Computing pure Bayesian-Nash equilibria in games with finite actions and continuous types

Rabinovich, Zinovi, Naroditskiy, Victor, Gerding, Enrico H. and Jennings, Nicholas R. (2012) Computing pure Bayesian-Nash equilibria in games with finite actions and continuous types Artificial Intelligence, 195, pp. 106-139. (doi:10.1016/j.artint.2012.09.007).


[img] PDF documentnew.pdf - Author's Original
Download (602kB)
[img] PDF zinovi.pdf - Other
Download (757kB)


We extend the well-known fictitious play (FP) algorithm to compute pure-strategy Bayesian-Nash equilibria in private-value games of incomplete information with finite actions and continuous types (G-FACTs). We prove that, if the frequency distribution of actions (fictitious play beliefs) converges, then there exists a pure-strategy equilibrium strategy that is consistent with it. We furthermore develop an algorithm to convert the converged distribution of actions into an equilibrium strategy for a wide class of games where utility functions are linear in type. This algorithm can also be used to compute pure ?-Nash equilibria when distributions are not fully converged. We then apply our algorithm to find equilibria in an important and previously unsolved game: simultaneous sealed-bid, second-price auctions where various types of items (e.g., substitutes or complements) are sold. Finally, we provide an analytical characterization of equilibria in games with linear utilities. Specifically, we show how equilibria can be found by solving a system of polynomial equations. For a special case of simultaneous auctions, we also solve the equations confirming the results obtained numerically.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1016/j.artint.2012.09.007
Keywords: algorithmic game theory, bayes-nash equilibrium, epsilon-nash equilibrium, fictitious play, simultaneous auctions
Organisations: Agents, Interactions & Complexity
ePrint ID: 343596
Date :
Date Event
18 September 2012e-pub ahead of print
February 2013Published
Date Deposited: 06 Oct 2012 19:05
Last Modified: 17 Apr 2017 16:33
Further Information:Google Scholar

Actions (login required)

View Item View Item