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IMPLICATIONS FOR FORECASTS OF COMPETITIVE EVENTS
by David C. J. McDonald

This thesis, which is divided into five papers, explores biased decision making
in naturalistic environments and its implications for the efficiency of financial
markets and forecasts of competitive event outcomes. Betting markets offer a
valuable real world decision making context, allowing analysis that is not
possible using regular financial market data. The first paper surveys studies
that have employed betting markets to investigate biased decision making and
discusses why the extent of these biases is significantly less than in the
laboratory.

The second paper addresses unresolved issues relating to noise trading and
herding in financial markets, by showing that noise trading is associated with
increased market efficiency, that the extent of herding differs depending on the
direction and timing of changes in market prices, and that this results in an
economically significant inefficiency. The findings of this paper have important
policy implications for wider financial markets: regulatory measures to protect
investors from the destabilizing effects of noise appear to be self-defeating and
herding is particularly prevalent when uninformed traders perceive that
informed traders are participating in the market.

The third and fourth papers address the favourite-longshot bias (FLB), where
market prices under-/over-estimate high/low probability outcomes. These
papers demonstrate that previous explanations of the bias are inconsistent with
evidence of trading in UK betting markets by developing and testing the
predictions of models that explain the bias in terms of competition between
market makers and the demand preferences of bettors. Moreover, it is
definitively shown that, when no market maker is involved, the bias is due to
cognitive errors of traders rather than their preference for risk, because only
prospect theory, and not risk-love, can explain a reduced FLB in events with
strong favourites.

The final chapter explores methodological concerns relating to estimates of
forecast accuracy in models of discrete choice, and arrives at a much more
rigorous understanding of the value of these estimates.
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Introduction

In contrast to normative economic theory, decision makers have been
shown to be susceptible to judgemental biases when making choices (Simon,
1955). However, the vast majority of evidence for this conclusion has been
obtained from laboratory-based studies. The generalizability of these results to
the population as a whole has been questioned because it is well understood
that controlled laboratory conditions cannot replicate the richness and
complexity of real life settings, with subjects often lacking the relevant
experience and meaningful incentives (Bruce and Johnson, 2003; Levitt and List,
2007). Hence, an attractive alternative for researchers is to seek out evidence of
biased judgements in the natural environment of the decision maker. The
decisions of traders operating in financial markets, for instance, can be analyzed
by seeing that the market price of a speculative asset results from the combined
decisions of all traders, and so the average subjective probability estimates of
the asset’s payoffs can be determined; this can be compared with objective
outcomes in order to determine whether participants in the market are biased
in their decision making (Griffith, 1949). However, it is difficult to assess the
extent of biases in regular financial market prices because uncertainty is always
present, with prices reflecting the current subjective expectation of future
prices rather than objective fundamental information (Shleifer and Summers,
1990). Hence, one can never be certain whether anomalies in financial market
prices truly represent biased decision making or simply reflect the expectation
of possible future events that may or may not occur in practice.

Betting markets are an ideal real world decision making environment in
which to explore biased decision making, sharing many features with other
financial markets and offering many advantages over laboratory experiments.
In particular, they involve a large number of regular traders who have access to
widely available information, a smaller number of traders who are particularly
adept at combining information in such a way as to make excess returns, and a
minority of traders who have access to privileged information (Vaughan
Williams and Paton, 1997). In contrast to laboratory conditions, betting markets

are associated with rich, dynamic information sets, offer strong incentives for
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success, require the commitment of the individual’s own resources, and involve
repeated trials. Most importantly, they have a defined end point at which all
uncertainty in the relation between prices and fundamental information is
resolved, thus overcoming the problem of expectation in regular financial
markets. In addition, “in its simplest formulation, the market for bets in an n-
horse race corresponds to a market for contingent claims with n states in which
the ith state corresponds to the outcome in which the ith horse wins the race”
(Shin, 1993, p.1142). Betting markets also offer the opportunity of quantifying
the proportion of market activity attributable to informed trading (using a
model developed by Shin, 1993). Consequently, betting markets appear to offer
considerable advantages for the study of biased decision making in a
naturalistic environment.

This thesis is divided up into five separate but inter-related papers. The
theme running through all the papers is that they examine to what extent and
why decision makers make biased choices in a naturalistic environment and the
implications of such biased behaviour for the efficiency of financial markets and
forecasts of competitive event outcomes. Throughout, these papers develop
new insights relating to behavioural and economic biases in general by
developing innovative models and carrying out empirical tests on recent data
drawn from UK betting markets. Overall, this thesis makes a significant
contribution towards understanding the extent and nature of biased decision
making in naturalistic environments.

Chapter 1, entitled “Evidence of biased decision making in a
naturalistic environment”, a version of which is to be published in the
forthcoming title The Economics of Gambling (Oxford: Oxford University Press),
is a discussion of previous studies that have employed betting markets to study
biased decision making, with particular reference to systematic biases that
were first discovered in the laboratory. Hence, it serves as an overall literature
review for the remainder of the thesis, although, as each chapter can be
considered a stand-alone paper, relevant literature is covered at the beginning
of each subsequent chapter. This paper begins by noting (as have a number of
other researchers, e.g.,, Ebbeson and Konecni, 1980; Funder, 1987) that, while

there is a substantial literature consisting of evidence of biased decision making,
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such as the work of Simon (1955) on bounded rationality and Kahneman and
Tversky on heuristics and biases (Kahneman et al., 1982), most of this research
has been carried out in controlled laboratory conditions with subjects who are
often students lacking the relevant experience for the task at hand. It outlines a
number of reasons why there is a problem with generalizing the results of these
studies to the wider population and shows how studies of betting markets
overcome this problem. Then it summarizes and discuss the results of betting
market studies of a number of important decision making biases: the favourite-
longshot bias, anchoring and adjustment, herding, the gambler’s fallacy, and the
hot hand.

Chapter 2 consists of a paper that will be submitted to The Journal of
Financial Markets: “Noise, herding, and the efficiency of market prices:
insights from markets for state contingent claims”. This paper shows how
data from betting markets can be employed to provide new insights into a
number of unresolved issues relating to two types of biased decision making
that are prominent in the financial markets literature. First, it explores the role
played in the efficiency of financial markets by noise trading, which is trading
that is based on anything except information, and so appears to be a universally
loss-making strategy (Black, 1986). An unanswered question has been whether
noise trading results in excessively volatile, inefficient markets, in which added
risks limit the possibility of arbitrage by informed investors (De Long et al,,
1990), or if noise is essential in providing liquidity to informed investors in
order that markets are efficient (Bloomfield et al., 2009). It has been predicted
and, to an extent, verified empirically (Campbell and Kyle, 1993) that a
consequence of noise trading is increased volatility in market prices. So, on the
one hand, it has been argued that noise results in volatility in excess of the
variations justified by underlying fundamental information (Shiller, 1990), in
which case, noise is detrimental to market efficiency because of its destabilizing
effect on long-run equilibrium values, with risk-averse informed investors
limiting their arbitrage to avoid liquidity risks (Shleifer and Summers, 1990).
On the other hand, it has been suggested that noise may be essential for
generating liquid, and thus efficient, markets (Black, 1986; Grossman and

Stiglitz, 1980; Kyle, 1985). Noise trading might harm market efficiency, but only
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when prices are extreme; when prices are not extreme, noise traders help to
make prices more efficient by providing liquidity to informed traders
(Bloomfield et al., 2009). The first aim of this paper is to answer these questions:
are markets associated with a greater degree of noise trading also more volatile,
and are these markets more or less efficient?

Second, this paper investigates the related decision making bias of herding,
which occurs when market participants neglect their own private information
and adjust their actions to be more representative of those of other traders.
They do this in the belief (perhaps mistaken) that other traders are more
informed than themselves. The combined activity of many herding traders can
result in extraordinary changes in asset values over a short period, possibly
leading to bubbles, crashes and bank runs (Devenow and Welch, 1996).
However, empirical evidence for the phenomenon is inconclusive in both
financial markets (Lakonishok et al., 1992; Wermers, 1999; Sias, 2004) and
laboratory investigations (Cipriani and Guarino, 2005; Spiwoks et al., 2008).
One reason for this mixed evidence could be that previous studies failed to take
account of differing levels of actual and perceived trading by investors with
priviliged information at different times of the market as well as depending on
the direction of price movements. The second aim of this paper, therefore, is to
explore the extent and reasons for herd behaviour while accounting for these
concerns.

The third and fourth papers address the favourite-longshot bias (FLB),
which is the widely-reported phenomenon wherby prices in markets for state
contingent claims systematically under-/over-estimate high/low probability
outcomes (e.g.,, Dowie, 1976; Ali, 1977; Snowberg and Wolfers, 2010). It has
been attributed to a wide range of causes, such as the risk-loving nature of
traders (Weitzman, 1965), errors in the estimation of probabilities (Henery,
1985), the pricing policies of bookmakers (Shin, 1993), and limited information
of traders (Sobel and Raines, 2003). Each of these papers demonstrates that
previous explanations of the bias are inconsistent with theoretical and
empirical considerations relating to recent trading in UK betting markets. The
first of these papers addresses bookmaker and exchange markets and how

competition between these markets, along with the demand preferences of
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bettors, can provide a more satisfactory explanation for the presence (or
absence) of the bias in these markets. The second of these papers addresses
pari-mutuel markets and investigates using a novel methodology whether,
when no market maker is involved, the bias is due to cognitive errors of traders
rather than their preference for risk.

Chapter 3 is titled “The favourite-longshot bias in competing betting
markets” and consists of a paper that is under review by The Economic Journal.
Many studies have sought to explain the enduring presence of the FLB and its
absence in some markets, but little consensus has been reached (Jullien and
Salanié, 2008), particularly with respect to the presence (and absence) of the
FLB in the two major competing types of horserace betting market in the UK
and Ireland (and in other jurisdictions, such as Australia): bookmakers and
betting exchanges. In order to explain observed patterns of the extent of the
FLB at various times in these markets, this paper explores two aspects of these
parallel markets: competition and informed trading. The markets for horserace
betting in the UK are increasingly competitive, with the rapid rise of exchange
betting, along with many existing operators and a wealth of information
regarding prices available to bettors via internet price comparison services.
This paper develops a theoretical model to investigate the optimal pricing
decisions of bookmakers when the betting public are able to rapidly compare
prices, and also it is argued that informed trading has a significant effect on
reducing the degree of the FLB in either type of market, but only when
transaction costs are low. These considerations lead to hypotheses, which are
tested empirically using a novel and unique dataset, consisting of over 5.5
million market prices: specifically, this paper analyzes how the bias develops
over the course of the markets for 6058 races run between August 2009 and
August 2010.

Chapter 4 (“New evidence for a prospect theory explanation of
systematic decision making bias in a market for state contingent claims”)
will be submitted to Economics Letters, and hence is a concise but definitive
account of whether cognitive errors of traders or risk preferences better
explain the FLB in pari-mutuel markets (i.e., markets that are independent of a

market maker). While there have been a range of explanations proposed for the
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FLB in pari-mutuel markets, a simplified but useful categorization is that
bettors either have unbiased expectations, but are risk-loving, or have biased
expectations, but are risk-neutral or risk-averse (Snowberg and Wolfers, 2010).
However, it is difficult to empirically discriminate between these competing
explanations because each is observationally equivalent. Those that have
attempted this task have relied on parametric assumptions or assumptions
relating to the choice set of the decision maker. This paper develops a new
methodology for choosing between the hypotheses that does not rely on these
assumptions, consisting of a representative agent model that predicts a ‘strong
favourite’ effect on the level of FLB. Specifically, it is demonstrated that the level
of bias in an individual event varies in a predictable manner depending on the
traders’ risk preferences. If the representative agent is risk-seeking, the model
predicts an increased FLB in events where the variance of the odds on
competitors other than the favourite is relatively low, ceteris paribus. Convesely,
if the representative agent is risk-averse, the level of FLB is reduced or a reverse
bias is predicted when the same variable is relatively low. This prediction is
independent of whether probabilities enter the decision process linearly (as in
expected utility theory) or nonlinearly (as in prospect theory). Hence, empirical
tests can be conducted that distinguish between hypotheses that do and do not
require the representative agent to be risk-loving. The purpose of this paper
therefore, is to test empirically the predictions of the model and definitively
show whether expected utility theory or prospect theory better explains the
FLB.

Chapter 5 consists of a paper with the title, “Properties of pseudo-R? as
an estimate of forecast accuracy for discrete choice models”, and is
primarily concerned with methodological issues relating to statistical methods
employed in studies that employ models of discrete choice, of which the
conditional logit model, employed throughout this thesis, is an example. Hence,
this paper will be submitted to The Journal of the Royal Statistical Society, Series
B (Methodological). The motivation for this paper is that in many studies that
have used discrete choice models, particularly many of the studies cited in this
thesis, pseudo-R?s are reported as a measure of forecast accuracy. However, it is

shown in this paper that there are significant concerns related to the evaluation
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of discrete choice models using pseudo-R?s. A key property of any means of
evaluation of a forecast is its comparability across empirical models, both in the
sense that its interpretation should be the same, and that standard errors
should be reported, in order to carry out significance tests. However, little
attention has previously been given to whether pseudo-R2s have this desirable
property, and the consequences of this for the evaluation of discrete choice
models using pseudo-R%s. Consequently, there are three broad research
questions that are asked in this paper. First, are pseudo-R?s directly comparable
across models estimated on datasets with different characteristics? Second, if
they are, what is the most appropriate method for statistical comparisons?
Finally, how useful are pseudo-R?s in explaining the predictive power of model

probabilities?
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1. Evidence of biased decision making in a naturalistic

environment

Abstract

The generalizability of laboratory-based research into behavioural biases has
been questioned because it is well understood that laboratory experiments
cannot replicate the richness and complexity of real life settings. Naturalistic
environments and betting markets in particular therefore offer an attractive
alternative for examining decision making behaviour. This paper discusses the
results of studies that have employed betting markets of various kinds to
investigate decision making, with particular reference to systematic biases that
were first identified in the laboratory. The primary conclusion of this paper is
that, while systematic biases reported in the laboratory have been found in
naturalistic betting markets, the extent and generality of these biases in these
real world environments is often significantly less. We attribute this to the
context of the decision task, the incentives offered, the lack of scrutiny involved,

the experience of the decision makers, and the effect of aggregation.

1.1. Introduction

Psychologists have long been aware of the limitations of normative
models of judgement and decision making. Herbert Simon’s (1955) work on
bounded rationality criticized rational models of decision making for
disregarding factors such as the limited cognitive capacity of individuals. Later,
psychologists confirmed experimentally that decisions are systematically
biased in many ways, with decision makers adopting rules of thumb or
‘heuristics’ in order to more rapidly solve complex problems (Kahneman et al.,
1982). However, over the decades, it has become apparent that many of these
conclusions have relied on experiments carried out under controlled laboratory
conditions. This has led researchers to question the generalizability of the
results (e.g., Bruce and Johnson, 2003; Levitt and List, 2007). In particular, it is

well understood that laboratory experiments cannot replicate the richness and
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complexity of real life settings. As Festinger (1953, p.141) notes: “In the most
excellently done laboratory experiment, the strength to which the various
variables can be produced is extremely weak compared to the strength with
which these variables exist and operate in real life situations”. Naturalistic
environments offer an attractive alternative for examining decision making
behaviour, featuring subjects who, unlike in many laboratory experiments, are
experienced in the task at hand and are not directly aware that their actions are
under scrutiny.

Betting markets are naturalistic decision making environments that offer
considerable potential for understanding decision making behaviour, sharing
many features with other real world decision environments. In particular, they
are associated with rich, dynamic information sets, offer strong incentives for
success, require the commitment of the individual’s own resources, and involve
repeated trials. This paper provides a survey of previous studies that have
employed betting markets of various kinds to investigate decision making, with
particular reference to systematic biases that were first identified in the
laboratory.

The remainder of this paper is structured in three main parts. First, we
summarise the debate over the generalizability of laboratory findings and
identify ways in which naturalistic environments offer an alternative for
studying biased decision making. In particular, we outline the usefulness of
betting markets and review a range of studies that have demonstrated that
bettors are, in many ways, rational and well calibrated decision makers. Second,
we discuss the psychology behind the widely documented favourite-longshot
bias. Third, we address two decision biases, anchoring and herding, each of
which involve judgements of some unknown quantity being unduly influenced
by external stimuli. Finally, we survey studies that have investigated biases that
result from a failure of individuals to recognise randomness: the gambler’s

fallacy and the hot hand fallacy.
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1.2. Betting markets: decision making in a naturalistic environment

1.2.1. The generalizability of laboratory findings

At the heart of this discussion is the distinction between experiments
carried out under controlled conditions in artificial laboratory settings and
analysis of data obtained from naturalistic environments, such as casinos,
lotteries, and markets for betting on horseraces or other sports. While some
experiments can claim to have been carried in ‘real world’ environments, we
define a naturalistic environment as one that “has not been artificially
manipulated (i.e., a nonexperimental setting)” (Johnson and Bruce, 2001, p.266).
This distinction is crucial, and there is a long running debate concerning the
relative merits of the two alternative methodologies when employed in
experimental psychology (e.g., Ebbeson and Konecni, 1980; Hogarth, 1981;
Funder, 1987; Bruce and Johnson, 2003) and economics (Harrison and List,
2004; Levitt and List, 2007). A critical assumption in experimentation is that
results generalize to the broader population, but this generalizability, or
‘external validity’, has been questioned because of significant variations in
observed behaviour between laboratory and naturalistic environments (e.g.,
Ebbeson and Konecni, 1980; Koehler, 1996). The factors that have been
identified as limiting the generalizability of laboratory experiments include the

following:

1. Context: Laboratory environments often present simplified versions of tasks
that are more complex in real world environments, and so may unintentionally
omit variables that are influential in the natural setting. Significant differences
in behaviour may depend only on small changes to the experimental conditions

(Ayton and Wright, 1994), and Harrison and List (2004, p.1010) note that

although it is tempting to view field experiments as simply less controlled
variants of laboratory experiments, we argue that to do so would be to

seriously mischaracterize them. What passes for “control” in laboratory
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experiments might in fact be precisely the opposite if it is artificial to the

subject or context of the task.

In addition, there are variables that the experimenter cannot control, such as
past experiences or social norms, that can affect the results (Levitt and List,
2007). Finally, biases recorded in the laboratory may simply be a response to
the specific laboratory stimulus, with those same biases not occurring under
ordinary circumstances (even while resulting from the same cognitive
processes). For example, when mistakes are made in visual perception tasks in
the laboratory, it is usually assumed that the mechanisms that result in the

error generally produce correct judgements in real life (Funder, 1987).1

2. Experience: Laboratory studies typically use university students, who may be
inexperienced in the task at hand. Hogarth (1981) highlights the importance of
feedback in making correct decisions over the continuous time period often
associated with real world decision making. Feedback is simply not available in
‘one-shot game’ laboratory studies, so there is limited potential for participants
to learn from their mistakes. Even worse, they frequently carry ‘baggage’
behaviour learned in the outside world entirely unsuited to the problem at hand
(e.g., Burns, 1985). Furthermore, a number of studies demonstrate large
differences between the decision strategies of experts and novices in terms of
the way they think, the nature of the decision models they employ, and the
speed and accuracy of their problem solving (e.g., Larkin et al., 1980).

3. Scrutiny: Laboratory subjects, who are usually aware that they are being

investigated, may be keen to project a particular image (even if they have no

1 As a further example of the importance of context in decision making, consider the following
problem. There are four cards on the table, each with a letter on one side and a number on the
other. The rule is, “If there is a vowel on one side of a card, then there is an even number on the
other side.” The cards show A, D, 4, and 7. Which cards must be turned over in order to
determine whether the rule is true or false? This is known as Wason'’s four-card selection task
(Wason, 1968), and usually less than 10% of people respond with the correct answer of A and
7 (most neglect to choose 7, or unnecessarily include 4). However, when this problem is
reframed in terms of certain social contexts, such as asking subjects to test the rule, “If a
person is over 18, they can drink alcohol”, and replacing the cards with ‘16 years old’, 22
years old’, ‘Coke’, and ‘Beer’, the correct answer (‘16 years old’ and ‘Beer’) is given by most
respondents, even though the problem is logically identical to the first, more abstract, task (e.g.,
Cox and Griggs, 1982).
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idea of the purpose of the experiment). The student volunteers studied in most
investigations are more likely to be ‘scientific do-gooders’ (e.g., interested in the
research, or seeking approval from the experimenter) with unusually high
awareness of the moral implications of their decisions. Scrutiny may therefore
exaggerate the importance of pro-social behaviours such as altruism and
fairness (Levitt and List, 2007). Conversely, the anonymity that is often present
in real settings may allow decision makers to feel that they are able to avoid

being judged morally.

4. Incentives: Laboratory experiments are usually conducted with relatively
trivial rewards for success. However, in the real world, decision makers are
often involved in high-stakes environments, where they must commit their own
or others’ resources and where the results of their decisions can have
significant personal consequences. These high-stakes environments can,
therefore, involve a meaningful degree of risk. This can lead to a marked
difference in risk taking behaviour between laboratory and real world
environments (Yates, 1992). For example, the lack of excitement and low
arousal levels in laboratory studies may lead to behaviours that would not be

present in real settings (Anderson and Brown, 1984).

The issues discussed above all limit the generalizability of biased
behaviour often found amongst laboratory participants to the wider population.
However, to discard laboratory findings outright would be naive (Hogarth,
1981). Rather, data gathered in the laboratory and under naturalistic conditions
have their own strengths and weaknesses, so should be considered
complementary (Keren and Wagenaar, 1985). For instance, naturalistic work
suffers from the inability to use control groups and difficulties associated with
the replication of results. In addition, laboratory-based investigations are
usually more cost-effective and afford the possibility of isolating specific

variables.
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1.2.2. Betting markets as valuable naturalistic environments

Betting markets offer an ideal naturalistic environment in which to
explore biased decision making. A key practical advantage is the availability of
extensive and detailed quantitative data relating to bettors’ decisions. Since
markets are finite in nature, there is a continually expanding set of ‘completed’
markets, i.e., self-contained time periods of betting with pre-defined endpoints,
when all bets are settled in an unambiguous manner2. Furthermore, there is
potential for comparative analysis across different types of event or bet,
according to criteria such as quality (e.g., Smith et al., 2006), time of day (e.g.,
McGlothlin, 1956), or complexity (e.g., Johnson and Bruce, 1998). Thus, it is
possible to control for some aspects of the decision setting. Most importantly,
betting markets include many of the factors regarded as distinctive to
naturalistic decision making (Orasanu and Connolly, 1993): uncertain dynamic
environments, poorly-structured problems, high stakes, time stress,
action/feedback loops, and multiple players. Each element of the decision
making event (i.e., the bet) is unique: no two horseraces or football matches are
the same. Thus, the outcome is uncertain, and the information relating to that
outcome is often (as it is in many real world decision environments) ambiguous,
vague, or redundant. For example, it is not obvious how to combine the various
factors that might enable one to predict participants’ performance. The dynamic
nature of betting markets is evidenced by the constantly-updating prices as
bettors with diverging opinions participate in the market.

Bettors, like many decision makers in real world environments, often risk
meaningful amounts of money while under stress from time pressures (the
window of opportunity in a betting market may only last minutes, or even
seconds). A further important feature of these markets is the repetitive nature
of betting. Since events take place regularly and often, there is potential for
gaining familiarity with and expertise in the task. Betting markets involve

action-feedback loops; once bets have been placed and a market is closed and

2This is a particular advantage of betting markets over other types of financial market for
naturalistic research. The payoffs in betting markets are entirely unambiguous, so there is a
time when all uncertainty is resolved. This is not the case in regular financial markets, where
prices continuously represent the current expectation of future prices.
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decided, bettors receive relatively unambiguous feedback on the success of
their decisions, and this can be incorporated into future decisions (Goodman,
1998). Also, betting markets involve multiple players, and it has been shown
that the interaction between individuals in markets can significantly reduce
errors (Wallsten et al., 1997). This results from a variety of causes, not least the
fact that different individuals use different decision making procedures and
have diverse information gathering skills. As a result, their reaction to the same
information may vary. Consequently, the final prices that emerge in these
markets take into account a wide range of information and the forecasts of
many individuals, and studies show that combining diverse forecasts generally
leads to significantly more accurate predictions (e.g. Vlastakis et al., 2009; Grant
and Johnstone, 2010). In addition, betting markets are not subject to the
limitations of laboratory investigations listed above. For example, bettors are
unaware that their decisions may be scrutinized, as they are not directly
volunteering to take part in an experiment; instead, betting patterns are

analysed in such a way as to observe their decisions unobtrusively.

1.2.3. Betting market data and decision making

In any betting market, individuals are able to place bets on one or more of
a set of outcomes of some future event. For instance, in the simplest of markets
for betting on a horserace with n runners, n different bets are available, one for
each horse to win the race. After the market has closed and the race has taken
place, each bet pays, for each £1 staked, a return £R; if horse i wins and nothing
otherwise. While the returns R; (usually referred to as the ‘odds’ against
outcome i) are determined differently according to the type of market and event,
they depend on the relative amounts bet on each outcome by all the market
participants. Consequently, bettors have an incentive to continue to place
money on each outcome until the returns reflect the market’s best estimate of
that outcome’s probability of occurring (Figlewski, 1979). Therefore, a typical
approach to assessing decisions in betting markets is summarized (with

reference to horserace betting) by Griffith (1949, p.290):
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the odds on the various horses in any race are a functioning of the
proportion of the total money that is bet on each and hence are socially
determined. On the other hand, the objective probability for winners from
any group of horses is given a posteriori by the percentage of winners.
Thus the odds express (reciprocally) a psychological probability while the
percentage of winners at any odds group measures the true probability;
any consistent discrepancy between the two may cast light not only on the
specific topics of horse-race betting and gambling but on the more general

field of the psychology of probabilities.

Hence, the ‘socially determined’ prices in betting markets reflect the ‘subjective
probabilities’ assigned to each possible outcome by the bettors, in aggregate.
The results of the event then determine the ‘objective probabilities’. Thus,
biases can be detected by researchers by comparing subjective and objective
probabilities.

A drawback of most betting market research is that, for ethical and/or
practical reasons, it is usually not possible to obtain information relating to the
decisions of individual bettors. Instead, subjective probabilities are an
aggregation of opinions of all bettors. Hence, it is possible that “certain biases
present in an individual bettor’s decisions are being counterbalanced by
opposite biases in other bettors’ decisions” (Johnson and Bruce, 2001; p. 280).
Camerer (1987, p.982) notes that a common argument for the rationality of
market participants is that “random mistakes of individuals will cancel out”, but
also offers the counter-argument: “biases found by psychologists are generally
systematic - most people err in the same direction”. Thus, the best we can hope
for in betting market research is evidence of systematic bias.

A further weakness of employing betting market data to examine decision
making behaviour is that psychologically significant biases also hold an
economic significance. Consequently, if some bettors (even a small group)
become aware of an overall disparity between subjective and objective
probabilities, they can potentially profit by betting against the bias. This could
reduce the extent to which any systematic bias that exists amongst bettors is

detectable from aggregate betting market data. Fortunately for researchers,
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transaction costs ensure that it is rarely possible to entirely arbitrage away

biases.

1.2.4. Calibration of bettors’ judgements

Given the above discussion, it might be expected that bettors display
significantly less biased judgements in their natural domain than is
demonstrated amongst naive participants in laboratory experiments. Indeed,
Rosett (1965) found that horserace bettors are generally sophisticated and
rational agents, who will not forego combinations or sequences of bets that
offer higher probability of winning for the same return or higher return for the
same probability of winning. Furthermore, results reveal a high correlation
between subjective and objective probabilities, suggesting that bettors are
familiar with their decision making environment and are able to accurately

forecast risky outcomes3. Rosett (p.596) notes that

if these gamblers behave as though they know statistical prediction
methods and the probability calculus, it seems reasonable to suppose that,
in a variety of other circumstances, human beings can be expected to
respond appropriately to risky situations merely after having had

sufficient experience with them.

Johnson and Bruce (2001) also investigated the calibration of horserace bettors’
subjective probability judgements. They found that bettors’ subjective
probabilities are not significantly different from the observed objective
probabilities. They noted that, while there is substantial evidence of poor
calibration in decision makers, this may reflect on the specific laboratory
experiments involved. For example, Shanteau (1992) suggests that task
characteristics may account for differences observed in the quality of experts’
judgments; specifically, more competent performance is likely if the decisions

involve stimuli that are relatively constant, the tasks undertaken are repetitive,

3 An exception holds for objective probabilities of less than 0.05, which is the favourite-longshot
bias detailed in the second part of this chapter.
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and where decision aids are widely available. Furthermore, it has been
empirically observed that violations of rationality are reduced under the
multiple play conditions that exist at the racetrack (e.g., Keren and Wagenaar,
1987). Johnson and Bruce’s (2001) study therefore suggests that bettors are
skilled in a similar way to weather forecasters, who are also required to make
frequent risky forecasts (Murphy and Brown, 1984). Hoerl and Fallin (1974)
also found no significant difference between subjective and objective
probabilities in horseraces, and suggested that this is due to the high incentives
available for successful gambling.

Not only are bettors well calibrated in general, they are able to adapt
remarkably well to uncertain and dynamic information. Johnson, O’'Brien, and
Sung (2010) set out to test Gigerenzer’s (2000) assertion that evolution has
equipped humans to process probabilistic information from frequencies
observed in a natural environment. They investigated the extent to which
horserace bettors accounted for post position bias (an advantage/disadvantage
afforded to the horses depending on their position in the starting stalls), a factor
shown to be a particularly important determinate of race outcomes at the
racetrack examined. Despite the fact that track managers employed a variety of
procedures to alter the bias (even between two consecutive races, and often
unannounced) bettors were able to account for most of the changes through
regular outcome feedback over 6 years. This finding may be accounted for by
the fact that (i) bettors have a strong motivation to make accurate probability
judgements as their own financial resources and often their peer group esteem
depend on the outcome of their decisions (Saunders and Turner 1987), and (ii)
those who frequently make probability judgments are often better calibrated
(Ferrell 1994). It has also been shown that bettors’ calibration is generally
improving over time (Smith and Vaughan Williams, 2010) and that expert
bettors employ complex mental models encompassing a wide range of variables
and interactions between these variables (Ceci and Liker, 1986).

In summary, naturalistic environments such as betting markets offer rich,
complex settings in which to examine decision making biases that have been
observed in the laboratory. Due to a number of factors, bettors appear to be

more rational, well calibrated, and able to adapt to dynamic information than
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participants in laboratory studies. However, there are a number of ways in
which bettors are biased, and the first, and most widely documented, of these is

the favourite-longshot bias, which is the focus of the next section.

1.3. The favourite-longshot bias

By far the most reported departure from rationality in the betting market
literature is that of the favourite-longshot bias (FLB). Prevalent over many
decades and in many jurisdictions around the world, the bias is the
phenomenon whereby returns to bets are such that the chances of high
probability outcomes (favourites) are underestimated, while low probability

outcomes (longshots) are overestimated.

1.3.1. Evidence from the laboratory

Preston and Baratta (1948) provided early laboratory evidence of the bias.
They were concerned that ‘rational’ theories of behaviour could not universally
explain peculiarities in the way people approached ‘wagering games’ (in which
participants are required to bet on an uncertain outcome). They hypothesized
that players apply to outcomes a scale of ‘psychological’ probabilities not
necessarily identical to their mathematically correct probabilities. In order to
investigate this possibility, they carried out games with undergraduate students
and faculty members (the latter were more experienced in mathematics,
statistics, and psychology). The game required the participants to compete
against each other, bidding for the chance to win a given prize with a given
probability. They found that the players tended to pay too generously for
outcomes with low probabilities and not bid high enough for outcomes with
high probabilities. The indifference point, where the psychological and
mathematical probabilities coincided, was found to be about 0.20. Moreover,
even the faculty members displayed the bias (although to a lesser extent than
the undergraduates), despite in many cases appearing to actively employ
mathematics when forming their decisions. The experimental findings of

Preston and Baratta have since been confirmed in numerous laboratory
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experiments (e.g., Yaari, 1965; Rosett, 1971; Lichtenstein et al., 1974; Piron and
Smith, 1994).

1.3.2. Evidence from betting markets and explanations

The first evidence of the FLB in betting markets was from Griffith (1949).
He was inspired by the laboratory evidence of Preston and Baratta (1948), but
keen to test the results outside of the laboratory. Employing racetrack data,
Griffith found that horses with low and high probabilities of winning were
systematically over- and under-valued, respectively, a result consistent with
that of Preston and Baratta, with a similar indifference point of about 0.20.
McGlothlin (1956) replicated (and expanded upon) Griffith’s study with a larger
data set, and found similar results.

In the decades that followed, a significant body of evidence for the bias
emerged in betting markets around the world (e.g., in the USA: Ali, 1977; Asch
et al,, 1982; in the UK: Dowie, 1976; Vaughan Williams and Paton, 1997; in
Australia and New Zealand: Tuckwell, 1983; Gandar et al., 2001)%. The emphasis
in the research then shifted towards attempting to explain the origins of the
bias. As a result, a broad range of explanations have been offered, including the
‘bragging rights’ associated with holding a winning longshot ticket (Thaler and
Ziemba, 1988) or the additional excitement derived from longshot betting
(Bruce and Johnson, 1992). Henery (1985) suggests that bettors may discount a
fixed proportion of their losing bets, leading them to believe that longshot bets
are more attractive. Alternatively, the bias may arise from particular
characteristics of the market itself, such as the cost of obtaining information and
transaction costs (Hurley and McDonough, 1995) or the defensive pricing
policies adopted by bookmakers (Shin, 1991). In this paper we simply provide
an overview of the significant debates concerning the origins of the FLB from
the perspective of bettors’ decision behaviour; for more comprehensive
explorations, see surveys by Thaler and Ziemba (1988), Sauer (1998), Vaughan
Williams (1999), Jullien and Salanié (2008), and Ottaviani and Sgrensen (2008).

4 Exceptions have been reported in the horserace betting markets in Hong Kong (Busche and
Hall, 1988; Busche, 1994), the market at one racetrack in the US (Swidler and Shaw, 1995),
and exchange betting markets in the UK (Smith et al., 2006).
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1.3.3. Do bettors love risk or do they misestimate probabilities? Expected utility

theory vs. prospect theory

One strand of the FLB literature in particular merits attention because it
has led to an important intellectual debate concerning the relative merits of two
prominent competing theories for explaining decision making in wider fields:
expected utility theory and prospect theory. The building block for this debate is
the ‘representative bettor’. Weitzman (1965) introduced Mr. Avmart, a fictitious
person who represents the ‘social average’ of all bettors. Weitzman'’s (p.26)
innovation was to infer the preferences of the ‘most typical’ bettor from the

population of bettors:

instead of concentrating on individuals and trying to derive utility
generalizations from their experimental behavior, more nearly the
converse approach was attempted. A plethora of data concerning the
collective risk actions of parimutuel bettors was employed in investigating

utility aspects of the behavior of a hypothetical member of the group.

Weitzman was concerned primarily with constructing Mr. Avmart’s utility of
wealth curve (the mathematical representation of preferences over various
monetary outcomes and the basis of expected utility theory). He found that the
FLB in the data was best explained by a convex utility of wealth curve,
indicating that the average bettor is locally risk-loving (i.e., preferring the
riskier, low probability outcomes). Quandt (1986) extended the analysis by
showing that the bias is the natural result of equilibrium in a market where the
average bettor is risk-loving. The findings of Ali (1977) and Hamid et al. (1996)
also supported this hypothesis.

However, there are alternative scenarios that can explain the biased
decisions of the representative bettor. So, for instance, Golec and Tamarkin
(1998) showed that the FLB can arise if bettors are risk-averse in general but
with a preference for skewness of returns. An alternative explanation stems
from Preston and Baratta’s (1948) supposition that ‘psychological’ probabilities

assigned to uncertain outcomes are systematically biased. If this is the case, the
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FLB can be explained solely with reference to bettors’ systematic misestimation
of probabilities, and bettors need not be locally risk-loving. This is formalized in
Kahneman and Tversky’s (1979) prospect theory (later extended and renamed
cumulative prospect theory; see Tversky and Kahneman, 1992). The important
feature of prospect theory for this discussion is that objective probabilities are
transformed into subjective decision weights that allow for biases in the
estimation of probabilities.

Hence, there are now two broadly competing sets of theories regarding
the explanations for the bias in terms of the representative bettor: are bettors
unbiased in their estimation of probabilities, but risk-loving, or are bettors risk-
neutral, but biased in their estimation of probabilities? Unfortunately, there is

no straightforward answer. As Yaari (1965, p.278) comments:

at first blush it seems as though one cannot, by looking at empirical data,
choose between the two hypotheses (distortion of utility versus distortion
of probability) because utility and probability are two purely theoretical
components of an integral decision process. Thus, the two hypotheses are
empirically indistinguishable, and choosing between them is a matter of

taste.

However, some researchers have made progress in this regard. Golec and
Tamarkin (1995) noted that risk-love cannot explain the relatively unfair
returns for the low risk, low return side bets offered by some bookmakers.
Instead, they suggested that overconfidence better explains the FLB (a
conclusion consistent with bettors overestimating small probabilities). Jullien
and Salanié (2000) found that prospect theory better explains the bias for
standard bets, although computational limitations of this approach restricted
their analysis. Bradley (2003) adapted the approach of Jullien and Salanié by
accounting for bet size and found an even better fit to the data.

More recently, Snowberg and Wolfers (2010) set out to test the competing
theories using a novel approach and a large dataset of all the horseraces run in
North America from 1992 to 2001 (over 865,000 races). They first estimated
the parameters of the two models by fitting them to standard ‘win’ bets. They
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then examined compound exotic bets, such as the ‘exacta’, a bet that two horses
will finish a race in first and second place in a specific order. Snowberg and
Wolfers reasoned that bettors would bet in the same manner in the exotic and
win betting pools, so the same models should apply for each bet type.
Accordingly, they used the fitted models to predict expected market prices in
the exotic betting pools and compared their predictions with the actual prices
on offer. They found that the misestimation of probabilities model predicted
exotic bet prices more accurately than the risk-love model, and concluded that,
with respect to the representative bettor, prospect theory explained the FLB
more effectively than expected utility theory.

An important issue in this debate is the validity of the assumption that
bettors’ decisions can be averaged by the representative bettor. In the third
section of this paper, we show that the distinction between different types of
bettor, on the basis of the quality of the information they hold or how they
handle this information, is crucial to fully understanding another bias in betting
behaviour. Sobel and Raines (2003) demonstrated this by differentiating
between ‘serious’ and ‘casual’ bettors. They identify serious bettors as those
that attend the racetrack on week nights, bet larger sums, and bet to a greater
extent on more complicated types of bet. On the other hand, casual bettors
attend primarily on weekends and bet smaller sums on simpler types of bet.
Sobel and Raines found evidence of the FLB, but the bias was significantly

reduced in those races that involved a higher proportion of serious bettors.

1.3.4. The late-race effect

A curious element of the nature of the FLB is its apparent tendency to vary
in a systematic manner over the course of a day’s betting activity. In horserace
betting markets, in particular, it has been found that the extent of the bias
appears to increase significantly in the last race or last few races of the day, a
phenomenon that has become known as the ‘late-race effect’. Early evidence of
this pattern was uncovered by McGlothlin (1956), who found that, in the last
race of the day, bettors underbet favourites to a greater extent than in any other

race. He suggested that bettors might avoid bets on favourites in the last race



34

because winning such bets would not recoup earlier losses (the track take
ensured that most bettors would finish the day out of pocket). Rather, they
preferred to bet on longshots, hoping for a lucky win in order to end the day in
profit.

Over time, as more evidence of the late-race effect emerged, it was
explained in terms of the risk-loving attitudes of the representative bettor. For
example, Ali (1977), who found a greater degree of the FLB in the last race than
the first two races of the day, posited that this demonstrated that bettors
became more risk-loving as the day progressed. Similarly, Asch, Malkiel, and
Quandt (1982) replicated McGlothlin’s (1956) results, although, in their study,
the extent of the bias was greater in the last two races of the day. Metzger (1985)
also found evidence of the effect, but only if the first race of the day was
excluded from the analysis. The late-race effect soon passed into betting lore,
with Kopelman and Minkin (1991) describing how an avid racing enthusiast
known as ‘Gluck’ espoused the rule: ‘“The best time to bet the favourite is in the
last race’. Kopelman and Minkin’s analysis confirmed that there was a sound
economic basis for Gluck’s rule.

More recent evidence has thrown the existence of the late-race effect into
question. Johnson and Bruce (1993) found that in UK betting shops, bettors
tended to place more bets on favourites in the last race, and suggested that this
might be due to a ‘break even’ effect, whereby bettors seek to recover their
losses by betting on outcomes that have at least a moderate chance of occurring.
This hypothesis is supported by evidence that decision makers tend to exhibit
loss aversion after a series of prior losses (Thaler and Johnson, 1990). Similarly,
Brown, D’Amato, and Gertner (1994) observed a greater prevalence of the FLB
in the last race of the day than in earlier races, but the difference was not
statistically significant. Sobel and Raines (2003) found a slight increase on
betting on longshots in the last two races of day. However, they also found that
the general trend over the latter half of the evening was for bettors to begin to
prefer favourites and shun longshots. Finally, Snowberg and Wolfers (2010)
found no significant difference in the extent of the FLB in the last race of the day
(in a dataset of over 850,000 races), suggesting that the late-race effect has now

been eliminated.
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From the contrasting evidence discussed above, it appears that bettors’
increasing risk-love over a day’s betting cannot fully explain the late-race effect.
Johnson and Bruce (1993) consider that their converse result (a decreasing FLB
in the last race) could be explained by a ‘break-even’ effect. However, a similarly
plausible explanation is used by other authors to explain the opposite effect (an
increasing FLB in the last race). Furthermore, it is not clear that expected utility
theory is an adequate explanation. As Thaler and Ziemba (1988, p.171) ask,
“why should a reduction in wealth increase the tendency for risk seeking?”
Camerer (2001) points out that expected utility theory cannot explain why the
same bettor leaves the racetrack one day, arrives again the next, and adopts a
completely different risk attitude. Thaler and Ziemba propose that the effect can
be explained by ‘mental accounting’, whereby bettors partition their wealth into
separate accounts, and do not attempt to recoup losses in one account with
funds in another. So, the late-race effect could be explained by bettors opening a
mental account at the beginning of the day and closing it at the end, with an
increasing desperation to break even as the day progresses (Camerer, 2001).
Finally, the relative paucity of evidence for the effect in recent years could be
attributed to a learning effect among bettors, as those who are aware of the
effect are able to arbitrage it away should it reappear.

In summary, the FLB, while proving to be an interesting riddle for
researchers, admirably demonstrates the value of naturalistic environments,
betting markets in particular, in the study of decision making. While some
potentially unrealistic simplifications (such as the representative bettor) must
sometimes be made, the quality and quantity of betting market data has enabled
the development of a large body of research on the nature of preferences and

perceptions of risk under uncertainty.

1.4. Anchoring and herding

Betting market research has largely focused on the FLB, but some studies
have investigated whether bettors make biased decisions in other ways. In
particular, anchoring and herding represent biased behaviour whereby the

decision maker alters their decision to account for external stimuli. Thus, when
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employing the anchoring and adjustment heuristic, decision makers
unnecessarily alter their judgements to reflect an initially-provided estimate.
Herding arises when decision makers neglect their own information and alter
their judgements to reflect those of others. This section details the findings of

these studies.

1.4.1. Anchoring and adjustment

Laboratory research suggests that, when making a numerical estimate,
individuals, in an attempt to simplify the decision making process, tend to start
from an initial value and make ‘adjustments’ upwards or downwards from it
(e.g., Tversky and Kahneman, 1974). However, this often results in a bias
whereby the decision is ‘anchored’ on the initial estimate, and adjustments are
not sufficient. This is known as the anchoring and adjustment heuristic. For

example, Tversky and Kahneman asked participants pairs of questions such as:

(a) Is the percentage of African countries in the United Nations higher or
lower than 257

(b) What do you think the exact percentage is?

They found that the figure given in (a) (i.e, 25 in the above example)
significantly influenced the participants’ responses to (b), even when the figure
was randomly generated by spinning a wheel of fortune in the participants’
presence. Higher/lower random numbers were associated with higher/lower
estimates.

Anchoring has mainly been studied in controlled laboratory conditions.
The few studies that have been conducted in naturalistic environments (e.g.,
amongst auditors: Bhattacharjee and Moreno, 2002, and real estate agents:
Northcraft and Neale, 1987) have generally concluded that anchoring does
seem to occur in information-rich real-world settings. However, these studies
have used questionnaires or artificial problems. Consequently, the advantages
of studying anchoring in betting markets are that participants are making

estimates that matter to them, in a familiar real-world environment, without the
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use of questionnaires or artificial problems, and that they do not alter their
normal behaviour (because they do not know they are being observed).

In the first study to investigate whether bettors anchor their judgements
excessively, Liu and Johnson (2007) were primarily concerned with whether or
not participants in horserace betting markets employed factors relating to
previous performance of horses, jockeys, and trainers as anchors. For example,
if a jockey had won his or her previous race, do bettors overestimate the chance
that he or she will also win the current race? Previous finishing positions are
not anchors in the traditional sense, since bettors are not specifically required
to make direct comparisons between initial values and final judgements. Rather,
this study attempted to find evidence of basic anchoring, where decision makers
can be influenced by anchor values even when not asked to consider them
directly (Wilson et al, 1996). Liu and Johnson investigated, using betting
market data from Hong Kong, various explanatory variables that represent
possible anchors (such as whether the horse won its previous race). However,
the only significant explanatory variable was one that summarised a horse’s
finishing position over its career; this variable showed that bettors tend to
underestimate horses that have a strong finishing record. Consequently, it
appears that bettors tend to ignore some useful information relating to the
horses’ potential (or are unable to effectively employ such a complicated
variable). However, the key finding was that no other explanatory variables
were significant, indicating that bettors do not anchor their judgements on
previous performances.

It is possible that Liu and Johnson’s (2007) results fail to identify the
anchoring that does occur in betting markets since any bias created by the
anchoring of most bettors could be arbitraged away by the remainder of bettors.
For instance, it is well known (e.g., Benter, 1994) that large betting syndicates,
attracted by the unusually large betting volumes and strict regulation in Hong
Kong (which helps to eliminate malpractice and insider trading) use
sophisticated computer models to make considerable profits in this market.

Johnson, Schnytzer, and Liu (2009) extended the analysis of Liu and
Johnson (2007) in two ways. First, noting that bettors in Hong Kong often spend

considerable time reviewing race results, they expected that barrier position
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(the stall position from which the horse starts the race) would be a significant
anchor for bettors. Second, decision makers with a higher level of expertise tend
to be less susceptible to anchoring effects (e.g., Northcraft and Neale, 1987), so
they expected that more experienced bettors would be less prone to anchoring.
They found that bettors as a whole did not anchor excessively on barrier
position over all their data but bettors overestimated the advantage offered by a
good barrier position in one of the two racetracks under investigation. However,
they found that expertise significantly reduced the extent of anchoring
displayed by bettors (they used early and late betting as a proxy for inexpert
and expert bettors, respectively). In summary, the two anchoring studies
conducted in betting markets indicate that anchoring in real world
environments may be a more complex phenomenon than has been found in
laboratory studies, suggesting that further research may be required to fully

understand its influence on decisions in real world environments.

1.4.2. Herding

Herding occurs when decision makers neglect their own information and
adjust their actions to be more representative of the actions of others. Early
theoretical models rationalized herding behaviour as information cascades,
where decisions are made sequentially by different agents who each hold their
own private information (e.g., Banerjee, 1992; Bikhchandani et al., 1992; Avery
and Zemsky, 1998). The validity of the information is inherently uncertain and,
as a result, individuals may be rational in disregarding some of their private
information when the information held by other agents appears to conflict with
their own. Hence, strictly speaking, herding behaviour in itself may not be
‘biased’ decision making. However, a biased outcome results from the combined
effect of herding by multiple participants. In particular, this behaviour can lead
to expected returns differing significantly from their ‘rational’ value.

Laboratory studies have generally found that participants display herd
behaviour, but to a lesser extent than theoretical models predict, although the
evidence has been inconclusive (Spiwoks et al.,, 2008). In betting markets,

herding might be expected because there is a belief that certain bettors have
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access to privileged information. It has been found that betting on a horse or
team that subsequently attracts a high degree of betting interest during the
course of the market (known as a ‘market mover’ or ‘plunger’) is, on average,
profitable (e.g., Crafts, 1985). The problem, of course, is that it is difficult to
identify such opportunities before the fact, and this is where bettors with access
to privileged information can gain an advantage. Bettors with superior
information are often referred to as ‘insiders’ in the literature because of the
presumption that their information is not in the public domain (e.g., a racehorse
owner may have knowledge of secret training programs). However, there are
also some bettors who use only publicly available information, but expertly
combine all the information in such as a way as to form highly accurate opinions
of the competitors’ chances; these bettors are often referred to as ‘informed’
bettors. The presence of insiders and informed bettors in betting markets is
widely reported (e.g., Crafts, 1985) and, consequently, herding behaviour may
ensue when ‘uninformed’ bettors interpret a significant price movement as a
signal that a competitor is being backed by insiders or informed bettors, and
alter their bets accordingly.

The first study that investigated whether bettors herd is that of Camerer
(1998). He tested whether bettors might respond to privileged information
signals by placing large early bets in pari-mutuel pools at US racetracks and
recording subsequent betting patterns. The purpose of this field test was to
investigate whether markets could be manipulated. However, by observing the
reactions of bettors to the temporary bets (Camerer subsequently cancelled the
early bets), Camerer was also able to observe whether or not bettors displayed
herding behaviour. He began by placing temporary bets of $500. He found that,
while his bets temporarily distorted the odds, prices returned to their expected
levels after cancelling his bets, indicating that bettors were not responding to
the fake signals. Following this, Camerer increased his bet size to $1000 and
targeted smaller racetracks and ‘maiden’ races (for horses that have never won
a race). He detected a weakly significant herding effect whereby bettors were
more likely to respond in the maiden races. However, overall the results still
resolutely showed that bettors did not display herding behaviour. There

remains an important caveat: although Camerer’s bets made up of about 7% of
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the pool in the second study, they still may not have been large enough to
induce herding. In a later study, Law and Peel (2002) argued that the apparent
lack of herding in Camerer’s (1998) study probably arose because, while the
bets were sufficiently large to temporarily distort the markets, there was little
incentive for bettors to herd on the initial price movement, since pari-mutuel
bettors cannot lock in profits. To counter this, they conducted an empirical test
for herding in UK bookmaker markets for horseracing. They argued that since
the returns to a bet with a bookmaker are known at the time of bet placement,
bettors might be more likely to herd in these markets. They noted that while an
initial price movement could be due to informed trading, a further price
movement may result from further informed trading or herding. Using the Shin
(1993) measure of the degree of insider (or informed) trading, they were able
to identify those large price movements that resulted from the trading of those
with access to privileged information (the Shin measure increased over the
duration of the market) or from herding (the Shin measure decreased). Law and
Peel were particularly interested in those horses that opened at shorter odds
than forecasted that then attracted significant betting interest. Significant
positive returns of 10.2% could be made by betting on horses with these
characteristics whose odds plunged as a result of informed trading; returns
were significantly negative otherwise, at -10.9%. Consequently, Law and Peel
were able to demonstrate that herding led to biased prices, with negative
(positive) returns being reported when price movements were due to herding
(informed betting).

Schnytzer and Snir (2008) noted that a horse that is not attracting bets
that suddenly attracts a high degree of betting interest is likely to be
overestimated due to herding. However, early plunges in odds suggest trading
by bettors with privileged information, so they hypothesised that, due to the
limited budgets of insiders, “a short time later, when the odds on those runners
are lengthened again, those insiders are either unable or unwilling to place bets
of sufficient significance to affect prices, even when the odds on those runners
have drifted back to initial levels or even further” (p.3). This may arise because
informed traders place most of their bets early in the market to secure profits.

Schnytzer and Snir considered two possible situations: either odds increase
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early in the market and then decrease, or odds decrease early in the market and
then increase. In the former, the late betting interest on the horse is considered
to be evidence of herding, since the horse attracted little interest in the early
market, and the final odds are expected to overestimate the horse’s winning
chances. In the latter, the early plunge followed by a lack of betting interest in
the late market is considered evidence of cash-constrained informed betting,
and the final odds are expected to underestimate the horse’s chances.
Investigating their hypothesis in bookmaker markets in the UK and Australia,
their results demonstrated that, for horses attracting early but not late betting
interest, positive returns of 15.3% were possible. On the other hand, only highly
negative returns (as low as -27.2%) were possible for horses that lacked
interest in the early market but were the subject of herding in the late market.
These results confirmed that bettors herd and that this can lead to highly biased
outcomes.

In summary, studies of anchoring and herding in betting markets have
offered mixed conclusions. Camerer (1998) was unable to induce herding
behaviour with his ‘fake’ signals but other studies have found evidence of
significant herding by bettors when insider trading is prevalent. However, it
appears that bettors do not anchor their judgements to the extent that has been
reported in the laboratory. This may result from the fact that bettors are making
decisions in an environment with which they are familiar (cf. naive subjects in
unfamiliar laboratory settings) and in which they have learned (e.g., through
repeated trial and improvement) to handle appropriately the redundant
information and decision-relevant cues. Equally, while many bettors may herd
to a significant extent, the actions of informed bettors, who arbitrage on the
herding behaviour of others, may serve to suppress the observable effects of

herding.

1.5. The gambler’s fallacy and the hot hand fallacy

The gambler’s fallacy and the hot hand fallacy both involve a

misunderstanding of the nature of randomness. The application of these

fallacies often results in systematically biased behaviour. The gambler’s fallacy
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is defined as the belief that an event’s probability of occurring is reduced after
that event has occurred, even if the event is independent from one trial to the
next (Rabin, 2002). Laplace (1825, p.92) gave the following examples from

lotteries and coin tossing:

when one number has not been drawn in the French lottery, the mob is
eager to bet on it. They fancy that, because the number has not been
drawn for a long time, it, rather than the others, ought to be drawn on the
next draw. . .. It is, for example, very unlikely that in a game of heads or
tails one will get heads ten times running. This unlikeliness, which
surprises us even when the event has happened nine times, leads us to

believe that tails will occur on the tenth toss.

The gambler’s fallacy is the conviction that the coin, which is known, objectively,
to be fair, is more likely to land heads than tails after the ‘streak’ of nine tails.
This belief is demonstrated in laboratory experiments where participants are
asked to invent a random sequence, such as repeated tosses of a coin. The
results show that people tend to produce sequences containing too many
alternations in the outcome relative to genuine randomness (Falk and Konold,
1997). The representativeness heuristic has been proposed as an explanation:
the gambler believes that small samples must be representative of the
population, so if unexpected sequences occur, a correction is expected (Tversky
and Kahneman, 1971). As Tversky and Kahneman (1974, p.1125) note: “chance
is commonly viewed as a self-correcting process in which a deviation in one
direction induces a deviation in the opposite direction". Since nine tails in a row
is an extremely unlikely event, the observer committing the gambler’s fallacy
expects that the next toss should be heads, in order to make the sequence of ten
tosses seem less unusual. A commonly-cited example of this phenomenon is
that of the Monte Carlo casino where, in a roulette game in 1913, black occurred
26 times in a row. During this streak, customers bet increasing amounts on red,
and the casino profited as a result (Lehrer, 2009).

The hot hand fallacy involves mistaken convictions that run contrary to

the gambler’s fallacy. In particular, this fallacy involves a belief that if a player
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or team is on a winning (or losing) streak, this streak will continue longer than
should be expected in a random sequence. So, in a game where the objective is
to obtain tails on the toss of a coin, a gambler who has achieved the unlikely feat
of landing tails nine times in a row believes that they are on a ‘hot streak’, and
therefore expects that the coin has a greater probability of showing tails than
heads on the next toss.

Gilovich, Vallone, and Tversky (1985) found that many basketball players
and fans believed that a player would be more likely to score on a shot if they
had scored (cf. missed) on their previous shot. However, they found no evidence
to support this claim in either real games or controlled shooting experiments.
The hot hand has been attributed to the illusion of control, which is the
misplaced perception that gamblers have an element of control over random
events (Langer, 1975). In fact, it has been shown that some gamblers believe
that luck is separate from chance, and that their good fortune allows them to
operate outside the laws of probability while they are on winning streaks
(Wagenaar and Keren, 1988). Gilovich, Vallone, and Tversky (1985) suggested
that, as with the gambler’s fallacy, bettors may be employing the
representativeness heuristic. In this case, long runs are deemed too unusual for
the representative sequence, so bettors infer that the sequence generating
process is no longer random (e.g., a basketball player who shoots an usually
high run of on-target shots is said to be ‘in the zone’, or a roulette table or die is
assumed to be biased). It is possible that, while a general belief in the hot hand
may be misplaced, an accurate belief in the hot hand in specific instances
motivates people to believe in its universality (see Bar-Eli et al., 2006, for many
examples of genuine hot hand effects). The remainder of this section details the
findings of studies that have investigated the two fallacies in naturalistic

environments.

1.5.1. Evidence of the gambler’s fallacy in betting markets

Clotfelter and Cook (1993) undertook one of the early studies using real

betting data to investigate the gambler’s fallacy. The US state of Maryland runs a

‘daily numbers’ draw lottery, where a 3-digit number between 000 and 999 is
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picked at random, and the bettor wins if they select this number. Clotfelter and
Cook found that betting volumes on a number decreased in the days after the
number was drawn, before returning to original levels after 84 days. It was
postulated that bettors could be reducing their bets on numbers that had been
drawn previously because they thought that that number was less likely to
appear again. However, Clotfelter and Cook were unable to eliminate a ‘wealth
effect’ from their data: bettors who regularly bet a particular number might
stop betting altogether because they had achieved their financial goals. This
could lead to a natural reduction in betting volumes on a winning number in the
days and weeks after its appearance. A more significant caveat with Clotfelter
and Cook’s study was noted by Terrell (1994): the Maryland lottery has fixed
payouts (winners are always paid $500 on a one-dollar bet), so choosing
numbers based on the gambler’s fallacy does not reduce the expected return to
the bettor.

Croson and Sundali (2005) studied 18 hours of roulette play in a real
casino, during which over a hundred players placed thousands of bets. They
found evidence of the gambler’s fallacy after streaks of around 5 or more similar
outcomes (e.g., 5 red numbers in a row). However, Croson and Sundali (p.200)
pointed out a similar concern to that existing in the Clotfelter and Cook (1993)
study: “since the house advantage on (almost) all bets at the wheel is the same,
there is no economic reason to bet one way or another (or for that matter, at
all).”>

These studies highlight an important issue: while the gambler’s fallacy is
anecdotally known to be a common belief among gamblers, it does not always
result in biased behaviour. For example, in roulette, the returns to bets on each
outcome are independent of the bets placed by the customers. Therefore, the
decision of which outcome to bet on is irrelevant. The gamblers in the Monte
Carlo casino were not necessarily wrong to bet on red rather than black
(although they might have bet more than they could afford). In such cases, it is

plausible that belief in the fallacy only adds to the excitement of the game.

5 Croson and Sundali also found evidence of the hot hand fallacy: 80% of bettors quit playing
after losing a bet while only 20% quit after winning. Moreover, bettors tended to place more
bets after winning than after losing.
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In circumstances where acting on the fallacy results in a systematic bias
that leads to a lower expected return for the bettor, it might be expected that
the fallacy would be eliminated (e.g., by a learning process). However, there are
a number of examples of the gambler’s fallacy resulting in a systematic bias.
These studies have necessarily needed to be creative in order to identify
situations where one might expect evidence of the gambler’s fallacy. For
example, Metzger (1985) found evidence that horserace bettors tend to believe
that streaks of favourites and longshots winning should cancel out. So, if a series
of longshots wins, they bet more on favourites, and vice versa. Terrell and
Farmer (1996) thought that bettors at greyhound racing events might believe
that the starting positions of the winning dogs should be more random than it
appears. Thus they might underestimate the winning chances of a dog starting
in a given position from winning if the winner of the previous race also started
from that position. Their calculations revealed that this was the case, with a
positive return of $1.09 per dollar bet for a strategy of betting on dogs starting
from the same position as the winner of the previous race. Terrell (1998)
extended the study of Terrell and Farmer (1996) with a larger dataset, but only
found significant evidence of the fallacy in one of the two years in their data.

Terrell (1994) conducted a similar investigation to Clotfelter and Cook
(1993) but in a pari-mutuel New Jersey lottery, where payouts are shared
between all the bettors who choose the winning number. Hence, if many
gamblers avoid numbers that have recently appeared, the expected return to
these gamblers is reduced. As expected, the extent of the gambler’s fallacy was
lower in this case. However, there was still a tendency to avoid numbers that
had recently appeared. Terrell also found that if the results of Clotfelter and
Cook were converted to a pari-mutuel system, there would be frequent
occurrences when the payout would exceed $500, giving a positive expected
return to bettors. This is not the case in New Jersey, so bettors appear to bet
more evenly to avoid foregoing the increased potential winnings, and this
diminishes the potential to exploit the fallacy. An alternative explanation for the
results is that bettors simply prefer not to bet on a recently-seen number, in the

same way that they prefer certain numbers (such as 777). Similarly,
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Papachristou (2004) found only marginal evidence of the gambler’s fallacy in

the pari-mutuel lottery in the UK.

1.5.2. Evidence of the hot hand fallacy in betting markets

As indicated above, the hot hand fallacy is also a mistaken perception of
randomness. However, as with the gambler’s fallacy, this mistaken belief does
not necessarily impose economic penalties. Camerer (1989) examined the
economic significance of the hot hand fallacy by investigating whether this
mistaken belief is represented in gamblers’ betting decisions. He categorized
basketball teams based on their current winning or losing streak (in games),
and then compared the actual results with the point-spreads offered by
bookmakers®. If bettors believe in the hot hand, point-spreads will overestimate
the chances of teams currently on winning streaks against the spread, while
underestimating the chances of teams on losing streaks. The results showed
that the performance of teams on winning streaks is worse than predicted by
point-spreads, and teams on losing streaks perform better than predicted.
However, the results were only marginally statistically significant.

Brown and Sauer (1993a, p.1377) highlighted the importance of the
following critical assumption in Camerer’s (1989) study: “the hot hand is belief
in a myth”. Camerer was effectively testing two alternatives: either bettors
believe in a mythical hot hand, or they do not. However, there is evidence that
genuine hot hand effects exist (Bar-Eli et al., 2006). Consequently, there is a
third alternative: bettors believe in a genuine hot hand’. In this case, while
bettors will move point-spreads to account for the hot hand effect, so teams’
performance levels will also change. Brown and Sauer considered all three
alternatives in basketball point-spread markets, but found only mixed results.

They could not reject the hypothesis that the hot hand is real and that bettors

6 The point-spread market is a betting market in which a bet wins if the home team wins by a
specified margin of points (the point-spread) or, if the point-spread is negative, the home team
loses by less than the point-spread (this is known as the team winning ‘against the spread”).

7 There is a fourth alternative - that bettors are unaware of a genuine hot hand effect - but this
hypothesis is not tested by Brown and Sauer.
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correctly account for it, but they could also not reject the hypothesis that
bettors believe in a mythical hot hand.

In a further study on the hot hand in point-spread markets for basketball,
Oorlog (1995) found strong evidence against the hypothesis that gamblers
believe in the hot hand. They devised a number of betting strategies to account
for possible hot hand effects but none were profitable. Avery and Chevalier
(1999) investigated US football betting markets, and also found a small bias as a
result of the hot hand fallacy, but, again, the magnitude of the effect was small.

Further mixed evidence for the hot hand fallacy was provided by Durham,
Hertzel, and Martin (2005). They found that point-spreads over-/under-
estimated US college football teams on short winning/losing streaks against the
spread, which is consistent with the hot hand fallacy. However, the point-
spreads suggested that bettors expected longer winning or losing streaks to end
rather than continue. Similarly, Paul and Weinbach (2005) found that betting
against basketball teams on short winning streaks was profitable, while betting
against teams on longer winning streaks was not. Moreover, they found no hot
hand effect for teams on losing streaks, and suggested that this might be
because bettors derived additional utility from betting on teams on winning

streaks.

1.5.3. The paradox of the hot hand and gambler’s fallacies

An important consideration is that the hot hand and gambler’s fallacies
appear at first to be opposite effects. While bettors may believe that long runs in
the results of players or teams will continue (the hot hand), they simultaneously
believe that long runs should end (the gambler’s fallacy). This begs the question:
how can we explain two apparently opposite effects?

One proposed explanation for both fallacies is the representativeness
heuristic (Tversky and Kahneman, 1971), in which decision makers believe that
sequences should be representative of the generating process. Decision makers
apply the ‘law of large numbers’ too readily, i.e., they believe in the ‘law of small
numbers’. That is, while the relative frequencies of outcomes approximate the

generating process in the long run, people believe that this should also be the
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case in the short run. So, the gambler’s fallacy is explained because people
believe that unusually long streaks are not representative, and so predict an
alternation to make the sequence more representative. The hot hand is
explained because people tend to over-infer from short sequences in a random
process and decide that there is some underlying non-random process
generating the sequence (Rabin, 2002).

It is potentially problematic to explain opposite phenomena with the same
principle. However, a solution was provided by Ayton and Fischer (2004; see
also Burns and Corpus, 2004). They tested whether the type of random process
employed to generate the result was consequential in whether decision makers
displayed the hot hand or the gambler’s fallacy. They hypothesized that, when
outcomes reflect human performance, people believe in the hot hand, whereas,
when outcomes reflect inanimate mechanisms, people believe in the gambler’s
fallacy. This might explain why winning streaks of basketball and roulette
players are perceived to exhibit long run tendencies, whereas outcomes of
roulette games and lotteries are not. They conducted an experiment where they
asked participants to play a simulated roulette-style game. Participants were
required first to choose between red and blue, and were then asked to rate their
confidence in their prediction. The results confirmed that while people are
more likely to predict an alternation after a long run of either colour, they are
also more confident in their own ability after a long run of successful
predictions. Ayton and Fischer (p.1374) concluded that while the sequences of
outcomes (red or blue) and predictions (win or lose) are each identical
independent processes, “the two sequences are psychologically perceived quite
differently; subjects simultaneously exhibited both . . . the hot hand and the
gambler’s fallacy”. In a second experiment, they found that participants were
more likely to attribute random sequences with low/high alternation rates to
human performance/inanimate mechanisms. This line of experimentation goes
some way to unravel the problematic nature of explaining two apparently
opposite effects with the same heuristic.

In summary, there is evidence from a diversity of naturalistic betting
environments that the decisions of bettors are consistent with the gambler’s

fallacy. However, the extent of the fallacy is reduced when it results in biased
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decisions, suggesting that bettors are sensitive to its economic significance.
Research examining the hot hand fallacy in betting markets has been
inconclusive. None of the above studies found irrefutable evidence that bettors
believe in the hot hand and that market odds are biased in accordance with this
belief. If there is a hot hand effect in markets, it is generally so small as to be

economically insignificant.

1.6. Conclusion

The theme of this paper has been that, while many biases in decision
making have been demonstrated in laboratory-based studies, there are many
reasons for suggesting that these findings may not translate to the real world.
Betting markets offer a valuable naturalistic setting in which to explore biased
decision making, because participants are making decisions in a situation that is
more representative of the environments in which day-to-day decisions are
made. We have argued that bettors display significantly less biased judgements
in their natural domain than those of naive participants in laboratory
experiments. To support this view we have cited a number of examples related
to rationality and calibration of subjective probability judgements. Furthermore,
we have shown that there is only mixed evidence that bettors anchor their
judgements, engage in herding behaviour, or believe in the hot hand or
gambler’s fallacies. Even the FLB, which has been the focus of the majority of
research in betting markets, is no longer observable in some markets.

The primary conclusion of this paper is that, while systematic biases
reported in the laboratory have been found in naturalistic betting markets, the
extent and generality of these biases in these real world environments is often
significantly less. The context of the decision task, the incentives offered, the
lack of scrutiny involved, and the experience of the decision makers all
contribute to an explanation for this conclusion. Another consideration is the
importance of aggregation. It is costly and ethically challenging to obtain betting
market datasets from which it is possible to discern individual biases. In a more
typical dataset, individual biases may be eliminated by aggregation of the

opinions of a diverse range of bettors. Moreover, even a systematic bias that is
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attributed to a large portion of the betting population can be reduced by the
unbiased actions of a wealthy few, as there is always a strong economic
motivation to capitalize on the biases of others.

A drawback to the heuristics and biases approach to decision making in
general is highlighted by our discussion of the hot hand and gambler’s fallacies.
There is initially a problem with explaining two apparently opposite biases with
the same heuristic, although subsequent research has clarified that there are
two separate situations when people will use either of these fallacies. On the
other hand, it can be impossible to narrow down multiple explanations for one
bias to the single explanation that is most valid. Thus, there have been a wide
range of explanations proposed for the FLB. Similarly, the hot hand fallacy could
be explained by the illusion of control, or by the representativeness heuristic, or
by extrapolation of genuine hot hand effects. As Wagenaar (1988, p.115-116)

argues, the heuristics and biases approach

does not specify rules telling us which heuristic will be applied in a given
situation. Even worse, from the individual differences among gamblers, it
is obvious that several heuristics could be chosen in one and the same
situation, and that these heuristics lead to opposite behaviors. . .. There
are so many heuristics, that it will be virtually impossible to find

behaviours that cannot be accounted for.

Hence, while there is some evidence of biased behaviour in betting markets,
explaining its prevalence is another matter altogether.

There are further issues associated with betting market research that may
lead one to question the generalizability of the conclusions drawn from such
studies. For example, bettors may be unrepresentative of the wider public since
they are predominantly older males (Dipboye and Flanagan, 1979), and there
may be some self-selection effects (indeed, it is not obvious as to why some
people gamble and some do not; see Rachlin, 1990). We must also retain some
scepticism about generalizability from betting markets to other economic
settings (Levitt and List, 2007). Just as laboratory research should recognize

that generalizability of findings is limited, future research into biased decision
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making in betting markets should acknowledge that laboratory
experimentation is often the first available evidence that heuristics are being
employed or biased outcomes are occurring. Without either the theoretical
background or the controlled elegance of laboratory research, naturalistic
research might be confounded by the vast array of potential variables involved
and the often unintuitive nature of real-world decision making. The way
forward appears to be a tandem approach with betting market studies being
informed by results from laboratory experiments, and the latter being designed
to examine the causes of phenomena that the former highlight. In this manner,
the true nature and real world characteristics of behavioural biases may be

revealed.
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2. Noise, herding, and the efficiency of market prices: insights

from markets for state contingent claims

Abstract

We develop new insights into unresolved issues related to the role of noise
traders and the nature and effect of herding in financial markets by examining
an electronic exchange market for state contingent claims. We find that noise
trading is associated with increased market efficiency, and attribute this to
informed traders being attracted by the improved liquidity that noise trading
creates. We find evidence of differing ‘buy’ and ‘sell’ signal-induced herding in
the later, more active stages of the market. We demonstrate that this results in
an economically significant inefficiency; strategies designed to trade against the

herd show substantial positive returns.

2.1. Introduction

An important concern in the financial markets microstructure literature
has been the role of information and noise in market efficiency. Does noise
trading result in excessively volatile, inefficient markets, in which added risks
limit the possibility of arbitrage by informed investors? Or is noise essential in
providing liquidity to informed investors in order that markets are efficient? A
related issue is how to reconcile the apparently irrational behaviour of herding
with the efficient markets hypothesis. If herding is rational, why do some of its
worst consequences, asset bubbles and crashes, seem so irrational? Answering
these questions has proved difficult using traditional financial market data.
Consequently, we examine these issues by employing data from a market for
state contingent claims, which offers considerable advantages for this research.

In Black’s (1986) model, noise and information are contrasted, but each is
essential for liquid markets. Noise and informed trading are complementary,
since noise trading is regarded as trading that is not based on information. For
Black, noise traders are entirely irrational. However, some studies have argued

that noise trading can be rational because of its potential to make positive
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returns (Hong and Stein, 1999). It has been predicted (Black, 1986; De Long et
al,, 1990) and, to an extent, verified empirically (Campbell and Kyle, 1993) that
a consequence of noise trading is increased volatility in market prices, a result
that has important implications for policy making (e.g., Shleifer and Summers,
1990). However, the true role that noise plays in market efficiency remains the
subject of much debate. On the one hand, it has been argued that noise may
result in volatility in excess of the variations justified by underlying
fundamental information (Shiller, 1981, 1990). In this case, noise is detrimental
to market efficiency because of its destabilizing effect on long-run equilibrium
values (De Long et al., 1990, Shleifer and Summers, 1990, Shleifer and Vishny,
1997). Noise introduces risks for informed traders, such as the risk that the
market remains inefficient longer than the informed trader can remain liquid.
Consequently, because informed investors are risk averse, they limit their
arbitrage; thus, noise is seen as contributing to price inefficiency.

On the other hand, noise may be essential for generating liquid, and thus
efficient, markets (Black, 1986). The seminal models of Grossman and Stiglitz
(1980) and Kyle (1985) each predict that increased noise trading brings forth
more informed trading. In Kyle’s model, noise does not destabilize prices when
informed traders are risk neutral. In Grossman and Stiglitz’s model, the
increased levels of noise and informed trading cancel each other out, so prices
are stable. More recently, in the experimental market of Bloomfield, O’Hara, and
Saar (2009), noise trading is shown to harm market efficiency, but only when
prices are extreme. When prices are not extreme, noise traders help to make
prices more efficient by providing liquidity for the informed traders.

It is difficult to resolve this issue in regular financial markets where
uncertainty is always present, resulting in difficulties in fully measuring their
efficiency. In Black’s (1986, p.529) model, “noise is what makes our
observations imperfect. It keeps us from knowing the expected return on a
stock or portfolio ... It keeps us from knowing what, if anything, we can do to
make things better”. As Shleifer and Summers (1990, p.22) note, identifying
noise trading is tricky, “since price changes may reflect new market information
which changes the equilibrium price”. To overcome this problem, we examine a

market that has a defined end point at which all uncertainty in the relation
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between prices and fundamental information is resolved. Specifically, we
examine an electronic exchange market for state contingent claims, a horserace
betting market. “In its simplest formulation, the market for bets in an n-horse
race corresponds to a market for contingent claims with n states in which the
ith state corresponds to the outcome in which the ith horse wins the race” (Shin,
1993, p.1142). These markets also offer the opportunity of quantifying the
proportion of market activity attributable to informed trading (using a model
developed by Shin, 1993). Consequently, we are able to examine variations in
market efficiency with respect to the levels of noise trading (as the complement
of the level of informed trading) in the market.

While noise is trading based on anything but information, a different, but
related phenomenon is that of herding, which is trading based on the perceived
information of other traders. Specifically, herding occurs when market
participants neglect their own private information and adjust their actions to be
more representative of those of other traders. They do this in the belief
(perhaps mistaken) that other traders are more informed than themselves. The
combined activity of many herding traders can result in extraordinary changes
in asset values over a short period, possibly leading to bubbles, crashes and
bank runs (Devenow and Welch, 1996). While the consequences of herding are
irrational at the aggregate level, herding may be rational at the individual level.
Theoretical models have rationalized herding as ‘information cascades’, where
decisions are made sequentially by different agents who each hold their own
private information (e.g., Banerjee, 1992; Bikhchandani et al., 1992; Avery and
Zemsky, 1998). There is uncertainty over the validity of price signals and,
consequently, it may be rational for agents to disregard some of their private
information when that held by others appears (as revealed by their actions) to
conflict with their own. In fact, in Hong and Stein’s (1999) model, momentum
traders can earn positive profits, provided they trade early enough in the
‘momentum cycle’.

While herding behaviour has a theoretically sound basis, empirical
evidence for the phenomenon in financial markets is inconclusive (Lakonishok
et al.,, 1992; Wermers, 1999; Sias, 2004). Similarly, mixed results have been

found in laboratory-based studies, in which both the decisions and the
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information on which they are based are observable (e.g., Cipriani and Guarino,
2005; Spiwoks et al., 2008). The common finding from these studies is that
participants do herd, but to a lesser extent than theoretical models predict.

We address the unresolved issues raised above and provide important
evidence which furthers understanding of the role of noise traders and the
nature and effect of herding in financial markets. In particular, we first
demonstrate that markets are both more volatile and more efficient when there
is a greater degree of noise trading, supporting the hypothesis that noise
trading improves market efficiency, perhaps by providing liquidity to informed
traders. Second, we find that herding behaviour is prevalent in the market and
leads to greater inefficiency than previous studies have suggested. We show
that trading strategies designed to capitalize on mispricing caused by herding
can earn significant abnormal returns, with initial capital rising by 95% on
around 500 trades (a rate of return on turnover of over 10 percent). In addition,
we are able to identify inefficiences in over 33 percent of the 1514 separate
markets considered, indicating that the prevalence of herding is a significant
issue. In addition, our results help resolve the conundrum of why previous
herding evidence is so mixed, as we are able to measure the extent of herding at
different stages of the market and, separately, for ‘buy’ and ‘sell’ signals.
Specifically, we show that it is possible to make abnormal returns by trading on
herding activity because market participants overestimate the information
contained in large price movements in the later stages of the market, when
there is little time for the inefficiency to be corrected. Furthermore, we show
that the extent of herding is greater following ‘sell’ (cf. ‘buy’) signals.

This paper is organized as follows. In section 2.2, we describe the
advantages betting markets offer for gaining insights into noise and herding in
financial markets. In section 2.3, we develop the hypotheses, and in section 2.4,
we outline the data and methods employed. We present the results in section

2.5, discuss them in section 2.6, and conclude in section 2.7.
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2.2. Noise and herding in betting markets

Betting markets are valuable settings in which to explore behaviour in
financial markets (Sauer, 1998). They share many characteristics with other
financial markets, including the complexity and interdependence of factors
which influence an asset’s value, ease of entry, and a large number of
participants who have access to a range of information (Vaughan Williams and
Paton, 1997). In addition, as indicated above, betting markets (based on events
such as political elections or horseraces) are markets for state contingent claims
(Shin, 1993).

Furthermore, there is an important reason for believing that insights
regarding noise trading and herding in financial markets may be more
forthcoming when studying betting markets. In an efficient market, we should
expect market prices to precisely reflect revealed fundamental information.
However, in financial markets, prices are never entirely derived from the
current fundamental information; rather, prices represent the current
expectation of future prices. Hence, even if current fundamentals were fully
known, there remains some uncertainty in prices. Betting market data enable us
to overcome this concern. In particular, markets for an event (e.g., a race) close
at a pre-defined end point. Bets are then settled, with all bettors receiving
unambiguous payoffs. Consequently, in these markets there is a time when all
uncertainty is resolved; the underlying fundamental information is revealed, in
the sense that a winner is declared. This is repeated often, with several
thousand separate markets per annum.

Exploration of noise trading and herding in betting markets also offers
advantages over laboratory enquiry. In particular, betting involves uncertain
and dynamic information, time stress, and rewards and penalties that matter to
decision-makers: features that Orasanu and Connolly (1993) argue are only
present in real-world decision contexts. Anderson and Brown (1984) confirm
that risk-taking behaviour in high-stakes, real-world contexts is difficult to
reproduce in laboratory settings. In addition, caution must be exercised when
inferring from laboratory-based studies (which often involve non-experts

making decisions in alien domains: Johnson and Bruce, 2001) the behaviour of
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experts such as those populating regular financial and betting markets.
Consequently, betting markets appear to offer an ideal environment in which to
develop insights into noise trading and herding.

Despite these advantages, relatively few studies have investigated these
topics in betting markets. Brown and Sauer (1993b) found that, in a basketball
betting market, the noise component in price variation was small relative to
that associated with unobserved fundamentals, i.e., “noise is news” (p.1208).
Those studies investigating herding in betting markets have generally shown
that, as expected, betting on events (e.g, a horse winning a race) that
subsequently attract a high degree of betting interest (known as a ‘plunge’) is
profitable (Crafts, 1985; Schnytzer and Shilony, 1995). The problem, of course,
is identifying such opportunities before the fact, and this is where bettors with
access to privileged information can gain an advantage. Herding behaviour may
ensue when a plunge is regarded by noise traders as a signal that the horse is
being backed by those with privileged information. However, Camerer (1998)
found that ‘fake’ privileged information signals (he placed large early bets in US
pari-mutuel pools) failed to cause herding behaviour. This may have been
because the fake bets were not large enough for other bettors to perceive them
as genuine informed bets. Alternatively, bettors had little incentive to herd on
the initial price movement, since, in pari-mutuel markets, payoffs are only
known at the market close.

Law and Peel (2002) examined occasions when genuine privileged
information resulted in significant price movements in UK bookmaker markets.
They found that positive returns were obtainable by betting on horses that
plunged as a result of informed trading, whereas returns were negative
otherwise. Notably, it is the absence of herding which leads to the inefficiency,
i.e., bettors fail to recognize genuine signals of privileged information. However,
plunges resulting from trading by agents with privileged information were rare.

Schnytzer and Snir (2008) developed a model of cash-constrained
informed traders in a bookmaker market. If mispricing becomes apparent early
in the market, informed traders bet to take advantage, and herd betting by noise
traders may ensue, causing a large price movement. However, there may be

occasions when the price then returns to inefficient levels; at this point the
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informed traders have no cash remaining to exploit the inefficiency, which
remains in the final prices. Consistent with the model, they find that positive
returns can be made by betting on horses for which there has been a significant
early plunge, but a later reversal in price. However, the set of such horses is
again very small, so it is still unclear whether the results represent a genuine
inefficiency. Their study is reminiscent of Hong and Stein’s (1999) model, in
which ‘newswatchers’ are cash-constrained and so underreact to their private
information. This enables momentum traders to initially profit from the
newswatchers’ revealed information, but later a herding effect is created as
momentum traders follow each other’s trades rather than those of the
newswatchers.

To develop important new insights, our study differs from these previous
studies in a number of ways. First, we adopt a method (unlike that of Brown and
Sauer, 1993b) that enables us to distinguish between noise and informed
trading, allowing us to reveal the effect of noise trading on market efficiency.
Second, we employ data from a betting exchange, where prices are derived
entirely from the relative levels of supply and demand. This avoids the difficulty
of interpreting lowering prices in bookmaker markets (employed in Law and
Peel, 2002) as evidence of herding, since these price movements may result
from bookmakers artificially lowering prices and may not be related to changes
in bettors’ demand. Finally, previous betting market studies have been
conducted in markets (bookmaker or pari-mutuel), where ‘assets’ can only be
‘bought’. We examine betting exchanges, which more faithfully represent wider
financial markets. Importantly, in these markets participants can both buy and
sell assets (i.e., ‘back’ or ‘lay’ a contestant to win or lose, respectively), allowing

us to assess the relative importance of ‘buy’ and ‘sell’ trading signals.

2.3. Betting exchanges, Shin z, and hypotheses

2.3.1. Betting exchanges

We employ data from Betfair, the largest exchange betting market in the

world by traded volume, with horserace betting revenues of £103 million in
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2011 (Betfair, 2011). We consider ‘win’ markets, in which bettors must predict

which horse will win (or, alternatively, which horses will lose). The odds for

horse i in race j, are the best odds I_Ql.j at which it is currently possible to back

the horse to win. This represents the return to a £1 winning bet (e.g., a winning
£1 bet with odds of 3.00 returns £3 for a profit of £28). However, as is typical of
exchanges, Betfair generally take a commission of 5% on net winnings®.

Consequently, the effective odds, which we use in our analysis, are given by

R, =1+0.95(§ij —1). It is standard in the betting markets literature to make a
distinction between ‘odds’ R; and ‘price’ r, =1/R;, and we adopt this

convention. The odds-implied probability g; of horse i winning race j, with n;
runners, is then given by

T

>
s=1 r*j

While the horses’ true winning probabilities are not knowable explicitly, each

(2.1) q, =

race j results in a vector of outcomes (ylj,yzj,...,yn»j)T, where yn; = 1 for the

winning horse h and y;; = 0 otherwise. If markets are efficient, then, over many
races, odds-implied probabilities should approximate true winning

probabilities as realized by race results.
2.3.2. The Shin measure of informed trading

Shin (1993) developed a means (known as Shin z) of measuring the
proportion of market participation that can be attributed to traders with
privileged information. His model describes a game based around a horserace,
consisting of an expected profit-maximizing market maker (bookmaker) and a

randomly selected bettor who is either perfectly informed (i.e.,, they know

8 Exchange odds are expressed inclusive of unit stake and are often referred to as ‘decimal’ odds;
this is in contrast to bookmaker markets where odds are expressed as, say, 2/1 for the
equivalent of exchange decimal odds of 3.00.

9 At the time the data used in this study was collected, the commission structure on Betfair was
considerably more complicated than this, with a lower base commission rate applied to high
volume bettors, and an additional charge applied to consistent winners. Thus our assumption
of 5% commission on average is an estimate (and the true average commission rate is of little
consequence to the results).
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precisely the winner of the race) or a noise trader. The model predicts that,
since the bookmaker is not perfectly informed, they will depress odds on
longshots (the horses with the least chances of winning the race) relative to
those on favourites in order to protect themselves from the possibility of large
losses from an informed trader, who is in possession of superior information.
Although in Shin’s original model, informed traders are perfectly informed,
Fingleton and Waldron (1999) relaxed this assumption, showing that it is
equivalent to suppose that the precision of the informed trader’s information
can vary, and that the Shin z value is equal to the level of informed trading times
the degree of precision. Hence, we can assume a more general situation in
which a range of different types of informed traders operate, but that the level
of influence they have in the market is likely to vary in tandem. The Shin z value
itself is directly derived from final bookmaker prices and has been used
extensively in betting market studies in order to investigate claims relating to
the level of informed trading (e.g., Vaughan Williams and Paton, 1997; Smith et
al, 2006). An explanation of the method used to derive Shin z is given in
Appendix 1.

If the proportion of traders holding priviliged information is low in a
market, then the proportion of traders whose information is shared by other
market participants (in the case of Shin’s model, shared with the bookmaker) is
high, and vice versa. If this shared information is already incorporated into
market prices (through odds-setting by the bookmaker), any further trading by
participants with shared information is uninformed and is hence noise trading.
Thus, we use the complement of Shin z to measure the degree of noise trading
in the markets. As in Smith, Paton, and Vaughan Williams (2009), we note that
Shin’s model predated the advent of betting exchanges, and so the assumption
that prices are set by a monopoly bookmaker is no longer valid. However Shin’s
model can be adapted for exchange markets with a few reasonable assumptions.
For example, instead of a monopoly bookmaker, we can assume that there is an
oligopoly of 'big players' who act as market makers. The motivation behind this
idea is that it is well known that there are well-informed traders controlling a
vast share of the wealth that is traded in betting exchange markets. These

traders are subject to lower commission rates due to their large historical
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traded volumes, and this enables them to maintain their dominant status. With
these appropriate modifications to Shin’s model, Shin z can again be employed

to assess the degree of noise trading in the market.

2.3.3. Hypotheses

We first test the predictions of Black (1986) and De Long, Shleifer,
Summers, and Waldmann (1990) that, in the absence of new information, noise
trading increases short term volatility. Previous tests of these predictions (e.g.,
Campbell and Kyle, 1993) are rare and those that have been conducted are only
marginally conclusive. Second, as indicated above, there is some debate as to
whether noise trading has a net positive or negative effect on efficiency. On the
one hand, noise trading moves prices away from efficient levels, and informed
traders, who can restore efficiency, may fail to do so because they are risk
averse (Shleifer and Summers, 1990; Shleifer and Vishny, 1997). However,
when prices are not extreme, noise trading can provide liquidity to informed
traders, enabling them to arbitrage away inefficiency (Bloomfield et al., 2009).
Hence, our first hypothesis is:

1. Increased noise is associated with increased market price (i) volatility, (ii)
efficiency.

In betting exchanges, the demand for bets on a particular outcome is
directly represented in the current market price. Thus, if a large unidirectional
price movement results in a price differing from that expected (given the
complete set of fundamental information), then that price movement is
evidence of herding.

It is well established that bets placed in the later stages of a betting market
are more informative than early bets (Asch et al.,, 1982; Gandar et al., 2001)19.
One explanation is that the timing of bets is variably incentivized depending on
the quality of the bettors’ information (Ottaviani and Sgrensen, 2005). More
informed bettors have an incentive to bet late to avoid revealing their private

information to other bettors. In addition, liquidity is lower in the early stages of

10 While not reported here, we have verified that this is also the case in our exchange market
data.
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exchange betting markets, so bettors incur additional transactional costs in the
form of wider bid-ask spreads, and are unable to place large enough bets to
compensate them for revealing their information. Consequently, herding on
price movements that are believed to be signals of informed trading are likely to
be more commonplace in the later stages of the market (when there may be
insufficient time for informed traders to arbitrage away the resulting
inefficiency). Moreover, on-course bookmaker prices are posted online just 10
minutes before the start of each race, at which point there is usually a
considerable adjustment in off-course and online prices due to the information
contained in the on-course prices (Schnytzer and Snir, 1995). Thus, we should
expect herding to be more prevalent in this final window of betting before the
race starts. These considerations motivate our second hypothesis:

2. Bettors display herding behaviour, but to a greater extent in the later stages of
the market than in the early stages.

In betting exchanges, as in other financial markets, ‘buy’ or ‘sell’ signals
may provide different information signals. Consequently, we investigate
whether bettors’ herding behaviour differs depending on the direction of large
price movements. This investigation is motivated by the fact that betting
exchanges facilitate the laying of ‘known losers’: horses which are deliberately
prevented from running to their potential (Marginson, 2010). This practice
could benefit horse owners who know that their horse will lose. Despite rules
which forbid such behaviour, its prevalence is the subject of much debate,
suggesting that bettors might be more likely to interpret ‘sell’ signals as genuine
informed trading. Consequently our third hypothesis is:

3. Bettors herd to a greater extent on ‘sell’ (lay) signals than ‘buy’ (back) signals.

Herding leads to inefficiency if the deviation in market prices from
fundamental information is sufficiently large such that an arbitrage opportunity
arises. We believe this is likely to be the case, so this motivates our fourth
hypothesis:

4. Herding presents an inefficiency, such that it is possible to make positive returns

by betting against those who herd.
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2.4. Data and methods

2.4.1. Data

The data employed are sequences of odds for 62,124 horses running in
6058 races in the UK and Ireland from August 2009 through August 2010. The
data were downloaded in real-time using the Betfair API and consist of the odds
on the exchange for each horse in each race (as indicated above, the odds are
the best price at which it is possible to back the horse to win!1). The data were
collected at 1-minute intervals throughout the duration of the market, from
9:00 a.m. on the morning of the race, through to race start time (resulting in
over 8.4 million data points). We segment the market on each race into four
time periods, depending on the amount of time left before the race start, in
order to determine the prevalence and direction of herding over different
periods of the market. While markets are often activated on the evening before
the race, or earlier for the most popular events, the vast majority of
participation in markets takes place on the day of the race, so segment 1 begins
at 9:00 am and ends at the race start time. The most active stage of the market
then begins 30 minutes before the race start, since this is the typical length of
time between races at each racetrack, so is the period when most participants
direct their attention to the race. We divide this period of time up into three
segments: segments 2 and 3 end at the race start time and begin 30 minutes
before the race and 15 minutes before the race, respectively, and segment 4
begins 30 minutes before the race and ends 15 minutes before the race. Hence
segment 1 lasts at least 4 hours, depending on the race start time, segment 2
lasts 30 minutes, and segments 3 and 4 last 15 minutes.

For our analysis of noise trading, we split the dataset into ‘high noise’ and
‘low noise’ subsets, consisting, respectively, of those races with below-/above-
median Shin z (with 3029 races in each set). We compare the levels of informed

trading and the efficiency of market prices between the two sets. For our

11 Instead of ‘back’ prices we could have used ‘lay’ prices or the mid-point of ‘back’ and ‘lay’
prices. Similarly, we make a minor assumption that odds are equally valid as prices whatever
the stake limit. Neither of these considerations have more than a very minor effect on our
analysis.
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analysis of price movements, we split the full dataset into a training set of the
first 75% of races (4544: 47,196 horses), and a holdout set of 25% of races
(1514: 14,928 horses). We estimate conditional logit models (McFadden, 1974)
on the training set, in order to determine whether bettors exhibit herding
behaviour. We use these models to predict horses’ winning probabilities in the
holdout set and construct betting strategies based on these probabilities to test
the market efficiency implications of any observed herding. Hence, our
conclusions about market efficiency, which are based only on the holdout set,
can be relied upon, because they are out-of-sample and thus are not influenced

by fitting our models on the training set.
2.4.2. Measures of trend and volatility of odds

We generate an odds curve for each horse in each segment of the market
for a given race, using the method of Johnson, Jones, and Tang (2006). That is,
for each horse i in race j, and for each market segment k, we have a sequence Sjjx

of  Lj  pairs of times ¢,(/) and odds R,()) , e,
Sie = Ut D, Ry (D,ee[25 (L )5 Ry (L )]} - We record price changes so that, for

each time in the sequence, the odds are different from the preceding time.
Consequently, for any time T, where (/)< T <t(l+1), R=R(l) (here, and in the
following, we drop the subscripts i, j and k when their use is not required). The
first/last pair is the first/last time in the segment along with the first/final odds
recorded. The final odds recorded in segment 1 (the full duration of the market)
are the odds at which the horse started the race (or ‘starting price’); this special

case is used to calculate the final odds-implied probability, which is given by

qij(l‘ij):[I/Rij(L”)]/z:il[l/st(L.Sj]')]' Finally, we rescale all the sequences so

7]

that t(1)=0, #(L)=1, and R(L)=1. The result of this procedure is that each
odds curve is a piecewise continuous step function ®(¢) on the interval [0, 1],
such that ®(1)=1. From the odds curve, we measure underlying trends in the

odds. Specifically, the trend p is estimated as the slope of the ordinary least
squares regression line fitted to the pairs in S, constrained to pass through (1, 1),

i.e,
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(2.2) YO)=1+(t-1u,

and is therefore given by

> RO -1[(0) - 1]
> [ -1F

A trend variable is estimated for each horse in each race for each of the

(2.3) U=

four segments. Further, because bettors might infer differing information from

‘lay’ and ‘back’ bets, increasing or decreasing prices may be interpreted

differently. Consequently, we derive two trend variables, 4" = max(x,0) and

, for each horse in each segment (i.e., eight trend variables for

- =|min(z,0)
each horse in each race). Hence, for horse i in race j, and for market segment k,
sy, = max(u,,0) and g, =|min(u;, 0)|.

Since racetrack betting markets are based on a significant amount of
information that is revealed in real time (e.g., the condition of the horses, the
weather), it is reasonable to expect, ex ante, that prices will fluctuate around an
underlying trend. The trend represents the bettors’ collective opinion of the
horse’s chances at the close of the market, relative to their chances at the
opening of the market. So, in order to obtain a meaningful measure of volatility,
we calculate, for each horse, in each race, the trend p;; in the odds curve, and

then the volatility oj; is given by the variance of the odds around the regression

line in (2.2)1%, i.e,,

1
2.4 o, =—o
(24) -1

L-1 1 -1

R (=Y, (D1 = SR, (=111, ()~
To illustrate, Figure 2.1 shows an example of an odds curve with the 30 minute
trend, along with the deviation for each /=1,2,...,L —1. The volatility measure
discussed above relates to each horse in turn. However, we are primarily
interested in volatility on a race-by-race basis. Consequently, we use the mean

" ; = _ nj
of oy over all the horses in eachrace, &, = (l/nj)zﬁ=1 o -

2A range of other measures of volatility were tested, but the results were the same.
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Figure 2.1. Example of the least squares regression method for determining the

trend and volatility of the odds curve for a horse.
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2.4.3. The conditional logit model and herding

The conditional logit (CL) model (McFadden, 1974) has been employed in
many betting market studies (Asch et al., 1984; Bolton and Chapman, 1986;
Benter, 1994; Sung and Johnson, 2010). It allows us to estimate the winning
probability of each horse, taking into account competition between horses in
the race. Formulation of the CL model begins with an estimate of horse i’s ability

to win race j,

(2.5) W, =" BDx,(D+e&,,

where fS(/), for [ = 1, ..., m, are the coefficients that determine the importance
of the variables x;(/), and ¢&; is an independent error term. If the independent

errors are identically distributed according to the double exponential

distribution, the estimated winning probability for horse h, ppj;, is given by

(2.6) p, =Pr(W, >W. eXp[z;'B(l)xhj (]
B hj Zl exp[Zj”=1 AD)x, ()]

ij?

i=L2,.,n,,i#h)=
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The coefficients f(/) are estimated by maximizing the joint probability of
observing the results of all the races in the dataset; this is achieved by
maximizing the log-likelihood (LL) of the full model (i.e.,, one including all

independent variables in which we are interested):
N n;
(2.7) InL(full)=%, > v,Inp,,
where yj = 1 if horse i won race j and y;; = 0 otherwise, and N is the total number

of races in the dataset. For this study an appropriate measure of the predictive

accuracy of the model is Maddala’s (1983)13 pseudo-R?, given by
(2.8) R* =1—exp{(2/ N)[In L(naive) —In L( full)]},
where In L(naive) is the LL of the naive model (where each horse in a race is

assigned the same probability of winning):
(2.9) In L(naive) = Z}[l In(1/n,).

The standard normal test statistic z(/)= f£(/)/S.E.[f(])] is used to test if

variable coefficients are significantly different from 0, i.e., variables add
predictive power to the model. An additional test to justify augmenting simpler
models with additional variables utilizes the likelihood ratio (LR) test statistic
2[In L( full) —1n L(naive)], which is x2 distributed with degrees of freedom equal
to the number of additional variables.

In our analysis, the first variable in the CL models will always be log of

final odds-implied probability, i.e., x,(1)=1In[g,(L,)]. If the estimated value of

the coefficient of this variable, £(1), is equal to one when there are no other

variables in the model, this implies that there is no favourite-longshot bias
(FLB), where FLB is the widely-reported phenomenon whereby
favourites/longshots are under-/over-bet (e.g.,, Dowie, 1976). The greater the

value of S(1), the greater is the degree of the FLB (Bacon-Shone et al., 1992).

However, previous studies have indicated that betting exchanges display little, if

any, FLB, (Smith et al, 2006), suggesting that f(1)=1. Whatever its value,

13We use Maddala’s pseudo-R? rather than McFadden’s (1974) more popular definition,
because McFadden’s R%2has the unfortunate property of varying with the average number of
horses in each race, which is not the case for Maddala’s pseudo-R2. Our results would be the
same using the McFadden pseudo-R?, but if we used this measure we could not account for
variations in market efficiency due to the differing numbers of runners in the high and low
noise sets.
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having developed a model incorporating an appropriate value of £(1) (i.e,

having adjusted for any FLB), the pseudo-R? of a single-variable CL model is an
appropriate measure of the predictive accuracy of market prices, and thus the
market efficiency.

To compare the effects of increased noise levels on efficiency, we estimate
single-variable CL models on the high and low noise subsets, and compare the
models’ pseudo-R%s. We estimate the distributional properties of the pseudo-
RZs using a bootstrap method (Efron, 1979). For each of the high and low noise
sets (each of 3029 races), we repeat 1000 times a random sampling of 3029
races, with replacement, and fit a single-variable CL model to each sample. The
random sampling is stratified so that the proportions of handicap races (where
horses are allocated weights to carry based on their previous performances) are
approximately equal in the samples and the full dataset. This controls for
potential effects on the accuracy of odds-implied probabilities from the greater
complexity involved in handicaps (Johnson and Bruce, 1998). The sample
means, #(R;) and u(R;}), and variances, s*(R;) and s°(R;), of the resulting
sets of pseudo-R?s are used to derive a standard normal test statistic,

p(Ry) ~p(RD)
Vs (R)+ 57 (R;)

This is used to test part (ii) of our first hypothesis, that high market noise is

(2.10) Au(R*)]=

associated with increased market efficiency (similar test statistics are derived
for the levels of FLB and volatility).

Herding occurs when bettors alter their actions to be more representative
of the actions of others. It may be rational for individual bettors to rely on the
private information of bettors’ that they believe are more informed than
themselves. However, a multitude of simultaneously herding bettors can lead to
significant movements in prices that cannot possibly be fully accounted for by
the underlying objective information of a handful of informed bettors. Hence,
when a horse’s odds decrease/increase significantly (i.e., resulting from bets on
that horse to win/lose), and that price movement is not fully attributable to a
genuine increase/decrease in that horse’s chances of winning, then the horse’s

final odds will imply a probability that is greater/lower than the horse’s true
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winning probability, i.e., the odds will be too low/high. Therefore, the second
variables we employ in the CL models are the two trend variables that we
derived previously for each market segment. Higher values for the trend
variables imply steeper price changes. If large price movements correspond to
herding, the coefficients of the second variables should be significantly different
to zero (and the corresponding LL ratio tests should also be significant): when
odds increase/decrease, a significantly positive/negative variable implies
herding, i.e., horses whose odds-implied probabilities decrease/increase over
time win more/less often than implied by the odds. Determination of the extent
to which bettors herd over the different time periods when odds increase or

decrease allows us to test our second and third hypotheses.

2.4.4. Betting strategies

If bettors herd to the extent that final odds-implied probabilities are not in
line with true winning probabilities, it should be possible to find profitable
betting opportunities. To investigate this possibility, we estimate a CL model
involving a combination of variables relating to herding behaviour, estimated
on the training set of 4544 races. We use this model to predict winning
probabilities for horses running in the 1514 holdout races. If herding results in
inefficiency, betting strategies based on the model should be profitable in the
long term and involve relatively low risk. Considering each holdout race j in
turn, with initial wealth £1000 and current wealth W), we use the estimated

probabilities as the basis for the following betting strategies:

1. Level staking: For each horse i, if p; > ri, bet 1% of current wealth on
horse i. Therefore, if a bet is to be placed, the size of the bet is £W;/100.

2. Proportional staking: For each horse i, if p; > r;, bet an amount such that
the profit from a win, after commission, is 10% of W, i.e., bet size is

£W,/10(R, —1). An advantage of this strategy in assessing inefficiency is

that returns are not unduly influenced by ‘lucky’ wins on horses with

very high odds (Schnytzer and Snir, 2008).
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3. Kelly staking: The Kelly strategy (Kelly, 1956) assigns bet sizes x; over all

n horses in the race to maximize the log of expected wealth after the race,

G(x.%,,..x,) = p,InF, ,  where F =1+095(xR - x)

if xR >>" x , and F,=1+xR -) x otherwise (since 5%

commission is only paid if bets result in an overall profit). The x; are
estimated using numerical optimization. The Kelly strategy is optimal in
the sense that it maximizes the asymptotic rate of growth of wealth and
minimizes the expected time to reach a pre-defined wealth target
(Breiman, 1961). However, since recommended bets may be very large,
the volatility of returns from a full Kelly strategy over the 1514 holdout
races may not result in a positive overall return.

4. Half Kelly staking: Some authors (e.g., Benter, 1994) recommend a
fractional Kelly strategy, whereby bet sizes are a fixed proportion (in this
case, a half) of those recommended by the full Kelly strategy. This is sub-
optimal in that it no longer maximizes the asymptotic growth rate of
wealth. However, fractional Kelly strategies are less risky, and, over
medium-length time horizons, may result in a higher expected return as

a percentage of the total amount bet (MacLean et al., 2010).

The above strategies all entail a zero probability of ruin, assuming that
arbitrarily small bets can be placed. A non-intuitive property of the Kelly
strategy is that it may recommend bets on outcomes with negative expected
returns. However, this is only optimal if our estimates for the true winning
probabilities, p;, are accurate. If this is not the case, over-betting will occur
(MacLean et al., 1992). To allow for inaccuracies in our estimates, we adapt the
Kelly strategies so that no bets are placed on horses for which the expected
return is negative, i.e., piRi < 1 (Hausch et al., 1981). Second, the strategies might
recommend large bets on horses with a high probability of winning, so a single
unfortunate loss may skew the overall returns. Similarly, skewed returns may
result from a fortunate win on a horse with a low winning probability. We
therefore restrict single bet sizes to a maximum of 10% of current wealth. We

assess the performance of the betting strategies using the following measures:
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1. Rate of return: the ratio of the profit (or loss) earned to the total amount

bet.

2. Risk-adjusted return: the risk-adjusted return, given by R/[Var(R)]"?,

where R is the rate of return and the variance is estimated using a
bootstrap procedure, by sampling with replacement from the holdout set

1000 times and calculating returns on each sample.

3. Expected final wealth: W, H;V:l X, where N is the number of races bet on

and, for race j, X is the expected increase in wealth factor z; D, lnfi.

Here, F =1+095%R —Z:Zlfs) if XR > ZZZI)?S , and

n

F,-ZI‘H?,F;_Z X, otherwise, where X, is the fraction of current

s=1" S
wealth bet on horse i after any restrictions are imposed (MacLean et al,,
1992).

4. Probability that final wealth is above x% of initial wealth: this is given by

1_@{(1/N)1n(x/100)—E[lan]

, where @ is the standard normal
ofln X, ]

cumulative distribution function (MacLean et al., 1992).
2.5. Results
2.5.1. Noise, volatility, and efficiency

The high and low noise sets consist of the races in the dataset that,
respectively, have Shin z less than (mean Shin z = 0.0089) and higher than
(mean Shin z = 0.0129) the median (0.0105). Further characteristics of the data
in the high and low noise sets, as well as their 1000-bootstrapped samples, are
summarized in Table 2.1.

CL models, with log of final odds-implied probability as the single
predictor variable, are estimated for the high and low noise datasets, as well as

for each of the bootstrap samples. The coefficient of the single variable, £(1), is

not significantly different from 1 in any case (z = 0.25, p = 0.8037 and z = 0.94, p
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= 0.3453 for the original high and low noise sets, respectively; z = 0.20, p =
0.8421 and z = 0.99, p = 0.3236 for the high and low noise bootstrapped
datasets), indicating, as expected, the absence of FLB. Furthermore, we find that
mean pseudo-R? values for the high and low noise bootstrapped sets (see Figure
2.2) confirm that prices are on average both more volatile (high: mean volatility
0.0286; low: mean volatility 0.0200; z = 11.84, p = 0.0000) and more accurate in
predicting winners when market prices are noisier (high: mean pseudo-R? =
0.6351; low: mean pseudo-R? = 0.4965; z = 7.91, p = 0.0000). Consequently, the
results support both parts of our first hypothesis, that increased noise is

associated with greater market volatility and efficiency.

Table 2.1. A description of the data: races with high and low noise.

Low
High noise  noise Bootstrapped Bootstrapped
All data (low Shin (high high noise low
z) set Shin z) set noise set
set
Numberof | ¢q50 3029 3029 | Numberof 1 3459 3029
races races
Numberof | g5 124 39555 22,569 |Meannumber | 3q5,9 22,598
horses of horses
I]:/[lfrirll)er of Mean number
h 10.3 13.1 7.5 of horses per 13.0 7.5
orses per race
race
pumber of | 3255 1747 1508 | Meannumber | 4 o0, 1628.5
andicaps of handicaps
Proportion Mean
of 0.537 0.577 0.498 proportion of | 0.538 0.538
handicaps handicaps
Mean Shin 19,0109 0.0089  0.0129 | MeanShinz | 0.0089 0.0128
Level of Mean level of
FLB (1) 1.014 1.001 1.026 FLB (1) 1.005 1.027
-0.64
2() (0.035)
[B()-1]/ 0.78 0.25 0.94 [B(1)-1]/ 0.20 0.99
S.E[B(1)] (0.017) (0.022) (0.028) | SE[B(1)] (0.023) (0.027)
Mean Mean
volatility & 0.0242 0.0280 0.0204 volatility & 0.0286 0.0200
2(5) 11.84**
7 (0.001)
. Mean
InL(naive) -13,670.0 -7702.9 -5967.3 1 ) -7699.7 -5974.3
nL(naive)
InL(full) -11,125.0 -6224.6 -4900.1 | Mean InL(full) | -6172.0 -4934.8
Pseudo-R? 0.5684 0.6232 0.5057 u(R?) 0.6351 0.4965
7.91%**
R2
ZIn(R)] (0.018)

** denotes significance at the 1% level in a 2-tailed test.
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Figure 2.2. Histograms of pseudo-R? from 1000-bootstrap samples taken from

high noise and low noise sets (fitted normal curves shown).

Low noise M, High noise

Frequency
N
o

10

0.45 0.55 0.65
Pseudo-R’

2.5.2. Herding

The results of estimating models (using the training set of 4544 races)
including indicators of possible herding behaviour in the four time segments of
the market (separated by whether prices increase or decrease) are presented in
Table 2.2. The coefficient of log of final odds-implied probability in the CL model
where this is the only variable (Model 0), is significantly different from zero (z =
51.45, p = 0.0000). In addition, the model’s LL is -8337.6, confirming that the
odds, as expected, add significant predictive power over the naive model (LL = -
10,307.7). Models 1 to 8 include a second variable that describes a trend in
prices over time. In Models 1 and 2, which assess the predictability of the trend
over the full duration of the market, the coefficient of the second variable is not
significantly different from zero (z = 0.92, p = 0.3576 and z = -0.13, p = 0.8966,
respectively). These results suggest that large price movements over the full
duration of the market do not necessarily result in odds-implied probabilities
differing from true winning probabilities, i.e. herding is not apparent when

considering the full duration of the market.
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Table 2.2. Conditional logit results using indicators of herding behaviour.

z()=p0)/
Model | Variable Coefficient (1)  S.E. [ B(D] InL higzslto"s' Pseudo-R?
(S.E)
Naive | - - - -10,307.7 - -
k%
0 Ings(Ly) 1.015 ?01_'3;0) -8337.6 - 0.5798
45.68%*
1 Ing;(Ly) 1.025 (0022)
) -8337.2 0.82 0.5799
0.92
Hij1* 0.058 (0.063)
50.28**
2 Ing;(Ly) 1.016 (0.020)
’ -8337.6 0.02 0.5798
-0.13
Hij1- -0.004 (0.028)
48.48**
3 Ing;(Ly) 1.033 (0.021)
' -8335.1 4.92%* 0.5803
2.23*
Hij2* 0.182 (0.082)
51.12**
4 Ing;(Ly) 1.019 (0.020)
’ -8336.8 1.59 0.5800
-1.25
Hij2- -0.049 (0.039)
48.82%*
5 Ing;(Ly) 1.031 (0.021)
: -8335.3 4.54* 0.5803
2.14*
Hij3* 0.215 (0.100)
51.16**
6 Ingii(Ly) 1.017 (0.020)
’ -8337.3 0.56 0.5799
-0.74
Hij3” -0.038 (0.051)
50.75%*
7 In(Qy) 1.019 (0.020)
: -8337.2 0.78 0.5799
091
Hija* 0.117 (0.129)
51.35%*
8 Ingii(Ly) 1.014 (0.020)
) -8330.5 14.27** 0.5812
-3.56%*
Hija -0.471 (0.132)
48.52%*
9 Ingii(Ly) 1.026 (0.021)
. 1.63 .
Mij3 0.165 (0.102) -8329.1 16.89 0.5814
-3.32%*
Hija -0.442 (0.133)

*and ** denote significance at the 5% and 1% level in a 2-tailed test, respectively.

However, considering the last 30 minutes (Models 3 and 4) and the last 15
minutes of the market (Models 5 and 6), the coefficients of the second variable
are significant when odds increase (Model 3: z = 2.23, p = 0.0258; Model 5: z =
2.14, p = 0.0324), but not when odds decrease (Model 4: z = -1.25, p = 0.2150;
Model 6: z = -0.74, p = 0.4592). Therefore, large price movements in the later
stages of the market do result in odds-implied probabilities differing from true-

winning probabilities, but only when odds increase, i.e., bettors herd on
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increasing odds in the late stages, but not on decreasing odds. Finally, Models 7
and 8 are based on the period between 30 and 15 minutes from the race start.
Here we find the opposite effect, i.e., bettors herd on decreasing odds (Model 8:
z=-3.56, p = 0.000) but not on increasing odds (Model 7: z= 0.91, p = 0.3682).
These results are all supported by LR tests vs. Model 0: only Models 3, 5,
and 8 add significant predictive power over odds alone (Model 3: x12 =4.92,p =
0.0266; Model 5: y12 = 4.54, p = 0.0331; Model 8: y12 = 14.27, p = 0.0002).
Consequently, the results support our second hypothesis, that herding
behaviour is only evident in the later stages of the market. There is mixed
evidence to support our third hypothesis that bettors herd to a greater extent
on ‘sell’ signals than ‘buy’ signals. We find that bettors herd to a greater extent
on ‘sell’ signals in the last 15 minutes of the market (which is the most active
betting period), but herd to a greater extent on ‘buy’ signals in the period

between 30 and 15 minutes from to the race start.

2.5.3. Economic significance of herding

We estimate Model 9 using the training data. This model includes two
variables to account for the herding we observed on increasing odds in the last
15 minutes, and on decreasing odds in the 30 to 15 minute period prior to the
race start (u;3* and pija’), The results are presented in Table 2.2. We employ this
model to estimate winning probabilities in the holdout sample and develop
betting strategies to exploit any mispricing. The results are presented in Table
2.3 and Figure 2.3.

The results show that a strategy of betting against the herd is profitable
for all betting strategies. However, the level stakes strategy (rate of return:
5.20%) and the proportional stakes strategy (6.49%) spend a significant
portion of the holdout period betting at a loss relative to initial capital (see
Figure 2.3 for cumulative wealth for each strategy). On the other hand, the full
Kelly (6.16%) and half Kelly (10.39%) strategies rarely drop below initial
capital. The greatest monetary accumulation is achieved with the full Kelly

strategy, with initial capital increasing by over 126%.
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Table 2.3. Results of betting strategies on the holdout set using probabilities

estimated from Model 9.

Proportional
Strategy Level stakes stakes Full Kelly Half Kelly
Number of races bet on 546 546 532 532
Total number of bets 644 644 625 625
Number of winning bets 111 111 111 111
Total amount bet (£) 7479.9 11759.0 20495.0 9114.3
Final capital (£) 1389.2 1762.9 2262.2 1946.9
Profit or loss (£) 389.2 762.9 1262.2 946.9
Rate of return R (%) 5.20 6.49 6.16 10.39
Risk-adjusted return 0.24 0.48 0.53 0.90
Expected final wealth (£) 1448.4 1637.0 1922.5 1387.6
50 0.93 0.69 0.48 0.33
Probability
that final 100 0.94 0.74 0.54 0.40
wealth is
above x% of
initial 150 0.76 0.64 0.55 0.49
wealth
200 0.86 0.64 0.47 0.35

However, it is also the riskier of the two Kelly strategies, with 20.5 times the
initial capital bet over the course of the holdout period (cf. just 9.1 times for the
half Kelly strategy). For the half Kelly strategy, initial capital increases by over
94%. Consequently, the risk-adjusted return is greatest for the half Kelly
strategy, with a value of 0.90. Similarly, the full Kelly strategy has the highest
expected final wealth and the highest probability of doubling wealth (0.49) but
also the lowest probability of retaining at least half of initial wealth (0.76). In
summary, the positive returns identified for the various betting strategies,
including a sizeable return of 10.39% from our preferred strategy (half Kelly),
provide support for our fourth hypothesis, that herding represents an

economically significant inefficiency.
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Figure 2.3. Log of cumulative wealth relative to initial wealth from betting

strategies.
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2.6. Discussion

2.6.1. Noise, volatility, and efficiency

Our finding that markets associated with greater noise trading are more
both volatile and more efficient contributes evidence to the debate concerning
the roles of noise and information in financial markets. We find that noise
increases short term volatility, an empirical result that confirms the theoretical
predictions of Black (1986) and De Long, Shleifer, Summers, and Waldmann
(1990). Previous empirical evidence in this regard has been only marginally
conclusive. For example, Campbell and Kyle (1993) found that noise was helpful
in explaining historical stock price volatility, but that its importance depends on
the interest rate assumption. Our results, from the largest betting exchange
market in the world, support the hypothesis that noise trading is associated
with an increase in market efficiency. This is the first time such a conclusion has
be drawn from an empirical financial market study. The results support Black’s
(1986) assertion that noise is essential for liquid, efficient markets and they

support the theoretical predictions of Grossman and Stiglitz (1980) and Kyle
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(1985), that increased noise need not necessarily destabilize markets. Indeed,
we would go one step further, and suggest that, provided prices are not extreme,
noise actually makes prices more efficient because the improved liquidity
allows informed traders to arbitrage away the inefficiency. This conclusion
echoes that of Bloomfield, O’Hara, and Saar’s (2009) experimental study. The
most prominent inefficiencies in financial markets are, of course, bubbles and
subsequent corrections, where asset prices are pushed well above their
fundamental values before plummeting when the bubble bursts. Arguably these
volatile market periods are the times that markets are at their least efficient,
since crises can occur even when economic fundamentals are sound (Cipriani
and Guarino, 2008). We have demonstrated, conversely, that noise trading and
the ensuing volatility can be an important tool for price discovery.

[t is important to examine why our result that noise can increase market
efficiency contrasts with the arguments of Shiller (1990), De Long, Shleifer,
Summers, and Waldmann (1990), and Shleifer and Vishny (1997), among
others, that noise is detrimental to market efficiency because of its destabilizing
effect on long-run equilibrium values. In fact, the reason for this apparent
contradiction appears to lie not in the destabilizing effect of noise trading, per
se, but in the limitations to arbitrage. Our results are drawn from a market
where noise traders do not introduce added risks for informed traders, limiting
their arbitrage. In particular, in regular financial markets, an arbitrageur faces
the risk that noise traders continue to keep prices away from fundamental
values for an extended period of time, potentially forcing arbitrageurs to
liquidate at a loss (De Long et al., 1990). In our study, this risk is not present,
because traders in betting markets need not trade their assets in order to
realise returns. Instead, returns from state contingent claims are ensured in the
initial trade, and traders may simply hold their assets until the market closes
and receive their contingent return. Thus, even if prices are noisy, arbitrageurs
can effectively guarantee returns at the moment of the initial trade, and need
not worry about the future direction of the market. Consequently, our results
demonstrate the inherent value of noise trading, in that, when noise trader risk
does not limit the arbitrage of informed traders, market efficiency increases as

noise trading increases.
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The above discussion still begs the question, if noise trading is apparently
irrational in the sense that it is loss-making, why does noise trading persist in
markets? In regular financial markets, the motivation for noise trading is often
assumed to be some portfolio-based requirement such as hedging or liquidity
trades (Bloomfield et al., 2009). In betting markets, it is likely that, despite
financial losses, noise traders gain utility from the act of gambling itself
(Vaughan Williams and Paton, 1998) or are locally risk-loving in the
appropriate domain (Friedman and Savage, 1948). There is some evidence that
this may also be true of traders in regular financial markets outside of betting.
For example, Gao and Lin (2011) present evidence that even institutional
investors see lotteries as a substitute for financial market trading. Whatever the
motivations of noise traders in regular financial markets, it is apparent from our
results in a large exchange betting market that tighter controls on speculators
and institutional noise traders, in an effort to reduce more general risks, may

serve to increase liquidity risks for other traders.

2.6.2. Herding

While noise trading may have a positive effect on overall market efficiency,
this is not the case when herding occurs. In fact, we found that, under certain
conditions, herding has a detrimental effect on efficiency. In particular, some
price movements are too large relative to the underlying fundamental
information, and are such that final market prices can differ significantly from
true winning probabilities. We infer from this that traders herd on price
movements under certain conditions, pushing prices to inefficient levels.
Moreover, the results of our modeling of these price movements show that the
larger the price movement, the greater the inefficiency (i.e., larger price
movements correspond to greater disparities between final odds-implied
probabilities and true winning probabilities). However, this behaviour only
becomes significant in the later stages of the market. Large price changes over
the full duration of the market do not generally lead to inefficiencies in final
market prices. This is not unexpected, since there is a lengthy period during

which any inefficiencies induced by herding can be corrected. Moreover, much



81

of the information pertaining to horses’ chances is revealed on the day of the
race. For example, information concerning results of previous races, jockey
changes, and horses’ condition and behaviour may not be revealed until the
market on a race has opened (Bruce and Johnson, 1995). Therefore, prices are
expected to change before the final stages of the market (resulting from
revealed fundamental information) and herding is therefore unlikely to take
place as a result of early stage market price changes. Consequently, it appears
that inefficiencies resulting from herding are more likely to occur when (i) there
is little time remaining to correct the inefficiency, and (ii) when traders
perceive price movements as evidence of trading by those with privileged
information. In fact, this conclusion chimes well with classic cases of herding in
regular financial markets, such as that evidenced in the South Sea Bubble (Dale
etal., 2005).

Our finding that, in the later stages of the market, herding patterns are
asymmetric, serves to confirm our prediction that noise traders’ perceptions of
the actions of informed traders are key to the prevalence of herding behaviour.
In particular, while previous studies of herding in betting markets (Law and
Peel, 2002; Schnytzer and Snir, 2008) have focused on bookmaker markets,
where bettors may only back their preferred horse to win (leading to a
reduction in its odds), our study examines a betting exchange, where bettors
may also lay horses to lose (leading to an increase in their odds). There is little
qualitative difference between backing/laying a horse one thinks will win/lose.
Consequently, the differences we observe in herding behaviour (indicated
below) must be due to differences in the bettors’ perceptions of ‘buy’ and ‘sell’
signals. In particular, we argue that this stems from their belief that those
traders with privileged information will trade at different times, depending
upon whether they believe a horse will win or lose a race.

We find that bettors do not herd on decreasing odds in the last 15 minutes
of the market (or in the last 30 minutes, if price changes are considered over the
whole 30 minute period). This finding is consistent with the literature on
herding in financial markets, which has found little conclusive evidence that
investors display herding behaviour. It suggests that the average bettor does

not consider a late ‘plunge’ to be a signal containing valuable information, or, at
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least, bettors realize that, by the time the plunge has happened, the information
is assimilated in the price. Alternatively, the bets placed in the last 15 minutes
by informed traders could cancel out the bets of herding traders. This is
consistent with the literature, which suggests that strategies of simply betting
on horses whose odds decline sharply (‘plungers’) are not profitable once the
price change has occurred (Crafts, 1985; Bird and McCrae, 1987).

On the other hand, we find that bettors do herd on plungers that occur
early in the betting (in the period between 30 minutes and 15 minutes before
race start). In this case, bettors herd to such an extent that further price
movements, which happen in the last 15 minutes of the market, are insufficient
to restore efficiency. This might be explained in several ways: (i) cash-
constrained informed bettors bet early, but they may not have the funds to
correct prices for a second time, should prices revert to inefficient levels (Hong
and Stein, 1999; Schnytzer and Snir, 2008), or (ii) bets placed in the 30 to 15
minute market segment are generally those of less informed bettors (who might
be more likely to herd), since more informed bettors benefit from placing their
bets later so as not to divulge their own information (Ottaviani and Sgrensen,
2005). In either case, it appears that uninformed bettors perceive that odds that
decline sharply in the period 30 to 15 minutes before the race start result from
the actions of informed traders (presumably believing that any fundamental
information would have been discounted in prices in the earlier stages of the
market). It has been found in empirical studies of financial markets that, not
only do the trades enacted by informed traders move prices towards efficient
levels, uninformed traders are able to detect the informed trading via the
volume and direction of the informed trades (e.g., Meulbroek, 1992). Hence,
herding will or will not occur depending on (i) uninformed traders’ perception
of the degree of influence over market prices held by traders with privileged
information, and (ii) the actual degree of influence informed traders have.
Consequently, herding will occur only if less informed investors believe that
market price movements are currently reflecting the opinions of more informed
investors. On the other hand, the extent of herding will be reduced if informed

investors have sufficient market power to restore prices to efficient levels.
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The perceptions of uninformed traders also appear to play a part when
considering whether bettors herd on increasing odds. Large increases in odds in
the last 30 or 15 minutes prior to market close often lead to situations where
the odds are too high (i.e, the horse is relatively under-valued). This suggests
that bettors herd on increases in odds (by laying unfavored horses) even in the
late stages of the market. It seems, therefore, that ‘sell’ signals are treated
differently to ‘buy’ signals. A ‘sell’ signal is taken seriously even late in the
market. This may arise because bettors perceive that it is more likely that
individuals with access to privileged information (e.g., horse owners) lay horses
to lose (rather than back them to win) late in the market, since it is easier for
them to predict (and/or influence) that their horse will lose (Marginson, 2010).
It may be perceived that they are more likely to do this later in the market when
positive information concerning the prospects of other runners has been fully
discounted in prices. Indeed, it is not even necessary that this practice of laying
known losers is prevalent, provided bettors perceive that it is.

There is also some evidence from regular financial markets that investors
treat ‘sell’ and ‘buy’ signals differently. For example, Wermers (1999) found
that the level of herding by mutual funds was greater when selling stocks than
buying them, particularly if those stocks were shares of small companies with
low past returns. This can be explained by mutual funds’ particular aversion to
small stocks, i.e., they would be more likely to sell past losers in small stocks
than buy past winners. Similarly, the model developed by Epstein and Schneider
(2008) implies that investors react more strongly to bad (cf. good) news. Our
results highlight the importance of understanding potential differences in the
manner in which buy and sell signals are perceived by uninformed traders.

Finally, our results demonstrate that considerable inefficiency can be
caused by herding. In particular, we not only find that prices are often out of
line with true winning probabilities after large price movements, but that
trading strategies can be constructed that show consistent positive returns
from betting against the herd. Such a strategy is based on a model that accounts
for likely differences in noise traders’ perceptions of the actions of informed
traders at different times in the market. In fact, we find that a half Kelly strategy

with some restrictions provides a substantial rate of return (10.39%) over the
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holdout sample; the return is sufficiently large to compensate for potential
variation in returns and the model risk involved. Previous studies of herding in
betting markets (Law and Peel, 2002; Schnytzer and Snir, 2008) have
demonstrated that positive returns can be made by avoiding following the herd,
but these approaches offer very few betting opportunities. On the other hand,
our results show that it is possible to develop a strategy to profit by betting
against the herd and that this strategy provides a significant number of betting
opportunities (betting in over 33 percent of markets). Our results clearly
demonstrate that herding is of considerable economic importance, and should

be accounted for in more advanced forecasting models.

2.7. Conclusion

This study is the first to study noise trading and herding in an electronic
betting exchange (akin to electronic exchanges in regular financial markets). We
find evidence that increased noise trading in markets is associated with an
increase in efficiency, and we attribute this to informed traders being attracted
to the resulting increase in liquidity. We also find that bettors herd, but only
under certain conditions. In particular, herding is concentrated in the later,
more active stages of the market. In addition, while herding occurs on both ‘buy’
and ‘sell’ signals, it does so differently at various times in the market.

Our findings contribute new evidence to the literature on information
cascades and herding, where results of empirical studies have been inconsistent.
We find support for the theoretical models of herding, in that the asymmetry of
information held by bettors is clearly important as an initial condition for
subsequent herd behaviour. Herding is rational at the individual level for less
informed traders when they are aware that more informed traders may be
participating in the market. However, at the aggregate level, herding results in
prices departing from efficient levels, particularly when the market has
insufficient time to correct the resulting mispricing, or when informed traders
are not actively participating. We demonstrate that the inefficiency which
remains offers the prospect of abnormal returns for those who seek to

capitalize on the herding behaviour of others. Most importantly, we find that
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herding is extremely prevalent, with inefficiencies in over one third of the
markets that we examine. The implications of our findings are that, in wider
financial markets, regulations should be considered that minimize the impact of
herding, and particular attention should be given to situations where
uninformed traders may incorrectly believe that there are traders with
privileged information operating. Furthermore, markets that involve contingent
returns at a fixed point in time (such as the markets examined here) should
always be allowed sufficient time to reach efficient levels.

Our results also cast new light on the relationship between noise and
efficiency in financial markets, a relationship that has been difficult to
determine in previous studies because of uncertainty in the link between
fundamental information and prices. The data we employ overcome this
problem, and we are able to measure the degree of informed trading, hence
enabling us to observe a positive correlation between noise and efficiency. Our
main finding that noise trading, volatility, and efficiency of final market prices
all move in tandem has important policy implications for all financial markets.
For example, our results add weight to arguments that regulatory measures to
protect investors from the destabilizing effects of noise are self-defeating. Of
course, the operations of betting markets themselves are often restricted or
banned outright on the basis that gamblers should be saved from themselves.
But when they are in operation, no one would suggest that the involvement of
noise traders should be limited. However, in conventional financial markets, so
long as there is a social cost to unwitting participants in market volatility, the
actions of speculators will always be under scrutiny. Our study sheds new light
on the potential value and possible costs that such traders can bring to a
financial market, and suggests that focusing on innovative means of reducing
the risks to arbitrageurs, rather than discouraging speculators, may be the best

approach to achieving efficient markets.
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3. The favourite-longshot bias in competing betting markets

Abstract

This paper provides an explanation for the enduring presence of the favourite-
longshot bias (FLB) in some betting markets and its absence in others. We
develop a theoretical model that suggests the bias may result from competition
between bookmakers and with betting exchanges, combined with bettors’
greater demand elasticity with respect to favourites. Further, we propose that
the FLB will be eliminated when informed traders dominate and transaction
costs are low. We confirm the model’s predictions by analysing how the bias
develops throughout the active market in 6058 races run in the UK and Ireland

from August 2009 through August 2010.

3.1. Introduction

The favourite-longshot bias (FLB) is a phenomenon in betting markets
reported over many decades and in many jurisdictions, whereby market prices
deviate systematically from their fundamental value; favourites are under-
valued while longshots are over-valued (USA: Weitzman, 1965; Ali, 1977;
Snyder, 1978; Asch et al., 1982; Snowberg and Wolfers, 2010; UK: Dowie, 1976;
Vaughan Williams and Paton, 1997; Bruce and Johnson, 2000; Sung and Johnson,
2010; Australia and New Zealand: Tuckwell, 1983; Gandar et al, 2001).
However, a few studies have found no evidence of the bias (Busche and Hall,
1988; Busche, 1994; Swidler and Shaw, 1995) and there is mixed evidence of
whether the extent of the bias is substantial enough to result in weak form
inefficiency (Sung and Johnson, 2010).

Many studies have sought to explain the enduring presence of the FLB and
its absence in some markets, but little consensus has been reached (see Jullien
and Salanié, 2008, for a recent review). The existing accounts alternatively link
the origin of the FLB to supply- or demand-side factors, related to
characteristics of the market or the bettors, respectively. However, these

alternative accounts fail to provide a satisfactory explanation for the
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presence/absence of the FLB in the two major competing types of horserace
betting market in the UK and Ireland (and in other jurisdictions, such as
Australia): bookmakers and betting exchanges. The rapid growth of betting
exchanges, and an intensification of competition through internet-based betting
in general, makes such an explanation an important objective. We seek to
achieve this by exploring two aspects of these parallel markets: competition and
informed trading. The markets for horserace betting in the UK are increasingly
competitive, with many different operators and a wealth of information
regarding prices available to bettors. We develop a model to investigate the
optimal pricing decisions of bookmakers when the betting public are able to
rapidly compare prices. We also argue that informed trading has a significant
effect on reducing the degree of the FLB in the markets, but only when
transaction costs are low. We use the predictions of our model to develop
hypotheses, which we test empirically by analysing how the bias develops over
the course of the markets for 6058 races run between August 2009 and August
2010, requiring the analysis of over 5.5 million market prices in total.

Our results confirm that three factors contribute to the existence of the
FLB: the pricing decisions of bookmakers, the availability of information, and
the level of transaction costs. First, we show that, because of (i) competition
between bookmakers and with exchanges, and (ii) bettors’ demand for
competitive prices on favourites, bookmakers’ optimal pricing decisions
necessarily lead to the FLB. Second, we show that the FLB is present in
exchange prices in the early stages of the market and it is not eliminated,
because of higher transaction costs in the form of wider bid-ask spreads. Finally,
we draw upon models of prediction markets (Gjerstad, 2005; Wolfers and
Zitzewitz, 2006b) to suggest that, when informed traders dominate, any FLB in
betting exchange prices is likely to be short-lived, and we find that this is the
case.

The remainder of this paper is organized as follows. Section 3.2 provides a
brief overview of alternative explanations for the FLB. In section 3.3 we develop
a model of the FLB in competing markets. In section 3.4, we derive hypotheses

and introduce the data and method employed to test the hypotheses. The
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results are presented in section 3.5 and discussed in section 3.6. We draw

conclusions in section 3.7.

3.2. The origins of the favourite-longshot bias

3.2.1. Supply-side explanations

Some authors have argued that market ecology must be taken into
account when seeking explanations for the FLB. Shin (1991, 1992, 1993)
modelled price-setting in bookmaker markets as a game between a profit-
maximizing bookmaker and a randomly chosen bettor. The model assumes that
the bettor is likely to be a noise trader, but could be an insider whose superior
knowledge allows them to bet on the winning horse, to the bookmaker’s cost.
Shin’s model can explain the FLB in bookmaker market prices, provided one
accepts that knowledgeable insiders are more likely to bet on longshots than
favourites. Although some of the assumptions in Shin’s model are unrealistic,
similar conclusions have been reached where the assumptions are relaxed. For
example, Schnytzer and Shilony (2005) found that bookmakers should raise
prices on longshots more than favourites in order to defend themselves against
insider knowledge, without assuming that insiders know which horse will win
the race, or that insiders are more likely to bet on longshots. Peirson and Smith
(2010) extend the Shin model while relaxing the assumptions that insiders
know which horse will win the race, and that the amount bet by insiders is fixed
and not related to the odds on offer. Their model demonstrates that
bookmakers should increase prices on those horses where there is a higher
probability of inside information being employed.

Transaction and information costs have also been identified as possible
causes of the FLB. Hurley and McDonough’s (1995, 1996) model implies that
the FLB would not exist in pari-mutuel markets without transaction costs, and
that the extent of the bias should increase as transaction costs increase.
However, this theory is not supported by their empirical investigation. Terrell
and Farmer (1996) suggest that the FLB results from costly information. This is
supported by Vaughan Williams and Paton (1997), who find a lower degree of
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FLB in bookmaker market prices in higher grade handicap races (where it is
assumed information is more widely available and thus is less costly to obtain).
Sobel and Raines (2003) also found a greater level of the FLB in races that,
because there is less information available to inform decisions, attract lower
betting volumes. Smith, Paton, and Vaughan Williams (2006) compared the
effect of altering the level of transaction costs on the level of the bias in
bookmaker markets and exchanges, which typically have higher and lower
transaction costs, respectively. They found that there was significantly more
bias in bookmaker market prices. However, Smith (2010) noted an exception to
the predictions of the transaction costs model: there is little FLB in UK pari-
mutuel market prices, yet these markets involve relatively high transaction

costs.

3.2.2. Demand-side explanations

Two broad approaches have emerged that seek to attribute the FLB to
factors associated with the decision-making processes of bettors. On the one
hand, it has been suggested that bettors have unbiased expectations, but are
risk-loving (Weitzman, 1965; Quandt, 1986; Hamid et al., 1996). Alternatively,
bettors are risk-neutral, but have biased expectations (Henery, 1985; Chadha
and Quandt, 1996). The former approach was originated by Weitzman (1965),
who suggested that the bias must be explained by hypothesising a convex utility
of wealth function for the average bettor (i.e., the average bettor is risk-loving).
Quandt (1986) extended this model to show that the bias is a natural
consequence of equilibrium in a market where bettors are risk-loving. Variants
of the model have been developed, including replacing bettors’ risk-loving
nature with their desire for skewness (Golec and Tamarkin, 1998) or the extra
utility they gain from long-odds betting (Thaler and Ziemba, 1988). In sum,
these studies argue that it is bettors’ motivations that cause the FLB, not bias in
their expectations. The second broad set of demand-side explanations for the
FLB is based on prospect theory (Kahneman and Tversky, 1979). In this case,
bettors are risk-neutral, but misestimate probabilities, attaching moderate

winning probabilities to horses which are more likely to win or lose. Snowberg
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and Wolfers (2010) compare these two sets of competing demand-side theories
by testing the implications for the pricing of compound events (e.g., exactas,
where the bet is to choose both the winner and the runner-up in the correct

order) and find evidence in support of the latter, biased-expectations approach.

3.2.3. Competing markets

The search for a full explanation of the FLB anomaly is further
complicated by the presence of different types of betting market, with varying
rules, costs and participants. In the UK, bookmaker and exchange markets
account for most betting activity, with 94% of horserace betting turnover (over
£5.7 billion) in the year to March 2010 in the UK (cf. £356 million for the pari-
mutuel operator, the Tote) (Gambling Commission, 2010). These markets
operate in parallel in the UK, Ireland, and a number of other jurisdictions. There
are three significant differences between the two types of market. First, in
bookmaker markets, individuals are allowed to bet on their preferred
contestant (e.g., a horse in a race) at the advertised odds. In exchanges,
individuals can either bet on their preferred contestant to win, or, alternatively,
can lay a contestant to lose (i.e., offer to match bets placed by other bettors on
this contestant). Second, in bookmaker markets, odds are set by the bookmaker,
whereas the prices in exchanges are a strict representation of supply and
demand, and are reached as an implied consensus of all the market participants.
Finally, in exchanges, participants typically pay only a small commission on
their net winnings (e.g., 5%), whereas bookmaker transaction costs (implicit in
the over-round; see later) are typically significantly higher (e.g., 18%). For a full
explanation of betting exchanges, see Smith and Vaughan Williams (2008). Both
types of market involve a number of competing operators, the latest odds are
readily available to bettors through the internet, and bets can be easily and
rapidly placed with exchanges or with any chosen bookmaker using a mobile
phone, from wherever the bettor is located (e.g., racetracks, home, high street
betting shops). This is important, because it has been found that demand
becomes increasingly price-sensitive and frictionless when internet price

search is available (Ellison and Ellison, 2009).
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A few recent studies have examined the degree to which the FLB is
present in betting exchanges and their relation to other types of market, and
have shown that betting exchanges are significantly more efficient, with a lower
degree of the FLB (Smith et al., 2006) and greater predictive accuracy of market
prices (Smith et al., 2009; Smith, 2010; Franck et al., 2010). However, these
studies focus on market prices at one point in time (early or final prices). In
addition, many of the studies discussed above explain the FLB in terms of the
average bettor (e.g.,, Weitzman, 1965) and fail to account for clear differences in
the behaviour of informed and uninformed bettors (e.g., Shin, 1993; Sobel and
Raines, 2003). Hence, we will define uninformed bettors as those who display
non-neutral risk tendencies or are biased in their expectations; informed
bettors are risk-neutral and have unbiased expectations. The latter behaviour is
to be expected of bettors who have developed expertise through repeated
practice and extensive study. We also consider insider traders to be informed
bettors since, as Schnytzer and Shilony (1995) demonstrated, inside

information is a significant predictor of race outcomes.

3.3. Amodel of competing markets

3.3.1. Bookmaker markets and competition

We develop a model to explain the FLB in bookmaker markets by
considering two competing markets, a bookmaker and an exchange, both of
which offer prices on all horses running in a single race with n runners. Traders
buy contracts on horse i, which pay out £1 if the horse wins the race, and which
cost £g; and £r; in the bookmaker and exchange markets, respectively.
Consequently, the implied bookmaker market odds (it is odds that are normally
quoted by bookmakers rather than prices) of horse i are the reciprocal of the

price minus one, i.e, 1/¢,—1, and represent the profit on a winning £1 bet.
Similarly, the implied exchange market odds of horse i are given by 1/r —1 and

represent the profit on a winning £1 bet less 5% commission (which is the
typical amount). The over-round is the sum of purchase prices across all the

horses in the race minus one, and represents the average transaction cost to a
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bettor. A lower over-round, therefore, allows a more competitive set of prices.

The bookmaker and exchange odds-implied probabilities of horse i winning the

race are given by ¢,/(1+B,) and r,/(1+ B,), respectively, where B, = z;qi -1

and B, = z;’? —1 are the bookmaker and exchange over-rounds, respectively,

and we assume that the exchange is able to offer lower transaction costs, i.e.,
B, > B,.

The task for the bookmaker is two-fold: to estimate the true probabilities
pi for each horse to win the race, and to set their own prices so as to maximize
their overall profit from the race. Since the true probabilities are unknown, we
assume that the bookmaker’s best estimates for them are simply the exchange

odds-implied probabilities, i.e., p, =7, /(1+ B,). Later, we will show empirically

that this is appropriate. Finally, we make the approximation that the q; are
continuous on the interval (0, 1). Considering a small time interval, the
bookmaker’s goal is to maximize their expected returns from overall bets taken
in this interval. We allow this interval to be small because the bookmaker can
update their prices at the end of the time interval, and we suppose that they are
able to do this very frequently. Since this interval is small, we make the
restriction that B,, Bp, and the r; are constant in this period. Then the bookmaker

aims to maximize their expected returns G(g,,.....,g, ) over this time interval,

. 1 n i
(3.1) G(q,,..-.q,) = Zi:l f(qi’r")|:(1 —P)- p’{q__ ljj| - Zi:l f(q”ri)(l - (1+B,)q, j ,

subject to the over-round condition Z; q; =1+ B,. The demand curve f(q,,r,) is

the amount bet on horse i, when the bookmaker and exchange prices are g; and
ri, respectively. We expect that when the bookmaker and exchange prices are
equal, the demand in the two markets will be identical. Consequently, we

normalize the demand curve so that it satisfies f(r,r)=r/(1+B,). If the

bookmaker price is set above/below the exchange price, the demand will
fall/rise. The rate at which the demand changes with respect to changes in
bookmaker prices, relative to exchange price r, depends on the price elasticity
of demand at r. Although we do not know the exact shape of f, it represents the

amount by which bettors are either discouraged/attracted by
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uncompetitive/favourable prices, and we imagine that its shape could be
empirically derived given knowledge of actual bets taken by bookmakers.
Assuming that f is continuously differentiable on (0, 1), we at least know that a

sensible demand curve would require f’(¢)<0on this interval. In addition, f,

strictly speaking, would need to be non-negative, but we need not impose this.
As an example, the form of a linear demand curve with elasticity which can vary

with r is given by
,
(3.2) f(q,r) =1——g(r)(q—f’),
+ B,

where f'(q,r)=0f/0g =-g(r) defines the price elasticity of demand atr.

For fixed r; By and B, this is a constrained optimization problem to

maximize H(q,,...,q,) where H is given by

(3.3) H(gy..rq,) = G(4y0enq,)— A 4 —1-B,),

where A is a constant. The solutions are given by the system of equations

V. V.
3.4) 0H /g, = f(q,,r.)————+ ['(q,,1;)| 1-—— |- 1=0,i=1,..,n,
(3.4) q; = 1(q;1) (+B)g f'(q )( i+ Be)q,-j

" g, =1+B,.

We do not seek to solve this system of equations, but note a sufficient condition
for the FLB in the bookmaker prices: for two horses j (a longshot) and k (a
favourite: rj < ri), with odds-implied probabilities equal across the exchange and
bookmaker markets (¢, = (1+ B,)r; /(1+ B,) ,q, = (1+ B,)r, /(1+ B,) ), the marginal
increase in expected returns for an increase in price is greater for the longshot
(OH /0q; > 0H / 0q, ); furthermore, the greater the difference, the greater is the
level of FLB. So, denoting ¢, =(1+ B,)r, /(1+ B,),

1+ B, . .

1+Bb B,[f (Q_/arj)_f (9;,1)]1>0.

e

1. . L. .
(3.5) —J (@ =—f(q1) +
i T

We have now the following as a sufficient condition for the FLB:
(3.6) S Gryry) > f(xn,n),
forall xsuchthat 1<x<(1+B,)/(1+B,).
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If this condition is satisfied, then so is (3.5) (for a proof, see Appendix 2).

Moreover, the difference 0H /dq; —0H /dq, is increasing in both B, (holding

(1+B,)/(1+B,) fixed) and (1+B,)/(1+B,), i.e. the level of FLB as imposed by

optimal bookmaker prices should increase both with bookmaker over-round
and the level of competition between the bookmaker and the exchangel#. Also, if
there is no competition (B, = B.), then there is still FLB (provided (3.6) holds),
and further, if there is no over-round (Bj = 0) then there is no FLB (for proofs of
each of these propositions, see Appendix 2). Condition (3.6) holds if bettors’
price elasticity of demand is greater for favourites than for longshots, i.e., if
bettors are driven away from betting at uncompetitive prices more rapidly for
favourites than for longshots (or if bettors are attracted by favourable prices
more strongly for favourites than for longshots). Provided this is the case, it
follows that bookmakers are driven to post competitive prices on favourites or
risk losing business to their competitors, even if, as a result, they must offer
‘poor value’ prices on longshots. Finally, it should be noted that the competition
need not be an exchange; the analysis is identical if the competition comes from
another bookmaker.

In the case of a linear demand curve with variable elasticity (equation 3.2),

condition (3.6) is satisfied if g(r,) > g(r;), for example, if g(r;) = Ar, for some A

> (0. Table 3.1 shows the optimal g for various values of r, A, By and

(1+B,)/(1+B,) in a race with two runners, and indicates that the level of FLB

increases with elasticity, over-round and competition. Figure 3.1 shows how
this curve varies for different values of r. For a linear demand curve, there is
FLB in the optimal bookmaker prices, provided elasticity is greater for
favourites than for longshots. This would also be the case for non-linear

demand curves.

14 Smith and Vaughan Williams (2010) show empirically that the level of FLB in bookmaker
markets fell after the introduction of exchange markets. Although the correlation between
increased competition and reduced FLB is inconsistent with the prediction of our model, it was
also the case that bookmaker over-rounds fell during the same period, which could account for
the reduced FLB.
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Table 3.1. A model of competing markets: the favourite-longshot bias in a two-

horse race.
oy | e | iy |
1.18/1.05 1.18/1.05 1.18/1.05 '

R g A g By q (11131;3)/ g
0.100 0.163 1 0.690 1.13 0.678 1'185/1'0 0.676
0.200 0.246 5 0.679 1.17 0.676 1'1%}/1'0 0.674
0.300 0.331 10 0.676 1.21 0.675 1'183/1'0 0.672
0.400 0.417 50 0.672 1.25 0.675 1'182/1'0 0.671
0.500 0.503 100 0.671 1.29 0.675 1'181/1'0 0.669
0.600 0.590 500 0.671 - - 1'180/1'0 0.667
0.700 0.676 1000 0.671 - - - -
0.800 0.761 - - - - - -
0.900 0.846 - - - - - -

g=(+B,)/q(1+ B,), where g denotes the optimal bookmaker price for the horse, as estimated

from the model in section 3.3.

Figure 3.1. Linear demand curves with variable elasticity g(r) = 10r.

LY

— flg,r)= (r/1.65)—10r(

q-r)

0.75¢

0.50¢

0.25¢
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In summary, provided we accept some reasonable assumptions, and a
sensible demand curve, this model demonstrates that when bettors’ price
elasticity of demand is greater for favourites than for longshots, the optimal
pricing decision of the bookmaker leads to FLB in their prices, and this FLB
increases with the level of competition between the bookmaker and their
competitors. We note that our model is consistent with the argument of Levitt
(2004), who showed that the optimal pricing policy of bookmakers is to distort

prices to reflect the biases of bettors.
3.3.2. Betting exchanges and informed trading

Now we consider an exchange market, where traders can both buy and
sell contracts on horse i for £r;. As Wolfers and Zitzewitz (2006b) and Gjerstad
(2005) demonstrate, if we assume that traders’ beliefs and wealth levels are
heterogeneous and that the difference between buy and sell prices (the bid-ask
spread) is zero, and denote an individual trader’s belief of the probability of
horse i winning as p;, and the trader’s wealth as w, each drawn from a

distribution F(p,,w), then the equilibrium price is a ‘wealth-weighted average’

of the beliefs of all traders,
1 ¢

(3.7) , :=j pwdF (p,,w),
w >

where w is the average wealth level across all traders. Now, suppose that
traders are either informed or uninformed. We assume that the informed
traders know the true probability p; of horse i winning the race and have
combined wealth X. The uninformed traders have beliefs p; drawn from

distribution F(p,) and combined wealth Y. Uninformed traders do not know
the true probability, so E(p,) # p,. Without loss of generality, suppose X + Y = 1.

Consequently, from (3.7),

(3.8) r,=Xp,+1p,.
This is the ‘wealth-weighted average’ of beliefs of the informed bettors and the
uninformed traders. A consequence is that if informed or uninformed traders

dominate the market, the price will be close to p; or p,,, respectively.
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Now we relax the assumption that bid-ask spreads are zero, i.e., contracts

may only be bought for £ (7, +¢) and may only be sold for £ (», —¢), for some ¢ > 0.
Now, when supply meets demand, we have that
(3.9) [w(p, = r)dF (p, <1, = t,w)+ [w(p, = 1)dF (p, 2 1, + t,w) = 0.

It is clear from (3.9) that higher transaction costs decrease both supply and
demand. In addition, as Wolfers and Zitzewitz (2006a) note, transaction costs
increase the proportion of trading done by the traders with the noisiest
observations, as the trades contributing to supply and demand in (3.9) result
from those traders with beliefs further away from the median belief. This
causes prices to deviate from objective probabilities further, a result which is
consistent with Hurley and McDonough (1995, 1996) and Sobel and Raines
(2003) in that transaction costs increase inefficiency in market prices. We now

employ the models developed in this section to derive testable hypotheses.
3.4. Hypotheses, data, and method
3.4.1. Hypotheses

Equation (3.8) approximates the mechanism by which prices are set on
betting exchanges and suggests that the FLB can only arise on an exchange as a
result of some proportion of wealth belonging to uninformed traders, who
under-/over-estimate the winning chances of favourites/longshots.
Furthermore, the extent of any FLB is exacerbated by two factors: a lack of
informed trading, and higher transaction costs. Markets for horse races
typically begin on the evening before the race and informed traders are likely to
be more in evidence in the later stages of the market for the following reasons.
First, significant information may only emerge in the later stages of the market,
including details concerning results of previous races at the race meeting, non-
runners, jockey changes, and, even later in the market, the horses’ condition and
behaviour (Bruce and Johnson, 1995). All these details can impact the way the
race is run, so bettors may benefit from waiting to discern this information.

Second, trading is light in the early stages of the market, enabling only relatively
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small bets to be placed. Consequently, informed traders are unlikely to be
prepared to give away their information cheaply to other bettors, as would be
the case if they placed what would have to be relatively small bets in this early
market (Asch et al.,, 1982). Third, the lighter trading in the early stages of the
market is likely to lead to higher over-rounds (since there is a greater
divergence of opinions) and this is likely to deter informed traders who are
looking for value. As liquidity increases, and opinions become less divergent, we
expect spreads to narrow. Indeed, as discussed above, we expect Y to decrease
and X to increase over the period of the market, until, in (3.8), ri* p; for all
horses in the race (i.e., prices will be accurate and not include the FLB). This
motivates our betting exchange hypotheses:

In betting exchanges,

1. prices approach true winning probabilities over time,

2. the FLB is eliminated in the later stages of the market.

However, we have argued above that the FLB is likely to persist in
bookmaker prices because they are competing with other bookmakers or
exchanges, and bettors demand competitive prices on favourites (equation 3.6).
The models developed above predict that bookmakers’ prices on favourites will
be very close to their respective exchange prices. In addition, because of higher
over-rounds, the prices in bookmaker (cf. exchange) markets on longshots are
likely to be significantly higher. Furthermore, bookmaker prices cannot be said
to follow a ‘wealth-weighted average’ of beliefs. Consequently, if the FLB is
present in bookmaker markets, there is no obvious mechanism by which it
might be eliminated by informed traders. In particular, informed traders are
likely to be deterred by the significantly higher over-rounds in these markets. In
addition, bookmakers impose restrictive limits on bet size on the most informed
and wealthy traders (Smith et al, 2009), or may refuse to do business
altogether. The combined effect of less informed trading and more FLB is likely
to mean that bookmaker prices do not predict race results as accurately as
exchange prices. However, we would expect their accuracy to increase as more
information becomes available in the later stages of the market. This motivates
our bookmaker hypotheses:

In bookmaker markets,
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3. prices approach true winning probabilities in the later stages of the market, but
not as quickly as exchange prices,
4. the FLB is present at all stages of the market,

5. prices on favourites closely match exchange prices.

3.4.2. Data

The data employed are odds and finishing positions for 62,124 horses
running in 6058 races in the UK and Ireland from August 2009 through August
2010. In particular, we collected matched bookmaker and exchange prices on
each horse throughout the duration of the market on each race, from 4 hours
before the race start and at intervals up until the start of the race (3 hours, 2
hours, 1 hour, 30, 15, 10, and 5 minutes). The data were downloaded using the
Betfair API and directly from the bookmakers’ websites. The exchange prices
are those of the largest UK betting exchange by traded volume, Betfair, and we
use the best prices at which it is possible to back the horse to win, in order to
make a fair comparison with equivalent prices in bookmaker markets>. The
bookmaker prices are recorded as the mean prices offered by a broad cross
section of nine leading bookmakers; the data, therefore, includes over 5.5
million price points. The number of runners per race ranges from 2 to 30, with a
mode of 9.

We focus on ‘win’ bets, so the finishing positions were recorded as 1 for a
winner and 0 otherwise. We also captured the mean betting volume (amount
traded) on Betfair. We find that this trading volume is concentrated in the last
moments before the race starts; with an average of 57.5% of total volume
matched in the last 5 minutes of the market (see Table 3.2 in section 3.5.1). We
suspect that a similar pattern may be true in bookmaker markets, but this data
is not available. There is a strong positive correlation between exchange betting
volume and accuracy in each market (exchange: corr. = 0.80, p = 0.0046;

bookmaker: corr. = 0.91, p = 0.0004; see section 3.5.1).

15 We do make a minor assumption in that prices are equally valid whatever the stake limit at
that price. This will have the effect of slightly understating the over-round and the level of FLB,
but the inaccuracy will be small enough to be negligible.
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3.4.3. Method

To measure the extent of the FLB in bookmaker and exchange prices, we
use a conditional logit (CL) modelling approach (McFadden, 1974), which has
been employed in several betting market studies (Figlewski, 1979; Asch et al,
1984; Bolton and Chapman, 1986; Benter, 1994; Sung and Johnson, 2010). The
CL model enables us to estimate, based on previous race results, the objective
probability of a particular horse winning a particular race, given a set of horse-
related variables, whilst taking into account the competition in the race. With
price as the single variable, the CL model is an effective method for estimating
the level of FLB, and is formulated as follows.

Define an estimate of horse i’s ability to win race j as

(3.10) W, =pBlng, +¢,,

where f8 is the parameter that determines the importance of the log of the price
qij for horse i in race j and ¢; is an independent error term. McFadden (1974)
shows that if the independent errors are identically distributed according to the
double exponential distribution, then the probability of horse i winning race j is
given by

exp(Blng,) g,

nj B n; B’
Zk=1 eXp('Bln qkj) Zk=lqkf

(311)  p, =Pt(W, >W,

ij

k=12,n,,k #0) =

where n; is the number of horses in race j.
The parameter [ is estimated by maximizing the joint probability of
observing the results of all the races in the sample. This is achieved by

maximizing the log-likelihood
N n;
(3.12) InL = ZFI D v, Inp,

where yj; = 1 if horse i won race j and y; = 0 otherwise, and N is the total number
of races in the sample. If the estimated value of f is one, this implies that the
odds-implied probabilities are equal to the true probabilities, as realized by the
race results. If this estimated value is greater than one, this implies that the FLB
is present; the greater the value of £, the greater is the degree of FLB (Bacon-
Shone et al,, 1992). To test whether the FLB is present, we employ the standard
normal test statistic z = (f—-1)/S.E.(f).
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The log-likelihood also gives rise to a natural measure of the predictive
accuracy of the bookmaker and exchange prices, which can be compared
through time as the market evolves. This is the McFadden pseudo-R?, which is
given by

B InL
InL,°

(3.13) R’ =1

where InLj is the log-likelihood of the naive model, where each horse in a race is

assigned an identical probability of winning:
N
(3.14) InL, = Z,:1 In(1/n,) .

In order to test if the predictive accuracy of prices increases over time, and if
the predictive accuracy of exchange prices is greater than that of bookmaker
prices, we compare pseudo-R? values over time. However, it is not
straightforward to apply a measure of precision to values of pseudo-R?, because
their distributions are complex and depend on unknown parameters. Here, we
adapt the method of Hu, Shao, and Palta (2006) and estimate the asymptotic
distribution of the pseudo-R?s, i.e., the expected distribution as the number of
races tends to infinity. For more details, see section 5.4.2.

Finally, in order to compare the actual prices offered by the exchange and
the bookmakers, we follow Ali (1977) and rank horses by whether they are the
favourite, the second favourite, and so on (by exchange prices). An approximate
standard normal test statistic to compare exchange prices r with bookmaker
prices q is given by
(3.15) PR—— |

- SE(r,q) - \/r(l—l”)+6](1—CI) '
N
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3.5. Results

3.5.1. Predictive accuracy

First, we examine the predictive accuracy of exchange and bookmaker
prices throughout the duration of the market. The results are presented in
Table 3.2. Comparing the predictive accuracy of prices at the time the race
starts (starting prices) with prices available throughout the market, we find that
the pseudo-R? of CL models including price as the only independent variable
(see equation 3.11) increases over time in both markets (see Figure 3.2),
although this finding is not statistically significant over the last hour of the
market duration. Similarly, exchange prices are consistently more accurate than
bookmaker prices at predicting race winners, but the difference is not

statistically significant at any time point.

Figure 3.2. Predictive accuracy of exchange and bookmaker odds through time,

with betting volume.
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Table 3.2. Betting volume and predictive accuracy in exchange and bookmaker

odds over time.

Time Cumulative
until exchange betting Exchangez Bookmakezr
race volume vol pseuzdo-R Ze(t) pseuzdo-R z(t) z(t)
start (£ 000) R (1) R, (1)
(mins) | (% of final volume)
240 (124'97) 0.1639 2.84** 0.1634 2.29* 0.06
19.8
180 (3.9) 0.1658 2.59** 0.1650 2.12* 0.13
27.0
120 0.1700 2.06* 0.1661 1.95* 0.48
(5.3)
39.0 .
60 7.7) 0.1735 1.62 0.1682 1.70 0.67
30 51.2 0.1761 1.28 0.1694 1.55 0.85
(10.0) . . . . :
78.1
15 (15.3) 0.1773 1.37 0.1714 1.30 0.74
109.9
10 (21.6) 0.1784 1.00 0.1732 1.08 0.65
216.3
5 (42.5) 0.1825 0.48 0.1778 0.53 0.60
509.5
START (100.0) 0.1862 - 0.1820 - 0.52
Corr(vol, Pseudo-R?) 0.79** 0.90**

* Significant at the 5% level, ** 1% level (1-tailed test).
Standard errors are 0.008 to 3 decimal places in all cases so are omitted.
R?(START) - R>(¢) RI(START) - R} (t)
Z(’ (t) = ’ Zb (t) = 5 P 5 P
57 (R>(STARTY)) + s> (R (£)) Js?(R2(START)) + 5> (R (£))

)

_ RO-RO
JS (R (1) + 5 (R (1))

z(t)

3.5.2. FLB and over-round

Eight CL models (as per equation 3.11) were developed for both the
bookmaker and the exchange markets, respectively, incorporating prices
available at the eight different time periods before the race start. The estimated
parameters in these models were used to compare the degree of FLB in these
markets at different times before the race start (see Tables 3.3 and 3.4 for the
exchange and bookmaker markets, respectively; Table 3.4 also includes the

difference in the level of FLB between bookmaker and exchange markets).
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Table 3.3. The FLB in exchange odds over time.

Time until B-1 B = Bstarr Over-round
et | TP SO m () SEB B B
240 1.080 0.0186 4.31** 2.630** 0.113
180 1.072 0.0185 3.92%* 2.328* 0.101
120 1.056 0.0181 3.12%* 1.718 0.079
60 1.052 0.0181 2.89%* 1.552 0.070
30 1.047 0.0180 2.60** 1.331 0.064
15 1.042 0.0180 2.34* 1.143 0.064
10 1.036 0.0178 2.02* 0.909 0.063
5 1.028 0.0176 1.59 0.584 0.058
START 1.014 0.0173 0.79 - 0.057
Corr(f,Be) 0.918**

*: significantly different from 1.00 at the 5% level, **: 1% level (2-tailed test).

Table 3.4. The FLB in bookmaker odds over time.

T’Lr?:;czrt'itl FLB 8 SE (8) p-1 B = Bsvarr B = Bexcn Over-
(mins) SE(B)  SEB.Sgur)  SE.Prcy) — round By

240 1.215 0.0205 10.47** 0.293 4.85%* 0.198

180 1.216 0.0204 10.56** 0.351 5.22%* 0.207

120 1.216 0.0204 10.58** 0.345 5.85** 0.214

60 1.216 0.0204 10.77** 0.478 6.14** 0.217

30 1.220 0.0204 10.82%* 0.499 6.40** 0.217

15 1.224 0.0204 11.01%* 0.624 6.71** 0.200

10 1.226 0.0204 11.09** 0.683 7.01** 0.190

5 1.214 0.0201 10.65** 0.286 6.98** 0.180

START 1.206 0.0198 10.40** - 7.33** 0.181

Corr(f,B») 0.394

*: significantly different from 1.00 at the 5% level, **: 1% level (2-tailed test).
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The results show that there is FLB in exchange prices 30 minutes or more
before the race start (the parameter is significantly greater than 1.00 at the 1%
level: z = 2.60, p = 0.0096) when just 10% of final volume has been traded at
this stage. Most importantly, the results show that there is no significant FLB in
exchange prices in the later stages of the market (e.g., based on prices 5 minutes
before the race start: z = 1.59, p = 0.1142). In addition, the FLB in exchange
prices is significantly greater 3 hours before the race start than it is at race start
(z = 2.33, p = 0.0204). On the other hand, there is FLB in bookmaker prices
available at all times before and at race start (i.e., the parameter in the CL model
is significantly greater than 1.00 at the 1% level based on all these sets of prices,
e.g., at race start: z = 10.40, p = 0.0000). Moreover, when comparing the level of
FLB in the bookmaker prices at different times throughout the market with that
at race start, there is no apparent trend (see Figure 3.3). In addition, the FLB is
greater in the bookmaker prices than in the exchange prices at all times (e.g.,
comparing the FLB in bookmaker vs. exchange prices at race start: z = 6.98, p =

0.0000).

Figure 3.3. Level of FLB over time in exchange and bookmaker markets.
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We find that bookmaker over-rounds are much greater than those on the
exchanges (even after allowing for commission in exchange markets: see Tables
3.3 and 3.4), with bookmaker/exchange over-rounds ranging between
0.180/0.057 and 0.217/0.113 at different stages of the market. These results
confirm that bettors face significantly higher costs in bookmaker (cf. exchange)
markets. In addition, we find a strong positive correlation between the
exchange FLB and over-round (corr. = 0.92, p = 0.0002), but no such clear
relationship in bookmaker markets (corr. = 0.39, p = 0.1474). In fact, the
exchange over-round decreases through the duration of the market, along with
the level of FLB, whereas it remains fairly stable in bookmaker markets.

Finally, we compare starting prices in exchange and bookmaker markets
for horses with greater and smaller chances of success (as predicted by their
prices). In particular, the favourite is ranked 1, the second favourite is ranked 2,
and so on. Horses which are ranked 12th or more are grouped together. The
results of comparing exchange and bookmaker prices are presented in Table 3.5

and illustrated in Figure 3.4.

Figure 3.4. True winning probability and prices by horse rank.
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We find that there is no significant difference in exchange and bookmaker
prices for the first three ranks, but for horses ranked 4t favourite or greater,
the exchange prices are significantly lower, representing better value for the
bettor (e.g., for rank 4: z = 2.22, p = 0.0264). In sum, our results confirm
hypotheses 2 and 4 that the FLB is eliminated in the later stages of the market
for the exchange, but that the FLB in the bookmaker market is present
throughout. Furthermore, we find support for hypothesis 5, that bookmaker
and exchange prices for the favourites are similar, but bookmaker prices on

longshots are significantly higher than exchange prices.

Table 3.5. Comparison of true winning probabilities and mean starting prices by

horse rank in exchange and bookmaker markets.

Horse rank True
by Number o Exchange  Bookmaker r—q

exchange of horses wmrtl)mg price r price q SE (n4) SE(r,q)

price prob.p

1 6058 0.3310 0.3434 0.3463 0.0086 0.34
2 6058 0.2053 0.2121 0.2184 0.0075 0.86
3 6055 0.1371 0.1461 0.1569 0.0065 1.67
4 6012 0.0913 0.1052 0.1180 0.0057 2.22*
5 5857 0.0761 0.0784 0.0920 0.0052 2.62**
6 5522 0.0525 0.0596 0.0739 0.0047 3.01**
7 5074 0.0449 0.0458 0.0605 0.0045 3.30%*
8 4496 0.0309 0.0361 0.0504 0.0043 3.32%*
9 3886 0.0280 0.0291 0.0437 0.0042 3.45%*
10 3241 0.0216 0.0238 0.0381 0.0043 3.33**
11 2656 0.0215 0.0198 0.0338 0.0044 3.16%*

12 or more 7209 0.0126 0.0133 0.0295 0.0024 6.74**

*: significantly different from 1.00 at the 5% level, **: 1% level (2-tailed test).
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3.6. Discussion

Our first two hypotheses, related to exchange prices, were that they
should approach the true winning probabilities over time, and that the FLB
would be eliminated over time. We argued that this would occur because an
increasing betting volume from more informed bettors is likely as the market
develops, because of a reduction in spreads as liquidity increases (increased
liquidity reduces the divergence of opinions allowing lower bid-ask spreads)
and a reduction in uncertainty as new information is revealed. We found that
exchange prices develop in the manner predicted. However, whilst the
correlation between exchange betting volume (i.e., of matched bets) and
accuracy is high, the increase in accuracy of exchange prices in the later stages
of the market is not statistically significant, which suggests that at least some
informed betting occurs early. We also found that there was a significant FLB in
the early stages of the exchange market. This suggests that early-stage bettors
are generally uninformed and may, as suggested in earlier studies, create the
FLB because of their risk-loving tendencies (e.g., Weitzman, 1965; Quandt, 1986;
Hamid et al., 1996) or biased expectations (Henery, 1985; Chadha and Quandyt,
1996; Snowberg and Wolfers, 2010). However, we learn very little about
exchange bettors as a population from the early-stage group because so little of
the total betting volume is matched at this time (on average, only 2.9% of final
volume is matched 4 hours before the race start). We find that the FLB in the
exchanges is eliminated over time, suggesting that the exchanges are dominated
by informed bettors who bet in a manner which eliminates any FLB. Clearly,
there may be some bettors who display risk-loving attitudes or exhibit biased
expectations but either their bets are matched by more informed bettors
(taking advantage of the lower over-rounds in exchanges), or such bettors may
bet with bookmakers.

Our third hypothesis was that bookmaker prices would approach the true
probabilities over time, but not as quickly as exchange prices. Our finding that
bookmaker prices are not as accurate a predictor of the race winner as
exchange prices corroborates the findings of previous studies (Smith et al,,

2009; Franck et al., 2010). Our results lead us to agree with their conclusions
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that this is an indication of the type of bettors that bet in these markets, and not
a reflection on the bookmakers themselves. In particular, the higher over-
rounds in bookmaker markets result in less competitive prices, driving
informed betting towards the exchanges, and it is the bets of these informed
traders which, in turn, lead to the improved accuracy in exchange prices.

Our finding, in support of hypothesis 4, that the FLB is present in final
bookmaker prices, is not controversial; many previous studies have found a
greater FLB in bookmaker markets than in parallel pari-mutuel markets (Bruce
and Johnson, 2000; Peirson and Blackburn, 2003) and exchange markets (Smith
et al,, 2006). However, we discovered that the FLB is present in bookmaker
prices at all times throughout the market, and that the level of FLB is not
correlated with over-round, neither is there any trend in the level of FLB over
the duration of the market. We are not aware of any study which has
investigated the level of FLB over the duration of the market, and our finding
that there is no correlation between over-round and the level of FLB contrasts
with the view that higher transaction costs are the cause of a greater FLB in
bookmaker markets (Smith et al., 2006). We also found evidence in support of
our fifth hypothesis that prices of favourites are similar in the exchange and
bookmaker markets (for horses ranked 1-3rd favourite).

Taken together, our findings support our argument that the FLB in
bookmaker markets is largely the result of the bookmakers’ pricing policy.
Specifically, it appears that the FLB in these markets results from bookmakers
deciding to price in this manner in the presence of specific conditions related to
bettors’ demand (that bettors’ demand is more elastic for favourites than
longshots). This represents both a supply- and a demand-side explanation for
the phenomenon. We now consider three previous explanations for the FLB in
turn, and discuss how our theory is consistent with these explanations, or at
least how these explanations may be adjusted to be consistent with our theory.
We label these explanations: demand-side explanations, the Shin pricing policy,
and transaction and information cost explanations.

Demand-side explanations, as discussed above, generally focus on one of
two sources for the bias: bettors are risk-loving (e.g., Weitzman, 1965), or

bettors have biased expectations (e.g., Henery, 1985). In both cases, it is
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believed that the FLB directly results from bettors’ decisions. For example,
using an extremely large dataset of North American races Snowberg and
Wolfers (2010) found that the mispricing of exotic bets was more consistent
with the FLB being driven by biased expectations than risk-love. Their
investigation was restricted solely to pari-mutuel market odds (which are the
monopoly market in the USA). It could also be the case in bookmaker markets
that bettors’ preferences are consistent with them being risk-loving or subject
to biased expectations. However, we found that an alternative explanation
based on bookmakers’ optimal pricing policy was more satisfactory: demand-
side explanations do not adequately explain why there is a FLB in bookmaker
prices at the outset of the market, when there has been little or no betting
volume, and it does not explain why this FLB reduces through time. The current
study has investigated the two major types of betting market in the UK (i.e,,
bookmakers and exchanges), neither of which are pari-mutuel, and found
significantly different results, which are more consistent with supply-side
factors being the cause of the FLB in bookmaker markets, and informed betting
eliminating the FLB in exchange markets.

Shin’s (1991, 1992, 1993) bookmaker pricing policy model suggests that
bookmakers deliberately increase prices (or reduce odds) on longshots to
protect their interests against insider traders. In Shin’s model, as in later studies
by Schnytzer and Shilony (2005) and Peirson and Smith (2010), insiders are
defined as being more informed than anyone else, including the bookmaker.
Shin assumes that insider trading is likely to be more associated with longshots
than with favourites, and, consequently, he argues that bookmakers stand to
lose more if they allow prices on longshots to be ‘fair’. Rather, we have
suggested that bookmakers increase prices on longshots in order to allow them
to offer competitive (lower) prices on favourites, to address the demand
preferences of bettors. Shin’s model makes a number of simplifying
assumptions (e.g., insider traders are perfectly informed traders) which we do
not make in our model of bookmaker competition. In particular, the Shin model
and other similar models rely heavily on the idea that there are insider traders
operating in the market, and that these are feared by the bookmaker, resulting

in their pricing policy. However, this view does not account for the reality of the
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betting market. In particular, bookmakers are able to refuse business or restrict
betting from bettors who they believe to be insiders, and bookmakers have
extensive intelligence systems which reduces the chance of ‘unknown’ insiders
damaging their profits. In addition, we have argued that insider traders are far
more likely to bet with the exchanges, particularly because of lower transaction
costs. By contrast, our belief is that bookmakers are far more concerned with
competition amongst themselves and with exchanges than with the activities of
insiders. In particular, they are more interested in the average customer in a
competitive market who is simply concerned with getting a competitive price. It
is these who provide bookmakers with the majority of their betting volume.
Under this assumption, our model demonstrates that there is an incentive for
bookmakers to set their prices incorporating the FLB if bettors’ demand is more
elastic for favourites than for longshots, particularly if the bookmaker is
competing with operators (e.g., exchanges) who are able to offer much lower
transaction costs.

The transaction and information costs explanation for the FLB suggests
that this phenomenon results from an increase in the cost of obtaining
information or placing bets. This is consistent with some of our results. In
particular, we found that the FLB was significantly higher in the bookmaker
market, where transaction costs are significantly higher (and the cost of
obtaining information does not differ for those betting with an exchange or with
a bookmaker). Furthermore, we found that the level of FLB in the exchange was
higher when the over-round was higher (i.e., in the early stages of the market).
However, we found that the FLB in the bookmaker market was not significantly
correlated with over-round. We believe that informed traders eliminate the FLB
in both exchange and bookmaker markets at any time when over-rounds are
not set at a level which prohibits betting at an acceptable price. However, the
high over-rounds in the bookmaker markets deter informed traders, resulting
in the FLB remaining throughout the duration of the market. Similarly, the FLB
in the early stages of the exchange market is not eliminated because spreads are
higher (as a result of lower liquidity) and there is a greater degree of

uncertainty about future developments. Consequently, our results suggest that
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transaction costs are a factor which influences the amount of informed trading

in the market which, alongside competition, affects the level of FLB.

3.7. Conclusion

Previous research has shown that the FLB has existed in a variety of
jurisdictions over many decades. Whilst many studies have identified FLB in the
UK bookmaker market, there is little evidence in the growing literature on
betting exchanges that these markets also exhibit the FLB. Our study aimed to
provide an explanation for this contrasting evidence. Consequently, we
developed a model to explain the FLB in competing bookmaker markets and
tested resulting hypotheses related to how the predictive accuracy, over-round,
and the FLB develop over the duration of the betting market for a typical race.
The model’s predictions were confirmed using empirical data from the UK
horserace betting market.

This study makes a number of important contributions. First, we have
found further evidence of (i) FLB in bookmaker markets, and (ii) no FLB in
exchange markets. Second, we confirm that predictive accuracy of exchange
prices is largely superior to that of bookmaker prices. However, in the case of
exchange markets, we have also uncovered significant relationships between
the FLB and betting volume (or time remaining before race start, each of which
is related to the level of informed trading), and between the FLB and over-
round using a unique dataset consisting of matched bookmaker and exchange
odds on each runner throughout the course of the market on each race. We also
discovered that there were no such relationships in bookmaker markets. More
importantly, we have developed a model which suggests that the optimal
pricing policy for a bookmaker, who competes with other operators for betting
on favourites, is to set prices which include the FLB. Our empirical results are
largely supportive of the predictions of this model.

We have set our explanations for the FLB within the wider context of the
ongoing debate about the cause of FLB in betting markets, and have shown that
both supply- and demand-side explanations are important contributors to the

bias. Transaction and information costs explanations are still relevant, but only
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in the sense that higher costs restrict informed betting, which, in turn, prevents
the FLB being eliminated. Furthermore, we demonstrate that bookmakers’
optimal pricing policy, arising as a consequence of competition between
operators and bettors’ demand for competitive prices on favourites, is an

important contributor to the existence of the phenomenon.
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4. New evidence for a prospect theory explanation of systematic

decision making bias in a market for state contingent claims

Abstract

The favourite-longshot bias (FLB) is the widely-reported systematic bias in
markets for state contingent claims, such as prediction and betting markets,
whereby market prices under-/over-value favourites/longshots. We provide
new and unique evidence to support the view that, where the bias exists
independently of a market maker (e.g., in pari-mutuel betting markets), it is due
to cognitive errors of traders rather than their preference for risk. This is
achieved in two stages: first, we derive a model that shows that prospect theory,
and not risk-love, predicts a ‘strong favourite’ effect, where the level of the FLB
is reduced in events where the variance of odds for non-favourites is low. Then
we test the predictions of the model by employing pari-mutuel market price
data related to 2447 UK horseraces. An analysis using the conditional logit
model verifies that the extent of the FLB is indeed reduced in races with strong
favourites, as well as in handicap races. Furthermore, unlike previous attempts
to confirm that traders’ cognitive errors are the source of the FLB, our results
are independent of parametric assumptions or assumptions about the choice

set of the decision maker.

4.1. Introduction

The favourite-longshot bias (FLB) is the systematic bias reported in
markets for state contingent claims, such as prediction and betting markets,
whereby market prices are such that high-probability outcomes (favourites) are
under-valued and low-probability outcomes (longshots) are over-valued. First
discovered in a laboratory setting by psychologists Preston and Baratta (1948),
and in the naturalistic setting of betting markets for horseracing by Griffith
(1949), the FLB has been shown to be present in many jurisdictions and
throughout many decades (e.g., Dowie, 1976; Ali, 1977; Snowberg and Wolfers,

2010), with a few studies finding contrasting evidence (e.g., Busche and Hall,
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1988; Busche, 1994). In the context of markets for state contingent claims, the
presence of the bias, and its absence in some settings, has been attributed to a
variety of causes including, among others, the risk-loving nature of traders
(Weitzman, 1965), errors in the estimation of probabilities (Henery, 1985), the
pricing policies of bookmakers (Shin, 1993), and limited information of traders
(Sobel and Raines, 2003). However, it is empirically difficult to discriminate
between the various competing explanations because the decision making
processes of individual market participants are not observable. Rather, the
market prices result from the combined decisions of traders, and represent the
market’s subjective assessment of the probability of each outcome occurring;
the FLB is observed when comparing these subjective probabilities with
observed event outcomes (Griffith, 1949). Hence, competing theories of
decision making in general (expected utility theory and non-expected utility
models such as prospect theory) are observationally equivalent (Snowberg and
Wolfers, 2010).

As a result of this difficulty, there is no standard method for assessing the
relative strengths of the various hypotheses, and so there have been few
attempts to do so. Those that have attempted this task have relied on
parametric assumptions or assumptions relating to the choice set of the
decision maker. In this study, we develop a new methodology for choosing
between the hypotheses, which does not rely on these assumptions.

We first develop a model based on the representative agent that predicts a
‘strong favourite’ effect on the level of FLB. Specifically, we demonstrate that the
level of bias in an individual event varies in a predictable manner depending on
the traders’ risk preferences. If the representative agent is risk-seeking, the
model predicts an increased FLB in events where the variance of the odds on
competitors other than the favourite is relatively low, ceteris paribus. Convesely,
if the representative agent is risk-averse, the level of FLB is reduced or a reverse
bias is predicted when the same variable is relatively low. This prediction is
independent of whether probabilities enter the decision process linearly (as in
expected utility) or nonlinearly (as in prospect theory). Hence, empirical tests
can be conducted that distinguish between hypotheses that do and do not

require the representative agent to be risk-loving. We also show that, in events
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where the rules are designed to equalize the competitors’ winning chances (e.g,,
in handicap horse races), the model predicts an equivalent result to the strong
favourite effect, i.e., an increased/reduced FLB when the representative agent is
risk-seeking/averse.

We test both predictions of the model using a large set of data from
betting markets for UK horseraces, and find strong evidence to support the
hypothesis that in markets independent of a market maker (e.g., a bookmaker),
the FLB is caused by the cognitive errors of traders, rather than a general
preference for risk. Qur paper contributes new and unique evidence to the
existing literature that examines the relative merits of prospect theory,
expected utility theory, and other hypotheses in explaining biases in naturalistic
decision making contexts.

The paper proceeds as follows. In section 4.2, we review representative
agent models of the FLB at the level of demand-side factors, i.e., explanations of
the FLB based only on factors related to the decisions of traders. In section 4.3,
we outline our model, and in section 4.4 we derive hypotheses and introduce
the data and the method employed to test the hypotheses. The results are
presented in section 4.5 and discussed in section 4.6. We draw conclusions in

Section 4.7.

4.2. Representative agent models of the FLB in horserace betting markets

It is widely recognized that horserace betting markets offer a valuable
naturalistic setting in which to explore decision making (Sauer, 1998). In
particular, horserace bettors operate in a setting that involves uncertain and
dynamic information, time stress, regular outcome feedback, and meaningful
incentives. These features are only present in real world decision contexts
(Orasanu and Connolly, 1993) and risk-taking in the high stakes betting context
is not easily reproduced in comfortable laboratory settings (Anderson and
Brown, 1984). Consequently, horserace betting markets appear to offer an ideal
environment in which to explore decision making biases in a real world setting

(Bruce and Johnson, 2003).
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The FLB is one such bias, and has received much attention in the literature
(for reviews, see Vaughan Williams, 1999; Ottaviani and Sgrenson, 2008; Jullien
and Salanié, 2008). A range of explanations for the phenomenon have been
proposed. While some studies have proposed explanations related to supply-
side factors, such as the pricing polices of bookmakers (Shin, 1993), most
studies associate the FLB with the decisions of bettors. A simplified but useful
categorization of these explanations is provided by Snowberg and Wolfers
(2010, pp. 724-725): “each yields implications for the prices of gambles
equivalent to stark models of either a risk-loving representative agent or a
representative agent who bases her decisions on biased perceptions of true
probabilities”. So, bettors have unbiased expectations, but are risk-loving (e.g.,
Weitzman, 1965), or have biased expectations, but are risk-neutral or risk-
averse (e.g., Henery, 1985). This categorization warrants attention because it
addresses the relative merits of competing theories for explaining decision
making in wider fields: specifically, expected utility (EU) theory and non-
expected utility models such as prospect theory.

The former class of models originates from the proposition that, in order
to explain the FLB, the representative agent must be risk-loving over the
relevant part of the decision making domain. So, Weitzman (1965) introduced
the ‘representative bettor’ Mr. Avmart, who represents the ‘social average’ of all
bettors. Instead of concentrating on individuals, Weitzman inferred the
preferences of the most typical bettor from the population in order to construct
Mr. Avmart’s utility of wealth curve (the mathematical representation of
preferences over various monetary outcomes and the basis of EU theory). He
found that the FLB in his data was best explained by a convex utility of wealth
curve, indicating that the average bettor is locally risk-loving (i.e., the average
bettor prefers the riskier, low probability outcomes). Quandt (1986) extended
the analysis by showing that the bias is the natural result of equilibrium in a
market where the average bettor is risk-loving. This theory was confirmed
empirically by the EU models of Ali (1977) and Hamid, Prakash, and Smyser
(1996). More generally, for the FLB to be explained with reference to the
bettor’s utility of wealth function, the bettor need not be monotically risk-loving

over the whole decision making domain. Indeed, it is possible for bettors to be
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risk-averse in general, but with a preference for skewness of returns (Golec and
Tamarkin, 1998; Walls and Busche, 2003). Alternatively, bettors may be risk-
averse over some parts of the domain and risk-seeking over others (Cain and
Peel, 2004). However, these alternatives are all equivalent to the risk-loving
representative agent model (Snowberg and Wolfers, 2010).

A broad alternative classification of explanations for the FLB stems from
Kahneman and Tversky’s (1979) prospect theory (PT), in which the value of an
outcome is defined relative to a reference point and bettors are risk-averse for
gains and risk-loving for losses. Crucially, PT can explain some violations of EU
theory, such as the Allais (1953) paradox, as well as explaining the FLB, because
objective probabilities are transformed into subjective decision weights that
allow for biases in the estimation of probabilities. If the assumptions of PT hold,
then the FLB can be explained solely with reference to bettors’ systematic
misestimation of probabilities, i.e., bettors need not be locally risk-loving. While
PT is a formal model of decision making under uncertainty, this alternative class
of explanations can effectively include any model in which probabilities enter
the decision objective function nonlinearly in order to explain the FLB. For
instance, Sobel and Raines (2003) derived an alternative specification to the
risk-love model that allows for the representative bettor to be risk-neutral. In
this specification, the FLB can be explained by limited information of bettors,
since either underreaction to new information or limited precision in the
decision making process (or a combination of the two) results in relatively
large/small probabilities being under-/over-estimated. Henery (1985) argues
that bettors systematically discount a constant proportion of losses; since
longshots lose more often, this leads bettors to over-estimate the winning
chances of longshots. Effectively, the above explanations can be incorporated
into the biased expectations class of models (Snowberg and Wolfers, 2010)
because in each case it is the distortion of probabilities that explains the FLB,
and no restriction must be made on the risk preferences of the representative
bettor.

The literature discussed above suggests that there are two broadly
competing sets of theories regarding the explanations for the FLB in terms of

the representative bettor: bettors are unbiased in their estimation of



120

probabilities, but risk-loving, or they are risk-neutral or risk-averse, but biased
in their estimation of probabilities. These two explanations appear to be
empirically indistinguishable, because it is not immediately apparent how to
employ data related to actual decisions to differentiate between risk
preferences and biased estimation of probabilities (Yaari, 1965). However,
some researchers have employed innovative methods for doing so. In particular,
Golec and Tamarkin (1995) attempted to test the two competing hypotheses
using data related to alternative bets offered by bookmakers in addition to
standard ‘win’ bets (bets that a horse will finish in first place). In this instance,
these alternative bets were so-called ‘teaser’ bets on outcomes which were
more likely to pay off than ‘win’ bets, but had a corresponding lower return.
Since ‘teaser’ bets are relatively low-risk compared to ‘win’ bets, risk-love
would predict that bettors demand an extra return to compensate them for the
low risk. However, they found returns from the side bets were relatively unfair,
which is a result that risk-love cannot explain. Instead, they suggested that
overconfidence (which is consistent with bettors overestimating small
probabilities) better explains the FLB. Jullien and Salanié (2000) and Bradley
(2003) also offered support for the view that PT (cf. EU) better explains the FLB,
although they relied on parametric assumptions about the functional forms of
the utility, value, and probability weighting functions of the representative
agent.

More recently, Snowberg and Wolfers (2010) set out to test the competing
theories using a novel approach and a large dataset of all the horseraces run in
North America from 1992 to 2001 (over 865,000 races). They first estimated
the parameters of the two models (the EU model and the PT model) by fitting
the models to standard ‘win’ bets. They then examined compound exotic bets,
such as the ‘exacta’, a bet that two horses will finish a race in first and second
place in a specific order. Snowberg and Wolfers reasoned that bettors would bet
in the same manner in the exotic and win betting pools, so the same models
should apply for each bet type. Accordingly, they used model predictions based
on win bets to forecast expected market prices in the exotic betting pools. They
found that the model based on misestimation of probabilities predicted exotic

bet prices more accurately than the risk-love model. Snowberg and Wolfers
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concluded that, with respect to the representative bettor, PT explained the FLB
more effectively than EU theory.

While the general consensus from the literature has been that non-
expected utility (cf. EU) models better explain decision making in the
naturalistic context of horserace betting, each study has conducted different
empirical tests. Indeed, despite the availability of rich and detailed quantitative
data on the decisions of traders in this context, the key difficulty in
distinguishing between risk-love and biased expectations is a methodological
one. Hence, there have been relatively few attempts to arrive at an empirical
solution to the problem, and those that have been made have relied either on
parametric assumptions (Jullien and Salanié, 2000; Bradley, 2003) or on the
assumption that bettors’ decision making models are identical over different
choice sets (Golec and Tamarkin, 1995; Snowberg and Wolfers, 2010). The
purpose of this study, therefore, is to address this problem with a new and
alternative methodology that does not rely on these assumptions. In the next
section, we develop a model that leads to a new empirical test between the
alternative hypotheses, based on the risk preferences of the representative

agent, independent of the probability weighting function.

4.3. Representative agent models: the ‘strong favourite’ effect

Here we demonstrate that two simple models, based on the representative
agent, result in alternative predictions of a ‘strong favourite’ effect. Specifically,
they predict that the level of FLB is higher or lower in races where, ceteris
paribus, the variance of odds for non-favourites is relatively low. The first model
is based on PT, in which the representative agent is risk-averse for gains: this
model predicts that the FLB will be decreased in races with the ‘strong
favourite’ condition. Conversely, our second model is based on EU and so the
representative agent must be risk-loving in order to explain the FLB. This model
predicts that the FLB will be increased in races with the strong favourite
condition.

Following a number of FLB studies (e.g., Ali, 1977; Jullien and Salanié,
2000; Bradley, 2003; Snowberg and Wolfers, 2010), we make the assumption of
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the representative agent, i.e., we assume that: (i) each bettor is identical and
bets an equal amount x under any circumstances, (ii) bettors bet on at most one
horse in a race (with n runners), (iii) each horse is bet by at least one bettor,

and (iv) each bettor has identical beliefs that each horse i will win the race with

probability p;, where Zzzlpk =1, and these beliefs are unbiased, i.e., each horse

i does win with probability p..

The above conditions give rise to an equilibrium condition: bettors must
be indifferent between all horses in the race, i.e., denoting the desirability of
horse i by D;, we must have that D; = D; for all i, j (Ali, 1977). Otherwise, there
would be at least one pair of horses such that D; > D; and no one would bet on
horse j (contravening the assumption that each horse is bet on by at least one
bettor). With two mild assumptions (continuity of the D; and first-order
stochastic dominance), the equilibrium condition is unique (Jullien and Salanié,
2000).

The intuition in the following models is that, when equilibrium prices are
biased due to bettors being subject to EU theory or PT, the level of bias in prices
changes depending on the distribution of prices across all of the horses in the
race. In our PT model, each bettor has value function v(¢), which is concave for
gains and convex for losses, and their decisions are based on a weighted
probability w(p,) (for simplicity, we make the assumption that, as in the
original PT, the weighting function is the same for gains and losses). Each horse
i has pari-mutuel ‘win’ odds R;, i.e., a bet of size x on horse i returns a profit of
xR; if horse i wins and a loss of —x otherwise. Thus, the value to a bettor of a

winning bet of size x on horse i is given by v(xR;) and the value of a losing bet is
given by v(—x). Then the desirability of a bet of size x on horse i is given by the
expected value of profits, where the associated probabilities are weighted by

w(p,), e,

(4.1) D, =w(p, R )+ w(p, ().

#i
Empirical estimates have found that the weighting functions typically sum to an

amount less than one (e.g., Kahneman and Tversky, 1979), so we suppose that

(4.2) > wp)=c<1,
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although the exact amount ¢ is not important in our model. Hence (4.1)

becomes
(4.3) D; = w(p; )V(xR;) + (¢ = w(p,))v(=x).
Solving the equlibrium condition D, = 4, where 4 is a constant, for w(p,) gives

A—cv(—x)

(4.4) w(p;) = m .

Then, condition (4.2) gives

(4.5) A=cv(—x)+ 0
z" T v(xR,) —v(—x)
Substituting this back into (4.4) gives

1 c

R.)—v(— n 1
N Vv

(4.6) w(p;) =

In our EU model, each bettor has an increasing utility of wealth function

u(t), has rational expectations, and current wealth a. So, the utility to a bettor of
a winning bet of size x on horse i with odds R; is given by u(a + xR,) and the
utility of a losing bet is given by u(a — x). Then the desirability of such a bet is
given by the expected utility of future wealth, i.e.,

(4.7) D, = pu(a+xR)+(1-p,u(a—x).

This model leads to an equivalent expression to that in (4.6), which is

1 1

= R — _ n 1
e aR) —ata—

(4.8) p;

This equation is also Jullien and Salanié’s (2000) explicit formula for the
probabilities in terms of the odds for an EU model. Equation (4.6) is our PT
equivalent. We extend their rationale and show that the PT model not only
explains the FLB but also predicts a reduced or reverse FLB in races where the
variance of odds for non-favourite is low, i.e., races with strong favourites and
handicaps. On the other hand, for the EU model to explain the FLB, we require

that u(¢) is convex. In this case, the model predicts an increased FLB in strong

favourite races or handicaps.
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In order to achieve the above, we index the favourite by 1, and note that

we can rearrange (4.6) and (4.8) to give

c
(4.9) mp) =17 [V(xR,) - v(-x)]X,
B 1
Pi= 1+[u(a+xR ) —u(a-x))X,’
where
. 1
(4_10) Xv - ZH v(ka )—v(—x) ,

n 1
Xo=20

u(a+xR,)—u(a—x) '
Now, X, is proportional to the sum of the prices on each non-favourite (indexed

by k = 2, 3, ..., n), after each price has been modified by the value function for

gains, where the prices are given by rx = 1/Rk. To see this, note that, since v(—x)

is independent of k, we can set v(—x) = 0. Then, representing the value function

for gains by a concave power function v(¢) =¢“, 0 < a < 1, we have that

(4.11) X, =xy" r".

k=2
So X, varies in a predictable way depending on the variance of the odds for non-
favourites, and hence so does the equilibrium condition in (4.6); X, has a similar
interpretation.

Recall two conditions on the value function v(¢) in PT: first, it is an
increasing function, and second, it is concave for gains. Hence, the v(xR,) are

concave and increasing. These conditions ensure that X, is decreasing in the
variance of the odds for non-favourites (see Appendix 3), i.e., X, is greater in the
‘strong favourite’ condition (associated with low variance of odds for non-
favourites). Thus, since (4.6) is an equilibrium condition, if we increase X,

ceteris paribus, we must also decrease v(xR,). Consequently, since v(¢) is

increasing, we must decrease R1, which is the odds for the favourite. Hence, this
model based on PT predicts that the FLB will be reduced in races with lower
variance of odds for non-favourites. Note that this result is unique to the PT
model; the EU model would only predict the FLB if the representative bettor’s

utility function is convex, i.e., if the representative bettor is risk-loving. However,
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in this case, the EU model predicts the opposite effect to the PT model: since the

u(a+xR,) are convex and increasing, X, is lower in the strong favourite

condition. Thus, if we decrease X, ceteris paribus, we must also increase Rj, i.e.,
there is an increased FLB. Crucially, these differing predictions are independent
of whether probabilities are weighted or not. So, while the EU model predicts an
increased FLB in the strong favourite condition because the utility function
must be convex, under PT, bettors can have a concave value function for gains,
because it is the probability weighting function that explains the FLB.

The model we have developed has a further testable implication. Around
half of races in the UK are ‘handicap’ races, where horses are allocated
differential weights to carry (based on their previous performances), in an
effort to equalize the winning chances of all horses in the race. The result of this
equalizing procedure is that handicap races have lower variance of odds over all
runners than non-handicap races. Hence, we might also expect the variance of
odds for non-favourites to be lower. Testing this prediction using our data, we
find that this is the case; the standard deviations of odds for non-favourites
being 15.6 and 22.8 in handicaps and non-handicaps, respectively. Hence, in
handicap races (at least for our dataset), we should expect the FLB to be

reduced. We now develop hypotheses related to the implications of the model.

4.4. Hypotheses, data, and method

4.4.1. Hypotheses

Our models, based on PT and EU theory, respectively, predict that the FLB
will be reduced/increased in races with low variance of odds for non-favourites
(which we call the ‘strong favourite’ effect). Although previous studies have
made assumptions that we do not make in this paper, the weight of evidence
from these studies is in favour of PT as an explanation for the FLB.
Consequently, we test the following as a ‘strong favourite” hypothesis:

1. The level of the FLB will be reduced in races where the variance of odds for non-

favourites is lower.
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Our PT and EU models predict that the level of FLB will be
reduced/increased, respectively, when the variance of the odds for non-
favourites is relatively low. In handicap races, the variance of odds over all
runners is generally lower because weights are distributed to horses in an effort
to equalize horses’ winning chances. We therefore might also expect the
variance of odds for non-favourites to be lower, and this is empirically the case
in our dataset. The weight of evidence from previous studies is in favour of the
PT explanation; consequently, we test the following hypothesis:

2. The level of the FLB will be reduced in handicap (cf. non-handicap) races.
4.4.2. Data

The data employed in this study are final pari-mutuel odds and finishing
positions for 25,644 horses running in 2447 races in the UK. Pari-mutuel odds
are profits from a winning £1 bet on each horse, before transaction costs (track
take and breakage) are deducted from the winnings. So, in order to adjust for
transaction costs, odds-implied probabilities (hereafter, odds-probabilities),
which are the probabilities of each horse winning the race as implied by the
odds available, are given by

1
1+Rl.j

}’l/ 1
Z"11+R,q.

where Rjj is the pari-mutuel odds for horse i in race j and n;j is the number of

(4.12) g, =

)

horses running in race j. The number of runners in each race in the database

ranges from 2 to 29, with a mode of 8.

4.4.3. Method

In order to quantify the level of the FLB in the data, we use a conditional
logit (CL) modeling approach (McFadden, 1974), which has been employed in
many studies of the efficiency of betting markets (e.g., Figlewski, 1979; Asch et
al, 1984; Bolton and Chapman, 1986; Benter, 1994; Sung and Johnson, 2010). In
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the context of horseracing, the CL model estimates the probability of each horse
winning that race, from variables related to the horses, while taking into
account the competitive nature of the race. With log of odds-probability as the
only independent variable, the CL model is an effective method for estimating
the level of FLB, and has the advantage of accounting for the intensity of
competition between runners in each race. It is formulated as follows.

First, define an estimate of the horse i’s ability to win race j, Wj;, as

(4.13) W,=plng, +¢&,,

where f is the parameter that determines the importance of the log of odds-
probability g; for horse i in race j, and ¢; is an independent error term.
McFadden (1974) shows that if the independent errors are identically
distributed according to the double exponential distribution, then the winning

probability for horse i in race j is given by

exp(fing,) g,

n; N ”/. g’
Zk:l eXp(ﬂlnqkj) Zk:l i

The parameter [ is estimated by maximizing the joint probability of

(4.14) p; =Pt(W; >W, . k=12,..n,,k=+i)=

observing the results of all the races in the sample, i.e., by maximizing the log-

likelihood
N n;
(4.15) lnL:ijlzizly!/ lnp!/.,

where y;; = 1 if horse i won race j and yj; = 0 otherwise, and N is the total number
of races. On estimating a CL model with log of odds-probabilities as the only
independent variable, we refer to its parameter as the FLB . An estimated
value of the FLB f of one implies that the odds-probabilities are, on average,
equal to the true winning probabilities. A value of the FLB 8 greater than one
indicates a standard FLB, where longshots are relatively overbet. The greater
the value of B, the greater is the degree of the FLB (Bacon-Shone et al,, 1992). On
the other hand, a value of f less than one indicates a reverse FLB, where
favourites are relatively overbet.

Before addressing our hypotheses, it is instructive to investigate to what
extent the FLB is present in all the races in our dataset. To test whether the FLB
is present we employ the following standard normal test statistic to test

whether the FLB S value significantly exceeds or is less than one:
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(4.16) = AL
S.E(f)

Subsequently, in order to address the issue central to each hypothesis, we

divide the dataset into races that (i) do or do not satisfy the ‘strong favourite’
condition, and (ii) are handicap or non-handicap races. Here, a race satisfies the
‘strong favourite’ condition when the standard deviation of odds for non-
favourites is lower than x, where we choose x to be 5 or 10. Then a race that
does not satisfy this condition has this same variable greater than x. To test the
strong favourite hypothesis, we separately estimate f in races that satisfy the
strong favourite condition and races that do not. We then compare the two
values using the standard normal test statistic

(4.17) o Ph
S.E(B.B,)

A similar test is carried out to test the handicaps hypothesis. We note that the
choices for x of 5 and 10 are fairly arbitrary, so we also investigate the effect of

altering these choices on the level of the FLB.
4.5. Results
4.5.1. Strong favourite hypothesis

The first row of Table 4.1 shows that there is a FLB over all the races in
our data, with favourites underbet and longshots overbet (f = 1.091, p =
0.0014). To test whether the decisions of horserace bettors are consistent with
a reduced FLB in races with a strong favourite (races with low variance of odds
for non-favourites), we estimate the levels of FLB in races with the strong
favourite condition. The results of these estimations are displayed in Table 4.1.
We split races into those where the standard deviation of odds for non-
favourites is lower and greater than some cut-off value. When we set the cut-off
value for a strong favourite race at 5, we find that the level of FLB is significantly
lower in races with a strong favourite compared to races with no strong

favourite (NSF: 8= 1.109, SF: 8 = 0.820, p = 0.0061).
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Table 4.1. Results of estimating conditional logit models with log of odds-
implied probability as the single explanatory variable for UK races from 2004,

assessing the prevalence of a strong favourite effect.

Number of nul\rfliir; of Level of z
races FLB (S.E) p
runners
All 2447 105 1.091 3.19™ 0.0014
races . . (0041) .

NSE(5) 2173 11.0 1.109 2 5k
o 0.0061

SF(5) 274 6.2 0.820 (0.115)

NSF(10) 1691 11.7 1.118 1,83+
0068 0.0337

SF(10) 756 7.6 0.994 (0.068)

Non-handicaps 1161 9.5 1.128 1.47%
0057 0.0703

Handicaps 1286 114 1.043 (0.057)

z=(f-1)/S.E. (all races), z = [ (1) - B(2)]/S.E. (comparisons).

‘SF(x)’ indicates a race where the standard deviation of odds for non-favourites (where the
favourite is the horse believed by the bettors to be most likely to win the race) is lower than x.
‘NSF(x)’ indicates a race where the the standard deviation of odds for non-favourites is higher
than x.

*#*: significant at the 1% level; *: significant at the 5% level; *: significant at the 10% level (1
tailed-test).

In fact, the strong favourite effect is so strong here that the level of FLB in
races with a strong favourite is such that there is a reverse FLB for these races.
When we set the cutoff value at 10, we also find lower FLB in races with a
strong favourite than races without this condition (NSF: f = 1.118, NSF: § =
0.994, p = 0.0337). Hence, there is strong evidence to suggest that the FLB is
reduced in races with a strong favourite. In order to see whether different
values of the standard deviation of odds for non-favourites would give a
different result, we plot the value of the FLB f for other values in Figure 4.1.

We see that when examining the races in the dataset there is general trend
of increasing FLB as the standard deviation increases (i.e., for lower variance,
the bias is lower). However, the effect appears to be marginally lower as the
standard deviation of odds for non-favourites increases, suggesting that the
strong favourite effect is most prominent for races with a relatively strong

favourite (i.e., relatively low variance of odds for non-favourites).
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Figure 4.1. The level of FLB with differing standard deviation of odds for non-
favourites (where the favourite is the horse believed by the bettors to be most

likely to win the race); number of races for each data-point are shown.
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In sum, these results support the strong favourite hypothesis, i.e., they
suggest that the level of the FLB is reduced in races with strong favourites.
Hence, we find strong evidence to support our PT (cf. EU) model in explaining

the FLB in these markets.

4.5.2. Handicaps hypothesis

We now compare the level of FLB in handicap and non-handicap races.
The results are presented in the last row of Table 4.1. We find that there is a
modest reduction in of the level of FLB in handicap (cf. non-handicap) races
(non-handicaps: B = 1.128, handicaps: = 1.043, p = 0.0703). This provides
some evidence to support the handicaps hypothesis, i.e., as a result of the strong
favourite effect, the level of FLB is reduced in handicap races. This provides
further evidence to support PT as an explanation for decision making bias

under uncertainty.



131

4.6. Discussion

The main prediction of our model is that when the variance of odds for
non-favourites is lower, favourites will be relatively under-/overbet, depending
on the risk preferences of the representative bettor; specifically, there will be an
increased/decreased FLB if the bettor is risk-loving/averse. In addition, our
model predicts that the strong favourite effect should be replicated in handicap
races, since the rules of entry for these races aim to equalize horses’ chances;
this in turn is likely to have the effect of reducing the variance of the odds for
non-favourites. Hence, the model offers two related methods for empirically
distinguishing between two competing theories of decision making under
uncertainty. If decisions are made under PT, we should expect a reduced FLB in
strong favourite races. Conversely, if decisions are consistent with EU theory,
we should expect an increased FLB in strong favourite races. Our empirical
findings support the former alternative, with stronger evidence provided by the
strong favourite effect tests than the handicaps test. The slightly weaker
evidence from the handicaps test could be explained by noting that, while it is to
be expected that handicap races have reduced variance of odds over all
competitors, this does not directly mean that variance of odds for non-
favourites will be low. Instead, there are unlikely to be many strong favourites
in handicap races. Thus, while we empirically see that there is a negative
correlation between a race being a handicap and its variance of odds for non-
favourites, we might expect the strong favourites’ effect to be slightly less in
evidence.

We also found that, while the strong favourite effect is prominent for races
with low variance of odds for non-favourites, the effect is less significant for
higher variances (Figure 4.1). This could be due to a confounding effect related
to the number of runners in each race. As we show in Figure 4.2, there is a
strong positive correlation between the number of runners in a race and the

average standard deviation of odds for non-favourites.
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Figure 4.2. The relationship between the number of runners in each race and
the average standard deviation of odds for non-favourites (where the favourite
is the horse believed by the bettors to be most likely to win the race); races with

3 or fewer runners, or 16 or more runners, are grouped.
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Consequently, higher values of the variance are associated with greater
numbers of runners, and this suggests that we may be observing a complexity
effect which reduces the level of FLB. In particular, it has been shown that, as
the complexity of a decision task increases (i.e., the number of alternatives in
the choice set increases), decision makers opt for simplistic, compensatory
strategies, including the ‘take-the-best’ heuristic (Gigerenzer and Goldstein,
1999), in which the decision maker prepares an order of cues based on their
relative prediction validity, before choosing according to the first cue that
discriminates between the alternatives. In a betting decision associated with a
horserace, odds have the highest cue validity of all sources of information (they
are the best predictor of race results), and we can, therefore, expect that under
increased task complexity bettors are likely to adopt such heuristic strategies,
leading to the relative overbetting of strong favourites in races with a higher

number of runners.



133

Primarily, our results provide support to the hypothesis that cognitive
errors (i.e., prospect theory), rather than a preference for risk, explain the FLB.
Our empirically verified predictions are only consistent with a representative
bettor model based on PT, rather than EU theory. Specifically, our results
demonstrate that the representative bettor must be risk-averse for gains, and
expected utility models where the average bettor is risk-averse are unable to
explain the FLB. Hence, EU models are not consistent with our data. This
conclusion, unlike that arrived at in other studies attempting to determine the
origin of the FLB, is independent of parametric assumptions (Jullien and Salanié,
2000; Bradley, 2003) and makes no assumptions about the choice set of the
decision maker (Golec and Tamarkin, 1995; Snowberg and Wolfers, 2010).

There have been a wide variety of previous explanations for the FLB: risk-
love (Weitzman, 1965), the pricing policies of bookmakers (Shin, 1993), the
limited information of bettors (Sobel and Raines, 2003), and misperceptions of
probabilities (Henery, 1985). Our study sheds new light on this issue by
showing definitively that, in markets that do not involve a market maker,
prospect theory (specifically, risk-aversion with biased probabilities) is
necessary to explain an observed reduction in the level of the FLB in races with

strong favourites or in handicaps.

4.7. Conclusion

In sum, we find evidence that decisions in a real-world environment
appear consistent with a ‘strong favourite’ effect, whereby bettors who
generally underbet favourites give undue preference to favourites in races
where the variance of the odds of their rivals is low. This effect is predicted by a
representative agent model employing prospect theory as the driving force
behind bettors’ decisions. A similar effect is also observed when comparing the
FLB in handicap and non-handicap races. The fact that our empirical results are
consistent with prospect theory rather than expected utility, without
parametric or choice set assumptions, contributes powerful new evidence that
prospect theory (cf, expected utility theory) is better able to explain decision

making biases under uncertainty in naturalistic environments. Demonstrating
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such biases in the real world is crucial to establishing the generalizability of
laboratory research, and while the original experimental evidence supporting
the conclusions of prospect theory was compelling, future work in this area
could further investigate the consistency of empirical evidence of other large
populations of decision makers with the predictions of theoretical models.
Finally, there have been a wide range of proposed explanations for the
FLB, from risk preferences and cognitive errors to limited information of
traders. However, we have demonstrated in this paper that the decisions made
by a large population of traders in a naturalistic environment are only

consistent with risk-averse traders with biased subjective probability estimates.
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5. Properties of pseudo-R? as an estimate of forecast accuracy

for discrete choice models

Abstract

While R? in ordinary least squares linear regression is a widely-used and well-
justified measure, the same is typically not true of pseudo-RZs in logistic
regression. This has important implications for the evaluation of pseudo-R?s as
estimates of forecast accuracy for discrete choice models. We show both
theoretically and empirically that at least one of the definitions of pseudo-R? is
not robust to variations in the number of alternatives, and suggest an
adjustment to correct for this bias. We describe and evaluate the relative merits
of two methods (bootstrap and asymptotic) for estimating the variance of
pseudo-R?s so that their values can be compared across non-nested models or
across models fitted on different datasets. Finally, we derive relationships that
describe the usefulness of pseudo-R? measures in terms of their economic value
in the context of competitive event prediction. As a result of the above, we
arrive at a far more rigorous understanding of the value of pseudo-R?s in

evaluating the predictions of discrete choice models.

5.1. Introduction

Discrete choice models are a widely used class of statistical models, and
include the multinomial logit, conditional logit, multinomial probit, mixed logit,
and other models (Maddala, 1983). Their primary use is in the modelling of
choice, specifically prediction of individuals’ choices from a range of
alternatives. Hence, they have wide applications in marketing (McFadden, 2001)
and econometrics (Maddala, 1983), although they have also been adopted in
such diverse fields as epidemiology (Breslow and Day, 1994), operations
research (Cheng and Stough, 2006), and the forecasting of competitive events
(Smith et al., 2009). While a great degree of attention has been given to the
development of effective discrete choice models (Edelman, 2007), particularly

for the forecasting of competitive events (e.g., Lessman et al., 2007), there has
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been little consideration of the best method for evaluating the predictions of
these models. A key property of any means of evaluation of a forecast is its
comparability across empirical models (Kvalseth 1985). Otherwise, the
researcher can not be certain whether differences in the evaluator arise
because of changes in the predictive power of the model or because of
alternative confounding factors, such as properties of the datasets on which the
models were fitted. Moreover, it is desirable in any forecasting context to assign
degrees of uncertainty to any point estimates reported, in order to ensure that
conclusions drawn from evaluating such statistics are statistically significant.

In linear regression, the coefficient of determination R? is widely used as a
measure of a model’s ability to explain variation in the data, and thus the
accuracy of the model’s predictions, and its properties and correct usage are
now well understood (e.g., Kvalseth 1985, Draper and Smith, 1998). However, a
similar consensus has not been reached for its analog for logistic regressions,
the pseudo-R?, because of significant differences between the two types of
measure. So, while pseudo-R%s are commonly reported, their usage is seldom
justified (Veall and Zimmerman, 1996). There are in fact a number of issues
associated with pseudo-R?s that reamin unresolved: first, unlike R?, there is no
single definition of pseudo-R? that is universally employed. Instead, a variety of
measures have been proposed, which are not necessarily mathematically (as in,
the same formula) or conceptually (the same interpretation) equivalent to R2
(Menard, 2000). Second, care must be taken when comparing values of pseudo-
R? between datasets with different characteristics. For instance, one of the
advantages of the conditional logit model in its application to discrete choice
modelling is that each observation (event) need not consist of an equal number
of competitors (e.g., in predicting a consumer’s choice of healthcare products,
the number of products available could be different for each consumer). Finally,
the distributions of R%s are complex and depend on unknown parameters
(Ohtani, 2000), so while R? values are often reported, they are seldom
accompanied by standard errors (Press and Zellner, 1978). Hence, the
comparability of these measures between models is difficult. For pseudo-R2s,
this issue is exacerbated because not only are the distributional properties of

pseudo-R?s different to those of R?, they also depend on the particular defintion
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of pseudo-R? employed and the choice of model. Little attention has previously
been given to the consequences that these considerations have for the
evaluation of discrete choice models using pseudo-R?s.

One of the many applications for discrete choice models is in the
forecasting of competitive event outcomes. A competitive event is a contest
between at least two rival participants where one or more winners are declared
and the outcome is uncertain: political elections or sporting events, for example.
Often, these events are asssociated with markets for betting or trading on their
outcome, e.g., betting markets in the case of sporting events, or prediction
markets for political contests or the outcomes of business policies (Wolfers and
Zitzewitz, 2006a). Since the outcomes of competitive events are of particular
interest for economic reasons (in the case of sporting events) or policy
implications (elections), the forecasting of competitive events is a prominent
subject in the literature (e.g., Schnytzer et al, 2010; Smith and Vaughan
Williams, 2010). Particular attention has been given to the properties of
competitive events that mean that modelling techniques that would normally be
effective in forecasting are not suitable for the forecasting of competitive events.
For instance, the modeller must take into account the intensity of competition
between the participants: hence, the standard modelling approach is to view
competitors as alternatives in a choice set with the winner being the participant
whose attributes lead it to being preferred (Lessman et al, 2011). If there is
some uncertainty about the precise values of the attributes of each competitor,
this is reflected in error terms, and the outputs of the model are the probability
that each competitor will emerge as the preferred alternative, given the
distribution of the error terms; thus, models typically involve some form of the
logistic function. The use of pseudo-R2s in competitive event forecasting is
similar to any other use of discrete choice models. However, while the typical
motivation for pseudo-R?s is as a measure of improvement from null model
(where each alternative is considered equally likely) to fitted model, a more
useful measure would be improvement to fitted model from a model based on
the predictions of prices from the associated market, a measure that we call
relative pseudo-RZ2. Then, there is a direct link between relative pseudo-R?s and

the economic value of the estimated model probabilities.
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In this paper we address the various unresolved issues related to pseudo-
R?s and illustrate these points with specific reference to the forecasting of
competitive events. Consequently, throughout the paper we refer to the
conditional logit (CL) model, which is the most widely-used model in this
context. We define two alternative pseudo-R? measures, and show that at least
one of these is not robust to changes in the number of alternatives in each
choice problem. Consequently, in order for discrete choice models to be
comparable using these measures across non-nested models or across data
fitted on different datasets, we suggest an adjustment to account for the bias.
Then, we describe and compare two methods for obtaining the variance of
pseudo-R? measures, the bootstrap and asymptotic methods. We find that each
method results in variances that are reasonably close; hence, either method
could be used to conduct significance tests for comparing pseudo-R? values.
Finally, we define relative pseudo-R?s as improvement to fitted model from a
model based on the predictions of prices from the associated market in the
context of the forecasting of competitive events. The purpose of this is to show
that there is a relationship between relative pseudo-R?s and the economic value
of estimated model probabilities, a finding that has implications for assessing
the efficiency of financial markets.

The remainder of this chapter is structured as follows. In section 5.2, we
outline the CL model and define two alternative pseudo-R% measures. In section
5.3, we explore properties of these measures in relation to the number of
alternatives. In section 5.4, we discuss the bootstrap and asymptotic methods.

In section 5.5, we discuss relative pseudo-R%s. We conclude in section 5.6.
5.2. The conditional logit model and pseudo-R?s
5.2.1. The conditional logit model
The conditional logit (CL) model (McFadden, 1974) is a widely used model
of discrete choice, and is particularly useful in the forecasting of the outcomes of

competitive events, such as horseraces (e.g., Figlewski, 1979; Asch et al., 1984;

Bolton and Chapman, 1986; Benter, 1994; Sung and Johnson, 2010). For a
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discrete choice problem, it results in estimates of the probabilities of each
alternative being chosen based on variables relating to the alternatives. So, in
the context of competitive events, it provides, for each event, estimates of the
probabilities of each competitor winning the event based on variables related to
the competitors, while taking into account the competition between the
participants in the event. Its primary advantage over other discrete choice
models in the forecasting of competitive events is that the probabilities can be
expressed in an analytic form, thus estimation of the parameters is
straightforward.

The formulation of the CL model begins with an estimate of the ability of

competitor i to win event j, given by

T
(51) VVij = IB xij +€ij’
where B=(8,,...,)" are the coefficients that determine the importance of

the variables x, = (x;,,x xl.jm)T to the winning chances of the competitor,

250w
and ¢; is an independent error term. The key assumption for the CL model,
which makes the estimated probabilities analytically tractable, is that the errors
are identically distributed according to the double exponential distribution
(5.2) S (x) = exp[—x —exp(-x)],
which is plotted in Figure 5.1 with a normal curve for comparison.

Then the estimated winning probability for competitor i in eventj is given
by

exp(f'x;)

2 exp(flx,)

Alternatively, the probabilities can be written in the form of a logistic function

(5.3) p; =Pt(W,>W, ,k=1,..n k=#i)=

kj’

as
_ 1
I+ ZZQLM exp[,BT (xk/ X )]

(5.4) Dy
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Figure 5.1. The double exponential distribution.
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The coefficients § are estimated by maximizing the joint probability of
observing the results of all the events in the dataset, i.e., by maximizing the log-
likelihood (InL) of the full model (the model that includes all the independent

variables in which we are interested),
N n;
(5'5) lnL(ﬂ) - z_/=1 zl‘;lyij lnpij ’

where yj;; = 1 if competitor i won event j and y; = 0 otherwise, and N is the total

number of events in the dataset. We denote the maximized likelihood function
for the full model by In L(,[?) .
Since the estimated probabilities in the CL model are analytically tractable,

it is straightforward to estimate the parameters using the Newton-Raphson

method. In this case, if we let
T
E’j =exp(f xij)
e Z”j F,
(5.6) A ,
S = zi;l Fyx,

2 nj
S = z,-=1 By, X

then
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5.2.2. Pseudo-R?s

In linear regression, a popular measure of ‘goodness-of-fit" is the
coefficient of determination R? (Draper and Smith, 1998); indeed, this is
perhaps the most widely used statistic in ordinary least squares regression
(Kvalseth 1985). It varies between 0 and 1, and can be interpreted in a number
of ways. First, it is the variation in the data that is explained by the model, a
value of 1 implying that the model fully explains variability in the data. Second,
it is the square of the correlation between the model’s predicted values and the
actual values. Third, it is the improvement from null model (a model that
includes no independent variables) to fitted model, with 1 being a model that
perfectly predicts any new datapoint.

However, the standard definition of R? is not applicable in logistic
regression models, such as CL. Rather, several alternative pseudo-R? measures
have been proposed. The motivating criterion for pseudo-R2s is primarily the
same as the third interpration of R? above, i.e., as improvement from null model
to fitted model. The CL model is an example of a model that is estimated by
maximum likelihood, and in fact, for any model that is estimated by maximum
likelihood, pseudo-R?s that satisfy this criterion can be defined.

The most popular measure (e.g., Benter, 1994) is McFadden's (1974)
pseudo-R?, which is given by

(5.8) R, -1~ L)

M InL(0)’
where In L(,é’) is the maximized log-likelihood (InL) of the full model, including

all independent variables,

(5.9) InL(B)=3 > vyInp,
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and InL(0) is the InL of the naive model, where each competitor in the event is

assigned the same probability of winning:

(5.10) InL(0) = Z,il In(1/n,).

An alternative is the Maddala (1983) pseudo-RZ, given by

(5.11) R2 =1-exp{(2/N)[InL(0)—In L(B)]}.

Note that, although the McFadden pseudo-R? possesses the desirable property
that it takes a maximum value of 1, this is not true of the Maddala pseudo-R?,
which has a maximum of R} =1-exp{(2/N)InL(0)}. While there are many

other definitions of pseudo-R?, for the remainder of this chapter, we consider
only these two definitions, but our results are easily extended to other
definitions. We begin with a consideration of their comparability across

datasets.
5.3. Pseudo-R?s and dependence on the number of alternatives

In this section, our primary motivation is to ensure that pseudo-R?s are
comparable between similarly specified models on alternative datasets. The
concern here is that, in any discrete choice problem, alternative datasets may
differ in their characteristics. Specifically, depending on how the data are
sampled, the average number of alternatives available to each subject may vary.
For example, in predicting a consumer’s preferred medical care, the number of
alternatives available to them might depend on their geographical location. To
give an extreme example from competitive events, suppose a researcher seeks
to analyze variations in the predictability of horseraces depending on the
number of horses in each race. In this instance, the researcher will sample
alternative datasets depending on the number of runners in each race, and so
necessarily the average number of competitors in each subset of the data will
differ. In this section, we investigate whether each of the McFadden and
Maddala pseudo-R2s are robust to variations in this particular characteristic of
the data. We find that the value of the McFadden pseudo-R? varies predictably
depending on the average number of alternatives, even while the predictive

power of model estimates remains constant. Consequently, we define an
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adjusted version that does not have this undesirable property, while still
satisfying the original criterion of improvement from null model to fitted model.

Recall that the motivation behind the formulation of pseudo-R?s is that
they represent the degree of improvement from null model to fitted model.
Suppose, therefore, that, in each event j, the model assigns a winning probability

to the eventual winner of f(n;)/n,, ie,ify; =1, p, = f(n;)/n; (note that since
the pjj are probabilities, 0 < f(n;) <n; for all j). Then the dependence of the two

definitions of pseudo-R? can be evaluated for their dependence on (or
independence from) the number of competitors in each event. The formulae are

given by the following proposition (for a proof, see Appendix 4).

Proposition 1. If the model probabilities are p; = f(n;)/n,, then the McFadden

and Maddala pseudo-R?s are given by

n 7
(5.12) g =t
Inn
and
1
(513) Ré :1—?,

respectively, where ﬁ:(HLn_,)l/N and ]?=[Hiilf(nj)]w are the geometric
means of the number of competitors and of f(n;), respectively. Here, N is the

number of events.

Here, ]7 can be thought of as the part of the pseudo-R? that measures the

predictive power of the model probabilities. In each case, as JN‘ increases, so

does the pseudo-R2. However, the McFadden pseudo-R? has a predictable

dependence on the the number of alternatives: if the number of alternatives in
each choice problem increases, Rfl decreases. Hence, in order to define an
adjusted McFadden pseudo-R? that is independent of the number of alternatives,

we multiply R;, by In7, i.e,,

(5.14) R} :(lnﬁ){l—w}.

In L(0)
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Note that this definition no longer has a maximum value of 1; it now has a

maximum value of Inz. For the Maddala pseudo-R?, we find that it is, as

required, already independent of the number of alternatives in each choice

problem. However, it has a maximum value of 1— /72,

For an empirical demonstration that the adjusted McFadden and Maddala

pseudo-R?s are consistent even when the number of alternatives is varied, we

fit CL models on subsets of horserace betting data categorized by the number of

competitors in each event. The data employed are final bookmaker odds from

6064 UK races from 2009 and 2010. The CL models have just one independent

variable, which is the log of odds-implied probability; the coefficient of this

variable is given by . The results are presented in Table 5.1 and Figure 5.2.

Table 5.1. Conditional logit models with log of odds-implied probability as the

single variable fitted to different subsets of the data depending on the number

of competitors in each event.

Number of

Number

A

competitors | of events d p InL(0) lnL(B ) Ré EJ‘Z/I R123
4 or fewer 201 37 110  -2642 2127 0195 0256 0.401
5 335 5 124  -539.2 -412.0 0236 0379 0.532
6 448 6 119  -802.7 -645.7 0196 0351 0.504
7 578 7 1.05 -11247  -952.4  0.153 0.298  0.449
8 611 8 111 -12705  -1060.7  0.165 0.343  0.497
9 646 9 124  -14194  -11413  0.196 0430 0577
10 585 10 117  -13470  -1111.1 0.175 0.403 0.554
11 572 11 123  -13716  -1107.8 0.192 0.461 0.602
12 533 12 117  -13245  -10951 0.173 0430 0.577
13 450 13 121 -11542  -9593  0.169 0433 0.580
14 345 14 124  -9105 -742.3 0185 0.488 0.623
15 222 15 146  -601.2 -470.0  0.218 0591 0.693
16 189 16 138  -524.0 -4152 0208 0576 0.684
17 83 17 172 -2352 1809  0.231 0.654 0.730
18 or more 266 200 129  -7972 -6745  0.154 0.461 0.603
All events 6064 96 121 -13686.1 -111948 0.182 0.411 0.560
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Figure 5.2. A comparison of the pseudo-R2s across subsets of the data

categorized by the number of competitors in each event.
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Clearly, the adjusted McFadden and Maddala pseudo-R?2s vary consistently
with each other when the number of competitors is changed, while the standard
definition of the McFadden pseudo-R? does not vary in the same way. Hence,
while there appears to be an increasing trend in model goodness-of-fit as the
number of runners is increased, this trend is not captured by the standard
definition of the McFadden pseudo-R?, because it has the tendency to decrease

as the number of runners is increased; see equation (5.12). We confirm this by
fitting linear regressions of R2 —R? and R} —R? on the number of runners;

gradients are given by 0.0174 (t = 10.67, p = 0.0000) and -0.0035 (¢t = 0.20, p =
0.4211), respectively, i.e., the difference between the Maddala and McFadden
pseudo-R?s increases with the number of runners while the difference between
the Maddala and adjusted McFadden pseudo-R2s do not. In the next section, we
continue to address the comparability of pseudo-R2s, by describing and

comparing two methods for estimating their distributions.
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5.4. Distributional properties of pseudo-R?s

5.4.1. Bootstrapping pseudo-R%s

It is straightforward to compare nested CL models (i.e., models where one
of the models includes all the independent variables from the other model)
fitted on the same data (e.g., using the likelihood ratio statistic). However, as
researchers we run into difficulty when attempting to compare either non-
nested models fitted on the same data or models that are fitted on mutually
exclusive data. One approach would be to make comparisons between the
pseudo-R?s for each model. However, it is not a simple task to assign a measure
of precision to values of pseudo-R? because their distributions are complex and
depend on unknown parameters. An alternative method for estimating the
distribution of pseudo-R?s is to adopt an M-bootstrap approach (Efron, 1979),
as recommended by Ohtani (2000) for ordinary R?s. The bootstrap is commonly
used when the theoretical distribution of a statistic is complicated, which is the
case for the CL model. Suppose we have fitted CL models to two datasets, D1 and
D>, consisting of N1 and N events, respectively. The M-bootstrap method

proceeds as follows:

1. Sample N1 events, with replacement, from D, to form a new dataset BD;.
Similarly, sample N2 events, with replacement, from D, to form a new
dataset BD:.

2. Fit CL models on BD1 and BD and record the resulting values of pseudo-
R2.

3. Perform M iterations of steps 1 and 2.

4. The sample means, x(R’) and u(R;), and sample variances, s*(R) and

s>(R7), of the sets of M pseudo-R?s are used to derive a standard normal

test statistic, z[y(Rz)]z[y(Rlz)—y(Rzz)]/\/sz(Rf)+sz(R22), which can be
used to test the alternative hypothesis that the estimated probabilities

from one model are more accurate than the other vs. the null hypothesis

of no difference.
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5.4.2. The asymptotic distribution of pseudo-R?s

An alternative method is to estimate the asymptotic distribution of the
pseudo-R?, i.e., the expected distribution as the number of events tends to
infinity. Hu, Shao, and Palta (2006) derive analytically the asymptotic
distribution of the Maddala pseudo-R? in the multinomial logit model (like the
conditional logit model, the multinomial logit model is a model of discrete of
choice, but with different underlying assumptions). Here, we adapt their
analysis to derive the asymptotic distribution of the McFadden and Maddala

pseudo-R?s for the conditional logit model.

Proposition 2. Assume that the independent variables xi; j=1,2,...,N,i=1, 2, ...,

n; are independent and identically distributed random m-vectors with finite

. 2 . .
second moment (i.e, E(x,") finite). Let

(5.15) H, =E(Inn)),

H,=-EQ.. p,Inp,).

and let
Var(n.
(5.16) z:( ar(n,) 77),
77 £
_L( H, 1)T
S i\ Ama’ ’
207 (1 !
= s 1 )
£777 (1 j
where
(5.17) A=En,),

n=En, Y. pInpl+iH,,

&= E[Z:’:’1 pij(lnpl.j)z]_sz_

Then,as N — «,
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(5.18) VNIR, - (1= Hy/ H)] =, N(0,0,),

IN[RE - (1= =, N(0,0,7),
where o’ = g,'3g, and c,” = g,'Zg,.

Proof. For a proof, see Appendix 4.

The above proposition gives the asymptotic distributions of the McFadden
and Maddala pseudo-R?s. Hence, to obtain estimates of the variance of point
estimates of these pseudo-R2s, we can replace the unknown quantities with
consistent estimators. So, denote by n, n, and s*(n) the arithmetic mean,
geometric mean, and sample variance of the number of competitors,

respectively, i.e.,

(5.19) n=(/N)Y n,,

~ N
n= (Hj=1 n./)l/N ’
2 _ 1 N —\2
S (n)—ijzl(nj—n) .
Then, let
2 A
(5.20) i:(s (n) ’Zj,
n &
L (a
8w\ Alna ’
L2 (1 !
Z_ﬁz eZH(%a lj )
where
A N n/ _/\
(5.21) A=U/NY, n Y. p,Inp,+nH,,

é:(l/N)ZjY:lzgpij(lnpﬁ)z _Flzz-

Here
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(5.22) Hy==(/N)Y. > pyInp, .

Then estimates of the variance of the McFadden and Maddala pseudo-R?2s are

given by
1 . raa
(5.23) S (Ry)=—(828),
N
2/ p2 L ores
N (RD):N(gz 2g,),
respectively.

5.4.3. An empirical comparison of the asymptotic method with the bootstrap

method

Now we discuss the differences between the two alternative methods for
estimating variances of pseudo-R2s described above. Teebagy and Chatterjee
(1989) show that the bootstrap method overestimates standard errors in large
samples for standard logistic regression (relative to the asymptotic
distribution). Here we briefly compare values of the standard deviations of the
pseudo-R?s from CL models estimated using each method on some real data.
The data employed are final exchange odds from 6058 UK races from 2009 and
2010. There are two subsets of the data, consisting, respectively, of those races
with above-/below-median Shin z (with 3029 races in each set), where Shin z
measures the extent of informed trading in the market (see Appendix 1 for
more details). We again fit CL models with just the log of odds-implied
probability as the single explanatory variable; the coefficient of this variable is

given by S. The results are presented in Table 5.2.
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Table 5.2. A comparison of the asymptotic and bootstrap methods for

estimating the distributions of the McFadden and Maddala pseudo-R2s.

Dataset High Shin z Low Shin z
Number of events 3029 3029
Mean number of competitors 7.5 13.1
B 1.03 1.01
InL(0) -5967.3 -7702.9
InL( 2) -4900.1 -6224.6
Asymptotic
R, 0.1788 0.1919
S.E.(R;) 0.00757 0.00690
R} 0.5057 0.6232
S.E.(R}) 0.01282 0.01218
Bootstrap
(R} 0.1793 0.1925
S.E(R}) 0.00671 0.00649
w(R}) 0.5064 0.6240
S.E.(R}) 0.01307 0.01235
Fso283028( R}, ) 1.27% 1.13%*
Fso283028( R}) 1.04 1.03

**: significant at the 1% level (1-tailed F test).

It is clear that, while the asymptotic and bootstrap methods produce
estimates of the variances of the pseudo-R? statistics that are reasonably close,
there is some difference: the asymptotic method appears to overestimate the
variance of the McFadden pseudo-R? relative to the bootstrap method, while
relatively underestimating the variance of the Maddala pseudo-R2. However, the
difference is only statistically significant for the McFadden pseudo-R?, with F-
tests of differences of variances for the high and low Shin z datasets given by
1.27 (p = 0.0000) and 1.13 (p = 0.0004), respectively. The F values for the
Maddala pseudo-R?s for the high and low Shin z datasets are given by 1.04 (p =

0.1383) and 1.03 (p = 0.2269), respectively.
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5.5. Pseudo-R? as a predictor of the economic value of a discrete choice

model

Competitive events are often associated with a market for trading on the
outcome. For example, horseraces have an associated betting market in which
traders can wager money on their predicted outcome. This results in it being
possible to derive from market prices ‘public’ predictions of the probabilities of
each outcome occurring. This is important because discrete choice models are
often employed to test for market efficiency, i.e., the degree to which the market
appropriately discounts the value of information. Hence, in this context, the
standard motivation for pseudo-R?s, as improvement from null model to fitted
model, is less relevant. Instead, it is more useful to the modeller to have some
understanding of the improvement of their model over the public model. We
denote this measure relative pseudo-R? and show theoretically that there is a
direct link between this measure, the transaction costs for betting on an event,
and the expected profit to a bettor employing this measure.

Recall that our dataset consists of N events, where each event j is between
an integer number n; = 2 competitors i; for each event, there is just one winner,
given by yj, where y; = 1 if competitor i wins, and y; = 0 otherwise. Suppose

further that the decimal odds are denoted by R; > 1, with corresponding prices
given by rj = 1/Rj;. The over-round is given by B, = ZZI’?/ —1, so odds-implied
probabilities are given by g, =r,/(1+B,) for all i. Suppose that the bettor

assigns winning probabilities to each competitor of p;. Then the expected profit

from a £1 bet on competitor i in event j is p,R, —1. Denote the winning

i
probability that the bettor assigns to the eventual winning competitor by pj, and
the odds-implied probability of the same competitor by g;. Then the bettors’
expected profit from a bet on the eventual winner, or ‘edge’, is given by

P;

(5.24) Wo=— "l .
' q,0+8)

Now, define the relative McFadden pseudo-R? by

(5.25) R :1—M,
InL(q)
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and the relative Maddala pseudo-R? by
(5.26) R) =1-exp{(2/N)[InL(q)-InL(p)]},

where the log likelihood of the bettor’s model is given by
(5.27) InL(p) = Z[; " y,Inp,

and the log likelihood of the public’s model is given by
(5.28) InL(g)=Y" > y,Ing,.

Defined in this way, the relative pseudo-R?s measure the degree of
improvement of the model over the public odds for the winning competitor only.
Thus we can derive a link between the bettor’s realised edge on the winning
competitor and the relative pseudo-R? of the model.

Since the relative McFadden pseudo-R? can be written as

N n;
_ Zj:IZi:Iy?/ lnpij
N n; ’
ijl Ziél Vi In 9
and (5.24) can be rewritten as

(5.30) p,=q,(1+W)(1+B,),

(5.29) R’ =1

substituting this into (5.29) gives
zjv:l In[g,(1+W,)(1+ B,)]

Zj/:l In g,

)

(5.31) R =1-

i.e.,

_ > W[+ w,)(1+B)]
(5.32) R, === ~ .
ZH In[R,(1+ B,)]

Rearranging this gives

. lnHj/:l(l+Wj)(l+Bj)

(5.33) R, = = )
In H/=1 R,(1+B,)
i.e.,
_ InGMA+W )+InGM (1 + B,
(5.34) R} = i+ ( ’),

InGM(R;)+InGM(1+ B,)
where GM (x,) = (l—[;v:1 xj)”N denotes geometric mean. Hence, the McFadden

pseudo-R? is, ceteris paribus, increasing in average edge, increasing in average
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odds-implied probability of the winner, and usually increasing in average over-

round (since, typically, R, >1+W¥;). Rearranging (5.34) gives

(5.35) GM(p,/q,)=(1/q)"™,

i.e, the bettor’s edge over the public is this function of their relative McFadden
pseudo-R? and the odds-implied probability of the winning competitor.

Similarly, since the relative Maddala pseudo-R? can be written as
—_ N n;
(5.36) R} =1-exp[2/ M) 3"y, In(g, / p,)],
and (5.24) can be rewritten as

4 _ 1
p, (+W)(1+B)’

(5.37)

substituting this into (5.36) gives

(5.38) R} =1-exp {—(2/N)[zf=1 In(1+W,)+In(1+ B,)]}.
Rearranging this gives
(5.39) Ry =1-TT _[a+w)a+B)r*",
i.e.,
—, 1
(5.40) Rl =1- - —.
GM(1+W,)’GM(1+ B,)

So the Maddala pseudo-R? is, ceteris paribus, increasing in average edge and

increasing in average over-round. Rearranging (5.40) gives

1
(5.41) GM(p;/q;)= ,

1- R}

i.e., the bettor’s edge is positively related to the relative Maddala pseudo-R? but
independent of the odds-implied probability of the winner. Clearly, relative
pseudo-R?s are useful in competitive event prediction. However, we have also
shown in equations (5.35) and (5.41) that direct relationships can be derived
between predicted model probabilities, ‘public’ model probabilities, and
relative pseudo-R? measures. These relationships are important because they
show us first that the economic value of estimated model probabilities is
increasing in pseudo-R2s, and also the functional form of this relationship.
These formulae are useful for understanding the context in which pseudo-R2s

should be reported, and could be employed in wider contexts, e.g., when there is
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a prior probability of an alternative being chosen that is more appropriate than

a null probability.

5.6. Conclusion

In this paper, we have set out to describe and evaluate properties of
pseudo-R?s as a measure of forecast accuracy in discrete choice models, a class
of models that have a wide range of applications, from predicting consumer
demand to epidemiology and operations research. While R? in ordinary least
squares linear regression is a widely-used and well-justified measure, the same
is typically not true of pseudo-R2?s. For instance, we have shown both
theoretically and empirically that at least one of the definitions of pseudo-R?
(McFadden'’s definition) is not robust to variations in the number of alternatives
in each choice problem. We have therefore suggested an adjustment to correct
for this bias. This has important implications for the comparability of pseudo-R?
measures across models, particularly non-nested models or models fitted on
different datasets, which is a key desirable property of any forecast evaluator.
Further work could investigate the comparability of other definitions of pseudo-
R? in discrete choice models or other models that involve the logistic function,
such as generalized additive models.

We have also described two methods for estimating the variance of
pseudo-R?s so that their values can be statistically compared: the bootstrap and
asymptotic methods. A comparison of the two methods on actual data
demonstrates that they are reasonably close in the estimates that they produce,
so we would recommend that either method is useful in obtaining standard
errors for pseudo-R?s. Our findings here contribute to an understanding of the
use of pseudo-R?s in general, which are often simply reported without a
justification or without standard errors when comparing them across models.
Moreover, these methods are particularly useful when the pseudo-R? itself is
the value of interest in hypothesis testing; for instance, in comparing the
predictive power of discrete choice models, or evaluating the efficiency of
speculative financial markets. Finally, we have derived simple relationships

between relative pseudo-R? measures and the expected profit to a bettor from
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betting on competitive events, which is an important relationship because
choice modelling is often employed in the context of competitive events in order
to assess market efficiency, and efficient markets are a desirable goal in the
regulation of financial markets to minimize risks of financial shocks. As a result
of all of the above, we have arrived at a much more rigorous understanding of

the value of pseudo-R?2s in evaluating the predictions of discrete choice models.
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Conclusion

This section briefly summarizes the main findings of each of the five
papers in this thesis, states the contributions of each, discusses the
contributions of the thesis as a whole to knowledge and understanding of
biased decision making, and finally discusses the implications of the research
for policy-making and future research.

The theme of Chapter 1 was that there are a variety of reasons why
evidence of biased decision making from laboratory-based studies need not
necessarily translate to the population as a whole, particularly to individuals
who have expertise in the task they are carrying out, are offered meaningful
incentives, and dedicate enough time to the task so as to receive regular,
unambiguous feedback on the outcomes of their decisions. In discussing
evidence (or lack of evidence) of biased decision making by participants in
betting markets, this paper shows numerous examples that bettors are rational
and well-calibrated decision makers, who generally aren’t subject to heuristics
and biases that are well-documented from laboratory-based research (the
favourite-longshot bias is an important exception). The main conclusion was
that future research into biased decision making should always account for the
observed differences in behaviour between laboratory and naturalistic settings.
While there are advantages and disadvantages of naturalistic and laboratory
studies, a tandem approach, with each informing the other, seems to be the way
forward in order to assess the true nature of biased decision making.

Chapter 2 was the first study to investigate noise trading and herding in a
betting exchange market. The main conclusions were as follows: first, noise
trading is associated with increased market efficiency, a result that is attributed
to the improved liquidity attracting an increased level of participation by
informed traders. Second, herding is prevalent, particularly so in the later, more
active stages of the market and in different levels depending on whether price
changes follow a ‘buy’ or a ‘sell’ signal. The findings contribute to the
understanding of the role of noise in the efficiency of financial markets in
general, as this paper is able to overcome a significant methodological problem

with using regular financial market data, in that regular financial markets
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always represent current expectation of future prices, and so are inherently
uncertain. In contrast, betting market prices reach a defined termination point
at which all uncertainty is resolved. The main finding of this paper, that noise
trading, volatility, and efficiency of final market prices all move in tandem, has
important policy implications for all financial markets. For example, the results
support arguments that regulatory measures to protect investors from the
destabilizing effects of noise are self-defeating, and suggest that focusing on
innovative means of reducing the risks to arbitrageurs, rather than discouraging
speculators, may be the best approach to achieving efficient markets. It is also
demonstrated that the inefficiency resulting from herding is of such a
magnitude that it is possible to make positive returns from strategies in counter
to those of herding traders. The contribution of these findings is that
regulations in financial markets should be devised to minimize the impact of
herding while avoiding restrictions to noise traders: particular attention should
be given to situations where uninformed traders may incorrectly believe that
there are traders with privileged information operating. Furthermore, markets
that involve contingent returns at a fixed point in time (such as the markets
examined here) should always be allowed sufficient time to reach efficient
levels.

Chapters 3 and 4 investigated the favourite-longshot bias (FLB) using
recent data from all three major types of betting market in the UK and Ireland:
bookmakers, exchanges, and pari-mutuel pools. Previous research has shown
that the FLB has existed or is absent in a variety of jurisdictions over many
decades. These papers provide new reasons for the presence or absence of the
bias in each type of market. In the case of bookmakers and exchanges, Chapter 3
makes a number of important contributions. First, it contains evidence of (i)
FLB in bookmaker markets, and (ii) no FLB in exchange markets. Second, it
confirms that predictive accuracy of exchange prices is largely superior to that
of bookmaker prices. However, in the case of exchange markets, it also uncovers
significant relationships between the FLB and betting volume, and between the
FLB and over-round. It also shows that there are no such relationships in
bookmaker markets. Most significantly, a model is developed that suggests that

the optimal pricing policy for a bookmaker, who competes with other operators
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for betting on favourites, is to set prices which include the FLB. The empirical
results are largely supportive of the predictions of this model.

In pari-mutuel markets, Chapter 4 has developed a model that shows that,
in order to explain the FLB without reference to market makers, one must
account for a ‘strong favourite’ effect, whereby bettors who generally underbet
favourites give undue preference to favourites in races where the variance of
the odds of their rivals is low. This effect is predicted by a representative agent
model employing prospect theory as the driving force behind bettors’ decisions,
but is not predicted by a model employing expected utility theory. Most
importantly, these predictions do not depend on parametric assumptions or
assumptions about the bettor’s choice set as in previous research. Hence, the
results provide definitive evidence that cognitive errors of traders, rather than
their risk preferences, explain the FLB. Together, these two papers contribute
more robust evidence, using new and innovative methodologies, that explain
the FLB in each type of market.

The final chapter explores and solves a number of methodological issues
relating to pseudo-R?s as a measure of evaluating forecast accuracy of discrete
choice models, particularly the conditional logit (CL) model. Having employed
the CL model throughout this thesis, we were able to use results derived in this
chapter in order to test some of the hypotheses in earlier chapters. Moreover,
this paper shows how these concerns relate to wider issues in the field of
discrete choice modelling as a whole. Future work could explore a much more
general understanding of the role that pseudo-R?s have to play in statistical
modelling.

Overall, this thesis makes a significant contribution towards
understanding the extent and nature of biased decision making in naturalistic
environments. As it was argued in Chapter 1, there are many reasons to doubt
the generalizability of laboratory research, so demonstrating such biases in the
real world is crucial to establishing solid foundations to the knowledge and
understanding of the manner in which individuals make decisions. Indeed, in
surveying previous literature in Chapter 1, the conclusion that was arrived
upon is that decision makers operating in their natural environment generally

do not make biased decisions, or at least, the extent and generality of such
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biases is significantly lower. This puts the main findings in Chapters 2 and 3 in
context: each of these papers demonstrated evidence of biased decision making
in the naturalistic environment of betting on horseracing (herding and the FLB,
respectively), and thus make a significant contribution to the literature.
Moreover, in Chapter 2, by categorizing market activity by the time until the end
of the market and whether it results in large ‘buy’ or ‘sell’ movements, this
paper was able to identify and discuss reasons why herding might occur. This is
in itself is a major contribution over previous studies of herding in betting
markets (discussed in Chapter 1) and in regular financial markets (discussed
briefly in Chapter 2). Similarly, in Chapter 3, it was shown that the extent of the
FLB is dependent on a range of factors, particularly the type of market
(exchange or bookmaker), since transaction costs and the manner in which
prices are set is different in each type of market. The different costs ensure that
the type of decision maker, in terms of the information they hold, operating in
each market is distinct: traders in exchange markets are more informed, and so
the extent of systematic bias is reduced, and conversely, systematic bias is not
eliminated in bookmaker markets because costs are restrictive. Furthermore,
the bookmaker’s effective monopoly in setting prices as well as the general
demand preferences of bettors participating in these markets ensures that
bookmaker markets display significant bias throughout their duration. All of the
above considerations contribute to the developing understanding of how
systematic decision making biases can be allowed to persist (monopoly pricing
and high costs), but also how they can be eliminated (competitive pricing and
low costs). Chapter 4 advanced a new method (free of certain restrictive
assumptions) that allows researchers to distinguish between different models
of decision making that can account for biases such as the FLB. Hence, it makes
a significant contribution in guiding future research to assessing the relative
merits of alternative models of decision making. Similarly, Chapter 5 discussed
a range of limitations in the current methodology for evaluating discrete choice
models. In a sense, this paper makes a contribution to what is hoped can be an
informative and highly useful avenue of future research.

Research into decision making biases in general, this thesis included, has

major policy implications in a number of fields. First, a detailed understanding
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of heuristics and biases in a management context is key to guiding operational
decision making and avoiding costly errors at an organizational level. Hence, a
greater understanding of biases such as herd behaviour and overweighting of
small probabilities can guide policy-makers in organizations at a high level.
Second, the efficient operation of financial markets depends on the appropriate
regulation of such markets. A greater understanding of the extent and causes of
herding, the effects of noise trading, and other factors, therefore contributes to
better deployment of regulations. Finally, a large part of psychological research
into behaviour is driven by real-world events, and so naturalistic research aids
the future direction and topicality of laboratory research.

Finally, it should be offered that the main strength of this thesis is also its
greatest limitation: in studying decision making in the naturalistic environment
of betting markets for horseracing, the scope of the empirical research is
necessarily narrow. Future work in the area of naturalistic biased decision
making could further investigate the consistency of empirical evidence of other
large populations of decision makers with the predictions of theoretical models.
The FLB is a decision making bias that has received a great deal of attention in
the literature not only because of its prevalence but because of what it tells us
about the manner in which people make decisions in a general sense. This
thesis has described new and more satisfactory explanations for the FLB in the
three major types of betting market in the UK (and indeed, globally), and in
doing so has devised new and innovative theoretical models and empirical
methodologies and resolved unanswered questions related to the topic. It has
also shown and explained the prevalence of herd behaviour in these markets
and the effect that noise trading has on market volatility and efficiency, and
outlined a range of implications of these findings for policy-making in wider
financial markets, an important subject because regular financial market data
are unsuited to robust tests of market efficiency. As a result of the above, this
thesis has made significant contributions to the existing literature on biased

decision making in speculative financial markets.
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Appendix 1. The Shin model

In a series of three papers, Shin (1991, 1992, and 1993) demonstrated
that, in a bookmaker market, the FLB can be explained by supply-side factors:
specifically, price-setting by the bookmakers themselves. Shin modelled
bookmaker markets as a game between a profit-maximizing bookmaker and a
randomly chosen bettor. The model assumes that the bettor is likely to be a
noise trader, but could be a perfectly informed insider, who knows precisely the
identity of the winning horse. The model predicts that, since the bookmaker is
not perfectly informed, they will depress odds on longshots (the horses with the
least chances of winning the race) relative to those on favourites in order to
protect themselves from the possibility of large losses to the insider, who is in
possession of superior information.

Formally, the model is of an n-horse race that involves a monopoly
bookmaker, a perfectly informed insider trader, and a set of uninformed

outsiders. The bookmaker sets prices ri (corresponding to decimal odds of
R, =1/r) onall horses, subject to 0 < r; < 1 for all i, and z;ri <1+ B, where B >

0 is as small as is required for the bookmaker to obtain monopoly rights
through competition with other potential market makers. The bookmaker
knows the true winning probabilities p;, but only the insider knows the identity
of the winning horse in advance. A bettor is randomly selected to face the
bookmaker; the bettor is the insider with probability z (0 < z < 1), or an outsider

who attaches probability 1 to the i-th horse with probability (1-z)p,. The

bettor is then permitted to bet £1 with the bookmaker on their preferred horse,
which is the winning horse if the bettor is the insider, or the i-th horse if the
bettor is the i-th outsider. Hence, the problem for the expected profit-

maximizing bookmaker is to set the r; to maximize

(A1.1) I_Z’f M

i=1 l’;
subject to z;’? <1+ B and 0 < r; < 1 for all i. The solution of this problem is

given by
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(A1.2) L+B=Y" r=[Y F(p)T,

n=F(p)Y. F(p),
where
(A1.3) F(p)=[zp, +(1-2)p1",
which gives rise to a FLB, i.e, r,/r, <p,/p, < p, > p;.

The value of z in Shin’s (1993) model gives rise to a direct means (known
as Shin z) of measuring the proportion of market participation that can be
attributed to traders with privileged information. Although in Shin’s original
model, informed traders are perfectly informed, Fingleton and Waldron (1999)
relaxed this assumption, showing that it is equivalent to suppose that the
precision of the informed trader’s information can vary, and that the Shin z
value is equal to the level of informed trading times the degree of precision.
Hence, it is reasonable to assume a more general situation in which a range of
different types of informed traders operate, but that the level of influence they
have in the market is likely to vary in tandem. The Shin z value itself is directly
derived from final bookmaker prices and has been used extensively in betting
market studies in order to investigate claims relating to the level of informed
trading (e.g., Vaughan Williams and Paton, 1997; Smith et al., 2006).

There are several accepted methods for estimating the Shin z value for a
given event. Shin’s (1993) own method was based around the Taylor series

expansion of F(p,) around 1/n. Jullien and Salanié (1994) noticed that the
equations in (A1.2) can be rearranged to give
(A1.4) F(p,)’ =17 /(1+B),

which in turn can be solved for p; to yield

Zz ’,2 1/2 2
(A].S) b= 4(1_2)2 + (1+B)(1—Z)} B 2(1—2) .

Thus, the condition z; p, =1 can be used to estimate the value of z for a given

event. In Chapter 2 we adopt the iterative method of Law and Peel (2002), in
which we square and sum (A1.5) before rearranging the resulting expression to

give
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B -3
1- z; piz

The iterative procedure is then to start with an initial estimate of z, calculate the

(A1.6)

pi using (A1.5), calculate a new value of z using (A1.6), and repeat these two
steps until convergence.

Shin’s model can explain the FLB in bookmaker markets and gives a useful
measure of insider (or just informed) trading in these markets. However, one
must accept the assumptions of Shin’s model. The key assumption is that
knowledgeable insiders are more likely to bet on longshots than favourites,
which is a reasonable assumption to make given anecdotal evidence. However,
it has been pointed out (e.g., Schnytzer and Shilony, 2005) that some of the
assumptions in Shin’s model are unrealistic. However, similar conclusions can
be reached with these assumptions relaxed. For example, Schnytzer and Shilony
(2005) found that bookmakers should raise prices on longshots more than
favourites in order to defend themselves against insider knowledge, without
assuming that insiders know which horse will win the race, or that insiders are
more likely to bet on longshots. Peirson and Smith (2010) extend the Shin
model while relaxing the assumptions that insiders know which horse will win
the race, and that the amount bet by insiders is fixed and not related to the odds
on offer. Their model demonstrates that bookmakers should increase prices on
those horses where there is a higher probability of inside information being

employed.
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Appendix 2. A model of competing markets

Here we prove the main propositions from the model in section 3.3. We
consider two markets, a bookmaker and an exchange, which offer prices g; and

ri, respectively, on a single race with n runners, with over-rounds given by
B, = Z; q,—1 and B, = z;ri —1, respectively, with B, > B,. We assume that

the bookmaker’s best estimates for true probabilities are the exchange odds-
implied probabilities, i.e., pi = ri/(1+B.). We also make the approximation that
the g; are continuous on the interval (0, 1). Considering a small time interval,
over which Be, By, and the r; are constant the bookmaker’s goal is to maximize

their expected returns G(q,,...,q,) over this time interval. Denote the demand

curve for horse i, which is the amount bet on horse i when the bookmaker and

exchange prices are q; and r;, respectively, by f(g,,r), normalized so that it

satisfies f(r, r) = r/(1+Be). Therefore, G(q,,...,q,) is given by

; r
(A2.1) G(qy,-9,) = Zilf(qi,n)(l—mj

subject to the over-round condition Z; q,=1+B,.

For fixed r; By and B., this is a constrained optimization problem to

maximize
(A2.2) H(q,-.q,)=G(4;,...q,) — /1(2; 4, —1-B,),

where A is a constant. The solutions are given by the system of equations

r. 7.
A2.3) 0H /g, = f(q,,1r.)————+ f'(q,,r)| 1 -——— |- 2=0,i=1, .., n,

> 4,=1+B,
We do not seek to solve this system of equations, but note a sufficient condition
for the FLB in the bookmaker prices: for two horses j (a longshot) and k (a
favourite: rj < rx), with odds-implied probabilities equal across the exchange and

bookmaker markets ( g, =(+B,)r;/(1+B,) , q,=(1+B,)r,/(1+B,) ), the

marginal increase in expected returns for an increase in price is greater for the

longshot (0H /0q; > 0H /0q,). Furthermore, the greater the difference, the
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greater the level of FLB. So, denoting ¢, =(1+ B,)r,/(1+ B,) and with some

manipulation, this condition becomes
1+ B,
1+ B

e

(A2.4) }f(a}j,r,.>—rif(ék,rk)+ BLS@G,r)~ f'(Gr)] > 0.

We have now the following as a sufficient condition for the FLB:
(AZS) f'(xrjarj)>f'(xrkark)'
for all x such that 1<x<(1+B,)/(1+B,). That (A2.4) follows from (A2.5) is

proved in the following proposition.

Proposition 1. If condition (A2.5) is satisfied, then so is (A2.4).
Proof. If r, < ry, and 1<x<(1+B,)/(1+B,) , then by (A2.5),

S'(xr;,r) > f'(xr,, 7). So, by an integration inequality,
(A2.6) [ f(s,ryds > [" f1(s,m)ds.
Hence, by the Fundamental Theorem of Calculus,

(A27) f(éjarj)_f(rjarj)>f(ék’rk)_f(rk’rk)'

Furthermore, 1/r;> 1/r, so

(A2.8) @) = £ 1>~ Gor) = £ )
Now, f(r,r)=r/(1+B,), so
1 N 1 1 . 1
(A2.9) r_jf(qj‘ﬂrj)_ﬁ>Zf(Qk7rk)_ﬁl
i.e.,
1 A 1 R
(AZ]-O) 7f(q;:”_;)>r_f(Qkark)'

So inequality (A2.4) holds.

Moreover, the difference 0H /dq,—0H /dq, is increasing in both By

(holding (1+ B,)/(1+ B,) fixed) and (1+ B,)/(1+ B,), i.e., the level of FLB should

increase both with bookmaker over-round and the level of competition between

the bookmaker and the exchange.
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Proposition 2. If there is no competition (B, = Be), then there is still FLB
(provided (A2.5) holds).

Proof. If B, = B,, then ¢, =r,, so equation (A2.4) becomes
1 1 , ,

(A2.11) r—f(rj,r,»)—r—f(rk,rk)JrBe[f (r;,r) = (111> 0.
j k

Now, f(r,r)=r/(1+B,), so the first two terms in (A2.11) cancel, leaving the
condition

(A2.12) S (rr) = f'(n,n)>0.

This is satisfied by (A2.5) when x = 1, so (A2.4) is a sufficient condition for the
FLB even when Bj = Be.

Proposition 3. Furthermore, if there is no over-round (By = 0) then there is no
FLB.
Proof. We show that 0H /0q, = 0 is satisfied by g; = ri. If B, = B = 0, then (A2.3)

simplifies to

l

(A2.13) OH | 0g, =f(n,fz)%+f'(r;,z;)(1—ﬁj—/1.
}’i .

Now, f(r,r)=r/(1+B,), so
(A2.14) OH/og, =1- 4.

This is true for all i so we can chooseA=1,i.e,0H /0q, =0.
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Appendix 3. Proof from Chapter 4

We show here that, for v(¢) an increasing function that is concave for ¢t > 0,

1
—v(=x)

is decreasing in the variance of the R To see this, first suppose there are just 3

(A3.1) X=> )

horses in the race. Denote the odds on the non-favourites by R; and R3, with
respective ‘prices’ given by r = 1/R; and K —r =1/R,. Since v(—x) is constant
for all k, we set v(—x) = 0. Representing the value function for gains by a

concave power function v(¢) =¢“, 0 < a < 1, we have that

(A3.2) X=x[r"+K-r)“].

Hence

(A3.3) d—X =ax [r“‘1 —(K - r)“"l],
dr

which is negative if and only if r > K/2, i.e., increasing the variance of the prices
(and hence odds) for non-favourites has the effect of decreasing X. The converse
result holds for the expected utility model if the utility of wealth function is

convex.
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Appendix 4. Proofs from Chapter 5

Proposition 1. If the model probabilities are p; = f(n;)/n,, then the McFadden

and Maddala pseudo-R?s are given by

In7f
(A4.1) R} =—f
Inn
and
1
(A4.2) R, =1 —?,

respectively, where n =(Hj.vzlnj)w and f :[Hj/:lf (n)1"" are the geometric
means of the number of competitors and of f(n;), respectively. Here, N is the

number of events.
Proof. First, recall that the definitions of the McFadden and Maddala pseudo-

RZs are given by

(A4.3) le :1—M
In L(0)
and
(A4.4) Ré :1—exp{(2/N)[lnL(0)—lnL(,é’)]},

respectively, where In L(,[A?) is the maximum log-likelihood of

(A45) (A =3 3 vy np,
and
(A4.6) In L(0) = zle In(1/n,).

Hence, for the McFadden pseudo-R?,

=1- zjil z:l vy Inp;

(A4.7) R;
" Zj/:l In(1/n))

zllilln[f(nj)/nj]

ZL In(1/n;)

271 [In f(n;)+1In(l/n,)]

=1-
z;v:l In(1/n,)
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For the Maddala pseudo-R?,

(A4.8) R:  =1-exp{(2/ N)[zj,v=1 In(1/n,) - Z_],il >y, Inp, T}
=1—exp{(2/ MY In(l/n) = 3" In{f(n;)/n,}1}
=1-exp{~2/N)Y | In f(n))}
=1-exp{~(2/ \)In[ ], f(n)}
=1-[[ ], fn 1"

SR
The following lemmas are adapted from Hu, Shao, and Palta (2006) for the

conditional logit model (their proofs are for the multinomial logit model).

Lemma 1. Suppose the independent variables xij, j = 1,2, ..., N,i=1, 2, ..., n; are

independent and identically distributed random m-vectors with finite second
moment (ie, E(xl.jz) finite). Then (l/ﬁ)[lnL(,bA’)—lnL(,B)] —>,0 as N—>oo,
where — , denotes convergence in probability.

Proof. We first prove that

8’ InL(B)

(A4.9) 3608,

=0,(N).

Let



(A4.10)

so that p,

(A4.11)
and

(A4.12)

Hence

(A4.13)

SO

(A4.14)

T
F, =exp(f x;)
0 n;
S; = Z 1Fij

I _
S'u - Ext/u

2 nj
S/uv - Zi:l E’f XijuXij

2

=F,/S}.Then

aﬁu = x?/“ E/

ap,.j —plx - Sjl.u
aﬁu ij iju S? )

OlnL(B) <~ | st

J

O’ InL(B) _y S =SS
dB,0p, = (S)° ’
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which is finite by assumption of finite second moment. Hence, each element of

the second order derivative matrix is O,(N). The remainder of the proof is

from Huy,

Shao, and Palta (2006). Let S,(f)=0lnL(p)/0f and

1,(B)=E(J,(p)) be the score function and information matrix, respectively,

where J,(8)=-0"InL(B)/0poB" .

I,(B)=0,(N).Hence, by a second order Taylor expansion

(A4.15)

Then it follows from the above that

InL InL =—3 Jy(B*
\/—[n (B)-InL(p)]= \/— VB (B-P)- \/—(ﬂ BT (BB~ P)

— (BB LY NN LD N L () 1 (8 - B,

where f* is a vector between ,@ and f. The asymptotic normality results of the

maximum likelihood estimator gives 1, (53)"*(8 - ) — N(0,1). The lemma then

follows from 7,(8) >N = 0,(1) and J,(8*)/N=0,().
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Lemma 2. Assume that the independent variables xi; j=1,2,...,N,i=1,2, ..., n;

are independent and identically distributed random m-vectors with finite second
moment (i.e., E(xl.jz) finite). Let
(A4.16) H, =E(Inn)),
H, = —E(z:":flpy Inp,).
Then,as N >, R, — 1-H,/H,, and R} -, 1—exp[2(H, - H))].
Proof. Let f,(x)=1-x and f,(x)=(1/2)In(1-x),so f,'(x)=1-x and

£ (x) =1—exp(2x) . Then

) _(I/N)InL(p)
(A4.17) SRy) = (1/ N)In L(0)
_(I/N)InL(B) -1/ N)[In L(B) — In L(B)]
(1/N)Z_f=1 In(1/n,)
- (1/N)Zjv=1 >y, Inp, + 1/ N)[InL(B) - In L(B)]
- /)Y i, '
Similarly,

(A4.18)  f,(R2) =(1/N)InL(0)—(1/N)InL(3)
= (1/N)Zf:l In(1/n,)~(1/ N)InL(B) +(1/ N)[In L(B) — In L(B)]
= —(1/N)Z’/V=1 Inn; - (1/N)zfj=1 D yyInp, +(1/N)[InL(S)- InL(B)].

By the Law of Large Numbers, as N — o,

(A4.19) (1/N)Zf:l Inn, -, H,,

N n;
_(I/N)z_/=1 z;;l Yij In Dy _)P H2 ’
Moreover, from Lemma 1,as N — «,

(A4.20) (1/N)[InL(B)-InL(B]1 -, 0.
Hence, as N —w, f(Ry)—>, H,/H, and f(R))—>, H,—H,. So, by the
Continuous Mapping Theorem, as N -—>w , R} -, £\ (H,/H) , ie,

Ry, —,1-H,/H,and R}, -, fy'(H,—H,),ie, Ry —,1—exp[2(H, - H,)] .
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Proposition 2. Assume that the independent variables xi; j=1,2,...,N,i=1, 2, ...,

n; are independent and identically distributed random m-vectors with finite

second moment (i.e., E(xl.jz) finite). Let H1, H2 be given by (A4.16) and let

(A4.21) oo LA
. M’

1 ( H, !
& =77 , 1],
InA\AlnA

207 (1 !
= s 1 ’
577 (1 j

where

(A4.22) A=E(n)),
n=En, Y. p;Inpl+it,,

e=E[Y" p,(np,)’]-H,.
Then, as N — oo,
(A4.23) JIN[R, —(1- H,/H,)] >, N(0,5.),
JN[RE — (1= > N(0,0,°),
where o' = g,'3g, and ," = g, 2g,.

Proof. Define Z, =(n,,W;), where WFZZ% Inp, . Then the Z; form an

independent and identically distributed random sequence with

u=EZ,)=n,-H,) and Cov(Z;,)=X . To see this, note that
Cov(n,,n;)=Var(n;) and Cov(n;,W,)=n follow immediately, and
(A4.24) Cov(W,,W,)  =EW])-EW,)

= B[, pyInp,)*]—H,®

= E[(zzlplj)zzlpy(lnpy)z]_sz
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=E[Y. p,(Inp,)'1-H,".

By the Central Limit Theorem (in two dimensions),

(A4.25) IN(Z - 1) = N(0,3).

Let

(A4.26) 4 (x,x,)=1+—"2,
Inx,

$,(x,,x,) =1—exp[2(~=Inx, —x,)].

Applying the delta method with ¢, and ¢, to (A4.25) gives
(A4.26) INIH(Z) - (1] =, N0,V (1) 2V, (1)),
IN[$(Z) - ¢,(1)] =, N(O,V §,(11) =V (1)) .

From Lemma 2, and since

(A4.27) mel,xz){— Y IJ,

x,(Inx,)’ Inx,

2 Cinx- Clnx—
V¢2(Xl’x2)=(_62( Inx; xz)’ 262( Inx—x,) )

Xy

this leads to the asymptotic normality results in (A4.23).
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