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Abstract

The Banzhaf index is a well known and widely used index for measuring the power
a player has in a voting game. However, the problem of computing this index
is computationally hard. To overcome this problem, a number of approximation
methods were developed for one majority voting games. While it may be possible
to extend some of these to k-majority games (which are generalized versions of one
majority games), to date, there has been no performance analysis of these methods
in the context of the Banzhaf index for k-majority games. In this paper, we fill
this gap, by first presenting an approximation method for the Banzhaf index for k-
majority games. This is a heuristic method that uses randomization to estimate an
approximate. We then show that this method is computationally feasible. Finally,
we evaluate its performance by analyzing its error of approximation, and show
how the error varies with k. Specifically, we show that the average percentage
error increases from 15% for games with k = 1 to 30% for games with k = 5.

1 Introduction
Coalition formation is a key form of interaction in multi-agent systems. It is the process
of joining together two or more agents so as to achieve goals that individuals on their
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own cannot, or to achieve them more efficiently [25]. Often, in such situations, there
is more than one possible way in which agents can from coalitions. Given this, the
agents/players must decide upon the following:

D1: who to form a coalition with, and

D2: how to split the gains of cooperation between the members of a coalition.

In more detail, there will generally be many possible ways in which the agents can
form coalitions. Moreover, which goals a coalition can achieve and how efficiently it
can achieve them depends on the members that make up the coalition. Also, different
agents may have different preferences for different goals. So each agent will want to
join a coalition that is most beneficial to it. Given this, D1 is a crucial decision that an
agent must make. Once a coalition is formed, the agents within it must decide upon
D2, i.e., how they will split the joint gains between themselves.

In this context, cooperative game theory offers a number of solutions for the prob-
lems D1 and D2. Specifically, for D1, there are solutions such as core and kernel [25].
These solutions ensure that coalitions are stable, i.e., members (neither individuals nor
subgroups) of a coalition do not have any incentive to break away from the coalition
to join another one. For the problem D2, there are solutions such as Shapley value
[35, 34] and Banzhaf index [3].

In order to use these solutions, a multi-agent interaction must first be represented
as a coalitional game. A number of multi-agent systems researchers have used these
games to model coalition formation. Examples for this include [36, 37, 33, 7, 32, 14].
Once an interaction is represented as a coalitional game, it then becomes possible to
apply game-theoretic solution concepts to them. However, in the context of multi-agent
systems, the application of these solution concepts is not always straightforward. This
is because it is computationally hard to find the game-theoretic solutions [9, 30]. There-
fore, a key issue, in the context of multi-agent systems, is to address the computational
aspects of game-theoretic solutions.

In more detail, there are different forms of coalitional games [25]. A particular form
of succinctly representable ones are weighted voting games. Although these games can
be represented succinctly, the solutions to these games are hard to compute. Before
we look at these solutions, let us first see what weighted voting games are. A weighted
voting game is one in which each player is given a numeric weight, and a coalition takes
the value 1 (i.e., is a winning coalition) if the sum of its weights exceeds a particular
quota, and takes the value 0 (i.e., is a losing coalition) otherwise.

Weighted voting games are widely used in practice. For example, the voting system
in the UK is a weighted voting game, and so is the voting system in the European Union
[4]. In such games, the degree to which a player can influence the outcome of voting
depends on the player’s weights. This influence, also known as a player’s voting power,
is measured in terms of a power index. Although a player’s power index is, in general,
defined in terms of the weights, there are different ways of defining this power [15].
Amongst these, the most widely used ones ones include the Shapley value [34, 35]
and the Banzhaf index [3]. These two indices differ in terms of the way in which
the index is computed: the Shapley value considers the ‘order’ in which the players
join a coalition while the Banzhaf index does not. However, from a computational
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perspective, they are similar: for a given voting game, the problem of computing both
is a #P-complete [9, 30] problem. Roughly speaking, #P-complete problems are a class
of problems that, although nobody has been able to prove it, seem intractable1. Thus,
it is practically infeasible to try to compute the Shapley value/ Banzhaf index for these
games.

Hence, in order to overcome this computational complexity a number of approx-
imation methods have been proposed (see Section 6 for details). These include the
Monte Carlo simulation method [23], the multi-linear extension (MLE) method [26,
27], the modified MLE method [21], the random permutation method [40], and the
randomized approximation methods [12, 2]. These methods are mostly for one major-
ity voting games.

While it may be possible to extend some of these to k-majority games (which are
generalized versions of one majority games), to date, there has been no performance
analysis of these methods in the context of the Banzhaf index for k-majority games. In
this paper, we fill this gap by first presenting an approximation method for the Banzhaf
index for k-majority games. This is a heuristic method that uses randomization to
estimate an approximate. We then show that, for a game with n players, the time com-
plexity of this method is O(kn22k). Finally, we evaluate its performance by analyzing
its error of approximation, and show how the error varies with k. Specifically, we show
that the average percentage error increases from 15% for games with k = 1 to 30% for
games with k = 5.

The results of this research are significant not only in the context of coalition forma-
tion, but are also equally important in other contexts such as multi-party negotiations.
To date, research in coalition formation and multi-party negotiation has largely pro-
gressed independently of each other. However, there is a strong link between these two
lines of research [29]: in the context of multi-party negotiation, the decision making
problem D1 corresponds to the search for a negotiation partner and D2 corresponds
to the development of a negotiated agreement. Also, [17] shows that the notion of
a player’s power index2 for a coalitional game is closely related to the notion of the
player’s utility in a multi-party negotiation involving the N players. Specifically, the
former is directly proportional to the latter. In other words, the higher a player’s Shap-
ley value/ Banzhaf index, the higher its utility in the multi-party negotiation. Thus, by
computing the Banzhaf index for a coalitional game we get an indication of the player’s
utilities from negotiation.

There are a number of other applications of these power indices. These include
analysis of voting structures of several bodies such as European Union Council of
Ministers, and the International Monetary Fund [20, 22]. Another application of power
indices is cost sharing schemes [39]. Apart from this, voting games find application in
number of multi-agent settings. For example, consider a computational grid environ-
ment in which a set of limited resources must be allocated to a subset of agents that
compete for them. A key decision in such a setting is to decide what set of resources to

1A problem is said to be intractable if it takes unreasonably long to solve it. This is the case, for example,
if the time taken to solve it increases exponentially in the size of the input to the problem.

2For a coalitional game, a player’s ‘power index’ is a measure of how much power it has in influencing
the outcome of the game [15]. The Shapley value and the Banzhaf index are two ways of measuring this
power.
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make available on the grid. Assume we are considering whether or not to introduce a
new resource R. This decision depends on the agents’ requirements for R: some agents
may benefit from its introduction while others may not. In such a scenario, different
agents have different preferences for R and they must find a way of resolving these
differences. In such a context, a weighted voting game allows agents to resolve these
differences and reach an agreement on whether or not to introduce R. In a situation like
this, a player would want to know how much power it has in influencing the outcome
of voting and would therefore need to compute its Banzhaf index.

Yet another domain where the Banzhaf index could be used is in resource allocation
in multi-agent systems. In such scenarios, there are limited resources available and
many agents contending for them. In this context, the Banzhaf index can be used as an
indication of the individual agent’s shares of the available resources.

Although the Banzhaf index has the potential to be used across this wide spectrum
of application domains, in reality, its use is not straightforward because of the complex-
ity involved in computing it. By presenting a computationally feasible approximation
method, this paper adds a practical dimension to the Banzhaf index and facilitates its
use in multi-agent encounters.

The rest of the paper is organised as follows. Section 2 provides the background to
voting games and power indices. In Section 3 we present our approximation method.
Section 4 (Section 5) provides an analysis of the standard error (relative error) of
approximation. Secion 6 discusses related literature and Section 7 concludes.

2 Background
We define the following terms: coalitional game, weighted voting game (the two forms
of weighted voting games i.e., one-majority and k-majority games), and the Banzhaf
index.

2.1 Coalitional game
A coalitional game 〈N, v〉, consists of [25]:

1. a finite set, N = {1, 2, . . . , n} of n players, and

2. a function, v, that associates with every non-empty subset S of N (i.e., a coali-
tion) a non-negative real number v(S) that indicates its worth. The domain for v
is the set of all possible subsets of N and the range is the set of all non-negative
real numbers.

For each coalition S, v(S) is the total payoff that is available for division among the
members of S.

2.2 Weighted one-majority voting game
For the players in N , let wi denote the weight for player i. Also let q ∈ R+ denote a
real number, and let w(S) =

∑
i∈S wi for any coalition S. Here, q is the quota of the
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game. Then, a weighted one-majority voting game is a game 〈N, v〉 such that [25]:

v(S) =

{
1 if w(S) ≥ q
0 otherwise

This game is denoted as 〈q;w1, . . . , wn〉. A coalition with value zero is called a ‘losing
coalition’ and with value one a ‘winning coalition’.

A special case of such games is a simple majority voting game. For such games,
each player has unit weight and the quota is d |N |+1

2 e. There are a number of real-world
applications of the simple majority voting game such as the electoral process used in
the UK and many other countries.

2.3 Weighted k-majority voting game
These are generalized versions of one-majority games and are defined as follows [4].
For the set of n players, a weighted k-majority game (denoted3 v1∧ . . .∧vk) is a game
where the tth (1 ≤ t ≤ k) component vt = 〈qt;wt1, . . . , wtn〉 is a one-majority voting
game. The value function for the k-majority game is defined as follows:

(v1 ∧ . . . ∧ vk)(S) =

{
1 if wt(S) ≥ qt for 1 ≤ t ≤ k
0 otherwise

where wt(S) =
∑
i∈S w

t
i . Thus, in a k-majority game there are k different one-

majority games. All these k component games have the same set of players. A coalition
in a k-majority game is winning if it wins in each of the k component games.

An example of a k-majority game is the voting system of the enlarged European
Union [4]. This is a three-majority voting game. The three component games are for
the countries, the population, and the commissionaries. Here, a coalition is winning if
it has the support of a majority of countries of the EU, a majority of the population of
the EU, and majority of the commissionaries of the EU.

2.4 Banzhaf Index
The Banzhaf index for a voting game is a way of measuring a player’s voting power. A
player’s power is his ability to turn a losing coalition into a winning one. The Banzhaf
index has two versions: the absolute Banzhaf index and the normalised Banzhaf index.
These are defined as follows [3].

For a voting game G = 〈N, v〉, player i’s Banzhaf index is defined in terms of its
marginal contribution. The marginal contribution of player i to coalition S with i /∈ S
is a function ∆iv defined as follows:

∆iv(S) = v(S ∪ {i})− v(S)

In words, a player’s marginal contribution to a coalition S is the increase in the value
of S as a result of i joining it. Note that for a voting game (〈q;w1, . . . , wn〉), a player’s

3The ‘∧’ symbol in v1 ∧ . . . ∧ vk is not a ‘logical and’ symbol. It is just a notation for representing the
components of k-majority games.
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marginal contribution is either zero or one. This is because the value of any coalition is
either zero or one. If a player’s entry to a coalition changes it from losing to winning,
then the player’s marginal contribution for that coalition is one; otherwise it is zero.

A player’s Banzhaf index is defined in terms of the number of coalitions for which
it is the swing player. The player i ∈ N is called a swing player for a coalition S if S is
losing but S ∪ {i} is winning. Let Ti denote the set of all possible coalitions for which
i ∈ N is a swing player, i.e., for x ∈ Ti, x is losing but x ∪ {i} is winning. Then, for
player i ∈ N , let ηi denote the number of coalitions for which it is swing player, i.e.,

ηi = |Ti| (1)

The two versions of Banzhaf index are defined by expressing ηi over different denom-
inators.

Definition 1 For player i, the absolute Banzhaf index (βi) is defined as [3]:

βi = ηi/2
n−1 (2)

Definition 2 For player i, the normalized Banzhaf index (λi) is defined as [3]:

λi = ηi/Σ
n
i=1ηi (3)

Note that the normalized Banzhaf index sums to unity over the players:
∑
λi = 1. The

following example illustrates how the Banzhaf index is computed.

Example 1 Let N = {1, 2, 3} and w1 = 1, w2 = 2, w3 = 3, q = 4. For this example,
consider a coalition of two players: 1 and 2. Depending on the order in which the two
players join, the coalition can form in one of two ways: player 1 followed by player
2, or player 2 followed by player 1. However, for the Banzhaf index only the set of
players in a coalition matters, not the order in which they joined the coalition. Now,
there are three wining coalitions: {1, 3}, {2, 3}, and {1, 2, 3}. Players 1 and 2 are
swing players in {1, 3}, players 2 and 3 are swing players in {2, 3}, and players 3 is
the swing player in {1, 2, 3}. So player 1 is swing player once and so is player two, but
player 3 is swing player thrice. Consequently, the player’s absolute Banzhaf indices
are: β1 = 1/4, β2 = 1/4, and β3 = 3/4. And their normalized Banzhaf indices are:
λ1 = 1/5, λ2 = 1/5, and λ3 = 3/5.

Having illustrated how the exact Banzhaf index is computed, we are now ready to
present our approximation methods for it. In what follows, we will show how to ap-
proximate βi. Using this method, it is straightforward to compute λi. In more detail,
since both βi and λi are defined in terms of ηi (see Equations 2 and 3), we will show
how to find an approximate for ηi. An approximate for both βi and λi can then easily
be computed in terms of an approximate ηi.

3 Approximating the Banzhaf Index
We will first show how to compute an approximate Banzhaf index for one-majority
games and then for k-majority games. The methods we will describe are an extension
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of those given in [11]. Specifically, [11] gives an approximation for the Shapley value
for k-majority game. Below, we will explain how these methods can be extended to find
an approximation for the absolute Banzhaf index for k-majority games. In Section 3.1,
we consider one-majority games and then, in Section 3.2, k-majority games.

3.1 One-Majority Games
We know from Section 2.4, that computing βi requires computing i’s marginal contri-
bution to all possible coalitions SX of size X for 1 ≤ X ≤ n− 1 and summing them.
Recall from Equation 1, that this sum is ηi. However, computing ηi by computing i’s
marginal contribution to all possible coalitions SX of size X for 1 ≤ X ≤ n − 1
and summing them is computationally hard: it takes O(

∑n−1
X=1

(
n
X

)
) time because∑n−1

X=1

(
n
X

)
coalitions need to be considered. Thus instead of computing ηi by con-

sidering all these coalitions, we show how to find an approximation for ηi.
In more detail, this approximation is done as follows. Let η̄i denote an approxima-

tion for ηi and E∆X
i an approximation for the mean of i’s marginal contributions to all

coalitions of size X . Now, we know that the total number of players is n. So there are
n−1 players excluding player i and therefore there are

(
n−1
X

)
possible coalitions of size

X that i can join. Given this, the sum of i’s marginal contributions to all coalitions of
sizeX will be

(
n−1
X

)
×E∆X

i . In order to computeE∆X
i , we use the following method

given4 in [11, 12] ([12] is an extension of [11]). This method is based on the following
approximation rule R1 [16] which works as follows. Let the players’ weights in N
be defined by ‘any’ probability distribution function. Irrespective of the actual form of
this function, let µ be the mean weight of players and ν the variance in weights. Now,
from this set (N ), if we randomly draw a sample (i.e., a coalition) of size X , then the
approximate sum of the players’ weights in the sample is given by the following rule
[16]:

R1: If a random sample of size X is drawn from any distribution with
mean µ and variance ν, then the sample mean has an approximate Normal
distribution,N , with mean Xµ and variance ν

X (the larger the n the better
the approximation5).

We use the above rule to determine η̄i as follows. For player i with weight wi, the
marginal contribution to a random sample/ coalition of sizeX is one if the mean weight
for the sample is greater than or equal to a = (q−wi)/X but less than b = (q− ε)/X
(where ε is an inifinitesimally small quantity). Otherwise, its marginal contribution
is zero. Now, as per the rule R1, an approximate mean probability with which i
is the swing player for samples of size X is the area under the normal distribution
N (Xµ, ν/X) between the limits a and b. We use this probability to approximate i’s
mean marginal contribution (i.e., E∆X

i ) to all coalitions of size X . Thus, we have:

4This is because both the Shapley value and the Banzhaf index are defined in terms of ‘marginal contri-
bution’, i.e., both require computing E∆X

i .
5Also, for large X , any measurement done on a sample drawn with replacement is the same as that for a

sample drawn without replacement[16].
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E∆X
i =

1√
(2πν/X)

∫ b

a

e−X
(x−Xµ)2

2ν dx. (4)

Given E∆X
i , player i’s total approximate marginal contribution to all coalitions of

sizeX is
(
n−1
X

)
×E∆X

i . Having shown how to computeE∆X
i , we will now show how

to compute η̄i. To do so, we let η̄Xi denote an approximate number of coalitions of size
X for which i is the swing player. Note that η̄Xi is nothing but i’s total approximate
marginal contribution to all coalitions of size X . Thus we have:

η̄Xi =

(
n− 1

X

)
× E∆X

i (5)

Given this, and the fact that ηi is the number of coalitions for which i is swing player
(see Equation 1), an approximate number of coalitions (of all possible sizes) for which
i is swing player is:

η̄i =

n−1∑
X=1

η̄Xi (6)

We will now show how to obtain i’s approximate Banzhaf index in terms of η̄i. To do
so, let β̄i denote an approximation for βi. We obtain β̄i by substituting Equation 6 in
Equation 2:

β̄i = η̄i/2
n−1 (7)

3.2 k-Majority Voting Game
We will now show how to extend the above method to k-majority games. To do so, we
need some data structures and functions. We begin by introducing these. Let Com de-
note an two-dimensional array with k columns and a varying number of rows. We will
specify the number of rows as we need them. Then let combinations({1, . . . , k}, i)
denote a function that takes a vector (such as {1, . . . , k}) and a non-negative integer
(such as i ≤ k) as arguments and returns all combinations of {1, . . . , k} of size i. As-
sume that all these combinations of size i are stored in the vector Com. Then Com
will have

(
k
i

)
rows. Each row of this vector contains a combination of i items which

are stored in the first i columns of Com. And let Com(y, {i + 1, . . . , k}) denote the
columns i+ 1 to k of the yth row. Later, we will show what these columns from i+ 1
to k contain.

Now, if we let SX denote a coalition of size X , then, as per Section 2.3, the
marginal contribution of player i to SX for the k-majority game v1 ∧ . . . ∧ vk is 1
if the following conditions hold:

C1: i is swing player for SX in at least one of the k games, and

C2: SX is winning for the remaining of the k games.
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As before, we find a player’s approximate total marginal contribution to all coalitions of
sizeX in terms of an approximate probability. To do so, we use the following notation.
For game vh and player i, let PL(h, i,X) denote an approximate mean probability
that i is the swing player in coalitions of size X . Also, for game vh, let PW (h,X)
denote an approximate mean probability that a coalition of size X is winning. Then,
for 1 ≤ j ≤ k and 1 ≤ row ≤

(
k
j

)
, let Term(row,X, j, i) denote an approximate

mean probability that:

P1: i is swing player (for coalitions of sizeX) for the games vCom(row,1), . . . , vCom(row,j),
and

P2: coalitions of size X are winning for the games vCom(row,j+1), . . . , vCom(row,k).

In other words, Term(row,X, j, i) is:

Term(row,X, j, i) =

( j∏
f=1

PL(Com(row, f), i,X)×
k∏

g=j+1

PW (Com(row, g), X)

)
(8)

where

Com = combinations({1, . . . , k}, j) and
Com(r, {j + 1, . . . , k}) = {1, . . . , k} − Com(r, {j + 1, . . . , k}). (9)

Then, let Sum(X, j, i) denote an approximate mean probability that i is swing player
in coalitions of size X . Given Term(row,X, j, i), and the conditions C1 and C2,
Sum(X, j, i) will be:

Sum(X, j, i) =

(ki)∑
row=1

Term(row,X, j, i) (10)

Then, let kE∆X
i denote i’s approximate mean marginal contribution to all coalitions

os size X . Given Sum(X, j, i) and the fact that 1 ≤ j ≤ k, we get:

kE∆X
i =

k∑
j=1

Sum(X, j, i) (11)

We will now show how to compute PL(h, i,X) and PW (h,X). For the game vh, let
w(h, i) denote player i’s weight, µ(h) the mean weight of the players, ν(h) the variance
in their weights, and q(h) the quota. From R1, we know that PL(h, i,X) is the area
under the normal distribution N(µ(h), ν(h)) between the limits a = q(h) − w(h, i)
and b1 = q(h)− ε:

PL(h, i,X) =
1√

(2πν(h)/X)

∫ b1

a

e−X
(x−Xµ(h))2

2ν(h) dx (12)
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and PW (h,X) is the area under the normal distribution N(µ(h), ν(h)) between the
limits q(h) and∞:

PW (h,X) =
1√

(2πν(h)/X)

∫ ∞
q(h)

e−X
(x−Xµ(h))2

2ν(h) dx (13)

If we let kη̄Xi denote i’s approximate total marginal contribution to all coalitions of
size X , then as per Equation 1 we get:

kη̄Xi =

(
n− 1

X

)
× kE∆X

i (14)

where kE∆X
i is as computed in Equation 11. Substituting Equation 11 in Equation 14

we get kη̄Xi . Then let kη̄i denote i’s approximate total marginal contribution to coali-
tions of all possible sizes (i.e., 1 ≤ X ≤ n − 1). Since there are

(
n−1
X

)
possible

coalitions of size X and 1 ≤ X ≤ n− 1, we get:

kη̄i =

n−1∑
X=1

kη̄Xi (15)

For player i, let β̄ki denote an approximate Banzhaf index. Substituting Equation 15 in
Equation 2, we get β̄ki :

β̄ki = kη̄i/2
n−1 (16)

The above steps are described in Algorithm 1. The ‘for’ loop in Line 1 is for com-
puting the Banzhaf index for each of the n players and is therefore repeated n times.
For each player, the for loop in Line 3 computes an approximate marginal contribution.
Each player’s marginal contribution is computed for all possible coalitions of size X
where 1 ≤ X ≤ n− 1. So the ‘for’ loop in Line 3 is repeated n− 1 times.

In Line 5, the vector Com is set by invoking the combinations function. This
function takes a set (for example {1, . . . , k}) and an integer (for example c) as inputs
and returns all combinations of {1, . . . , k} of size c. There are

(
k
c

)
such combinations,

and they are returned in the vector Com. Thus Com has
(
k
c

)
rows and c columns. Here

1 ≤ c ≤ k. Hence the ‘for loop in Line 4 is repeated k times.
The ‘for’ loop in Line 6, fills the columns c+1, . . . , k ofCom. Specifically, in Line

7, these columns are set to {1, . . . , k} − Com(temp, {1, . . . , c}). The vector Com is
now used to check the conditions C1 and C2 described earlier in this section. This is
dine in the ‘for’ loop of Line 9. Here, Term and Sum are computed as per Equations
8 and 10 respectively. In Lines 22, 23 and 24, we compute kE∆X

i , kη̄Xi , and kη̄i
respectively. This is done as per Equations 11, 14, and 15 respectively. Finally, Line
29 computes β̄ki (for 1 ≤ i ≤ n) as per Equation 16.

Analyzing the time complexity of Algorithm 1, we see that the ‘for’ loops in Lines
3, 4, and 9 are repeated n− 1, k, and

(
k
c

)
times (where 1 ≤ c ≤ k) respectively. Line 5

takesO(k) time [10, 18]. Lines 7 takes takesO(k) time. So the time taken by the loop
in Line 6 is O(k

(
k
c

)
). The Lines 10, 12, 13, 16, 17, and 19 tame O(1) time. Thus the

10



time to execute the loop in Line 4 is O(k
∑k
c=1

(
k
c

)
× O(1)) = O(k2k). Given this,

the time to execute the loop in Line 3 is O(nk2k) (since the time to execute the loop
in Line 3 is n times the time to execute the loop in Line 4). Note that this is the time
to compute a single player’s Banzhaf index. So the time to execute it n times for the n
players (as is done in the loop in Line 1) is O(kn22k) (this is the time to compute the
Banzhaf index for all the n players).

Note that time complexity of our approximation method is polynomial in n and
exponential in k. However, for most practical games, n may be large but k is small
number, typically two or three [4]. This explains the computational feasibility of Al-
gorithm 1.

Having analyzed the time complexity of our approximation method, we will now
evaluate it on the basis of its approximation error. To this end, Section 4 provides
an analysis in terms of standard error and Section 5 in terms of relative error. The
motivation for analyzing both standard and relative errors is as follows. The former
gives an indication of the ‘uncertainty’ in the approximation (see Section 4 for details
on uncertainty of an approximation) while the latter shows how far an approximate is
from its exact counterpart. In other words, the relative error requires computing the
exact Banzhaf index. Since computing the exact is #P-complete, we can only do so
for small n. Thus, although, the relative error shows the magnitude of error, it can be
computed only for small n. In contrast, the standard error does not require computing
the exact Banzhaf index and can therefore be easily determined for large n. Thus,
our analysis for standard error shows the uncertainty in the approximation for large
and small games, while our analysis of relative error shows the magnitude of error for
small games.

4 Error Analysis: Standard Error
We first provide a brief overview of standard error and then derive the formula for
measuring the standard error in our approximation method for the Banzhaf index.

In general, the concept of error relates to an estimate/ approximation made of a
quantity which has an exact value [38, 5]. One cannot determine exactly how far off
the estimate is from the exact value (except for very small problem instances); if this
could be done, it would be possible to just give the exact value. Thus, error has to do
with uncertainty in measurements that nothing can be done about. However, although
it is not possible to do anything about such an error, it can be characterized in terms of
two essential components [38, 5]:

1. a numerical value giving the best ‘estimate’ (or approximation) possible of the
quantity measured, and

2. the degree of uncertainty associated with this estimated value.

So if the estimate of a quantity is x and the uncertainty is e(x), then, with ‘reasonable’
certainty, one could say that the quantity would lie in x ± e(x). The question then is
what do we mean by ‘reasonable’ certainty? There are different ways of defining the
meaning of ‘reasonable’. One of these is standard error; the lower this error, the more
reasonable is the estimate. This error is defined as follows [38].
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Algorithm 1 BanzhafIndex-KMG(N , k, n, q, µ, ν, w)
N : The set of players
n: The number of players in N
k: The number of weighted voting games
w: A matrix of the n columns and k rows with w(x, y) (1 ≤ x ≤ n and 1 ≤ x ≤ n)
being player x’s weight for the component game t
q: A vector of k elements, the element q(t) is the quota for the component game t
µ: A vector of k elements, the element µ(t) being the mean weights of the players in
N for the component game t
ν: A vector of k elements, the element µ(t) being the mean weights of the players in
N for the component game t

1: for i = 1 to n do
2: Sum⇐ 0
3: for X = 1 to n− 1 do
4: for c = 1 to k do
5: Com⇐ combinations({1, 2, . . . , k}, c)
6: for temp = 1 to

(
k
c

)
do

7: Com(temp, {c+ 1, . . . , k})⇐ {1, . . . , k} − Com(temp, {1, . . . , c})
8: end for
9: for d = 1 to

(
k
c

)
do

10: Term⇐ 1
11: for h = 1 to c do
12: a⇐ (q(Com(d, h))−w(Com(d, h), i))/X; b1 ⇐ (q(Com(d, h))−

ε)/X

13: Term⇐ Term ×
∫ b2
a
e−X

(x−Xµg)2
2νg dx

14: end for
15: for h = c+ 1 to k do
16: a⇐ (q(Com(d, h))− w(Com(d, h), i))/X; b2 ⇐∞
17: Term⇐ Term ×

∫ b2
a
e−X

(x−Xµg)2
2νg dx

18: end for
19: Sum⇐ Sum + Term
20: end for
21: end for
22: kE∆X

i ⇐ Sum
23: kη̄Xi ⇐ kE∆X

i ×
(
k
c

)
24: kη̄i ⇐ kη̄i + kη̄Xi
25: end for
26: T ⇐ T + kη̄i
27: end for
28: for i=1 to n do
29: β̄ki ⇐ ηi/2

n−1

30: end for
31: return β̄k
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4.1 Standard error
Let x be a quantity we want to measure but which cannot be measured exactly, it
can only be approximated/ estimated. If x1, . . . , xN denote N estimates of the same
quantity x, and νx the variance, then νx characterizes the average uncertainty in the
separate measurements x1, . . . , xN . Our best estimate (denoted x̄) is their mean, i.e.,
x̄ = (

∑N
i=1 xi)/N . Given that νx is the average uncertainty in the separate measure-

ments, the uncertainty in x̄ is
√
νx/
√
N [38]. This quantity is called the standard

deviation of the mean or the standard error [38, 5]. Thus, if we use e(x̄) to denote this
standard error, we have:

e(x̄) =
√
νx/
√
N (17)

Here, our aim is to determine the standard error in the Banzhaf index. For this,
we let e(E∆X

i ) denote the standard error in the approximate marginal contribution for
player i (see Equation 4). We determine this error as follows. In Equation 4, a and b are
the lower and upper limits for mean weight for a coalition of size X . Let e(a) and e(b)
denote the standard error in a and b respectively. Then, since the standard deviation of
the mean weight is ν/X , as per Equation 17, we get e(a) = e(b) =

√
ν/X .

Given this, the error in Equation 4 is:

e(E∆X
i ) =

1√
(2πν/X)

×
(∫ b+e(b)

a−e(a)
e−X

(x−Xµ)2
2ν dx−

∫ b

a

e−X
(x−Xµ)2

2ν dx

)
(18)

On the basis of the above error, we find the error in the Banzhaf index by using the
following error propagation rules. Let x and y be two estimates with errors e(x) and
e(y) respectively. If z is a function of x and y, then the error in z is obtained using the
following error propagation rules [38]:

R2 If z = x+ y, the error in z is:

e(z) = e(x) + e(y)

R3 If z = αx where the constant α has no error, then the error in z is:

e(z) = |α|e(x)

R4 If z = x× y, the error in z is:

e(z)

|z|
=

e(x)

|x|
+
e(y)

|y|

R5 If z = x/y, the error in z is:

e(z)

|z|
=

e(x)

|x|
+
e(y)

|y|
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4.2 Standard error for k-majority games
Let e(PL(h, i,X)) and e(PW (h,X)) denote the errors inPL(h, i,X) andPW (h,X)
respectively (see Equations 12 and 13). We will compute e(PL(h, i,X)) and e(PW (h,X))
in the same way as we did e(E∆X

i ) in Equation 18. This gives the following errors:

e(PL(h, i,X)) =
1√

(2πν(h)/X)

(∫ b1+e(b1)

a+e(a)

e−X
(x−Xµ(h))2

2ν(h) dx−
∫ b1

a

e−X
(x−Xµ(h))2

2ν(h) dx

)
(19)

e(PW (h,X)) =
1√

(2πν(h)/X)

(∫ ∞
q(h)−e(q(h))

e−X
(x−Xµ(h))2

2ν(h) dx−
∫ ∞
q(h)

e−X
(x−Xµ(h))2

2ν(h) dx

)
(20)

Let e(Term(row,X, j, i)) denote the error in Term(row,X, j, i). Applying the
ruleR4 to Equation 8, we get e(Term(X, i, j)) as follows:

e(Term(row,X, j, i))

Term(row,X, j, i))
=

j∑
f=1

e(PL(Com(row, f), i,X))

PL(Com(row, f), i,X)
+

k∑
g=j+1

e(PW (Com(row, g), X))

PW (Com(row, g), X)

(21)

Applying the ruleR2 to Equation 10, we get e(Sum(X, j, i)) as follows:

e(Sum(X, j, i)) =

(kc)∑
j=1

e(Term(row,X, j, i)) (22)

Applying the ruleR2 to Equation 11, we get e(kE∆X
i ) as follows:

e(kE∆X
i ) =

k∑
j=1

e(Sum(X, j, i)) (23)

Applying the ruleR3 to Equation 14, we get e(kη̄Xi ) as follows:

e(kη̄Xi ) =

(
n− 1

X

)
× e(kE∆X

i ) (24)

Applying the ruleR2 to Equation 15, we get the error e(kη̄i) as follows:

e(kη̄i) =

n−1∑
X=1

e(kη̄Xi ) (25)

Applying the ruleR3 to Equation 16, we get e(β̄ki ) as follows:

e(β̄ki ) = e(kη̄i)/2
n−1 (26)

From the above analysis, we conclude the following. As per Equation 23, e(kE∆X
i )

increases with k. This is because e(Sum(X, i, j)) ≥ 0. Consequently, as per Equation
26, e(β̄ki ) also increases with k.
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5 Error Analysis: Relative Error
Here we evaluate the performance of the proposed approximation methods in terms
of their relative approximation errors. While standard error (measured in Section 4),
is a measure of the uncertainty in an approximation, relative error is a measure of the
difference between an approximate and its corresponding exact6 [1]. Now, since the
proposed approximation methods are randomized methods, the relative error may be
different for different problem instances (i.e., for different voting games). Thus mea-
suring the relative error for a single problem instance may not give a proper indication
of the performance of the method. So we we experimentally measure the relative error
for a wide range of voting games and then find the average error.

The aim of these experiments is as follows. First, we want to show, on average,
how far an approximate is from the corresponding exact. Second, we want to show
how this error changes with k.

The experimental setting is as follows. We generate a range of voting games by
varying the number of players between n = 3 and n = 9. It must be noted that the
reason for having at most 9 players is that we are computing the exact solution for #P-
complete problems. We also vary k between k = 1 and k = 5. For each n and k, we
generate random weights in a given range. Note that, for each n and k, a player has k
weights, one for each of the k components of the game. Let βki (j, n) denote i’s exact
Banzhaf index for the jth game. Likewise, let β̄ki (j, n) denote i’s approximate Banzhaf
index for the jth game. Lastly, let Ej(β̄ki (j, n)) denote the percentage relative error in
the Banzhaf index for the jth game. This error is defined as follows:

Ej(β̄
k(j, n)) =

1

n

n∑
i=1

100× abs(βki (j, n)− β̄ki (j, n))

max{βki (j, n), β̄ki (j, n))}
(27)

If we let E(β̄ki (n)) denote the average of these errors for the 25 randomly generated
games, i.e., we have :

E(β̄k(n)) =
1

25

∑25

j=1
Ej(β̄

k(j, n)) (28)

Recall that, for each k, the number of players is between n = 3 and n = 9.
Thus, for each k, we have seven different values of n. So the average percentage error
(E(β̄k)) across all these n is computed as follows:

E(β̄k) =
1

7

∑9

a=1
E(ϕ̄k(a)) (29)

The results of these experiments are summarized in Figure 1. This figure demon-
strates the following facts:

1. For a given k, on average, how far the Banzhaf index is from the corresponding
exact. For instance, consider k = 1 for which the average error is 15%. This
means that, for voting games with 3 ≤ n ≤ 9 and k = 1, the relative error is, on
average 15%. The standard deviation in the error is 7%.

6Clearly, computing relative error for the proposed approximation methods requires computing the exact
Banzhaf index.
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2. How the error in the approximate Banzhaf index changes with k. As shown in
the figure, the average percentage error increases in k. This is logical since, for a
given k, the proposed method require computing the approximate Banzhaf index
in terms of k component approximations. In other words, the error accumulates
and therefore increases with k. Note that, the aim of these experiments is not
just to demonstrate the fact that error increases in k but also to show by what
‘magnitude’ the error increase. For instance, as per Figure 1, the magnitude of
increase in error from k = 1 to k = 2 is 2.5%. The standard deviation also
increased with k. But the increase in the standard deviation was less than the
increase in error. When k increased from k = 1 to k = 5, the error increased
from 15% to 30%, and the standard deviation increased from 7 to 12.

Also, this result regarding the increase in error with k matches the conclusion
made in Section 4.1 for the standard error. Note that the standard error is a mea-
sure of the degree of uncertainty (measured in terms of the standard deviation)
in an approximation. However, unlike the relative percentage error (measured
in this section) it does not require measuring the difference between an approxi-
mate and its corresponding exact. Despite the difference in the way the standard
and relative errors are measured, they both were found to increase in k.

3. What can we say about the error for larger games, i.e., those with more than 9
players? Recall that a main aim of these experiments is to show how far an ap-
proximate is from its corresponding exact value. Since this requires computing
the exact value, we had to limit our study to games with a small number of play-
ers (n ≤ 9). Nevertheless, these results are important because they shed light on
how the proposed approximation methods will perform for larger games. Since
the proposed methods are randomized, and we know that the approximation error
for such methods decreases with the size of a problem instance, we can conclude
that for voting games for a given k and n > 9, the error will be less than that in
Figure 1 for the same k. Likewise, the standard deviation will also be lower.

Before closing this section, we would like to re-iterate the difference between stan-
dard error and relative error. If the standard error in an estimate x is e(x), it means that,
with reasonable certainty, the exact value lies in x ± e(x). However, there is a small
chance that the exact lies outside this range. In contrast, the relative error is measured
with reference to the corresponding exact. In other words, the advantage of relative
error is that it is a better indication of approximation error but its drawback is that it is
hard to determine this error for large games. This explains our motivation for analyzing
the relative error for small games and standard error for large games.

6 Related work
A number of methods have been proposed for measuring voting power. These include
[35], [3], [28], [31], [8], and [6]. A survey of these methods can be found in [15, 19].
Since the indices are hard to compute, the following methods have been proposed to
approximate them [24]:
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1. Monte Carlo simulation method [23]

2. Multi-linear extension (MLE) method [26, 27]

3. Modified MLE method [21]

4. Random permutation method [40]

5. Bachrach et al approximation method [2]

6. Randomized approximation method [12]

The earliest approximation method was proposed by Mann and Shapley [23]. This
method is based on Monte Carlo simulation and estimates the Shapley value from a
random sampling of coalitions. The advantage is its linear time complexity. But a key
issue here is that it does not give details of how the samples are to be drawn. Also, there
is no assessment of the accuracy of this method, and the method is for one-majority
games.

The MLE approximation method was proposed in [26] for computing the Shapley
value and this method was later extended [27] to approximate the Banzhaf index for
one-majority games. Again, while the advantage of this method is its linear time com-
plexity, it is for one-majority games and there is no evaluation of its approximation
error.

Leech [21] modified Owen’s MLE method for the Shapley value and the Banzhaf
index by trading-off computational time in order to improve the error of approxima-
tion. In more detail, this modified MLE method combines the essential features of
direct enumeration and MLE in order to improve the accuracy of the MLE method.
Specifically, the players are divided into two subsets: major players with large weights
L = {1, 2, . . . , l}, and minor players N − L. This combined method treats the ma-
jor players using enumeration as in the direct approach, but treats minor players using
Owen’s MLE approximation technique. Large values of l will improve accuracy, but
will also increase computation time. The advantage of this method is that it generates
a better approximation than Owen’s MLE method, but its disadvantage is that it has
exponential time complexity: O(2l).

Zlotkin and Rosenschein [40] proposed a random permutation mechanism for ap-
proximating the Shapley value. In this method, the players choose a random permu-
tation and form the full coalition, one player after another, according to the chosen
permutation. Here each player gets a utility equal to its contribution to the coalition
at the time of joining it. If each permutation has equal chance of being chosen, then
this mechanism gives each player an expected utility equal to its Shapley value. This
method requires the players to agree on an all-or-nothing deal. The advantage of this
method is its linear time complexity. However, for weighted voting games, getting the
players to agree on an all-or-nothing deal may be an issue because, for these games,
there is only one swing player for each possible coalition. So only one player gets a
utility of one and all others get zero utility.

Using a random sampling approach, Bachrach et al provide an analysis of the error
bounds and minimum number of samples required to achieve a given accuracy [2].
In more detail, they give randomized approximation methods for power indices such

17



as the Shapley value, which can be used for simple coalitional games. They show
that their approximation methods approach the optimal, and give lower bounds for
both deterministic and randomized approaches to computing the Shapley value and the
Banzhaf index. This work focuses on simple coalitional games, but does not deal with
the performance of the approximation method in the context of k-majority games.

An approximation method for the Shapley value for k-majority games was given
in [12]. This method was then extended in [13] for computing the Banzhaf index. The
difference between [13] and this paper is that the former provides a theoretical com-
parative analysis of the approximation methods for the Shapley value and the Banzhaf
index. The latter focuses on the Banzhaf index part and extends it by including an
experimental analysis of the approximation error.

Before concluding, we emphasize the significance of k-majority voting games rel-
ative to one-majority games. Games with k > 1 are more general in the sense that they
provide a means of determining a winning coalition on the basis of not just a single
rule but more than one rule. For example, k > 1 for the voting game used for elections
to Nice European Council of ministers [4]. Here the winning coalition of countries is
determined not just on the basis of its total weight but also on the basis of the number of
countries in the coalition. Hence our focus on k-majority games. Furthermore, unlike
existing methods, we demonstrate how our method perform in terms of the standard
error and also in terms of the relative error of approximation.

7 Conclusions and future work
The Banzhaf index is a well known and widely used index for measuring the power a
player has in a voting game. However, the problem of computing it is #P-complete.
To overcome this problem, we presented a heuristic randomized method for computing
an approximate Banzhaf index for k-majority voting games. The complexity of this
method is O(kn22k) where n is the number of players and k is the number of compo-
nent games. We also experimentally analyzed this method in terms of its approximation
error and showed that the error ranges between 15% for random games with k = 1 to
30% for k = 5.

The Banzhaf index finds application in a number of multi-agent settings. These
include analysis of voting structures, cost sharing and resource allocation, and utility
analysis in multi-party negotiations. By providing computationally feasible methods
for approximating the Banzhaf index, our work facilitates its application in such multi-
agent settings.

Apart from the Banzhaf index, there are other definitions of power indices such as
Coleman index and Deegan-Packel index. Future work will deal with computing these
for k-majority games.
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Figure 1: The average percentage error (E(β̄k)) in the Banzhaf index and the standard
deviation in the error.
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