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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF BUSINESS AND LAW 

Management 

Doctor of Philosophy 

BIASED DECISION MAKING IN A NATURALISTIC ENVIRONMENT: 

IMPLICATIONS FOR FORECASTS OF COMPETITIVE EVENTS 

by David C. J. McDonald 

This thesis, which is divided into five papers, explores biased decision making 
in naturalistic environments and its implications for the efficiency of financial 
markets and forecasts of competitive event outcomes. Betting markets offer a 
valuable real world decision making context, allowing analysis that is not 
possible using regular financial market data. The first paper surveys studies 
that have employed betting markets to investigate biased decision making and 
discusses why the extent of these biases is significantly less than in the 
laboratory. 

The second paper addresses unresolved issues relating to noise trading and 
herding in financial markets, by showing that noise trading is associated with 
increased market efficiency, that the extent of herding differs depending on the 
direction and timing of changes in market prices, and that this results in an 
economically significant inefficiency. The findings of this paper have important 
policy implications for wider financial markets: regulatory measures to protect 
investors from the destabilizing effects of noise appear to be self-defeating and 
herding is particularly prevalent when uninformed traders perceive that 
informed traders are participating in the market. 

The third and fourth papers address the favourite-longshot bias (FLB), where 
market prices under-/over-estimate high/low probability outcomes. These 
papers demonstrate that previous explanations of the bias are inconsistent with 
evidence of trading in UK betting markets by developing and testing the 
predictions of models that explain the bias in terms of competition between 
market makers and the demand preferences of bettors. Moreover, it is 
definitively shown that, when no market maker is involved, the bias is due to 
cognitive errors of traders rather than their preference for risk, because only 
prospect theory, and not risk-love, can explain a reduced FLB in events with 
strong favourites. 
 
The final chapter explores methodological concerns relating to estimates of 
forecast accuracy in models of discrete choice, and arrives at a much more 
rigorous understanding of the value of these estimates. 
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Introduction 

 

 In contrast to normative economic theory, decision makers have been 

shown to be susceptible to judgemental biases when making choices (Simon, 

1955). However, the vast majority of evidence for this conclusion has been 

obtained from laboratory-based studies. The generalizability of these results to 

the population as a whole has been questioned because it is well understood 

that controlled laboratory conditions cannot replicate the richness and 

complexity of real life settings, with subjects often lacking the relevant 

experience and meaningful incentives (Bruce and Johnson, 2003; Levitt and List, 

2007). Hence, an attractive alternative for researchers is to seek out evidence of 

biased judgements in the natural environment of the decision maker. The 

decisions of traders operating in financial markets, for instance, can be analyzed 

by seeing that the market price of a speculative asset results from the combined 

decisions of all traders, and so the average subjective probability estimates of 

the asset’s payoffs can be determined; this can be compared with objective 

outcomes in order to determine whether participants in the market are biased 

in their decision making (Griffith, 1949). However, it is difficult to assess the 

extent of biases in regular financial market prices because uncertainty is always 

present, with prices reflecting the current subjective expectation of future 

prices rather than objective fundamental information (Shleifer and Summers, 

1990). Hence, one can never be certain whether anomalies in financial market 

prices truly represent biased decision making or simply reflect the expectation 

of possible future events that may or may not occur in practice. 

 Betting markets are an ideal real world decision making environment in 

which to explore biased decision making, sharing many features with other 

financial markets and offering many advantages over laboratory experiments. 

In particular, they involve a large number of regular traders who have access to 

widely available information, a smaller number of traders who are particularly 

adept at combining information in such a way as to make excess returns, and a 

minority of traders who have access to privileged information (Vaughan 

Williams and Paton, 1997). In contrast to laboratory conditions, betting markets 

are associated with rich, dynamic information sets, offer strong incentives for 
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success, require the commitment of the individual’s own resources, and involve 

repeated trials. Most importantly, they have a defined end point at which all 

uncertainty in the relation between prices and fundamental information is 

resolved, thus overcoming the problem of expectation in regular financial 

markets. In addition, “in its simplest formulation, the market for bets in an n-

horse race corresponds to a market for contingent claims with n states in which 

the ith state corresponds to the outcome in which the ith horse wins the race” 

(Shin, 1993, p.1142). Betting markets also offer the opportunity of quantifying 

the proportion of market activity attributable to informed trading (using a 

model developed by Shin, 1993). Consequently, betting markets appear to offer 

considerable advantages for the study of biased decision making in a 

naturalistic environment. 

 This thesis is divided up into five separate but inter-related papers. The 

theme running through all the papers is that they examine to what extent and 

why decision makers make biased choices in a naturalistic environment and the 

implications of such biased behaviour for the efficiency of financial markets and 

forecasts of competitive event outcomes. Throughout, these papers develop 

new insights relating to behavioural and economic biases in general by 

developing innovative models and carrying out empirical tests on recent data 

drawn from UK betting markets. Overall, this thesis makes a significant 

contribution towards understanding the extent and nature of biased decision 

making in naturalistic environments. 

 Chapter 1, entitled “Evidence of biased decision making in a 

naturalistic environment”, a version of which is to be published in the 

forthcoming title The Economics of Gambling (Oxford: Oxford University Press), 

is a discussion of previous studies that have employed betting markets to study 

biased decision making, with particular reference to systematic biases that 

were first discovered in the laboratory. Hence, it serves as an overall literature 

review for the remainder of the thesis, although, as each chapter can be 

considered a stand-alone paper, relevant literature is covered at the beginning 

of each subsequent chapter. This paper begins by noting (as have a number of 

other researchers, e.g., Ebbeson and Konecni, 1980; Funder, 1987) that, while 

there is a substantial literature consisting of evidence of biased decision making, 
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such as the work of Simon (1955) on bounded rationality and Kahneman and 

Tversky on heuristics and biases (Kahneman et al., 1982), most of this research 

has been carried out in controlled laboratory conditions with subjects who are 

often students lacking the relevant experience for the task at hand. It outlines a 

number of reasons why there is a problem with generalizing the results of these 

studies to the wider population and shows how studies of betting markets 

overcome this problem. Then it summarizes and discuss the results of betting 

market studies of a number of important decision making biases: the favourite-

longshot bias, anchoring and adjustment, herding, the gambler’s fallacy, and the 

hot hand. 

 Chapter 2 consists of a paper that will be submitted to The Journal of 

Financial Markets: “Noise, herding, and the efficiency of market prices: 

insights from markets for state contingent claims”. This paper shows how 

data from betting markets can be employed to provide new insights into a 

number of unresolved issues relating to two types of biased decision making 

that are prominent in the financial markets literature. First, it explores the role 

played in the efficiency of financial markets by noise trading, which is trading 

that is based on anything except information, and so appears to be a universally 

loss-making strategy (Black, 1986). An unanswered question has been whether 

noise trading results in excessively volatile, inefficient markets, in which added 

risks limit the possibility of arbitrage by informed investors (De Long et al., 

1990), or if noise is essential in providing liquidity to informed investors in 

order that markets are efficient (Bloomfield et al., 2009). It has been predicted 

and, to an extent, verified empirically (Campbell and Kyle, 1993) that a 

consequence of noise trading is increased volatility in market prices. So, on the 

one hand, it has been argued that noise results in volatility in excess of the 

variations justified by underlying fundamental information (Shiller, 1990), in 

which case, noise is detrimental to market efficiency because of its destabilizing 

effect on long-run equilibrium values, with risk-averse informed investors 

limiting their arbitrage to avoid liquidity risks (Shleifer and Summers, 1990). 

On the other hand, it has been suggested that noise may be essential for 

generating liquid, and thus efficient, markets (Black, 1986; Grossman and 

Stiglitz, 1980; Kyle, 1985). Noise trading might harm market efficiency, but only 
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when prices are extreme; when prices are not extreme, noise traders help to 

make prices more efficient by providing liquidity to informed traders 

(Bloomfield et al., 2009). The first aim of this paper is to answer these questions: 

are markets associated with a greater degree of noise trading also more volatile, 

and are these markets more or less efficient?  

 Second, this paper investigates the related decision making bias of herding, 

which occurs when market participants neglect their own private information 

and adjust their actions to be more representative of those of other traders. 

They do this in the belief (perhaps mistaken) that other traders are more 

informed than themselves. The combined activity of many herding traders can 

result in extraordinary changes in asset values over a short period, possibly 

leading to bubbles, crashes and bank runs (Devenow and Welch, 1996). 

However, empirical evidence for the phenomenon is inconclusive in both 

financial markets (Lakonishok et al., 1992; Wermers, 1999; Sias, 2004) and 

laboratory investigations (Cipriani and Guarino, 2005; Spiwoks et al., 2008). 

One reason for this mixed evidence could be that previous studies failed to take 

account of differing levels of actual and perceived trading by investors with 

priviliged information at different times of the market as well as depending on 

the direction of price movements. The second aim of this paper, therefore, is to 

explore the extent and reasons for herd behaviour while accounting for these 

concerns. 

 The third and fourth papers address the favourite-longshot bias (FLB), 

which is the widely-reported phenomenon wherby prices in markets for state 

contingent claims systematically under-/over-estimate high/low probability 

outcomes (e.g., Dowie, 1976; Ali, 1977; Snowberg and Wolfers, 2010). It has 

been attributed to a wide range of causes, such as the risk-loving nature of 

traders (Weitzman, 1965), errors in the estimation of probabilities (Henery, 

1985), the pricing policies of bookmakers (Shin, 1993), and limited information 

of traders (Sobel and Raines, 2003). Each of these papers demonstrates that 

previous explanations of the bias are inconsistent with theoretical and 

empirical considerations relating to recent trading in UK betting markets. The 

first of these papers addresses bookmaker and exchange markets and how 

competition between these markets, along with the demand preferences of 
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bettors, can provide a more satisfactory explanation for the presence (or 

absence) of the bias in these markets. The second of these papers addresses 

pari-mutuel markets and investigates using a novel methodology whether, 

when no market maker is involved, the bias is due to cognitive errors of traders 

rather than their preference for risk. 

 Chapter 3 is titled “The favourite-longshot bias in competing betting 

markets” and consists of a paper that is under review by The Economic Journal. 

Many studies have sought to explain the enduring presence of the FLB and its 

absence in some markets, but little consensus has been reached (Jullien and 

Salanié, 2008), particularly with respect to the presence (and absence) of the 

FLB in the two major competing types of horserace betting market in the UK 

and Ireland (and in other jurisdictions, such as Australia): bookmakers and 

betting exchanges. In order to explain observed patterns of the extent of the 

FLB at various times in these markets, this paper explores two aspects of these 

parallel markets: competition and informed trading. The markets for horserace 

betting in the UK are increasingly competitive, with the rapid rise of exchange 

betting, along with many existing operators and a wealth of information 

regarding prices available to bettors via internet price comparison services. 

This paper develops a theoretical model to investigate the optimal pricing 

decisions of bookmakers when the betting public are able to rapidly compare 

prices, and also it is argued that informed trading has a significant effect on 

reducing the degree of the FLB in either type of market, but only when 

transaction costs are low. These considerations lead to hypotheses, which are 

tested empirically using a novel and unique dataset, consisting of over 5.5 

million market prices: specifically, this paper analyzes how the bias develops 

over the course of the markets for 6058 races run between August 2009 and 

August 2010. 

 Chapter 4 (“New evidence for a prospect theory explanation of 

systematic decision making bias in a market for state contingent claims”) 

will be submitted to Economics Letters, and hence is a concise but definitive 

account of whether cognitive errors of traders or risk preferences better 

explain the FLB in pari-mutuel markets (i.e., markets that are independent of a 

market maker). While there have been a range of explanations proposed for the 
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FLB in pari-mutuel markets, a simplified but useful categorization is that 

bettors either have unbiased expectations, but are risk-loving, or have biased 

expectations, but are risk-neutral or risk-averse (Snowberg and Wolfers, 2010). 

However, it is difficult to empirically discriminate between these competing 

explanations because each is observationally equivalent. Those that have 

attempted this task have relied on parametric assumptions or assumptions 

relating to the choice set of the decision maker. This paper develops a new 

methodology for choosing between the hypotheses that does not rely on these 

assumptions, consisting of a representative agent model that predicts a ‘strong 

favourite’ effect on the level of FLB. Specifically, it is demonstrated that the level 

of bias in an individual event varies in a predictable manner depending on the 

traders’ risk preferences. If the representative agent is risk-seeking, the model 

predicts an increased FLB in events where the variance of the odds on 

competitors other than the favourite is relatively low, ceteris paribus. Convesely, 

if the representative agent is risk-averse, the level of FLB is reduced or a reverse 

bias is predicted when the same variable is relatively low. This prediction is 

independent of whether probabilities enter the decision process linearly (as in 

expected utility theory) or nonlinearly (as in prospect theory). Hence, empirical 

tests can be conducted that distinguish between hypotheses that do and do not 

require the representative agent to be risk-loving. The purpose of this paper 

therefore, is to test empirically the predictions of the model and definitively 

show whether expected utility theory or prospect theory better explains the 

FLB. 

 Chapter 5 consists of a paper with the title, “Properties of pseudo-R2 as 

an estimate of forecast accuracy for discrete choice models”, and is 

primarily concerned with methodological issues relating to statistical methods 

employed in studies that employ models of discrete choice, of which the 

conditional logit model, employed throughout this thesis, is an example. Hence, 

this paper will be submitted to The Journal of the Royal Statistical Society, Series 

B (Methodological). The motivation for this paper is that in many studies that 

have used discrete choice models, particularly many of the studies cited in this 

thesis, pseudo-R2s are reported as a measure of forecast accuracy. However, it is 

shown in this paper that there are significant concerns related to the evaluation 
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of discrete choice models using pseudo-R2s. A key property of any means of 

evaluation of a forecast is its comparability across empirical models, both in the 

sense that its interpretation should be the same, and that standard errors 

should be reported, in order to carry out significance tests. However, little 

attention has previously been given to whether pseudo-R2s have this desirable 

property, and the consequences of this for the evaluation of discrete choice 

models using pseudo-R2s. Consequently, there are three broad research 

questions that are asked in this paper. First, are pseudo-R2s directly comparable 

across models estimated on datasets with different characteristics? Second, if 

they are, what is the most appropriate method for statistical comparisons? 

Finally, how useful are pseudo-R2s in explaining the predictive power of model 

probabilities? 
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1. Evidence of biased decision making in a naturalistic 

environment 

 

Abstract 

 

The generalizability of laboratory-based research into behavioural biases has 

been questioned because it is well understood that laboratory experiments 

cannot replicate the richness and complexity of real life settings. Naturalistic 

environments and betting markets in particular therefore offer an attractive 

alternative for examining decision making behaviour. This paper discusses the 

results of studies that have employed betting markets of various kinds to 

investigate decision making, with particular reference to systematic biases that 

were first identified in the laboratory. The primary conclusion of this paper is 

that, while systematic biases reported in the laboratory have been found in 

naturalistic betting markets, the extent and generality of these biases in these 

real world environments is often significantly less. We attribute this to the 

context of the decision task, the incentives offered, the lack of scrutiny involved, 

the experience of the decision makers, and the effect of aggregation.  

 

1.1. Introduction 

 

 Psychologists have long been aware of the limitations of normative 

models of judgement and decision making. Herbert Simon’s (1955) work on 

bounded rationality criticized rational models of decision making for 

disregarding factors such as the limited cognitive capacity of individuals. Later, 

psychologists confirmed experimentally that decisions are systematically 

biased in many ways, with decision makers adopting rules of thumb or 

‘heuristics’ in order to more rapidly solve complex problems (Kahneman et al., 

1982). However, over the decades, it has become apparent that many of these 

conclusions have relied on experiments carried out under controlled laboratory 

conditions. This has led researchers to question the generalizability of the 

results (e.g., Bruce and Johnson, 2003; Levitt and List, 2007). In particular, it is 

well understood that laboratory experiments cannot replicate the richness and 
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complexity of real life settings. As Festinger (1953, p.141) notes: “In the most 

excellently done laboratory experiment, the strength to which the various 

variables can be produced is extremely weak compared to the strength with 

which these variables exist and operate in real life situations”. Naturalistic 

environments offer an attractive alternative for examining decision making 

behaviour, featuring subjects who, unlike in many laboratory experiments, are 

experienced in the task at hand and are not directly aware that their actions are 

under scrutiny. 

 Betting markets are naturalistic decision making environments that offer 

considerable potential for understanding decision making behaviour, sharing 

many features with other real world decision environments. In particular, they 

are associated with rich, dynamic information sets, offer strong incentives for 

success, require the commitment of the individual’s own resources, and involve 

repeated trials. This paper provides a survey of previous studies that have 

employed betting markets of various kinds to investigate decision making, with 

particular reference to systematic biases that were first identified in the 

laboratory. 

 The remainder of this paper is structured in three main parts. First, we 

summarise the debate over the generalizability of laboratory findings and 

identify ways in which naturalistic environments offer an alternative for 

studying biased decision making. In particular, we outline the usefulness of 

betting markets and review a range of studies that have demonstrated that 

bettors are, in many ways, rational and well calibrated decision makers. Second, 

we discuss the psychology behind the widely documented favourite-longshot 

bias. Third, we address two decision biases, anchoring and herding, each of 

which involve judgements of some unknown quantity being unduly influenced 

by external stimuli. Finally, we survey studies that have investigated biases that 

result from a failure of individuals to recognise randomness: the gambler’s 

fallacy and the hot hand fallacy. 
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1.2. Betting markets: decision making in a naturalistic environment 

 

1.2.1. The generalizability of laboratory findings 

 

 At the heart of this discussion is the distinction between experiments 

carried out under controlled conditions in artificial laboratory settings and 

analysis of data obtained from naturalistic environments, such as casinos, 

lotteries, and markets for betting on horseraces or other sports. While some 

experiments can claim to have been carried in ‘real world’ environments, we 

define a naturalistic environment as one that “has not been artificially 

manipulated (i.e., a nonexperimental setting)” (Johnson and Bruce, 2001, p.266). 

This distinction is crucial, and there is a long running debate concerning the 

relative merits of the two alternative methodologies when employed in 

experimental psychology (e.g., Ebbeson and Konecni, 1980; Hogarth, 1981; 

Funder, 1987; Bruce and Johnson, 2003) and economics (Harrison and List, 

2004; Levitt and List, 2007). A critical assumption in experimentation is that 

results generalize to the broader population, but this generalizability, or 

‘external validity’, has been questioned because of significant variations in 

observed behaviour between laboratory and naturalistic environments (e.g., 

Ebbeson and Konecni, 1980; Koehler, 1996). The factors that have been 

identified as limiting the generalizability of laboratory experiments include the 

following: 

 

1. Context: Laboratory environments often present simplified versions of tasks 

that are more complex in real world environments, and so may unintentionally 

omit variables that are influential in the natural setting. Significant differences 

in behaviour may depend only on small changes to the experimental conditions 

(Ayton and Wright, 1994), and Harrison and List (2004, p.1010) note that 

 

although it is tempting to view field experiments as simply less controlled 

variants of laboratory experiments, we argue that to do so would be to 

seriously mischaracterize them. What passes for “control” in laboratory 
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experiments might in fact be precisely the opposite if it is artificial to the 

subject or context of the task. 

 

In addition, there are variables that the experimenter cannot control, such as 

past experiences or social norms, that can affect the results (Levitt and List, 

2007). Finally, biases recorded in the laboratory may simply be a response to 

the specific laboratory stimulus, with those same biases not occurring under 

ordinary circumstances (even while resulting from the same cognitive 

processes). For example, when mistakes are made in visual perception tasks in 

the laboratory, it is usually assumed that the mechanisms that result in the 

error generally produce correct judgements in real life (Funder, 1987).1 

 

2. Experience: Laboratory studies typically use university students, who may be 

inexperienced in the task at hand. Hogarth (1981) highlights the importance of 

feedback in making correct decisions over the continuous time period often 

associated with real world decision making. Feedback is simply not available in 

‘one-shot game’ laboratory studies, so there is limited potential for participants 

to learn from their mistakes. Even worse, they frequently carry ‘baggage’: 

behaviour learned in the outside world entirely unsuited to the problem at hand 

(e.g., Burns, 1985). Furthermore, a number of studies demonstrate large 

differences between the decision strategies of experts and novices in terms of 

the way they think, the nature of the decision models they employ, and the 

speed and accuracy of their problem solving (e.g., Larkin et al., 1980). 

 

3. Scrutiny: Laboratory subjects, who are usually aware that they are being 

investigated, may be keen to project a particular image (even if they have no 

                                                 
1 As a further example of the importance of context in decision making, consider the following 

problem. There are four cards on the table, each with a letter on one side and a number on the 
other. The rule is, “If there is a vowel on one side of a card, then there is an even number on the 
other side.” The cards show A, D, 4, and 7. Which cards must be turned over in order to 
determine whether the rule is true or false? This is known as Wason’s four-card selection task 
(Wason, 1968), and usually less than 10% of people respond with the correct answer of A and 
7 (most neglect to choose 7, or unnecessarily include 4). However, when this problem is 
reframed in terms of certain social contexts, such as asking subjects to test the rule, “If a 
person is over 18, they can drink alcohol”, and replacing the cards with ‘16 years old’,  ‘22 
years old’, ‘Coke’, and ‘Beer’, the correct answer (‘16 years old’ and ‘Beer’) is given by most 
respondents, even though the problem is logically identical to the first, more abstract, task (e.g., 
Cox and Griggs, 1982). 
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idea of the purpose of the experiment). The student volunteers studied in most 

investigations are more likely to be ‘scientific do-gooders’ (e.g., interested in the 

research, or seeking approval from the experimenter) with unusually high 

awareness of the moral implications of their decisions. Scrutiny may therefore 

exaggerate the importance of pro-social behaviours such as altruism and 

fairness (Levitt and List, 2007). Conversely, the anonymity that is often present 

in real settings may allow decision makers to feel that they are able to avoid 

being judged morally. 

 

4. Incentives: Laboratory experiments are usually conducted with relatively 

trivial rewards for success. However, in the real world, decision makers are 

often involved in high-stakes environments, where they must commit their own 

or others’ resources and where the results of their decisions can have 

significant personal consequences. These high-stakes environments can, 

therefore, involve a meaningful degree of risk. This can lead to a marked 

difference in risk taking behaviour between laboratory and real world 

environments (Yates, 1992). For example, the lack of excitement and low 

arousal levels in laboratory studies may lead to behaviours that would not be 

present in real settings (Anderson and Brown, 1984). 

 

The issues discussed above all limit the generalizability of biased 

behaviour often found amongst laboratory participants to the wider population. 

However, to discard laboratory findings outright would be naive (Hogarth, 

1981). Rather, data gathered in the laboratory and under naturalistic conditions 

have their own strengths and weaknesses, so should be considered 

complementary (Keren and Wagenaar, 1985). For instance, naturalistic work 

suffers from the inability to use control groups and difficulties associated with 

the replication of results. In addition, laboratory-based investigations are 

usually more cost-effective and afford the possibility of isolating specific 

variables. 
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1.2.2. Betting markets as valuable naturalistic environments 

 

 Betting markets offer an ideal naturalistic environment in which to 

explore biased decision making. A key practical advantage is the availability of 

extensive and detailed quantitative data relating to bettors’ decisions. Since 

markets are finite in nature, there is a continually expanding set of ‘completed’ 

markets, i.e., self-contained time periods of betting with pre-defined endpoints, 

when all bets are settled in an unambiguous manner2. Furthermore, there is 

potential for comparative analysis across different types of event or bet, 

according to criteria such as quality (e.g., Smith et al., 2006), time of day (e.g., 

McGlothlin, 1956), or complexity (e.g., Johnson and Bruce, 1998). Thus, it is 

possible to control for some aspects of the decision setting. Most importantly, 

betting markets include many of the factors regarded as distinctive to 

naturalistic decision making (Orasanu and Connolly, 1993): uncertain dynamic 

environments, poorly-structured problems, high stakes, time stress, 

action/feedback loops, and multiple players. Each element of the decision 

making event (i.e., the bet) is unique: no two horseraces or football matches are 

the same. Thus, the outcome is uncertain, and the information relating to that 

outcome is often (as it is in many real world decision environments) ambiguous, 

vague, or redundant. For example, it is not obvious how to combine the various 

factors that might enable one to predict participants’ performance. The dynamic 

nature of betting markets is evidenced by the constantly-updating prices as 

bettors with diverging opinions participate in the market. 

 Bettors, like many decision makers in real world environments, often risk 

meaningful amounts of money while under stress from time pressures (the 

window of opportunity in a betting market may only last minutes, or even 

seconds). A further important feature of these markets is the repetitive nature 

of betting. Since events take place regularly and often, there is potential for 

gaining familiarity with and expertise in the task. Betting markets involve 

action-feedback loops; once bets have been placed and a market is closed and 

                                                 
2 This is a particular advantage of betting markets over other types of financial market for 

naturalistic research. The payoffs in betting markets are entirely unambiguous, so there is a 
time when all uncertainty is resolved. This is not the case in regular financial markets, where 
prices continuously represent the current expectation of future prices. 



 25 

decided, bettors receive relatively unambiguous feedback on the success of 

their decisions, and this can be incorporated into future decisions (Goodman, 

1998). Also, betting markets involve multiple players, and it has been shown 

that the interaction between individuals in markets can significantly reduce 

errors (Wallsten et al., 1997). This results from a variety of causes, not least the 

fact that different individuals use different decision making procedures and 

have diverse information gathering skills. As a result, their reaction to the same 

information may vary. Consequently, the final prices that emerge in these 

markets take into account a wide range of information and the forecasts of 

many individuals, and studies show that combining diverse forecasts generally 

leads to significantly more accurate predictions (e.g. Vlastakis et al., 2009; Grant 

and Johnstone, 2010). In addition, betting markets are not subject to the 

limitations of laboratory investigations listed above. For example, bettors are 

unaware that their decisions may be scrutinized, as they are not directly 

volunteering to take part in an experiment; instead, betting patterns are 

analysed in such a way as to observe their decisions unobtrusively. 

 

1.2.3. Betting market data and decision making 

 

 In any betting market, individuals are able to place bets on one or more of 

a set of outcomes of some future event. For instance, in the simplest of markets 

for betting on a horserace with n runners, n different bets are available, one for 

each horse to win the race. After the market has closed and the race has taken 

place, each bet pays, for each £1 staked, a return £Ri if horse i wins and nothing 

otherwise. While the returns Ri (usually referred to as the ‘odds’ against 

outcome i) are determined differently according to the type of market and event, 

they depend on the relative amounts bet on each outcome by all the market 

participants. Consequently, bettors have an incentive to continue to place 

money on each outcome until the returns reflect the market’s best estimate of 

that outcome’s probability of occurring (Figlewski, 1979). Therefore, a typical 

approach to assessing decisions in betting markets is summarized (with 

reference to horserace betting) by Griffith (1949, p.290): 
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the odds on the various horses in any race are a functioning of the 

proportion of the total money that is bet on each and hence are socially 

determined. On the other hand, the objective probability for winners from 

any group of horses is given a posteriori by the percentage of winners. 

Thus the odds express (reciprocally) a psychological probability while the 

percentage of winners at any odds group measures the true probability; 

any consistent discrepancy between the two may cast light not only on the 

specific topics of horse-race betting and gambling but on the more general 

field of the psychology of probabilities. 

 

Hence, the ‘socially determined’ prices in betting markets reflect the ‘subjective 

probabilities’ assigned to each possible outcome by the bettors, in aggregate. 

The results of the event then determine the ‘objective probabilities’. Thus, 

biases can be detected by researchers by comparing subjective and objective 

probabilities. 

 A drawback of most betting market research is that, for ethical and/or 

practical reasons, it is usually not possible to obtain information relating to the 

decisions of individual bettors. Instead, subjective probabilities are an 

aggregation of opinions of all bettors. Hence, it is possible that ‘‘certain biases 

present in an individual bettor’s decisions are being counterbalanced by 

opposite biases in other bettors’ decisions’’ (Johnson and Bruce, 2001; p. 280). 

Camerer (1987, p.982) notes that a common argument for the rationality of 

market participants is that “random mistakes of individuals will cancel out”, but 

also offers the counter-argument: “biases found by psychologists are generally 

systematic - most people err in the same direction”. Thus, the best we can hope 

for in betting market research is evidence of systematic bias. 

 A further weakness of employing betting market data to examine decision 

making behaviour is that psychologically significant biases also hold an 

economic significance. Consequently, if some bettors (even a small group) 

become aware of an overall disparity between subjective and objective 

probabilities, they can potentially profit by betting against the bias. This could 

reduce the extent to which any systematic bias that exists amongst bettors is 

detectable from aggregate betting market data. Fortunately for researchers, 
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transaction costs ensure that it is rarely possible to entirely arbitrage away 

biases. 

 

1.2.4. Calibration of bettors’ judgements 

 

 Given the above discussion, it might be expected that bettors display 

significantly less biased judgements in their natural domain than is 

demonstrated amongst naive participants in laboratory experiments. Indeed, 

Rosett (1965) found that horserace bettors are generally sophisticated and 

rational agents, who will not forego combinations or sequences of bets that 

offer higher probability of winning for the same return or higher return for the 

same probability of winning. Furthermore, results reveal a high correlation 

between subjective and objective probabilities, suggesting that bettors are 

familiar with their decision making environment and are able to accurately 

forecast risky outcomes3. Rosett (p.596) notes that 

 

if these gamblers behave as though they know statistical prediction 

methods and the probability calculus, it seems reasonable to suppose that, 

in a variety of other circumstances, human beings can be expected to 

respond appropriately to risky situations merely after having had 

sufficient experience with them. 

 

Johnson and Bruce (2001) also investigated the calibration of horserace bettors’ 

subjective probability judgements. They found that bettors’ subjective 

probabilities are not significantly different from the observed objective 

probabilities. They noted that, while there is substantial evidence of poor 

calibration in decision makers, this may reflect on the specific laboratory 

experiments involved. For example, Shanteau (1992) suggests that task 

characteristics may account for differences observed in the quality of experts’ 

judgments; specifically, more competent performance is likely if the decisions 

involve stimuli that are relatively constant, the tasks undertaken are repetitive, 

                                                 
3 An exception holds for objective probabilities of less than 0.05, which is the favourite-longshot 

bias detailed in the second part of this chapter. 
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and where decision aids are widely available. Furthermore, it has been 

empirically observed that violations of rationality are reduced under the 

multiple play conditions that exist at the racetrack (e.g., Keren and Wagenaar, 

1987). Johnson and Bruce’s (2001) study therefore suggests that bettors are 

skilled in a similar way to weather forecasters, who are also required to make 

frequent risky forecasts (Murphy and Brown, 1984). Hoerl and Fallin (1974) 

also found no significant difference between subjective and objective 

probabilities in horseraces, and suggested that this is due to the high incentives 

available for successful gambling. 

 Not only are bettors well calibrated in general, they are able to adapt 

remarkably well to uncertain and dynamic information. Johnson, O’Brien, and 

Sung (2010) set out to test Gigerenzer’s (2000) assertion that evolution has 

equipped humans to process probabilistic information from frequencies 

observed in a natural environment. They investigated the extent to which 

horserace bettors accounted for post position bias (an advantage/disadvantage 

afforded to the horses depending on their position in the starting stalls), a factor 

shown to be a particularly important determinate of race outcomes at the 

racetrack examined. Despite the fact that track managers employed a variety of 

procedures to alter the bias (even between two consecutive races, and often 

unannounced) bettors were able to account for most of the changes through 

regular outcome feedback over 6 years. This finding may be accounted for by 

the fact that (i) bettors have a strong motivation to make accurate probability 

judgements as their own financial resources and often their peer group esteem 

depend on the outcome of their decisions (Saunders and Turner 1987), and (ii) 

those who frequently make probability judgments are often better calibrated 

(Ferrell 1994). It has also been shown that bettors’ calibration is generally 

improving over time (Smith and Vaughan Williams, 2010) and that expert 

bettors employ complex mental models encompassing a wide range of variables 

and interactions between these variables (Ceci and Liker, 1986). 

 In summary, naturalistic environments such as betting markets offer rich, 

complex settings in which to examine decision making biases that have been 

observed in the laboratory. Due to a number of factors, bettors appear to be 

more rational, well calibrated, and able to adapt to dynamic information than 
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participants in laboratory studies. However, there are a number of ways in 

which bettors are biased, and the first, and most widely documented, of these is 

the favourite-longshot bias, which is the focus of the next section. 

 

1.3. The favourite-longshot bias 

 

 By far the most reported departure from rationality in the betting market 

literature is that of the favourite-longshot bias (FLB). Prevalent over many 

decades and in many jurisdictions around the world, the bias is the 

phenomenon whereby returns to bets are such that the chances of high 

probability outcomes (favourites) are underestimated, while low probability 

outcomes (longshots) are overestimated. 

 

1.3.1. Evidence from the laboratory 

 

 Preston and Baratta (1948) provided early laboratory evidence of the bias. 

They were concerned that ‘rational’ theories of behaviour could not universally 

explain peculiarities in the way people approached ‘wagering games’ (in which 

participants are required to bet on an uncertain outcome). They hypothesized 

that players apply to outcomes a scale of ‘psychological’ probabilities not 

necessarily identical to their mathematically correct probabilities. In order to 

investigate this possibility, they carried out games with undergraduate students 

and faculty members (the latter were more experienced in mathematics, 

statistics, and psychology). The game required the participants to compete 

against each other, bidding for the chance to win a given prize with a given 

probability. They found that the players tended to pay too generously for 

outcomes with low probabilities and not bid high enough for outcomes with 

high probabilities. The indifference point, where the psychological and 

mathematical probabilities coincided, was found to be about 0.20. Moreover, 

even the faculty members displayed the bias (although to a lesser extent than 

the undergraduates), despite in many cases appearing to actively employ 

mathematics when forming their decisions. The experimental findings of 

Preston and Baratta have since been confirmed in numerous laboratory 
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experiments (e.g., Yaari, 1965; Rosett, 1971; Lichtenstein et al., 1974; Piron and 

Smith, 1994). 

 

1.3.2. Evidence from betting markets and explanations 

 

 The first evidence of the FLB in betting markets was from Griffith (1949). 

He was inspired by the laboratory evidence of Preston and Baratta (1948), but 

keen to test the results outside of the laboratory. Employing racetrack data, 

Griffith found that horses with low and high probabilities of winning were 

systematically over- and under-valued, respectively, a result consistent with 

that of Preston and Baratta, with a similar indifference point of about 0.20. 

McGlothlin (1956) replicated (and expanded upon) Griffith’s study with a larger 

data set, and found similar results. 

 In the decades that followed, a significant body of evidence for the bias 

emerged in betting markets around the world (e.g., in the USA: Ali, 1977; Asch 

et al., 1982; in the UK: Dowie, 1976; Vaughan Williams and Paton, 1997; in 

Australia and New Zealand: Tuckwell, 1983; Gandar et al., 2001)4. The emphasis 

in the research then shifted towards attempting to explain the origins of the 

bias. As a result, a broad range of explanations have been offered, including the 

‘bragging rights’ associated with holding a winning longshot ticket (Thaler and 

Ziemba, 1988) or the additional excitement derived from longshot betting 

(Bruce and Johnson, 1992). Henery (1985) suggests that bettors may discount a 

fixed proportion of their losing bets, leading them to believe that longshot bets 

are more attractive. Alternatively, the bias may arise from particular 

characteristics of the market itself, such as the cost of obtaining information and 

transaction costs (Hurley and McDonough, 1995) or the defensive pricing 

policies adopted by bookmakers (Shin, 1991). In this paper we simply provide 

an overview of the significant debates concerning the origins of the FLB from 

the perspective of bettors’ decision behaviour; for more comprehensive 

explorations, see surveys by Thaler and Ziemba (1988), Sauer (1998), Vaughan 

Williams (1999), Jullien and Salanié (2008), and Ottaviani and Sørensen (2008). 

                                                 
4 Exceptions have been reported in the horserace betting markets in Hong Kong (Busche and 

Hall, 1988; Busche, 1994), the market at one racetrack in the US (Swidler and Shaw, 1995), 
and exchange betting markets in the UK (Smith et al., 2006). 
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1.3.3. Do bettors love risk or do they misestimate probabilities? Expected utility 

theory vs. prospect theory 

 

 One strand of the FLB literature in particular merits attention because it 

has led to an important intellectual debate concerning the relative merits of two 

prominent competing theories for explaining decision making in wider fields: 

expected utility theory and prospect theory. The building block for this debate is 

the ‘representative bettor’. Weitzman (1965) introduced Mr. Avmart, a fictitious 

person who represents the ‘social average’ of all bettors. Weitzman’s (p.26) 

innovation was to infer the preferences of the ‘most typical’ bettor from the 

population of bettors: 

 

instead of concentrating on individuals and trying to derive utility 

generalizations from their experimental behavior, more nearly the 

converse approach was attempted. A plethora of data concerning the 

collective risk actions of parimutuel bettors was employed in investigating 

utility aspects of the behavior of a hypothetical member of the group. 

 

Weitzman was concerned primarily with constructing Mr. Avmart’s utility of 

wealth curve (the mathematical representation of preferences over various 

monetary outcomes and the basis of expected utility theory). He found that the 

FLB in the data was best explained by a convex utility of wealth curve, 

indicating that the average bettor is locally risk-loving (i.e., preferring the 

riskier, low probability outcomes). Quandt (1986) extended the analysis by 

showing that the bias is the natural result of equilibrium in a market where the 

average bettor is risk-loving. The findings of Ali (1977) and Hamid et al. (1996) 

also supported this hypothesis. 

 However, there are alternative scenarios that can explain the biased 

decisions of the representative bettor. So, for instance, Golec and Tamarkin 

(1998) showed that the FLB can arise if bettors are risk-averse in general but 

with a preference for skewness of returns. An alternative explanation stems 

from Preston and Baratta’s (1948) supposition that ‘psychological’ probabilities 

assigned to uncertain outcomes are systematically biased. If this is the case, the 
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FLB can be explained solely with reference to bettors’ systematic misestimation 

of probabilities, and bettors need not be locally risk-loving. This is formalized in 

Kahneman and Tversky’s (1979) prospect theory (later extended and renamed 

cumulative prospect theory; see Tversky and Kahneman, 1992). The important 

feature of prospect theory for this discussion is that objective probabilities are 

transformed into subjective decision weights that allow for biases in the 

estimation of probabilities. 

 Hence, there are now two broadly competing sets of theories regarding 

the explanations for the bias in terms of the representative bettor: are bettors 

unbiased in their estimation of probabilities, but risk-loving, or are bettors risk-

neutral, but biased in their estimation of probabilities? Unfortunately, there is 

no straightforward answer. As Yaari (1965, p.278) comments: 

 

at first blush it seems as though one cannot, by looking at empirical data, 

choose between the two hypotheses (distortion of utility versus distortion 

of probability) because utility and probability are two purely theoretical 

components of an integral decision process. Thus, the two hypotheses are 

empirically indistinguishable, and choosing between them is a matter of 

taste. 

 

However, some researchers have made progress in this regard. Golec and 

Tamarkin (1995) noted that risk-love cannot explain the relatively unfair 

returns for the low risk, low return side bets offered by some bookmakers. 

Instead, they suggested that overconfidence better explains the FLB (a 

conclusion consistent with bettors overestimating small probabilities). Jullien 

and Salanié (2000) found that prospect theory better explains the bias for 

standard bets, although computational limitations of this approach restricted 

their analysis. Bradley (2003) adapted the approach of Jullien and Salanié by 

accounting for bet size and found an even better fit to the data. 

 More recently, Snowberg and Wolfers (2010) set out to test the competing 

theories using a novel approach and a large dataset of all the horseraces run in 

North America from 1992 to 2001 (over 865,000 races). They first estimated 

the parameters of the two models by fitting them to standard ‘win’ bets. They 
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then examined compound exotic bets, such as the ‘exacta’, a bet that two horses 

will finish a race in first and second place in a specific order. Snowberg and 

Wolfers reasoned that bettors would bet in the same manner in the exotic and 

win betting pools, so the same models should apply for each bet type. 

Accordingly, they used the fitted models to predict expected market prices in 

the exotic betting pools and compared their predictions with the actual prices 

on offer. They found that the misestimation of probabilities model predicted 

exotic bet prices more accurately than the risk-love model, and concluded that, 

with respect to the representative bettor, prospect theory explained the FLB 

more effectively than expected utility theory. 

 An important issue in this debate is the validity of the assumption that 

bettors’ decisions can be averaged by the representative bettor. In the third 

section of this paper, we show that the distinction between different types of 

bettor, on the basis of the quality of the information they hold or how they 

handle this information, is crucial to fully understanding another bias in betting 

behaviour. Sobel and Raines (2003) demonstrated this by differentiating 

between ‘serious’ and ‘casual’ bettors. They identify serious bettors as those 

that attend the racetrack on week nights, bet larger sums, and bet to a greater 

extent on more complicated types of bet. On the other hand, casual bettors 

attend primarily on weekends and bet smaller sums on simpler types of bet. 

Sobel and Raines found evidence of the FLB, but the bias was significantly 

reduced in those races that involved a higher proportion of serious bettors. 

 

1.3.4. The late-race effect 

 

 A curious element of the nature of the FLB is its apparent tendency to vary 

in a systematic manner over the course of a day’s betting activity. In horserace 

betting markets, in particular, it has been found that the extent of the bias 

appears to increase significantly in the last race or last few races of the day, a 

phenomenon that has become known as the ‘late-race effect’. Early evidence of 

this pattern was uncovered by McGlothlin (1956), who found that, in the last 

race of the day, bettors underbet favourites to a greater extent than in any other 

race. He suggested that bettors might avoid bets on favourites in the last race 
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because winning such bets would not recoup earlier losses (the track take 

ensured that most bettors would finish the day out of pocket). Rather, they 

preferred to bet on longshots, hoping for a lucky win in order to end the day in 

profit. 

 Over time, as more evidence of the late-race effect emerged, it was 

explained in terms of the risk-loving attitudes of the representative bettor. For 

example, Ali (1977), who found a greater degree of the FLB in the last race than 

the first two races of the day, posited that this demonstrated that bettors 

became more risk-loving as the day progressed. Similarly, Asch, Malkiel, and 

Quandt (1982) replicated McGlothlin’s (1956) results, although, in their study, 

the extent of the bias was greater in the last two races of the day. Metzger (1985) 

also found evidence of the effect, but only if the first race of the day was 

excluded from the analysis. The late-race effect soon passed into betting lore, 

with Kopelman and Minkin (1991) describing how an avid racing enthusiast 

known as ‘Gluck’ espoused the rule: ‘The best time to bet the favourite is in the 

last race’. Kopelman and Minkin’s analysis confirmed that there was a sound 

economic basis for Gluck’s rule. 

 More recent evidence has thrown the existence of the late-race effect into 

question. Johnson and Bruce (1993) found that in UK betting shops, bettors 

tended to place more bets on favourites in the last race, and suggested that this 

might be due to a ‘break even’ effect, whereby bettors seek to recover their 

losses by betting on outcomes that have at least a moderate chance of occurring. 

This hypothesis is supported by evidence that decision makers tend to exhibit 

loss aversion after a series of prior losses (Thaler and Johnson, 1990). Similarly, 

Brown, D’Amato, and Gertner (1994) observed a greater prevalence of the FLB 

in the last race of the day than in earlier races, but the difference was not 

statistically significant. Sobel and Raines (2003) found a slight increase on 

betting on longshots in the last two races of day. However, they also found that 

the general trend over the latter half of the evening was for bettors to begin to 

prefer favourites and shun longshots. Finally, Snowberg and Wolfers (2010) 

found no significant difference in the extent of the FLB in the last race of the day 

(in a dataset of over 850,000 races), suggesting that the late-race effect has now 

been eliminated. 
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 From the contrasting evidence discussed above, it appears that bettors’ 

increasing risk-love over a day’s betting cannot fully explain the late-race effect. 

Johnson and Bruce (1993) consider that their converse result (a decreasing FLB 

in the last race) could be explained by a ‘break-even’ effect. However, a similarly 

plausible explanation is used by other authors to explain the opposite effect (an 

increasing FLB in the last race). Furthermore, it is not clear that expected utility 

theory is an adequate explanation. As Thaler and Ziemba (1988, p.171) ask, 

“why should a reduction in wealth increase the tendency for risk seeking?” 

Camerer (2001) points out that expected utility theory cannot explain why the 

same bettor leaves the racetrack one day, arrives again the next, and adopts a 

completely different risk attitude. Thaler and Ziemba propose that the effect can 

be explained by ‘mental accounting’, whereby bettors partition their wealth into 

separate accounts, and do not attempt to recoup losses in one account with 

funds in another. So, the late-race effect could be explained by bettors opening a 

mental account at the beginning of the day and closing it at the end, with an 

increasing desperation to break even as the day progresses (Camerer, 2001). 

Finally, the relative paucity of evidence for the effect in recent years could be 

attributed to a learning effect among bettors, as those who are aware of the 

effect are able to arbitrage it away should it reappear. 

 In summary, the FLB, while proving to be an interesting riddle for 

researchers, admirably demonstrates the value of naturalistic environments, 

betting markets in particular, in the study of decision making. While some 

potentially unrealistic simplifications (such as the representative bettor) must 

sometimes be made, the quality and quantity of betting market data has enabled 

the development of a large body of research on the nature of preferences and 

perceptions of risk under uncertainty. 

 

1.4. Anchoring and herding 

 

 Betting market research has largely focused on the FLB, but some studies 

have investigated whether bettors make biased decisions in other ways. In 

particular, anchoring and herding represent biased behaviour whereby the 

decision maker alters their decision to account for external stimuli. Thus, when 



 36 

employing the anchoring and adjustment heuristic, decision makers 

unnecessarily alter their judgements to reflect an initially-provided estimate. 

Herding arises when decision makers neglect their own information and alter 

their judgements to reflect those of others. This section details the findings of 

these studies. 

 

1.4.1. Anchoring and adjustment 

 

 Laboratory research suggests that, when making a numerical estimate, 

individuals, in an attempt to simplify the decision making process, tend to start 

from an initial value and make ‘adjustments’ upwards or downwards from it 

(e.g., Tversky and Kahneman, 1974). However, this often results in a bias 

whereby the decision is ‘anchored’ on the initial estimate, and adjustments are 

not sufficient. This is known as the anchoring and adjustment heuristic. For 

example, Tversky and Kahneman asked participants pairs of questions such as: 

 

(a) Is the percentage of African countries in the United Nations higher or 

lower than 25? 

(b) What do you think the exact percentage is? 

 

They found that the figure given in (a) (i.e., 25 in the above example) 

significantly influenced the participants’ responses to (b), even when the figure 

was randomly generated by spinning a wheel of fortune in the participants’ 

presence. Higher/lower random numbers were associated with higher/lower 

estimates. 

 Anchoring has mainly been studied in controlled laboratory conditions. 

The few studies that have been conducted in naturalistic environments (e.g., 

amongst auditors: Bhattacharjee and Moreno, 2002, and real estate agents: 

Northcraft and Neale, 1987) have generally concluded that anchoring does 

seem to occur in information-rich real-world settings. However, these studies 

have used questionnaires or artificial problems. Consequently, the advantages 

of studying anchoring in betting markets are that participants are making 

estimates that matter to them, in a familiar real-world environment, without the 
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use of questionnaires or artificial problems, and that they do not alter their 

normal behaviour (because they do not know they are being observed). 

 In the first study to investigate whether bettors anchor their judgements 

excessively, Liu and Johnson (2007) were primarily concerned with whether or 

not participants in horserace betting markets employed factors relating to 

previous performance of horses, jockeys, and trainers as anchors. For example, 

if a jockey had won his or her previous race, do bettors overestimate the chance 

that he or she will also win the current race? Previous finishing positions are 

not anchors in the traditional sense, since bettors are not specifically required 

to make direct comparisons between initial values and final judgements. Rather, 

this study attempted to find evidence of basic anchoring, where decision makers 

can be influenced by anchor values even when not asked to consider them 

directly (Wilson et al., 1996). Liu and Johnson investigated, using betting 

market data from Hong Kong, various explanatory variables that represent 

possible anchors (such as whether the horse won its previous race). However, 

the only significant explanatory variable was one that summarised a horse’s 

finishing position over its career; this variable showed that bettors tend to 

underestimate horses that have a strong finishing record. Consequently, it 

appears that bettors tend to ignore some useful information relating to the 

horses’ potential (or are unable to effectively employ such a complicated 

variable). However, the key finding was that no other explanatory variables 

were significant, indicating that bettors do not anchor their judgements on 

previous performances. 

 It is possible that Liu and Johnson’s (2007) results fail to identify the 

anchoring that does occur in betting markets since any bias created by the 

anchoring of most bettors could be arbitraged away by the remainder of bettors. 

For instance, it is well known (e.g., Benter, 1994) that large betting syndicates, 

attracted by the unusually large betting volumes and strict regulation in Hong 

Kong (which helps to eliminate malpractice and insider trading) use 

sophisticated computer models to make considerable profits in this market. 

 Johnson, Schnytzer, and Liu (2009) extended the analysis of Liu and 

Johnson (2007) in two ways. First, noting that bettors in Hong Kong often spend 

considerable time reviewing race results, they expected that barrier position 
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(the stall position from which the horse starts the race) would be a significant 

anchor for bettors. Second, decision makers with a higher level of expertise tend 

to be less susceptible to anchoring effects (e.g., Northcraft and Neale, 1987), so 

they expected that more experienced bettors would be less prone to anchoring. 

They found that bettors as a whole did not anchor excessively on barrier 

position over all their data but bettors overestimated the advantage offered by a 

good barrier position in one of the two racetracks under investigation. However, 

they found that expertise significantly reduced the extent of anchoring 

displayed by bettors (they used early and late betting as a proxy for inexpert 

and expert bettors, respectively). In summary, the two anchoring studies 

conducted in betting markets indicate that anchoring in real world 

environments may be a more complex phenomenon than has been found in 

laboratory studies, suggesting that further research may be required to fully 

understand its influence on decisions in real world environments. 

 

1.4.2. Herding 

 

 Herding occurs when decision makers neglect their own information and 

adjust their actions to be more representative of the actions of others. Early 

theoretical models rationalized herding behaviour as information cascades, 

where decisions are made sequentially by different agents who each hold their 

own private information (e.g., Banerjee, 1992; Bikhchandani et al., 1992; Avery 

and Zemsky, 1998). The validity of the information is inherently uncertain and, 

as a result, individuals may be rational in disregarding some of their private 

information when the information held by other agents appears to conflict with 

their own. Hence, strictly speaking, herding behaviour in itself may not be 

‘biased’ decision making. However, a biased outcome results from the combined 

effect of herding by multiple participants. In particular, this behaviour can lead 

to expected returns differing significantly from their ‘rational’ value. 

Laboratory studies have generally found that participants display herd 

behaviour, but to a lesser extent than theoretical models predict, although the 

evidence has been inconclusive (Spiwoks et al., 2008). In betting markets, 

herding might be expected because there is a belief that certain bettors have 
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access to privileged information. It has been found that betting on a horse or 

team that subsequently attracts a high degree of betting interest during the 

course of the market (known as a ‘market mover’ or ‘plunger’) is, on average, 

profitable (e.g., Crafts, 1985). The problem, of course, is that it is difficult to 

identify such opportunities before the fact, and this is where bettors with access 

to privileged information can gain an advantage. Bettors with superior 

information are often referred to as ‘insiders’ in the literature because of the 

presumption that their information is not in the public domain (e.g., a racehorse 

owner may have knowledge of secret training programs). However, there are 

also some bettors who use only publicly available information, but expertly 

combine all the information in such as a way as to form highly accurate opinions 

of the competitors’ chances; these bettors are often referred to as ‘informed’ 

bettors. The presence of insiders and informed bettors in betting markets is 

widely reported (e.g., Crafts, 1985) and, consequently, herding behaviour may 

ensue when ‘uninformed’ bettors interpret a significant price movement as a 

signal that a competitor is being backed by insiders or informed bettors, and 

alter their bets accordingly. 

 The first study that investigated whether bettors herd is that of Camerer 

(1998). He tested whether bettors might respond to privileged information 

signals by placing large early bets in pari-mutuel pools at US racetracks and 

recording subsequent betting patterns. The purpose of this field test was to 

investigate whether markets could be manipulated. However, by observing the 

reactions of bettors to the temporary bets (Camerer subsequently cancelled the 

early bets), Camerer was also able to observe whether or not bettors displayed 

herding behaviour. He began by placing temporary bets of $500. He found that, 

while his bets temporarily distorted the odds, prices returned to their expected 

levels after cancelling his bets, indicating that bettors were not responding to 

the fake signals. Following this, Camerer increased his bet size to $1000 and 

targeted smaller racetracks and ‘maiden’ races (for horses that have never won 

a race). He detected a weakly significant herding effect whereby bettors were 

more likely to respond in the maiden races. However, overall the results still 

resolutely showed that bettors did not display herding behaviour. There 

remains an important caveat: although Camerer’s bets made up of about 7% of 
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the pool in the second study, they still may not have been large enough to 

induce herding. In a later study, Law and Peel (2002) argued that the apparent 

lack of herding in Camerer’s (1998) study probably arose because, while the 

bets were sufficiently large to temporarily distort the markets, there was little 

incentive for bettors to herd on the initial price movement, since pari-mutuel 

bettors cannot lock in profits. To counter this, they conducted an empirical test 

for herding in UK bookmaker markets for horseracing. They argued that since 

the returns to a bet with a bookmaker are known at the time of bet placement, 

bettors might be more likely to herd in these markets. They noted that while an 

initial price movement could be due to informed trading, a further price 

movement may result from further informed trading or herding. Using the Shin 

(1993) measure of the degree of insider (or informed) trading, they were able 

to identify those large price movements that resulted from the trading of those 

with access to privileged information (the Shin measure increased over the 

duration of the market) or from herding (the Shin measure decreased). Law and 

Peel were particularly interested in those horses that opened at shorter odds 

than forecasted that then attracted significant betting interest. Significant 

positive returns of 10.2% could be made by betting on horses with these 

characteristics whose odds plunged as a result of informed trading; returns 

were significantly negative otherwise, at -10.9%. Consequently, Law and Peel 

were able to demonstrate that herding led to biased prices, with negative 

(positive) returns being reported when price movements were due to herding 

(informed betting). 

 Schnytzer and Snir (2008) noted that a horse that is not attracting bets 

that suddenly attracts a high degree of betting interest is likely to be 

overestimated due to herding. However, early plunges in odds suggest trading 

by bettors with privileged information, so they hypothesised that, due to the 

limited budgets of insiders, “a short time later, when the odds on those runners 

are lengthened again, those insiders are either unable or unwilling to place bets 

of sufficient significance to affect prices, even when the odds on those runners 

have drifted back to initial levels or even further” (p.3). This may arise because 

informed traders place most of their bets early in the market to secure profits. 

Schnytzer and Snir considered two possible situations: either odds increase 
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early in the market and then decrease, or odds decrease early in the market and 

then increase. In the former, the late betting interest on the horse is considered 

to be evidence of herding, since the horse attracted little interest in the early 

market, and the final odds are expected to overestimate the horse’s winning 

chances. In the latter, the early plunge followed by a lack of betting interest in 

the late market is considered evidence of cash-constrained informed betting, 

and the final odds are expected to underestimate the horse’s chances. 

Investigating their hypothesis in bookmaker markets in the UK and Australia, 

their results demonstrated that, for horses attracting early but not late betting 

interest, positive returns of 15.3% were possible. On the other hand, only highly 

negative returns (as low as -27.2%) were possible for horses that lacked 

interest in the early market but were the subject of herding in the late market. 

These results confirmed that bettors herd and that this can lead to highly biased 

outcomes. 

 In summary, studies of anchoring and herding in betting markets have 

offered mixed conclusions. Camerer (1998) was unable to induce herding 

behaviour with his ‘fake’ signals but other studies have found evidence of 

significant herding by bettors when insider trading is prevalent. However, it 

appears that bettors do not anchor their judgements to the extent that has been 

reported in the laboratory. This may result from the fact that bettors are making 

decisions in an environment with which they are familiar (cf. naive subjects in 

unfamiliar laboratory settings) and in which they have learned (e.g., through 

repeated trial and improvement) to handle appropriately the redundant 

information and decision-relevant cues. Equally, while many bettors may herd 

to a significant extent, the actions of informed bettors, who arbitrage on the 

herding behaviour of others, may serve to suppress the observable effects of 

herding. 

 

1.5. The gambler’s fallacy and the hot hand fallacy 

 

 The gambler’s fallacy and the hot hand fallacy both involve a 

misunderstanding of the nature of randomness. The application of these 

fallacies often results in systematically biased behaviour. The gambler’s fallacy 
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is defined as the belief that an event’s probability of occurring is reduced after 

that event has occurred, even if the event is independent from one trial to the 

next (Rabin, 2002). Laplace (1825, p.92) gave the following examples from 

lotteries and coin tossing: 

 

when one number has not been drawn in the French lottery, the mob is 

eager to bet on it. They fancy that, because the number has not been 

drawn for a long time, it, rather than the others, ought to be drawn on the 

next draw. . . . It is, for example, very unlikely that in a game of heads or 

tails one will get heads ten times running. This unlikeliness, which 

surprises us even when the event has happened nine times, leads us to 

believe that tails will occur on the tenth toss. 

 

The gambler’s fallacy is the conviction that the coin, which is known, objectively, 

to be fair, is more likely to land heads than tails after the ‘streak’ of nine tails. 

This belief is demonstrated in laboratory experiments where participants are 

asked to invent a random sequence, such as repeated tosses of a coin. The 

results show that people tend to produce sequences containing too many 

alternations in the outcome relative to genuine randomness (Falk and Konold, 

1997). The representativeness heuristic has been proposed as an explanation: 

the gambler believes that small samples must be representative of the 

population, so if unexpected sequences occur, a correction is expected (Tversky 

and Kahneman, 1971). As Tversky and Kahneman (1974, p.1125) note: “chance 

is commonly viewed as a self-correcting process in which a deviation in one 

direction induces a deviation in the opposite direction". Since nine tails in a row 

is an extremely unlikely event, the observer committing the gambler’s fallacy 

expects that the next toss should be heads, in order to make the sequence of ten 

tosses seem less unusual. A commonly-cited example of this phenomenon is 

that of the Monte Carlo casino where, in a roulette game in 1913, black occurred 

26 times in a row. During this streak, customers bet increasing amounts on red, 

and the casino profited as a result (Lehrer, 2009). 

 The hot hand fallacy involves mistaken convictions that run contrary to 

the gambler’s fallacy. In particular, this fallacy involves a belief that if a player 
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or team is on a winning (or losing) streak, this streak will continue longer than 

should be expected in a random sequence. So, in a game where the objective is 

to obtain tails on the toss of a coin, a gambler who has achieved the unlikely feat 

of landing tails nine times in a row believes that they are on a ‘hot streak’, and 

therefore expects that the coin has a greater probability of showing tails than 

heads on the next toss. 

 Gilovich, Vallone, and Tversky (1985) found that many basketball players 

and fans believed that a player would be more likely to score on a shot if they 

had scored (cf. missed) on their previous shot. However, they found no evidence 

to support this claim in either real games or controlled shooting experiments. 

The hot hand has been attributed to the illusion of control, which is the 

misplaced perception that gamblers have an element of control over random 

events (Langer, 1975). In fact, it has been shown that some gamblers believe 

that luck is separate from chance, and that their good fortune allows them to 

operate outside the laws of probability while they are on winning streaks 

(Wagenaar and Keren, 1988). Gilovich, Vallone, and Tversky (1985) suggested 

that, as with the gambler’s fallacy, bettors may be employing the 

representativeness heuristic. In this case, long runs are deemed too unusual for 

the representative sequence, so bettors infer that the sequence generating 

process is no longer random (e.g., a basketball player who shoots an usually 

high run of on-target shots is said to be ‘in the zone’, or a roulette table or die is 

assumed to be biased). It is possible that, while a general belief in the hot hand 

may be misplaced, an accurate belief in the hot hand in specific instances 

motivates people to believe in its universality (see Bar-Eli et al., 2006, for many 

examples of genuine hot hand effects). The remainder of this section details the 

findings of studies that have investigated the two fallacies in naturalistic 

environments. 

 

1.5.1. Evidence of the gambler’s fallacy in betting markets 

 

 Clotfelter and Cook (1993) undertook one of the early studies using real 

betting data to investigate the gambler’s fallacy. The US state of Maryland runs a 

‘daily numbers’ draw lottery, where a 3-digit number between 000 and 999 is 
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picked at random, and the bettor wins if they select this number. Clotfelter and 

Cook found that betting volumes on a number decreased in the days after the 

number was drawn, before returning to original levels after 84 days. It was 

postulated that bettors could be reducing their bets on numbers that had been 

drawn previously because they thought that that number was less likely to 

appear again. However, Clotfelter and Cook were unable to eliminate a ‘wealth 

effect’ from their data: bettors who regularly bet a particular number might 

stop betting altogether because they had achieved their financial goals. This 

could lead to a natural reduction in betting volumes on a winning number in the 

days and weeks after its appearance. A more significant caveat with Clotfelter 

and Cook’s study was noted by Terrell (1994): the Maryland lottery has fixed 

payouts (winners are always paid $500 on a one-dollar bet), so choosing 

numbers based on the gambler’s fallacy does not reduce the expected return to 

the bettor. 

 Croson and Sundali (2005) studied 18 hours of roulette play in a real 

casino, during which over a hundred players placed thousands of bets. They 

found evidence of the gambler’s fallacy after streaks of around 5 or more similar 

outcomes (e.g., 5 red numbers in a row). However, Croson and Sundali (p.200) 

pointed out a similar concern to that existing in the Clotfelter and Cook (1993) 

study: “since the house advantage on (almost) all bets at the wheel is the same, 

there is no economic reason to bet one way or another (or for that matter, at 

all).”5 

 These studies highlight an important issue: while the gambler’s fallacy is 

anecdotally known to be a common belief among gamblers, it does not always 

result in biased behaviour. For example, in roulette, the returns to bets on each 

outcome are independent of the bets placed by the customers. Therefore, the 

decision of which outcome to bet on is irrelevant. The gamblers in the Monte 

Carlo casino were not necessarily wrong to bet on red rather than black 

(although they might have bet more than they could afford). In such cases, it is 

plausible that belief in the fallacy only adds to the excitement of the game. 

                                                 
5 Croson and Sundali also found evidence of the hot hand fallacy: 80% of bettors quit playing 

after losing a bet while only 20% quit after winning. Moreover, bettors tended to place more 
bets after winning than after losing. 
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In circumstances where acting on the fallacy results in a systematic bias 

that leads to a lower expected return for the bettor, it might be expected that 

the fallacy would be eliminated (e.g., by a learning process). However, there are 

a number of examples of the gambler’s fallacy resulting in a systematic bias. 

These studies have necessarily needed to be creative in order to identify 

situations where one might expect evidence of the gambler’s fallacy. For 

example, Metzger (1985) found evidence that horserace bettors tend to believe 

that streaks of favourites and longshots winning should cancel out. So, if a series 

of longshots wins, they bet more on favourites, and vice versa. Terrell and 

Farmer (1996) thought that bettors at greyhound racing events might believe 

that the starting positions of the winning dogs should be more random than it 

appears. Thus they might underestimate the winning chances of a dog starting 

in a given position from winning if the winner of the previous race also started 

from that position. Their calculations revealed that this was the case, with a 

positive return of $1.09 per dollar bet for a strategy of betting on dogs starting 

from the same position as the winner of the previous race. Terrell (1998) 

extended the study of Terrell and Farmer (1996) with a larger dataset, but only 

found significant evidence of the fallacy in one of the two years in their data. 

 Terrell (1994) conducted a similar investigation to Clotfelter and Cook 

(1993) but in a pari-mutuel New Jersey lottery, where payouts are shared 

between all the bettors who choose the winning number. Hence, if many 

gamblers avoid numbers that have recently appeared, the expected return to 

these gamblers is reduced. As expected, the extent of the gambler’s fallacy was 

lower in this case. However, there was still a tendency to avoid numbers that 

had recently appeared. Terrell also found that if the results of Clotfelter and 

Cook were converted to a pari-mutuel system, there would be frequent 

occurrences when the payout would exceed $500, giving a positive expected 

return to bettors. This is not the case in New Jersey, so bettors appear to bet 

more evenly to avoid foregoing the increased potential winnings, and this 

diminishes the potential to exploit the fallacy. An alternative explanation for the 

results is that bettors simply prefer not to bet on a recently-seen number, in the 

same way that they prefer certain numbers (such as 777). Similarly, 
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Papachristou (2004) found only marginal evidence of the gambler’s fallacy in 

the pari-mutuel lottery in the UK. 

 

1.5.2. Evidence of the hot hand fallacy in betting markets 

 

 As indicated above, the hot hand fallacy is also a mistaken perception of 

randomness. However, as with the gambler’s fallacy, this mistaken belief does 

not necessarily impose economic penalties. Camerer (1989) examined the 

economic significance of the hot hand fallacy by investigating whether this 

mistaken belief is represented in gamblers’ betting decisions. He categorized 

basketball teams based on their current winning or losing streak (in games), 

and then compared the actual results with the point-spreads offered by 

bookmakers6. If bettors believe in the hot hand, point-spreads will overestimate 

the chances of teams currently on winning streaks against the spread, while 

underestimating the chances of teams on losing streaks. The results showed 

that the performance of teams on winning streaks is worse than predicted by 

point-spreads, and teams on losing streaks perform better than predicted. 

However, the results were only marginally statistically significant. 

 Brown and Sauer (1993a, p.1377) highlighted the importance of the 

following critical assumption in Camerer’s (1989) study: “the hot hand is belief 

in a myth”. Camerer was effectively testing two alternatives: either bettors 

believe in a mythical hot hand, or they do not. However, there is evidence that 

genuine hot hand effects exist (Bar-Eli et al., 2006). Consequently, there is a 

third alternative: bettors believe in a genuine hot hand7. In this case, while 

bettors will move point-spreads to account for the hot hand effect, so teams’ 

performance levels will also change. Brown and Sauer considered all three 

alternatives in basketball point-spread markets, but found only mixed results. 

They could not reject the hypothesis that the hot hand is real and that bettors 

                                                 
6 The point-spread market is a betting market in which a bet wins if the home team wins by a 

specified margin of points (the point-spread) or, if the point-spread is negative, the home team 
loses by less than the point-spread (this is known as the team winning ‘against the spread’). 

7 There is a fourth alternative - that bettors are unaware of a genuine hot hand effect - but this 
hypothesis is not tested by Brown and Sauer. 
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correctly account for it, but they could also not reject the hypothesis that 

bettors believe in a mythical hot hand. 

 In a further study on the hot hand in point-spread markets for basketball, 

Oorlog (1995) found strong evidence against the hypothesis that gamblers 

believe in the hot hand. They devised a number of betting strategies to account 

for possible hot hand effects but none were profitable. Avery and Chevalier 

(1999) investigated US football betting markets, and also found a small bias as a 

result of the hot hand fallacy, but, again, the magnitude of the effect was small. 

 Further mixed evidence for the hot hand fallacy was provided by Durham, 

Hertzel, and Martin (2005). They found that point-spreads over-/under-

estimated US college football teams on short winning/losing streaks against the 

spread, which is consistent with the hot hand fallacy. However, the point-

spreads suggested that bettors expected longer winning or losing streaks to end 

rather than continue. Similarly, Paul and Weinbach (2005) found that betting 

against basketball teams on short winning streaks was profitable, while betting 

against teams on longer winning streaks was not. Moreover, they found no hot 

hand effect for teams on losing streaks, and suggested that this might be 

because bettors derived additional utility from betting on teams on winning 

streaks. 

 

1.5.3. The paradox of the hot hand and gambler’s fallacies 

 

 An important consideration is that the hot hand and gambler’s fallacies 

appear at first to be opposite effects. While bettors may believe that long runs in 

the results of players or teams will continue (the hot hand), they simultaneously 

believe that long runs should end (the gambler’s fallacy). This begs the question: 

how can we explain two apparently opposite effects? 

 One proposed explanation for both fallacies is the representativeness 

heuristic (Tversky and Kahneman, 1971), in which decision makers believe that 

sequences should be representative of the generating process. Decision makers 

apply the ‘law of large numbers’ too readily, i.e., they believe in the ‘law of small 

numbers’. That is, while the relative frequencies of outcomes approximate the 

generating process in the long run, people believe that this should also be the 
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case in the short run. So, the gambler’s fallacy is explained because people 

believe that unusually long streaks are not representative, and so predict an 

alternation to make the sequence more representative. The hot hand is 

explained because people tend to over-infer from short sequences in a random 

process and decide that there is some underlying non-random process 

generating the sequence (Rabin, 2002). 

 It is potentially problematic to explain opposite phenomena with the same 

principle. However, a solution was provided by Ayton and Fischer (2004; see 

also Burns and Corpus, 2004). They tested whether the type of random process 

employed to generate the result was consequential in whether decision makers 

displayed the hot hand or the gambler’s fallacy. They hypothesized that, when 

outcomes reflect human performance, people believe in the hot hand, whereas, 

when outcomes reflect inanimate mechanisms, people believe in the gambler’s 

fallacy. This might explain why winning streaks of basketball and roulette 

players are perceived to exhibit long run tendencies, whereas outcomes of 

roulette games and lotteries are not. They conducted an experiment where they 

asked participants to play a simulated roulette-style game. Participants were 

required first to choose between red and blue, and were then asked to rate their 

confidence in their prediction. The results confirmed that while people are 

more likely to predict an alternation after a long run of either colour, they are 

also more confident in their own ability after a long run of successful 

predictions. Ayton and Fischer (p.1374) concluded that while the sequences of 

outcomes (red or blue) and predictions (win or lose) are each identical 

independent processes, “the two sequences are psychologically perceived quite 

differently; subjects simultaneously exhibited both . . . the hot hand and the 

gambler’s fallacy”. In a second experiment, they found that participants were 

more likely to attribute random sequences with low/high alternation rates to 

human performance/inanimate mechanisms. This line of experimentation goes 

some way to unravel the problematic nature of explaining two apparently 

opposite effects with the same heuristic. 

 In summary, there is evidence from a diversity of naturalistic betting 

environments that the decisions of bettors are consistent with the gambler’s 

fallacy. However, the extent of the fallacy is reduced when it results in biased 
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decisions, suggesting that bettors are sensitive to its economic significance. 

Research examining the hot hand fallacy in betting markets has been 

inconclusive. None of the above studies found irrefutable evidence that bettors 

believe in the hot hand and that market odds are biased in accordance with this 

belief. If there is a hot hand effect in markets, it is generally so small as to be 

economically insignificant. 

 

1.6. Conclusion 

 

 The theme of this paper has been that, while many biases in decision 

making have been demonstrated in laboratory-based studies, there are many 

reasons for suggesting that these findings may not translate to the real world. 

Betting markets offer a valuable naturalistic setting in which to explore biased 

decision making, because participants are making decisions in a situation that is 

more representative of the environments in which day-to-day decisions are 

made. We have argued that bettors display significantly less biased judgements 

in their natural domain than those of naive participants in laboratory 

experiments. To support this view we have cited a number of examples related 

to rationality and calibration of subjective probability judgements. Furthermore, 

we have shown that there is only mixed evidence that bettors anchor their 

judgements, engage in herding behaviour, or believe in the hot hand or 

gambler’s fallacies. Even the FLB, which has been the focus of the majority of 

research in betting markets, is no longer observable in some markets. 

 The primary conclusion of this paper is that, while systematic biases 

reported in the laboratory have been found in naturalistic betting markets, the 

extent and generality of these biases in these real world environments is often 

significantly less. The context of the decision task, the incentives offered, the 

lack of scrutiny involved, and the experience of the decision makers all 

contribute to an explanation for this conclusion. Another consideration is the 

importance of aggregation. It is costly and ethically challenging to obtain betting 

market datasets from which it is possible to discern individual biases. In a more 

typical dataset, individual biases may be eliminated by aggregation of the 

opinions of a diverse range of bettors. Moreover, even a systematic bias that is 
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attributed to a large portion of the betting population can be reduced by the 

unbiased actions of a wealthy few, as there is always a strong economic 

motivation to capitalize on the biases of others. 

 A drawback to the heuristics and biases approach to decision making in 

general is highlighted by our discussion of the hot hand and gambler’s fallacies. 

There is initially a problem with explaining two apparently opposite biases with 

the same heuristic, although subsequent research has clarified that there are 

two separate situations when people will use either of these fallacies. On the 

other hand, it can be impossible to narrow down multiple explanations for one 

bias to the single explanation that is most valid. Thus, there have been a wide 

range of explanations proposed for the FLB. Similarly, the hot hand fallacy could 

be explained by the illusion of control, or by the representativeness heuristic, or 

by extrapolation of genuine hot hand effects. As Wagenaar (1988, p.115-116) 

argues, the heuristics and biases approach 

 

does not specify rules telling us which heuristic will be applied in a given 

situation. Even worse, from the individual differences among gamblers, it 

is obvious that several heuristics could be chosen in one and the same 

situation, and that these heuristics lead to opposite behaviors. . . . There 

are so many heuristics, that it will be virtually impossible to find 

behaviours that cannot be accounted for. 

 

Hence, while there is some evidence of biased behaviour in betting markets, 

explaining its prevalence is another matter altogether. 

 There are further issues associated with betting market research that may 

lead one to question the generalizability of the conclusions drawn from such 

studies. For example, bettors may be unrepresentative of the wider public since 

they are predominantly older males (Dipboye and Flanagan, 1979), and there 

may be some self-selection effects (indeed, it is not obvious as to why some 

people gamble and some do not; see Rachlin, 1990). We must also retain some 

scepticism about generalizability from betting markets to other economic 

settings (Levitt and List, 2007). Just as laboratory research should recognize 

that generalizability of findings is limited, future research into biased decision 
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making in betting markets should acknowledge that laboratory 

experimentation is often the first available evidence that heuristics are being 

employed or biased outcomes are occurring. Without either the theoretical 

background or the controlled elegance of laboratory research, naturalistic 

research might be confounded by the vast array of potential variables involved 

and the often unintuitive nature of real-world decision making. The way 

forward appears to be a tandem approach with betting market studies being 

informed by results from laboratory experiments, and the latter being designed 

to examine the causes of phenomena that the former highlight. In this manner, 

the true nature and real world characteristics of behavioural biases may be 

revealed. 
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2. Noise, herding, and the efficiency of market prices: insights 

from markets for state contingent claims 

 

Abstract 

 

We develop new insights into unresolved issues related to the role of noise 

traders and the nature and effect of herding in financial markets by examining 

an electronic exchange market for state contingent claims. We find that noise 

trading is associated with increased market efficiency, and attribute this to 

informed traders being attracted by the improved liquidity that noise trading 

creates. We find evidence of differing ‘buy’ and ‘sell’ signal-induced herding in 

the later, more active stages of the market. We demonstrate that this results in 

an economically significant inefficiency; strategies designed to trade against the 

herd show substantial positive returns. 

 

2.1. Introduction 

 

 An important concern in the financial markets microstructure literature 

has been the role of information and noise in market efficiency. Does noise 

trading result in excessively volatile, inefficient markets, in which added risks 

limit the possibility of arbitrage by informed investors? Or is noise essential in 

providing liquidity to informed investors in order that markets are efficient? A 

related issue is how to reconcile the apparently irrational behaviour of herding 

with the efficient markets hypothesis. If herding is rational, why do some of its 

worst consequences, asset bubbles and crashes, seem so irrational? Answering 

these questions has proved difficult using traditional financial market data. 

Consequently, we examine these issues by employing data from a market for 

state contingent claims, which offers considerable advantages for this research. 

 In Black’s (1986) model, noise and information are contrasted, but each is 

essential for liquid markets. Noise and informed trading are complementary, 

since noise trading is regarded as trading that is not based on information. For 

Black, noise traders are entirely irrational. However, some studies have argued 

that noise trading can be rational because of its potential to make positive 
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returns (Hong and Stein, 1999). It has been predicted (Black, 1986; De Long et 

al., 1990) and, to an extent, verified empirically (Campbell and Kyle, 1993) that 

a consequence of noise trading is increased volatility in market prices, a result 

that has important implications for policy making (e.g., Shleifer and Summers, 

1990). However, the true role that noise plays in market efficiency remains the 

subject of much debate. On the one hand, it has been argued that noise may 

result in volatility in excess of the variations justified by underlying 

fundamental information (Shiller, 1981, 1990). In this case, noise is detrimental 

to market efficiency because of its destabilizing effect on long-run equilibrium 

values (De Long et al., 1990, Shleifer and Summers, 1990, Shleifer and Vishny, 

1997). Noise introduces risks for informed traders, such as the risk that the 

market remains inefficient longer than the informed trader can remain liquid. 

Consequently, because informed investors are risk averse, they limit their 

arbitrage; thus, noise is seen as contributing to price inefficiency. 

 On the other hand, noise may be essential for generating liquid, and thus 

efficient, markets (Black, 1986). The seminal models of Grossman and Stiglitz 

(1980) and Kyle (1985) each predict that increased noise trading brings forth 

more informed trading. In Kyle’s model, noise does not destabilize prices when 

informed traders are risk neutral. In Grossman and Stiglitz’s model, the 

increased levels of noise and informed trading cancel each other out, so prices 

are stable. More recently, in the experimental market of Bloomfield, O’Hara, and 

Saar (2009), noise trading is shown to harm market efficiency, but only when 

prices are extreme. When prices are not extreme, noise traders help to make 

prices more efficient by providing liquidity for the informed traders. 

 It is difficult to resolve this issue in regular financial markets where 

uncertainty is always present, resulting in difficulties in fully measuring their 

efficiency. In Black’s (1986, p.529) model, “noise is what makes our 

observations imperfect. It keeps us from knowing the expected return on a 

stock or portfolio … It keeps us from knowing what, if anything, we can do to 

make things better”. As Shleifer and Summers (1990, p.22) note, identifying 

noise trading is tricky, “since price changes may reflect new market information 

which changes the equilibrium price”. To overcome this problem, we examine a 

market that has a defined end point at which all uncertainty in the relation 
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between prices and fundamental information is resolved. Specifically, we 

examine an electronic exchange market for state contingent claims, a horserace 

betting market. “In its simplest formulation, the market for bets in an n-horse 

race corresponds to a market for contingent claims with n states in which the 

ith state corresponds to the outcome in which the ith horse wins the race” (Shin, 

1993, p.1142). These markets also offer the opportunity of quantifying the 

proportion of market activity attributable to informed trading (using a model 

developed by Shin, 1993). Consequently, we are able to examine variations in 

market efficiency with respect to the levels of noise trading (as the complement 

of the level of informed trading) in the market. 

 While noise is trading based on anything but information, a different, but 

related phenomenon is that of herding, which is trading based on the perceived 

information of other traders. Specifically, herding occurs when market 

participants neglect their own private information and adjust their actions to be 

more representative of those of other traders. They do this in the belief 

(perhaps mistaken) that other traders are more informed than themselves. The 

combined activity of many herding traders can result in extraordinary changes 

in asset values over a short period, possibly leading to bubbles, crashes and 

bank runs (Devenow and Welch, 1996). While the consequences of herding are 

irrational at the aggregate level, herding may be rational at the individual level. 

Theoretical models have rationalized herding as ‘information cascades’, where 

decisions are made sequentially by different agents who each hold their own 

private information (e.g., Banerjee, 1992; Bikhchandani et al., 1992; Avery and 

Zemsky, 1998). There is uncertainty over the validity of price signals and, 

consequently, it may be rational for agents to disregard some of their private 

information when that held by others appears (as revealed by their actions) to 

conflict with their own. In fact, in Hong and Stein’s (1999) model, momentum 

traders can earn positive profits, provided they trade early enough in the 

‘momentum cycle’. 

 While herding behaviour has a theoretically sound basis, empirical 

evidence for the phenomenon in financial markets is inconclusive (Lakonishok 

et al., 1992; Wermers, 1999; Sias, 2004). Similarly, mixed results have been 

found in laboratory-based studies, in which both the decisions and the 
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information on which they are based are observable (e.g., Cipriani and Guarino, 

2005; Spiwoks et al., 2008). The common finding from these studies is that 

participants do herd, but to a lesser extent than theoretical models predict. 

 We address the unresolved issues raised above and provide important 

evidence which furthers understanding of the role of noise traders and the 

nature and effect of herding in financial markets. In particular, we first 

demonstrate that markets are both more volatile and more efficient when there 

is a greater degree of noise trading, supporting the hypothesis that noise 

trading improves market efficiency, perhaps by providing liquidity to informed 

traders. Second, we find that herding behaviour is prevalent in the market and 

leads to greater inefficiency than previous studies have suggested. We show 

that trading strategies designed to capitalize on mispricing caused by herding 

can earn significant abnormal returns, with initial capital rising by 95% on 

around 500 trades (a rate of return on turnover of over 10 percent). In addition, 

we are able to identify inefficiences in over 33 percent of the 1514 separate 

markets considered, indicating that the prevalence of herding is a significant 

issue. In addition, our results help resolve the conundrum of why previous 

herding evidence is so mixed, as we are able to measure the extent of herding at 

different stages of the market and, separately, for ‘buy’ and ‘sell’ signals. 

Specifically, we show that it is possible to make abnormal returns by trading on 

herding activity because market participants overestimate the information 

contained in large price movements in the later stages of the market, when 

there is little time for the inefficiency to be corrected. Furthermore, we show 

that the extent of herding is greater following ‘sell’ (cf. ‘buy’) signals. 

 This paper is organized as follows. In section 2.2, we describe the 

advantages betting markets offer for gaining insights into noise and herding in 

financial markets. In section 2.3, we develop the hypotheses, and in section 2.4, 

we outline the data and methods employed. We present the results in section 

2.5, discuss them in section 2.6, and conclude in section 2.7. 
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2.2. Noise and herding in betting markets 

 

Betting markets are valuable settings in which to explore behaviour in 

financial markets (Sauer, 1998). They share many characteristics with other 

financial markets, including the complexity and interdependence of factors 

which influence an asset’s value, ease of entry, and a large number of 

participants who have access to a range of information (Vaughan Williams and 

Paton, 1997). In addition, as indicated above, betting markets (based on events 

such as political elections or horseraces) are markets for state contingent claims 

(Shin, 1993). 

 Furthermore, there is an important reason for believing that insights 

regarding noise trading and herding in financial markets may be more 

forthcoming when studying betting markets. In an efficient market, we should 

expect market prices to precisely reflect revealed fundamental information. 

However, in financial markets, prices are never entirely derived from the 

current fundamental information; rather, prices represent the current 

expectation of future prices. Hence, even if current fundamentals were fully 

known, there remains some uncertainty in prices. Betting market data enable us 

to overcome this concern. In particular, markets for an event (e.g., a race) close 

at a pre-defined end point. Bets are then settled, with all bettors receiving 

unambiguous payoffs. Consequently, in these markets there is a time when all 

uncertainty is resolved; the underlying fundamental information is revealed, in 

the sense that a winner is declared. This is repeated often, with several 

thousand separate markets per annum. 

 Exploration of noise trading and herding in betting markets also offers 

advantages over laboratory enquiry. In particular, betting involves uncertain 

and dynamic information, time stress, and rewards and penalties that matter to 

decision-makers: features that Orasanu and Connolly (1993) argue are only 

present in real-world decision contexts. Anderson and Brown (1984) confirm 

that risk-taking behaviour in high-stakes, real-world contexts is difficult to 

reproduce in laboratory settings. In addition, caution must be exercised when 

inferring from laboratory-based studies (which often involve non-experts 

making decisions in alien domains: Johnson and Bruce, 2001) the behaviour of 
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experts such as those populating regular financial and betting markets. 

Consequently, betting markets appear to offer an ideal environment in which to 

develop insights into noise trading and herding. 

 Despite these advantages, relatively few studies have investigated these 

topics in betting markets. Brown and Sauer (1993b) found that, in a basketball 

betting market, the noise component in price variation was small relative to 

that associated with unobserved fundamentals, i.e., “noise is news” (p.1208). 

Those studies investigating herding in betting markets have generally shown 

that, as expected, betting on events (e.g., a horse winning a race) that 

subsequently attract a high degree of betting interest (known as a ‘plunge’) is 

profitable (Crafts, 1985; Schnytzer and Shilony, 1995). The problem, of course, 

is identifying such opportunities before the fact, and this is where bettors with 

access to privileged information can gain an advantage. Herding behaviour may 

ensue when a plunge is regarded by noise traders as a signal that the horse is 

being backed by those with privileged information. However, Camerer (1998) 

found that ‘fake’ privileged information signals (he placed large early bets in US 

pari-mutuel pools) failed to cause herding behaviour. This may have been 

because the fake bets were not large enough for other bettors to perceive them 

as genuine informed bets. Alternatively, bettors had little incentive to herd on 

the initial price movement, since, in pari-mutuel markets, payoffs are only 

known at the market close. 

 Law and Peel (2002) examined occasions when genuine privileged 

information resulted in significant price movements in UK bookmaker markets. 

They found that positive returns were obtainable by betting on horses that 

plunged as a result of informed trading, whereas returns were negative 

otherwise. Notably, it is the absence of herding which leads to the inefficiency, 

i.e., bettors fail to recognize genuine signals of privileged information. However, 

plunges resulting from trading by agents with privileged information were rare. 

 Schnytzer and Snir (2008) developed a model of cash-constrained 

informed traders in a bookmaker market. If mispricing becomes apparent early 

in the market, informed traders bet to take advantage, and herd betting by noise 

traders may ensue, causing a large price movement. However, there may be 

occasions when the price then returns to inefficient levels; at this point the 
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informed traders have no cash remaining to exploit the inefficiency, which 

remains in the final prices. Consistent with the model, they find that positive 

returns can be made by betting on horses for which there has been a significant 

early plunge, but a later reversal in price. However, the set of such horses is 

again very small, so it is still unclear whether the results represent a genuine 

inefficiency. Their study is reminiscent of Hong and Stein’s (1999) model, in 

which ‘newswatchers’ are cash-constrained and so underreact to their private 

information. This enables momentum traders to initially profit from the 

newswatchers’ revealed information, but later a herding effect is created as 

momentum traders follow each other’s trades rather than those of the 

newswatchers. 

 To develop important new insights, our study differs from these previous 

studies in a number of ways. First, we adopt a method (unlike that of Brown and 

Sauer, 1993b) that enables us to distinguish between noise and informed 

trading, allowing us to reveal the effect of noise trading on market efficiency. 

Second, we employ data from a betting exchange, where prices are derived 

entirely from the relative levels of supply and demand. This avoids the difficulty 

of interpreting lowering prices in bookmaker markets (employed in Law and 

Peel, 2002) as evidence of herding, since these price movements may result 

from bookmakers artificially lowering prices and may not be related to changes 

in bettors’ demand. Finally, previous betting market studies have been 

conducted in markets (bookmaker or pari-mutuel), where ‘assets’ can only be 

‘bought’. We examine betting exchanges, which more faithfully represent wider 

financial markets. Importantly, in these markets participants can both buy and 

sell assets (i.e., ‘back’ or ‘lay’ a contestant to win or lose, respectively), allowing 

us to assess the relative importance of ‘buy’ and ‘sell’ trading signals. 

 

2.3. Betting exchanges, Shin z, and hypotheses 

 

2.3.1. Betting exchanges 

 

 We employ data from Betfair, the largest exchange betting market in the 

world by traded volume, with horserace betting revenues of £103 million in 
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2011 (Betfair, 2011). We consider ‘win’ markets, in which bettors must predict 

which horse will win (or, alternatively, which horses will lose). The odds for 

horse i in race j, are the best odds ijR  at which it is currently possible to back 

the horse to win. This represents the return to a £1 winning bet (e.g., a winning 

£1 bet with odds of 3.00 returns £3 for a profit of £28). However, as is typical of 

exchanges, Betfair generally take a commission of 5% on net winnings9. 

Consequently, the effective odds, which we use in our analysis, are given by 

)1(95.01 −+= ijij RR . It is standard in the betting markets literature to make a 

distinction between ‘odds’ Rij and ‘price’ ijij Rr /1= , and we adopt this 

convention. The odds-implied probability qij of horse i winning race j, with nj 

runners, is then given by 
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While the horses’ true winning probabilities are not knowable explicitly, each 

race j results in a vector of outcomes T

jnjj j
yyy ),...,,( 21 , where yhj = 1 for the 

winning horse h and yij = 0 otherwise. If markets are efficient, then, over many 

races, odds-implied probabilities should approximate true winning 

probabilities as realized by race results. 

 

2.3.2. The Shin measure of informed trading 

 

 Shin (1993) developed a means (known as Shin z) of measuring the 

proportion of market participation that can be attributed to traders with 

privileged information. His model describes a game based around a horserace, 

consisting of an expected profit-maximizing market maker (bookmaker) and a 

randomly selected bettor who is either perfectly informed (i.e., they know 

                                                 
8 Exchange odds are expressed inclusive of unit stake and are often referred to as ‘decimal’ odds; 

this is in contrast to bookmaker markets where odds are expressed as, say, 2/1 for the 
equivalent of exchange decimal odds of 3.00.  

9 At the time the data used in this study was collected, the commission structure on Betfair was 
considerably more complicated than this, with a lower base commission rate applied to high 
volume bettors, and an additional charge applied to consistent winners. Thus our assumption 
of 5% commission on average is an estimate (and the true average commission rate is of little 
consequence to the results). 
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precisely the winner of the race) or a noise trader. The model predicts that, 

since the bookmaker is not perfectly informed, they will depress odds on 

longshots (the horses with the least chances of winning the race) relative to 

those on favourites in order to protect themselves from the possibility of large 

losses from an informed trader, who is in possession of superior information. 

Although in Shin’s original model, informed traders are perfectly informed, 

Fingleton and Waldron (1999) relaxed this assumption, showing that it is 

equivalent to suppose that the precision of the informed trader’s information 

can vary, and that the Shin z value is equal to the level of informed trading times 

the degree of precision. Hence, we can assume a more general situation in 

which a range of different types of informed traders operate, but that the level 

of influence they have in the market is likely to vary in tandem. The Shin z value 

itself is directly derived from final bookmaker prices and has been used 

extensively in betting market studies in order to investigate claims relating to 

the level of informed trading (e.g., Vaughan Williams and Paton, 1997; Smith et 

al., 2006). An explanation of the method used to derive Shin z is given in 

Appendix 1. 

 If the proportion of traders holding priviliged information is low in a 

market, then the proportion of traders whose information is shared by other 

market participants (in the case of Shin’s model, shared with the bookmaker) is 

high, and vice versa. If this shared information is already incorporated into 

market prices (through odds-setting by the bookmaker), any further trading by 

participants with shared information is uninformed and is hence noise trading. 

Thus, we use the complement of Shin z to measure the degree of noise trading 

in the markets. As in Smith, Paton, and Vaughan Williams (2009), we note that 

Shin’s model predated the advent of betting exchanges, and so the assumption 

that prices are set by a monopoly bookmaker is no longer valid. However Shin’s 

model can be adapted for exchange markets with a few reasonable assumptions. 

For example, instead of a monopoly bookmaker, we can assume that there is an 

oligopoly of 'big players' who act as market makers. The motivation behind this 

idea is that it is well known that there are well-informed traders controlling a 

vast share of the wealth that is traded in betting exchange markets. These 

traders are subject to lower commission rates due to their large historical 
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traded volumes, and this enables them to maintain their dominant status. With 

these appropriate modifications to Shin’s model, Shin z can again be employed 

to assess the degree of noise trading in the market. 

 

2.3.3. Hypotheses 

 

 We first test the predictions of Black (1986) and De Long, Shleifer, 

Summers, and Waldmann (1990) that, in the absence of new information, noise 

trading increases short term volatility. Previous tests of these predictions (e.g., 

Campbell and Kyle, 1993) are rare and those that have been conducted are only 

marginally conclusive. Second, as indicated above, there is some debate as to 

whether noise trading has a net positive or negative effect on efficiency. On the 

one hand, noise trading moves prices away from efficient levels, and informed 

traders, who can restore efficiency, may fail to do so because they are risk 

averse (Shleifer and Summers, 1990; Shleifer and Vishny, 1997). However, 

when prices are not extreme, noise trading can provide liquidity to informed 

traders, enabling them to arbitrage away inefficiency (Bloomfield et al., 2009). 

Hence, our first hypothesis is: 

1. Increased noise is associated with increased market price (i) volatility, (ii) 

efficiency. 

 In betting exchanges, the demand for bets on a particular outcome is 

directly represented in the current market price. Thus, if a large unidirectional 

price movement results in a price differing from that expected (given the 

complete set of fundamental information), then that price movement is 

evidence of herding. 

 It is well established that bets placed in the later stages of a betting market 

are more informative than early bets (Asch et al., 1982; Gandar et al., 2001)10. 

One explanation is that the timing of bets is variably incentivized depending on 

the quality of the bettors’ information (Ottaviani and Sørensen, 2005). More 

informed bettors have an incentive to bet late to avoid revealing their private 

information to other bettors. In addition, liquidity is lower in the early stages of 

                                                 
10 While not reported here, we have verified that this is also the case in our exchange market 

data. 
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exchange betting markets, so bettors incur additional transactional costs in the 

form of wider bid-ask spreads, and are unable to place large enough bets to 

compensate them for revealing their information. Consequently, herding on 

price movements that are believed to be signals of informed trading are likely to 

be more commonplace in the later stages of the market (when there may be 

insufficient time for informed traders to arbitrage away the resulting 

inefficiency). Moreover, on-course bookmaker prices are posted online just 10 

minutes before the start of each race, at which point there is usually a 

considerable adjustment in off-course and online prices due to the information 

contained in the on-course prices (Schnytzer and Snir, 1995). Thus, we should 

expect herding to be more prevalent in this final window of betting before the 

race starts. These considerations motivate our second hypothesis: 

2. Bettors display herding behaviour, but to a greater extent in the later stages of 

the market than in the early stages. 

 In betting exchanges, as in other financial markets, ‘buy’ or ‘sell’ signals 

may provide different information signals. Consequently, we investigate 

whether bettors’ herding behaviour differs depending on the direction of large 

price movements. This investigation is motivated by the fact that betting 

exchanges facilitate the laying of ‘known losers’: horses which are deliberately 

prevented from running to their potential (Marginson, 2010). This practice 

could benefit horse owners who know that their horse will lose. Despite rules 

which forbid such behaviour, its prevalence is the subject of much debate, 

suggesting that bettors might be more likely to interpret ‘sell’ signals as genuine 

informed trading. Consequently our third hypothesis is: 

3. Bettors herd to a greater extent on ‘sell’ (lay) signals than ‘buy’ (back) signals. 

 Herding leads to inefficiency if the deviation in market prices from 

fundamental information is sufficiently large such that an arbitrage opportunity 

arises. We believe this is likely to be the case, so this motivates our fourth 

hypothesis: 

4. Herding presents an inefficiency, such that it is possible to make positive returns 

by betting against those who herd. 
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2.4. Data and methods 

 

2.4.1. Data 

 

 The data employed are sequences of odds for 62,124 horses running in 

6058 races in the UK and Ireland from August 2009 through August 2010. The 

data were downloaded in real-time using the Betfair API and consist of the odds 

on the exchange for each horse in each race (as indicated above, the odds are 

the best price at which it is possible to back the horse to win11). The data were 

collected at 1-minute intervals throughout the duration of the market, from 

9:00 a.m. on the morning of the race, through to race start time (resulting in 

over 8.4 million data points). We segment the market on each race into four 

time periods, depending on the amount of time left before the race start, in 

order to determine the prevalence and direction of herding over different 

periods of the market. While markets are often activated on the evening before 

the race, or earlier for the most popular events, the vast majority of 

participation in markets takes place on the day of the race, so segment 1 begins 

at 9:00 am and ends at the race start time. The most active stage of the market 

then begins 30 minutes before the race start, since this is the typical length of 

time between races at each racetrack, so is the period when most participants 

direct their attention to the race. We divide this period of time up into three 

segments: segments 2 and 3 end at the race start time and begin 30 minutes 

before the race and 15 minutes before the race, respectively, and segment 4 

begins 30 minutes before the race and ends 15 minutes before the race. Hence 

segment 1 lasts at least 4 hours, depending on the race start time, segment 2 

lasts 30 minutes, and segments 3 and 4 last 15 minutes. 

 For our analysis of noise trading, we split the dataset into ‘high noise’ and 

‘low noise’ subsets, consisting, respectively, of those races with below-/above-

median Shin z (with 3029 races in each set). We compare the levels of informed 

trading and the efficiency of market prices between the two sets. For our 

                                                 
11 Instead of ‘back’ prices we could have used ‘lay’ prices or the mid-point of ‘back’ and ‘lay’ 
prices. Similarly, we make a minor assumption that odds are equally valid as prices whatever 
the stake limit. Neither of these considerations have more than a very minor effect on our 
analysis. 
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analysis of price movements, we split the full dataset into a training set of the 

first 75% of races (4544: 47,196 horses), and a holdout set of 25% of races 

(1514: 14,928 horses). We estimate conditional logit models (McFadden, 1974) 

on the training set, in order to determine whether bettors exhibit herding 

behaviour. We use these models to predict horses’ winning probabilities in the 

holdout set and construct betting strategies based on these probabilities to test 

the market efficiency implications of any observed herding. Hence, our 

conclusions about market efficiency, which are based only on the holdout set, 

can be relied upon, because they are out-of-sample and thus are not influenced 

by fitting our models on the training set. 

 

2.4.2. Measures of trend and volatility of odds 

 

 We generate an odds curve for each horse in each segment of the market 

for a given race, using the method of Johnson, Jones, and Tang (2006). That is, 

for each horse i in race j, and for each market segment k, we have a sequence Sijk 

of Lijk pairs of times )(ltijk  and odds )(lRijk , i.e., 

)]}(),([)],...,1(),1({[ ijkijkijkijkijkijkijk LRLtRtS = . We record price changes so that, for 

each time in the sequence, the odds are different from the preceding time. 

Consequently, for any time T, where )1()( +≤≤ ltTlt , )(lRR =  (here, and in the 

following, we drop the subscripts i, j and k when their use is not required). The 

first/last pair is the first/last time in the segment along with the first/final odds 

recorded. The final odds recorded in segment 1 (the full duration of the market) 

are the odds at which the horse started the race (or ‘starting price’); this special 

case is used to calculate the final odds-implied probability, which is given by 

∑ =
= jn

s sjsjijijijij LRLRLq
1

)](/1[/)](/1[)( . Finally, we rescale all the sequences so 

that 0)1( =t , 1)( =Lt , and 1)( =LR . The result of this procedure is that each 

odds curve is a piecewise continuous step function )(tΦ  on the interval [0, 1], 

such that 1)1( =Φ . From the odds curve, we measure underlying trends in the 

odds. Specifically, the trend µ is estimated as the slope of the ordinary least 

squares regression line fitted to the pairs in S, constrained to pass through (1, 1), 

i.e., 
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(2.2)   µ)1(1)( −+= ttY , 

and is therefore given by 

(2.3)   
∑

∑
=

=

−

−−
=

L

l

L

l

lt

ltlR

1

2

1

]1)([

]1)(][1)([
µ . 

A trend variable is estimated for each horse in each race for each of the 

four segments. Further, because bettors might infer differing information from 

‘lay’ and ‘back’ bets, increasing or decreasing prices may be interpreted 

differently. Consequently, we derive two trend variables, )0,max(µµ =+  and 

)0,min(µµ =− , for each horse in each segment (i.e., eight trend variables for 

each horse in each race). Hence, for horse i in race j, and for market segment k, 

)0,max( ijkijk µµ =+
 and )0,min( ijkijk µµ =−

. 

 Since racetrack betting markets are based on a significant amount of 

information that is revealed in real time (e.g., the condition of the horses, the 

weather), it is reasonable to expect, ex ante, that prices will fluctuate around an 

underlying trend. The trend represents the bettors’ collective opinion of the 

horse’s chances at the close of the market, relative to their chances at the 

opening of the market. So, in order to obtain a meaningful measure of volatility, 

we calculate, for each horse, in each race, the trend μij in the odds curve, and 

then the volatility σij is given by the variance of the odds around the regression 

line in (2.2)12, i.e., 
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To illustrate, Figure 2.1 shows an example of an odds curve with the 30 minute 

trend, along with the deviation for each 1,...,2,1 −= Ll . The volatility measure 

discussed above relates to each horse in turn. However, we are primarily 

interested in volatility on a race-by-race basis. Consequently, we use the mean 

of σij over all the horses in each race, ∑ =
= jn

i ijjj n
1

)/1( σσ . 

 

 

 

                                                 
12

 A range of other measures of volatility were tested, but the results were the same. 
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Figure 2.1. Example of the least squares regression method for determining the 

trend and volatility of the odds curve for a horse. 

 

 

2.4.3. The conditional logit model and herding 

 

 The conditional logit (CL) model (McFadden, 1974) has been employed in 

many betting market studies (Asch et al., 1984; Bolton and Chapman, 1986; 

Benter, 1994; Sung and Johnson, 2010). It allows us to estimate the winning 

probability of each horse, taking into account competition between horses in 

the race. Formulation of the CL model begins with an estimate of horse i’s ability 

to win race j, 

(2.5)   ij

m

l ijij lxlW εβ +=∑ =1
)()( , 

where )(lβ , for l = 1, … , m, are the coefficients that determine the importance 

of the variables )(lxij , and εij is an independent error term. If the independent 

errors are identically distributed according to the double exponential 

distribution, the estimated winning probability for horse h, phj, is given by 

(2.6)   
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∑
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 The coefficients )(lβ  are estimated by maximizing the joint probability of 

observing the results of all the races in the dataset; this is achieved by 

maximizing the log-likelihood (LL) of the full model (i.e., one including all 

independent variables in which we are interested): 

(2.7)   ∑ ∑= =
=

N

j

n

i ijij

j

pyfullL
1 1

ln)(ln , 

where yij = 1 if horse i won race j and yij = 0 otherwise, and N is the total number 

of races in the dataset. For this study an appropriate measure of the predictive 

accuracy of the model is Maddala’s (1983)13 pseudo-R2, given by 

(2.8)   )]}(ln)()[ln/2exp{(12 fullLnaiveLNR −−= , 

where )(ln naiveL  is the LL of the naive model (where each horse in a race is 

assigned the same probability of winning): 

(2.9)   ∑ =
=

N

j jnnaiveL
1

)/1ln()(ln . 

The standard normal test statistic )](.[./)()( lESllz ββ=  is used to test if 

variable coefficients are significantly different from 0, i.e., variables add 

predictive power to the model. An additional test to justify augmenting simpler 

models with additional variables utilizes the likelihood ratio (LR) test statistic 

)](ln)([ln2 naiveLfullL − , which is χ2
 distributed with degrees of freedom equal 

to the number of additional variables. 

 In our analysis, the first variable in the CL models will always be log of 

final odds-implied probability, i.e., )](ln[)1( ijijij Lqx = . If the estimated value of 

the coefficient of this variable, )1(β , is equal to one when there are no other 

variables in the model, this implies that there is no favourite-longshot bias 

(FLB), where FLB is the widely-reported phenomenon whereby 

favourites/longshots are under-/over-bet (e.g., Dowie, 1976). The greater the 

value of )1(β , the greater is the degree of the FLB (Bacon-Shone et al., 1992). 

However, previous studies have indicated that betting exchanges display little, if 

any, FLB, (Smith et al., 2006), suggesting that 1)1( =β . Whatever its value, 

                                                 
13 We use Maddala’s pseudo-R2 rather than McFadden’s (1974) more popular definition, 

because McFadden’s R2 has the unfortunate property of varying with the average number of 
horses in each race, which is not the case for Maddala’s pseudo-R2. Our results would be the 
same using the McFadden pseudo-R2, but if we used this measure we could not account for 
variations in market efficiency due to the differing numbers of runners in the high and low 
noise sets. 



 69 

having developed a model incorporating an appropriate value of )1(β  (i.e., 

having adjusted for any FLB), the pseudo-R2 of a single-variable CL model is an 

appropriate measure of the predictive accuracy of market prices, and thus the 

market efficiency. 

 To compare the effects of increased noise levels on efficiency, we estimate 

single-variable CL models on the high and low noise subsets, and compare the 

models’ pseudo-R2s. We estimate the distributional properties of the pseudo-

R2s using a bootstrap method (Efron, 1979). For each of the high and low noise 

sets (each of 3029 races), we repeat 1000 times a random sampling of 3029 

races, with replacement, and fit a single-variable CL model to each sample. The 

random sampling is stratified so that the proportions of handicap races (where 

horses are allocated weights to carry based on their previous performances) are 

approximately equal in the samples and the full dataset. This controls for 

potential effects on the accuracy of odds-implied probabilities from the greater 

complexity involved in handicaps (Johnson and Bruce, 1998). The sample 

means, )( 2

HRµ  and )( 2

LRµ , and variances, )( 22

HRs  and )( 22

LRs , of the resulting 

sets of pseudo-R2s are used to derive a standard normal test statistic, 

(2.10)  
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This is used to test part (ii) of our first hypothesis, that high market noise is 

associated with increased market efficiency (similar test statistics are derived 

for the levels of FLB and volatility). 

 Herding occurs when bettors alter their actions to be more representative 

of the actions of others. It may be rational for individual bettors to rely on the 

private information of bettors’ that they believe are more informed than 

themselves. However, a multitude of simultaneously herding bettors can lead to 

significant movements in prices that cannot possibly be fully accounted for by 

the underlying objective information of a handful of informed bettors. Hence, 

when a horse’s odds decrease/increase significantly (i.e., resulting from bets on 

that horse to win/lose), and that price movement is not fully attributable to a 

genuine increase/decrease in that horse’s chances of winning, then the horse’s 

final odds will imply a probability that is greater/lower than the horse’s true 
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winning probability, i.e., the odds will be too low/high. Therefore, the second 

variables we employ in the CL models are the two trend variables that we 

derived previously for each market segment. Higher values for the trend 

variables imply steeper price changes. If large price movements correspond to 

herding, the coefficients of the second variables should be significantly different 

to zero (and the corresponding LL ratio tests should also be significant): when 

odds increase/decrease, a significantly positive/negative variable implies 

herding, i.e., horses whose odds-implied probabilities decrease/increase over 

time win more/less often than implied by the odds. Determination of the extent 

to which bettors herd over the different time periods when odds increase or 

decrease allows us to test our second and third hypotheses. 

 

2.4.4. Betting strategies 

 

 If bettors herd to the extent that final odds-implied probabilities are not in 

line with true winning probabilities, it should be possible to find profitable 

betting opportunities. To investigate this possibility, we estimate a CL model 

involving a combination of variables relating to herding behaviour, estimated 

on the training set of 4544 races. We use this model to predict winning 

probabilities for horses running in the 1514 holdout races. If herding results in 

inefficiency, betting strategies based on the model should be profitable in the 

long term and involve relatively low risk. Considering each holdout race j in 

turn, with initial wealth £1000 and current wealth Wj, we use the estimated 

probabilities as the basis for the following betting strategies: 

 

1. Level staking: For each horse i, if pi > ri, bet 1% of current wealth on 

horse i. Therefore, if a bet is to be placed, the size of the bet is £Wj/100. 

2. Proportional staking: For each horse i, if pi > ri, bet an amount such that 

the profit from a win, after commission, is 10% of Wj, i.e., bet size is 

£ )1(10/ −ij RW . An advantage of this strategy in assessing inefficiency is 

that returns are not unduly influenced by ‘lucky’ wins on horses with 

very high odds (Schnytzer and Snir, 2008). 
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3. Kelly staking: The Kelly strategy (Kelly, 1956) assigns bet sizes xi over all 

n horses in the race to maximize the log of expected wealth after the race, 

∑ =
=

n

i iin FpxxxG
121 ln),...,,( , where )(95.01

1∑ =
−+=

n

s siii xRxF  

if ∑ =
>

n

s sii xRx
1
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−+=

n

s siii xRxF
1

1  otherwise (since 5% 

commission is only paid if bets result in an overall profit). The xi are 

estimated using numerical optimization. The Kelly strategy is optimal in 

the sense that it maximizes the asymptotic rate of growth of wealth and 

minimizes the expected time to reach a pre-defined wealth target 

(Breiman, 1961). However, since recommended bets may be very large, 

the volatility of returns from a full Kelly strategy over the 1514 holdout 

races may not result in a positive overall return. 

4. Half Kelly staking: Some authors (e.g., Benter, 1994) recommend a 

fractional Kelly strategy, whereby bet sizes are a fixed proportion (in this 

case, a half) of those recommended by the full Kelly strategy. This is sub-

optimal in that it no longer maximizes the asymptotic growth rate of 

wealth. However, fractional Kelly strategies are less risky, and, over 

medium-length time horizons, may result in a higher expected return as 

a percentage of the total amount bet (MacLean et al., 2010). 

 

 The above strategies all entail a zero probability of ruin, assuming that 

arbitrarily small bets can be placed. A non-intuitive property of the Kelly 

strategy is that it may recommend bets on outcomes with negative expected 

returns. However, this is only optimal if our estimates for the true winning 

probabilities, pi, are accurate. If this is not the case, over-betting will occur 

(MacLean et al., 1992). To allow for inaccuracies in our estimates, we adapt the 

Kelly strategies so that no bets are placed on horses for which the expected 

return is negative, i.e., piRi < 1 (Hausch et al., 1981). Second, the strategies might 

recommend large bets on horses with a high probability of winning, so a single 

unfortunate loss may skew the overall returns. Similarly, skewed returns may 

result from a fortunate win on a horse with a low winning probability. We 

therefore restrict single bet sizes to a maximum of 10% of current wealth. We 

assess the performance of the betting strategies using the following measures: 
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1. Rate of return: the ratio of the profit (or loss) earned to the total amount 

bet. 

2. Risk-adjusted return: the risk-adjusted return, given by 2/1)](/[ RVarR , 

where R is the rate of return and the variance is estimated using a 

bootstrap procedure, by sampling with replacement from the holdout set 

1000 times and calculating returns on each sample. 

3. Expected final wealth: ∏ =

N

j jXW
10 , where N is the number of races bet on 

and, for race j, X is the expected increase in wealth factor ∑ =

n

i ii Fp
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 otherwise, where ix~  is the fraction of current 

wealth bet on horse i after any restrictions are imposed (MacLean et al., 

1992). 

4. Probability that final wealth is above x% of initial wealth: this is given by 
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, where Φ  is the standard normal 

cumulative distribution function (MacLean et al., 1992). 

 

2.5. Results 

 

2.5.1. Noise, volatility, and efficiency 

 

 The high and low noise sets consist of the races in the dataset that, 

respectively, have Shin z less than (mean Shin z = 0.0089) and higher than 

(mean Shin z = 0.0129) the median (0.0105). Further characteristics of the data 

in the high and low noise sets, as well as their 1000-bootstrapped samples, are 

summarized in Table 2.1. 

 CL models, with log of final odds-implied probability as the single 

predictor variable, are estimated for the high and low noise datasets, as well as 

for each of the bootstrap samples. The coefficient of the single variable, )1(β , is 

not significantly different from 1 in any case (z = 0.25, p = 0.8037 and z = 0.94, p 
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= 0.3453 for the original high and low noise sets, respectively; z = 0.20, p = 

0.8421 and z = 0.99, p = 0.3236 for the high and low noise bootstrapped 

datasets), indicating, as expected, the absence of FLB. Furthermore, we find that 

mean pseudo-R2 values for the high and low noise bootstrapped sets (see Figure 

2.2) confirm that prices are on average both more volatile (high: mean volatility 

0.0286; low: mean volatility 0.0200; z = 11.84, p = 0.0000) and more accurate in 

predicting winners when market prices are noisier (high: mean pseudo-R2 = 

0.6351; low: mean pseudo-R2 = 0.4965; z = 7.91, p = 0.0000). Consequently, the 

results support both parts of our first hypothesis, that increased noise is 

associated with greater market volatility and efficiency. 

 

Table 2.1. A description of the data: races with high and low noise. 

 All data 
High noise 
(low Shin 
z) set 

Low 
noise 
(high 
Shin z) 
set 

 
Bootstrapped 
high noise 
set 

Bootstrapped 
low 
noise set 

Number of 
races 

6058 3029 3029 
Number of 
races 

3029 3029 

Number of 
horses 

62,124 39,555 22,569 
Mean number 
of horses 

39,511 22,598 

Mean 
number of 
horses per 
race 

10.3 13.1 7.5 
Mean number 
of horses per 
race 

13.0 7.5 

Number of 
handicaps 

3255 1747 1508 
Mean number 
of handicaps 

1628.2 1628.5 

Proportion 
of 
handicaps 

0.537 0.577 0.498 
Mean 
proportion of 
handicaps 

0.538 0.538 

Mean Shin 
z 

0.0109 0.0089 0.0129 Mean Shin z 0.0089 0.0128 

Level of 
FLB β(1) 

1.014 1.001 1.026 
Mean level of 
FLB β(1) 

1.005 1.027 

    z(β) 
-0.64 
(0.035) 

[β(1)-1] / 
S.E.[β(1)] 

0.78 
(0.017) 

0.25 
(0.022) 

0.94 
(0.028) 

[β(1)-1] / 
S.E.[β(1)] 

0.20 
(0.023) 

0.99 
(0.027) 

Mean 
volatility σ  

0.0242 0.0280 0.0204 
Mean 
volatility σ  

0.0286 0.0200 

    z(σ ) 
11.84** 
(0.001) 

lnL(naive) -13,670.0 -7702.9 -5967.3 
Mean 
lnL(naive) 

-7699.7 -5974.3 

lnL(full) -11,125.0 -6224.6 -4900.1 Mean lnL(full) -6172.0 -4934.8 

Pseudo-R2 0.5684 0.6232 0.5057  μ(R2) 0.6351 0.4965 

    z[μ(R2)] 
7.91** 
(0.018) 

 

** denotes significance at the 1% level in a 2-tailed test. 
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Figure 2.2. Histograms of pseudo-R2 from 1000-bootstrap samples taken from 

high noise and low noise sets (fitted normal curves shown). 

 

 

2.5.2. Herding 

 

 The results of estimating models (using the training set of 4544 races) 

including indicators of possible herding behaviour in the four time segments of 

the market (separated by whether prices increase or decrease) are presented in 

Table 2.2. The coefficient of log of final odds-implied probability in the CL model 

where this is the only variable (Model 0), is significantly different from zero (z = 

51.45, p = 0.0000). In addition, the model’s LL is -8337.6, confirming that the 

odds, as expected, add significant predictive power over the naive model (LL = -

10,307.7). Models 1 to 8 include a second variable that describes a trend in 

prices over time. In Models 1 and 2, which assess the predictability of the trend 

over the full duration of the market, the coefficient of the second variable is not 

significantly different from zero (z = 0.92, p = 0.3576 and z = -0.13, p = 0.8966, 

respectively). These results suggest that large price movements over the full 

duration of the market do not necessarily result in odds-implied probabilities 

differing from true winning probabilities, i.e. herding is not apparent when 

considering the full duration of the market.  
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Table 2.2. Conditional logit results using indicators of herding behaviour. 

Model Variable Coefficient β(l) 
z(l) = β(l)/ 

S.E. [ β(l)] 
(S.E.) 

lnL 
LR test vs. 
Model 0  

Pseudo-R2 

Naive - - - -10,307.7 - - 

0 lnqij(Lij) 1.015 
51.45** 
(0.020) 

-8337.6 - 0.5798 

1 lnqij(Lij) 1.025 
45.68** 
(0.022) 

 μij1+ 0.058 
0.92 
(0.063) 

-8337.2 0.82 0.5799 

2 lnqij(Lij) 1.016 
50.28** 
(0.020) 

 μij1- -0.004 
-0.13 
(0.028) 

-8337.6 0.02 0.5798 

3 lnqij(Lij) 1.033 
48.48** 
(0.021) 

 μij2+ 0.182 
2.23* 
(0.082) 

-8335.1 4.92* 0.5803 

4 lnqij(Lij) 1.019 
51.12** 
(0.020) 

 μij2- -0.049 
-1.25 
(0.039) 

-8336.8 1.59 0.5800 

5 lnqij(Lij) 1.031 
48.82** 
(0.021) 

 μij3+ 0.215 
2.14* 
(0.100) 

-8335.3 4.54* 0.5803 

6 lnqij(Lij) 1.017 
51.16** 
(0.020) 

 μij3- -0.038 
-0.74 
(0.051) 

-8337.3 0.56 0.5799 

7 ln(Qij) 1.019 
50.75** 
(0.020) 

 μij4+ 0.117 
0.91 
(0.129) 

-8337.2 0.78 0.5799 

8 lnqij(Lij) 1.014 
51.35** 
(0.020) 

 μij4- -0.471 
-3.56** 
(0.132) 

-8330.5 14.27** 0.5812 

9 lnqij(Lij) 1.026 
48.52** 
(0.021) 

 μij3+ 0.165 
1.63 
(0.102) 

 μij4- -0.442 
-3.32** 
(0.133) 

-8329.1 16.89** 0.5814 

* and ** denote significance at the 5% and 1% level in a 2-tailed test, respectively. 

 

However, considering the last 30 minutes (Models 3 and 4) and the last 15 

minutes of the market (Models 5 and 6), the coefficients of the second variable 

are significant when odds increase (Model 3: z = 2.23, p = 0.0258; Model 5: z = 

2.14, p = 0.0324), but not when odds decrease (Model 4: z = -1.25, p = 0.2150; 

Model 6: z = -0.74, p = 0.4592). Therefore, large price movements in the later 

stages of the market do result in odds-implied probabilities differing from true-

winning probabilities, but only when odds increase, i.e., bettors herd on 
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increasing odds in the late stages, but not on decreasing odds. Finally, Models 7 

and 8 are based on the period between 30 and 15 minutes from the race start. 

Here we find the opposite effect, i.e., bettors herd on decreasing odds (Model 8: 

z = -3.56, p = 0.000) but not on increasing odds (Model 7: z = 0.91, p = 0.3682). 

These results are all supported by LR tests vs. Model 0: only Models 3, 5, 

and 8 add significant predictive power over odds alone (Model 3: χ1
2 = 4.92, p = 

0.0266; Model 5: χ1
2 = 4.54, p = 0.0331; Model 8: χ1

2 = 14.27, p = 0.0002). 

Consequently, the results support our second hypothesis, that herding 

behaviour is only evident in the later stages of the market. There is mixed 

evidence to support our third hypothesis that bettors herd to a greater extent 

on ‘sell’ signals than ‘buy’ signals. We find that bettors herd to a greater extent 

on ‘sell’ signals in the last 15 minutes of the market (which is the most active 

betting period), but herd to a greater extent on ‘buy’ signals in the period 

between 30 and 15 minutes from to the race start. 

 

2.5.3. Economic significance of herding 

 

 We estimate Model 9 using the training data. This model includes two 

variables to account for the herding we observed on increasing odds in the last 

15 minutes, and on decreasing odds in the 30 to 15 minute period prior to the 

race start (μij3
+ and μij4

-), The results are presented in Table 2.2. We employ this 

model to estimate winning probabilities in the holdout sample and develop 

betting strategies to exploit any mispricing. The results are presented in Table 

2.3 and Figure 2.3. 

The results show that a strategy of betting against the herd is profitable 

for all betting strategies. However, the level stakes strategy (rate of return: 

5.20%) and the proportional stakes strategy (6.49%) spend a significant 

portion of the holdout period betting at a loss relative to initial capital (see 

Figure 2.3 for cumulative wealth for each strategy). On the other hand, the full 

Kelly (6.16%) and half Kelly (10.39%) strategies rarely drop below initial 

capital. The greatest monetary accumulation is achieved with the full Kelly 

strategy, with initial capital increasing by over 126%. 
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Table 2.3. Results of betting strategies on the holdout set using probabilities 

estimated from Model 9. 

Strategy Level stakes 
Proportional 

stakes 
Full Kelly Half Kelly 

Number of races bet on 546 546 532 532 

Total number of bets 644 644 625 625 

Number of winning bets 111 111 111 111 

Total amount bet (£) 7479.9 11759.0 20495.0 9114.3 

Final capital (£) 1389.2 1762.9 2262.2 1946.9 

Profit or loss (£) 389.2 762.9 1262.2 946.9 

Rate of return R (%) 5.20 6.49 6.16 10.39 

Risk-adjusted return 0.24 0.48 0.53 0.90 

Expected final wealth (£) 1448.4 1637.0 1922.5 1387.6 

50 0.93 0.69 0.48 0.33 

100 0.94 0.74 0.54 0.40 

150 0.76 0.64 0.55 0.49 

Probability 
that final 
wealth is 

above x% of 
initial 
wealth 

200 0.86 0.64 0.47 0.35 

 

However, it is also the riskier of the two Kelly strategies, with 20.5 times the 

initial capital bet over the course of the holdout period (cf. just 9.1 times for the 

half Kelly strategy). For the half Kelly strategy, initial capital increases by over 

94%. Consequently, the risk-adjusted return is greatest for the half Kelly 

strategy, with a value of 0.90. Similarly, the full Kelly strategy has the highest 

expected final wealth and the highest probability of doubling wealth (0.49) but 

also the lowest probability of retaining at least half of initial wealth (0.76). In 

summary, the positive returns identified for the various betting strategies, 

including a sizeable return of 10.39% from our preferred strategy (half Kelly), 

provide support for our fourth hypothesis, that herding represents an 

economically significant inefficiency. 
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Figure 2.3. Log of cumulative wealth relative to initial wealth from betting 

strategies. 

 

2.6. Discussion 

 

2.6.1. Noise, volatility, and efficiency 

 

 Our finding that markets associated with greater noise trading are more 

both volatile and more efficient contributes evidence to the debate concerning 

the roles of noise and information in financial markets. We find that noise 

increases short term volatility, an empirical result that confirms the theoretical 

predictions of Black (1986) and De Long, Shleifer, Summers, and Waldmann 

(1990). Previous empirical evidence in this regard has been only marginally 

conclusive. For example, Campbell and Kyle (1993) found that noise was helpful 

in explaining historical stock price volatility, but that its importance depends on 

the interest rate assumption. Our results, from the largest betting exchange 

market in the world, support the hypothesis that noise trading is associated 

with an increase in market efficiency. This is the first time such a conclusion has 

be drawn from an empirical financial market study. The results support Black’s 

(1986) assertion that noise is essential for liquid, efficient markets and they 

support the theoretical predictions of Grossman and Stiglitz (1980) and Kyle 
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(1985), that increased noise need not necessarily destabilize markets. Indeed, 

we would go one step further, and suggest that, provided prices are not extreme, 

noise actually makes prices more efficient because the improved liquidity 

allows informed traders to arbitrage away the inefficiency. This conclusion 

echoes that of Bloomfield, O’Hara, and Saar’s (2009) experimental study. The 

most prominent inefficiencies in financial markets are, of course, bubbles and 

subsequent corrections, where asset prices are pushed well above their 

fundamental values before plummeting when the bubble bursts. Arguably these 

volatile market periods are the times that markets are at their least efficient, 

since crises can occur even when economic fundamentals are sound (Cipriani 

and Guarino, 2008). We have demonstrated, conversely, that noise trading and 

the ensuing volatility can be an important tool for price discovery. 

 It is important to examine why our result that noise can increase market 

efficiency contrasts with the arguments of Shiller (1990), De Long, Shleifer, 

Summers, and Waldmann (1990), and Shleifer and Vishny (1997), among 

others, that noise is detrimental to market efficiency because of its destabilizing 

effect on long-run equilibrium values. In fact, the reason for this apparent 

contradiction appears to lie not in the destabilizing effect of noise trading, per 

se, but in the limitations to arbitrage. Our results are drawn from a market 

where noise traders do not introduce added risks for informed traders, limiting 

their arbitrage. In particular, in regular financial markets, an arbitrageur faces 

the risk that noise traders continue to keep prices away from fundamental 

values for an extended period of time, potentially forcing arbitrageurs to 

liquidate at a loss (De Long et al., 1990). In our study, this risk is not present, 

because traders in betting markets need not trade their assets in order to 

realise returns. Instead, returns from state contingent claims are ensured in the 

initial trade, and traders may simply hold their assets until the market closes 

and receive their contingent return. Thus, even if prices are noisy, arbitrageurs 

can effectively guarantee returns at the moment of the initial trade, and need 

not worry about the future direction of the market. Consequently, our results 

demonstrate the inherent value of noise trading, in that, when noise trader risk 

does not limit the arbitrage of informed traders, market efficiency increases as 

noise trading increases. 
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 The above discussion still begs the question, if noise trading is apparently 

irrational in the sense that it is loss-making, why does noise trading persist in 

markets? In regular financial markets, the motivation for noise trading is often 

assumed to be some portfolio-based requirement such as hedging or liquidity 

trades (Bloomfield et al., 2009). In betting markets, it is likely that, despite 

financial losses, noise traders gain utility from the act of gambling itself 

(Vaughan Williams and Paton, 1998) or are locally risk-loving in the 

appropriate domain (Friedman and Savage, 1948). There is some evidence that 

this may also be true of traders in regular financial markets outside of betting. 

For example, Gao and Lin (2011) present evidence that even institutional 

investors see lotteries as a substitute for financial market trading. Whatever the 

motivations of noise traders in regular financial markets, it is apparent from our 

results in a large exchange betting market that tighter controls on speculators 

and institutional noise traders, in an effort to reduce more general risks, may 

serve to increase liquidity risks for other traders. 

 

2.6.2. Herding 

 

 While noise trading may have a positive effect on overall market efficiency, 

this is not the case when herding occurs. In fact, we found that, under certain 

conditions, herding has a detrimental effect on efficiency. In particular, some 

price movements are too large relative to the underlying fundamental 

information, and are such that final market prices can differ significantly from 

true winning probabilities. We infer from this that traders herd on price 

movements under certain conditions, pushing prices to inefficient levels. 

Moreover, the results of our modeling of these price movements show that the 

larger the price movement, the greater the inefficiency (i.e., larger price 

movements correspond to greater disparities between final odds-implied 

probabilities and true winning probabilities). However, this behaviour only 

becomes significant in the later stages of the market. Large price changes over 

the full duration of the market do not generally lead to inefficiencies in final 

market prices. This is not unexpected, since there is a lengthy period during 

which any inefficiencies induced by herding can be corrected. Moreover, much 
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of the information pertaining to horses’ chances is revealed on the day of the 

race. For example, information concerning results of previous races, jockey 

changes, and horses’ condition and behaviour may not be revealed until the 

market on a race has opened (Bruce and Johnson, 1995). Therefore, prices are 

expected to change before the final stages of the market (resulting from 

revealed fundamental information) and herding is therefore unlikely to take 

place as a result of early stage market price changes. Consequently, it appears 

that inefficiencies resulting from herding are more likely to occur when (i) there 

is little time remaining to correct the inefficiency, and (ii) when traders 

perceive price movements as evidence of trading by those with privileged 

information. In fact, this conclusion chimes well with classic cases of herding in 

regular financial markets, such as that evidenced in the South Sea Bubble (Dale 

et al., 2005). 

 Our finding that, in the later stages of the market, herding patterns are 

asymmetric, serves to confirm our prediction that noise traders’ perceptions of 

the actions of informed traders are key to the prevalence of herding behaviour. 

In particular, while previous studies of herding in betting markets (Law and 

Peel, 2002; Schnytzer and Snir, 2008) have focused on bookmaker markets, 

where bettors may only back their preferred horse to win (leading to a 

reduction in its odds), our study examines a betting exchange, where bettors 

may also lay horses to lose (leading to an increase in their odds). There is little 

qualitative difference between backing/laying a horse one thinks will win/lose. 

Consequently, the differences we observe in herding behaviour (indicated 

below) must be due to differences in the bettors’ perceptions of ‘buy’ and ‘sell’ 

signals. In particular, we argue that this stems from their belief that those 

traders with privileged information will trade at different times, depending 

upon whether they believe a horse will win or lose a race. 

 We find that bettors do not herd on decreasing odds in the last 15 minutes 

of the market (or in the last 30 minutes, if price changes are considered over the 

whole 30 minute period). This finding is consistent with the literature on 

herding in financial markets, which has found little conclusive evidence that 

investors display herding behaviour. It suggests that the average bettor does 

not consider a late ‘plunge’ to be a signal containing valuable information, or, at 
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least, bettors realize that, by the time the plunge has happened, the information 

is assimilated in the price. Alternatively, the bets placed in the last 15 minutes 

by informed traders could cancel out the bets of herding traders. This is 

consistent with the literature, which suggests that strategies of simply betting 

on horses whose odds decline sharply (‘plungers’) are not profitable once the 

price change has occurred (Crafts, 1985; Bird and McCrae, 1987). 

 On the other hand, we find that bettors do herd on plungers that occur 

early in the betting (in the period between 30 minutes and 15 minutes before 

race start). In this case, bettors herd to such an extent that further price 

movements, which happen in the last 15 minutes of the market, are insufficient 

to restore efficiency. This might be explained in several ways: (i) cash-

constrained informed bettors bet early, but they may not have the funds to 

correct prices for a second time, should prices revert to inefficient levels (Hong 

and Stein, 1999; Schnytzer and Snir, 2008), or (ii) bets placed in the 30 to 15 

minute market segment are generally those of less informed bettors (who might 

be more likely to herd), since more informed bettors benefit from placing their 

bets later so as not to divulge their own information (Ottaviani and Sørensen, 

2005). In either case, it appears that uninformed bettors perceive that odds that 

decline sharply in the period 30 to 15 minutes before the race start result from 

the actions of informed traders (presumably believing that any fundamental 

information would have been discounted in prices in the earlier stages of the 

market). It has been found in empirical studies of financial markets that, not 

only do the trades enacted by informed traders move prices towards efficient 

levels, uninformed traders are able to detect the informed trading via the 

volume and direction of the informed trades (e.g., Meulbroek, 1992). Hence, 

herding will or will not occur depending on (i) uninformed traders’ perception 

of the degree of influence over market prices held by traders with privileged 

information, and (ii) the actual degree of influence informed traders have. 

Consequently, herding will occur only if less informed investors believe that 

market price movements are currently reflecting the opinions of more informed 

investors. On the other hand, the extent of herding will be reduced if informed 

investors have sufficient market power to restore prices to efficient levels. 
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 The perceptions of uninformed traders also appear to play a part when 

considering whether bettors herd on increasing odds. Large increases in odds in 

the last 30 or 15 minutes prior to market close often lead to situations where 

the odds are too high (i.e., the horse is relatively under-valued). This suggests 

that bettors herd on increases in odds (by laying unfavored horses) even in the 

late stages of the market. It seems, therefore, that ‘sell’ signals are treated 

differently to ‘buy’ signals. A ‘sell’ signal is taken seriously even late in the 

market. This may arise because bettors perceive that it is more likely that 

individuals with access to privileged information (e.g., horse owners) lay horses 

to lose (rather than back them to win) late in the market, since it is easier for 

them to predict (and/or influence) that their horse will lose (Marginson, 2010). 

It may be perceived that they are more likely to do this later in the market when 

positive information concerning the prospects of other runners has been fully 

discounted in prices. Indeed, it is not even necessary that this practice of laying 

known losers is prevalent, provided bettors perceive that it is. 

 There is also some evidence from regular financial markets that investors 

treat ‘sell’ and ‘buy’ signals differently. For example, Wermers (1999) found 

that the level of herding by mutual funds was greater when selling stocks than 

buying them, particularly if those stocks were shares of small companies with 

low past returns. This can be explained by mutual funds’ particular aversion to 

small stocks, i.e., they would be more likely to sell past losers in small stocks 

than buy past winners. Similarly, the model developed by Epstein and Schneider 

(2008) implies that investors react more strongly to bad (cf. good) news. Our 

results highlight the importance of understanding potential differences in the 

manner in which buy and sell signals are perceived by uninformed traders. 

 Finally, our results demonstrate that considerable inefficiency can be 

caused by herding. In particular, we not only find that prices are often out of 

line with true winning probabilities after large price movements, but that 

trading strategies can be constructed that show consistent positive returns 

from betting against the herd. Such a strategy is based on a model that accounts 

for likely differences in noise traders’ perceptions of the actions of informed 

traders at different times in the market. In fact, we find that a half Kelly strategy 

with some restrictions provides a substantial rate of return (10.39%) over the 
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holdout sample; the return is sufficiently large to compensate for potential 

variation in returns and the model risk involved. Previous studies of herding in 

betting markets (Law and Peel, 2002; Schnytzer and Snir, 2008) have 

demonstrated that positive returns can be made by avoiding following the herd, 

but these approaches offer very few betting opportunities. On the other hand, 

our results show that it is possible to develop a strategy to profit by betting 

against the herd and that this strategy provides a significant number of betting 

opportunities (betting in over 33 percent of markets). Our results clearly 

demonstrate that herding is of considerable economic importance, and should 

be accounted for in more advanced forecasting models. 

 

2.7. Conclusion 

 

 This study is the first to study noise trading and herding in an electronic 

betting exchange (akin to electronic exchanges in regular financial markets). We 

find evidence that increased noise trading in markets is associated with an 

increase in efficiency, and we attribute this to informed traders being attracted 

to the resulting increase in liquidity. We also find that bettors herd, but only 

under certain conditions. In particular, herding is concentrated in the later, 

more active stages of the market. In addition, while herding occurs on both ‘buy’ 

and ‘sell’ signals, it does so differently at various times in the market. 

 Our findings contribute new evidence to the literature on information 

cascades and herding, where results of empirical studies have been inconsistent. 

We find support for the theoretical models of herding, in that the asymmetry of 

information held by bettors is clearly important as an initial condition for 

subsequent herd behaviour. Herding is rational at the individual level for less 

informed traders when they are aware that more informed traders may be 

participating in the market. However, at the aggregate level, herding results in 

prices departing from efficient levels, particularly when the market has 

insufficient time to correct the resulting mispricing, or when informed traders 

are not actively participating. We demonstrate that the inefficiency which 

remains offers the prospect of abnormal returns for those who seek to 

capitalize on the herding behaviour of others. Most importantly, we find that 



 85 

herding is extremely prevalent, with inefficiencies in over one third of the 

markets that we examine. The implications of our findings are that, in wider 

financial markets, regulations should be considered that minimize the impact of 

herding, and particular attention should be given to situations where 

uninformed traders may incorrectly believe that there are traders with 

privileged information operating. Furthermore, markets that involve contingent 

returns at a fixed point in time (such as the markets examined here) should 

always be allowed sufficient time to reach efficient levels. 

 Our results also cast new light on the relationship between noise and 

efficiency in financial markets, a relationship that has been difficult to 

determine in previous studies because of uncertainty in the link between 

fundamental information and prices. The data we employ overcome this 

problem, and we are able to measure the degree of informed trading, hence 

enabling us to observe a positive correlation between noise and efficiency. Our 

main finding that noise trading, volatility, and efficiency of final market prices 

all move in tandem has important policy implications for all financial markets. 

For example, our results add weight to arguments that regulatory measures to 

protect investors from the destabilizing effects of noise are self-defeating. Of 

course, the operations of betting markets themselves are often restricted or 

banned outright on the basis that gamblers should be saved from themselves. 

But when they are in operation, no one would suggest that the involvement of 

noise traders should be limited. However, in conventional financial markets, so 

long as there is a social cost to unwitting participants in market volatility, the 

actions of speculators will always be under scrutiny. Our study sheds new light 

on the potential value and possible costs that such traders can bring to a 

financial market, and suggests that focusing on innovative means of reducing 

the risks to arbitrageurs, rather than discouraging speculators, may be the best 

approach to achieving efficient markets. 
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3. The favourite-longshot bias in competing betting markets 

 

Abstract 

 

This paper provides an explanation for the enduring presence of the favourite-

longshot bias (FLB) in some betting markets and its absence in others. We 

develop a theoretical model that suggests the bias may result from competition 

between bookmakers and with betting exchanges, combined with bettors’ 

greater demand elasticity with respect to favourites. Further, we propose that 

the FLB will be eliminated when informed traders dominate and transaction 

costs are low. We confirm the model’s predictions by analysing how the bias 

develops throughout the active market in 6058 races run in the UK and Ireland 

from August 2009 through August 2010. 

 

3.1. Introduction 

 

 The favourite-longshot bias (FLB) is a phenomenon in betting markets 

reported over many decades and in many jurisdictions, whereby market prices 

deviate systematically from their fundamental value; favourites are under-

valued while longshots are over-valued (USA: Weitzman, 1965; Ali, 1977; 

Snyder, 1978; Asch et al., 1982; Snowberg and Wolfers, 2010; UK: Dowie, 1976; 

Vaughan Williams and Paton, 1997; Bruce and Johnson, 2000; Sung and Johnson, 

2010; Australia and New Zealand: Tuckwell, 1983; Gandar et al., 2001). 

However, a few studies have found no evidence of the bias (Busche and Hall, 

1988; Busche, 1994; Swidler and Shaw, 1995) and there is mixed evidence of 

whether the extent of the bias is substantial enough to result in weak form 

inefficiency (Sung and Johnson, 2010). 

 Many studies have sought to explain the enduring presence of the FLB and 

its absence in some markets, but little consensus has been reached (see Jullien 

and Salanié, 2008, for a recent review). The existing accounts alternatively link 

the origin of the FLB to supply- or demand-side factors, related to 

characteristics of the market or the bettors, respectively. However, these 

alternative accounts fail to provide a satisfactory explanation for the 
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presence/absence of the FLB in the two major competing types of horserace 

betting market in the UK and Ireland (and in other jurisdictions, such as 

Australia): bookmakers and betting exchanges. The rapid growth of betting 

exchanges, and an intensification of competition through internet–based betting 

in general, makes such an explanation an important objective. We seek to 

achieve this by exploring two aspects of these parallel markets: competition and 

informed trading. The markets for horserace betting in the UK are increasingly 

competitive, with many different operators and a wealth of information 

regarding prices available to bettors. We develop a model to investigate the 

optimal pricing decisions of bookmakers when the betting public are able to 

rapidly compare prices. We also argue that informed trading has a significant 

effect on reducing the degree of the FLB in the markets, but only when 

transaction costs are low. We use the predictions of our model to develop 

hypotheses, which we test empirically by analysing how the bias develops over 

the course of the markets for 6058 races run between August 2009 and August 

2010, requiring the analysis of over 5.5 million market prices in total. 

 Our results confirm that three factors contribute to the existence of the 

FLB: the pricing decisions of bookmakers, the availability of information, and 

the level of transaction costs. First, we show that, because of (i) competition 

between bookmakers and with exchanges, and (ii) bettors’ demand for 

competitive prices on favourites, bookmakers’ optimal pricing decisions 

necessarily lead to the FLB. Second, we show that the FLB is present in 

exchange prices in the early stages of the market and it is not eliminated, 

because of higher transaction costs in the form of wider bid-ask spreads. Finally, 

we draw upon models of prediction markets (Gjerstad, 2005; Wolfers and 

Zitzewitz, 2006b) to suggest that, when informed traders dominate, any FLB in 

betting exchange prices is likely to be short-lived, and we find that this is the 

case. 

 The remainder of this paper is organized as follows. Section 3.2 provides a 

brief overview of alternative explanations for the FLB. In section 3.3 we develop 

a model of the FLB in competing markets. In section 3.4, we derive hypotheses 

and introduce the data and method employed to test the hypotheses. The 
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results are presented in section 3.5 and discussed in section 3.6. We draw 

conclusions in section 3.7. 

 

3.2. The origins of the favourite-longshot bias 

 

3.2.1. Supply-side explanations 

 

 Some authors have argued that market ecology must be taken into 

account when seeking explanations for the FLB. Shin (1991, 1992, 1993) 

modelled price-setting in bookmaker markets as a game between a profit-

maximizing bookmaker and a randomly chosen bettor. The model assumes that 

the bettor is likely to be a noise trader, but could be an insider whose superior 

knowledge allows them to bet on the winning horse, to the bookmaker’s cost. 

Shin’s model can explain the FLB in bookmaker market prices, provided one 

accepts that knowledgeable insiders are more likely to bet on longshots than 

favourites. Although some of the assumptions in Shin’s model are unrealistic, 

similar conclusions have been reached where the assumptions are relaxed. For 

example, Schnytzer and Shilony (2005) found that bookmakers should raise 

prices on longshots more than favourites in order to defend themselves against 

insider knowledge, without assuming that insiders know which horse will win 

the race, or that insiders are more likely to bet on longshots. Peirson and Smith 

(2010) extend the Shin model while relaxing the assumptions that insiders 

know which horse will win the race, and that the amount bet by insiders is fixed 

and not related to the odds on offer. Their model demonstrates that 

bookmakers should increase prices on those horses where there is a higher 

probability of inside information being employed. 

 Transaction and information costs have also been identified as possible 

causes of the FLB. Hurley and McDonough’s (1995, 1996) model implies that 

the FLB would not exist in pari-mutuel markets without transaction costs, and 

that the extent of the bias should increase as transaction costs increase. 

However, this theory is not supported by their empirical investigation. Terrell 

and Farmer (1996) suggest that the FLB results from costly information. This is 

supported by Vaughan Williams and Paton (1997), who find a lower degree of 
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FLB in bookmaker market prices in higher grade handicap races (where it is 

assumed information is more widely available and thus is less costly to obtain). 

Sobel and Raines (2003) also found a greater level of the FLB in races that, 

because there is less information available to inform decisions, attract lower 

betting volumes. Smith, Paton, and Vaughan Williams (2006) compared the 

effect of altering the level of transaction costs on the level of the bias in 

bookmaker markets and exchanges, which typically have higher and lower 

transaction costs, respectively. They found that there was significantly more 

bias in bookmaker market prices. However, Smith (2010) noted an exception to 

the predictions of the transaction costs model: there is little FLB in UK pari-

mutuel market prices, yet these markets involve relatively high transaction 

costs. 

 

3.2.2. Demand-side explanations 

 

 Two broad approaches have emerged that seek to attribute the FLB to 

factors associated with the decision-making processes of bettors. On the one 

hand, it has been suggested that bettors have unbiased expectations, but are 

risk-loving (Weitzman, 1965; Quandt, 1986; Hamid et al., 1996). Alternatively, 

bettors are risk-neutral, but have biased expectations (Henery, 1985; Chadha 

and Quandt, 1996). The former approach was originated by Weitzman (1965), 

who suggested that the bias must be explained by hypothesising a convex utility 

of wealth function for the average bettor (i.e., the average bettor is risk-loving). 

Quandt (1986) extended this model to show that the bias is a natural 

consequence of equilibrium in a market where bettors are risk-loving. Variants 

of the model have been developed, including replacing bettors’ risk-loving 

nature with their desire for skewness (Golec and Tamarkin, 1998) or the extra 

utility they gain from long-odds betting (Thaler and Ziemba, 1988). In sum, 

these studies argue that it is bettors’ motivations that cause the FLB, not bias in 

their expectations. The second broad set of demand-side explanations for the 

FLB is based on prospect theory (Kahneman and Tversky, 1979). In this case, 

bettors are risk-neutral, but misestimate probabilities, attaching moderate 

winning probabilities to horses which are more likely to win or lose. Snowberg 
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and Wolfers (2010) compare these two sets of competing demand-side theories 

by testing the implications for the pricing of compound events (e.g., exactas, 

where the bet is to choose both the winner and the runner-up in the correct 

order) and find evidence in support of the latter, biased-expectations approach. 

 

3.2.3. Competing markets 

 

 The search for a full explanation of the FLB anomaly is further 

complicated by the presence of different types of betting market, with varying 

rules, costs and participants. In the UK, bookmaker and exchange markets 

account for most betting activity, with 94% of horserace betting turnover (over 

£5.7 billion) in the year to March 2010 in the UK (cf. £356 million for the pari-

mutuel operator, the Tote) (Gambling Commission, 2010). These markets 

operate in parallel in the UK, Ireland, and a number of other jurisdictions. There 

are three significant differences between the two types of market. First, in 

bookmaker markets, individuals are allowed to bet on their preferred 

contestant (e.g., a horse in a race) at the advertised odds. In exchanges, 

individuals can either bet on their preferred contestant to win, or, alternatively, 

can lay a contestant to lose (i.e., offer to match bets placed by other bettors on 

this contestant). Second, in bookmaker markets, odds are set by the bookmaker, 

whereas the prices in exchanges are a strict representation of supply and 

demand, and are reached as an implied consensus of all the market participants. 

Finally, in exchanges, participants typically pay only a small commission on 

their net winnings (e.g., 5%), whereas bookmaker transaction costs (implicit in 

the over-round; see later) are typically significantly higher (e.g., 18%). For a full 

explanation of betting exchanges, see Smith and Vaughan Williams (2008). Both 

types of market involve a number of competing operators, the latest odds are 

readily available to bettors through the internet, and bets can be easily and 

rapidly placed with exchanges or with any chosen bookmaker using a mobile 

phone, from wherever the bettor is located (e.g., racetracks, home, high street 

betting shops). This is important, because it has been found that demand 

becomes increasingly price-sensitive and frictionless when internet price 

search is available (Ellison and Ellison, 2009). 
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 A few recent studies have examined the degree to which the FLB is 

present in betting exchanges and their relation to other types of market, and 

have shown that betting exchanges are significantly more efficient, with a lower 

degree of the FLB (Smith et al., 2006) and greater predictive accuracy of market 

prices (Smith et al., 2009; Smith, 2010; Franck et al., 2010). However, these 

studies focus on market prices at one point in time (early or final prices). In 

addition, many of the studies discussed above explain the FLB in terms of the 

average bettor (e.g., Weitzman, 1965) and fail to account for clear differences in 

the behaviour of informed and uninformed bettors (e.g., Shin, 1993; Sobel and 

Raines, 2003). Hence, we will define uninformed bettors as those who display 

non-neutral risk tendencies or are biased in their expectations; informed 

bettors are risk-neutral and have unbiased expectations. The latter behaviour is 

to be expected of bettors who have developed expertise through repeated 

practice and extensive study. We also consider insider traders to be informed 

bettors since, as Schnytzer and Shilony (1995) demonstrated, inside 

information is a significant predictor of race outcomes. 

 

3.3. A model of competing markets 

 

3.3.1. Bookmaker markets and competition 

 

 We develop a model to explain the FLB in bookmaker markets by 

considering two competing markets, a bookmaker and an exchange, both of 

which offer prices on all horses running in a single race with n runners. Traders 

buy contracts on horse i, which pay out £1 if the horse wins the race, and which 

cost £qi and £ri in the bookmaker and exchange markets, respectively. 

Consequently, the implied bookmaker market odds (it is odds that are normally 

quoted by bookmakers rather than prices) of horse i are the reciprocal of the 

price minus one, i.e., 1/1 −iq , and represent the profit on a winning £1 bet. 

Similarly, the implied exchange market odds of horse i are given by 1/1 −ir  and 

represent the profit on a winning £1 bet less 5% commission (which is the 

typical amount). The over-round is the sum of purchase prices across all the 

horses in the race minus one, and represents the average transaction cost to a 
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bettor. A lower over-round, therefore, allows a more competitive set of prices. 

The bookmaker and exchange odds-implied probabilities of horse i winning the 

race are given by )1/( bi Bq +  and )1/( ei Br + , respectively, where 1
1

−= ∑ =

n

i ib qB  

and 1
1

−= ∑ =

n

i ie rB  are the bookmaker and exchange over-rounds, respectively, 

and we assume that the exchange is able to offer lower transaction costs, i.e., 

eb BB > . 

 The task for the bookmaker is two-fold: to estimate the true probabilities 

pi for each horse to win the race, and to set their own prices so as to maximize 

their overall profit from the race. Since the true probabilities are unknown, we 

assume that the bookmaker’s best estimates for them are simply the exchange 

odds-implied probabilities, i.e., )1/( eii Brp += . Later, we will show empirically 

that this is appropriate. Finally, we make the approximation that the qi are 

continuous on the interval (0, 1). Considering a small time interval, the 

bookmaker’s goal is to maximize their expected returns from overall bets taken 

in this interval. We allow this interval to be small because the bookmaker can 

update their prices at the end of the time interval, and we suppose that they are 

able to do this very frequently. Since this interval is small, we make the 

restriction that Be, Bb, and the ri are constant in this period. Then the bookmaker 

aims to maximize their expected returns G ),.....,( 1 nqq over this time interval, 
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subject to the over-round condition b

n

i i Bq +=∑ =
1

1
. The demand curve ),( ii rqf  is 

the amount bet on horse i, when the bookmaker and exchange prices are qi and 

ri, respectively. We expect that when the bookmaker and exchange prices are 

equal, the demand in the two markets will be identical. Consequently, we 

normalize the demand curve so that it satisfies )1/(),( eBrrrf += . If the 

bookmaker price is set above/below the exchange price, the demand will 

fall/rise. The rate at which the demand changes with respect to changes in 

bookmaker prices, relative to exchange price r, depends on the price elasticity 

of demand at r. Although we do not know the exact shape of f, it represents the 

amount by which bettors are either discouraged/attracted by 
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uncompetitive/favourable prices, and we imagine that its shape could be 

empirically derived given knowledge of actual bets taken by bookmakers. 

Assuming that f is continuously differentiable on (0, 1), we at least know that a 

sensible demand curve would require 0)( <′ qf on this interval. In addition, f, 

strictly speaking, would need to be non-negative, but we need not impose this. 

As an example, the form of a linear demand curve with elasticity which can vary 

with r is given by 
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where )(/),(' rgqfrqf −=∂∂=  defines the price elasticity of demand at r. 

 For fixed ri, Bb and Be, this is a constrained optimization problem to 

maximize ),...,( 1 nqqH  where H is given by 
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where λ is a constant. The solutions are given by the system of equations 
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We do not seek to solve this system of equations, but note a sufficient condition 

for the FLB in the bookmaker prices: for two horses j (a longshot) and k (a 

favourite: rj < rk), with odds-implied probabilities equal across the exchange and 

bookmaker markets ( )1/()1( ejbj BrBq ++= , )1/()1( ekbk BrBq ++= ), the marginal 

increase in expected returns for an increase in price is greater for the longshot 

( kj qHqH ∂∂>∂∂ // ); furthermore, the greater the difference, the greater is the 

level of FLB. So, denoting )1/()1(ˆ
eibi BrBq ++= , 
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We have now the following as a sufficient condition for the FLB: 

(3.6)   ),(),( kkjj rxrfrxrf ′>′ , 

for all x such that )1/()1(1 eb BBx ++≤≤ . 
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 If this condition is satisfied, then so is (3.5) (for a proof, see Appendix 2). 

Moreover, the difference kj qHqH ∂∂−∂∂ //  is increasing in both Bb (holding 

)1/()1( eb BB ++  fixed) and )1/()1( eb BB ++ , i.e., the level of FLB as imposed by 

optimal bookmaker prices should increase both with bookmaker over-round 

and the level of competition between the bookmaker and the exchange14. Also, if 

there is no competition (Bb = Be), then there is still FLB (provided (3.6) holds), 

and further, if there is no over-round (Bb = 0) then there is no FLB (for proofs of 

each of these propositions, see Appendix 2). Condition (3.6) holds if bettors’ 

price elasticity of demand is greater for favourites than for longshots, i.e., if 

bettors are driven away from betting at uncompetitive prices more rapidly for 

favourites than for longshots (or if bettors are attracted by favourable prices 

more strongly for favourites than for longshots). Provided this is the case, it 

follows that bookmakers are driven to post competitive prices on favourites or 

risk losing business to their competitors, even if, as a result, they must offer 

‘poor value’ prices on longshots. Finally, it should be noted that the competition 

need not be an exchange; the analysis is identical if the competition comes from 

another bookmaker. 

 In the case of a linear demand curve with variable elasticity (equation 3.2), 

condition (3.6) is satisfied if )()( jk rgrg > , for example, if ii Arrg =)(  for some A 

> 0. Table 3.1 shows the optimal q for various values of r, A, Bb and 

)1/()1( eb BB ++  in a race with two runners, and indicates that the level of FLB 

increases with elasticity, over-round and competition. Figure 3.1 shows how 

this curve varies for different values of r. For a linear demand curve, there is 

FLB in the optimal bookmaker prices, provided elasticity is greater for 

favourites than for longshots. This would also be the case for non-linear 

demand curves. 

 

 

 

                                                 
14 Smith and Vaughan Williams (2010) show empirically that the level of FLB in bookmaker 
markets fell after the introduction of exchange markets. Although the correlation between 
increased competition and reduced FLB is inconsistent with the prediction of our model, it was 
also the case that bookmaker over-rounds fell during the same period, which could account for 
the reduced FLB. 
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Table 3.1. A model of competing markets: the favourite-longshot bias in a two-

horse race. 

A = 10, Bb = 0.18, 
(1+Bb)/(1+Be) = 

1.18/1.05 

r = 0.700, Bb = 0.18, 
(1+Bb)/(1+Be) = 

1.18/1.05 

r = 0.700, A = 10, 
(1+Bb)/(1+Be) = 

1.18/1.05 

r = 0.700, A = 10, 
Bb = 0.18 

R q̂  A q̂  Bb q̂  
(1+Be)/(

1+Bb) 
q̂  

0.100 0.163 1 0.690 1.13 0.678 
1.18/1.0

5 
0.676 

0.200 0.246 5 0.679 1.17 0.676 
1.18/1.0

4 
0.674 

0.300 0.331 10 0.676 1.21 0.675 
1.18/1.0

3 
0.672 

0.400 0.417 50 0.672 1.25 0.675 
1.18/1.0

2 
0.671 

0.500 0.503 100 0.671 1.29 0.675 
1.18/1.0

1 
0.669 

0.600 0.590 500 0.671 - - 
1.18/1.0

0 
0.667 

0.700 0.676 1000 0.671 - - - - 

0.800 0.761 - - - - - - 

0.900 0.846 - - - - - - 

)1(/)1(ˆ
eb BqBq ++= , where q denotes the optimal bookmaker price for the horse, as estimated 

from the model in section 3.3. 

  
Figure 3.1. Linear demand curves with variable elasticity g(r) = 10r. 
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 In summary, provided we accept some reasonable assumptions, and a 

sensible demand curve, this model demonstrates that when bettors’ price 

elasticity of demand is greater for favourites than for longshots, the optimal 

pricing decision of the bookmaker leads to FLB in their prices, and this FLB 

increases with the level of competition between the bookmaker and their 

competitors. We note that our model is consistent with the argument of Levitt 

(2004), who showed that the optimal pricing policy of bookmakers is to distort 

prices to reflect the biases of bettors. 

 

3.3.2. Betting exchanges and informed trading 

 

 Now we consider an exchange market, where traders can both buy and 

sell contracts on horse i for £ri. As Wolfers and Zitzewitz (2006b) and Gjerstad 

(2005) demonstrate, if we assume that traders’ beliefs and wealth levels are 

heterogeneous and that the difference between buy and sell prices (the bid-ask 

spread) is zero, and denote an individual trader’s belief of the probability of 

horse i winning as pi, and the trader’s wealth as w, each drawn from a 

distribution ),( wpF i , then the equilibrium price is a ‘wealth-weighted average’ 

of the beliefs of all traders, 

(3.7)   ∫
∞

∞−
= ),(

1
wpwdFp

w
r iii , 

where w  is the average wealth level across all traders. Now, suppose that 

traders are either informed or uninformed. We assume that the informed 

traders know the true probability pi of horse i winning the race and have 

combined wealth X. The uninformed traders have beliefs piy drawn from 

distribution )( iypF  and combined wealth Y. Uninformed traders do not know 

the true probability, so iiy ppE ≠)( . Without loss of generality, suppose X + Y = 1. 

Consequently, from (3.7), 

(3.8)   iyii pYXpr += . 

This is the ‘wealth-weighted average’ of beliefs of the informed bettors and the 

uninformed traders. A consequence is that if informed or uninformed traders 

dominate the market, the price will be close to pi or iyp , respectively. 
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 Now we relax the assumption that bid-ask spreads are zero, i.e., contracts 

may only be bought for £ )( tri +  and may only be sold for £ )( tri − , for some t > 0. 

Now, when supply meets demand, we have that 

(3.9)   0),()(),()( =+≥−+−<− ∫∫ wtrpdFrpwwtrpdFrpw iiiiiiii . 

It is clear from (3.9) that higher transaction costs decrease both supply and 

demand. In addition, as Wolfers and Zitzewitz (2006a) note, transaction costs 

increase the proportion of trading done by the traders with the noisiest 

observations, as the trades contributing to supply and demand in (3.9) result 

from those traders with beliefs further away from the median belief. This 

causes prices to deviate from objective probabilities further, a result which is 

consistent with Hurley and McDonough (1995, 1996) and Sobel and Raines 

(2003) in that transaction costs increase inefficiency in market prices. We now 

employ the models developed in this section to derive testable hypotheses. 

 

3.4. Hypotheses, data, and method 

 

3.4.1. Hypotheses 

 

 Equation (3.8) approximates the mechanism by which prices are set on 

betting exchanges and suggests that the FLB can only arise on an exchange as a 

result of some proportion of wealth belonging to uninformed traders, who 

under-/over-estimate the winning chances of favourites/longshots. 

Furthermore, the extent of any FLB is exacerbated by two factors: a lack of 

informed trading, and higher transaction costs. Markets for horse races 

typically begin on the evening before the race and informed traders are likely to 

be more in evidence in the later stages of the market for the following reasons. 

First, significant information may only emerge in the later stages of the market, 

including details concerning results of previous races at the race meeting, non-

runners, jockey changes, and, even later in the market, the horses’ condition and 

behaviour (Bruce and Johnson, 1995). All these details can impact the way the 

race is run, so bettors may benefit from waiting to discern this information. 

Second, trading is light in the early stages of the market, enabling only relatively 
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small bets to be placed. Consequently, informed traders are unlikely to be 

prepared to give away their information cheaply to other bettors, as would be 

the case if they placed what would have to be relatively small bets in this early 

market (Asch et al., 1982). Third, the lighter trading in the early stages of the 

market is likely to lead to higher over-rounds (since there is a greater 

divergence of opinions) and this is likely to deter informed traders who are 

looking for value. As liquidity increases, and opinions become less divergent, we 

expect spreads to narrow. Indeed, as discussed above, we expect Y to decrease 

and X to increase over the period of the market, until, in (3.8), ri ≈ pi for all 

horses in the race (i.e., prices will be accurate and not include the FLB). This 

motivates our betting exchange hypotheses: 

In betting exchanges, 

1. prices approach true winning probabilities over time, 

2. the FLB is eliminated in the later stages of the market. 

 However, we have argued above that the FLB is likely to persist in 

bookmaker prices because they are competing with other bookmakers or 

exchanges, and bettors demand competitive prices on favourites (equation 3.6). 

The models developed above predict that bookmakers’ prices on favourites will 

be very close to their respective exchange prices. In addition, because of higher 

over-rounds, the prices in bookmaker (cf. exchange) markets on longshots are 

likely to be significantly higher. Furthermore, bookmaker prices cannot be said 

to follow a ‘wealth-weighted average’ of beliefs. Consequently, if the FLB is 

present in bookmaker markets, there is no obvious mechanism by which it 

might be eliminated by informed traders. In particular, informed traders are 

likely to be deterred by the significantly higher over-rounds in these markets. In 

addition, bookmakers impose restrictive limits on bet size on the most informed 

and wealthy traders (Smith et al., 2009), or may refuse to do business 

altogether. The combined effect of less informed trading and more FLB is likely 

to mean that bookmaker prices do not predict race results as accurately as 

exchange prices. However, we would expect their accuracy to increase as more 

information becomes available in the later stages of the market. This motivates 

our bookmaker hypotheses: 

In bookmaker markets, 
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3. prices approach true winning probabilities in the later stages of the market, but 

not as quickly as exchange prices, 

4. the FLB is present at all stages of the market, 

5. prices on favourites closely match exchange prices. 

 

3.4.2. Data 

 

 The data employed are odds and finishing positions for 62,124 horses 

running in 6058 races in the UK and Ireland from August 2009 through August 

2010. In particular, we collected matched bookmaker and exchange prices on 

each horse throughout the duration of the market on each race, from 4 hours 

before the race start and at intervals up until the start of the race (3 hours, 2 

hours, 1 hour, 30, 15, 10, and 5 minutes). The data were downloaded using the 

Betfair API and directly from the bookmakers’ websites. The exchange prices 

are those of the largest UK betting exchange by traded volume, Betfair, and we 

use the best prices at which it is possible to back the horse to win, in order to 

make a fair comparison with equivalent prices in bookmaker markets15. The 

bookmaker prices are recorded as the mean prices offered by a broad cross 

section of nine leading bookmakers; the data, therefore, includes over 5.5 

million price points. The number of runners per race ranges from 2 to 30, with a 

mode of 9. 

 We focus on ‘win’ bets, so the finishing positions were recorded as 1 for a 

winner and 0 otherwise. We also captured the mean betting volume (amount 

traded) on Betfair. We find that this trading volume is concentrated in the last 

moments before the race starts; with an average of 57.5% of total volume 

matched in the last 5 minutes of the market (see Table 3.2 in section 3.5.1). We 

suspect that a similar pattern may be true in bookmaker markets, but this data 

is not available. There is a strong positive correlation between exchange betting 

volume and accuracy in each market (exchange: corr. = 0.80, p = 0.0046; 

bookmaker: corr. = 0.91, p = 0.0004; see section 3.5.1). 

 

                                                 
15 We do make a minor assumption in that prices are equally valid whatever the stake limit at 
that price. This will have the effect of slightly understating the over-round and the level of FLB, 
but the inaccuracy will be small enough to be negligible. 
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3.4.3. Method 

 

 To measure the extent of the FLB in bookmaker and exchange prices, we 

use a conditional logit (CL) modelling approach (McFadden, 1974), which has 

been employed in several betting market studies (Figlewski, 1979; Asch et al, 

1984; Bolton and Chapman, 1986; Benter, 1994; Sung and Johnson, 2010). The 

CL model enables us to estimate, based on previous race results, the objective 

probability of a particular horse winning a particular race, given a set of horse-

related variables, whilst taking into account the competition in the race. With 

price as the single variable, the CL model is an effective method for estimating 

the level of FLB, and is formulated as follows. 

 Define an estimate of horse i’s ability to win race j as 

(3.10)  ijijij qW εβ += ln , 

where β is the parameter that determines the importance of the log of the price 

qij for horse i in race j and εij is an independent error term. McFadden (1974) 

shows that if the independent errors are identically distributed according to the 

double exponential distribution, then the probability of horse i winning race j is 

given by 

(3.11) 
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where nj is the number of horses in race j. 

 The parameter β is estimated by maximizing the joint probability of 

observing the results of all the races in the sample. This is achieved by 

maximizing the log-likelihood 

(3.12)  ∑ ∑= =
=

N

j

n

i ijij

j

pyL
1 1

lnln  

where yij = 1 if horse i won race j and yij = 0 otherwise, and N is the total number 

of races in the sample. If the estimated value of β is one, this implies that the 

odds-implied probabilities are equal to the true probabilities, as realized by the 

race results. If this estimated value is greater than one, this implies that the FLB 

is present; the greater the value of β, the greater is the degree of FLB (Bacon-

Shone et al., 1992). To test whether the FLB is present, we employ the standard 

normal test statistic ).(./)1( ββ ESz −= . 
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 The log-likelihood also gives rise to a natural measure of the predictive 

accuracy of the bookmaker and exchange prices, which can be compared 

through time as the market evolves. This is the McFadden pseudo-R2, which is 

given by 

(3.13)  
nL

L
R

ln

ln
12 −= , 

where lnLn is the log-likelihood of the naive model, where each horse in a race is 

assigned an identical probability of winning: 

(3.14)  ∑ =
=

N

j jn nL
1

)/1ln(ln  . 

In order to test if the predictive accuracy of prices increases over time, and if 

the predictive accuracy of exchange prices is greater than that of bookmaker 

prices, we compare pseudo-R2 values over time. However, it is not 

straightforward to apply a measure of precision to values of pseudo-R2, because 

their distributions are complex and depend on unknown parameters. Here, we 

adapt the method of Hu, Shao, and Palta (2006) and estimate the asymptotic 

distribution of the pseudo-R2s, i.e., the expected distribution as the number of 

races tends to infinity. For more details, see section 5.4.2. 

 Finally, in order to compare the actual prices offered by the exchange and 

the bookmakers, we follow Ali (1977) and rank horses by whether they are the 

favourite, the second favourite, and so on (by exchange prices). An approximate 

standard normal test statistic to compare exchange prices r with bookmaker 

prices q is given by 

(3.15)  

N

qqrr

qr

qrSE

qr
z
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−
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−
= . 
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3.5. Results 

 

3.5.1. Predictive accuracy 

 

 First, we examine the predictive accuracy of exchange and bookmaker 

prices throughout the duration of the market. The results are presented in 

Table 3.2. Comparing the predictive accuracy of prices at the time the race 

starts (starting prices) with prices available throughout the market, we find that 

the pseudo-R2 of CL models including price as the only independent variable 

(see equation 3.11) increases over time in both markets (see Figure 3.2), 

although this finding is not statistically significant over the last hour of the 

market duration. Similarly, exchange prices are consistently more accurate than 

bookmaker prices at predicting race winners, but the difference is not 

statistically significant at any time point. 

 
Figure 3.2. Predictive accuracy of exchange and bookmaker odds through time, 

with betting volume. 
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Table 3.2. Betting volume and predictive accuracy in exchange and bookmaker 

odds over time. 

Time 
until 
race 
start 

(mins) 

Cumulative 
exchange betting 

volume vol 
(£ 000) 

(% of final volume) 

Exchange 
pseudo-R2 

)(2 tRe  
ze(t) 

Bookmaker 

pseudo-R2 

)(2 tRb  
zb(t) z(t) 

240 
14.7 
(2.9) 

0.1639 2.84** 0.1634 2.29* 0.06 

180 
19.8 
(3.9) 

0.1658 2.59** 0.1650 2.12* 0.13 

120 
27.0 
(5.3) 

0.1700 2.06* 0.1661 1.95* 0.48 

60 
39.0 
(7.7) 

0.1735 1.62 0.1682 1.70* 0.67 

30 
51.2 

(10.0) 
0.1761 1.28 0.1694 1.55 0.85 

15 
78.1 

(15.3) 
0.1773 1.37 0.1714 1.30 0.74 

10 
109.9 
(21.6) 

0.1784 1.00 0.1732 1.08 0.65 

5 
216.3 
(42.5) 

0.1825 0.48 0.1778 0.53 0.60 

START 
509.5 

(100.0) 
0.1862 - 0.1820 - 0.52 

 Corr(vol, Pseudo-R2) 0.79**  0.90**   

* Significant at the 5% level, ** 1% level (1-tailed test). 
Standard errors are 0.008 to 3 decimal places in all cases so are omitted.  
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3.5.2. FLB and over-round 

 

 Eight CL models (as per equation 3.11) were developed for both the 

bookmaker and the exchange markets, respectively, incorporating prices 

available at the eight different time periods before the race start. The estimated 

parameters in these models were used to compare the degree of FLB in these 

markets at different times before the race start (see Tables 3.3 and 3.4 for the 

exchange and bookmaker markets, respectively; Table 3.4 also includes the 

difference in the level of FLB between bookmaker and exchange markets). 
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Table 3.3. The FLB in exchange odds over time. 

Time until 
race start 

(mins) 
FLB β SE (β) 

)(

1

β
β

SE

−
 

),( START

START

SE ββ
ββ −

 Over-round 
Be 

240 1.080 0.0186 4.31** 2.630** 0.113 

180 1.072 0.0185 3.92** 2.328* 0.101 

120 1.056 0.0181 3.12** 1.718 0.079 

60 1.052 0.0181 2.89** 1.552 0.070 

30 1.047 0.0180 2.60** 1.331 0.064 

15 1.042 0.0180 2.34* 1.143 0.064 

10 1.036 0.0178 2.02* 0.909 0.063 

5 1.028 0.0176 1.59 0.584 0.058 

START 1.014 0.0173 0.79 - 0.057 

Corr(β,Be) 0.918**     

*: significantly different from 1.00 at the 5% level, **: 1% level (2-tailed test). 

 

Table 3.4. The FLB in bookmaker odds over time. 

Time until 
race start 

(mins) 
FLB β SE (β) 

)(

1

β
β

SE

−
 

),( START

START

SE ββ
ββ −

 
),( EXCH

EXCH

SE ββ
ββ −

 Over-
round Bb 

240 1.215 0.0205 10.47** 0.293 4.85** 0.198 

180 1.216 0.0204 10.56** 0.351 5.22** 0.207 

120 1.216 0.0204 10.58** 0.345 5.85** 0.214 

60 1.216 0.0204 10.77** 0.478 6.14** 0.217 

30 1.220 0.0204 10.82** 0.499 6.40** 0.217 

15 1.224 0.0204 11.01** 0.624 6.71** 0.200 

10 1.226 0.0204 11.09** 0.683 7.01** 0.190 

5 1.214 0.0201 10.65** 0.286 6.98** 0.180 

START 1.206 0.0198 10.40** - 7.33** 0.181 

Corr(β,Bb) 0.394      

*: significantly different from 1.00 at the 5% level, **: 1% level (2-tailed test). 
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 The results show that there is FLB in exchange prices 30 minutes or more 

before the race start (the parameter is significantly greater than 1.00 at the 1% 

level: z = 2.60, p = 0.0096) when just 10% of final volume has been traded at 

this stage. Most importantly, the results show that there is no significant FLB in 

exchange prices in the later stages of the market (e.g., based on prices 5 minutes 

before the race start: z = 1.59, p = 0.1142). In addition, the FLB in exchange 

prices is significantly greater 3 hours before the race start than it is at race start 

(z = 2.33, p = 0.0204). On the other hand, there is FLB in bookmaker prices 

available at all times before and at race start (i.e., the parameter in the CL model 

is significantly greater than 1.00 at the 1% level based on all these sets of prices, 

e.g., at race start: z = 10.40, p = 0.0000). Moreover, when comparing the level of 

FLB in the bookmaker prices at different times throughout the market with that 

at race start, there is no apparent trend (see Figure 3.3). In addition, the FLB is 

greater in the bookmaker prices than in the exchange prices at all times (e.g., 

comparing the FLB in bookmaker vs. exchange prices at race start: z = 6.98, p = 

0.0000). 

 

Figure 3.3. Level of FLB over time in exchange and bookmaker markets. 
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 We find that bookmaker over-rounds are much greater than those on the 

exchanges (even after allowing for commission in exchange markets: see Tables 

3.3 and 3.4), with bookmaker/exchange over-rounds ranging between 

0.180/0.057 and 0.217/0.113 at different stages of the market. These results 

confirm that bettors face significantly higher costs in bookmaker (cf. exchange) 

markets. In addition, we find a strong positive correlation between the 

exchange FLB and over-round (corr. = 0.92, p = 0.0002), but no such clear 

relationship in bookmaker markets (corr. = 0.39, p = 0.1474). In fact, the 

exchange over-round decreases through the duration of the market, along with 

the level of FLB, whereas it remains fairly stable in bookmaker markets. 

 Finally, we compare starting prices in exchange and bookmaker markets 

for horses with greater and smaller chances of success (as predicted by their 

prices). In particular, the favourite is ranked 1, the second favourite is ranked 2, 

and so on. Horses which are ranked 12th or more are grouped together. The 

results of comparing exchange and bookmaker prices are presented in Table 3.5 

and illustrated in Figure 3.4. 

 

Figure 3.4. True winning probability and prices by horse rank. 
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 We find that there is no significant difference in exchange and bookmaker 

prices for the first three ranks, but for horses ranked 4th favourite or greater, 

the exchange prices are significantly lower, representing better value for the 

bettor (e.g., for rank 4: z = 2.22, p = 0.0264). In sum, our results confirm 

hypotheses 2 and 4 that the FLB is eliminated in the later stages of the market 

for the exchange, but that the FLB in the bookmaker market is present 

throughout. Furthermore, we find support for hypothesis 5, that bookmaker 

and exchange prices for the favourites are similar, but bookmaker prices on 

longshots are significantly higher than exchange prices. 

 

Table 3.5. Comparison of true winning probabilities and mean starting prices by 

horse rank in exchange and bookmaker markets. 

Horse rank 
by 

exchange 
price 

Number 
of horses 

True 
winning 
prob. p 

Exchange 
price r 

Bookmaker 
price q 

SE (r,q) 
),( qrSE

qr −
 

1 6058 0.3310 0.3434 0.3463 0.0086 0.34 

2 6058 0.2053 0.2121 0.2184 0.0075 0.86 

3 6055 0.1371 0.1461 0.1569 0.0065 1.67 

4 6012 0.0913 0.1052 0.1180 0.0057 2.22* 

5 5857 0.0761 0.0784 0.0920 0.0052 2.62** 

6 5522 0.0525 0.0596 0.0739 0.0047 3.01** 

7 5074 0.0449 0.0458 0.0605 0.0045 3.30** 

8 4496 0.0309 0.0361 0.0504 0.0043 3.32** 

9 3886 0.0280 0.0291 0.0437 0.0042 3.45** 

10 3241 0.0216 0.0238 0.0381 0.0043 3.33** 

11 2656 0.0215 0.0198 0.0338 0.0044 3.16** 

12 or more 7209 0.0126 0.0133 0.0295 0.0024 6.74** 

*: significantly different from 1.00 at the 5% level, **: 1% level (2-tailed test). 
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3.6. Discussion 

 

 Our first two hypotheses, related to exchange prices, were that they 

should approach the true winning probabilities over time, and that the FLB 

would be eliminated over time. We argued that this would occur because an 

increasing betting volume from more informed bettors is likely as the market 

develops, because of a reduction in spreads as liquidity increases (increased 

liquidity reduces the divergence of opinions allowing lower bid-ask spreads) 

and a reduction in uncertainty as new information is revealed. We found that 

exchange prices develop in the manner predicted. However, whilst the 

correlation between exchange betting volume (i.e., of matched bets) and 

accuracy is high, the increase in accuracy of exchange prices in the later stages 

of the market is not statistically significant, which suggests that at least some 

informed betting occurs early. We also found that there was a significant FLB in 

the early stages of the exchange market. This suggests that early-stage bettors 

are generally uninformed and may, as suggested in earlier studies, create the 

FLB because of their risk-loving tendencies (e.g., Weitzman, 1965; Quandt, 1986; 

Hamid et al., 1996) or biased expectations (Henery, 1985; Chadha and Quandt, 

1996; Snowberg and Wolfers, 2010). However, we learn very little about 

exchange bettors as a population from the early-stage group because so little of 

the total betting volume is matched at this time (on average, only 2.9% of final 

volume is matched 4 hours before the race start). We find that the FLB in the 

exchanges is eliminated over time, suggesting that the exchanges are dominated 

by informed bettors who bet in a manner which eliminates any FLB. Clearly, 

there may be some bettors who display risk-loving attitudes or exhibit biased 

expectations but either their bets are matched by more informed bettors 

(taking advantage of the lower over-rounds in exchanges), or such bettors may 

bet with bookmakers. 

 Our third hypothesis was that bookmaker prices would approach the true 

probabilities over time, but not as quickly as exchange prices. Our finding that 

bookmaker prices are not as accurate a predictor of the race winner as 

exchange prices corroborates the findings of previous studies (Smith et al., 

2009; Franck et al., 2010). Our results lead us to agree with their conclusions 
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that this is an indication of the type of bettors that bet in these markets, and not 

a reflection on the bookmakers themselves. In particular, the higher over-

rounds in bookmaker markets result in less competitive prices, driving 

informed betting towards the exchanges, and it is the bets of these informed 

traders which, in turn, lead to the improved accuracy in exchange prices. 

 Our finding, in support of hypothesis 4, that the FLB is present in final 

bookmaker prices, is not controversial; many previous studies have found a 

greater FLB in bookmaker markets than in parallel pari-mutuel markets (Bruce 

and Johnson, 2000; Peirson and Blackburn, 2003) and exchange markets (Smith 

et al., 2006). However, we discovered that the FLB is present in bookmaker 

prices at all times throughout the market, and that the level of FLB is not 

correlated with over-round, neither is there any trend in the level of FLB over 

the duration of the market. We are not aware of any study which has 

investigated the level of FLB over the duration of the market, and our finding 

that there is no correlation between over-round and the level of FLB contrasts 

with the view that higher transaction costs are the cause of a greater FLB in 

bookmaker markets (Smith et al., 2006). We also found evidence in support of 

our fifth hypothesis that prices of favourites are similar in the exchange and 

bookmaker markets (for horses ranked 1-3rd favourite). 

 Taken together, our findings support our argument that the FLB in 

bookmaker markets is largely the result of the bookmakers’ pricing policy. 

Specifically, it appears that the FLB in these markets results from bookmakers 

deciding to price in this manner in the presence of specific conditions related to 

bettors’ demand (that bettors’ demand is more elastic for favourites than 

longshots). This represents both a supply- and a demand-side explanation for 

the phenomenon. We now consider three previous explanations for the FLB in 

turn, and discuss how our theory is consistent with these explanations, or at 

least how these explanations may be adjusted to be consistent with our theory. 

We label these explanations: demand-side explanations, the Shin pricing policy, 

and transaction and information cost explanations. 

 Demand-side explanations, as discussed above, generally focus on one of 

two sources for the bias: bettors are risk-loving (e.g., Weitzman, 1965), or 

bettors have biased expectations (e.g., Henery, 1985). In both cases, it is 
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believed that the FLB directly results from bettors’ decisions. For example, 

using an extremely large dataset of North American races Snowberg and 

Wolfers (2010) found that the mispricing of exotic bets was more consistent 

with the FLB being driven by biased expectations than risk-love. Their 

investigation was restricted solely to pari-mutuel market odds (which are the 

monopoly market in the USA). It could also be the case in bookmaker markets 

that bettors’ preferences are consistent with them being risk-loving or subject 

to biased expectations. However, we found that an alternative explanation 

based on bookmakers’ optimal pricing policy was more satisfactory: demand-

side explanations do not adequately explain why there is a FLB in bookmaker 

prices at the outset of the market, when there has been little or no betting 

volume, and it does not explain why this FLB reduces through time. The current 

study has investigated the two major types of betting market in the UK (i.e., 

bookmakers and exchanges), neither of which are pari-mutuel, and found 

significantly different results, which are more consistent with supply-side 

factors being the cause of the FLB in bookmaker markets, and informed betting 

eliminating the FLB in exchange markets. 

 Shin’s (1991, 1992, 1993) bookmaker pricing policy model suggests that 

bookmakers deliberately increase prices (or reduce odds) on longshots to 

protect their interests against insider traders. In Shin’s model, as in later studies 

by Schnytzer and Shilony (2005) and Peirson and Smith (2010), insiders are 

defined as being more informed than anyone else, including the bookmaker. 

Shin assumes that insider trading is likely to be more associated with longshots 

than with favourites, and, consequently, he argues that bookmakers stand to 

lose more if they allow prices on longshots to be ‘fair’. Rather, we have 

suggested that bookmakers increase prices on longshots in order to allow them 

to offer competitive (lower) prices on favourites, to address the demand 

preferences of bettors. Shin’s model makes a number of simplifying 

assumptions (e.g., insider traders are perfectly informed traders) which we do 

not make in our model of bookmaker competition. In particular, the Shin model 

and other similar models rely heavily on the idea that there are insider traders 

operating in the market, and that these are feared by the bookmaker, resulting 

in their pricing policy. However, this view does not account for the reality of the 



 112 

betting market. In particular, bookmakers are able to refuse business or restrict 

betting from bettors who they believe to be insiders, and bookmakers have 

extensive intelligence systems which reduces the chance of ‘unknown’ insiders 

damaging their profits. In addition, we have argued that insider traders are far 

more likely to bet with the exchanges, particularly because of lower transaction 

costs. By contrast, our belief is that bookmakers are far more concerned with 

competition amongst themselves and with exchanges than with the activities of 

insiders. In particular, they are more interested in the average customer in a 

competitive market who is simply concerned with getting a competitive price. It 

is these who provide bookmakers with the majority of their betting volume. 

Under this assumption, our model demonstrates that there is an incentive for 

bookmakers to set their prices incorporating the FLB if bettors’ demand is more 

elastic for favourites than for longshots, particularly if the bookmaker is 

competing with operators (e.g., exchanges) who are able to offer much lower 

transaction costs. 

 The transaction and information costs explanation for the FLB suggests 

that this phenomenon results from an increase in the cost of obtaining 

information or placing bets. This is consistent with some of our results. In 

particular, we found that the FLB was significantly higher in the bookmaker 

market, where transaction costs are significantly higher (and the cost of 

obtaining information does not differ for those betting with an exchange or with 

a bookmaker). Furthermore, we found that the level of FLB in the exchange was 

higher when the over-round was higher (i.e., in the early stages of the market). 

However, we found that the FLB in the bookmaker market was not significantly 

correlated with over-round. We believe that informed traders eliminate the FLB 

in both exchange and bookmaker markets at any time when over-rounds are 

not set at a level which prohibits betting at an acceptable price. However, the 

high over-rounds in the bookmaker markets deter informed traders, resulting 

in the FLB remaining throughout the duration of the market. Similarly, the FLB 

in the early stages of the exchange market is not eliminated because spreads are 

higher (as a result of lower liquidity) and there is a greater degree of 

uncertainty about future developments. Consequently, our results suggest that 
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transaction costs are a factor which influences the amount of informed trading 

in the market which, alongside competition, affects the level of FLB. 

 

3.7. Conclusion 

 

 Previous research has shown that the FLB has existed in a variety of 

jurisdictions over many decades. Whilst many studies have identified FLB in the 

UK bookmaker market, there is little evidence in the growing literature on 

betting exchanges that these markets also exhibit the FLB. Our study aimed to 

provide an explanation for this contrasting evidence. Consequently, we 

developed a model to explain the FLB in competing bookmaker markets and 

tested resulting hypotheses related to how the predictive accuracy, over-round, 

and the FLB develop over the duration of the betting market for a typical race. 

The model’s predictions were confirmed using empirical data from the UK 

horserace betting market.  

 This study makes a number of important contributions. First, we have 

found further evidence of (i) FLB in bookmaker markets, and (ii) no FLB in 

exchange markets. Second, we confirm that predictive accuracy of exchange 

prices is largely superior to that of bookmaker prices. However, in the case of 

exchange markets, we have also uncovered significant relationships between 

the FLB and betting volume (or time remaining before race start, each of which 

is related to the level of informed trading), and between the FLB and over-

round using a unique dataset consisting of matched bookmaker and exchange 

odds on each runner throughout the course of the market on each race. We also 

discovered that there were no such relationships in bookmaker markets. More 

importantly, we have developed a model which suggests that the optimal 

pricing policy for a bookmaker, who competes with other operators for betting 

on favourites, is to set prices which include the FLB. Our empirical results are 

largely supportive of the predictions of this model. 

 We have set our explanations for the FLB within the wider context of the 

ongoing debate about the cause of FLB in betting markets, and have shown that 

both supply- and demand-side explanations are important contributors to the 

bias. Transaction and information costs explanations are still relevant, but only 
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in the sense that higher costs restrict informed betting, which, in turn, prevents 

the FLB being eliminated. Furthermore, we demonstrate that bookmakers’ 

optimal pricing policy, arising as a consequence of competition between 

operators and bettors’ demand for competitive prices on favourites, is an 

important contributor to the existence of the phenomenon. 
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4. New evidence for a prospect theory explanation of systematic 

decision making bias in a market for state contingent claims 

 

Abstract 

 

The favourite-longshot bias (FLB) is the widely-reported systematic bias in 

markets for state contingent claims, such as prediction and betting markets, 

whereby market prices under-/over-value favourites/longshots. We provide 

new and unique evidence to support the view that, where the bias exists 

independently of a market maker (e.g., in pari-mutuel betting markets), it is due 

to cognitive errors of traders rather than their preference for risk. This is 

achieved in two stages: first, we derive a model that shows that prospect theory, 

and not risk-love, predicts a ‘strong favourite’ effect, where the level of the FLB 

is reduced in events where the variance of odds for non-favourites is low. Then 

we test the predictions of the model by employing pari-mutuel market price 

data related to 2447 UK horseraces. An analysis using the conditional logit 

model verifies that the extent of the FLB is indeed reduced in races with strong 

favourites, as well as in handicap races. Furthermore, unlike previous attempts 

to confirm that traders’ cognitive errors are the source of the FLB, our results 

are independent of parametric assumptions or assumptions about the choice 

set of the decision maker. 

 

4.1. Introduction 

 

 The favourite-longshot bias (FLB) is the systematic bias reported in 

markets for state contingent claims, such as prediction and betting markets, 

whereby market prices are such that high-probability outcomes (favourites) are 

under-valued and low-probability outcomes (longshots) are over-valued. First 

discovered in a laboratory setting by psychologists Preston and Baratta (1948), 

and in the naturalistic setting of betting markets for horseracing by Griffith 

(1949), the FLB has been shown to be present in many jurisdictions and 

throughout many decades (e.g., Dowie, 1976; Ali, 1977; Snowberg and Wolfers, 

2010), with a few studies finding contrasting evidence (e.g., Busche and Hall, 
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1988; Busche, 1994). In the context of markets for state contingent claims, the 

presence of the bias, and its absence in some settings, has been attributed to a 

variety of causes including, among others, the risk-loving nature of traders 

(Weitzman, 1965), errors in the estimation of probabilities (Henery, 1985), the 

pricing policies of bookmakers (Shin, 1993), and limited information of traders 

(Sobel and Raines, 2003). However, it is empirically difficult to discriminate 

between the various competing explanations because the decision making 

processes of individual market participants are not observable. Rather, the 

market prices result from the combined decisions of traders, and represent the 

market’s subjective assessment of the probability of each outcome occurring; 

the FLB is observed when comparing these subjective probabilities with 

observed event outcomes (Griffith, 1949). Hence, competing theories of 

decision making in general (expected utility theory and non-expected utility 

models such as prospect theory) are observationally equivalent (Snowberg and 

Wolfers, 2010). 

 As a result of this difficulty, there is no standard method for assessing the 

relative strengths of the various hypotheses, and so there have been few 

attempts to do so. Those that have attempted this task have relied on 

parametric assumptions or assumptions relating to the choice set of the 

decision maker. In this study, we develop a new methodology for choosing 

between the hypotheses, which does not rely on these assumptions. 

 We first develop a model based on the representative agent that predicts a 

‘strong favourite’ effect on the level of FLB. Specifically, we demonstrate that the 

level of bias in an individual event varies in a predictable manner depending on 

the traders’ risk preferences. If the representative agent is risk-seeking, the 

model predicts an increased FLB in events where the variance of the odds on 

competitors other than the favourite is relatively low, ceteris paribus. Convesely, 

if the representative agent is risk-averse, the level of FLB is reduced or a reverse 

bias is predicted when the same variable is relatively low. This prediction is 

independent of whether probabilities enter the decision process linearly (as in 

expected utility) or nonlinearly (as in prospect theory). Hence, empirical tests 

can be conducted that distinguish between hypotheses that do and do not 

require the representative agent to be risk-loving. We also show that, in events 
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where the rules are designed to equalize the competitors’ winning chances (e.g., 

in handicap horse races), the model predicts an equivalent result to the strong 

favourite effect, i.e., an increased/reduced FLB when the representative agent is 

risk-seeking/averse.  

 We test both predictions of the model using a large set of data from 

betting markets for UK horseraces, and find strong evidence to support the 

hypothesis that in markets independent of a market maker (e.g., a bookmaker), 

the FLB is caused by the cognitive errors of traders, rather than a general 

preference for risk. Our paper contributes new and unique evidence to the 

existing literature that examines the relative merits of prospect theory, 

expected utility theory, and other hypotheses in explaining biases in naturalistic 

decision making contexts. 

 The paper proceeds as follows. In section 4.2, we review representative 

agent models of the FLB at the level of demand-side factors, i.e., explanations of 

the FLB based only on factors related to the decisions of traders. In section 4.3, 

we outline our model, and in section 4.4 we derive hypotheses and introduce 

the data and the method employed to test the hypotheses. The results are 

presented in section 4.5 and discussed in section 4.6. We draw conclusions in 

Section 4.7. 

 

4.2. Representative agent models of the FLB in horserace betting markets 

 

 It is widely recognized that horserace betting markets offer a valuable 

naturalistic setting in which to explore decision making (Sauer, 1998). In 

particular, horserace bettors operate in a setting that involves uncertain and 

dynamic information, time stress, regular outcome feedback, and meaningful 

incentives. These features are only present in real world decision contexts 

(Orasanu and Connolly, 1993) and risk-taking in the high stakes betting context 

is not easily reproduced in comfortable laboratory settings (Anderson and 

Brown, 1984). Consequently, horserace betting markets appear to offer an ideal 

environment in which to explore decision making biases in a real world setting 

(Bruce and Johnson, 2003). 
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 The FLB is one such bias, and has received much attention in the literature 

(for reviews, see Vaughan Williams, 1999; Ottaviani and Sørenson, 2008; Jullien 

and Salanié, 2008). A range of explanations for the phenomenon have been 

proposed. While some studies have proposed explanations related to supply-

side factors, such as the pricing polices of bookmakers (Shin, 1993), most 

studies associate the FLB with the decisions of bettors. A simplified but useful 

categorization of these explanations is provided by Snowberg and Wolfers 

(2010, pp. 724-725): “each yields implications for the prices of gambles 

equivalent to stark models of either a risk-loving representative agent or a 

representative agent who bases her decisions on biased perceptions of true 

probabilities”. So, bettors have unbiased expectations, but are risk-loving (e.g., 

Weitzman, 1965), or have biased expectations, but are risk-neutral or risk-

averse (e.g., Henery, 1985). This categorization warrants attention because it 

addresses the relative merits of competing theories for explaining decision 

making in wider fields: specifically, expected utility (EU) theory and non-

expected utility models such as prospect theory. 

 The former class of models originates from the proposition that, in order 

to explain the FLB, the representative agent must be risk-loving over the 

relevant part of the decision making domain. So, Weitzman (1965) introduced 

the ‘representative bettor’ Mr. Avmart, who represents the ‘social average’ of all 

bettors. Instead of concentrating on individuals, Weitzman inferred the 

preferences of the most typical bettor from the population in order to construct 

Mr. Avmart’s utility of wealth curve (the mathematical representation of 

preferences over various monetary outcomes and the basis of EU theory). He 

found that the FLB in his data was best explained by a convex utility of wealth 

curve, indicating that the average bettor is locally risk-loving (i.e., the average 

bettor prefers the riskier, low probability outcomes). Quandt (1986) extended 

the analysis by showing that the bias is the natural result of equilibrium in a 

market where the average bettor is risk-loving. This theory was confirmed 

empirically by the EU models of Ali (1977) and Hamid, Prakash, and Smyser 

(1996). More generally, for the FLB to be explained with reference to the 

bettor’s utility of wealth function, the bettor need not be monotically risk-loving 

over the whole decision making domain. Indeed, it is possible for bettors to be 
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risk-averse in general, but with a preference for skewness of returns (Golec and 

Tamarkin, 1998; Walls and Busche, 2003). Alternatively, bettors may be risk-

averse over some parts of the domain and risk-seeking over others (Cain and 

Peel, 2004). However, these alternatives are all equivalent to the risk-loving 

representative agent model (Snowberg and Wolfers, 2010). 

 A broad alternative classification of explanations for the FLB stems from 

Kahneman and Tversky’s (1979) prospect theory (PT), in which the value of an 

outcome is defined relative to a reference point and bettors are risk-averse for 

gains and risk-loving for losses. Crucially, PT can explain some violations of EU 

theory, such as the Allais (1953) paradox, as well as explaining the FLB, because 

objective probabilities are transformed into subjective decision weights that 

allow for biases in the estimation of probabilities. If the assumptions of PT hold, 

then the FLB can be explained solely with reference to bettors’ systematic 

misestimation of probabilities, i.e., bettors need not be locally risk-loving. While 

PT is a formal model of decision making under uncertainty, this alternative class 

of explanations can effectively include any model in which probabilities enter 

the decision objective function nonlinearly in order to explain the FLB. For 

instance, Sobel and Raines (2003) derived an alternative specification to the 

risk-love model that allows for the representative bettor to be risk-neutral. In 

this specification, the FLB can be explained by limited information of bettors, 

since either underreaction to new information or limited precision in the 

decision making process (or a combination of the two) results in relatively 

large/small probabilities being under-/over-estimated. Henery (1985) argues 

that bettors systematically discount a constant proportion of losses; since 

longshots lose more often, this leads bettors to over-estimate the winning 

chances of longshots. Effectively, the above explanations can be incorporated 

into the biased expectations class of models (Snowberg and Wolfers, 2010) 

because in each case it is the distortion of probabilities that explains the FLB, 

and no restriction must be made on the risk preferences of the representative 

bettor. 

 The literature discussed above suggests that there are two broadly 

competing sets of theories regarding the explanations for the FLB in terms of 

the representative bettor: bettors are unbiased in their estimation of 
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probabilities, but risk-loving, or they are risk-neutral or risk-averse, but biased 

in their estimation of probabilities. These two explanations appear to be 

empirically indistinguishable, because it is not immediately apparent how to 

employ data related to actual decisions to differentiate between risk 

preferences and biased estimation of probabilities (Yaari, 1965). However, 

some researchers have employed innovative methods for doing so. In particular, 

Golec and Tamarkin (1995) attempted to test the two competing hypotheses 

using data related to alternative bets offered by bookmakers in addition to 

standard ‘win’ bets (bets that a horse will finish in first place). In this instance, 

these alternative bets were so-called ‘teaser’ bets on outcomes which were 

more likely to pay off than ‘win’ bets, but had a corresponding lower return. 

Since ‘teaser’ bets are relatively low-risk compared to ‘win’ bets, risk-love 

would predict that bettors demand an extra return to compensate them for the 

low risk. However, they found returns from the side bets were relatively unfair, 

which is a result that risk-love cannot explain. Instead, they suggested that 

overconfidence (which is consistent with bettors overestimating small 

probabilities) better explains the FLB. Jullien and Salanié (2000) and Bradley 

(2003) also offered support for the view that PT (cf. EU) better explains the FLB, 

although they relied on parametric assumptions about the functional forms of 

the utility, value, and probability weighting functions of the representative 

agent. 

 More recently, Snowberg and Wolfers (2010) set out to test the competing 

theories using a novel approach and a large dataset of all the horseraces run in 

North America from 1992 to 2001 (over 865,000 races). They first estimated 

the parameters of the two models (the EU model and the PT model) by fitting 

the models to standard ‘win’ bets. They then examined compound exotic bets, 

such as the ‘exacta’, a bet that two horses will finish a race in first and second 

place in a specific order. Snowberg and Wolfers reasoned that bettors would bet 

in the same manner in the exotic and win betting pools, so the same models 

should apply for each bet type. Accordingly, they used model predictions based 

on win bets to forecast expected market prices in the exotic betting pools. They 

found that the model based on misestimation of probabilities predicted exotic 

bet prices more accurately than the risk-love model. Snowberg and Wolfers 
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concluded that, with respect to the representative bettor, PT explained the FLB 

more effectively than EU theory. 

 While the general consensus from the literature has been that non-

expected utility (cf. EU) models better explain decision making in the 

naturalistic context of horserace betting, each study has conducted different 

empirical tests. Indeed, despite the availability of rich and detailed quantitative 

data on the decisions of traders in this context, the key difficulty in 

distinguishing between risk-love and biased expectations is a methodological 

one. Hence, there have been relatively few attempts to arrive at an empirical 

solution to the problem, and those that have been made have relied either on 

parametric assumptions (Jullien and Salanié, 2000; Bradley, 2003) or on the 

assumption that bettors’ decision making models are identical over different 

choice sets (Golec and Tamarkin, 1995; Snowberg and Wolfers, 2010). The 

purpose of this study, therefore, is to address this problem with a new and 

alternative methodology that does not rely on these assumptions. In the next 

section, we develop a model that leads to a new empirical test between the 

alternative hypotheses, based on the risk preferences of the representative 

agent, independent of the probability weighting function. 

 

4.3. Representative agent models: the ‘strong favourite’ effect 

 

 Here we demonstrate that two simple models, based on the representative 

agent, result in alternative predictions of a ‘strong favourite’ effect. Specifically, 

they predict that the level of FLB is higher or lower in races where, ceteris 

paribus, the variance of odds for non-favourites is relatively low. The first model 

is based on PT, in which the representative agent is risk-averse for gains: this 

model predicts that the FLB will be decreased in races with the ‘strong 

favourite’ condition. Conversely, our second model is based on EU and so the 

representative agent must be risk-loving in order to explain the FLB. This model 

predicts that the FLB will be increased in races with the strong favourite 

condition. 

 Following a number of FLB studies (e.g., Ali, 1977; Jullien and Salanié, 

2000; Bradley, 2003; Snowberg and Wolfers, 2010), we make the assumption of 
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the representative agent, i.e., we assume that: (i) each bettor is identical and 

bets an equal amount x under any circumstances, (ii) bettors bet on at most one 

horse in a race (with n runners), (iii) each horse is bet by at least one bettor, 

and (iv) each bettor has identical beliefs that each horse i will win the race with 

probability pi, where 1
1

=∑ =

n

k kp , and these beliefs are unbiased, i.e., each horse 

i does win with probability pi. 

 The above conditions give rise to an equilibrium condition: bettors must 

be indifferent between all horses in the race, i.e., denoting the desirability of 

horse i by Di, we must have that Di = Dj for all i, j (Ali, 1977). Otherwise, there 

would be at least one pair of horses such that Di > Dj and no one would bet on 

horse j (contravening the assumption that each horse is bet on by at least one 

bettor). With two mild assumptions (continuity of the Di and first-order 

stochastic dominance), the equilibrium condition is unique (Jullien and Salanié, 

2000). 

 The intuition in the following models is that, when equilibrium prices are 

biased due to bettors being subject to EU theory or PT, the level of bias in prices 

changes depending on the distribution of prices across all of the horses in the 

race. In our PT model, each bettor has value function )(tv , which is concave for 

gains and convex for losses, and their decisions are based on a weighted 

probability )( ipw  (for simplicity, we make the assumption that, as in the 

original PT, the weighting function is the same for gains and losses). Each horse 

i has pari-mutuel ‘win’ odds Ri, i.e., a bet of size x on horse i returns a profit of 

xRi if horse i wins and a loss of –x otherwise. Thus, the value to a bettor of a 

winning bet of size x on horse i is given by )( ixRv  and the value of a losing bet is 

given by )( xv − . Then the desirability of a bet of size x on horse i is given by the 

expected value of profits, where the associated probabilities are weighted by 

)( ipw , i.e., 

(4.1)   ∑ ≠=
−+=

n

ijj jiii xvpwxRvpwD
,1

)()()()( . 

Empirical estimates have found that the weighting functions typically sum to an 

amount less than one (e.g., Kahneman and Tversky, 1979), so we suppose that 

(4.2)   1)(
1

<=∑ =
cpw

n

k k , 
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although the exact amount c is not important in our model. Hence (4.1) 

becomes 

(4.3)   )())(()()( xvpwcxRvpwD iiii −−+= . 

Solving the equlibrium condition ADi = , where A is a constant, for )( ipw  gives 

(4.4)   
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Then, condition (4.2) gives 

(4.5)   
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Substituting this back into (4.4) gives 

(4.6)   
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 In our EU model, each bettor has an increasing utility of wealth function 

)(tu , has rational expectations, and current wealth a. So, the utility to a bettor of 

a winning bet of size x on horse i with odds Ri is given by )( ixRau +  and the 

utility of a losing bet is given by )( xau − . Then the desirability of such a bet is 

given by the expected utility of future wealth, i.e., 

(4.7)   )()1()( xaupxRaupD iiii −−++= . 

This model leads to an equivalent expression to that in (4.6), which is 

(4.8)   

∑ = −−+
−−+
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This equation is also Jullien and Salanié’s (2000) explicit formula for the 

probabilities in terms of the odds for an EU model. Equation (4.6) is our PT 

equivalent. We extend their rationale and show that the PT model not only 

explains the FLB but also predicts a reduced or reverse FLB in races where the 

variance of odds for non-favourite is low, i.e., races with strong favourites and 

handicaps. On the other hand, for the EU model to explain the FLB, we require 

that )(tu  is convex. In this case, the model predicts an increased FLB in strong 

favourite races or handicaps. 
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 In order to achieve the above, we index the favourite by 1, and note that 

we can rearrange (4.6) and (4.8) to give 

(4.9)   
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Now, Xv is proportional to the sum of the prices on each non-favourite (indexed 

by k = 2, 3, … , n), after each price has been modified by the value function for 

gains, where the prices are given by rk = 1/Rk. To see this, note that, since )( xv −  

is independent of k, we can set 0)( =−xv . Then, representing the value function 

for gains by a concave power function αttv =)( , 0 < α < 1, we have that 

(4.11)  ∑ =

−=
n

k kv rxX
2

αα . 

So Xv varies in a predictable way depending on the variance of the odds for non-

favourites, and hence so does the equilibrium condition in (4.6); Xu has a similar 

interpretation. 

 Recall two conditions on the value function )(tv  in PT: first, it is an 

increasing function, and second, it is concave for gains. Hence, the )( kxRv  are 

concave and increasing. These conditions ensure that Xv is decreasing in the 

variance of the odds for non-favourites (see Appendix 3), i.e., Xv is greater in the 

‘strong favourite’ condition (associated with low variance of odds for non-

favourites). Thus, since (4.6) is an equilibrium condition, if we increase Xv, 

ceteris paribus, we must also decrease )( 1xRv . Consequently, since )(tv  is 

increasing, we must decrease R1, which is the odds for the favourite. Hence, this 

model based on PT predicts that the FLB will be reduced in races with lower 

variance of odds for non-favourites. Note that this result is unique to the PT 

model; the EU model would only predict the FLB if the representative bettor’s 

utility function is convex, i.e., if the representative bettor is risk-loving. However, 
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in this case, the EU model predicts the opposite effect to the PT model: since the 

)( kxRau +  are convex and increasing, Xu is lower in the strong favourite 

condition. Thus, if we decrease Xu, ceteris paribus, we must also increase R1, i.e., 

there is an increased FLB. Crucially, these differing predictions are independent 

of whether probabilities are weighted or not. So, while the EU model predicts an 

increased FLB in the strong favourite condition because the utility function 

must be convex, under PT, bettors can have a concave value function for gains, 

because it is the probability weighting function that explains the FLB. 

 The model we have developed has a further testable implication. Around 

half of races in the UK are ‘handicap’ races, where horses are allocated 

differential weights to carry (based on their previous performances), in an 

effort to equalize the winning chances of all horses in the race. The result of this 

equalizing procedure is that handicap races have lower variance of odds over all 

runners than non-handicap races. Hence, we might also expect the variance of 

odds for non-favourites to be lower. Testing this prediction using our data, we 

find that this is the case; the standard deviations of odds for non-favourites 

being 15.6 and 22.8 in handicaps and non-handicaps, respectively. Hence, in 

handicap races (at least for our dataset), we should expect the FLB to be 

reduced. We now develop hypotheses related to the implications of the model. 

 

4.4. Hypotheses, data, and method 

 

4.4.1. Hypotheses 

 

 Our models, based on PT and EU theory, respectively, predict that the FLB 

will be reduced/increased in races with low variance of odds for non-favourites 

(which we call the ‘strong favourite’ effect). Although previous studies have 

made assumptions that we do not make in this paper, the weight of evidence 

from these studies is in favour of PT as an explanation for the FLB. 

Consequently, we test the following as a ‘strong favourite’ hypothesis: 

1. The level of the FLB will be reduced in races where the variance of odds for non-

favourites is lower. 
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 Our PT and EU models predict that the level of FLB will be 

reduced/increased, respectively, when the variance of the odds for non-

favourites is relatively low. In handicap races, the variance of odds over all 

runners is generally lower because weights are distributed to horses in an effort 

to equalize horses’ winning chances. We therefore might also expect the 

variance of odds for non-favourites to be lower, and this is empirically the case 

in our dataset. The weight of evidence from previous studies is in favour of the 

PT explanation; consequently, we test the following hypothesis: 

2. The level of the FLB will be reduced in handicap (cf. non-handicap) races. 

 

4.4.2. Data 

 

 The data employed in this study are final pari-mutuel odds and finishing 

positions for 25,644 horses running in 2447 races in the UK. Pari-mutuel odds 

are profits from a winning £1 bet on each horse, before transaction costs (track 

take and breakage) are deducted from the winnings. So, in order to adjust for 

transaction costs, odds-implied probabilities (hereafter, odds-probabilities), 

which are the probabilities of each horse winning the race as implied by the 

odds available, are given by 

(4.12)  
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where Rij is the pari-mutuel odds for horse i in race j and nj is the number of 

horses running in race j. The number of runners in each race in the database 

ranges from 2 to 29, with a mode of 8. 

 

4.4.3. Method 

 

 In order to quantify the level of the FLB in the data, we use a conditional 

logit (CL) modeling approach (McFadden, 1974), which has been employed in 

many studies of the efficiency of betting markets (e.g., Figlewski, 1979; Asch et 

al, 1984; Bolton and Chapman, 1986; Benter, 1994; Sung and Johnson, 2010). In 
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the context of horseracing, the CL model estimates the probability of each horse 

winning that race, from variables related to the horses, while taking into 

account the competitive nature of the race. With log of odds-probability as the 

only independent variable, the CL model is an effective method for estimating 

the level of FLB, and has the advantage of accounting for the intensity of 

competition between runners in each race. It is formulated as follows. 

 First, define an estimate of the horse i’s ability to win race j, Wij, as 

(4.13)  ijijij qW εβ += ln , 

where β is the parameter that determines the importance of the log of odds-

probability qij for horse i in race j, and εij is an independent error term. 

McFadden (1974) shows that if the independent errors are identically 

distributed according to the double exponential distribution, then the winning 

probability for horse i in race j is given by 

(4.14) 
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 The parameter β is estimated by maximizing the joint probability of 

observing the results of all the races in the sample, i.e., by maximizing the log-

likelihood 
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where yij = 1 if horse i won race j and yij = 0 otherwise, and N is the total number 

of races. On estimating a CL model with log of odds-probabilities as the only 

independent variable, we refer to its parameter as the FLB β. An estimated 

value of the FLB β of one implies that the odds-probabilities are, on average, 

equal to the true winning probabilities. A value of the FLB β greater than one 

indicates a standard FLB, where longshots are relatively overbet. The greater 

the value of β, the greater is the degree of the FLB (Bacon-Shone et al., 1992). On 

the other hand, a value of β less than one indicates a reverse FLB, where 

favourites are relatively overbet. 

 Before addressing our hypotheses, it is instructive to investigate to what 

extent the FLB is present in all the races in our dataset. To test whether the FLB 

is present we employ the following standard normal test statistic to test 

whether the FLB β value significantly exceeds or is less than one: 



 128 

(4.16)  
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 Subsequently, in order to address the issue central to each hypothesis, we 

divide the dataset into races that (i) do or do not satisfy the ‘strong favourite’ 

condition, and (ii) are handicap or non-handicap races. Here, a race satisfies the 

‘strong favourite’ condition when the standard deviation of odds for non-

favourites is lower than x, where we choose x to be 5 or 10. Then a race that 

does not satisfy this condition has this same variable greater than x. To test the 

strong favourite hypothesis, we separately estimate β in races that satisfy the 

strong favourite condition and races that do not. We then compare the two β 

values using the standard normal test statistic 

(4.17)  
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A similar test is carried out to test the handicaps hypothesis. We note that the 

choices for x of 5 and 10 are fairly arbitrary, so we also investigate the effect of 

altering these choices on the level of the FLB.  

 

4.5. Results 

 

4.5.1. Strong favourite hypothesis 

 

The first row of Table 4.1 shows that there is a FLB over all the races in 

our data, with favourites underbet and longshots overbet (β = 1.091, p = 

0.0014). To test whether the decisions of horserace bettors are consistent with 

a reduced FLB in races with a strong favourite (races with low variance of odds 

for non-favourites), we estimate the levels of FLB in races with the strong 

favourite condition. The results of these estimations are displayed in Table 4.1. 

We split races into those where the standard deviation of odds for non-

favourites is lower and greater than some cut-off value. When we set the cut-off 

value for a strong favourite race at 5, we find that the level of FLB is significantly 

lower in races with a strong favourite compared to races with no strong 

favourite (NSF: β = 1.109, SF: β = 0.820, p = 0.0061). 
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Table 4.1. Results of estimating conditional logit models with log of odds-

implied probability as the single explanatory variable for UK races from 2004, 

assessing the prevalence of a strong favourite effect. 

 
Number of 

races 

Mean 
number of 

runners 

Level of 
FLB β 

z 
(S.E.) 

p 

All races 2447 10.5 1.091 
3.19*** 
(0.041) 

0.0014 

NSF(5) 2173 11.0 1.109 

SF(5) 274 6.2 0.820 

2.51*** 
(0.115) 

0.0061 

NSF(10) 1691 11.7 1.118 

SF(10) 756 7.6 0.994 

1.83** 
(0.068) 

0.0337 

Non-handicaps 1161 9.5 1.128 

Handicaps 1286 11.4 1.043 

1.47* 
(0.057) 

0.0703 

z = (β - 1)/S.E. (all races), z = [β (1) - β(2)]/S.E. (comparisons). 
‘SF(x)’ indicates a race where the standard deviation of odds for non-favourites (where the 
favourite is the horse believed by the bettors to be most likely to win the race) is lower than x. 
‘NSF(x)’ indicates a race where the the standard deviation of odds for non-favourites is higher 
than x. 
***: significant at the 1% level; *: significant at the 5% level; *: significant at the 10% level (1 
tailed-test). 

 

 In fact, the strong favourite effect is so strong here that the level of FLB in 

races with a strong favourite is such that there is a reverse FLB for these races. 

When we set the cutoff value at 10, we also find lower FLB in races with a 

strong favourite than races without this condition (NSF: β = 1.118, NSF: β = 

0.994, p = 0.0337). Hence, there is strong evidence to suggest that the FLB is 

reduced in races with a strong favourite. In order to see whether different 

values of the standard deviation of odds for non-favourites would give a 

different result, we plot the value of the FLB β for other values in Figure 4.1. 

We see that when examining the races in the dataset there is general trend 

of increasing FLB as the standard deviation increases (i.e., for lower variance, 

the bias is lower). However, the effect appears to be marginally lower as the 

standard deviation of odds for non-favourites increases, suggesting that the 

strong favourite effect is most prominent for races with a relatively strong 

favourite (i.e., relatively low variance of odds for non-favourites). 
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Figure 4.1. The level of FLB with differing standard deviation of odds for non-

favourites (where the favourite is the horse believed by the bettors to be most 

likely to win the race); number of races for each data-point are shown. 

 

 

 In sum, these results support the strong favourite hypothesis, i.e., they 

suggest that the level of the FLB is reduced in races with strong favourites. 

Hence, we find strong evidence to support our PT (cf. EU) model in explaining 

the FLB in these markets. 

 

4.5.2. Handicaps hypothesis 

 

 We now compare the level of FLB in handicap and non-handicap races. 

The results are presented in the last row of Table 4.1. We find that there is a 

modest reduction in of the level of FLB in handicap (cf. non-handicap) races 

(non-handicaps: β = 1.128, handicaps: β = 1.043, p = 0.0703). This provides 

some evidence to support the handicaps hypothesis, i.e., as a result of the strong 

favourite effect, the level of FLB is reduced in handicap races. This provides 

further evidence to support PT as an explanation for decision making bias 

under uncertainty. 
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4.6. Discussion 

 

 The main prediction of our model is that when the variance of odds for 

non-favourites is lower, favourites will be relatively under-/overbet, depending 

on the risk preferences of the representative bettor; specifically, there will be an 

increased/decreased FLB if the bettor is risk-loving/averse. In addition, our 

model predicts that the strong favourite effect should be replicated in handicap 

races, since the rules of entry for these races aim to equalize horses’ chances; 

this in turn is likely to have the effect of reducing the variance of the odds for 

non-favourites. Hence, the model offers two related methods for empirically 

distinguishing between two competing theories of decision making under 

uncertainty. If decisions are made under PT, we should expect a reduced FLB in 

strong favourite races. Conversely, if decisions are consistent with EU theory, 

we should expect an increased FLB in strong favourite races. Our empirical 

findings support the former alternative, with stronger evidence provided by the 

strong favourite effect tests than the handicaps test. The slightly weaker 

evidence from the handicaps test could be explained by noting that, while it is to 

be expected that handicap races have reduced variance of odds over all 

competitors, this does not directly mean that variance of odds for non-

favourites will be low. Instead, there are unlikely to be many strong favourites 

in handicap races. Thus, while we empirically see that there is a negative 

correlation between a race being a handicap and its variance of odds for non-

favourites, we might expect the strong favourites’ effect to be slightly less in 

evidence. 

 We also found that, while the strong favourite effect is prominent for races 

with low variance of odds for non-favourites, the effect is less significant for 

higher variances (Figure 4.1). This could be due to a confounding effect related 

to the number of runners in each race. As we show in Figure 4.2, there is a 

strong positive correlation between the number of runners in a race and the 

average standard deviation of odds for non-favourites. 
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Figure 4.2. The relationship between the number of runners in each race and 

the average standard deviation of odds for non-favourites (where the favourite 

is the horse believed by the bettors to be most likely to win the race); races with 

3 or fewer runners, or 16 or more runners, are grouped. 

 

 

 Consequently, higher values of the variance are associated with greater 

numbers of runners, and this suggests that we may be observing a complexity 

effect which reduces the level of FLB. In particular, it has been shown that, as 

the complexity of a decision task increases (i.e., the number of alternatives in 

the choice set increases), decision makers opt for simplistic, compensatory 

strategies, including the ‘take-the-best’ heuristic (Gigerenzer and Goldstein, 

1999), in which the decision maker prepares an order of cues based on their 

relative prediction validity, before choosing according to the first cue that 

discriminates between the alternatives. In a betting decision associated with a 

horserace, odds have the highest cue validity of all sources of information (they 

are the best predictor of race results), and we can, therefore, expect that under 

increased task complexity bettors are likely to adopt such heuristic strategies, 

leading to the relative overbetting of strong favourites in races with a higher 

number of runners. 
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 Primarily, our results provide support to the hypothesis that cognitive 

errors (i.e., prospect theory), rather than a preference for risk, explain the FLB. 

Our empirically verified predictions are only consistent with a representative 

bettor model based on PT, rather than EU theory. Specifically, our results 

demonstrate that the representative bettor must be risk-averse for gains, and 

expected utility models where the average bettor is risk-averse are unable to 

explain the FLB. Hence, EU models are not consistent with our data. This 

conclusion, unlike that arrived at in other studies attempting to determine the 

origin of the FLB, is independent of parametric assumptions (Jullien and Salanié, 

2000; Bradley, 2003) and makes no assumptions about the choice set of the 

decision maker (Golec and Tamarkin, 1995; Snowberg and Wolfers, 2010).  

 There have been a wide variety of previous explanations for the FLB: risk-

love (Weitzman, 1965), the pricing policies of bookmakers (Shin, 1993), the 

limited information of bettors (Sobel and Raines, 2003), and misperceptions of 

probabilities (Henery, 1985). Our study sheds new light on this issue by 

showing definitively that, in markets that do not involve a market maker, 

prospect theory (specifically, risk-aversion with biased probabilities) is 

necessary to explain an observed reduction in the level of the FLB in races with 

strong favourites or in handicaps. 

 

4.7. Conclusion 

  

 In sum, we find evidence that decisions in a real-world environment 

appear consistent with a ‘strong favourite’ effect, whereby bettors who 

generally underbet favourites give undue preference to favourites in races 

where the variance of the odds of their rivals is low. This effect is predicted by a 

representative agent model employing prospect theory as the driving force 

behind bettors’ decisions. A similar effect is also observed when comparing the 

FLB in handicap and non-handicap races. The fact that our empirical results are 

consistent with prospect theory rather than expected utility, without 

parametric or choice set assumptions, contributes powerful new evidence that 

prospect theory (cf., expected utility theory) is better able to explain decision 

making biases under uncertainty in naturalistic environments. Demonstrating 
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such biases in the real world is crucial to establishing the generalizability of 

laboratory research, and while the original experimental evidence supporting 

the conclusions of prospect theory was compelling, future work in this area 

could further investigate the consistency of empirical evidence of other large 

populations of decision makers with the predictions of theoretical models.  

 Finally, there have been a wide range of proposed explanations for the 

FLB, from risk preferences and cognitive errors to limited information of 

traders. However, we have demonstrated in this paper that the decisions made 

by a large population of traders in a naturalistic environment are only 

consistent with risk-averse traders with biased subjective probability estimates. 
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5. Properties of pseudo-R2 as an estimate of forecast accuracy 

for discrete choice models 

 

Abstract 

 

While R2 in ordinary least squares linear regression is a widely-used and well-

justified measure, the same is typically not true of pseudo-R2s in logistic 

regression. This has important implications for the evaluation of pseudo-R2s as 

estimates of forecast accuracy for discrete choice models. We show both 

theoretically and empirically that at least one of the definitions of pseudo-R2 is 

not robust to variations in the number of alternatives, and suggest an 

adjustment to correct for this bias. We describe and evaluate the relative merits 

of two methods (bootstrap and asymptotic) for estimating the variance of 

pseudo-R2s so that their values can be compared across non-nested models or 

across models fitted on different datasets. Finally, we derive relationships that 

describe the usefulness of pseudo-R2 measures in terms of their economic value 

in the context of competitive event prediction. As a result of the above, we 

arrive at a far more rigorous understanding of the value of pseudo-R2s in 

evaluating the predictions of discrete choice models. 

 

5.1. Introduction 

 

 Discrete choice models are a widely used class of statistical models, and 

include the multinomial logit, conditional logit, multinomial probit, mixed logit, 

and other models (Maddala, 1983). Their primary use is in the modelling of 

choice, specifically prediction of individuals’ choices from a range of 

alternatives. Hence, they have wide applications in marketing (McFadden, 2001) 

and econometrics (Maddala, 1983), although they have also been adopted in 

such diverse fields as epidemiology (Breslow and Day, 1994), operations 

research (Cheng and Stough, 2006), and the forecasting of competitive events 

(Smith et al., 2009). While a great degree of attention has been given to the 

development of effective discrete choice models (Edelman, 2007), particularly 

for the forecasting of competitive events (e.g., Lessman et al., 2007), there has 
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been little consideration of the best method for evaluating the predictions of 

these models. A key property of any means of evaluation of a forecast is its 

comparability across empirical models (Kvålseth 1985). Otherwise, the 

researcher can not be certain whether differences in the evaluator arise 

because of changes in the predictive power of the model or because of 

alternative confounding factors, such as properties of the datasets on which the 

models were fitted. Moreover, it is desirable in any forecasting context to assign 

degrees of uncertainty to any point estimates reported, in order to ensure that 

conclusions drawn from evaluating such statistics are statistically significant. 

 In linear regression, the coefficient of determination R2 is widely used as a 

measure of a model’s ability to explain variation in the data, and thus the 

accuracy of the model’s predictions, and its properties and correct usage are 

now well understood (e.g., Kvålseth 1985, Draper and Smith, 1998). However, a 

similar consensus has not been reached for its analog for logistic regressions, 

the pseudo-R2, because of significant differences between the two types of 

measure. So, while pseudo-R2s are commonly reported, their usage is seldom 

justified (Veall and Zimmerman, 1996). There are in fact a number of issues 

associated with pseudo-R2s that reamin unresolved: first, unlike R2, there is no 

single definition of pseudo-R2 that is universally employed. Instead, a variety of 

measures have been proposed, which are not necessarily mathematically (as in, 

the same formula) or conceptually (the same interpretation) equivalent to R2 

(Menard, 2000). Second, care must be taken when comparing values of pseudo-

R2 between datasets with different characteristics. For instance, one of the 

advantages of the conditional logit model in its application to discrete choice 

modelling is that each observation (event) need not consist of an equal number 

of competitors (e.g., in predicting a consumer’s choice of healthcare products, 

the number of products available could be different for each consumer). Finally, 

the distributions of R2s are complex and depend on unknown parameters 

(Ohtani, 2000), so while R2 values are often reported, they are seldom 

accompanied by standard errors (Press and Zellner, 1978). Hence, the 

comparability of these measures between models is difficult. For pseudo-R2s, 

this issue is exacerbated because not only are the distributional properties of 

pseudo-R2s different to those of R2, they also depend on the particular defintion 
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of pseudo-R2 employed and the choice of model. Little attention has previously 

been given to the consequences that these considerations have for the 

evaluation of discrete choice models using pseudo-R2s. 

  One of the many applications for discrete choice models is in the 

forecasting of competitive event outcomes. A competitive event is a contest 

between at least two rival participants where one or more winners are declared 

and the outcome is uncertain: political elections or sporting events, for example. 

Often, these events are asssociated with markets for betting or trading on their 

outcome, e.g., betting markets in the case of sporting events, or prediction 

markets for political contests or the outcomes of business policies (Wolfers and 

Zitzewitz, 2006a). Since the outcomes of competitive events are of particular 

interest for economic reasons (in the case of sporting events) or policy 

implications (elections), the forecasting of competitive events is a prominent 

subject in the literature (e.g., Schnytzer et al., 2010; Smith and Vaughan 

Williams, 2010). Particular attention has been given to the properties of 

competitive events that mean that modelling techniques that would normally be 

effective in forecasting are not suitable for the forecasting of competitive events. 

For instance, the modeller must take into account the intensity of competition 

between the participants: hence, the standard modelling approach is to view 

competitors as alternatives in a choice set with the winner being the participant 

whose attributes lead it to being preferred (Lessman et al, 2011). If there is 

some uncertainty about the precise values of the attributes of each competitor, 

this is reflected in error terms, and the outputs of the model are the probability 

that each competitor will emerge as the preferred alternative, given the 

distribution of the error terms; thus, models typically involve some form of the 

logistic function. The use of pseudo-R2s in competitive event forecasting is 

similar to any other use of discrete choice models. However, while the typical 

motivation for pseudo-R2s is as a measure of improvement from null model 

(where each alternative is considered equally likely) to fitted model, a more 

useful measure would be improvement to fitted model from a model based on 

the predictions of prices from the associated market, a measure that we call 

relative pseudo-R2. Then, there is a direct link between relative pseudo-R2s and 

the economic value of the estimated model probabilities. 
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 In this paper we address the various unresolved issues related to pseudo-

R2s and illustrate these points with specific reference to the forecasting of 

competitive events. Consequently, throughout the paper we refer to the 

conditional logit (CL) model, which is the most widely-used model in this 

context. We define two alternative pseudo-R2 measures, and show that at least 

one of these is not robust to changes in the number of alternatives in each 

choice problem. Consequently, in order for discrete choice models to be 

comparable using these measures across non-nested models or across data 

fitted on different datasets, we suggest an adjustment to account for the bias. 

Then, we describe and compare two methods for obtaining the variance of 

pseudo-R2 measures, the bootstrap and asymptotic methods. We find that each 

method results in variances that are reasonably close; hence, either method 

could be used to conduct significance tests for comparing pseudo-R2 values. 

Finally, we define relative pseudo-R2s as improvement to fitted model from a 

model based on the predictions of prices from the associated market in the 

context of the forecasting of competitive events. The purpose of this is to show 

that there is a relationship between relative pseudo-R2s and the economic value 

of estimated model probabilities, a finding that has implications for assessing 

the efficiency of financial markets. 

 The remainder of this chapter is structured as follows. In section 5.2, we 

outline the CL model and define two alternative pseudo-R2 measures. In section 

5.3, we explore properties of these measures in relation to the number of 

alternatives. In section 5.4, we discuss the bootstrap and asymptotic methods. 

In section 5.5, we discuss relative pseudo-R2s. We conclude in section 5.6. 

 

5.2. The conditional logit model and pseudo-R2s 

 

5.2.1. The conditional logit model 

 

 The conditional logit (CL) model (McFadden, 1974) is a widely used model 

of discrete choice, and is particularly useful in the forecasting of the outcomes of 

competitive events, such as horseraces (e.g., Figlewski, 1979; Asch et al., 1984; 

Bolton and Chapman, 1986; Benter, 1994; Sung and Johnson, 2010). For a 
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discrete choice problem, it results in estimates of the probabilities of each 

alternative being chosen based on variables relating to the alternatives. So, in 

the context of competitive events, it provides, for each event, estimates of the 

probabilities of each competitor winning the event based on variables related to 

the competitors, while taking into account the competition between the 

participants in the event. Its primary advantage over other discrete choice 

models in the forecasting of competitive events is that the probabilities can be 

expressed in an analytic form, thus estimation of the parameters is 

straightforward. 

 The formulation of the CL model begins with an estimate of the ability of 

competitor i to win event j, given by 

(5.1)   ijij

T

ij xW εβ += , 

where T

m ),...,,( 21 ββββ =  are the coefficients that determine the importance of 

the variables T

ijmijijij xxxx ),...,,( 21=  to the winning chances of the competitor, 

and εij is an independent error term. The key assumption for the CL model, 

which makes the estimated probabilities analytically tractable, is that the errors 

are identically distributed according to the double exponential distribution 
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which is plotted in Figure 5.1 with a normal curve for comparison. 

Then the estimated winning probability for competitor i in event j is given 

by 

(5.3)   
∑ =

=≠=>=
jn

k kj

T

ij

T

jkjijij

x

x
iknkWWp

1
)exp(

)exp(
),,...,1,Pr(

β

β
. 

Alternatively, the probabilities can be written in the form of a logistic function 

as 

(5.4)   
∑ ≠=

−+
=

jn

ikk ijkj

Tij

xx
p

,1
)](exp[1

1

β
. 
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Figure 5.1. The double exponential distribution. 

 

 

The coefficients β are estimated by maximizing the joint probability of 

observing the results of all the events in the dataset, i.e., by maximizing the log-

likelihood (lnL) of the full model (the model that includes all the independent 

variables in which we are interested), 

(5.5)   ∑ ∑= =
=

N

j

n

i ijij

j

pyL
1 1

ln)(ln β , 

where yij = 1 if competitor i won event j and yij = 0 otherwise, and N is the total 

number of events in the dataset. We denote the maximized likelihood function 

for the full model by )ˆ(ln βL . 

 Since the estimated probabilities in the CL model are analytically tractable, 

it is straightforward to estimate the parameters using the Newton-Raphson 

method. In this case, if we let 

(5.6)   

∑
∑
∑

=

=

=

=

=

=
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then 
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
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β
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5.2.2. Pseudo-R2s 

 

 In linear regression, a popular measure of ‘goodness-of-fit’ is the 

coefficient of determination R2 (Draper and Smith, 1998); indeed, this is 

perhaps the most widely used statistic in ordinary least squares regression 

(Kvålseth 1985). It varies between 0 and 1, and can be interpreted in a number 

of ways. First, it is the variation in the data that is explained by the model, a 

value of 1 implying that the model fully explains variability in the data. Second, 

it is the square of the correlation between the model’s predicted values and the 

actual values. Third, it is the improvement from null model (a model that 

includes no independent variables) to fitted model, with 1 being a model that 

perfectly predicts any new datapoint. 

 However, the standard definition of R2 is not applicable in logistic 

regression models, such as CL. Rather, several alternative pseudo-R2 measures 

have been proposed. The motivating criterion for pseudo-R2s is primarily the 

same as the third interpration of R2 above, i.e., as improvement from null model 

to fitted model. The CL model is an example of a model that is estimated by 

maximum likelihood, and in fact, for any model that is estimated by maximum 

likelihood, pseudo-R2s that satisfy this criterion can be defined. 

 The most popular measure (e.g., Benter, 1994) is McFadden’s (1974) 

pseudo-R2, which is given by 

(5.8)   
)0(ln

)ˆ(ln
12

L

L
RM

β
−= , 

where )ˆ(ln βL  is the maximized log-likelihood (lnL) of the full model, including 

all independent variables, 

(5.9)   ∑ ∑= =
=

N

j

n

i ijij

j

pyL
1 1

ln)(ln β  
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and lnL(0) is the lnL of the naive model, where each competitor in the event is 

assigned the same probability of winning: 

(5.10)  ∑ =
=

N

j jnL
1

)/1ln()0(ln . 

An alternative is the Maddala (1983) pseudo-R2, given by 

(5.11)  )]}ˆ(ln)0()[ln/2exp{(12 βLLNRD −−= . 

Note that, although the McFadden pseudo-R2 possesses the desirable property 

that it takes a maximum value of 1, this is not true of the Maddala pseudo-R2, 

which has a maximum of )}0(ln)/2exp{(12 LNRD −= . While there are many 

other definitions of pseudo-R2, for the remainder of this chapter, we consider 

only these two definitions, but our results are easily extended to other 

definitions. We begin with a consideration of their comparability across 

datasets. 

 

5.3. Pseudo-R2s and dependence on the number of alternatives 

 

 In this section, our primary motivation is to ensure that pseudo-R2s are 

comparable between similarly specified models on alternative datasets. The 

concern here is that, in any discrete choice problem, alternative datasets may 

differ in their characteristics. Specifically, depending on how the data are 

sampled, the average number of alternatives available to each subject may vary. 

For example, in predicting a consumer’s preferred medical care, the number of 

alternatives available to them might depend on their geographical location. To 

give an extreme example from competitive events, suppose a researcher seeks 

to analyze variations in the predictability of horseraces depending on the 

number of horses in each race. In this instance, the researcher will sample 

alternative datasets depending on the number of runners in each race, and so 

necessarily the average number of competitors in each subset of the data will 

differ. In this section, we investigate whether each of the McFadden and 

Maddala pseudo-R2s are robust to variations in this particular characteristic of 

the data. We find that the value of the McFadden pseudo-R2 varies predictably 

depending on the average number of alternatives, even while the predictive 

power of model estimates remains constant. Consequently, we define an 
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adjusted version that does not have this undesirable property, while still 

satisfying the original criterion of improvement from null model to fitted model. 

 Recall that the motivation behind the formulation of pseudo-R2s is that 

they represent the degree of improvement from null model to fitted model. 

Suppose, therefore, that, in each event j, the model assigns a winning probability 

to the eventual winner of jj nnf /)( , i.e., if yij = 1, jjij nnfp /)(=  (note that since 

the pij are probabilities, jj nnf ≤≤ )(0  for all j). Then the dependence of the two 

definitions of pseudo-R2 can be evaluated for their dependence on (or 

independence from) the number of competitors in each event. The formulae are 

given by the following proposition (for a proof, see Appendix 4). 

 

Proposition 1. If the model probabilities are jjij nnfp /)(= , then the McFadden 

and Maddala pseudo-R2s are given by 

(5.12)  
n

f
RM ~ln

~
ln2 =  

and 

(5.13)  
2

2
~
1

1
f

RD −= , 

respectively, where NN

j jnn /1

1
)(~ ∏ =

=  and NN

j jnff /1

1
])([

~
∏ =

=  are the geometric 

means of the number of competitors and of )( jnf , respectively. Here, N is the 

number of events. 

 

 Here, f
~

 can be thought of as the part of the pseudo-R2 that measures the 

predictive power of the model probabilities. In each case, as f
~

 increases, so 

does the pseudo-R2. However, the McFadden pseudo-R2 has a predictable 

dependence on the the number of alternatives: if the number of alternatives in 

each choice problem increases, 2

MR  decreases. Hence, in order to define an 

adjusted McFadden pseudo-R2 that is independent of the number of alternatives, 

we multiply 2

MR  by n~ln , i.e., 

(5.14)  







−=

)0(ln

)ˆ(ln
1)~(ln

~ 2

L

L
nRM

β
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Note that this definition no longer has a maximum value of 1; it now has a 

maximum value of n~ln . For the Maddala pseudo-R2, we find that it is, as 

required, already independent of the number of alternatives in each choice 

problem. However, it has a maximum value of 2~/11 n− . 

 For an empirical demonstration that the adjusted McFadden and Maddala 

pseudo-R2s are consistent even when the number of alternatives is varied, we 

fit CL models on subsets of horserace betting data categorized by the number of 

competitors in each event. The data employed are final bookmaker odds from 

6064 UK races from 2009 and 2010. The CL models have just one independent 

variable, which is the log of odds-implied probability; the coefficient of this 

variable is given by β. The results are presented in Table 5.1 and Figure 5.2. 

 

Table 5.1. Conditional logit models with log of odds-implied probability as the 

single variable fitted to different subsets of the data depending on the number 

of competitors in each event. 

Number of 
competitors 

Number 
of events 

n~  β̂  lnL(0) lnL( β̂ ) 
2

MR  2~
MR  

2

DR  

4 or fewer 201 3.7 1.10 -264.2 -212.7 0.195 0.256 0.401 

5 335 5 1.24 -539.2 -412.0 0.236 0.379 0.532 

6 448 6 1.19 -802.7 -645.7 0.196 0.351 0.504 

7 578 7 1.05 -1124.7 -952.4 0.153 0.298 0.449 

8 611 8 1.11 -1270.5 -1060.7 0.165 0.343 0.497 

9 646 9 1.24 -1419.4 -1141.3 0.196 0.430 0.577 

10 585 10 1.17 -1347.0 -1111.1 0.175 0.403 0.554 

11 572 11 1.23 -1371.6 -1107.8 0.192 0.461 0.602 

12 533 12 1.17 -1324.5 -1095.1 0.173 0.430 0.577 

13 450 13 1.21 -1154.2 -959.3 0.169 0.433 0.580 

14 345 14 1.24 -910.5 -742.3 0.185 0.488 0.623 

15 222 15 1.46 -601.2 -470.0 0.218 0.591 0.693 

16 189 16 1.38 -524.0 -415.2 0.208 0.576 0.684 

17 83 17 1.72 -235.2 -180.9 0.231 0.654 0.730 

18 or more 266 20.0 1.29 -797.2 -674.5 0.154 0.461 0.603 

All events 6064 9.6 1.21 -13686.1 -11194.8 0.182 0.411 0.560 
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Figure 5.2. A comparison of the pseudo-R2s across subsets of the data 

categorized by the number of competitors in each event. 

 

 

 Clearly, the adjusted McFadden and Maddala pseudo-R2s vary consistently 

with each other when the number of competitors is changed, while the standard 

definition of the McFadden pseudo-R2 does not vary in the same way. Hence, 

while there appears to be an increasing trend in model goodness-of-fit as the 

number of runners is increased, this trend is not captured by the standard 

definition of the McFadden pseudo-R2, because it has the tendency to decrease 

as the number of runners is increased; see equation (5.12). We confirm this by 

fitting linear regressions of 22

MD RR −  and 22 ~
MD RR −  on the number of runners; 

gradients are given by 0.0174 (t = 10.67, p = 0.0000) and -0.0035 (t = 0.20, p = 

0.4211), respectively, i.e., the difference between the Maddala and McFadden 

pseudo-R2s increases with the number of runners while the difference between 

the Maddala and adjusted McFadden pseudo-R2s do not. In the next section, we 

continue to address the comparability of pseudo-R2s, by describing and 

comparing two methods for estimating their distributions. 

 

 

 



 146 

5.4. Distributional properties of pseudo-R2s 

 

5.4.1. Bootstrapping pseudo-R2s 

 

 It is straightforward to compare nested CL models (i.e., models where one 

of the models includes all the independent variables from the other model) 

fitted on the same data (e.g., using the likelihood ratio statistic). However, as 

researchers we run into difficulty when attempting to compare either non-

nested models fitted on the same data or models that are fitted on mutually 

exclusive data. One approach would be to make comparisons between the 

pseudo-R2s for each model. However, it is not a simple task to assign a measure 

of precision to values of pseudo-R2 because their distributions are complex and 

depend on unknown parameters. An alternative method for estimating the 

distribution of pseudo-R2s is to adopt an M-bootstrap approach (Efron, 1979), 

as recommended by Ohtani (2000) for ordinary R2s. The bootstrap is commonly 

used when the theoretical distribution of a statistic is complicated, which is the 

case for the CL model. Suppose we have fitted CL models to two datasets, D1 and 

D2, consisting of N1 and N2 events, respectively. The M-bootstrap method 

proceeds as follows: 

 

1. Sample N1 events, with replacement, from D1, to form a new dataset BD1. 

Similarly, sample N2 events, with replacement, from D2, to form a new 

dataset BD2. 

2. Fit CL models on BD1 and BD2 and record the resulting values of pseudo-

R2. 

3. Perform M iterations of steps 1 and 2. 

4. The sample means, )( 2

1Rµ  and )( 2

2Rµ , and sample variances, )( 2

1

2 Rs  and 

)( 2

2

2 Rs , of the sets of M pseudo-R2s are used to derive a standard normal 

test statistic, )()(/)]()([)]([ 2

2

22

1

22

2

2

1

2 RsRsRRRz +−= µµµ , which can be 

used to test the alternative hypothesis that the estimated probabilities 

from one model are more accurate than the other vs. the null hypothesis 

of no difference. 
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5.4.2. The asymptotic distribution of pseudo-R2s 

 

 An alternative method is to estimate the asymptotic distribution of the 

pseudo-R2, i.e., the expected distribution as the number of events tends to 

infinity. Hu, Shao, and Palta (2006) derive analytically the asymptotic 

distribution of the Maddala pseudo-R2 in the multinomial logit model (like the 

conditional logit model, the multinomial logit model is a model of discrete of 

choice, but with different underlying assumptions). Here, we adapt their 

analysis to derive the asymptotic distribution of the McFadden and Maddala 

pseudo-R2s for the conditional logit model. 

 

Proposition 2. Assume that the independent variables xij, j = 1, 2, … , N, i = 1, 2, … , 

nj, are independent and identically distributed random m-vectors with finite 

second moment (i.e., )(
2

ijxE  finite). Let 

(5.15)  )(ln1 jnEH = , 

   )ln(
12 ∑ =

−= jn

i ijij ppEH . 

and let 
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where 

(5.17)  )( jnE=λ , 

21
]ln[ HppnE

jn

i ijijj λη += ∑ =
, 

   
2

21

2 ])(ln[ HppE
jn

i ijij −= ∑ =
ε . 

Then, as ∞→N , 
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(5.18)  ),0()]/1([
2

112

2 σNHHRN dM →−− , 

   ),0()]1([
2

2

)(22 12 σNeRN d

HH

D →−− − , 

where 11

2

1 gg
TΣ=σ  and 22

2

2 gg
TΣ=σ . 

Proof. For a proof, see Appendix 4. 

The above proposition gives the asymptotic distributions of the McFadden 

and Maddala pseudo-R2s. Hence, to obtain estimates of the variance of point 

estimates of these pseudo-R2s, we can replace the unknown quantities with 

consistent estimators. So, denote by n , n~ , and )(2 ns  the arithmetic mean, 

geometric mean, and sample variance of the number of competitors, 

respectively, i.e., 

(5.19)  ∑ =
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j jnNn
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)/1( , 
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ˆln)/1(ˆ HnppnN
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Here 
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(5.22)  ∑ ∑= =
−=

N

j

n

i ijij

j

ppNH
1 12 ln)/1(ˆ . 

Then estimates of the variance of the McFadden and Maddala pseudo-R2s are 

given by 

(5.23)  )ˆˆˆ(
1

)( 11

22 gg
N

Rs
T

M Σ= , 

   )ˆˆˆ(
1

)( 22

22 gg
N

Rs
T

D Σ= , 

respectively. 

 

5.4.3. An empirical comparison of the asymptotic method with the bootstrap 

method 

 

 Now we discuss the differences between the two alternative methods for 

estimating variances of pseudo-R2s described above. Teebagy and Chatterjee 

(1989) show that the bootstrap method overestimates standard errors in large 

samples for standard logistic regression (relative to the asymptotic 

distribution). Here we briefly compare values of the standard deviations of the 

pseudo-R2s from CL models estimated using each method on some real data. 

The data employed are final exchange odds from 6058 UK races from 2009 and 

2010. There are two subsets of the data, consisting, respectively, of those races 

with above-/below-median Shin z (with 3029 races in each set), where Shin z 

measures the extent of informed trading in the market (see Appendix 1 for 

more details). We again fit CL models with just the log of odds-implied 

probability as the single explanatory variable; the coefficient of this variable is 

given by β. The results are presented in Table 5.2. 
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Table 5.2. A comparison of the asymptotic and bootstrap methods for 

estimating the distributions of the McFadden and Maddala pseudo-R2s. 

Dataset High Shin z Low Shin z 

Number of events 3029 3029 

Mean number of competitors 7.5 13.1 

β 1.03 1.01 

lnL(0) -5967.3 -7702.9 

lnL( β̂ ) -4900.1 -6224.6 

Asymptotic 

2

MR  0.1788 0.1919 

).(. 2

MRES  0.00757 0.00690 

2

DR  0.5057 0.6232 

).(. 2

DRES  0.01282 0.01218 

Bootstrap 

)( 2

MRµ  0.1793 0.1925 

).(. 2

MRES  0.00671 0.00649 

)( 2

DRµ  0.5064 0.6240 

).(. 2

DRES  0.01307 0.01235 

F3028,3028(
2

MR ) 1.27** 1.13** 

F3028,3028(
2

DR ) 1.04 1.03 

**: significant at the 1% level (1-tailed F test). 

 

It is clear that, while the asymptotic and bootstrap methods produce 

estimates of the variances of the pseudo-R2 statistics that are reasonably close, 

there is some difference: the asymptotic method appears to overestimate the 

variance of the McFadden pseudo-R2 relative to the bootstrap method, while 

relatively underestimating the variance of the Maddala pseudo-R2. However, the 

difference is only statistically significant for the McFadden pseudo-R2, with F-

tests of differences of variances for the high and low Shin z datasets given by 

1.27 (p = 0.0000) and 1.13 (p = 0.0004), respectively. The F values for the 

Maddala pseudo-R2s for the high and low Shin z datasets are given by 1.04 (p = 

0.1383) and 1.03 (p = 0.2269), respectively. 
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5.5. Pseudo-R2 as a predictor of the economic value of a discrete choice 

model 

 

 Competitive events are often associated with a market for trading on the 

outcome. For example, horseraces have an associated betting market in which 

traders can wager money on their predicted outcome. This results in it being 

possible to derive from market prices ‘public’ predictions of the probabilities of 

each outcome occurring. This is important because discrete choice models are 

often employed to test for market efficiency, i.e., the degree to which the market 

appropriately discounts the value of information. Hence, in this context, the 

standard motivation for pseudo-R2s, as improvement from null model to fitted 

model, is less relevant. Instead, it is more useful to the modeller to have some 

understanding of the improvement of their model over the public model. We 

denote this measure relative pseudo-R2 and show theoretically that there is a 

direct link between this measure, the transaction costs for betting on an event, 

and the expected profit to a bettor employing this measure. 

 Recall that our dataset consists of N events, where each event j is between 

an integer number nj ≥ 2 competitors i; for each event, there is just one winner, 

given by yij, where yij = 1 if competitor i wins, and yij = 0 otherwise. Suppose 

further that the decimal odds are denoted by Rij > 1, with corresponding prices 

given by rij = 1/Rij. The over-round is given by 1
1

−= ∑ =

jn

i ijj rB , so odds-implied 

probabilities are given by )1/( jijij Brq +=  for all i. Suppose that the bettor 

assigns winning probabilities to each competitor of pij. Then the expected profit 

from a £1 bet on competitor i in event j is 1−ijij Rp . Denote the winning 

probability that the bettor assigns to the eventual winning competitor by pj, and 

the odds-implied probability of the same competitor by qj. Then the bettors’ 

expected profit from a bet on the eventual winner, or ‘edge’, is given by  

(5.24)  1
)1(
−

+
=

jj

j

j
Bq

p
W . 

Now, define the relative McFadden pseudo-R2 by 

(5.25)  
)(ln

)(ln
12

qL

pL
RM −= , 



 152 

and the relative Maddala pseudo-R2 by 

(5.26)  )]}(ln)()[ln/2exp{(12 pLqLNRD −−= , 

where the log likelihood of the bettor’s model is given by 

(5.27)  ∑ ∑= =
=

N

j

n

i ijij

j

pypL
1 1

ln)(ln  

and the log likelihood of the public’s model is given by 

(5.28)  ∑ ∑= =
=

N

j

n

i ijij

j

qyqL
1 1

ln)(ln . 

Defined in this way, the relative pseudo-R2s measure the degree of 

improvement of the model over the public odds for the winning competitor only. 

Thus we can derive a link between the bettor’s realised edge on the winning 

competitor and the relative pseudo-R2 of the model. 

Since the relative McFadden pseudo-R2 can be written as 

(5.29)  

∑ ∑
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and (5.24) can be rewritten as 

(5.30)  )1)(1( jjjj BWqp ++= , 

substituting this into (5.29) gives 
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i.e., 
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Rearranging this gives 
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i.e., 
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where NN

j jj xxGM /1

1
)()( ∏ =

=  denotes geometric mean. Hence, the McFadden 

pseudo-R2 is, ceteris paribus, increasing in average edge, increasing in average 
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odds-implied probability of the winner, and usually increasing in average over-

round (since, typically, jj WR +> 1 ). Rearranging (5.34) gives 

(5.35)  
2

)/1()/( MR

jjj qqpGM = , 

i.e, the bettor’s edge over the public is this function of their relative McFadden 

pseudo-R2 and the odds-implied probability of the winning competitor. 

Similarly, since the relative Maddala pseudo-R2 can be written as 

(5.36)  ])/ln()/2exp[(1
1 1

2 ∑ ∑= =
−=

N

j

n

i ijijijD

j

pqyNR , 

and (5.24) can be rewritten as 
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substituting this into (5.36) gives 

(5.38)  })]1ln()1ln()[/2(exp{1
1
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Rearranging this gives 
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i.e., 

(5.40)  
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So the Maddala pseudo-R2 is, ceteris paribus, increasing in average edge and 

increasing in average over-round. Rearranging (5.40) gives 

(5.41)  
21

1
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D

jj

R
qpGM

−
= , 

i.e., the bettor’s edge is positively related to the relative Maddala pseudo-R2 but 

independent of the odds-implied probability of the winner. Clearly, relative 

pseudo-R2s are useful in competitive event prediction. However, we have also 

shown in equations (5.35) and (5.41) that direct relationships can be derived 

between predicted model probabilities, ‘public’ model probabilities, and 

relative pseudo-R2 measures. These relationships are important because they 

show us first that the economic value of estimated model probabilities is 

increasing in pseudo-R2s, and also the functional form of this relationship. 

These formulae are useful for understanding the context in which pseudo-R2s 

should be reported, and could be employed in wider contexts, e.g., when there is 
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a prior probability of an alternative being chosen that is more appropriate than 

a null probability.  

 

5.6. Conclusion 

 

 In this paper, we have set out to describe and evaluate properties of 

pseudo-R2s as a measure of forecast accuracy in discrete choice models, a class 

of models that have a wide range of applications, from predicting consumer 

demand to epidemiology and operations research. While R2 in ordinary least 

squares linear regression is a widely-used and well-justified measure, the same 

is typically not true of pseudo-R2s. For instance, we have shown both 

theoretically and empirically that at least one of the definitions of pseudo-R2 

(McFadden’s definition) is not robust to variations in the number of alternatives 

in each choice problem. We have therefore suggested an adjustment to correct 

for this bias. This has important implications for the comparability of pseudo-R2 

measures across models, particularly non-nested models or models fitted on 

different datasets, which is a key desirable property of any forecast evaluator. 

Further work could investigate the comparability of other definitions of pseudo-

R2 in discrete choice models or other models that involve the logistic function, 

such as generalized additive models. 

We have also described two methods for estimating the variance of 

pseudo-R2s so that their values can be statistically compared: the bootstrap and 

asymptotic methods. A comparison of the two methods on actual data 

demonstrates that they are reasonably close in the estimates that they produce, 

so we would recommend that either method is useful in obtaining standard 

errors for pseudo-R2s. Our findings here contribute to an understanding of the 

use of pseudo-R2s in general, which are often simply reported without a 

justification or without standard errors when comparing them across models. 

Moreover, these methods are particularly useful when the pseudo-R2 itself is 

the value of interest in hypothesis testing; for instance, in comparing the 

predictive power of discrete choice models, or evaluating the efficiency of 

speculative financial markets. Finally, we have derived simple relationships 

between relative pseudo-R2 measures and the expected profit to a bettor from 
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betting on competitive events, which is an important relationship because 

choice modelling is often employed in the context of competitive events in order 

to assess market efficiency, and efficient markets are a desirable goal in the 

regulation of financial markets to minimize risks of financial shocks. As a result 

of all of the above, we have arrived at a much more rigorous understanding of 

the value of pseudo-R2s in evaluating the predictions of discrete choice models. 
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Conclusion 

 

 This section briefly summarizes the main findings of each of the five 

papers in this thesis, states the contributions of each, discusses the 

contributions of the thesis as a whole to knowledge and understanding of 

biased decision making, and finally discusses the implications of the research 

for policy-making and future research. 

 The theme of Chapter 1 was that there are a variety of reasons why 

evidence of biased decision making from laboratory-based studies need not 

necessarily translate to the population as a whole, particularly to individuals 

who have expertise in the task they are carrying out, are offered meaningful 

incentives, and dedicate enough time to the task so as to receive regular, 

unambiguous feedback on the outcomes of their decisions. In discussing 

evidence (or lack of evidence) of biased decision making by participants in 

betting markets, this paper shows numerous examples that bettors are rational 

and well-calibrated decision makers, who generally aren’t subject to heuristics 

and biases that are well-documented from laboratory-based research (the 

favourite-longshot bias is an important exception). The main conclusion was 

that future research into biased decision making should always account for the 

observed differences in behaviour between laboratory and naturalistic settings. 

While there are advantages and disadvantages of naturalistic and laboratory 

studies, a tandem approach, with each informing the other, seems to be the way 

forward in order to assess the true nature of biased decision making. 

 Chapter 2 was the first study to investigate noise trading and herding in a 

betting exchange market. The main conclusions were as follows: first, noise 

trading is associated with increased market efficiency, a result that is attributed 

to the improved liquidity attracting an increased level of participation by 

informed traders. Second, herding is prevalent, particularly so in the later, more 

active stages of the market and in different levels depending on whether price 

changes follow a ‘buy’ or a ‘sell’ signal. The findings contribute to the 

understanding of the role of noise in the efficiency of financial markets in 

general, as this paper is able to overcome a significant methodological problem 

with using regular financial market data, in that regular financial markets 



 158 

always represent current expectation of future prices, and so are inherently 

uncertain. In contrast, betting market prices reach a defined termination point 

at which all uncertainty is resolved. The main finding of this paper, that noise 

trading, volatility, and efficiency of final market prices all move in tandem, has 

important policy implications for all financial markets. For example, the results 

support arguments that regulatory measures to protect investors from the 

destabilizing effects of noise are self-defeating, and suggest that focusing on 

innovative means of reducing the risks to arbitrageurs, rather than discouraging 

speculators, may be the best approach to achieving efficient markets. It is also 

demonstrated that the inefficiency resulting from herding is of such a 

magnitude that it is possible to make positive returns from strategies in counter 

to those of herding traders. The contribution of these findings is that 

regulations in financial markets should be devised to minimize the impact of 

herding while avoiding restrictions to noise traders: particular attention should 

be given to situations where uninformed traders may incorrectly believe that 

there are traders with privileged information operating. Furthermore, markets 

that involve contingent returns at a fixed point in time (such as the markets 

examined here) should always be allowed sufficient time to reach efficient 

levels. 

 Chapters 3 and 4 investigated the favourite-longshot bias (FLB) using 

recent data from all three major types of betting market in the UK and Ireland: 

bookmakers, exchanges, and pari-mutuel pools. Previous research has shown 

that the FLB has existed or is absent in a variety of jurisdictions over many 

decades. These papers provide new reasons for the presence or absence of the 

bias in each type of market. In the case of bookmakers and exchanges, Chapter 3 

makes a number of important contributions. First, it contains evidence of (i) 

FLB in bookmaker markets, and (ii) no FLB in exchange markets. Second, it 

confirms that predictive accuracy of exchange prices is largely superior to that 

of bookmaker prices. However, in the case of exchange markets, it also uncovers 

significant relationships between the FLB and betting volume, and between the 

FLB and over-round. It also shows that there are no such relationships in 

bookmaker markets. Most significantly, a model is developed that suggests that 

the optimal pricing policy for a bookmaker, who competes with other operators 
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for betting on favourites, is to set prices which include the FLB. The empirical 

results are largely supportive of the predictions of this model. 

 In pari-mutuel markets, Chapter 4 has developed a model that shows that, 

in order to explain the FLB without reference to market makers, one must 

account for a ‘strong favourite’ effect, whereby bettors who generally underbet 

favourites give undue preference to favourites in races where the variance of 

the odds of their rivals is low. This effect is predicted by a representative agent 

model employing prospect theory as the driving force behind bettors’ decisions, 

but is not predicted by a model employing expected utility theory. Most 

importantly, these predictions do not depend on parametric assumptions or 

assumptions about the bettor’s choice set as in previous research. Hence, the 

results provide definitive evidence that cognitive errors of traders, rather than 

their risk preferences, explain the FLB. Together, these two papers contribute 

more robust evidence, using new and innovative methodologies, that explain 

the FLB in each type of market. 

 The final chapter explores and solves a number of methodological issues 

relating to pseudo-R2s as a measure of evaluating forecast accuracy of discrete 

choice models, particularly the conditional logit (CL) model. Having employed 

the CL model throughout this thesis, we were able to use results derived in this 

chapter in order to test some of the hypotheses in earlier chapters. Moreover, 

this paper shows how these concerns relate to wider issues in the field of 

discrete choice modelling as a whole. Future work could explore a much more 

general understanding of the role that pseudo-R2s have to play in statistical 

modelling. 

 Overall, this thesis makes a significant contribution towards 

understanding the extent and nature of biased decision making in naturalistic 

environments. As it was argued in Chapter 1, there are many reasons to doubt 

the generalizability of laboratory research, so demonstrating such biases in the 

real world is crucial to establishing solid foundations to the knowledge and 

understanding of the manner in which individuals make decisions. Indeed, in 

surveying previous literature in Chapter 1, the conclusion that was arrived 

upon is that decision makers operating in their natural environment generally 

do not make biased decisions, or at least, the extent and generality of such 
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biases is significantly lower. This puts the main findings in Chapters 2 and 3 in 

context: each of these papers demonstrated evidence of biased decision making 

in the naturalistic environment of betting on horseracing (herding and the FLB, 

respectively), and thus make a significant contribution to the literature. 

Moreover, in Chapter 2, by categorizing market activity by the time until the end 

of the market and whether it results in large ‘buy’ or ‘sell’ movements, this 

paper was able to identify and discuss reasons why herding might occur. This is 

in itself is a major contribution over previous studies of herding in betting 

markets (discussed in Chapter 1) and in regular financial markets (discussed 

briefly in Chapter 2). Similarly, in Chapter 3, it was shown that the extent of the 

FLB is dependent on a range of factors, particularly the type of market 

(exchange or bookmaker), since transaction costs and the manner in which 

prices are set is different in each type of market. The different costs ensure that 

the type of decision maker, in terms of the information they hold, operating in 

each market is distinct: traders in exchange markets are more informed, and so 

the extent of systematic bias is reduced, and conversely, systematic bias is not 

eliminated in bookmaker markets because costs are restrictive. Furthermore, 

the bookmaker’s effective monopoly in setting prices as well as the general 

demand preferences of bettors participating in these markets ensures that 

bookmaker markets display significant bias throughout their duration. All of the 

above considerations contribute to the developing understanding of how 

systematic decision making biases can be allowed to persist (monopoly pricing 

and high costs), but also how they can be eliminated (competitive pricing and 

low costs). Chapter 4 advanced a new method (free of certain restrictive 

assumptions) that allows researchers to distinguish between different models 

of decision making that can account for biases such as the FLB. Hence, it makes 

a significant contribution in guiding future research to assessing the relative 

merits of alternative models of decision making. Similarly, Chapter 5 discussed 

a range of limitations in the current methodology for evaluating discrete choice 

models. In a sense, this paper makes a contribution to what is hoped can be an 

informative and highly useful avenue of future research. 

 Research into decision making biases in general, this thesis included, has 

major policy implications in a number of fields. First, a detailed understanding 
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of heuristics and biases in a management context is key to guiding operational 

decision making and avoiding costly errors at an organizational level. Hence, a 

greater understanding of biases such as herd behaviour and overweighting of 

small probabilities can guide policy-makers in organizations at a high level. 

Second, the efficient operation of financial markets depends on the appropriate 

regulation of such markets. A greater understanding of the extent and causes of 

herding, the effects of noise trading, and other factors, therefore contributes to 

better deployment of regulations. Finally, a large part of psychological research 

into behaviour is driven by real-world events, and so naturalistic research aids 

the future direction and topicality of laboratory research. 

 Finally, it should be offered that the main strength of this thesis is also its 

greatest limitation: in studying decision making in the naturalistic environment 

of betting markets for horseracing, the scope of the empirical research is 

necessarily narrow. Future work in the area of naturalistic biased decision 

making could further investigate the consistency of empirical evidence of other 

large populations of decision makers with the predictions of theoretical models. 

The FLB is a decision making bias that has received a great deal of attention in 

the literature not only because of its prevalence but because of what it tells us 

about the manner in which people make decisions in a general sense. This 

thesis has described new and more satisfactory explanations for the FLB in the 

three major types of betting market in the UK (and indeed, globally), and in 

doing so has devised new and innovative theoretical models and empirical 

methodologies and resolved unanswered questions related to the topic. It has 

also shown and explained the prevalence of herd behaviour in these markets 

and the effect that noise trading has on market volatility and efficiency, and 

outlined a range of implications of these findings for policy-making in wider 

financial markets, an important subject because regular financial market data 

are unsuited to robust tests of market efficiency. As a result of the above, this 

thesis has made significant contributions to the existing literature on biased 

decision making in speculative financial markets. 
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Appendix 1. The Shin model 

 

 In a series of three papers, Shin (1991, 1992, and 1993) demonstrated 

that, in a bookmaker market, the FLB can be explained by supply-side factors: 

specifically, price-setting by the bookmakers themselves. Shin modelled 

bookmaker markets as a game between a profit-maximizing bookmaker and a 

randomly chosen bettor. The model assumes that the bettor is likely to be a 

noise trader, but could be a perfectly informed insider, who knows precisely the 

identity of the winning horse. The model predicts that, since the bookmaker is 

not perfectly informed, they will depress odds on longshots (the horses with the 

least chances of winning the race) relative to those on favourites in order to 

protect themselves from the possibility of large losses to the insider, who is in 

possession of superior information. 

 Formally, the model is of an n-horse race that involves a monopoly 

bookmaker, a perfectly informed insider trader, and a set of uninformed 

outsiders. The bookmaker sets prices ri (corresponding to decimal odds of 

ii rR /1= ) on all horses, subject to 0 < ri < 1 for all i, and Br
n

i i +≤∑ =
1

1
, where B > 

0 is as small as is required for the bookmaker to obtain monopoly rights 

through competition with other potential market makers. The bookmaker 

knows the true winning probabilities pi, but only the insider knows the identity 

of the winning horse in advance. A bettor is randomly selected to face the 

bookmaker; the bettor is the insider with probability z (0 ≤ z < 1), or an outsider 

who attaches probability 1 to the i-th horse with probability ipz)1( − . The 

bettor is then permitted to bet £1 with the bookmaker on their preferred horse, 

which is the winning horse if the bettor is the insider, or the i-th horse if the 

bettor is the i-th outsider. Hence, the problem for the expected profit-

maximizing bookmaker is to set the ri to maximize 

(A1.1)  ∑ =

−+
−

n

i
i

ii

r

pzzp
1

2
)1(

1  

subject to Br
n

i i +≤∑ =
1

1
 and 0 < ri < 1 for all i. The solution of this problem is 

given by 
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where 

(A1.3)  2/12
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which gives rise to a FLB, i.e., jijiji pppprr >⇔< // . 

 The value of z in Shin’s (1993) model gives rise to a direct means (known 

as Shin z) of measuring the proportion of market participation that can be 

attributed to traders with privileged information. Although in Shin’s original 

model, informed traders are perfectly informed, Fingleton and Waldron (1999) 

relaxed this assumption, showing that it is equivalent to suppose that the 

precision of the informed trader’s information can vary, and that the Shin z 

value is equal to the level of informed trading times the degree of precision. 

Hence, it is reasonable to assume a more general situation in which a range of 

different types of informed traders operate, but that the level of influence they 

have in the market is likely to vary in tandem. The Shin z value itself is directly 

derived from final bookmaker prices and has been used extensively in betting 

market studies in order to investigate claims relating to the level of informed 

trading (e.g., Vaughan Williams and Paton, 1997; Smith et al., 2006). 

 There are several accepted methods for estimating the Shin z value for a 

given event. Shin’s (1993) own method was based around the Taylor series 

expansion of )( ipF  around 1/n. Jullien and Salanié (1994) noticed that the 

equations in (A1.2) can be rearranged to give 
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which in turn can be solved for pi to yield 
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Thus, the condition 1
1

=∑ =

n

i ip  can be used to estimate the value of z for a given 

event. In Chapter 2 we adopt the iterative method of Law and Peel (2002), in 

which we square and sum (A1.5) before rearranging the resulting expression to 

give 
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The iterative procedure is then to start with an initial estimate of z, calculate the 

pi using (A1.5), calculate a new value of z using (A1.6), and repeat these two 

steps until convergence. 

 Shin’s model can explain the FLB in bookmaker markets and gives a useful 

measure of insider (or just informed) trading in these markets. However, one 

must accept the assumptions of Shin’s model. The key assumption is that 

knowledgeable insiders are more likely to bet on longshots than favourites, 

which is a reasonable assumption to make given anecdotal evidence. However, 

it has been pointed out (e.g., Schnytzer and Shilony, 2005) that some of the 

assumptions in Shin’s model are unrealistic. However, similar conclusions can 

be reached with these assumptions relaxed. For example, Schnytzer and Shilony 

(2005) found that bookmakers should raise prices on longshots more than 

favourites in order to defend themselves against insider knowledge, without 

assuming that insiders know which horse will win the race, or that insiders are 

more likely to bet on longshots. Peirson and Smith (2010) extend the Shin 

model while relaxing the assumptions that insiders know which horse will win 

the race, and that the amount bet by insiders is fixed and not related to the odds 

on offer. Their model demonstrates that bookmakers should increase prices on 

those horses where there is a higher probability of inside information being 

employed. 
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Appendix 2. A model of competing markets 

 

 Here we prove the main propositions from the model in section 3.3. We 

consider two markets, a bookmaker and an exchange, which offer prices qi and 

ri, respectively, on a single race with n runners, with over-rounds given by 

1
1

−=∑ =

n

i ib qB  and 1
1

−= ∑ =

n

i ie rB , respectively, with eb BB > . We assume that 

the bookmaker’s best estimates for true probabilities are the exchange odds-

implied probabilities, i.e., pi = ri/(1+Be). We also make the approximation that 

the qi are continuous on the interval (0, 1). Considering a small time interval, 

over which Be, Bb, and the ri are constant the bookmaker’s goal is to maximize 

their expected returns ),...,( 1 nqqG  over this time interval. Denote the demand 

curve for horse i, which is the amount bet on horse i when the bookmaker and 

exchange prices are qi and ri, respectively, by ),( ii rqf , normalized so that it 

satisfies f(r, r) = r/(1+Be). Therefore, ),...,( 1 nqqG  is given by 
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 For fixed ri, Bb and Be, this is a constrained optimization problem to 

maximize 
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where λ is a constant. The solutions are given by the system of equations 
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We do not seek to solve this system of equations, but note a sufficient condition 

for the FLB in the bookmaker prices: for two horses j (a longshot) and k (a 

favourite: rj < rk), with odds-implied probabilities equal across the exchange and 

bookmaker markets ( )1/()1( ejbj BrBq ++= , )1/()1( ekbk BrBq ++= ), the 

marginal increase in expected returns for an increase in price is greater for the 

longshot ( kj qHqH ∂∂>∂∂ // ). Furthermore, the greater the difference, the 
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greater the level of FLB. So, denoting )1/()1(ˆ
eibi BrBq ++=  and with some 

manipulation, this condition becomes 
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We have now the following as a sufficient condition for the FLB: 

(A2.5)  ),('),(' kkjj rxrfrxrf > , 

for all x such that )1/()1(1 eb BBx ++≤≤ . That (A2.4) follows from (A2.5) is 

proved in the following proposition. 

 

Proposition 1. If condition (A2.5) is satisfied, then so is (A2.4). 

Proof. If rj < rk, and )1/()1(1 eb BBx ++≤≤ , then by (A2.5), 

),('),(' kkjj rxrfrxrf > . So, by an integration inequality, 
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Hence, by the Fundamental Theorem of Calculus, 
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So inequality (A2.4) holds. 

 

 Moreover, the difference kj qHqH ∂∂−∂∂ //  is increasing in both Bb 

(holding )1/()1( eb BB ++  fixed) and )1/()1( eb BB ++ , i.e., the level of FLB should 

increase both with bookmaker over-round and the level of competition between 

the bookmaker and the exchange. 
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Proposition 2. If there is no competition (Bb = Be), then there is still FLB 

(provided (A2.5) holds). 

Proof. If Bb = Be, then ii rq =ˆ , so equation (A2.4) becomes 
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Now, )1/(),( eBrrrf += , so the first two terms in (A2.11) cancel, leaving the 

condition 
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This is satisfied by (A2.5) when x = 1, so (A2.4) is a sufficient condition for the 

FLB even when Bb = Be. 

 

Proposition 3. Furthermore, if there is no over-round (Bb = 0) then there is no 

FLB. 

Proof. We show that 0/ =∂∂ iqH  is satisfied by qi = ri. If Bb = Be = 0, then (A2.3) 

simplifies to 
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This is true for all i so we can choose λ = 1, i.e., 0/ =∂∂ iqH . 
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Appendix 3. Proof from Chapter 4 

 

 We show here that, for )(tv  an increasing function that is concave for t > 0, 

(A3.1)  ∑ = −−
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k
k xvxRv
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1
 

is decreasing in the variance of the Rk. To see this, first suppose there are just 3 

horses in the race. Denote the odds on the non-favourites by R2 and R3, with 

respective ‘prices’ given by r = 1/R2 and 3/1 RrK =− . Since )( xv −  is constant 

for all k, we set 0)( =−xv . Representing the value function for gains by a 

concave power function αttv =)( , 0 < α < 1, we have that 

(A3.2)  ])([ ααα rKrxX −+= − . 

Hence 

(A3.3)  ])([ 11 −−− −−= αααα rKrx
dr

dX
, 

which is negative if and only if r > K/2, i.e., increasing the variance of the prices 

(and hence odds) for non-favourites has the effect of decreasing X. The converse 

result holds for the expected utility model if the utility of wealth function is 

convex. 
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Appendix 4. Proofs from Chapter 5 

 

Proposition 1. If the model probabilities are jjij nnfp /)(= , then the McFadden 

and Maddala pseudo-R2s are given by 
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Proof. First, recall that the definitions of the McFadden and Maddala pseudo-

R2s are given by 
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Hence, for the McFadden pseudo-R2, 
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 The following lemmas are adapted from Hu, Shao, and Palta (2006) for the 

conditional logit model (their proofs are for the multinomial logit model). 

 

Lemma 1. Suppose the independent variables xij, j = 1, 2, … , N, i = 1, 2, … , nj, are 

independent and identically distributed random m-vectors with finite second 

moment (i.e., )(
2

ijxE  finite). Then 0)](ln)ˆ()[ln/1( pLLN →− ββ  as ∞→N , 

where p→  denotes convergence in probability. 

Proof. We first prove that 
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which is finite by assumption of finite second moment. Hence, each element of 

the second order derivative matrix is )(NOp . The remainder of the proof is 

from Hu, Shao, and Palta (2006). Let βββ ∂∂= /)(ln)( LSN  and 

))(()( ββ NN JEI =  be the score function and information matrix, respectively, 

where T

N LJ ββββ ∂∂−∂= /)(ln)( 2 . Then it follows from the above that 

)()( NOI pN =β . Hence, by a second order Taylor expansion 
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where β* is a vector between β̂  and β. The asymptotic normality results of the 

maximum likelihood estimator gives )1,0()ˆ()( 2/1 NI N →− βββ . The lemma then 

follows from )1()( 2/1

pN ONI =−β  and )1(/*)( pN ONJ =β . 
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Lemma 2. Assume that the independent variables xij, j = 1, 2, … , N, i = 1, 2, … , nj, 

are independent and identically distributed random m-vectors with finite second 

moment (i.e., )(
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By the Law of Large Numbers, as ∞→N , 
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Moreover, from Lemma 1, as ∞→N , 
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Proposition 2. Assume that the independent variables xij, j = 1, 2, … , N, i = 1, 2, … , 

nj, are independent and identically distributed random m-vectors with finite 

second moment (i.e., )(
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By the Central Limit Theorem (in two dimensions), 
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this leads to the asymptotic normality results in (A4.23). 
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