestion. The authors take into account
regular congestion due to volume of traffic, and long-term road works, which can be predicted
from historical data. They propose a heuristic algorithm to consider time-varying travel times.
In order to reflect the characteristics of a real-life problem, their algorithm allows the time re-
quired to travel between locations to vary according to the time at which the journey starts
(Eglese et al., 2006). The authors consider the current driving legislation such that: (i) there
must be a driving break of 45 minutes every 4.5 hours, (ii) if the total working time is greater
than six hours then a 30 minutes break must be taken and (iii) if the total working time is
greater than nine hours then a 45 minute break must be taken. Their results suggest that the
proposed approach may yield up to 7% savings in CO, emissions.

In the context of CO, minimisation, Urquhart, Scott and Hart (2010) study the Travelling Sales-
man Problem (TSP) to identify tours with low CO, emissions. The authors examine two dif-
ferent fuel emission models, which are a power based instantaneous fuel consumption model
introduced by Bowyer et al. (1985) and a simpler spreadsheet based model from the UK
National Atmospheric Emission Inventory. The authors use the latter model in their solution
approach. Computational results on six randomly generated instances, each with between 10
and 30 delivery points, suggest that only a small improvement can be achieved using the fuel
emission model because of inadequacy of the simple spreadsheet emission model. Another
work by Urquhart, Hart and Scott (2010) studies the VRPTW to build low CO, solutions us-
ing evolutionary algorithms, using an instantaneous fuel consumption model (Bowyer et al.,
1985). The authors look at the trade-off between CO, savings, distance and the required
number of vehicles. Their results indicate that savings of up to 10% can be achieved, depend-
ing on the problem instance and the ranking criterion used in the evolutionary algorithm. In
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a related study by Scott et al. (2010), the authors study the effect of topology and payload
on CO, optimised vehicle routing, by using the COPERT estimation model which is based on
the average speed of a vehicle and includes payload and correction factors for heavy goods
vehicles (Ntziachristos and Samaras, 2000). They work on two different sets of problem data:
delivery of groceries to households and delivery of paper from a central warehouse. They also
work on several TSP instances randomly chosen from problem datasets, and assign average
speeds for each road category. Their results suggest that the effect of gradient and payload
are highly dependent on the mixture of the problems studied. The difference in CO, emissions
between the solutions is found to be less than 2.1% for the COPERT model as in stated in the
literature.

A TDVRP model to consider minimising fuel consumption is described by Kuo (2010), who
proposes a simulated annealing algorithm for the TDVRP where speed and travel times are
assumed to depend on the time of travel. The model not only takes loading weight into con-
sideration, but also satisfies the non-passing property, which states that an early departure
time results in an earlier arrival time, and vice versa. The fuel consumption is time-dependent,
because travel speeds and travel times depend on the departure time. The author presents
results which suggest that the proposed method provides a 24.61% improvement in fuel con-
sumption over a method minimising transportation time and a 22.69% improvement over a
method minimising transportation distances. Another work by Kuo and Wang (2011) looks at
the VRP with CO, emissions. The main difference between these two works is that they use
different meta-heuristics. The authors have proposed a tabu search algorithm to optimise the
route plan. Their results suggest that fuel savings of up to 8.3% could be achieved by the
proposed method.

An emissions VRP (EVRP), which is an extension of the TDVRP, is introduced by Figliozzi
(2010), who also describes a formulation and solution approaches for the problem. The objec-
tive of the EVRP is the minimisation of emission costs, which are proportional to the amount of
GHG emitted which, in turn, is a function of travel speed and distance travelled. In the solution
approach, a partial EVRP is first solved to minimise the number of vehicles by using a TDVRP
algorithm, and emissions are then optimised subject to a fleet size constraint. The departure
times are also optimised using the proposed algorithm for any pair of customers. Computa-
tional results obtained using Solomon’s test instances suggest that route characteristics and
the type of the dominant constraint both play a significant role in the results.

Bektas and Laporte (2011) introduced the Pollution-Routing Problem (PRP), which considers
minimisation of fuel cost and driver costs. In estimating pollution, the authors investigate fac-
tors such as speed, load, and time windows, using the emissions functions proposed by Barth
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and Boriboonsomsin (2009) and Barth et al. (2005). In these functions, the engine-out emis-
sion rate is directly related to the rate of fuel use. Bektas and Laporte (2011) assume that in a
vehicle trip all parameters will remain constant on a given arc, but load and speed may change
from one arc to another. Their model approximates the total amount of energy consumed on
the arc, which directly translates into fuel consumption and further into GHG emissions. The
authors run experiments with data which consists of three classes of problems with 10, 15
and 20 nodes, and each class includes 10 instances where nodes represent UK cities. They
analyse cases where customer demands are generated randomly based on a discrete uniform
distribution, as well as the effects of variance in demand, of vehicle type and of time windows.
Computational results reported by the authors suggest that, by using the proposed approach,
energy savings can be up to 10% when time windows are in place, and up to 4% when the
demand variation is high.

Suzuki (2011) studies the TSP with time windows (TSPTW) to minimise fuel consumption
and pollutants emission considering time constraints and multiple stops for truck-routing. The
author formulates three different mathematical models. These are distance-minimising, fuel-
minimising and a new fuel-minimising formulations. The author uses the COmputer Pro-
gramme to calculate Emissions from Road Transport (COPERT) model described by Ntzi-
achristos and Samaras (2000) for the fuel-minimising formulation. In order to test the formu-
lations, the author first applies enumeration for small-size TSPTW instances and then uses
compressed annealing, which is designed specifically to solve the TSPTW. Computational re-
sults suggest that the proposed formulation may yield up to 6.9% savings in fuel consumption

over distance-minimising and fuel-minimising formulations.

The PhD thesis by Qian (2012) studies fuel emission optimisation in VRP with time-varying
speeds. The author aims to generate routes and schedules for a fleet of heavy goods vehicles
so as to minimise the emissions in a road network where travel speeds depend on time. In
order to calculate fuel consumption, the author uses a regression based model proposed by
the Department of Transport, which considers speed as a variable. The author describes
two route generation algorithms and applies one of them into a column generation based
tabu search algorithm to solve the VRP. Computational results obtained by the algorithm on a
London case study suggest that of up to 6—7% savings in fuel consumption may be achieved
using the proposed approach.

The last work reviewed here is by Xiao et al. (2012), who studies the fuel consumption rate in
the context of the CVRP (FCVRP). To estimate fuel consumption, the authors use a regression
model based on statistical data, proposed by the Ministry of Land, Infrastructure, Transport
and Tourism of Japan. They present a mathematical model and apply a simulated annealing
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algorithm to solve the problem. Their results suggest that using FCVRP for route planning
may result in up to 5% reduction in fuel consumption as compared with the standard CVRP
model.

1.3.2 Case studies

In this section, publications presenting case studies on green road-based freight transportation
are reviewed.

Tavares et al. (2008) look at optimisation of routing networks for waste transportation. The
authors propose the use of geographic information systems (GIS) 3D route modelling to op-
timise the route with an aim to minimise fuel consumption in different municipalities of the
island of Santo Antao of Cape Verde. Their model takes into account of both the road an-
gle and the vehicle load. Their findings indicate that optimisation of fuel consumption yields
up to 52% savings in fuel when compared to routes with the shortest distance, even if this
implies increasing the travel distance by 34%. Another work by Tavares et al. (2009) is on
the optimisation of municipal solid waste collection routes to minimise fuel consumption using
3D GIS modelling. The authors make use of the COPERT model described by Ntziachristos
and Samaras (2000). For the case of the city of Praia, their approach reduces the travelled
distance by 29% and fuel consumption by 16%. For the case of the Santiago island, savings
in fuel consumption is found to be 12%.

Another real-life application was presented by Apaydin and Gonullu (2008). The authors at-
tempt to control emissions in the context of route optimisation of solid waste in Trabzon, Turkey,
with a constant emission factor to estimate fuel consumption. The authors aim to minimise the
distance travelled by the trucks. Their results suggest that the route distance and time can
be decreased by 24.6% using their approach, with implications of reducing CO, emission by
831.4 g on each route.

Maden et al. (2009) propose a heuristic algorithm to minimise the total travel time, where
the proposed algorithm also considers the current driving legislation by inserting breaks for
a driver when it is necessity in the context of the VRPTW; time-dependant travel times are
taken into account. The approach is applied to schedule a fleet of delivery vehicles operating
in the South West of the UK. Preliminary experiments are conducted on standard Solomon’s
benchmark instances. Their results suggest that the total savings in CO, may be up to 7%.

The last case study reviewed here is by Ubeda et al. (2011), who investigate the environmental
effects of routing in Eroski, Spain. The authors compare four different approaches, namely



Chapter 1. Introduction 12

the current approach, rescheduling (CVRP), backhauling (VRPB) and green VRP. They use a
matrix of emissions based on the estimation of CO, emitted between each link as described by
Palmer (2007). Their results suggest that the implementation of the green routing approach
has benefits from economic and ecological perspectives. In terms of the green aspect of
routing, the results suggest that savings of 13.06% in distance and of 13.15% in emissions
can be achieved using the green VRP approach.

1.3.3 Other modes of freight transportation

The previous section has reviewed studies on the VRP and its variants from a green perspec-
tive. There exist other studies looking at similar issues in other modes of transportation such
as air, rail and water shipping. Below, a brief review of a couple of studies that explore similar
issues in the broader context of freight transportation is presented.

A study by Bauer et al. (2010) investigates the minimisation of greenhouse gas emissions in
inter-modal freight transportation. The primary objective is to minimise environmental-related
costs (greenhouses gases) of freight transportation instead of travel or time related costs. The
authors make use of the fuel consumption model by Barth et al. (2005), and assume that both
fuel consumption and CO, emissions are linear functions of the vehicle load. The authors
propose an integer linear programming formulation and present an application on a real-life
rail service network design problem in Eastern Europe. Computational results on different
scenarios indicate that the proposed approach is able to reduce CO, emissions by up to 30%.

In shipping, Fagerholt et al. (2010) propose an efficient algorithm for reducing CO, emissions
from ships travelling on fixed routes. They use a model which calculates fuel consumption
per time unit for a cargo ship by a cubic function of the ship speed. The algorithm is based
on a discretisation of the time window of each node and solving shortest path problems on a
directed acyclic graph. Their results suggest that it is possible to reduce fuel consumption by
up to 25%.

A graphical representation of green road freight transportation and green VRP in the context
of green logistics is shown in Figure 1.2.
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Ficure 1.2: A graphical representation of green road freight transportation

1.4 Structure of the Thesis

The aim of this thesis is to analyse fuel consumption and CO, emissions in road-based freight
transportation. The thesis follows a three-paper approach.

An overview of the three research papers, on which this thesis based, is presented in Table 1.1.

Chapter Two, entitled “A Comparative Analysis of Several Vehicle Emission Models for Freight
Transportation”, reviews and numerically compares several available freight transportation ve-
hicle emission models. Chapter Three, entitled “An Adaptive Large Neighbourhood Search
Heuristic for the Pollution-Routing Problem”, introduces an adaptive large neighbourhood
search (ALNS) algorithm and speed optimisation algorithm (SOA) to solve the Pollution-Routing
Problem (PRP). Chapter Four, entitled “The Bi-Objective Pollution-Routing Problem”, looks at
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TasLe 1.1: Overview of research papers

Research papers Publication

Research paper I:
“A comparative analysis of several vehicle

emission models for road freight transportation”
Demir et al. (2011)

Research paper Il:
“An adaptive large neighborhood search
heuristic for the Pollution-Routing Problem”
Demir et al. (2012a)

Research paper IlI:
“The bi-objective Pollution-Routing Problem”
Demir et al. (2012b)

the bi-objective PRP in which one of the objectives is related to CO, emissions, and the other
to driving time. Finally, Chapter Five entitled “Conclusions” summarises the contributions of
each chapter as well as research limitations. It also provides directions for future research.
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Abstract

Reducing greenhouse gas emissions in freight transportation requires using appropriate emis-
sion models within the planning process. This chapter reviews and numerically compares a
number of vehicle emission models that appear in the existing literature. Numerical results in
comparing and contrasting the models are presented.

2.1 Introduction

The transportation sector is one of the largest emitters of greenhouse gases (GHGs), espe-
cially carbon dioxide (CO,). In recent years the use of freight transportation has grown as
have the levels of carbon dioxide emitted by various modes of transportation. The US trans-
portation system is the world’s largest, which emitted more than 1,882 million metric tons of
CO; (mmtCO,) in 2009 (Conti et al., 2010). The transportation sector is the third largest
source of GHGs in the UK, and emitted more than 150 mmtCO, (25% of the total CO, emis-
sions) in 2009 (DECC, 2010), of which freight transportation accounts for 22% of the total.
Road transportation represents a proportion of 92% of these emissions (McKinnon, 2007).
As the environmental impacts of freight transportation increase, in particular in road-based

transportation, reducing emissions becomes more important.

Unlike some other vehicle emitted GHGs, CO; is directly proportional to fuel consumption (Kirby
et al., 2000). There are two ways to estimate fuel consumption for vehicles: (i) on-road mea-

surements which are based on real-time collection of emissions data on a running vehicle, and

(i) analytical fuel consumption (or emission) models which estimate fuel consumption based

on a variety of vehicle, environment and traffic-related parameters, such as vehicle speed,

load and acceleration.

A new line of research, called green logistics, aiming at minimizing the harmful effects of trans-
portation on the environment has started to emerge (Sbihi and Eglese, 2007a). In particular,
an explicit consideration is typically given to reducing the levels of CO, through better opera-
tional level planning. Measuring and reducing emissions requires good estimations to be fed
into the planning activities, which in turn require estimation models to be incorporated into the
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planning methods. Examples of such work include Kara et al. (2007), Palmer (2007), Jabali
et al. (2012a) and Bektas and Laporte (2011) who investigate reducing CO, emissions in road-
based freight transportation, Bauer et al. (2010) who consider emissions in rail transportation,
and Fagerholt et al. (2010) who look at reducing emissions in shipping. The choice of the type
and the nature of emission functions is important in order to provide accurate estimates in the

planning of transportation activities.

There exists a variety of analytical emission models which differ in the ways they estimate fuel
consumption or emissions, or in the parameters they take into account in the estimations. A
review of emission models is presented by Ardekani et al. (1996), in which fuel consumption
based on traffic management strategies is discussed. The authors group the existing models
into two: urban (vehicle speed is less than 55 km/h) and highway (vehicle speed is at least 55
km/h) fuel consumption models. Another review article is due to Esteves-Booth et al. (2002),
which presents a classification of some of the available fuel consumption models. The authors
review three types of emission models, namely emission factor models, average speed models

and modal models.

This chapter aims at presenting a comparative review and analysis of some of the available
vehicle emission models. We identify ten such models and present results of a numerical
assessment comparing and contrasting six of these, and investigating their behaviour on a
variety of parameters. Our research differs from the prior reviews mentioned above in that
we take a more analytical approach in comparing and contrasting the available models, and
we supplement them with numerical comparison results. In particular, we perform several
sensitivity analyses, as well as a comparison with on-road fuel consumption data reported in
an empirical study by Erlandsson et al. (2008). The remainder of this chapter is organised
as follows. Section 2.2 provides a review and an explicit description of ten vehicle emission
models identified in the literature. Section 2.3 presents the results of numerical experiments
along with a discussion. Conclusions are stated in Section 2.4.

2.2 Fuel Consumption Models

This section presents a review of emission models. An explicit description of each model is
provided, along with a discussion pertaining to its development and applicability.
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2.2.1 Model 1: An instantaneous fuel consumption model

An energy-related emissions estimation model, called the instantaneous fuel consumption
model, or instantaneous model in short, is described by Bowyer et al. (1985). It is an ex-
tension of the power model published by Kent et al. (1982). The model uses vehicle charac-
teristics such as mass, energy, efficiency parameters, drag force and fuel consumption com-
ponents associated with aerodynamic drag and rolling resistance, and approximates the fuel
consumption per second. The model assumes that changes in acceleration and deceleration
levels occur within a one second time interval. The instantaneous model is

@ + BiR;v + (BoM7?>v/1000) for R, > 0
f, = (2.1)
a for R, <0,

where f; is the fuel consumption per unit time (mL/s), R; is the total tractive force (kN =
kilonewtons) required to move the vehicle and calculated as the sum of drag force, inertia
force and grade force as R; = b + byv* + Mt/1000 + gMw/100000. Other parameters used in
defining (2.1) are listed and further explained in Table 2.1, along with typical values for these
parameters. These values are extracted from Bowyer et al. (1985), and Akgelik and Besley
(1996, 2003).

TaeLE 2.1: Notation used in Model 1

Notation  Description Typical values
@ constant idle fuel rate (mL/s) 0.375-0.556

B fuel consumption per unit of energy (mL/kJ) 0.09-0.08

B2 fuel consumption per unit of energy-acceleration mL/(kJ - m/s?)  0.03-0.02

by rolling drag force (kN) 0.10-0.70

by rolling aerodynamic force kN/(m/s?) 0.00003-0.0015
w percent grade (%)

T instantaneous acceleration (m/s2)

M total weight (kg)

v speed (m/s)

Using Model 1, the total amount of fuel consumption F, (mL/s) for a journey of duration ¢, can

10 1)
F, = f frdt+ f fdt. (2.2)
0 0

a+ BiR v+ (BM7?v/1000) for R, > 0 a forR, <0
= andf, =

0 for R, <0, 0 forR;, >0,

be calculated as:

where
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The instantaneous model operates at a micro scale level and is better suited for short trip
emission estimations. The model does not make use of macro-level (aggregated) data such
as the number of stops. It is, however, able to take into account acceleration, deceleration,
cruise and idle phases. Using data from special on-road experiments in Melbourne, Bowyer
et al. (1985) showed that the model is able to approximate fuel consumption of individual
vehicles within a 5% error margin for short trips. Further dynamometer tests suggested that
its accuracy is within 10% for a variety of on-road experiments (Esteves-Booth et al., 2002).

2.2.2 Model 2: A four-mode elemental fuel consumption model

A four-mode elemental model is described by Bowyer et al. (1985). The model estimates fuel
consumption for each of the four following modes of driving: idle, cruise, acceleration and
deceleration. It is a refinement of a function reported by Akgelik (1982), which we do not
cover here. The model includes the same parameters as Model 1 but also introduces new
parameters, such as initial speed, final speed and energy-related parameters. The model
requires data related to the total distance, cruise speed, idle time and average road grade
as inputs. A vehicle is said to be in an idle mode when the engine is running but the speed
is below 5 km/h. More accurate estimations can be made if the initial and final speeds for
each acceleration and deceleration cycles are known. The model consists of four functions,
F,, Fy4, F. and F;, which correspond to fuel consumption estimations (mL) for acceleration,
deceleration, cruise and idle modes, respectively. These functions are described in more detail
below.

1. Acceleration fuel consumption F,
The following function can be used to calculate the amount of fuel consumption over the
acceleration phase of a vehicle from an initial speed v; to a final speed v;:

Fu = max {at, + (A + ki BO:7] +v}) + BIME; + ko ME+ 23)
0.098181 Mw)x,, at,}.

Additional notation to that presented in Table 2.1 is given in Table 2.2. In (3), E; denotes
the change in kinetic energy per unit distance during acceleration and is calculated
as Ex = 0.3858 1074(v} — v})/x,. Furthermore, ki = 0.616 + 0.000544v; — 0.0171 y/v;
and k; = 1.376 + 0.00205v; — 0.00538v;. When the travel distance x, and the travel
time 7, are not known, they can be estimated as x, = m,(v; + v¢)t,/3600 where m, =
0.467 + 0.00200v; — 0.00210v; and t, = (vy — v;)/(2.08 + 0.127 \/v; = v; — 0.0182v;).
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2. Deceleration fuel consumption F,
The following function can be used to calculate the amount of fuel consumption during
the deceleration phase from an initial speed v; to a final speed v:

Fa = max {atg + (keA + kyki BO7] +v3) + ko MEy + kBt ME+
0.098181 Mw)xy, at,},

(2.4)

where k, = 0.046 + 100/M + 0.00421v; + 0.00260v; + 0.05444w, ky = k97, k, = k3312 -
K381y and k; = 0.621 + 0.000777v; — 0.0189 4/v;. If the travel distance x, and travel time
t; are not known, they can be estimated as above, although in this case the coefficients
change slightly.

3. Cruise fuel consumption F,
The following function can be used to calculate the total amount of fuel consumption by
a vehicle during a cruise phase allowing for speed fluctuations:

F. = max {f;/ve + A+ Bv2 + kp1SiMEy; + kpafaME} + (2.5)
0.0981kgB1 Mw, fi/velxe, |

where f; denotes the idle fuel rate (mL/h), v, is the average cruise speed (km/h), and
x. denotes the travel distance (km). The change in total positive kinetic energy per unit
distance during the cruise mode is calculated as Ej, = max {0.258 — 0.0018v,,0.10} and
the other parameters are set to kg = max {12.5/v, + 0.000013v§,0.63}, kg = 3.17, and
ke =1-21E;. forw<0,and 1 —0.3E;, for w > 0.

4. Fuel consumption while idle F;
The following function can be used to calculate the total amount of fuel consumption
when the vehicle is idle:

F; = at, (26)

where 1; is the idle time (s), and « is the idle fuel rate (mL/s).

The total fuel consumption F; (mL) using the elemental model can be calculated as follows:

ta tq fc 1i
F, = f F,dt + f F,dt + f F.dt + f F.dt. (2.7)
0 0 0 0
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TasLE 2.2: Notation used in Model 2

Notation  Description Typical values
A function parameter (mL/km) 21-100

B function parameter (mL/km)/(km/h)>  0.0055-0.018
ki integration coefficient

ky intergration coefficient

kg1 calibration parameter

95) calibration parameter

kG calibration parameter

ky an energy related parameter

ky an energy related parameter

ka an energy related parameter

The elemental model assumes minimum loss of driving information and hence minimum loss
of accuracy in fuel consumption estimates. The model is better suited for estimation of fuel
consumption for short distance trips. However, its large number of parameters and the exis-
tence of four different functions may make it difficult to implement in practice, in comparison
with the other available models. Bowyer et al. (1985) experimented with Model 2 and com-
pared it against the instantaneous model. Their result suggests that the elemental model can
predict fuel consumption within a 1% error margin. If the initial and final speeds are known, the
model yields more accurate estimates for fuel consumption, and provides results very similar
to those of the instantaneous model.

2.2.3 Model 3: A running speed fuel consumption model

The running speed fuel consumption model is an aggregated form of the elemental model and
was introduced by Bowyer et al. (1985). The model calculates fuel consumption separately
during periods when a vehicle is running and is in an idle mode. The model is as follows:

Fy = max {at; + (f;/v, + A + Bv? + kpifi MEyy + kpaBaME? + 28
0.0981kG81 Mw)x;, aty), |

where F is the total fuel consumption (mL), x, is the total distance, v, denotes the average
running speed (km/h), #, and ¢; the travel and idle time, respectively. Average speed can be
calculated as v, = 3600x,/(t; — t;). Furthermore, E;. = max{0.35 — 0.0025v,,0.15}, kg =
max {0.675 — 1.22/v,,0.5}, kg = 2.78 + 0.0178v,.
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The running speed model is an extension of the instantaneous model and can be viewed
as an aggregation of the elemental model. Acceleration, deceleration and cruise modes are
considered together within a single function. However, this model does not take into account
the idle mode of a vehicle. The running speed model can be used to estimate fuel consumption
in a variety of traffic situations, ranging from short to long distance trips, although it is more
useful in the latter case.

2.2.4 Model 4: A comprehensive modal emission model

A comprehensive emissions model for heavy-good vehicles was developed and presented by
Barth et al. (2005); Scora and Barth (2006) and Barth and Boriboonsomsin (2008). It follows
to some extent the model of Ross (1994) and is composed of three modules, namely engine
power, engine speed and fuel rate, which are summarised as follows:

1. The engine power module:
The power demand function for a vehicle is obtained from the total tractive power re-
quirements Py, (KW) placed on the vehicle at the wheels:

Piract = (M7 + Mg sin + 0.5C pAv* + MgC, cos 6)v/1000. (2.9)

To translate the tractive requirement into engine power requirement, the following rela-
tionship is used:
P = Ptmct/ntf + Paces (210)

where P is the second-by-second engine power output (kW), ;¢ is the vehicle drive
train efficiency, and P, is the engine power demand associated with running losses of
the engine and the operation of vehicle accessories such as usage of air conditioning.
Additional notation used in Model 4 is shown in Table 2.3.

2. The engine speed module:
Engine speed is approximated in terms of vehicle speed as

N = S(R(L)/R(Ly))v, (2.11)

where N = engine speed (rpm), S is the engine-speed/vehicle-speed ratio in top gear
Le, R(L) is the gearratioingear L =1,...,L,, and v is the vehicle speed (m/s).
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TasLE 2.3: Notation used in Model 4

Notation  Description Typical values

o air density (kg/m?) 1.2041

N vehicle drive train efficiency 0.4

n efficiency parameter for diesel engines 0.45

1Bsae vehicle accessories fuel consumption (hp) 0
frontal surface area (m?2) 2.1-5.6

Cq coefficient of aerodynamic drag 0.7

C, coefficient of rolling resistance 0.01

g gravitational constant (m/s?) 9.81

k engine friction factor (kJ/rev/L) 0.9

N engine speed (rev/s) 16-48

Vv engine displacement (L) 2-8

6 road grade angle (degrees)

instantaneous acceleration (m/s2)

~

M total weight (kg)

v speed (m/s)

3. The fuel rate module:
The fuel rate (g/s) is given by the expression

FR = ¢(kNV + PJn)/44, (2.12)

where ¢ is fuel-to-air mass ratio, k is the engine friction factor, and V is the engine
displacement.

The comprehensive emissions model is similar to the instantaneous fuel consumption model.
However, to produce accurate estimations, it requires detailed vehicle specific parameters for
the estimations such as the engine friction coefficient, and the vehicle engine speed. Barth
et al. (2005) have tested Model 4 under a variety of traffic scenarios for 23 different vehi-
cle technology categories and different cycles. The same authors have also developed a
computer software called the comprehensive modal emission model based on this particular

emission model.
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2.2.5 Model 5: Methodology for calculating transportation emissions and en-
ergy consumption (MEET) model

A publication of the European Commission by Hickman et al. (1999) on emission factors for
road transportation (INFRAS, 1995) describes a methodology called MEET, used for calculat-
ing transportation emissions and energy consumption for heavy good vehicles. This method-
ology includes a variety of estimating functions, which are primarily dependent on speed and
a number of fixed and predefined parameters for vehicles of weights ranging from 3.5 to 32
tonnes. For vehicles weighing less than 3.5 tonnes, the fuel consumption is estimated using a
speed dependent regression function of the form € = 0.0617v> — 7.8227v + 429.51. For other
classes of vehicles, MEET suggests the use a function the form:

e=K+av+bVZ +cV’ +dfv+e/V’ + fIV2, (2.13)

where € is the rate of emissions (g/km) for an unloaded goods vehicle on a road with a zero
gradient, and v denotes the average speed of the vehicle (km/h). The parameter K and a—f
are predefined coefficients whose values are given in Table 2.4 for different classes of vehicles.

TasLE 2.4: Emission parameters used in Model 5

Weight class K a b c d e f
3.5 <Weight<75 110 0 0 0.000375 8702 O 0
7.5 <Weight<16 871 -16.0 0.143 0 0 32031 0
16 < Weight < 32 765 -7.04 0 0.000632 8334 0 0
Weight > 32 1576 -17.6 O 0.00117 0 36067 O

Emission factors and functions suggested in the literature refer to standard testing conditions
(i.e., zero road gradient, empty vehicle, etc.) and are typically calculated as a function of
the average vehicle speed. Depending on the vehicle type, a number of corrections may be
needed to allow for the effects of road gradient and vehicle load on the emissions, once a
rough estimate has been produced. The following correction function is used to take the effect
of road gradient into account:

GC = AgV® + A5y + Agv® + Aov® + Av + Ay, (2.14)

where GC is the road gradient correction factor. The coefficients Ag—A¢ used in calculating
GC are provided in Table 2.5.
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TasLe 2.5: Road gradient factor
Weight class Ag As Ay Az Ay A Aoy Slope
Weight <7.5 0 —3.01E-09 5.73E-07 —4.13E-05 1.13E-03 8.13E-03 9.14E-01 [0,4]
Weight <7.5 0 —1.39E-10 5.03E-08 —4.18E-06 1.95E-05 3.68E-03 9.69E-01 [-4,0]
7.5 < Weight <16 0 —9.78E-10 —2.01E-09 1.91E-05 —1.63E-03 5.91E-02 7.70E-01 [0,4]
7.5 < Weight <16 0 —6.04E-11 —2.36E-08 7.76E-06 —6.83E-04 1.79E-02 6.12E-01 [-4,0]
16 < Weight <32 0 —5.25E-09 9.93E-07 —6.74E-05 2.06E-03 —1.96E-02 1.45E+00 [0,4]
16 < Weight <32 0 —8.24E-11 2.91E-08 —2.58E-06 5.76E-05 —4.74E-03 8.55E-01 [-4,0]
Weight > 32 0 —2.04E-09 4.35E-07 —3.69E-05 1.69E-03 —3.16E-02 1.77E+00 [0,4]
Weight > 32 0 —1.10E-09 2.69E-07 —2.38E-05 9.51E-04 —2.24E-02 9.16E-01 [-4,0]
The following correction function is used to take the load factor into account:
_ 2 3 2 3
LC=k+ny+py - +qy +r/v+s/v-+t/v +ufv, (2.15)

where LC is the load correction factor, and k and n—u are coefficients whose values are pre-

sented in Table 2.6.

TasLE 2.6: Load correction factor

Weight class

k

n

q

r

t

u

Weight <7.5
7.5 < Weight <16
16 < Weight <32
Weight > 32

1.27
1.26
1.27
1.43

0.0614
0.0790
0.0882
0.121

o ©o o o|v

—0.00110
—0.00109
—0.00101
—-0.00125

—0.00235

0
0
0

© o o ofn

0

—2.03E-7

0
0

-1.33
-1.14

-0.483
-0.916

MEET suggests estimating CO, emissions (g) as follows:

F =¢€-GC - LC - Distance.

(2.16)

MEET is based on on-road measurements and all parameters are extracted from real-life

experiments. The main deficiency of the model is its use of fixed vehicle-specific parameter

settings for any vehicle in a given weight class.

2.2.6 Model 6: Computer programme to calculate emissions from road trans-
portation (COPERT) model

The last model we review in this section is a COmputer Programme to calculate Emissions
from Road Transport (COPERT) described by Ntziachristos and Samaras (2000). COPERT
estimates emissions for all major air pollutants as well as greenhouse gases (i.e., CO;) pro-

duced by different vehicle categories (e.g., passenger cars, light duty vehicles, heavy duty

vehicles, mopeds and motorcycles). Similar to Model 5, COPERT uses a number of regres-

sion functions to estimate fuel consumption, which are specific to vehicles of different weights.
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These regression functions are shown in Table 2.7.

TasLe 2.7: COPERT emission estimation functions

Weight class Speed range (km/h)  Emission factor (g/km)
Weight <3.5 10-120 0.0198v% — 2.506v + 137.42
3.5 < Weight <7.5  0-47 1425.2y707593

3.5 < Weight <7.5  47-110 0.0082v2 — 0.0430v + 60.12
7.5 < Weight <16~ 0-59 1068.4y~04905

7.5 < Weight <16 59-110 0.0126v> — 0.06589v + 141.18
16 < Weight <32 0-59 1595.1y~0-4744

16 < Weight <32 59-110 0.0382v% — 5.1630v + 399.3
Weight >32 0-58 1855.7y~04367

Weight >32 58-110 0.0765v% — 11.414v + 720.9

COPERT is also based on on-road measurements, like Model 5. However, it does not take
road gradient and acceleration into account. One interesting aspect of this model is its abil-
ity to differentiate between two different speed ranges for each vehicle class, as shown in
Table 2.7.

2.2.7 A tabulated comparison

Fuel consumption depends on a number of factors which can be grouped into four categories:
vehicle, driver, environmental conditions and traffic conditions, as identified by Ardekani et al.
(1996). Using three of these four categories, we present in Table 2.8 a tabulated comparison of
the six models reviewed so far. Driver related factors are difficult, if not impossible, to integrate
into estimation models. The models listed and included in the comparisons are Models 1-3
by Bowyer et al. (1985), Model 4 by Scora and Barth (2006), Model 5 by Hickman et al. (1999),
and Model 6 by Ntziachristos and Samaras (2000).

The tabulated comparison shows that all six models consider vehicle load, speed and acceler-
ation, although the way in which they incorporate these factors in the approximation is highly
varied, especially for vehicle load. Models 1—4 are similar in in their consideration of rather
detailed and technical vehicle-specific parameters, such as vehicle shape (frontal area), and
road conditions (e.g., gradient, surface resistance). This is not the case of Models 5 and 6
which present simpler estimations based on regressions through a predefined set of param-
eters for a number of vehicle classes. Model 5 is, to some extent, able to take into account
factors of load and gradient through the correction factors, but this is not the case for Model 6.
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TasLe 2.8: A comparison of Models 1-6 based on factors affecting fuel consumption

Factors Model1 Model2 Model3 Model4 Model5 Model 6
Total vehicle mass X X X X X X
Engine size X X X X
Engine temperature X

Vehicle Qil viscosity X

related Gasoline type X X X X X X
Vehicle shape X X X X

The degree of use of

auxiliary electric devices

X

Roadway gradient X X X X X
Wind conditions X X X X
Environment ~ Ambient temperature X X X X
related Altitude X X X X
Pavement type X X X X
Surface conditions X X X X
Traffic Speed X X X X X X
related Acceleration X X X

It is worth mentioning that none of the models listed in Table 2.8 explicitly considers driver-
related factors or some vehicle related factors such as transmission type, tire pressure and so
forth. However, quantifying such detailed factors is rather difficult and one should not expect
any model to be able to fully incorporate these.

2.2.8 Other fuel consumption models

In this section, we review four other fuel consumption models identified in the literature. The
reason why we separate these four models from the ones presented above is that the sources
describing these models either do not provide enough details on the models themselves or
on the parameters they require, hence they can not be included in the numerical comparisons
due to lack of data availability.

One of these models was proposed by Everall (1968) and estimates emissions based on load

and kinetic energy formulations, as shown below:

F = 0.0047(20E*?)(1 + 40/v) + 0.0047M,

where F is the total fuel consumption (L), M denotes the load (kg) and E is the engine dis-
placement (L). One other fuel consumption model which is yet an another extension of the
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instantaneous model was proposed by Bowyer et al. (1985). This model relates fuel con-
sumption per unit distance to average speed. It is only applicable to urban driving where the
average travel speed is below 50 km/h. In this model

Fy = fxxs,

where the fuel consumption per unit distance is f, = f;/v, + cK, and v, denotes the average
travel speed (km/h). Furthermore, K = 1 — K;(1 — M/1200) — K>(1 — 31/0.090) — K3(1 —
B2/0.045 — K4(1 — b1/0.000278M) — Ks(1 — b,/0.00108), K is the adjustment factor for different
types of vehicles, ¢ is the regression coefficient, K|—Ks are parameters based on the analysis
of Sydney on-road data.

A physical emission rate estimator model introduced by Nam and Giannelli (2005) estimates

emissions as

F=A+Bv+(CV,

where A, B, C are parameters calculated as A = CroMg, B = 0.0, C = (C4A,p)/2 + CroMg,
and Cyo and Cp, are the zero and second order in speed rolling resistance force terms,
respectively. The last model we review of this section was developed by Kirby (2006). It
estimates F as

F =3.6(ki(1 +v3/202) + kav)/v,

where v, is the speed at which fuel consumption is optimal, v is the chosen constant speed
(km/h). Furthermore, ki = v3,(Roo — R120/(v:, — 113400)), and kr = (14580R 20 — 25920Rq +
4v3 R120 —3v3 Rog)/36(v, — 11340). Rog and Ry are fuel consumption rates at speeds 90 km/h
and 120 km/h, respectively.

2.3 Computational Experiments

We now present some experiments we have conducted to numerically compare and contrast
Models 1-6 under different scenarios generated with varying values of some key parameters.
We describe the settings of the four parameters used in the experiments in greater detail
below.
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2.3.1 Data generation and the experimental setting

In all the experiments, we assume a single vehicle driving on a road segment of 100 km, and
vary a number of parameters including vehicle speed, load, acceleration and road gradient in
the manner described below.

1. Vehicle speed: Different countries impose different restrictions on driving speed. In
our experiments, the lower and upper speed limits are set to 20 km/h and 110 km/h,
respectively.

2. Vehicle load: The gross vehicle weight rating (GVWR) is the maximum allowable total
mass of a road vehicle or trailer when loaded, including the weight of the vehicle itself
plus fuel, any passengers, cargo, and trailer weight. The commercial truck classification
is usually based on the GVWR and uses eight classes. Classes 1 and 2 are referred
to as “Light Duty”, 3-5 as “Medium Duty”, and 6-8 as “Heavy Duty”. In this study, we
consider a vehicle from each of these three groups. We define the load factor as the
load carried by a vehicle expressed as a percentage of its empty weight. The load
factors used for light duty vehicles are 0% (unloaded), 10% and 20%. The load factors
used for medium duty vehicles are 0%, 15% and 30%. Finally, the load factors used for
heavy duty vehicles are 0%, 30%, 60% and 90%.

3. Acceleration: The term acceleration is commonly used to express the rate at which
speed increases. Conversely, the rate at which speed decreases is called decelera-
tion. There are two types of acceleration: (i) average acceleration which denotes the
change in velocity divided by the change in time, (ii) instantaneous acceleration which
corresponds to the acceleration at a specific point in time. We consider the latter in our
experiments.

4. Road slope: The gradient of a road has an effect of increasing or decreasing the re-
sistance of a vehicle to traction, as the power employed during the driving operation
determines the amount of fuel consumption. Road gradient factors are set to +0.57 and
+1.15 degrees for the whole of the 100 km road segment.

Our experiments are based on a number of predefined scenarios generated by varying values
of the four key parameters above. These scenarios are summarised in Table 2.9. For each
of the scenarios 1—14, there are 10 possible speed values to choose from, ranging from 20
km/h to 110 km/h in increments of 10 km/h, as well as one from the three different types of
vehicle (i.e., light, medium, heavy). This results in a total of 14 x 10 x 3 + 4 x 3 = 432 possible
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scenarios. However, we only select representative samples from this set when presenting the
results of analysis. In scenarios 1518, vehicle speed is kept constant, either at 50 km/h or 70
km/h, but load is gradually changed from 0—10% in Scenarios 15 and 17 and from 0-30% in
the other two.

TaeLE 2.9: Setting of parameters in the 18 predefined scenarios

Scenario  Speed (km/h) Load (kg) Acceleration (km/h/s) Road gradient (degrees)

1 20-110 0% 0 0

2 20-110 15% 0 0

3 20-110 30% 0 0

4 20-110 15% 0.01 0

5 20-110 15% 0.02 0

6 20-110 15% -0.01 0

7 20-110 15% -0.02 0

8 20-110 15% 0 0.57
© 20-110 15% 0 1.15
10 20-110 15% 0 -0.57
11 20-110 15% 0 -1.15
12 20-110 15% 0.01 0.57
13 20-110 15% 0.01 -0.57
14 20-110 15% -0.01 0.57
15 50 0%—10% 0 0

16 50 0%—-30% 0 0

17 70 0%—10% 0 0

18 70 0%—-30% 0 0

Each model yields an estimation of fuel consumption measured in different units. Models 1-—
3 give fuel consumption in mL per time or distance. Model 4 estimates fuel consumption in
gram fuel per time or distance, and Models 5 and 6 estimate CO, emissions in numbers of
grams per distance. For comparison purposes, these outputs have all been converted to the
estimated total fuel usage (in L) for the whole of the 100 km road segment. The parameters
used in the experiments are those presented above, although at times, interpolation has been
used to estimate the value of some parameters which were unavailable for certain load or
speed profiles.

2.3.2 Results

We start by presenting results for the scenarios 1—14 in Table 2.9 for three different levels of
speed: 50 km/h, 70 km/h and 100 km/h. The associated comparison results are presented in
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Tables 2.10, 2.11 and Table 2.12, respectively. These tables provide, for each scenario, the
total fuel consumption (L) estimated by each model.

TasLe 2.10: Fuel consumption with speed of 50 km/h for scenarios 1-14.

Scenario Model1 Model2 Model3 Model4 Model5 Model 6

1 19.79 16.52 31.90 15.44 10.35 10.65
2 22.08 18.24 35.53 18.14 13.15 10.65
3 25.08 20.34 39.88 21.74 17.39 21.28
4 37.80 11.58 40.33 19.62 16.42 14.49
5 47.62 17.04 43.37 21.52 19.98 16.81
6 19.40 17.44 34.89 18.77 13.68 11.30
7 21.74 17.80 35.53 17.79 13.15 10.65
8 28.09 23.94 40.94 24.27 13.78 10.65
© 34.09 29.64 46.34 30.41 14.37 10.65
10 16.08 14.35 32.32 12.00 12.52 10.65
11 10.07 10.46 29.11 5.87 11.92 10.65
12 43.81 15.24 45.73 25.76 17.21 14.49
13 31.79 8.20 37.12 13.48 15.64 14.49
14 25.41 23.21 40.30 24.90 14.34 11.30

TasLe 2.11: Fuel consumption with speed of 70 km/h for scenarios 1-14.

Scenario Model1 Model2 Model3 Model4 Model5 Model 6

1 28.64 17.06 34.63 15.95 11.35 13.20
2 32.23 18.86 38.61 18.40 14.42 13.20
3 36.96 21.09 43.38 21.63 18.06 21.28
4 48.21 15.98 43.60 21.33 19.98 17.00
5 51.26 19.68 44.51 22.04 21.03 17.69
6 25.93 16.41 36.73 17.88 13.44 11.67
7 26.06 17.36 36.81 17.63 13.38 11.76
8 38.23 24.63 44.02 24.54 15.11 13.20
9 44.24 30.40 49.42 30.67 15.76 13.20
10 26.22 14.52 35.40 12.26 13.73 13.20
11 20.22 10.18 32.19 6.13 13.07 13.20
12 54.22 20.37 49.00 27.47 20.93 17.00
13 42.21 11.44 40.39 15.20 19.02 17.00
14 31.94 22.29 42.14 24.01 14.08 11.67

From Tables 2.10-2.12, it can be seen that there is a considerable increase in fuel consump-
tion with respect to the changes in vehicle speed. Model 1 is the most sensitive among all
those tested. With this model, the difference in fuel requirements is approximately 146%
when speed is increased from 50 km/h to 100 km/h. Models 2 and 4 show very similar results
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TasLe 2.12: Fuel consumption with speed of 100 km/h for scenarios 1-14.

Scenario Model1 Model2 Model3 Model4 Model5 Model 6

1 48.78 21.72 41.14 19.92 17.89 18.70
2 55.16 24.04 45.85 22.51 22.72 18.70
3 63.65 26.91 51.50 25.86 27.75 27.31
4 59.92 24.54 47.29 23.67 24.87 19.79
5) 58.73 24.54 46.86 23.55 24.22 19.47
6 47.06 19.97 43.34 20.76 19.45 16.81
7 41.94 19.71 41.78 19.70 17.68 15.62
8 61.17 29.86 51.25 28.65 23.81 18.70
9 67.17 35.69 56.66 34.78 24.85 18.70
10 49.16 19.29 42.64 16.38 21.63 18.70
11 43.15 14.55 39.43 10.24 20.60 18.70
12 65.92 30.10 52.70 29.80 26.06 19.79
13 53.91 19.30 44.08 17.53 23.67 19.79
14 53.06 25.98 48.75 26.89 20.38 16.81

for each of three speed levels. The models based on on-road measurements, Model 5 and 6

yield similar fuel consumption requirements in general.

Scenarios 1-3 show that fuel consumption depends on vehicle load. All models seem to be
rather sensitive to changes in load and in acceleration. Models 1-4 are also very sensitive to
changes in deceleration rates, but this is not so much the case for Model 5 and 6. Similar con-
clusions can be made for changes in road grade. In particular, all models, with the exception
of Model 6, show an increase (decrease, respectively) in fuel consumption when there is an
increase (decrease, respectively) in the road grade.

We present the results for the remaining scenarios 15—18 in Table 2.13.

TasLe 2.13: Fuel consumption for scenarios 15—18.

Scenario Model1 Model2 Model3 Model4 Model5 Model 6

15 20.49 17.05 33.03 16.26 12.87 10.65
16 22.05 18.19 35.42 18.11 14.57 14.90
17 29.75 16.87 35.88 16.70 14.12 13.21
18 32.20 18.07 38.50 18.37 15.57 16.44

In the following sections, we study the effects of vehicle type, weight, acceleration, decelera-
tion, road gradient and resistance on the estimated fuel consumption. For this purpose, we
only consider Model 2 (as representative of Models 1 and 3 which are therefore excluded) and
Model 4. We also exclude Models 5 and 6 from the further analysis since the changes in these
parameters affect the outputs of these models in the same way as they affect Models 2 and 4.
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2.3.2.1 Effect of changes in vehicle type

This section presents results of experiments conducted for three types of vehicles, namely
Light Duty (LD), Medium Duty (MD) and Heavy Duty (HD). For the experiment, we assume a
0% load factor, zero acceleration and a zero road gradient. The results are shown in Figures
2.1 and 2.2 for Models 2 and 4, respectively. Each figure shows, for the corresponding model,
fuel consumption values (in L, on the y-axis) for varying speed values (on the x-axis) for the
three types of vehicles.
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Fiaure 2.1: Total fuel consumption for three types of vehicles under different speed levels
estimated by Model 2

Figures 2.1 and 2.2 show similar behaviors for different types of vehicles. For low speed values
fuel consumption is very high because of the inefficiency in the usage of fuel. It decreases
while speed goes up to a certain level, and then starts to increase because of the aerodynamic
drag. Heavy vehicles consume significantly more fuel than the other two types, mainly due to
their weight.

2.3.2.2 Effect of changes in vehicle weight

In this part of the analysis, we look at the effect of vehicle weight on fuel consumption for a
medium duty vehicle. Light and heavy vehicles are not considered here since they exhibit
similar patterns in terms of fuel consumption, with only the actual consumption values being
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Fiaure 2.2: Total fuel consumption for three types of vehicles under different speed levels

estimated by Model 4

different. Figures 2.3 and 2.4 show fuel consumption values for an unloaded, 15% and 30%

loaded medium duty vehicle for models 1 and 4, respectively.
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Fiaure 2.3: Total fuel consumption under various load profiles as estimated by Model 2

Figures 2.3 and 2.4 indicate that vehicle weight has a significant effect on fuel consumption

and affects both models in similar ways. Model 4 is more sensitive respect to the changes
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Fiaure 2.4: Total fuel consumption under various load profiles as estimated by Model 4

in load. Optimal vehicle speed turns out to be around 55 km/h for an unloaded medium duty
vehicle using Model 2 and Model 4.

2.3.2.3 Effect of changes in acceleration and deceleration rates

In this part of the analysis, we investigate the effects of the changes in acceleration and
deceleration on fuel requirements. For the former case, we allow the vehicle to accelerate at a
rate of 0.01 m/s? over the 100 km road segment with a fixed initial speed. Initial speeds range
from 20 km/h up to 100 km/h in increments of 10 km/h. For each initial speed, we assume that
the vehicle accelerates up to 110 km/h using the specified rate. For deceleration, we consider
a rate of —0.01 m/s?. Initial speeds range from 30 km/h to 100 km/h, incremented in units of
10 km/h. For each initial speed, the vehicle is assumed to slow down to the speed of 20 km/h
using the specified rate.

The results of this experiment are given in Figures 2.5 for acceleration, and in Figures 2.6
for deceleration, for a medium vehicle. The speed values on the x-axes of these figures are
the starting speeds used in the experiments. The results shown in Figures 2.5 are unlike the
ones presented earlier in that the fuel consumption does not exhibit a parabolic shape. This
is partly explained by the fact that travel time decreases as speed increases. This model also
shows that Model 2 is very sensitive to acceleration at relatively low levels of speed, whereas
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Model 4 is not. Figure 2.6 shows that deceleration changes yield curves that are similar to

those presented in the previous sections.
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Ficure 2.5: Total fuel consumption under a 0.01 m/s? acceleration as estimated by Model 2

and 4
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2.3.2.4 Effect of changes in road gradient

Road gradient is another factor that affects fuel consumption. To test the significance of this
effect, we consider two positive gradient values on the 100 km road segment as 0.57 and 1.15
degrees, and two negative values as —0.57 and —1.15 degrees. We assume that a medium
duty vehicle travels on this road segment at a given average speed. Figures 2.7 and 2.8 show
the results of this experiment obtained with Model 2. Figures 2.9 and 2.10 corresponds to the
results obtained by Model 4.
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Fieure 2.7: Effects of positive grades on total fuel consumption as estimated by Model 2

It can be seen from Figures 2.7 and 2.9 that a positive road gradient leads to an increased
fuel consumption as compared to a negative road gradient. The figures also show that Model
4 is more sensitive to the changes in road gradient in the case of negative road gradients.

2.3.2.5 Effect of changes in resistance and drag

Rolling resistance, aerodynamic drag and road gradient resistance all influence the motion of
the vehicle on the surface. The effects of the road gradient were analysed in the previous
section. In this section, we look at how fuel consumption is affected by changes in resistance
and drag coefficients.
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Rolling resistance occurs when a round object, such as a tire, rolls on a flat surface. It is

responsible for over half of energy for the vehicle motion. The power required to overcome

aerodynamic drag is higher at highway speeds. Aerodynamic drag is the force on an object

that resists its motion through air. About one third of the energy produced by the engine of

a good vehicle is used to overcome aerodynamic drag. The rest of the energy requirement

is related to climbing. Rolling resistance ranges from 0.010 to 0.15, and aerodynamic drag
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Fiaure 2.10: Effects of negative grades on total fuel consumption as estimated by Model 4

ranges from 0.6 to 0.8 (Genta, 1997). For the experiments of this section, the vehicle speed is
set at 70 km/h and load is chosen as 15% of the empty weight of a medium duty vehicle. We
present the results of the analysis for resistance in Table 2.14 obtained using Model 4. Model
2 does not allow a direct input of resistance and drag as parameters in the estimation and is
therefore not included in our experiments.

TasLE 2.14: Effect of changes in rolling resistance and aerodynamic drag on fuel consumption

(L).

Rolling resistance  Model 4 Aerodynamic drag Model 4
0.010 18.40 0.60 17.57
0.011 19.02 0.65 17.99
0.012 19.63 0.70 18.40
0.013 20.24 0.75 18.82
0.014 20.86 0.80 19.23
0.015 21.47

The results of the analysis indicate that resistance and drag both have significant effects on
fuel consumption. In particular, if the rolling resistance goes down from 0.015 to 0.010 (i.e., by
33.3%), we can expect savings up to 14% in fuel consumption. Similarly, if the aerodynamic
drag is reduced from 0.80 to 0.060 (25%), we can expect to achieve a saving around 8.6% in
fuel consumption.
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2.3.3 Comparison with on-road fuel consumption measurement data

Measurements of on-road fuel consumption of vehicles are typically carried out using various
methods, such as engine and chassis dynamometer tests, tunnel studies, remote sensoring
and on-board instrumentation readings. In this section of the analysis, we compare the re-
sults of Models 1-6 with measurements carried out by Erlandsson et al. (2008), who report
results of on-road measurements of three heavy good vehicles weighing 15, 50 t and 60 t,
representing three classes. These vehicles are equipped with the same basic engine, tested
in their normal operation and driven by the same driver. The vehicles are certified according
to emission requirements for Euro IV diesel. The results are given as the average of three test
runs. In these experiments, average speeds are set to 38.8, 64.2 and 53.7 km/h for the three
vehicles. The on-road experiment data, for each type of vehicle, are collected over 82 km/92
minutes, 55km/51 minutes, and 13km/20 minutes. Fuel consumption for each scenario is a

projection on 100km.

Table 2.15 shows the results obtained by Models 1-6 in absolute terms (L) as well as the
percentage difference from on-road fuel consumption measurements reported by Erlandsson
et al. (2008).

TasLe 2.15: Comparison of the fuel consumption (L) measured by the six models with on-road
fuel consumption: consumption values and percentage difference

On Vehicle Average Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
road weight speed

(kg)
30.3 15,000 38.8 37.73 (25%) 32.26 (6%)  51.12(69%) 34.93 (15%) 19.18 (<37%) 24.10 (-21%)
43.6 50,000 64.2 76.58 (76%) 65.75 (51%) 85.61 (96%) 61.73 (42%) 33.85(22%) 41.17 (—6%)
53.0 60,000 53.7 61.42 (16%) 73.75(39%) 96.27 (82%) 70.79 (34%) 36.44 (-31%) 44.21 (-17%)

The results presented in Table 2.15 are straightforward to interpret. There are rather large dis-
crepancies between the results yielded by the models and those of the on-road experiments.
Model 4 seems to provide the best estimation for a vehicle with weight of around 15000 kg.
However, for heavier vehicles Model 6 yields better estimations. Models 5 and 6 underestimate
emissions for this particular data set in all cases, whereas the remaining models overestimate
them. A noteworthy case is Model 3 which provides results that are quite far off from the actual

on-road measurements.

Schittler (2003) provides the average fuel consumption of a Class 8 vehicle (approximately 15
t) in Europe as 32.5 L/100 km. This figure is similar to the ones found by Model 2 and Model
4 as presented in Table 2.15.
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2.4 Conclusions

This chapter has presented a review of ten emissions models found in the literature. It has
also presented and analysed the results of extensive computational experiments conducted on
six models by varying parameters such as vehicle load, speed, acceleration and road grade.
The results showed that all models tested here are sensitive to changes in load, speed and
acceleration, although the degree of the sensitivity changes from one model to another. Some
models are not at all effected by changes in deceleration and road grade, whereas some

others remain relatively insensitive.

Due to lack of availability of sufficient on-road measurement data, it was not possible to pro-
vide conclusive evidence to suggest a “one-fits-all” model to use for fuel estimations. However,
benchmarks with limited on-road measurements taken from the literature show that most mod-
els tested in this chapter produce fuel consumption estimates that are far from those obtained
through on-road experiments. Our results indicate that comprehensive modal emission model
(Model 4) and a regression based model (Model 6) are able to provide relatively good estima-
tions for a number of heavy-good vehicles. Further on-road measurement data are required
to provide more conclusive evidence on which model is best to estimate fuel consumption.
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Abstract

The Pollution-Routing problem (PRP) is a recently introduced extension of the classical Vehicle
Routing Problem with Time Windows which consists of routing a number of vehicles to serve
a set of customers, and determining their speed on each route segment so as to minimise
a function comprising fuel, emission and driver costs. This chapter presents an Adaptive
Large Neighbourhood Search for the PRP. Results of extensive computational experimentation
confirm the efficiency of the algorithm.

3.1 Introduction

The road transportation sector is a significant emitter of carbon dioxide (CO,), the amount of
which is directly proportional to fuel consumption (Kirby et al., 2000). Fuel consumption is
dependent on a variety of parameters, such as vehicle speed, load and acceleration (Demir
et al., 2011). The Pollution-Routing Problem (PRP) is an extension of the classical Vehicle
Routing Problem with Time Windows (VRPTW). It consists of routing a number of vehicles to
serve a set of customers within preset time windows, and determining their speed on each
route segment, so as to minimise a function comprising fuel, emission and driver costs. The
PRP was introduced by Bektas and Laporte (2011) who proposed a non-linear mixed inte-
ger mathematical model for the problem, which could be linearised. However, solving even
medium scale PRP instances to optimality using such a model remains a challenge.

In this chapter, we propose an extended Adaptive Large Neighbourhood Search (ALNS) algo-
rithm for the PRP. The algorithm integrates the classical ALNS scheme (Pisinger and Ropke,
2005, 2007; Ropke and Pisinger, 2006a) with a specialised speed optimisation algorithm
which computes optimal speeds on a given path so as to minimise fuel consumption, emis-
sions and driver costs. The latter algorithm can also be used as a stand-alone routine to
optimise speeds for the VRPTW. The remainder of this chapter is organised as follows. In
Section 3.2, we present the Pollution-Routing Problem. Section 3.3 describes a new itera-
tive heuristic algorithm for the PRP. Section 3.4 presents the results of extensive numerical
experiments. Conclusions are stated in Section 3.5.
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3.2 Mathematical Model for the Pollution-Routing Problem

We first formulate the PRP and discuss the extensions of the problem.

3.2.1 Description of the Pollution-Routing Problem

The PRP is defined on a complete directed graph G = (N, A) where N = {0, ..., n} is the set
of nodes, 0 is a depot and A = {(i,j) : i,j € N and i # j} is the set of arcs. The distance
from i to j is denoted by d;;. A fixed-size fleet of vehicles denoted by the set K = {1, ...,m} is
available, and each vehicle has capacity Q. The set Ny = N\{0} is a customer set, and each
customer i € Ny has a non-negative demand ¢; as well as a time interval [a;, b;] for service.
Early arrivals are permitted but the vehicle has to wait until time a; before service can start.
The service time of customer i is denoted by #;.

3.2.2 Fuel and CO, emissions

The PRP is based on the comprehensive emissions model described by Barth et al. (2005),
Scora and Barth (2006), and Barth and Boriboonsomsin (2008), which is an instantaneous
model estimating fuel consumption for a given time instant. According to this model, the fuel
rate is given by

FR = &NV + P/n)/«, (3.1)

where ¢ is fuel-to-air mass ratio, k is the engine friction factor, N is the engine speed, V is
the engine displacement, and n and « are constants. The variable P is the second-by-second
engine power output (in kW), and can be calculated as

P= Ptract/ntf + Pyces (3.2)

where 7,/ is the vehicle drive train efficiency, and P, is the engine power demand associ-
ated with running losses of the engine and the operation of vehicle accessories such as air
conditioning. P, is assumed to be zero. The parameter P, is the total tractive power
requirements (in kW) placed on the wheels:

Pirac: = (M7 + Mgsin6 + 0.5CpAv* + MgC, cos 6)v/1000, (3.3)

where M is the total vehicle weight (kg), v is the vehicle speed (m/s), 7 is the acceleration
(m/s?), 6 is the road angle, g is the gravitational constant, and C,; and C, are the coefficient of
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the aerodynamic drag and rolling resistance, respectively. Finally, p is the air density and A is
the frontal surface area of the vehicle.

For a given arc (i, j) of length d, let v be the speed of a vehicle speed traversing this arc.
If all variables in FR except for the vehicle speed v remain constant on arc (i, j), the fuel
consumption (in L) on this arc can be calculated as

FWw) =kNVad/v (3.4)
+ PAyd/v, (3.5)

where A = &/ky and y = 1/1000n, s are constants and y is the conversion factor of fuel from
gram/second to liter/second. Furthermore, let M be the load carried between nodes i and ;.
More specifically, M = w + f, where w is the curb weight (i.e., the weight of an empty vehicle)
and f is the vehicle load. Let @ = 7 + gsin 8 + gC, cos 6 be a vehicle-arc specific constant and
B = 0.5C pA be a vehicle-specific constant. We omit the indices (i, j) on the variables v, d, f,
and «a to simplify the presentation. Then, F(v) can be rewritten as

F@) =/l(kNV+wya/v+yafv +ﬂyv3)d/v. (3.6)

All other parameters and values are given in Table 3.1. The cost of fuel and CO, emissions
per second can be calculated as f.FR/y, where f_ is the unit cost of fuel and CO, emissions.
Applying equation (3.6) to a low-duty vehicle for speeds varying from 20 km/h to 110 km/h
for a road segment of d = 100 km yields the fuel consumption curve shown in Figure 3.1.
The function depicted in Figure 3.1 is the sum of two components, one induced by (3.4) and
shown by the dashed line, and the other by (3.5) shown by the dotted line. One can see that
the contribution of the first component of the function, namely KNV, will only be significant
for low speed levels (less than 40 km/h), whereas that of Py, is significant for higher speed
levels. In the PRP model, Bektas and Laporte (2011) consider speeds of 40 km/h and higher
for which they only make use of P... In this work, we will allow for lower speeds which
yield higher fuel consumptions. This is accounted for by the kNV component of equation (3.1)
which we will incorporate in our model.

One relevant study to the one considered here is by Jabali et al. (2012a), who describe a VRP
that considers travel time, fuel, and CO, emissions costs in a time-dependent context, where
the latter are estimated using emission functions provided in the MEET report (Hickman et al.,
1999). The authors describe a Tabu Search algorithm to solve the problem and show, through
computational experiments, that limiting vehicle speeds is effective in reducing emissions to a
certain extent although costly in terms of total travel time.
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TasLe 3.1: Parameters used in the PRP model

Notation  Description Typical values

w curb-weight (kg) 6350

£ fuel-to-air mass ratio 1

k engine friction factor (kJ/rev/litre) 0.2

N engine speed (rev/s) 33

Vv engine displacement (litres) 5

g gravitational constant (m/s?) 9.81

Cq coefficient of aerodynamic drag 0.7

o air density (kg/m?) 1.2041

A frontal surface area (m?) 3.912

C, coefficient of rolling resistance 0.01

nf vehicle drive train efficiency 0.4

n efficiency parameter for diesel engines 0.9

fe fuel and CO, emissions cost per litre (£) 1.4

fa driver wage per (£/s) 0.0022

K heating value of a typical diesel fuel (kJ/g) 44

[V conversion factor (g/s to L/s) 737

v lower speed limit (m/s) 5.5 (or 20 km/h)

e upper speed limit (m/s) 25 (or 90 km/h)
14.00
12.00 /

Fuel consumption (L/100km)

Fiaure 3.1: Fuel consumption as a function of speed (Bektas and Laporte, 2011)
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3.2.3 Integer programming formulation

We now present the integer programming formulation for the PRP. The model works with a
discretised speed function defined by R non-decreasing speed levels v (r = 1,...,R). Binary
variables x;; are equal to 1 if and only if arc (i, j) appears in solution. Continuous variables f;;
represent the total amount of flow on each arc (i, j) € A. Continuous variables y; represent
the time at which service starts at node j € Ny. Moreover, s; represents the total time spent
on a route that has a node j € Ny as last visited before returning to the depot. Finally, binary
variables zlfj indicate whether or not arc (i, j) € A is traversed at a speed level r. An integer
linear programming formulation of the PRP is shown below:

R
Minimise Z kNwd,-,Zz;j/v’ (3.7)
(i.)eA =1
+ Z wy/laijd,-jx,-j (3-8)
(i,j)eA
+ Z yAaijdijfij (3.9)
(i,j)eA
R
+ ZﬁyﬁdijZij(Vr)z (3.10)
(i,j)eA r=1
+ > fas (3.11)

JENO
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subject to
Z’“’f =m (3.12)
JEN
Dxy=1 Vie Ny (3.13)
JEN
Doxij=1 Vje No (3.14)
ieN
D= fi=a Vie No (3.15)
JEN JEN
qjxij < fij < (Q = g)xij Y@, j)eA (3.16)
)’i—yj+li+2diﬂfj/\7r£Kij(l—xl'j) VieN,je No,i# j (3.17)
reR
a; <y; < b; Yie Ny (3.18)
Vi+ti=si+ Yy didy /7 <L -x0)  VjeNo (3.19)
rerR
R
D= V(i, j) € A (3.20)
r=1
xij €10, 1) (i, j) € A (3.21)
£i=0 Vi, j) € A (3.22)
i >0 Vie No (3.23)
2 €{0,1) VG, j)e Ar=1,..,R. (3.24)

This mathematical formulation of the PRP presented here is an extension of the one presented
in Bektas and Laporte (2011) to take into account for speeds 40 km/h or lower through the
term (3.7) of the objective function. The objective function (3.7)—(3.10) is derived from (3.6).
The terms (3.8) and (3.9) calculate the cost incurred by the vehicle curb weight and payload.
Finally, the term (3.11) measures the total driver wages.

Constraints (3.12) state that each vehicle must leave the the depot. Constraints (3.13) and
(3.14) are the degree constraints which ensure that each customer is visited exactly once.
Constraints (3.15) and (3.16) define the arc flows. Constraints (3.17)—(3.19), where K;; =
max{0,b; + s; + d;;/l;; — a;}, and L is a large number, enforce the time window restrictions.
Constraints (3.20) ensure that only one speed level is selected for each arc and zfj = 1if

Xij = 1.

The PRP is NP-hard since it is an extension of the classical Vehicle Routing Problem (VRP).
Bektas and Laporte (2011) have shown that a simplified version of this problem cannot be



Chapter 3. An Adaptive Large Neighbourhood Search Heuristic for the Pollution-Routing
Problem 50

solved to optimality for instances with more than 10 customers. To deal with larger-size in-
stances, we have developed a heuristic to obtain good-quality solutions within short computa-
tional times, which is explained in the following section.

3.3 An Adaptive Large Neighbourhood Heuristic Algorithm for
the PRP

The heuristic operates in two stages. In the first stage, it solves a VRPTW using ALNS.
This metaheuristic is an extension of the Large Neighbourhood Search (LNS) heuristic first
proposed by Shaw (1998), and based on the idea of gradually improving an initial solution by
using both destroy and repair operators. In other words, LNS consists of a series of removal
and insertion moves. If the new solution is better than the current best solution, it replaces it
and use as an input to the next iteration. The LNS heuristic can be embedded within any local
search heuristic such as simulated annealing or tabu search.

In the second stage, a speed optimisation algorithm (SOA) is run on the resulting VRPTW
solution. Given a vehicle route, the SOA consists of finding the optimal speed on each arc
of the route in order to minimise an objective function comprising fuel consumption costs and

driver wages.

The proposed algorithm is designed as an iterative process whereby the ALNS uses fixed
speeds as inputs to the VRPTW, following which the SOA is run on each route to improve the

solution.

3.3.1 Adaptive large neighbourhood search

The ALNS heuristic framework was put forward by Pisinger and Ropke (2005, 2007); Ropke
and Pisinger (2006a) to solve variants of the vehicle routing problem. Rather than using one
large neighbourhood as in LNS, it applies several removal and insertion operators to a given
solution. The neighbourhood of a solution is obtained by removing some customers from
the solution and reinserting them as in Milthers (2009). The removal and insertion operators
are selected dynamically according to their past performance. To this end, each operator
is assigned a score which is increased whenever it improves the current solution. The new
solution is accepted if it satisfies some criteria defined by the local search framework (e.g.,
simulated annealing) applied at the outer level. The graphical representation of the ALNS is
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given in Figure 3.2. The main features of the ALNS algorithm will be described in detail below.
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Ficure 3.2: The framework of the ALNS
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3.3.1.1 Initialisation

Several heuristic methods can be used to quickly obtain a feasible solution for the VRP. Cordeau
et al. (2002) have analysed and reviewed some of the classical heuristics based on four differ-

ent criteria: accuracy, speed, simplicity, and flexibility. This comparison shows that the Clarke

and Wright (1964) heuristic has the distinct advantage of being very quick and simple to imple-

ment. We have therefore used it in our algorithm to obtain an initial solution. It is noteworthy

that while additional constraints incorporated into the CW heuristic “usually results in a sharp

deterioration” (Cordeau et al., 2002), the quality of the initial solution is not so important since

as a rule ALNS can easily recover from a poor initial solution. This algorithm was implemented

while maintaining the feasibility of capacity and time window constraints.

3.3.1.2 Adaptive weight adjustment procedure

The selection of the removal and insertion operators is regulated by a roulette-wheel mecha-
nism. Initially, all removal or insertion operators are equally likely. Thus, for the twelve removal
and five insertion operators, the probabilities are initially set to 1/12 and 1/5, respectively.
During the algorithm, they are updated as P/} = P, (1—-r,) + r, m;/w;, where r,, is the roulette
wheel parameter, 7; is the score of operator i and w; is the number of times it was used during
the last N,, iterations. The score of each operator measures how well the operator has per-
formed at each iteration. If a new best solution is found, the score of an operator is increased
by 0. If the solution is better than the current solution, the score is increased by . If the
solution is worse than the current solution but accepted, the score is increased by 3.

3.3.1.3 Removal operators

We now present the twelve removal operators used in our algorithm. The first nine are either
adapted or inspired by Pisinger and Ropke (2005, 2007); Ropke and Pisinger (2006a,b) and
Shaw (1998), whereas the last three are new. The destroy phase mainly consists of removing
s customers from the current solution and adding them into a removal list £ as illustrated in

Figure 3.3.

A pseudo-code of the generic removal procedure is presented in Algorithm 1. The algorithm
is initialised with a feasible solution X as input and returns a partially destroyed solution. The
parameter ¢ defines the number of iterations of the search. In Algorithm 1, a chosen operator
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Ficure 3.3

is used to remove a subset S of nodes from the solution. These nodes are inserted in a

removal list L. The algorithm iterates in a similar fashion for ¢ iterations.

Algorithm 1: The generic structure of the removal procedure

input : A feasible solution X, and maximal number of iterations ¢
output: A partially destroyed solution X,

Initialise removal list (£ = 0)

for ¢ iterations do
Apply remove operator to find the set S of nodes for removal
L —LUS
Remove the subset S of nodes from X

We now describe the removal operators used in our implementation:

1. Random removal (RR): This operator starts with an empty removal list. It randomly

removes s nodes from the solution, and runs for ¢ = s iterations. The idea of randomly
selecting nodes helps diversify the search mechanism. The worst-case time complexity
of the RR operator is O(n).

. Worst-distance removal (WDR): This operator iteratively removes high cost customers,

where the cost is defined as the sum of distances from the preceding and following

customer on the tour, i.e., it removes node j* = argmax{|d;; + dx|}. The worst-case time
JEN

complexity of the WDR operator is O(n?).

. Worst-time removal (WTR): This operator calculates, for each node j, the deviation of

service start time from time a;, and then removes the node with the largest deviation.
The idea is to prevent long waits or delayed service start times. The algorithm starts
with an empty removal list, and runs for ¢ = s iterations (fori = 1,...,s; j = 1,..., s).

The operator selects j* = argmax{|y; — a,[} where y; is the time at which service begins
JEN
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at node j. The solution is updated after each node removal. The worst-case time
complexity of the WTR operator is O(n?).

4. Route removal (RoR): This operator removes a full route from the solution. It randomly
selects a route from the set of routes in the solution. The remove operator then repeat-
edly selects a node j from this route until all nodes are removed. The RoR operator can
be implemented in O(1) worst-case time.

5. Shaw removal (SR): The aim of this operator is to remove a set of customers that are
related in a predefined way and therefore are easy to change. The logic behind the
operator was introduced by Shaw (1998). The algorithm starts by randomly selecting
a node i and adds it to the removal list. Let[;; = —1ifi € N and j € N are in the
same route, and 1 otherwise. The operator selects a node j* = argmin{(Dld,-j + Ddyla; —
ajl + ®3l;; + D4lg; — qjl}, where @ —D4 are weights which are njéjrvmalized to find the
best candidate from solution. The operator is applied ¢ = s> times by selecting a node
not yet in the removal list which is most similar to the one last added to the list. The

worst-case time complexity of the SR operator is O(n?).

6. Proximity-based removal (PR): The operator removes a set of nodes that are related
in terms of distance. This operator is a special case of the Shaw removal operator with
®; =1, and ®, = @3 = &4 = 0. The way the operator works is graphically illustrated in
Figure 3.4. The worst-case time complexity of the PR operator is O(n?).
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Fiaure 3.4: Proximity-based removal operator

7. Time-based removal (TR): The operator is a special case of the Shaw removal with
O, =1, and ®; = &3 = &4 = 0. The worst-case time complexity of the TR operator is
o(n?).
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8. Demand-based removal (DR): This operator is a special case of the Shaw removal with
@4 =1, and ©; = ®, = O3 = 0. The worst-case time complexity of the DR operator is
o(n?).

9. Historical knowledge node removal (HR): The HR operator is similar to the neighbour
graph removal operator used in Ropke and Pisinger (2006b). This operator keeps a
record of the position cost of every node i, defined as the sum of the distances between
its preceding and following nodes, and calculated as d; = d;_1,; + d;;+1 at every iteration
of the algorithm. At any point in the algorithm, the best position cost d; of node i is
updated to be the minimum of all d; values calculated until that point. The HR operator
then picks a node j* on a route with maximum deviation from its best position cost, i.e.,
j= ar_gmax{dj - dj.}. Node j* is then added to the removal list. The worst-case time
compIeJ;i/t\;;J of the HR operator is O(n).

10. Neighbourhood removal (NR): This operator is based on the idea of removing nodes
from routes which are extreme with respect to the average distance of a route. More
specifically, in a given solution with a set of routes B, the operator calculates, for each
route B = {i, ...,ijg} in B an average distance as dg = 1. dii, /|Bl and selects a

node j* = argmax{dp — dp\(j;}. The worst-case time complexity of the NR operator is
BeB; jeB

o(n?).

11. Zone removal (ZR): The zone removal operator is based on removal of nodes in a
predefined area in the Cartesian coordinate system in which nodes are located. The
operator first compute the corner points of the area. The whole region is then split up
into smaller areas. An area is randomly selected and all its node are removed. The
removal operator selects S = {j*|x(i") < x(j*) < x(i?) and y(i') < y(j*) < y(i?)}, where
(x(i"), x(i%)) are the x-coordinates of the selected zone i, and (y(i!), y(i%)) are the y-
coordinates of the selected zone i. If the area does not contain any node, a new area
is randomly selected and the process continues until s nodes are removed. The worst-
case time complexity of the ZR operator is O(n?), although after an initial preprocessing
of all areas, the worst-case time complexity can be reduced to O(n).

12. Node neighbourhood removal (NNR): This operator initially selects a random node
and then removes s — 1 nodes around it encapsulated in a rectangular area around the
selected node. The choice of the rectangular neighbourhood, as supposed to, say, a
circular neighbourhood, is motivated by the presence of grid-shaped networks encoun-
tered in several real-world settings as illustrated in Figure 3.5. If the number of nodes
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within the selected zone is less than s — 1, then the area is enlarged by a given percent-

age. The worst-case time complexity of the NNR operator is O(n?).
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Ficure 3.5: Node neighbourhood removal operator

3.3.1.4 Insertion operators

In this section, we present five insertion operators used in the ALNS algorithm. The first four

of these operators are adapted from Ropke and Pisinger (2006a) whereas the last one is new.

Insertion operators are used to repair a partially destroyed solution by inserting the nodes

in the removal list back into the solution. These operators insert the removed nodes back

into the existing routes when feasibility with respect to the capacity and time windows can be

maintained, or they create new routes. We now briefly define the five insertion operators used

in the main algorithm.

1. Greedy insertion (Gl): This operator repeatedly inserts a node in the best possible

position of a route. The insertion cost is calculated as d; = dj; +dy —dp forj = 1,..,s
andi = 1,..,n. The operator iterates ¢ = sn times. S = {j*} is selected such that

j* = argmin{|d;|}. The worst-case time complexity of the Gl operator is O(n?).
BeB; jeB

. Regret insertion (RI): One problem with the greedy insertion operator is that it often
postpones the insertion of the nodes until the later iterations when few feasible moves
are possible. To counter this problem, this operator uses a 2-regret criterion. Let Af;
denote the change in the objective value by inserting node i into its best and second
best position for node i with respect to distance d; as defined above. Let i*= argmax
{Afn - Afi1}, where Af;; is the best feasible reinsertion and Af;, is the second [Efest
reinsertion of node i. For each node in the removal list, the operator is applied up to
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¢ = s’ntimes. This operator is quite time consuming, but unnecessary computations
can be avoided when computing A f;. The worst-case time complexity of the Rl operator
is O(n?).

3. Greedy insertion with noise function (GIN): This operator is an extension of the
greedy algorithm but uses a degree of freedom in selecting the best place for a node.
This degree of freedom is achieved by modifying the cost for node i: New Cost =
Actual Cost + d u e where d is the maximum distance between nodes, 1 is a noise param-
eter used for diversification and is set equal to 0.1, and € is a random number between
[-1,1]. New Cost is calculated for each node in £. The worst-case time complexity of
the GIN operator is O(n?).

4. Regret insertion with noise function (RIN): This operator is an extension of the 2-
regret insertion algorithm but uses the same noise function as the GIN operator. The
worst-case time complexity of the RIN operator is O(n).

5. Zone Insertion (ZI): This operator is similar to basic insertion but uses the time win-
dows rather than distance to determine best insertion of each node. The zone algorithm
determines the best position for each node and searches for another solution around it,
feasible for the time window constraint. In other words, this operator tries to identify in-
sertions that leave enough margin for future insertions. The worst-case time complexity
of the ZI operator is O(n?).

3.3.1.5 Acceptance and stopping criteria

Simulated annealing was used as a local search framework for our ALNS algorithm. The ALNS
algorithm with simulated annealing as a local search framework is presented in Algorithm 2.
In the algorithm, Xj.,; shows the best solution found during the search, X, ens is the current
solution obtained at the beginning of an iteration, and X,.,, is a temporary solution found at
the end of iteration that can be discarded or become the current solution. The cost of solution
X is denoted by c(X). A solution X,,.,, is always accepted if c(Xpew) < c(Xcurrenr), @and accepted
with probability e~ (Xnew)=cXeurenDIT if ¢(X,00) > ¢(Xewrrens), Where T is the temperature. The
temperature is initially set at ¢(X;nir) Pinir Where c(Xii) is the objective function value of the

initial solution X;,;; and P;,; is an initialization constant. The current temperature is gradually
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decreased during the course of the algorithm as AT, where 0 < i < 1 is a fixed parameter.
The algorithm returns the best found solution after a fixed number of iterations.

Algorithm 2: The general framework of the ALNS with simulated annealing
input : a set of removal operators D, a set of insertion operators /, initialization constant

Piis, cooling rate h
output: Xy,

1 Generate an initial solution by using the Clarke and Wright algorithm

N

Initialize probability P!, for each destroy operator d € D and probability P for each insertion
operatori € I

3 Let T be the temperature and j be the counter initialized as j « 1

4 Let Xeurrent < Xpest < Xinit

5 repeat

6 Select a removal operator d* € D with probability P!,

7 Let X7

new

be the solution obtained by applying operator d* to X ,,rren:
8 Select an insertion operator i* € I with probability P;
9 Let X,.,, be the new solution obtained by applying operator i* to X;

new

10 if C(Xnew) < C(Xcurrent) then

11 ‘ Xcurrent — Xnew

12 else

13 t Let V — e_(C(Xnew)_C(X('urrent))/T

14 Generate a random number € € [0, 1]
15 if e < v then

16 t Xewrrent < Xnew
17 if c(Xcurrent) < C(Xpes:) then
18 t Xbest — Xnew

19 T «<hT
20 Update probabilities using the adaptive weight adjustment procedure

21 je—j+1

22 until the maximum number of iterations is reached

3.3.2 Speed optimisation

In this section, we introduce and analyse the speed optimisation problem (SOP). Given a
vehicle route, the SOP consists of finding the optimal speed on each arc of the route between
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successive nodes so as to minimise an objective function comprising fuel consumption costs
and driver wages. The objective of SOP is non-linear due to the function used to estimate fuel
consumption of a vehicle. Fixing all vehicle speeds at their optimal values with respect to fuel
consumption may lead to violations of time window constraints. Furthermore, driver costs and
fuel consumption do not always move in the same direction (see Bektas and Laporte, 2011).
This makes the SOP a non-trivial problem.

3.3.2.1 Mathematical model

The SOP is defined on a feasible path (0, ...,n + 1) of nodes all served by a single vehicle,
where 0 and n + 1 are two copies of the depot. The model uses the variable w; to denote the
waiting time at each node i, the variable v; to represent the speed at which a vehicle travels
between nodes i and i + 1, and the variable ¢; for the arrival time at node i. The vehicle has
a minimum and maximum speed, represented by vf and v/, between nodes i and i + 1. The
formulation of SOP is as follows:

n
Minimise " fFi(vi) + fuenst (3.25)

i=0

subject to

iyl = €i+W,‘+I,‘+d,'/V,' i=0,..,n (3.26)
a; <e +w;<b; i=1,...n (3.27)
Vi< < i=0,..,n (3.28)
wi = 0 i=1,..n (3.29)
e; >0 i=1,...,n+1 (3.30)
Vi >0 i=1,..n (3.31)
(3.32)

wo =eo =1 =0,

where F;(v) is the total fuel consumption as derived in (3.6) but written using the load M;, the
acceleration 7; and the road angle 6; of arc (i,i + 1) foreachi =0, ..., n.

The objective function (3.25) minimises the total cost of fuel consumption and driver wages.
We recall that f. is the fuel and CO, emissions cost per liter and f; is the driver wage per
second. Other parameters are as defined in Section 3.2.2. Constraints (3.26) ensure that the
arrival time at node i + 1 is the sum of the arrival time at node i, the waiting time at node i, the

service time at node i and the travel time to node i. Constraints (3.27) guarantee that service
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at node i should start between a; and b;. Constraints (3.28) define upper and lower limits for
speed. Constraints (3.29)—(3.31) impose the non-negativity restrictions on the variables.

We now describe a Speed Optimisation Algorithm (SOA) for the SOP. This algorithm is an
adapted version of that of Norstad et al. (2010) and Hvattum et al. (2012), first proposed for
ship routing. The algorithm is exact provided the cost function is convex. This is easily proved
by adapting the arguments of Hvattum et al. (2012) to our case.

At the beginning of the algorithm, the speeds v; are calculated for each link by considering the
beginning of the next time window and total available time. These speed values are used to
find violations if any. The violation is calculated if the departure time is less than sum of a; and
t; or arrival time to the node is greater than b;. Otherwise, the violation is set to zero. If the
minimal possible speed limit is greater than the optimal speed, the optimal speed is increased
to the minimal speed. This will not violate the time window since increasing speed means that
less time is spent on the arc, and this speed is feasible if the lower speed does not violate the
time window. The optimal speeds and current speeds are then compared; if the current speed
is less than the optimal value, it is replaced with the optimal value. The algorithm selects at
each stage the arc with the largest time window violation and eliminates the violation. In order
to apply our SOP algorithm, it remains to show that (3.25) is convex.

Proposition 3.1. The objective function (3.25) is convex.

Proof. Using equations (3.26) and (3.32), the objective function (3.25) can be expanded as
follows:

chFi(V) + fa [Z(Wi + 1+ di/v))
i=0

i=0

n

[eFiv) + fa(wi +t; + d;/v)] .
i=0

Let g;(v) = f.F;(v) and h;(v) = fay(w; + t; + d;/v) for each i = 0, ...,n. Then, since dg;(v)/dv =
—kNVAd;/v* + 2BAyvd; and d*>g;(v)/dv = 2kNV Ad;/v? + 2ByAd; > 0, gi(v) is a convex function.
Similarly, since dhi(v)/dv = — fud;/v* and d*hi(v)/dv = 2f,d;/v’ > 0, hj(v) is a convex function.
Since the sum of convex functions is convex, the proof follows. O
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Proposition 3.2. Given an arc (i, i+ 1) and other parameters as described in the Section 3.4.1,
the optimal speed which minimises fuel consumption costs and wage of driver is:

1/3
kNV
V= (— b ) , (3.33)
2By 2BAyfe
and the optimal speed which minimises fuel consumption costs is:
kNV '3
V= . (3.34)
(%W)

Proof. (3.33) follows from d(g;(v) + h;(v))/dv = 0 for each i = 0,...,n. (3.34) follows from
dh;(v)/dv =0foreachi=0,...,n. |

A pseudo-code of the SOA is shown in Algorithm 3. The SOA runs in two stages. In the first
the stage, optimum speeds are calculated to minimise fuel, emission and driver costs. The
first stage also calculates the minimal required travel time time of the depot, which is then set
equal to upper bound of the time windows. In the second stage, speeds are revised to optimise
fuel consumption. In Algorithm 3, the only difference between two stages is the optimal speed
calculation in line 6, where optimal speeds are calculated using (3.33) for the first stage and
using (3.34) for the second stage. The algorithm starts with a feasible route; it takes input
parameters s and e, and returns speed optimised routes.

3.4 Computational Results

This section presents results of extensive computational experiments performed to assess the
performance of our ALNS heuristic. We first describe the generation of the test instances and
of the parameters. We then present the results.

3.4.1 Data and experimental setting

For the computational experiments, three classes of PRP instances are generated, namely
small, with up to 10 customers, medium, between 15 and 75 customers, and large, with more
than 100 customers. Nine sets of 20 instances each were generated. The size of the instances
ranges from 10 to 200 nodes. The instances represent randomly selected cities from the UK
and therefore use real geographical distances. Time windows and service times are randomly
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Algorithm 3: Speed Optimisation Algorithm(s, e)

initialise: violation — 0,p < 0,D « Y1 di\, T « Y° t;

1 fori=s+1toedo

2 if ¢, < a; then

3 ‘ v,-_1<—D/(E,-—a,-—T)
4 else

5 | | v D/@i-¢-T)

6 v, < Optimal Speed

7 ife,1 +di-1/vi-1 <ajand ¢; > a; + t; and i # |R| - 1 then

8 ‘ Vi1 «di-1/(a; —e;i_1)

9

10 elseif ¢;_| +d;_1/vi.i <ajande; > b; + t; and i # |R| — 1 then
1| Vi edig /(b = @)

12

13 ifi=(N-1)ande; # ¢, then

14 | vier < di/(ai— i)

15 if v | <di-1/(bix1 —a; — 1;) then
16 L v, < di-1/(biv1 —ai — ;)

17 if vi | >v;_ then

18 L Vi—1 < V;F_l

19 e «—ei1 +di-1/vi

20 if i # e then

21 | &+

22 g; « max{0, e; — bi,a; +t; —e;}
23 if g; > violation then

24 violation < g;

25 pe—i

26 if violation > 0 and e,> b, then

27 e, —b,+1,

28 Speed Optimisation Algorithm(s, p)
29 Speed Optimisation Algorithm(p, ¢)

30 if violation > 0 and e, < a, + 1, then
31 e, —a,+i,

32 Speed Optimisation Algorithm(s, p)
33 Speed Optimisation Algorithm(p, ¢)
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generated. All instances are available for download from http://www.apollo.management.

soton.ac.uk/prplib.htm.

The proposed algorithm was implemented in C. All experiments were conducted on a server
with 3GHz speed and 1 GB RAM. A preliminary analysis was conducted to fine-tune the pa-
rameters. No claim is made that our choice of parameter values is the best possible. However,
the settings used generally worked well on our test problems. Our algorithm contains fifteen
user controlled parameters which are shown in the Table 3.2.

TasLe 3.2: Parameters used in the ALNS heuristic

Group  Description Typical values

| Total number of iterations (&;) 25000

Number of iterations for roulette wheel (¥,,) 450
Roulette wheel parameter (r,) 0.1

New global solution (o1) 1

Better solution (o) 0
Worse solution (o73) 5
I Startup temperature parameter (Piyir) 100
Cooling rate (k) 0.999
Il Lower limit of removable nodes (s) 5-20% of |N|
Upper limit of removable nodes () 12-30% of [N]
Zone parameter (z) 11
First Shaw parameter (®;) 0.5
Second Shaw parameter (®;) 0.25
Third Shaw parameter (®3) 0.15
Fourth Shaw parameter (®4) 0.25
Noise parameter (u) 0.1

The parameters used in the ALNS algorithm are grouped into three categories as described
below.

1. The first group defines the selection procedure with the roulette wheel mechanism. We
note that our setting of the parameters o1, o> and o3 is contrary to the expected set-
ting o1 = 0, > o3, normally used to reward an operator for good performance. In our
implementation and similar to Pisinger and Ropke (2005, 2007), we have chosen an
unconventional setting of these parameters whereby the discovery of a worse solution
is rewarded more than the discovery of a better solution. This is to help diversify the
search in the algorithm.

To show the number of times each removal and insertion operator was called within
the heuristic algorithm, we provide some information in Tables 3.3 and 3.4, respectively.


http://www.apollo.management.soton.ac.uk/prplib.htm
http://www.apollo.management.soton.ac.uk/prplib.htm
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These tables show, for each operator, the frequency of use in the algorithm as a per-
centage of the total number of iterations. The total time spent to run each operator is
shown in parentheses. These results are obtained using one instance from each set.

The results shown in Table 3.3 indicate that the frequency of using the different removal
operators do not significantly vary from one another. As the instances get larger in
size, the frequencies of SR and NR increase compared to other operators. We note,
however, that the time consumed by SR and NR operators is significantly higher than
other operators for instances with more than 75 nodes.

As for the insertion operators, BGI is generally used slightly more than the other three
as indicated by the results shown in Table 3.4. The times consumed by Rl and RIN are
significantly higher than those of the remaining operators.

2. The second group of parameters is used to calibrate the simulated annealing search
framework and to define the initial temperature and cooling rate for the algorithm. Fig-
ure 3.6 shows the behaviour of the heuristic for a 100-node instance. The figure displays
the way that best (Xp.s), current (Xc,rens) and new (X,.,,) solutions change over 25000

iterations.
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Ficure 3.6: Solution values obtained by ALNS for a 100-node instance

3. The third and last group of the parameters are specific to the way in which the removal
or insertion operators work. Here, the most important parameter that significantly affects
the solution quality is the allowable number of removable nodes as defined by a lower
s and an upper s bound, calculated as a percentage of the total number of nodes in an
instance. To give the reader an idea of the effect of these two parameters, we provide
in Table 3.5 some statistics for varying values of s and s on a 100-node instance. The
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TasLe 3.4: Number of iterations as a percentage of 25000 and the CPU times required by the
insertion operators

Insertion operators
Instance sets

al RI GIN RIN
10 32.1(0.1) 284(02) 16.8(0.0) 227 (0.3)
15 226(0.1) 27.0(0.2) 212(0.0) 29.2(0.3)
20 27.0(0.2) 28.9(0.6) 19.0(0.1)  25.0(0.4)
25 31.0(0.3) 3835(1.1) 129(0.1) 22.6(0.5)
50 27.6(12) 295(2.8) 201 (0.8) 22.8(1.8)
75 30.3(25) 30.9(56) 183(1.3) 205 (2.6)
100 285(3.9) 284 (117) 192(1.6) 24.0(6.0)
150 27.8(8.1) 25.6(19.8) 26.4(1.6) 20.1(6.0)
200 26.2 (151) 23.4(39.7) 25.0(17.7) 25.3(36.1)

table shows the percent deviation of the solutions found for each combination of s and s
from the best known solution for this instance.

TasLe 3.5: Effect of removable nodes on the quality of solutions obtained and measured as
percentage deviation from the best known solution

s 2 4 8 10 16
s
10 0.126 0.586 0.906 0.303 =
12 1.158 1.131 0.644 1.068 =
16 0.000 0979 0.698 1.561 0.612
20 1.033 0.638 1.591 1.234 2218
24 1.356 1.534 1.749 1.011 0.709
28 0222 0.841 1.245 1883 1.111
32 2137 1.010 0.611 2307 1.633
36 1295 0.709 0.478 2.457 1.086
40 1274 1682 2557 0.885 2.047
50 2574 1974 2368 1.606 2.601
60 1.904 2.666 2629 2.644 2434
70 3.0561 3.051 3.201 3.493 3.357

Other parameters in the third group include the following. The number of zones for zone
removal and zone insertion operators is specified by z. Parameters ®,—®, are specific
to the Shaw removal operator as explained in Section 3.3.1.3. Finally, the last parameter
(u) is used to diversify the solution.
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3.4.2 Fine-tuning of the operators

In this section, we present results of computational testing on the selection of the operators
within the algorithm.

3.4.2.1 Effect of the adaptive operator selection scheme

Adaptivity is assumed to be one of the advanced features of the ALNS algorithm. In this part of
the section, we investigate whether the adaptive nature of the ALNS algorithm makes any dif-
ference in the results. The analysis of this section aims to compare the adaptive scheme with
a static scheme, which assumes that the selection probabilities of the operators not change
during the course of the algorithm. For this purpose, we test 10 instances from the Solomon
set and the PRP set and present the results in Tables 3.6 and 3.7.

TaeLE 3.6: Analysis of adaptivity of the operators on Solomon’s benchmark instances

ALNS gaprive ALNS a1
Average CPU Average CPU Dev
value time s value time s %

c101 827.3 82.4 827.3 81.64 0.00
c201 589.1 151.86 589.1 174.64 0.00
r101 1656.4 102 1651.2 104.88 0.31
ri12 974.4 92.6 9771 88.74 -0.28
r201 1158.6 156.72 1172.1 127.61 -1.15
r211 767.2 240.25 762.4 183.18 0.63
rc101 1634.6 99.7 1667.5 100.48 -1.97
rc108 1137.8 88.72 1175.9 91 -3.24
rc201 1286.7 150.27 1300.5 134 -1.06
rc208 786.9 193.49 795.6 163.66 —1.09
Average -0.79

These tables show, for each instance, the average solution value and CPU time of 10 runs by
using the adaptive scheme under column ALNS,4,,/iv. and by using the static scheme under
column ALNS,,,,;. The last column presents the percentage deviation between ALNS44pive
and ALNS,,. It can be seen from Tables 3.6 and 3.7 that an adaptive approach works better
on both Solomon’s and PRP instances. The improvement obtained by ALNS .4, is around
0.79% on Solomon’s benchmark instances and 1% on the PRP instances. These findings
indicate that adaptivity helps improving solution quality.
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TasLe 3.7: Analysis of adaptivity of the operators on PRP instances

ALNS yiaprive ALNS.guai
Average CPU Average CPU Dev
value time s value time s %

UK100.01 2846.62 37.54 2865 4446 -0.64
UK100.02 269559 38.67 2723.95 44.8 -1.04
UK100.03 2506.74  37.91 25564.72  43.03 -1.88
UK100.04 2440.21 36.52 2418.35 38.58 0.90
UK100.05 2333.23 36.14 2317.47 38.78 0.68
UK100-11  2728.11 37.2 2815.42 4249 -3.10
UK100_12 2382.39 39.43 2453.71 4368 -2091
UK100_-13  2660.16  37.77 2668.2 41.31 -0.30
UK100_14 2927.02 36.02 2971.84 40.24 -1.51
UK100_15 3059.44 34.28 3065.8 4085 -0.21
Average —-1.00

3.4.2.2 Effect of penalising time of operators

In this part of the section, a different approach is tested for the changing the way in which
operators are chosen. The classical approach only considers the improvement in the solution
value, or the lack thereof, as a way of measuring an operator’s performance. This section
investigates the effect of the computational time required by the operators. The new cost func-
tion is based on penalising the operators with higher execution times in the hope of reducing
the overall execution time of the ALNS algorithm.

Tables 3.8 and 3.9, for Solomon’s benchmark and PRP instances, provide the average cost
and CPU time of 10 runs by using the classical scheme under column ALNS,,; and by using
the time penalisation scheme under column ALNS;;,,.. The last column presents the percent-
age deviation between the results found by ALNS,,,; and ALNS;;,....

The results suggest that penalisation of CPU times improves the overall execution time of
the algorithm but at the expense of solution quality. The percentage deviation for Solomon’s
benchmark instances and PRP instances are —1.13% and —0.94%, respectively.

3.4.2.3 Effect of changing the roulette wheel selection parameters

This section analyses the effect of using different sets of values for roulette wheel selection
parameters (o1, 03, 073). Tables 3.10 and 3.11, for Solomon’s benchmark and PRP instances,
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TasLe 3.8: The time analysis of operators on Solomon’s benchmark instances

ALNS ALNS;,

Average CPU Average CPU Dev

value time s value time s %

c101 827.3 82.4 827.3 63.67 0.00
c201 589.1 151.86 589.1 92.2 0.00
r101 1656.4 102 1652.7 92.25 0.22
ri12 974.4 92.6 976.3 79.81 -0.19
r201 1158.6 156.72 1186.3 91.11 -2.33
r211 767.2 240.25 772.8 228.38 -0.72
rc101 1634.6 99.7 1692.1 61 -3.40
rc108 1137.8 88.72 1207.7 68.2 -5.79
rc201 1286.7  150.27 1281.2 111.28  0.43
rc208 786.9 193.49 782.9 125,54  0.51
Average -1.13

TasLe 3.9: The time analysis of operators on PRP instances

ALNS, ., ALNS ;e
Average  CPU Average  CPU Dev
value time s value time s %

UK100_01 2846.62 37.54 2875.77 15.17 -1.01
UK100-02 269559  38.67 271229 41.02 -0.62
UK100-03 2506.74  37.91 253453 5257 -1.10
UK100.04 2440.21  36.52 2432.76  43.53  0.31
UK100-05 2333.23 36.14 2358.75 4459 -1.08
UK100_-11 2728.11 37.2 2818.42 4249 -3.20
UK100-12 2382.39 39.43 2379.79 4093  0.11
UK100-13  2660.16  37.77 2696.54 557 -1.35
UK100-14 2927.02  36.02 2979.36 428 -1.76
UK100-15 3059.44 34.28 3050.55 35 0.29
Average -0.94




Chapter 3. An Adaptive Large Neighbourhood Search Heuristic for the Pollution-Routing
Problem 70

provide the best values of 10 runs by using the parameter set shown in the second line of
the table. The last three column present the percentage deviation between the use of the the
initial values (1, 0, 5) and the others tested.

The results suggest that the initially proposed setting (1, 0, 5) performs better than other ones
tested here.

3.4.3 Results of the ALNS heuristic on the VRPTW

To help assess the quality of the ALNS heuristic, we present computational results in Tables 6—
8 on Solomon’s benchmark VRPTW instances, which come in three sets r, ¢ and rc classified
with respect to the geographical locations of the nodes. These tables compare the results of
the original ALNS as reported in (Pisinger and Ropke, 2005) and denoted ALNS,, to our ALNS
heuristic, denoted ALNS;. The extended version of the algorithm using the new operators is
denoted ALNSg. The comparisons are made in terms of best solution values obtained through
10 runs of each algorithm. These tables present, for each instance, the value of the best
known or optimal solution compiled from several sources (e.g., Milthers, 2009; Pisinger and
Ropke, 2005) under column “Best known value”. All figures presented in Tables 6-8 use a
single decimal place (Milthers, 2009; Pisinger and Ropke, 2005) as opposed to two decimal
places (e.g., Pisinger and Ropke (2007)). For each variant of the algorithm, we then present
the value of best solution obtained in column “Best value” and the corresponding average
CPU time required to run the algorithm. As for the last three columns, the column titled Devpg
(%) presents the percentage deviation of ALNSg from ALNSy, the column titled Dev; (%)
shows the percentage deviation of ALNS; from those reported under “Best known value”,
and and the column titled Devg (%) shows the percentage deviation of ALNSg from those
reported under “Best known value”. In particular, let v(A) be the solution value produced
by algorithm A. Then, Devpg (%) is calculated as 100 (v(ALNSp)—v(ALNSg)) /u(ALNSp),
Dev; (%) is calculated as 100 (v(Best)—v(ALNS;)) /v(Best) and Devg (%) is calculated as
100 (v(Best)-v(ALNSE)) /u(Best), where v(Best) is the best known solution value for each

instance.

As shown in Tables 3.12-3.14, the extended ALNS heuristic performs very well on the VRPTW
instances considered in our tests. For a majority of the instances, the heuristic is able to dis-
cover the best known solution. For the rest of the instances, the percentage deviations are no
greater than 0.72%. The tables also show that the operators work well to improve the solu-
tions produced by ALNS,, particularly on the r instances, and help discover solutions which
are slightly better than those reported in Pisinger and Ropke (2005) on some instances. In
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TasLe 3.11: Performance analysis of roulette wheel selection parameters on PRP instances

(01, 02, 03)

(1,0,5) (5,0,1) (5,1,0) (5,3,0)

Best Best Best Best Dev; Dev, Dev;

value value value value % % %
UK100.01  2846.62 2830.79 2849.11 2864.31 0.56 -0.09 -0.62
UK100.02 2695.59 2712.29 2715.23 2716.10 -0.62 -0.73 -0.76
UK100.03 2506.74 2535.50 2530.91 2499.13 -1.15 -0.96 0.30
UK100.04 2440.21 2411.31 2433.27 2499.21 1.18 0.28 -2.42
UK100.05 2333.23 2316.61 2285.95 2307.23 0.71 2.03 1.1
UK100-11  2728.11 2752.99 2743.60 273139 -091 -0.57 -0.12
UK100-12 2382.39 2430.13 2465.39 244717 -2.00 -348 -2.72
UK100_13  2660.16 2658.12 2650.00 2656.40  0.08 0.38 0.14
UK100_14 2927.02 2978.02 2940.27 2965.57 -1.74 -045 -1.32
UK100_15  3059.44 3056.55 3047.19 3000.50 0.09 0.40 1.93
Average -0.38 -032 -045
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TasLe 3.12: Results of the ALNS heuristic on benchmark VRPTW r instances
ALNSo ALNS; ALNSg Devpr Dev; Devg
Solomon - poctknown  Best  CPU Best  CPU Best  CPU
ITBENEDE value value time s value time s value time s % % %
r101 1637.7 1637.7 30 1652.8 53 1637.7 48 0.00 -0.92 0.00
r102 1466.6 1467.7 33 1479.4 52 1466.6 46 0.07 -0.87 0.00
r103 1208.7 1208.7 34 1222.1 52 1208.7 46 0.00 -1.11  0.00
r104 971.5 976 34 985.3 51 971.5 45 046 -1.42  0.00
r105 1355.3 1355.3 31 1369.8 53 1355.3 47 0.00 -1.07 0.00
r106 1234.6 1234.6 33 1242.9 50 1234.6 46 0.00 —0.67 0.00
r107 1064.6 1064.6 33 1073.7 48 1064.6 42 0.00 —-0.85 0.00
r108 932.1 933.7 36 939.5 52 936.1 44 -0.26 —0.26 -0.43
r109 1146.9 1146.9 31 1151.3 53 1146.9 46 0.00 -0.38 0.00
r110 1068 1075.6 33 1081.6 55 1073.9 49 0.16 -127 -0.55
r111 1048.7 1048.7 33 1057.3 48 1049.9 42 -0.11 -0.82 -0.11
r112 948.6 948.6 33 954.2 45 948.6 40 0.00 -0.59 0.00
Average 0.03 -0.85 -0.09
r201 1143.2 11485 45 1160.1 77 1143.2 71 046 —1.48 0.00
r202 1029.6 1036.9 54 1051.2 79 1032.2 72 045 -210 -0.25
r203 870.8 872.4 60 881 83 873.3 76 -0.10 117 -0.29
r204 731.3 731.3 67 754.9 80 731.3 75 0.00 -3.23 0.00
r205 949.8 949.8 58 951.8 76 950.4 71 -0.06 -0.21 —-0.06
r206 875.9 880.6 61 887.6 82 881 76 -0.05 -1.34 -0.58
r207 794 794 72 803.5 89 794 85 0.00 -1.20 0.00
r208 701.2 701.2 86 714.7 93 702.9 88 -0.24 -193 -0.24
r209 854.8 855.8 60 863.1 78 854.8 74 0.12 =097 0.00
r210 900.5 908.4 59 920.6 75 906.3 70 023 223 -0.64
r211 746.7 752.3 67 769.2 80 751.6 74 0.09 -328 -0.66
Average 0.08 -1.74 -0.25

particular, the average deviation is reduced from 0.85% to 0.09% for instances r101-r108

and from 1.74% to 0.25% for instances r201—r208 with the use of the new operators. Similar

improvements are achieved on the instances rc for which the average deviation is reduced
from 0.84% to 0.17% for instances rc101—rc108 and from 0.98% to 0.1% for instances rc201—

rc208. These figures suggest that it is worthwhile to use the new operators to obtain good

quality solutions. These results also confirm the effectiveness of our extended ALNS heuris-

tic, given that it was designed to solve a problem more general than the classical VRPTW,

whereas the best known solution values were obtained by means of specialized algorithms.
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TasLe 3.13: Results of the ALNS heuristic on benchmark VRPTW c¢ instances

ALNS, ALNS; ALNSg Devpr Dev; Devg
Solomon  goctknown  Best  GPU Best  CPU Best CPU
IS EMEES value value times value times value times % % %
c101 827.3 827.3 29 827.3 44 827.3 41 0.00 0.00 0.00
c102 827.3 827.3 32 827.3 43 827.3 40 0.00 0.00 0.00
c103 826.3 826.3 34 826.3 44 826.3 41 0.00 0.00 0.00
c104 822.9 822.9 36 822.9 42 822.9 40 0.00 0.00 0.00
c105 827.3 827.3 30 827.3 41 827.3 39 0.00 0.00 0.00
c106 827.3 827.3 31 827.3 45 827.3 41 0.00 0.00 0.00
c107 827.3 827.3 31 827.3 44 827.3 41 0.00 0.00 0.00
c108 827.3 827.3 32 827.3 44 827.3 42 0.00 0.00 0.00
c109 827.3 827.3 34 827.3 43 827.3 40 0.00 0.00 0.00
Average 0.00 0.00 0.00
c201 589.1 589.1 69 589.1 85 589.1 82 0.00 0.00 0.00
c202 589.1 589.1 74 589.1 89 589.1 85 0.00 0.00 0.00
c203 588.7 588.7 80 588.7 96 588.7 92 0.00 0.00 0.00
c204 588.1 588.1 84 588.1 98 588.1 91 0.00 0.00 0.00
c205 586.4 586.4 76 586.4 91 586.4 86 0.00 0.00 0.00
c206 586 586 72 586 86 586 81 0.00 0.00 0.00
c207 585.8 585.8 74 585.8 88 585.8 86 0.00 0.00 0.00
€208 585.8 585.8 74 585.8 94 585.8 88 0.00 0.00 0.00
Average 0.00 0.00 0.00

3.4.4 The effect of speed optimisation

The SOA is extremely quick and able to improve upon the results produced by the ALNS.
To give an example, Figure 3.7 shows the improvement by the SOA over routes found by
the ALNS algorithm for a 100-node instance. In our implementation, the SOA terminates on
a given route after three non-improving iterations. As Figure 3.7 shows, the improvement
provided by the SOA on a given solution ranges between 0.41% and 3.01%.

A more detailed analysis of the effect of the SOA is provided in Table 3.15. This table presents,
for one instance from each of the nine sets, the solutions obtained by using a distance-
minimizing objective shown under column ALNSp, and results with the SOA as applied on
ALNSp shown under column ALNSB. The ALNSp and ALNSB solutions are produced by ini-
tially using a distance minimizing objective, but the solution values reported in Table 3.15 are
recalculated using the PRP objective. Table 3.15 also shows the results with ALNS using the
PRP objective (4.19)—(4.23) shown under column ALNSp and results with SOA as applied on
ALNSp shown under column ALNS7,. The last two columns present the percentage difference
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TasLe 3.14: Results of the ALNS heuristic on benchmark VRPTW rc instances
ALNS, ALNS; ALNSEg Devpr Dev; Devg
Slelmie Best known Best CPU Best CPU Best CPU
IEETEER value value time s value time s value time s % % %
rc101 1619.8 1619.8 28 1623.7 48 1619.8 44 0.00 -0.24 0.00
rc102 1457.4 1463.5 30 1472.7 46 1463.5 42 0.00 -1.37 -0.42
rc103 1258 1267.0 31 1278.6 49 1267.1 43 —-0.01 -1.64 -0.72
rc104 1132.3 1132.6 33 1139.8 48 1133.1 42 -0.04 -0.66 —0.07
rc105 1513.7 1513.7 30 1525.5 47 15138.7 43 0.01 -0.78 0.00
rc106 1372.7 1373.9 29 1381.4 44 1372.7 41 0.09 -0.63 0.00
rc107 1207.8 1209.3 30 1216.9 42 1209.3 40 0.00 -0.75 -0.12
rc108 1114.2 1114.2 31 1121.3 46 1114.2 43 0.00 —0.64 0.00
Average 0.01 -0.84 -0.17
rc201 1261.8 1262.6 42 1274.2 80 1262.7 74 —-0.01 -0.98 -0.07
rc202 1092.3 1095.8 46 1102.3 76 1095.8 71 0.00 -092 -0.32
rc203 923.7 923.7 56 931.4 76 923.7 73 0.00 -0.83 0.00
rc204 783.5 785.8 68 790.8 79 783.8 76 029 -0.93 0.00
rc205 1154 1154 45 1163.1 68 1154 64 0.00 -0.79 0.00
rc206 1051.1 1051.1 52 1062.8 71 1051.1 68 0.00 -1.11 0.00
rc207 962.9 966.6 55 979.2 70 966.6 64 0.00 -1.69 -0.38
rc208 777.3 777.3 65 781.9 76 777.3 72 0.00 -0.59 0.00
Average 0.04 -098 -0.10
1150
1140
1130 \
_ 1120 \\‘\
'L;’ 1110 2 —
g 1100 y ——ALNS
E 1090 S0A
1080
1070
1060 . . : . T T )

Mumber of lterations

Ficure 3.7: ALNS and SOP algorithm for a 100-node instance
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between ALNSp and ALNSE under column Dp and the percentage difference between ALNSp
and ALNS}, under column Dp.

TasLe 3.15: Performance improvement using SOA on solutions obtained by ALNS

Instance sets  ALNS)p ALNS} ALNSp ALNS; Dp Dp

% %
10 181.89 177.02 176.17 170.64 3.14 2.68
15 297.25 287.30 295.89 286.89 3.04 3.35
20 335.92 325.38 332.70 32523 225 3.14
25 296.14 288.60 288.23 28213 212 255
50 623.57 604.89 612.98 596.11 2.75 3.00
75 1016.26  985.99 1011.58 985.86 254 298
100 1304.37 1264.51 1262.33 1230.72 2.50 3.06
150 152499 147516 1512.60 1469.74 2.83 3.27
200 2241.34 217294 221231 214425 3.08 3.05
Average 2.69 3.01

The results shown in Table 3.15 indicate that the SOA is generally able to improve the solutions
found by the ALNS by 2 to 4%. The average improvement in the case of minimizing the PRP
function is 3.01%, which is slightly higher as compared to the average improvement of 2.65%

seen in the case of minimizing distance.

3.4.5 PRP heuristic results

This section presents the results obtained by the proposed heuristic on the nine sets of PRP
instances generated. Each instance was solved once with the proposed heuristic and once
with the PRP model solved with a truncated execution of CPLEX 12.1 (IBM ILOG, 2009) with
its default settings. A common time-limit of three hours was imposed on the solution time for

all instances.

The detailed results of these experiments are presented in Tables 3.16 to 3.18. These tables
give the results for 10-, 100- and 200-node instances, is given in Appendix A. Each table
presents, for each instance, the solutions found by the heuristic and CPLEX. All columns in
these tables are self-explanatory with the exception of the last, which shows the percentage
deviation of the solution produced by the heuristic from the best solution obtained with CPLEX
within the three-hour time limit.
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TasLe 3.17: Computational results for 100-node instances

CPLEX Our heuristic
Instances  Solution  Total CPU LP Solution  Distance # of # of ALNS SOA CPUtime Total CPU  Improvement
cost time relaxation cost km vehicles  loops time time per loop time %
£ s £ ] ] s s

UK100.-01 1389.05 10800 572.22 1240.79 2914.4 14 4 23.0 0.0 23.0 92.1 10.67
UK100.02 1302.16 10800 548.13 1168.17 2690.7 13 4 245 0.0 245 98.2 10.29
UK100.03 1231.44 10800* 518.00 1092.73 2531.8 13 8 26.0 0.0 26.0 207.9 11.26
UK100.04 1174.75 10800 487.57 1106.48 2438.5 14 7 21.4 0.0 21.4 149.7 5.81
UK100.05 1121.71 10800 474.66 1043.41 2328.5 14 8 19.9 0.0 19.9 159.0 6.98
UK100_-06 1320.40 10800* 565.78 1213.61 2782.4 14 7 19.1 0.0 19.1 133.8 8.09
UK100.07 1177.87 10800* 494.67 1060.08 2463.9 12 4 25.7 0.0 25.7 102.6 10.00
UK100.08  1230.92 10800 516.07 1106.78 2597.4 13 9 23.3 0.0 23.3 209.5 10.09
UK100-09 1092.20 10800 439.48 1015.46 2219.2 13 6 25.7 0.0 25.7 154.0 7.03
UK100-10  1163.95 10800* 499.34 1076.56 2510.1 12 8 24.9 0.0 24.9 199.0 7.51
UK100_11  1343.18 10800* 560.36 1210.25 27921 15 5 214 0.0 214 107.1 9.90
UK100_12 1227.01 10800* 483.91 1058.02 2427.3 12 9 22.9 0.0 22.9 206.4 14.18
UK100.13  1333.10 10800 535.11 1154.83 2693.1 13 4 22.0 0.0 22.0 87.9 13.37
UK100_14 1410.18 10800 599.61 1264.50 2975.3 14 4 23.0 0.0 23.0 91.8 10.33
UK100.15  1453.81 10800 608.94 1315.50 3072.1 15 5 222 0.0 222 110.9 9.51
UK100-16  1105.58 10800 448.32 1005.03 2219.7 12 10 255 0.0 255 254.7 9.09
UK100.17  1389.99 10800* 594.54 1284.81 2960.4 15 7 21.8 0.0 21.8 152.8 7.57
UK100.18  1219.45 10800* 501.69 1106.00 2525.2 13 4 23.1 0.0 23.1 92.6 9.30
UK100_-19 1115.82 10800* 458.01 1044.71 2332.6 13 4 22.7 0.0 22.7 91.0 6.37
UK100-20  1396.97 10800 594.06 1263.06 2957.8 14 9 22.7 0.0 22.7 204.4 9.59

*: Not solved to optimality in 10800 seconds.
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Table 3.16 shows that the heuristic finds the same solutions as those of CPLEX but in a
substantially smaller amount of time. The fact that ALNS finds solutions which are better than
the optimal solution provided by CPLEX for some instances is due to the discretisation used
in the mathematical formulation. The average time required by CPLEX to solve the 10-node
instances to optimality is 508.5 seconds where the same statistic for the ALNS to produce the
reported solutions is 2.3 seconds.

A summary of the results of the 180 instances tested is presented in Table 3.19. In this
table, we present, for each instance set, the average cost, the average deviation between the
solution produced by the heuristic and the best solution obtained with the PRP model within
the three-hour limit, the average CPU times for the heuristic and for CPLEX, and the average
number of loops.

TasLe 3.19: Summary of comparisons between the proposed heuristic and CPLEX

Instance Average CPU time  Average CPU time Average # of loops ~ Average time Average
Sets for CPLEX for the heuristic of the heuristic per loop improvement
s s s %
10 508.5 23 4.3 0.5 —-0.02
15 10800* 3.9 4.4 0.9 0.07
20 10800* 6.4 4.6 1.4 0.53
25 10800* 10.0 5.3 1.9 0.88
50 10800* 354 6.5 5.5 2.38
75 10800* 70.5 5.9 12.1 5.97
100 10800* 145.3 6.3 23.0 9.35
150 10800* 348.0 6.0 62.2 18.06
200 10800* 625.7 5.9 109.7 31.01

As can be observed from Table 3.19, the results indicate that the proposed algorithm runs
quickly even for large size instances. The minimum and maximum number of loops, for all
instances, are four and 13, respectively. Instances of up to 100 nodes are solved in 145
seconds on average. The algorithm requires just over 10 minutes of computation time to solve
instances with 200 nodes and is able to produce much better results than CPLEX does in
three hours. The improvements can be as high as 10% for instances of up to 100 nodes,
around 18% for instances with 150 nodes and around 30% for instances with 200 nodes.
CPLEX was not able to find optimal solutions in three hours for 160 instances out of the total
of 180 instances tested. The average CPU time per iteration of the algorithm is less than two

minutes.
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3.4.6 The analysis of speed values

This part of the analysis focuses on the speed values used in the solutions to some PRP
instances with 100 nodes. Table 3.20 provides the percentage of three different speed cate-
gories: the optimal speed which minimises fuel consumption costs under column v} (equation
3.34), the optimal speed which minimises fuel consumption and driver costs under column v;
(equation 3.33), and the speed values different v; and v, under column vs.

TaeLe 3.20: Obtained speed values on PRP instances

vi v; V3

(%) (%) (%)
UK100-01 4.4 912 44
UK100-02 53 93.0 4.4
UK100.03 44 877 7.0
UK100.04 114 825 7.0
UK100.05 1.8 904 6.1
UK100-11 53 860 26
UK100-12 7.0 895 1.8
UK100-13 4.4 904 0.0
UK100-14 09 912 7.0
UK100-15 35 921 4.4

The results shown in Table 3.20 indicate that the solutions found by the ALNS algorithm very
often use the optimal speed v;, showing that it is, in general, more important to minimise fuel
and driver costs combined as opposed to only the former.

3.5 Conclusions

This chapter has described a heuristic algorithm to solve the PRP. The algorithm iterates be-
tween a VRPTW and a speed optimisation problem, the former solved through an enhanced
ALNS and the latter solved using a polynomial time procedure. The enhanced ALNS uses
new, as well as existing removal and insertion operators, which improve the solution quality.
These operators can be used in ALNS for solving other types of problems. The SOA, on the
other hand, improves the solution produced by the ALNS and minimises fuel consumption
costs and driver wages by optimising vehicle speeds. The SOA has a negligible execution
time, and is generic enough to be used as a stand-alone routine for other types of routing
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problems in order to optimise speed. To fully evaluate the effectiveness of the heuristic algo-
rithm, we have generated different sets of instances based on real geographic data and have
compiled a library of PRP instances. We have presented results of extensive computational
experimentation using the proposed heuristic and have compared it against the solutions pro-
duced using the integer linear programming formulation of the PRP. The results show that the
proposed algorithm is highly effective in finding good-quality solutions on instances with up to
200 nodes.
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Abstract

The bi-objective Pollution-Routing Problem is an extension of the recently introduced Pollution-
Routing Problem (PRP) which consists of routing a number of vehicles to serve a set of cus-
tomers, and determining their speed on each route segment. The objective functions per-
taining to minimisation of fuel consumption and driving time are conflicting and are thus con-
sidered separately. This chapter presents an adaptive large neighbourhood search algorithm
(ALNS), combined with a speed optimisation algorithm, to solve the bi-objective PRP. Using
the ALNS as the search engine, four a posteriori methods, namely the weighting method, the
weighting method with normalisation, the epsilon-constraint method and a new hybrid method
(HM), are tested using a scalarisation of the two objective functions. The HM combines adap-
tive weighting with the epsilon-constraint method. To evaluate the effectiveness of the algo-
rithm, new sets of instances based on real geographic data are generated, and a library of
bi-criteria PRP instances is compiled. Results of extensive computational experiments with
the four methods are presented and compared with one another by means of the hypervol-
ume and epsilon indicators. The results show that HM is highly effective in finding good-quality
non-dominated solutions on PRP instances with 100 nodes.

4.1 Introduction

Until now, the planning of freight transportation activities has mainly focused on ways of saving
money and increasing profitability by considering internal transportation costs only, e.g., fuel
cost, drivers’ wages (see, e.g., Crainic, 2000; Forkenbrock, 1999, 2001).

Freight transportation in the United Kingdom (UK) is responsible for 22% of the CO, emissions
from the transportation sector, amounting to 33.7 million tonnes, or 6% of the CO, emissions in
the country, of which road transport accounts for a proportion of 92% (McKinnon, 2007). The
2008 Climate Change Act commits the UK to an ambitious and legally binding 80% reduction
in greenhouse gases (GHG) emissions by 2050, from a 1990 baseline. The transportation
sector has an important role to play, as the third largest GHG contributor, in achieving reduction
targets in the UK (Tight et al., 2005). The most prominent GHG is carbon dioxide (CO,), the
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emissions of which are directly proportional to the amount of fuel consumed by a vehicle. This
amount is dependent on a variety of vehicle, environment and traffic-related parameters, such

as vehicle speed, load and acceleration (Demir et al., 2011).

Freight transportation planning has many facets, particularly when viewed from the multiple
levels of decision making. Arguably the most famous problem at this level is the well-known
Vehicle Routing Problem (VRP), which consists of determining routes for a fleet of vehicles to
satisfy the demands of a set of customers. The traditional objective in the standard VRP is to
minimise a cost function which is traditionally considered to be the total distance traveled by all
vehicles. Taking a more explicit look at externalities of freight transportation, and in particular
vehicle routing, Bektas and Laporte (2011) introduced the Pollution-Routing Problem (PRP)
which aims at minimizing a total cost function comprising fuel and driving costs in the presence

of time windows.

Most real-world problems involve multiple objectives. In the context of the PRP, two important
objectives should be taken into account, namely minimisation of fuel consumption and the
total driving time. The amount of fuel consumption depends on the energy required to move
a vehicle from one point to another. As discussed in Demir et al. (2012a), for each vehicle
there exists an optimal speed yielding a minimum fuel consumption. However, this speed is
generally lower than the speed preferred by vehicle drivers in practice. Another important
issue in road transportation is time management. In freight transport terminology, time is
money and it is essential for firms to perform timely deliveries in order to establish and keep
a good reputation. In practice, drivers’ schedules tend to be flexible, with different numbers
of hours worked each day, subject to driving time regulations. If a saving of one hour can be
achieved on a given vehicle route, this would imply reducing the corresponding driver’s costs
by an hour (Fowkes and Whiteing, 2006). Reduction in time spent on a route can be achieved
by travelling at higher speed, but this, in turn, increases fuel costs. Since the two objectives
of minimizing fuel and time are conflicting, the problem requires the use of multi-objective
optimisation to allow an evaluation of the possible trade-offs.

In this chapter, we investigate a bi-objective vehicle routing problem in which one of the objec-
tives is related to fuel consumption and the other to driving time. This chapter also describes
an enhanced adaptive large neighbourhood search (ALNS) algorithm for the bi-objective PRP,
integrating the classical ALNS mechanism of Ropke and Pisinger (2006a) with a specialised
speed optimisation algorithm described in Hvattum et al. (2012) and in Demir et al. (2012a).
The scientific contribution of this study is four-fold: (i) to introduce of a bi-objective variant
of the Pollution-Routing Problem, (ii) to apply and test existing multi-objective techniques to
solve the bi-objective PRP, (iii) to describe a new hybrid heuristic for the bi-objective PRP, and
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(iv) to perform extensive computational experiments using four a posteriori methods evaluated

by means of two performance indicators.

The remainder of this chapter is organised as follows. In Section 4.2 we provide a general
overview of multi-objective optimisation and we summarise the existing literature on multi-
objective VRPs. Section 4.3 presents the bi-objective PRP along with a mathematical pro-
gramming formulation. Section 4.4 includes the description of the heuristic algorithm. Sec-
tion 4.5 presents the generation of the instances and the results of extensive computational
experiments, together with managerial insights. Conclusions are stated in Section 4.6.

4.2 Multi-Objective Optimisation

Multi-objective optimisation (MOOQO), also known as multi-objective programming, multi-criteria
or multi-attribute optimisation, is the process of simultaneously optimizing two or more conflict-
ing objectives subject to a number of constraints. In this section, we consider a MOO problem
of the form

(MOO) minimise {fi(x), f2(x), ..., fr(x)} (4.1)
subjectto x € S, (4.2)

where f;:R"—>R are k > 2 objective functions to be minimised simultaneously. The decision
variables x = (xy, ..., x,)” belong to a non-empty feasible region (set) S € R". If there is no
conflict between the objective functions, then a solution in which every objective attains its
optimum values can be found. In this case, no special methods are needed. To avoid such
trivial cases, we assume that no such solution exists. This means that the objective functions
are at least partly conflicting. They may also be incommensurable, i.e., measured in different
units (Miettinen, 1999), as is the case in this chapter.

For non-trivial multi-objective problems, one cannot identify a single solution that simultane-
ously optimises every objective. While searching for solutions, one reaches a point such that,
when attempting to improve an objective, other objectives suffer as a result. A solution is called
non-dominated, Pareto optimal, or Pareto efficient if it cannot be eliminated from considera-
tion by replacing it with another solution which improves upon one of the objectives without
worsening another. Finding such non-dominated solutions, and quantifying the trade-offs in
satisfying the different objectives, is the goal of setting up and solving a MOO problem. The
next section presents formal definitions of Pareto optimality.
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4.2.1 Pareto optimality

In single objective optimisation problems, the main focus is on the space of the decision vari-
ables. In contrast, multi-objective problems are concerned with the objective function space.
The concept of decision and objective space, and the correspondence between the two, are
illustrated in Figure 4.1.

X2 f2
o~

Pareto front

X1 fi
Decision space Objective space

Fiaure 4.1: Decision and objective space

According to the concept of Pareto-optimality introduced by Vilfredo Pareto (see Pareto, 1971),
every Pareto optimal point is an equally acceptable solution of the multi-objective optimisation
problem. However, it is generally desirable to produce a single solution. Selecting one out of
the set of Pareto optimal solutions calls for information that is not contained in the objective
function, which differentiates MOO from single-objective optimisation. This requires a decision
maker to select a solution. A decision maker is a person or a group of people with insight
into the problem being solved and who can express preference relations between different

solutions.

4.2.2 Multi-objective optimisation methods

In this section, we review several methods for solving MOO problems and for generating Pareto
optimal solutions. General references on this topic can be found in Ehrgott and Gandibleux
(2002) and Jozefowiez et al. (2008a).
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Methods for MOO can be classified in various ways. One of them is based on whether many
Pareto optimal solutions are generated or not, and on the role of the decision maker in solving
the MOO problem (Rangaiah, 2009). Such a classification is shown in Figure 4.2, where
the methods are initially grouped into two: (i) generating methods and (ii) preference-based
methods. The former group of methods aims at generating one or more Pareto optimal points
without any prior input from decision maker. In contrast, the latter uses extra information from
a decision maker as part of the solution process. Generating methods are further divided into
three: (i) no-preference methods, (ii) a posteriori methods using a scalarisation approach, and
(i) a posteriori method using a multi-objective approach.

—  No-preference methods

A posteriori methods using

— Generating methods o
= scalarization approach

A posteriori methods using
multi-objective approach

A priori methods

Multi-objective optimization

L1 Preference-based methods

Interactive methods

Fiaure 4.2: Classification of multi-objective optimisation methods

No-preference methods do not require any prior information and generally yield only one
Pareto optimal point. Examples of such methods include global criterion and the multi-objective
bundle method (Wierzbicki, 1999). The second type of a posteriori methods use a scalarisa-
tion approach. Scalarisation means converting the problem into a single or a family of single
objective optimisation problems using a real-valued objective function, termed the scalarising
function. The weighting and e-constraint methods belong to a posteriori methods based on
a scalarisation approach in which a series of scalarised single objective problems have to be
solved to find the Pareto optimal points (Coello et al., 2002; Deb, 2001). The third type of a
posteriori methods use multi-objective rank trial solutions based on the objective function val-
ues. Examples are the non-dominated sorting genetic algorithm and ant colony optimisation.
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All a posteriori methods provide many Pareto optimal solutions to the decision maker who will
then select their preferred one (Fonseca and Fleming, 1995).

Preference-based methods are further divided into two: (i) a priori and (ii) interactive methods.
In the former, preferences of a decision maker are sought and are then included in the initial
formulation of a single objective problem. Some of the a priori methods are value function
methods, lexiographic ordering and goal programming. The latter requires interaction with
the decision maker during the solution process. Examples are interactive surrogate worth
trade-off method and the NIMBUS method (Deb and Chaudhuri, 2007).

This chapter focuses on the use of a posteriori methods using scalarisation of the objective
functions. The methods used in this chapter are described below.

4.2.2.1 The weighting method (WM)

In the weighting method, the idea is to associate each objective function with a weighting
coefficient and to minimise the weighted sum of the objectives. This way, multiple objective
functions are transformed into a single objective function as in Miettinen (1999). We assume
that the weighting coefficients w; are non-negative for all i = 1, ..., k. Weights are normalised
in such a way that Zf.‘zl w; = 1. The MOO is then transformed into the following problem:

k

minimise Zwi £i(x) (4.3)
i=1

subjectto x e S. (4.4)

Problem (4.3)—(4.4) is a single-objective optimisation problem which can be solved by existing
methods, such as linear or integer programming.

4.2.2.2 The weighting method with normalisation (WMN)

This method is an extension of weighting method where the objective functions are normalised
to take values between 0 and 1 (Grodzevich and Romanko, 2006). This is done by using the
differences of optimal function values in the worst (called the Nadir) and the best (called the
Utopia) points, which yield the length of the intervals in which objective functions vary within
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the Pareto optimal set. The MOO problem is transformed into the following problem:

k
minimise Zwi(f,-(x) -1 -2Y) (4.5)
i=1

subjectto x € S, (4.6)

where zV is the ideal objective vector, i.e., the Utopia point, and 7" is the Nadir point. The
ideal point, which optimises all objective functions, is not normally feasible because of the
conflicting objectives but provides lower bounds for the Pareto optimal set. The ideal point
can be calculated as z” = fi(x!) where z; = argmin, {fi(x) : x € S}. The Nadir point,
which corresponds to the worst objective value for each of the objectives, may be feasible and
provides upper bounds for the Pareto optimal set. It is calculated as zﬁv = max|<j<k fi(xlih, Vi =
1,..,k. In practice, these points can be found by calculating the best and the worst values of
each objective function.

4.2.2.3 e-constraint method (ECM)

In the e-constraint method, only one of the objective functions is selected to be optimised,
which all others are converted into constraints by imposing an upper bound. The problem to
be solved then takes the form

minimise  fi(x) (4.7)
subjectto fi(x) <€ Yj=1,...kj#1 (4.8)
xeS. (4.9)

In order to generate as many Pareto optimal solutions as possible, the right-hand side of
constraint (4.8) is gradually increased by a small amount and the problem is solved again

whenever ¢; is increased.

As indicated by Mavrotas (2009), this method offers several advantages over WM and WMN.
The weighting method may lead to an extreme solution. In contrast, the e-constraint method is
able to produce non-extreme (interior) efficient solutions. Moreover, the computational effort
is less than that of the weighting method. Furthermore, WMN requires the normalisation of
the objective functions which may affect the results, whereas this is not required for the e-
constraint method. Other extensions of the e-constraint method are discussed by Ehrgott and
Ryan (2002) and Laumanns et al. (2006).
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4.2.2.4 Hybrid method (HM)

This method combines the adaptive weighting and e-constraint methods. The name “hybrid”
was suggested by Chankong and Haimes (1983) and Vira and Haimes (1983). The proposed
hybrid method takes the form

k
minimise Zwi (fix) - 2¥) (4.10)
i=1
subjectto fi(x)<e€ Vj=1,..k (4.11)
x€eS, (4.12)

wherew; >0V(@i) i=1,..,k.

HM is inspired by the ECM because of its several advantages over other a posteriori methods.
The main motivation of the HM is to improve the solution quality of non-dominated solutions
with an adaptive implementation of weights while limiting one of the objective functions. HM
therefore does not need to normalise the objective functions as in WMN.

4.2.3 Multi-objective route planning

In this section, we look at the existing studies on the multi-objective VRP. The VRP has been
the subject of intensive research efforts both for heuristic and exact optimisation approaches.
However, the multi-objective variant of the VRP has not been intensively investigated. A sur-
vey of multi-objective on VRPs can be found in Jozefowiez et al. (2008b), who present a
classification of objectives related to different aspects of VRPs. These are: tour (cost, profit,
makespan, balance and etc.), nodes/arcs (time windows, customer satisfaction and etc.), and
resources (management of the fleet, characteristics of the product to collect/deliver, etc.).

Evolutionary algorithms constitute a widely popular approach in solving multi-objective VRPs.
Due to their population-based nature, these algorithms are able to approximate the whole
Pareto front (or surface) in a single run. An extensive survey on multi-objective evolutionary
algorithms can be found in Zitzler et al. (2000), Veldhuizen and Lamont (2000) and Zhou
et al. (2011). Among the existing work on multi-objective VRPs, we mention the ones below.
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Lee and Ueng (1999) have studied a version of the vehicle routing problem in which the aim is
to minimise the total distance and to balance the workload among employees. They have pro-
posed a heuristic to determine a trade-off between the two objectives. A VRP model that con-
siders three objectives and multiple periods is described by Ribeiro and Ramalhinho-Lourenco
(2001). The first objective is cost minimisation, the second is the balance of work levels and
the third is marketing research. The authors propose an iterated local search heuristic us-
ing weighting method to generate solutions. Zografos and Androutsopoulos (2004) consider
a bi-objective Vehicle Routing Problem with Time Windows (VRPTW). These are minimisa-
tion of length and the risk of transporting hazardous materials. The authors propose a local
search heuristic for this problem. In the context of passenger transportation, Pacheco and
Marti (2005) study school bus routing with two objectives: to minimise the number of buses,
and to minimise the longest time a student must stay in the bus. The authors present a number
of constructive solution methods and a tabu search procedure to obtain non-dominated solu-
tions. Chen et al. (2008) study a complex VRP in a multi-modal network, where besides arc
capacities and time windows, additional constrains (i.e., mandatory and forbidden nodes) are
considered. The authors attempt to optimise the travel time, the operative cost and a trans-
portation mean sharing index for a real-life application in Italy. Another real-life application
study was introduced by Caramia and Guerriero (2009). The authors worked on selecting an
appropriate route for transporting nuclear waste in Taiwan. The objectives of this study are the
minimisation of travel time, transportation risk and the exposed population. Another relevant
study is that of Paquette et al. (2011), who proposed a tabu search algorithm incorporating a
routing cost and quality of service in the dial-a-ride problem, where the reference point method
is used to generate several non-dominated solutions. Finally, we mention the work by Qian
et al. (2011), who seek to improve helicopter transportation safety by solving a routing problem
with a risk objective expressed in terms of expected number of fatalities. Jabali et al. (2012a)
consider a VRP model that takes into account of travel time, fuel, and CO, emissions costs in
a time-dependent context, where the latter are estimated using emission functions provided
in the MEET report (Hickman et al., 1999). The authors describe a tabu search algorithm for
the problem and show, through computational experiments, that limiting vehicle speeds to a
certain extent is effective in reducing emissions although costly in terms of total travel time.

4.3 The Bi-Objective Pollution-Routing Problem

We now describe the bi-objective PRP. This problem is defined on a complete directed graph
G = (N, A) where N = {0, ....,n} is the set of nodes, 0 is a depot and A = {(i, j) : i, j € N and
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i # j}is the set of arcs. The distance from node i to node j is denoted by d;;. A fixed-size
fleet of m vehicles, each of capacity Q, is available to serve the nodes. The set Ny = N\{0}
is a customer set, and each customer i € Ny has a non-negative demand ¢; as well as a time
interval [a;, b;] in which service must start; early arrivals to customer nodes are permitted but
a vehicle, arriving early must wait until time a; before service can start. The service time of
customer i is denoted by ;. The PRP, proposed by Bektas and Laporte (2011) and further
studied by Demir et al. (2012a), is a single-objective optimisation problem. Here, we look at
the trade-off between the two conflicting objectives in the PRP, namely fuel consumption and
total driving time. These objectives are described in greater detail below.

4.3.1 The fuel consumption objective

The fuel consumption objective is based on the comprehensive emissions model described
by Barth et al. (2005), Scora and Barth (2006), and Barth and Boriboonsomsin (2008), which
is an instantaneous model estimating fuel consumption for a given time instant. According to

this model, the fuel rate is given by
FR = &NV + P/n)/, (4.13)

where ¢ is the fuel-to-air mass ratio, & is the engine friction factor, N is the engine speed, V
is the engine displacement, and n and « are constants. The parameter P is the second-by-
second engine power output (in kW), and can be calculated as

P = Ptract/nlf + Pace, (4.14)

where 7,7 is the vehicle drive train efficiency, and P, is the engine power demand associated
with running losses of the engine and the operation of vehicle accessories such as air con-
ditioning. The parameter P, is the total tractive power requirements (in kW) placed on the
wheels:

Pirac: = (M7 + Mgsin6 + 0.5C,pAv* + MgC, cos 6)v/1000, (4.15)

where M is the total vehicle weight (kg), v is the vehicle speed (m/s), 7 is the acceleration
(m/s?), @ is the road angle, g is the gravitational constant, and C, and C, are the coefficients
of the aerodynamic drag and rolling resistance, respectively. Finally, p is the air density and A
is the frontal surface area of the vehicle. For a given arc (i, j) of length d, let v be the speed of
a vehicle speed traversing this arc. If all variables in FR except for the vehicle speed v remain
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constant on arc (i, j), the fuel consumption (in L) on this arc can be calculated as

F(v) = AkNVd/v (4.16)
+ AyPd/v, (4.17)

where A = &/ky and y = 1/1000n,n are constants and s is the conversion factor of fuel from
gram/second to liter/second. Furthermore, let M be the load carried between nodes i and ;.
More specifically, M = w + f, where w is the curb weight (i.e., the weight of an empty vehicle)
and f is the vehicle load. Let @ = 7 + g sin 6 + gC, cos 6 be a vehicle-arc specific constant and
B = 0.5C4pA be a vehicle-specific constant. We omit the indices (i, j) on the variables v, d, f
and « to simplify the presentation. Then, F(v) can be rewritten as

F(v):/l(kNV+wycw+ya/fv+ﬁyv3)d/v. (4.18)

In order to model (4.18) as an objective function, we use a discretised speed function defined
by R non-decreasing speed levels V' (r = 1,..., R). Binary variables z{j indicate whether or not
arc (i, j) € Ais traversed at a speed level r. We further define binary variables x;; equal to 1
if and only if arc (i, j) appears in the solution, continuous variables f;; representing the total
amount of flow on each arc (i, j) € A, and continuous variables y; representing the time at
which service starts at node j € Ny. The mathematical representation of the fuel consumption

objective is shown below:

R
minimise > kNVAd;; » /7" (4.19)
(i )eA =1
+ Z wy/la,-jd,-jx,-j (420)
(i,)eA
+ Z y/laijd,-jf,-j (4-21)
(i, )eA
R
+ > Byadi;y (i (4.22)
(i.)eA =1

The objective function (4.19)—(4.22) is derived from (4.18). For further details, the reader is
referred to Demir et al. (2012a).
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4.3.2 The driving time objective

The driving time objective is the sum of the total journey time of all routes starting and end-
ing at the depot. This time is equal to the arrival time to the depot under assumption that
vehicles start their journey at time zero. The variable s; represents the total time spent on a
route that has a node j € Ny as last visited before returning to the depot. The mathematical
representation of the driving time objective is

minimise Z s (4.23)
JENo

This objective measures the total driving time. The total time spent on a route where customer
Jj € Ny is visited last before returning to the depot can be calculated as

Sj :Cj+l‘j+dj()/vr, (4-24)

where c; is the waiting time at node j, t; is the service time at node j, and (djo/Vv") is the
journey time from last node of a route to the depot.
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4.3.3 Constraints

The constraints of the integer programming formulation of the bi-objective PRP are similar to
those given in Bektas and Laporte (2011) and Demir et al. (2012a), and are shown below:

D ixoj=m (4.25)
JEN
inj =1 Vie No (4.26)
JEN
D oxii=1 VjieNo (4.27)
ieN
D= D hi=a Vie No (4.28)
JEN JEN
qjxij < fij < (0 — qi)xij V@i, j)eA (4.29)
Vim Y+t ) didy/V < Kij(1=xi) Vi€ N,j€No,i# (4.30)
reR
a; <y; <b; Vie Ny (4.31)
Vitti=si+ > dide/ <L -xj0)  VjeN (4.32)
reR
R
szj = x;j V@, j) e A (4.33)
r=1
xi; €1{0,1) V@, j) e A (4.34)
fii=0 VG, j) € A (4.35)
yi>0 Vie No (4.36)
2 €40,1) VG, j)e A,r=1,..R (4.37)

Constraints (4.25) state that each vehicle must leave the the depot. Constraints (4.26) and
(4.27) are the degree constraints which ensure that each customer is visited exactly once.
Constraints (4.28) and (4.29) define the arc flows. Constraints (4.30)—(4.32), where K;; =
max{0,b; + s; + d;;/l;; — a;}, and L is a large number, enforce the time window restrictions.
Constraints (4.33) ensure that only one speed level is selected for each arc and z{j =11f

xijz 1.

The PRP is NP-hard since it is an extension of the classical VRP. Bektas and Laporte (2011)
have shown that even a simplified version of this problem cannot be solved optimally for mid-
size instances. For this reason, heuristics are needed to obtain good-quality solutions within
short computational times, one which we describe in the following section.
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4.4 A Bi-Objective Adaptive Large Neighbourhood Search Algo-
rithm with Speed Optimisation Algorithm

In this section, we present an enhanced version of the ALNS algorithm introduced in Demir
et al. (2012a), to solve the bi-objective PRP. This metaheuristic is an extension of the large
neighbourhood search (LNS) heuristic first proposed by Shaw (1998), and based on the idea
of modifying an initial solution by means of destroy and repair operators. If the new solution is
better than the current best solution, it replaces it and use as an input to the next iteration. The
ALNS heuristic was put forward by Ropke and Pisinger (2006a) to solve variants of the VRP.
Rather than using one large neighbourhood as in LNS, it applies several removal and insertion
operators to a given solution. Insertion operators are used to repair a partially destroyed
solution by inserting the nodes in the removal list back into the solution. These operators
insert the removed nodes back into the existing routes when feasibility with respect to the
capacity and time windows can be maintained, or they create new routes. The neighbourhood
of a solution is obtained by removing some customers from the solution and reinserting them
back. Our implementation uses the classical Clarke and Wright (1964) heuristic to construct
an initial solution. Furthermore, we use 12 removal and five insertion operators in the ALNS
algorithm, which are selected dynamically in the algorithm according to their past performance.
To this end, each operator is assigned a score which is increased whenever it improves the
current solution. The new solution is accepted if it satisfies a criterion defined by the simulated
annealing (Kirkpatrick et al., 1983) used as local search framework applied at the outer level.
A speed optimisation algorithm (SOA) is applied at each iteration of the algorithm. Given a
vehicle route, the SOA consists of finding the optimal speed on each arc of the route in order

to minimise an objective function comprising fuel consumption and driving time.
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The pseudocode of the overall algorithm is given in Algorithm 4.

Algorithm 4: The bi-objective ALNS algorithm

input : a set of removal operators D, a set of insertion operators I, initialisation constant
Pinit, cooling rate h, maximum number of iterations j,;;.

output: X

Generate an initial solution by using the Clarke and Wright (1964) algorithm
Let T be the temperature and j be the counter initialised as j = 1
Let S be the non-dominated list and S = &
Initialise probability P, = 1/|D| for each destroy operator d € D and probability P; = 1/|I| for
each insertion operatori € 1
Set the all speed levels to at its maximum level Let X yrens = Xpest = Xinit
repeat
Select a removal operator d* € D with probability Py
Let X,,..,, be the solution obtained by applying operator d* to X ,,rren:
Select an insertion operator i* € I with probability P;
Let X,.,, be the new solution obtained by applying operator i* t0 X ,rent
Apply Speed Optimisation Algorithm on X,
if c(Xnew) < C(Xcurrens) then

| Xewren = Xuew
Lety = e (©Xnew)—c(Xeurren))/T
Generate a random number ¢ € [0, 1]
if £ <vthen

Xcurrent = Xnew

if C(Xcurrent) < C(Xbesl) then
B Xbest = Xnew

if X,..,, is not dominated by any x € S then
S — S ) {Xnew}

Compare X,.,, with non-dominated set and add to the set if X,,.,, is non-dominated
solution

A —hA

Update probabilities using the adaptive weight adjustment procedure

Adjust all speed levels to their maximum speed levels if a preset number of iterations is
run

je—j+1

until j < jux
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In Algorithm 4, X is the best solution found during the search, X.,,..: is the current solution
obtained at the beginning of an iteration, and X,.,, is a temporary solution found at the end
of iteration that can be discarded or become the current solution. The objective value of
a solution X is denoted by ¢(X) and is calculated depending on the bi-objective method in
use. A solution X, is always accepted if c(X,er) < c(Xeurrent), @and accepted with probability
e~ Gnew)=cKeuwrrenIT if (X,0,) > ¢(Xewrrens) Where T denotes the temperature. The temperature
is initially set at c(Xi,i;) Pinir Where c(X;yir) is the objective function value of the initial solution
Xinir @and Py, is an initialisation constant. The current temperature is gradually decreased
during the course of the algorithm as AT, where 0 < h < 1 is a fixed parameter. The algorithm
returns the set S of non-dominated solution found in the course of algorithm. Figure 4.3
depicts the steps of the ALNS algorithm.

4.5 Computational Results

This section presents the results of extensive computational experiments performed to assess
the performance of the multi-objective methods using our ALNS algorithm with speed optimi-
sation algorithm. We first describe the generation of the test instances, the parameters and the
quality indicators used to assess the performance of the proposed methods. We then present
the computational results. The parameters used in the experiments are given in Table 4.1.

4.5.1 Generation of the test instances

For the experiments, 13 sets of 10 instances each were generated, resulting in a total of 130
instances. Each instance has 100 nodes, which represent randomly selected cities from the
UK, and uses real road distances. In Table 4.2 we give the design of each instance set.
This table presents the number of vehicles, the lower and upper bounds of time windows, the
service times and the load intervals for each instance set. Data pertaining to time windows,
service times and load are randomly generated within these intervals. Each instance setis of a
different nature, characterised by the average number of vehicles (minimum number required
based on load), time windows (loose or tight) and load (homogeneous or heterogeneous). All
instances are available for downloading from http://www.apollo.management.soton.ac.
uk/prplib.htm.


http://www.apollo.management.soton.ac.uk/prplib.htm
http://www.apollo.management.soton.ac.uk/prplib.htm
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Fiaure 4.3: The framework of the ALNS with speed optimisation algorithm
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TasLE 4.1: Parameters used in the computational tests

Notation  Description Typical values
w curb-weight (kg) 6350

¢ fuel-to-air mass ratio 1

k engine friction factor (kJ/rev/litre) 0.2

N engine speed (rev/s) 33

Vv engine displacement (litres) 5

g gravitational constant (m/s?) 9.81

(&F] coefficient of aerodynamic drag 0.7

p air density (kg/m?) 1.2041

A frontal surface area (m?) 3.912

C, coefficient of rolling resistance 0.01

nf vehicle drive train efficiency 0.4

n efficiency parameter for diesel engines 0.9

fe fuel and CO, emissions cost per litre (£) 1.4

fa driver wage per (£/s) 0.0022

K heating value of a typical diesel fuel (kJ/g) 44

7] conversion factor (g/s to L/s) 737

vt lower speed limit (m/s) 5.5 (or 20 km/h)
v upper speed limit (m/s) 27.8 (or 100 km/h)

TasLE 4.2: The general structure of 100-node instances

Time window Load
Instance  Average Lower Upper Service
sets # of bound bound time
vehicles S S S kg

1 5 0 32400 300 180

2 5 600-2400 27000-32400 300 180

3 5 0 32400 300 130-230
4 5 600-2400 27000-32400 300 130-230
5 10 0 32400 600 360

6 10 600-2400 27000-32400 600 360

7 10 0 32400 600 310-410
8 10 600-2400 27000-32400 600 310-410
9 20 0 32400 900 720
10 20 600-2400 27000-32400 900 720
11 20 0 32400 900 670-770
12 20 600-2400 27000-32400 900 670-770
13 5-20 600-2400 27000-32400 300-900  180-760

The proposed algorithm was implemented in C. All experiments were conducted on a server
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with 3GHz speed and 1 GB RAM. A preliminary analysis was conducted to fine-tune the pa-
rameters. No claim is made that our choice of parameter values is the best possible. However,
the settings used generally worked well in our preliminary analysis. The detailed values of all
ALNS parameters are presented in Demir et al. (2012a), with the exception of the new settings
given in Table 4.3.

TasLE 4.3: Parameters used in the ALNS heuristic

Description Typical
values

Number of loops (V1) 11

Total number of iterations (V) 10000

Number of iterations for roulette wheel (N3) 200

Lower limit of removable nodes (s) 4
Upper limit of removable nodes () 16
The increase rate of the ECM (¢) 300 s

We ran the algorithm, N; times each with N, iterations for each instance. The scores of
the operators were updated every N3 iterations. The removable nodes are randomly chosen
between s = 4 and s = 16 at each iteration.

4.5.2 Bi-objective solution methods

We have tested the following four methods. In each, the ALNS is used as the search engine
to find and store the non-dominated solutions.

1. WM: Here the objective is to minimise the sum of a weighted bi-objective function. The
weights are increased from zero to one in increments of 0.1. The aggregated objective
function is calculated as wf; + (1 — w)f, where, fi is the fuel consumption (in L) and f>
is the driving time (in h).

2. WMN: The objective functions are normalised using Nadir (zf’) and Utopian (z,.U) points
(i = 1,2). The aggregated objective function is calculated as w(f; —z¥)/(z} —z{)+ (1 -

w)(fo = 29)/(2) = 2¥), where fi and f, are as defined above.

3. ECM: The algorithm is first run to find the value ¢, which is the minimum value f, attains
at the end of N, iterations. The arrival time to the depot is then fixed to e;. The algorithm

is then run to minimise f;, and e, is increased by ¢ at every iteration.
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4. HM: The algorithm starts as in ECM. However, the objective function is calculated as
the weighted of two functions as w(f; —z}/) + (1 - w)(f2 - z3). The weight w is updated
during the algorithm. To update the weights during the search, we have used the same
procedure as in Paquette et al. (2011):

wi =wi1 (fi(x) = z0) (i = 1,..., k) (4.38)

k
wi =wa/ Y wi(h=1,...k), (4.39)
i=1

where wy, is the normalised weight of the objective function .

4.5.3 Solution quality indicators

The performance assessment of techniques in multi-objective optimisation is less straightfor-
ward than in single objective optimisation. Whereas the output of a single objective function
can be compared directly with lower or upper bounds, the output of multi-objective optimisa-
tion is a set of solutions approximating the Pareto optimal front. Zitzler et al. (2003) present
a review of the existing quality assessment indicators. We use two of these to compare our
four methods, namely the hypervolume indicator and the e-indicator (Figure 4.4). These are
described in more detail below. We also use the number of Pareto solutions found as an
additional way of assessing performance.

f2 f2

Nadir point

L

Reference set

fi

(a) Hypervolume indicator (b) Epsilon indicator

Fiaure 4.4: Solution quality indicators
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4.5.3.1 Hypervolume indicator

This metric was proposed by Zitzler and Thiele (1998a,b). The hypervolume indicator I, (H)
computes the volume of a given region H. It is depicted in Figure 4.4(a) for the bi-objective
case. In this case, each point in the approximation set forms a rectangle shown by the shaded
area with respect to a reference point (generally the Nadir point) that lies beyond the bounds of
the approximation set. The hypervolume indicator is the area of the union of all rectangles (see
Figure 4.4(a)). The larger the value of the indicator (area), the better is the set of solutions.

4.5.3.2 Epsilon indicator

The epsilon indicator I.(S,R) was proposed by Zitzler et al. (2003). An illustration of the
epsilon indicator in two dimensions is given in Figure 4.4(b). The epsilon indicator relies on
the concept of epsilon-dominance which is explained below:

Definition 4.1. Additive e-dominance relation. Let x;, x; € S, x; is said to additively e-dominate
xj, and written as x; >, x; (or equivalently f(x;) < e+ f(x;)).

Definition 4.2. Multiplicative e-dominance relation. Let x;, x; € S, x; is said to multiplicatively

e-dominate x;, and written as x; >, x; (or equivalently f(x;) < ef(x;)).

Of these two definitions, the multiplicative one is the most commonly used one in the literature.
The e-indicator is based on the weakly dominated dominance relation. For any method, the
smaller is the € value, the better is the performance of the method. The e-indicator can be
calculated as I.(S,R) = max,eg mings e(s, ) = max{fi(s) — r;]l < i < k}, where r; is the i
component of the objective vector r, and R is the reference set defined here as the union of
all known Pareto optimal solutions.

4.5.4 Results of the methods on PRP instances

In this section, we present the computational results obtained on PRP instances. Table 4.4
provides, for each method tested, the average CPU time required to solve all instances of each
set. All values are averaged over the 10 instances of each set. In this table, the instance sets
are grouped into five. Group | is characterised by homogeneous loads and loose time win-
dows, whereas Group Il has homogeneous loads but tight time windows. Group Il instances
have heterogeneous loads and loose time windows. Finally, Group IV and V instances have
heterogeneous loads and tight time windows.
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TasLE 4.4: Average CPU times of the four solution methods (in seconds)

Instance  Instance WM WMN ECM HM

groups sets
1 198.4 199.5 196.6 198.7
| 5 133.8 1329 1278 123.9
9 120.8 119.4 107.6 93.9
Average 151.0 150.6 144.0 138.8
2 2122 218.8 2106 210.0
I 6 148.2 1472 1355 131.6
10 127.0 1269 1145 1023
Average 1625 164.3 153.5 148.0
3 237.0 2409 2358 232.7
1]l 7 156.4 156.6 147.7 1445
11 1323 132.0 1271 119.7
Average 1752 1765 1702 165.6
4 246.4 2488 2481 2453
\" 8 1685 171.8 159.0 155.3
12 1379 1389 12569 115.2
Average 1842 1865 177.7 1719
13 152.6 153.7 147.1 1419
Global
average 167.0 168.3 160.2 155.0

As can be seen from Table 4.4, the methods are fast. Instances of 100 nodes are solved within
155 s on average for the HM method, based on around 110000 iterations in total. The data in
Table 4.4 reveal that for any type of instance, the overall CPU times required by HM is smaller
than that of the other methods. The ECM method has the second best performance in terms
of CPU times. The average computation times of two weighting methods (WM and WMN) are
almost the same. This is because these two methods require a similar computational effort to
run. The average CPU time of Group | is around 138 s for HM whereas Group Il is around 148
sec. The difference is due to the heterogeneous load distribution of customers. The effect of
time windows can be seen from the performance of Group Il instances, for which HM requires
165 s on average. The combined effect of time windows and load can be analysed by looking
at the average CPU time of instances Group IV, which is about 171 s. Group IV, namely the
instance set of thirteen, is solved in 142 sec.

Computational results of the performance measurements are summarised in the Table 4.5.
This table presents, for each method, the number of Pareto solutions found, as well as the
values of the hypervolume and the e-indicators.
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TasLE 4.5: Results of quality indicators on bi-objective PRP instances

WM WMN ECM HM
Instance  # of Pareto 15, (S) I(S,R) # of Pareto 1, (S) I(S,R) # of Pareto 1, (S) I(S,R) # of Pareto 11, (S) I(S,R)
sets solutions solutions solutions solutions
1 3.5 21.44 1.1276 2.3 19.21 1.1264 17.4 117.22 1.1255 25.2 118.46 1.1271
5 5.7 67.52 1.1058 3.4 67.96 1.1056 33.8 302.98 1.1054 29.1 334.25 1.1071
9 6.6 440.08 1.1326 3.2 460.55 1.1334 48.9 3958.28  1.1330 60.5 4004.49  1.1340
2 12.3 44.47 1.1421 11.8 43.03 1.1484 19.7 61.97 1.1294 21.1 71.11 1.1227
6 18.1 359.63 1.1283 17.9 388.13 1.1267 28.5 711.99 1.1235 39.4 746.67 1.1081
10 25.0 1519.07 1.1324 19.7 1478.08  1.1407 494 4102.16  1.1413 62.7 4266.04 1.1225
3 3.7 40.52 1.1198 3.6 39.98 1.1196 26.4 156.81 1.1207 30.0 164.63 1.1250
7 4.4 70.92 1.1037 3.3 82.20 1.1031 26.0 331.50 1.1033 31.2 345.82 1.1019
11 4.7 441.61 1.1519 2.7 369.18 1.1532 42.2 3084.67 1.1551 65.7 3343.63 1.1541
4 11.5 94.72 1.1330 10.0 82.88 1.1412 23.2 194.40 1.1312 31.0 199.08 1.1285
8 18.6 165.01 1.1317 14.9 142.35 1.1314 28.5 208.28 1.1292 34.8 289.00 1.1203
12 20.2 1280.08 1.1483 14.5 1319.75 1.1499 48.6 3266.90 1.1481 58.6 3821.56 1.1299
13 16.6 176.57 1.1231 14.7 162.08 1.1304 25.7 293.10 1.1289 30.0 317.12 1.1131
Average 11.6 363.20 1.1293 9.4 358.11 1.1315 32.2 1291.56 1.1288 39.9 1386.30 1.1226
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These results confirm that HM performs very well for all methods, with an average number
of 40 Pareto solutions across all instances. The ECM yields the second best performance
after HM. The number of Pareto solutions found are similar for WM and WMN, which are 11.6
and 9.4, respectively. We now compare the four methods using the two quality indicators.
According to the hypervolume indicator, HM is superior to the other methods with an average
value of 1386.3. In other words, the solutions found by HM represents a larger area than the
other methods. The same indicator yields very poor results for WM and WMN. With the e-
indicator, HM once again exhibits the best performance, yielding the minimum value. The WM
and ECM have a very similar performances based on e-indicator, whereas WMN performs the

worst.

We have also looked the effect of increasing a number of vehicles on the performance mea-
sure. For each method, Table 4.6 presents the number of Pareto optimal solutions found, the
hypervolume and e-indicators. In this table, the instance sets are grouped by the number of
vehicles to see the effect on the resulting solutions.

The analysis of Table 4.6 shows that the average number of Pareto solutions increases with
the number of vehicles. This is because the solution space is enlarged when more vehicles
are needed. Finally, the number of successes of each method using the two indicators is
reported in Table 4.7.

All results show that WM, WMN and ECM are clearly dominated by HM, as far as the success
rate is concerned, indicating that a hybrid use of the existing methods is better suited to our
problem. The weighting methods (WM and WMN) are better for finding extreme (corner)
solutions, but they do not generate many Pareto solutions. On the other hand, the e-constraint
method finds more solutions but most of them are inferior to those provided by WM.

4.5.5 Details of the Pareto solutions

In this part of the analysis, we look at the nature of the Pareto solutions identified by the algo-
rithm. For this purpose, we provide graphs of sample instances from each set for comparing
the four methods in Figures 4.5-4.9, and vice versa in Figures 4.10-4.13. In these figures,
the values on the x-axes represent the driving time objective (f>) and the values on the y-axes
show the fuel consumption (f7).

Figures 4.5-4.9 exhibit similar behaviours for different type of instances. A recurring theme
in the results presented in Figure 4.5 is that driving time can be decreased from about 52-56
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TasLE 4.6: Results of quality indicators on benchmark instances grouped by the number of vehicles

WM WMN ECM HM

Instance  # of Pareto I, (S) I(S, R) # of Pareto I, (S) I(S, R) # of Pareto 1, (S) I(S, R) # of Pareto 11, (S) I(S,R)

sets solutions solutions solutions solutions
1-4 7.8 50.29 1.1306 6.9 46.27 1.1339 21.7 132.60 1.1267 26.8 138.32 1.1258
5-8 11.7 165.77 1.1174 9.9 170.16  1.1167 29.2 388.69 1.1153 33.6 428.93 1.1094
9-12 141 920.21 1.1413 10.0 906.89 1.1443 47.3 3603.00 1.1444 61.9 3858.93 1.1351
13 16.6 176.57 1.1231 14.7 162.08 1.1304 25.7 293.10 1.1289 30.0 317.12 1.1131
Average 12.5 328.21 1.1281 10.4 321.35 1.1313 31.0 1104.35 1.1288 38.1 1185.83  1.1208
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Fiaure 4.7: An instance from set 11
hours to 47—48 hours, depending on the instance tested, without much change in the fuel con-

sumption. Conversely, fuel consumption can be brought down quite significantly, from around
700-800 litres to 400-500 litres with only a slight increase in driving time. This is particularly
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Ficure 4.9: An instance from set 9

apparent in instances 9—11 where the number of vehicles is around 20. Furthermore, all four
methods tested here are consistent with respect to the solutions generated and yield similar
insights. Interestingly, these results on the trade-off between fuel consumption and driving
time show that one does not necessarily need to sacrifice one objective heavily in order to im-
prove the other. The tools presented in this chapter offer ways in which good quality solutions
for the two objectives can be found.

Figures 4.10— 4.13 provide the results of this experiment performed with HM. The figures
indicate that each type of instance has a different behaviour and yields different numbers of
Pareto solutions. In Figure 4.10, the driving time can be decreased from about 24 to 21 hours,
depending on the instance tested, with only a slight increase in the average fuel consumption
for the five routes. As seen in Figures 4.11—4.12, the total fuel consumption and driving time
increase when more routes are needed. This means that more savings in fuel or driving time

can be achieved. Figure 4.13 shows the behaviour of instance set 13 for which a reduction
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Fiaure 4.10: Instance sets 1-4
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Fiaure 4.12: Instance sets 9-12

on fuel consumption from 500 to 280 litres (about 44%) may be achieved by increasing the
driving time from 34.5 hours to 38.6 hours (about 12%).
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Ficure 4.13: Instance set 13

4.5.6 Results for a sample 30-node instance

This section presents the results of a 30-node instance. Our aim is to take a closer look at
the trade-off between the two objectives. Table 4.8 presents two non-dominated solutions
obtained by HM on the total fuel consumption (in L), the total driving time (in h), the total fuel
cost, the total driving time and the total amount of CO,. In calculating the latter, we assume
that a litre of diesel fuel produces 2.67 kg of CO, (Coe, 2005).

TasLe 4.8: Two non-dominated solutions of 30-node instance

# of Total Fuel Operational CO, Fuel Driver Total
routes  distance  consumption time emissions cost cost cost
km L h kg £ £ £
Solution A 6 1621.7 321.57 21.16 858.59 450.20 169.28 619.48
Solution B 6 1270.1 233.54 23.21 623.55 326.96 185.68 512.64

Solutions A and B are depicted in Figure 4.14, with each route shown in a different shade.
Solution A (Figure 4.14(a)) shows a time-minimizing tour of length 1621.7 km consuming
approximately 321.57 L diesel fuel. The tour needs 21.16 hours to be traversed, and the total
amount of CO, emitted is 858.59 kg. Solution B (Figure 4.14(b)) shows a fuel-minimizing tour
of length 1270.1 km consuming around 233.54 L diesel fuel. The total amount of CO, for this
tour is around 623.55 kg, with a driving time of 23.21 h and a total distance of 1270.1 km.

The trade-off between fuel consumption and time for this particular instance indicates that sav-
ings in energy can be achieved by increasing the total duration of routes. The 9.7% increase
in driving time leads to a 27% saving in energy requirements. The reduction of CO, is around
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Fiaure 4.14: Two non-dominated solutions for a 30-node instance
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235 kg if Solution B is preferred to Solution A. In contrast, the reduction in driving time from
23.21 hto 21.16 h (about 8.8%) afforded by solution A implies an increase in CO, emissions
of about 37.7%.

4.6 Conclusions

This chapter has studied the bi-criteria PRP in which one of the objectives is related to CO,
emissions, and the other to driving time. An enhanced adaptive large neighbourhood search
(ALNS) algorithm was proposed for the generation of non-dominated/Pareto optimal solutions.
The algorithm integrates the classical ALNS with a specialised speed optimisation algorithm.
The proposed algorithm first calls the ALNS using fixed speeds as inputs, then optimises
speeds on each route.

Using the ALNS as the search engine, four a posteriori methods, namely the weighting method,
the weighting method with normalisation, the epsilon-constraint method and a new hybrid
method (HM), were tested using a scalarisation of the two objective functions. The HM com-
bines an adaptive weighting with the epsilon-constraint method. To fully evaluate the effective-
ness of the algorithm, new sets of instances based on real geographic data were generated,
and a library of bi-criteria PRP instances was compiled. Results of extensive computational
experimentation of the four methods were presented and compared with one another. Hyper-
volume and epsilon indicators were used to evaluate the performance of the four methods.
Our results show that the HM is highly effective in finding good-quality non-dominated solu-
tions on 100-node instances, both in terms of the hypervolume and of the epsilon indicators,
as compared to the rest of the methods.

One interesting insight derived from the experiments is that one need not compromise greatly
in terms of driving time in order to achieve a significant reduction in fuel consumption and CO,
emissions. The converse of this insight also holds, i.e., considerable reductions in driving time
can be gained if one is willing to increase fuel consumption only slightly. These results imply
that the trade-offs between the conflicting objectives of fuel and time are not such that great
sacrifices need to be made with respect to one objective in order to improve the other. The
tools described in this chapter provide decision makers with a set of solutions from which they
can choose. The multi-objective optimisation tools described for this particular problem are
also general in their applicability in that they are independent of costs, such as those of fuel or

driver wages, which may differ from one organisation to another.
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5.1 Overview

This thesis focused on environmental effects of road transportation and aimed to develop
effective methodologies for planning vehicle routes that minimise CO, emitted by the vehicles.
This final chapter of the thesis highlights the overall content of each of the three main chapters.
It also presents the specific contributions of each chapter to the existing literature, limitations of
the selected techniques and methodologies, and identifies various areas for further research.

5.2 Chapter Il: A Comparative Analysis of Several Vehicle Emis-
sion Models for Freight Transportation

The second chapter of the thesis reviewed and compared several available vehicle emission
models for freight transportation. The chapter presented six different fuel emission models
and compared them with each other. A comparative study of fuel emission models does not
seem to have done beforehand. The chapter can be seen as a first work to analyse and
compare these models. Even though the chapter does not offer any new techniques, the
comparison of the methods yielded important insights to understand the logic behind several
vehicle fuel consumption models. Another important finding of the chapter was a list of all the
factors affecting fuel consumption. The results showed that most suitable vehicle emission
model is the one introduced by Barth et al. (2005); Scora and Barth (2006) and Barth and
Boriboonsomsin (2008). Based on this insight, this model, namely the comprehensive modal
emission model, was chosen as a tool for the fuel consumption estimator for the rest of the
thesis.

Based on the extensive simulation results, vehicle speed and load are found to be the most
prominent factors affecting fuel consumption. It is therefore important to travel at a speed
that leads to minimum fuel consumption for a given routing plan. Vehicle load has also a
significant effect on vehicle consumption, as fuel consumption increases with load. Vehicle
type was found to be another important factor to be considered in fuel consumption. These
findings suggest that light duty (LD) vehicles should be preferred over medium duty (MD) and
heavy duty (HD) vehicles. MD should be also preferred to HD vehicle if possible. A positive
road gradient leads to an increase in fuel consumption and it should be taken into account in
route planning in future applications. Current GIS software can provide information of the road
gradient. Resistance and drag should also be taken into account in the design of the vehicle
and its accessories.
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5.3 Chapter lll: An Adaptive Large Neighbourhood Search Heuris-
tic for the Pollution-Routing Problem

The third chapter of the thesis built upon the findings of chapter Il and proposed a new method-
ology to generate more environmental-friendly vehicle routing plans. The insights obtained in
chapter Il have resulted in proposing a new methodology. The PRP is NP-hard and a simpli-
fied version of this problem cannot be solved to optimality for mid-size instances. This was
the main motivation of this chapter. For this reason, we have developed a heuristic to obtain
good-quality solutions within short computational times. In this chapter, we refer to two dif-
ferent problems. These are the pollution-routing problem which is a extension of a VRPTW
and a speed optimization problem (SOP). An adaptive large neighbourhood search (ALNS)
algorithm was proposed to solve the VRPTW and a speed optimization algorithm was applied.

The chapter proposed an adaptation of the ALNS to solve the PRP, for which the algorithm was
enhanced with the introduction of new operators. These new operators were developed based
mainly on speed and load to improve the solution quality. The ALNS uses 12 different removal
and five insertion operators, which are selected dynamically in the algorithm according to their
past performance. The design of selection of operators was also an important part of this
research. The results suggested that the classical approach does not well perform well on the
PRP due to limitations of the solution space. In this research, the selection of operators was
based on penalising the best objective values to discover different parts of the solution space.
This helped avoid local optima and to discover better results. The main algorithm proposed to
solve the PRP was designed in an iterative way, where the ALNS uses fixed speeds as input
to the VRPTW, following which the SOA is run on each route to improve the solution, and the
process continues in an iterative way. In order to solve PRP as a VRPTW problem in the first
stage of the solution process, the travelling time had to be assumed as fixed between pairs
of nodes. The SOA was therefore applied to optimise the routes. The resulting algorithm is
another contribution of research, which is fast and easy to implement for different types of
routing problems.

The results of chapter suggest that this approach is fast and yields good-quality solutions in
terms of the optimised objective values within a reasonable number of iterations. The pro-
posed algorithm is able to solve instances with up to 200 customers which is a reasonable
and practical figure for a standard routing plan.
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5.4 Chapter IV: The Bi-Objective Pollution-Routing Problem

The fourth chapter of the thesis investigated a bi-objective PRP in which one of the objectives
is related to fuel consumption and the other to driving time. The main motivation of this chapter
was to look at the managerial implications of the PRP. Since fuel consumption and driving time
are conflicting objectives, the trade-offs between these two were investigated in detail.

The research aims of this chapter were four-fold: to introduce of a bi-objective variant of the
PRP, to apply and test existing multi-objective techniques for the solution of this variant, to
describe and test a new hybrid heuristic for the problem, and to perform extensive compu-
tational experiments using four a posteriori methods evaluated by means of two well-known

performance indicators and the number of Pareto solutions.

The objective function of the PRP in chapter Ill was set as an equally weighted sum of fuel
consumption costs and wage of drivers. In the bi-objective PRP, two objective functions related
to fuel consumption and driving time were treated separately. Four a posteriori methods were
then used to generate solutions, three of which were existing methods but the fourth one is

new.

The algorithm proposed in chapter IV is different from the one described in chapter Ill. In
chapter Ill, the speed optimisation is run after 25K iterations and works in an iterative way.
However, in chapter IV, it is applied at after each iteration. In order to use different sets of
weights, the new approach ran for a preset number of iterations for each weight. The proposed
algorithm returns a set of non-dominated Pareto solutions found in the course of algorithm.
The number of Pareto solutions is also an important measure for assessing the quality of
the solutions. To compare the multi-objective optimisation methods tested in the chapter, the
hypervolume and e-indicator measures were applied. Computational results indicated that
best results were obtained by using the new method, namely the hybrid method (HM). The
development of this technigque to solve the bi-objective PRP could be regarded as an important
contribution of the thesis.

The results of the chapter suggested that, the trade-offs between the conflicting objectives
of fuel and time minimisation are such that no great sacrifices need to be made with respect
to one objective in order to improve the other. An important contribution of the research is a
technique that is able to produce different sets of solutions, from where a the decision maker
may select from in order to reduce both fuel consumption (CO, emissions) and operational
times. Our approach described for the bi-objective PRP is also general in the sense that it is
independent of fuel or time-related costs which may differ from one organisation to another.
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5.5 Limitations of the Thesis

It is acknowledged that there are some limitations and shortcomings of the research.

First, the main assumption of the PRP and the bi-objective PRP is that average speeds are
used as an input without an explicit consideration of possible traffic congestion. It is known
that CO, emissions increase with congestion. This research has offered, as a starting point,
models and algorithms in which congestion is not considered, but the algorithms developed
and described here could be modified to be able to take congestion into account.

Second, the actual fuel consumption depends on several factors, which have been discussed
in chapter Il. One of the factors that has not been considered here is the behaviour of drivers.
Driving behaviour can influence the other factors investigated earlier. However, it is very diffi-
cult to quantify this parameter, to our knowledge, none of the models proposed in the literature
takes this factor into account.

Fuel use during the cold start of an vehicle engine can be up to three times higher than the
engine is warm. The effect of cold starts has not been considered in this research, which
is the third limitation mentioned here. Some of the emission models introduced in chapter Il
consider the effect of cold starts but these models are inherently complex to be used in an
algorithmic scheme for route planning.

Finally, the effect of stops on fuel consumption is not considered here. Energy requirements
when service is being provided, either for collection or delivery, is assumed not to consume
any fuel. In practice, the drivers tend to leave the engine on during service at customer sites,
even though this is against the law in some countries.

5.6 Avenues for Further Research

To address the limitations introduced above, the following three areas were identified as further

research directions.

First, the volume of emissions increases with travel time and lower speed levels. It is sug-
gested that further research be conducted to minimise the effects of congestion in the context
of the PRP. Research has already begun in this area, using some results of the present re-
search. In particular, Franceschetti et al. (2012) use the PRP formulation and algorithms
proposed in this research to minimise CO, emission with an explicit consideration of conges-

tion.
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Second, the current GIS software uses very simple regression models, based solely on dis-
tance travelled, to estimate fuel consumption. The present study could be integrated with such
software to take into account fuel consumption for implementation in practice. This is an im-
portant development for at least two reasons: (i) the integration of the algorithms introduced
here and GIS software could save both fuel and time, (ii) the interactive selection from a set
of solutions generated by the proposed algorithm would allow for flexibility, productivity and
support for route planners of freight companies. From this perspective, the last part of the
research can be seen as a kind of decision support system application.

Third, the PRP research only focuses on the routing aspect of green logistics. Other prob-
lems which can be linked to routing may offer former reductions in emissions. For example,
the facility location problem is concerned with physically locating a set of facilities (depots)
so as to maximize the profit generated by providing service to a set of customers (Ghaddar
and Naoum-Sawaya, 2011). Re-location of a depot may lead to reductions in CO, emissions.
Ghaddar and Naoum-Sawaya (2011) show that the carbon emissions can be decreased sig-
nificantly by incorporating a small penalty in the profits. A decrease of around 16% in carbon
emissions results in less than 1% decrease in the profits. With about 8% decrease in profits,
carbon emissions can be decreased by more than 40%. These figures are encouraging for
further work on facility location problem.

Selection of the right vehicle from an available set of vehicles is another promising area to min-
imise CO, emissions. The effect of the characteristics of a vehicle on CO, emissions is partly
studied in Chapter Il but it is an area in need of more effort for comprehensive investigations.
In the literature, the fleet size and mix vehicle routing problem consists of determining the
type and the number of vehicles of each type with the minimisation of total costs (Jabali et al.,
2012b). To our knowledge, there are no studies on this problem looking at fuel consumption
and emissions in the way it was proposed in our work.

Fifth, the PRP assumes no pre-emption while processing any operation. This should be also
considered within PRP formulation and methodology. As vehicle load is an important factor
affecting fuel consumption, relaxing this assumption would offer an interesting line of research.

Finally, another promising application of the PRP is the field of vehicle scheduling, as opposed
to vehicle routing. Driver working hours should be considered in the formulation of the PRP
because of law requirements, as well as the acknowledged health hazards arising from in-
tensive workload of routing plans. Although the proposed ALNS and SOA could be modified
to reflect these type of real-life requirements, this remains a non-trivial task requiring further

attention.
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TasLe A.1: Computational results for 15-node instances

CPLEX Our heuristic
Instances  Solution  Total CPU LP Solution  Distance # of # of ALNS SOA CPUtime  Total CPU Improvement
cost time relaxation cost km vehicles  loops time time per loop time %
£ s £ s s ] ]
UK15.01 287.72 10800* 124.51 286.89 713.2 2 4 1.3 0.0 1.3 5.1 0.29
UK15.02 209.93 10800* 99.69 209.12 517.8 2 4 1.0 0.0 1.0 4.0 0.39
UK15.03  280.896 10800* 136.90 280.89 7141 3 6 0.9 0.0 0.9 5.4 0.00
UK15.04 296.55 10800* 128.27 296.56 746.1 3 4 0.8 0.0 0.8 3.3 0.00
UK15.05 284.94 10800* 132.84 284.94 726.5 2 4 0.9 0.0 0.9 3.8 0.00
UK15.06 233.68 10800* 110.15 234.40 551.9 3 5 0.8 0.0 0.8 4.1 -0.31
UK15.07 256.22 10800* 112.49 254.23 615.8 3 4 0.9 0.0 0.9 3.6 0.78
UK15.08 168.01 10800* 74.07 167.99 390.2 2 4 0.9 0.0 0.9 3.8 0.01
UK15.09 263.14 10800* 129.54 263.16 651.9 3 4 0.8 0.0 0.8 818 -0.01
UK15.10 216.85 10800* 109.91 215.66 536.0 2 4 0.9 0.0 0.9 3.7 0.55
UK15_11 258.95 10800* 126.84 258.95 645.0 2 4 0.9 0.0 0.9 3.6 0.00
UK15.12 310.90 10800* 152.72 311.02 781.2 3 5 0.9 0.0 0.9 4.4 —-0.04
UK15.13 248.39 10800* 118.72 248.77 593.4 3 4 0.9 0.0 0.9 3.4 -0.15
UK15.14 332.27 10800* 165.06 332.26 848.1 3 5 0.9 0.0 0.9 45 0.00
UK15.15 222.26 10800* 99.31 222.27 549.4 2 5 0.9 0.0 0.9 4.7 0.00
UK15.16 205.73 10800* 94.99 205.73 490.3 2 5 0.9 0.0 0.9 45 0.00
UK15.17 282.66 10800* 142.49 282.65 684.5 3 4 0.8 0.0 0.8 3.4 0.00
UK15.18 315.15 10800* 129.54 315.75 786.7 3 4 0.9 0.0 0.9 3.4 -0.19
UK15.19 166.06 10800* 78.32 166.07 383.5 2 4 0.8 0.0 0.8 3.4 0.00
UK15.20 201.74 10800* 88.00 201.71 478.8 3 4 0.9 0.0 0.9 3.6 0.01
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TasLe A.3: Computational results for 25-node instances

CPLEX Our heuristic
Instances  Solution  Total CPU LP Solution  Distance # of # of ALNS SOA CPUtime  Total CPU Improvement
cost time relaxation cost km vehicles  loops time time per loop time %
£ s £ s s s ]

UK25_01 283.78 10800* 134.81 282.13 667.0 3 4 2.0 0.0 2.0 7.9 0.58
UK25.02 347.03 10800* 164.64 346.71 821.9 4 5 1.8 0.0 1.8 8.8 0.09
UK25.03 220.69 10800* 89.39 218.52 468.5 3 4 1.8 0.0 1.8 7.4 0.98
UK25.04 263.94 10800* 105.26 258.32 613.4 3 4 24 0.0 24 9.6 2.13
UK25.05 330.47 10800* 153.74 329.12 787.4 4 4 1.8 0.0 1.8 7.4 0.41
UK25.06 296.68 10800* 128.37 296.65 677.1 4 4 1.9 0.0 1.9 7.7 0.01
UK25.07 332.94 10800* 156.31 330.14 795.7 3 8 1.9 0.0 1.9 15.5 0.84
UK25.08 344.02 10800* 154.87 344.79 840.8 3 4 1.9 0.0 1.9 7.6 -0.22
UK25.09 306.17 10800* 131.89 302.81 679.9 4 4 2.0 0.0 2.0 8.0 1.10
UK25.10 362.80 10800* 174.40 358.66 856.4 4 4 1.8 0.0 1.8 7.2 1.14
UK25_11 376.01 10800* 175.09 370.91 884.9 4 6 1.6 0.0 1.6 9.3 1.36
UK25.12 402.00 10800* 189.61 400.68 965.9 4 5 1.9 0.0 1.9 9.4 0.33
UK25.13 248.32 10800* 102.99 241.58 527.2 4 10 2.1 0.0 2.1 20.5 2.73
UK25.14 375.73 10800* 181.78 375.58 907.3 4 4 22 0.0 22 8.6 0.04
UK25.15 367.10 10800* 172.48 362.65 903.4 3 6 22 0.0 2.2 13.0 1.21
UK25.16 344.80 10800* 162.46 340.70 822.3 4 5 2.2 0.0 2.2 11.0 1.19
UK25.17 451.18 10800* 222.65 451.20 1107.6 4 5 1.7 0.0 1.7 8.5 0.00
UK25.18 376.75 10800* 183.56 376.76 922.8 3 4 2.0 0.0 2.0 7.9 0.00
UK25.19 406.69 10800* 200.31 402.88 989.1 4 6 2.0 0.0 2.0 11.8 0.94
UK25_20 366.16 10800* 170.72 356.16 828.3 3 9 1.5 0.0 1.5 13.4 2.73
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TasLe A.5: Computational results for 75-node instances

CPLEX Our heuristic

Instances  Solution  Total CPU LP Solution  Distance # of # of ALNS SOA CPUtime  Total CPU Improvement

cost time relaxation cost km vehicles  loops time time per loop time %

£ s £ s s ] ]

UK75.01 1008.88 10800* 453.22 961.77 22454 11 8 11.8 0.0 11.8 941 4.67
UK75.02 891.36 10800* 372.58 836.71 1854.3 11 4 10.1 0.0 10.1 40.6 6.13
UK75.03 890.48 10800* 404.59 858.66 1978.0 10 4 14.4 0.0 14.4 57.6 3.57
UK75.04 829.58 10800* 344.20 792.87 1719.0 11 4 11.0 0.0 11.0 44.1 4.42
UK75.05 949.26 10800* 419.12 884.65 2095.7 10 5 12.7 0.0 12.7 63.5 6.81
UK75.06 962.05 10800* 421.01 911.45 2101.6 11 4 11.8 0.0 11.8 47.1 5.26
UK75.07 1005.74 10800* 446.19 955.55 2207.7 11 7 11.7 0.0 11.7 81.7 4.99
UK75.08 1008.46 10800* 439.76 821.54 1908.2 10 4 13.4 0.0 13.4 53.6 18.54
UK75.09 970.47 10800* 445.51 920.88 2167.8 10 6 13.6 0.0 13.6 81.6 5.11
UK75.10 999.37 10800* 454.72 969.63 2278.2 11 6 11.2 0.0 11.2 67.3 2.98
UK75_11 731.48 10800* 295.70 681.42 1452.6 10 6 10.9 0.0 10.9 65.4 6.84
UK75.12 876.92 10800* 390.43 846.17 1972.6 10 5 12.8 0.0 12.8 63.8 3.51
UK75.13 1014.85 10800* 458.02 969.13 2297.4 10 5 11.5 0.0 11.5 57.7 4.51
UK75.14 971.75 10800* 434.67 914.38 2153.1 10 4 12.5 0.0 12.5 50.1 5.90
UK75.15 1055.13 10800* 467.45 977.55 2292.3 10 4 11.8 0.0 11.8 471 7.35
UK75.16 971.15 10800* 429.56 927.29 2145.2 10 7 11.6 0.0 11.6 81.2 4.52
UK75.17 954.53 10800* 414.71 900.70 2089.2 11 7 11.0 0.0 11.0 76.8 5.64
UK75.18 911.00 10800* 391.29 839.85 1927.3 10 6 12.3 0.0 12.3 73.7 7.81
UK75.19 885.19 10800* 375.94 830.94 1906.1 10 10 12.3 0.0 12.3 123.0 6.13
UK75_20 947.70 10800* 409.88 902.09 2074.3 11 11 12.7 0.0 12.7 139.5 4.81
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