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Abstract — In this paper, the design of a
novel ultrasensitive MEMS resonant force sensor
utilizing a mode localization effect is presented.
This new type of resonant sensor is constituted
of several weakly coupled resonators and by
measuring the amplitude ratio of designated
resonators, a significant improvement in sensitivity
is observed, compared to conventional frequency
shift measurements. Furthermore, compared with
conventional cantilever force sensors, the sensor
is shown to be less constrained by the trade-off
between sensitivity and stability along the axis
of sensitivity, thus higher sensitivity and better
stability can be achieved at the same time.
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I – Introduction

Over the last couple of decades, micro- and nano-
fabricated devices have become widely used in force
sensing applications, due to their high sensitivity, small
form factor and low cost. Up to now, micro- and nano-
scale cantilevers are the most attractive and widely used
sensor types, one reason is their low springs stiffness
enabling high sensitivity and good resolution [1, 2, 3, 4].

However, for non-contact force sensors (e.g. AFM),
cantilevers with a low stiffness are not stable enough in
the direction of measurement, causing unwanted “snap-
ping down” when a large force gradient is present—
an instability analogous to the “pull-in” of a MEMS
parallel plate actuator, thus leading to inaccurate mea-
surement [4]. Therefore resonant force sensing devices
[3, 4] were developed. In principle, changes of exerted
axial force alter the spring constant of the fixed-fixed
beam, shifting the transverse vibration frequency. These
resonant devices utilize this principle for force detec-
tion. With this method, the axial stiffness is significantly
higher (>500N/m [4] compared to a stiffness usually
less than 1N/m of a typical cantilever [1, 2]). Thus the
stability in the direction of force is increased. However,
these sensors usually have lower sensitivity and resolu-
tion [3].

In general, there is a trade-off between sensitivity
and stability in conventional force sensing techniques.
Recently, a new sensing technique that makes use of a
mode localization effect in weakly coupled resonators
has shown good promise to overcome this trade-off.

Comparing with conventional resonators, these mode

localized two degree-of-freedom (DOF) sensors adopt
a shift in eigenstates (resonance amplitudes) instead
of frequency as the output signal. By sacrificing the
quasi-digital output, this approach potentially can gain
a substantial, that is two to three orders of magnitude,
improvement in sensitivity [5, 6, 7]. By improving the
sensitivity without sacrificing axial stiffness, such sen-
sors are less constrained in terms of a trade-off between
sensitivity and stability.

In this work, a three DOF system with further
enhancement in sensitivity to the previously reported
two DOF mode localized sensors is presented. The
system adopts resonance amplitude ratio change as the
output signal instead of normalized eigenstates shift.
This potentially simplifies the required interface circuit.

II – Theory

A. Resonant Force Sensing

Figure 1: A resonator under axial tension.

For a resonator under axial tension, the mechanical
characteristics of the beam can be derived [8]:

Ke f f ≈ ϕ
EI
L3 +σ

T
L

(1)

Me f f ≈ τρAL+M (2)

where E,ρ are the young’s modulus and the density
of the material, respectively, I is the second moment of
inertia of the relevant cross section, L is the length of the
beam, T is the axial tension force, A is the cross section
area, and ϕ,σ and τ are three constants determined by
the resonance mode and boundary conditions. For the
beams shown in figure 1, the effective stiffness is:

Ke f f ≈ 12× EI
L3 +1.2× T

L
(3)

It is clearly shown that when an axial force is exerted,
only the stiffness changes. Therefore the resonator un-
der axial tension force can be modeled as a axial-force-
controlled spring with a constant mass, shown in fig-
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ẍ2
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ure 2. This theory is combined with mode localization
theory in our work.

Figure 2: Tunable spring mass model of a resonator under
axial tension. The tunable spring constant is controlled by the
axial tension exerted.

B. Mode Localization in 3 DOF Force Sensor

Figure 3: A spring-mass model of a 3 DOF force sensor. K1 is
the beam on which the force-to-be-measured is applied, thus
it is tunable by the force.

Referring to figure 3 showing a coupled 3 DOF force
sensor model, assume that M1 = M2 = M3 = M,
Kc1 = Kc2 = Kc,K2 = K, K1 = K+∆K and Km ≥K. The
equations of motion are given in equation 4.

By solving equation 4, the amplitude ratio can be
obtained. When ∆K = 0, i.e. the unperturbed case,
x3/x1 = 1 or −1 for the fundamental modes. When
∆K 6= 0, i.e. a force is applied, the ratio is not 1 or −1
anymore, mode localization occurs in the sense that one
of the resonators vibrates with a larger amplitude than
the other. The change of ratio reflects the magnitude
of the force. Assuming weak coupling, Kc � K, and
small perturbations, |∆K| � K, in the mode of interest
(i.e. in-phase mode), amplitude ratios of interest can be
calculated as:

x3
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≈ γ1δK +
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(γ1δK)2 +4
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, ∆K ≥ 0 and |∆K| � K

(5)
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where

δK =
∆K
K

(7)

γ1 =
K(Km−K +Kc)

K2
c

> 0 (8)

Equation 5 is for positive and equation 6 is for
negative perturbations.

C. Result Verification

MATLAB can be used to solve the eigenproblem
in equation 4 without any assumptions, so by compar-
ing the numerical results in equations 5 and 6 to the
MATLAB direct solution, the error of the theory can be
obtained. Figure 4 demonstrates the relative error.

Figure 4: Relative error between analytical result and MAT-
LAB calculation, calculation condition M1 = M2 = M3,Km =
2K,K = 100Kc.

Despite of the fact that when perturbation is negative,
the estimations are less accurate than positive perturba-
tions, it is observed that when the perturbation is very
small (i.e. |∆K|�K), equations 5 and 6 can be regarded
as accurate (with less than 1% relative error).

With the expressions verified, the following case of
positive perturbations is mainly discussed, due to the
symmetry of the two expressions.

D. Force Sensitivity of 3 DOF Force Sensor

The force sensitivity of the 3 DOF systems is:

S3DOF =
∂ ( x3

x1
, x1

x3
)

∂ (δK)

∂ (δK)

∂T
(9)

It is therefore obtained from equations 3, 5 and 6:

0.6× γ1

KL
≤ S3DOF ≤ 1.2× γ1

KL
(10)

By solving a similar eigenproblem of a 2 DOF sys-
tem, the amplitude ratio can also be deduced, hence
sensitivity can be obtained:

0.6× γ2

KL
≤ S2DOF ≤ 1.2× γ2

KL
(11)

where

γ2 =
K
Kc

(12)



When K,Kc,L are identical, by comparing the max-
imum sensitivity that can be achieved in 2 DOF and 3
DOF systems, it is calculated that:

max(S3DOF)

max(S2DOF)
=

γ1

γ2
=

Km−K +Kc

Kc
(13)

When K,Kc,L are identical, it is obvious that as long
as it is designed that Kc� Km−K +Kc, the sensitivity
of a 3 DOF system shows a significant improvement
from that of a 2 DOF system.

Figure 5: Force sensitivity plots of 3 DOF and 2 DOF systems.
As an example, calculation in MATLAB is carried out with
a condition of M1 = M2 = M3,K = 1 N/m,Km = 2 N/m,
Kc = 0.01 N/m, L = 100 µm. As expected, the 3 DOF system
has 101 times higher sensitivity than 2 DOF system.

In addition to that, from equation 10, it is observed
that the masses of the force sensor do not affect the
sensitivity, therefore, lowering the resonance frequency
by increasing mass will not lower its sensitivity.

III – Design and Simulation

A. Electrostatic Coupling

From previous theoretical derivations, it can be in-
ferred that low coupling stiffness is desired. Hence a
tunable electrostatic spring was chosen as a coupling
mechanism. Over a small displacement, the effective
spring constant can be expressed as [7]:

Kc ≈−
V 2ε0εrAp

d3 , ∆x� d (14)

where V is the voltage difference between two
electrodes (i.e. the side areas of the proof masses),
ε0,εr are the dielectric constant of vacuum and relative
dielectric constant, respectively, Ap is the effective
cross sectional area of the electrodes and d is the gap
between the electrodes.

B. Design of an Electrostatically Coupled 3 DOF Reso-
nant Sensor

Each resonator in the design is comprised of a spring,
which is a suspension beam, and a proof mass as shown
in figure 6. Proof masses are used to obtain low resonant
frequencies (in the kHz range), to simplify the interface
circuitry while not losing sensitivity, and to make the
proof masses less prone to random fabrication varia-
tions as one important assumption is that all masses are

equal. A larger proof mass also makes the mass of the
beams negligible.

Figure 6: Design schematic (top view) of the 3 DOF force
sensor, with geometrical parameters defined.

The 3 DOF design is composed of two identical
resonators on either sides, and one more resonator in
the middle, however with larger wmb, so that when
Kc � K, the stiffness of the center resonator satisfies
Kc � Km−K as well. Tethers are added at the end of
the resonators, so force can be applied.

The design has been built into 3D model. Figure 7
shows the 3D view of the design. The fabrication pro-
cess will be a SOI process with a 50µm structural layer
as described in [9]. In figure 7 the blue layer is the
structural layer, while the red layer is the oxide and
the grey layer is the handle wafer. The yellow surfaces
in the inset and their counterparts are coupled through
electrostatic force, therefore the gap between resonators
can be seen as an electrostatic spring, with a spring
constant shown in equation 14.

Figure 7: 3D view of the designed 3 DOF system. Inset shows
the magnified view of the tagged area.

C. Simulation Results and Comparison with Theory

The design is simulated in Coventorware using fi-
nite element method (FEM). By applying a force on
one of the resonators, perturbed resonance modes can
be obtained, thus amplitude ratios are extracted from
simulations. Figure 8 shows mode localization when



applying a tension force perturbation on the resonator
on the left.

Table 1: Design parameters for the designed 3 DOF system.

Parameters Values Remarks
Lb 300 (µm) All the beams have the same length
wb 5 (µm) Width of beams on either side
wmb 10 (µm) Width of beam in the middle
Lm 100 (µm) Three identical masses
wm 50 (µm)
Lt 50 (µm) Tether length
wt 5 (µm) Tether width
t 50 (µm) Device thickness
d 5 (µm) Coupling gap
f ∼ 50kHz Designed frequency

Figure 8: Localized mode in the 3 DOF system (right), with
an exerted force of 50 nN compared to the unperturbed mode
(left), while resonant frequency remains, at roughly 51.8 kHz.

The simulated result can be compared with theoreti-
cal analysis. This comparison is shown in figure 9.

Figure 9: Simulated amplitude ratio with varying force per-
turbation and its comparison to theory and 2 DOF system
simulation results. (Simulated K/Kc = 65.38.)

As can be seen, the simulation result agrees with
the analytical modelling well (the maximum relative
error in this simulation is approximately 16%). How-
ever, there is an increasing error occurring when the
axial force increases. The main reason causing this

discrepancy is when the mode shape becomes local-
ized to one of the resonators, the two coupling spring
constants become unequal. The other reason causing
the difference is that the three masses are not exactly
identical as the middle resonator has wider suspension
beams. For small perturbation (<25 nN), simulation and
theory matches very well (within <5% error).

Furthermore, a 2 DOF system with identical design
(K,M,Kc) is also simulated, and the results are also
shown in figure 9. It is clear that the sensitivity of 3
DOF system is much higher than that of 2 DOF system
as predicted. The sensitivity enhancement is calculated
to be 3 orders of magnitude.

IV – Conclusion and Future Work

In this paper, a novel 3 DOF resonant force sensor
utilizing mode localization is discussed in theory and
simulated. An extension to the previous theories is
provided and verified in this paper. According to the
extended theory, compared with previous work with
2 DOF design, 3 DOF system is proved to be more
sensitive, for the same stiffness and coupling spring
constant. The design is simulated using finite element
method, achieving good matching with theory. More-
over, it achieves another 3 orders of magnitude higher
sensitivity than existing 2 DOF resonant force sensors.
Future work will focus on the fabrication of an actual
force sensor employing a 3 DOF resonator system.
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