
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Robust, Scalable, and Practical Algorithms for Recommender Systems

by

Mustansar Ali Ghazanfar

Thesis for the degree of Doctor of Philosophy

May 2012

mailto:mag208r@ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Doctor of Philosophy

ROBUST, SCALABLE, AND PRACTICAL ALGORITHMS FOR RECOMMENDER

SYSTEMS

by Mustansar Ali Ghazanfar

The purpose of recommender systems is to filter information unseen by a user to predict

whether a user would like a given item. Making effective recommendations from a

domain consisting of millions of ratings is a major research challenge in the application of

machine learning and data mining. A number of approaches have been proposed to solve

the recommendation problem, where the main motivation is to increase the accuracy of

the recommendations while ignoring other design objectives such as scalability, sparsity

and imbalanced dataset problems, cold-start problems, and long tail problems. The aim

of this thesis is to develop recommendation algorithms that satisfy the aforementioned

design objectives making the recommendation generation techniques applicable to a

wider range of practical situations and real-world scenarios.

With this in mind, in the first half of the thesis, we propose novel hybrid recommendation

algorithms that give accurate results and eliminate some of the known problems with

recommender systems. More specifically, we propose a novel switching hybrid recom-

mendation framework that combines Collaborative Filtering (CF) with a content-based

filtering algorithm. Our experiments show that the performance of our algorithm is

better than (or comparable to) the other hybrid recommendation approaches available

in the literature. While reducing the dimensions of the dataset by Singular Value De-

composition (SVD), prior to applying CF, we discover that the SVD-based CF fails to

produce reliable recommendations for some datasets. After further investigation, we find

out that the SVD-based recommendations depend on the imputation methods used to

approximate the missing values in the user-item rating matrix. We propose various miss-

ing value imputation methods, which exhibit much superior accuracy and performance

compared to the traditional missing value imputation method - item average. Further-

more, we show how the gray-sheep users problem associated with a recommender system

can effectively be solved using the K-means clustering algorithm. After analysing the

effect of different centroid selection approaches and distance measures in the K-means

clustering algorithm, we demonstrate how the gray-sheep users in a recommender sys-

tem can be identified by treating them as an outlier problem. We demonstrate that the

mailto:mag208r@ecs.soton.ac.uk

iv

performance (accuracy and coverage) of the CF-based algorithms suffers in the case of

gray-sheep users. We propose a hybrid recommendation algorithm to solve the gray-

sheep users problem.

In the second half of the thesis, we propose a new class of kernel mapping recommender

system methods that we call KMR for solving the recommendation problem. The

proposed methods find the multi-linear mapping between two vector spaces based on

the structure-learning technique. We propose the user- and item-based versions of the

KMR algorithms and offer various ways to combine them. We report results of an

extensive evaluation conducted on five different datasets under various recommendation

conditions. Our empirical study shows that the proposed algorithms offer a state-of-

the-art performance and provide robust performance under all conditions. Furthermore,

our algorithms are quite flexible as they can incorporate more information—ratings, de-

mographics, features, and contextual information—easily into the forms of kernels and

moreover, these kernels can be added/multiplied. We then adapt the KMR algorithm

to incorporate new data incrementally. We offer a new heuristic namely KMRincr that

can build the model without retraining the whole model from scratch when new data

are added to the recommender system, providing significant computation savings. Our

final contribution involves adapting the KMR algorithms to build the model on-line.

More specifically, we propose a perceptron-type algorithm namely KMRpercept which

is a novel, fast, on-line algorithm for building the model that maintains good accuracy

and scales well with the data. We provide the temporal analysis of the KMRpercept

algorithm. The empirical results reveal that the performance of the KMRpercept is com-

parable to the KMR, and furthermore, it overcomes some of the conventional problems

with recommender systems.

Contents

List of Figures ix

List of Tables xi

Declaration of Authorship xiv

Acknowledgements xv

Nomenclature xvi

1 Introduction 1

1.1 Recommender Systems . 1

1.2 Research Objectives . 2

1.3 Research Contributions . 5

1.4 Thesis Outline . 7

1.5 Publications . 8

1.6 Summary . 9

2 Recommender Systems: Background and Existing Algorithms 10

2.1 What are Recommender Systems? . 10

2.2 Formalisation of the Recommendation Problem 11

2.3 Users’ and Items’ Profiles . 13

2.4 Classification of Recommender Systems 14

2.4.1 Collaborative Filtering (CF) recommender systems 14

2.4.1.1 Memory-based CF . 15

2.4.1.2 Model-based CF . 17

2.4.1.3 Advantages and disadvantages of CF recommender systems 18

2.4.2 Content-Based Filtering (CBF) recommender systems 19

2.4.2.1 Advantages and disadvantages of CBF recommender sys-
tems . 21

2.4.3 Knowledge-Based (KB) recommender systems 21

2.4.3.1 Utility-based recommender systems 21

2.4.3.2 Ontology-based recommender systems 21

2.4.3.3 Advantages and disadvantages of KB recommender sys-
tems . 22

2.4.4 Demographic-Based (DM) recommender systems 22

2.4.4.1 Advantages and disadvantages of DM recommender sys-
tems . 22

v

vi CONTENTS

2.4.5 Hybrid recommender systems . 23

2.4.6 Other types of recommender systems 23

2.4.6.1 Context-aware recommender systems 23

2.4.6.2 Rule filtering recommender systems 23

2.5 State-of-the-art Recommendation Algorithms 24

2.6 Summary . 27

3 Experimental Methodology 28

3.1 Datasets . 28

3.2 Getting Additional Features About Movies 30

3.3 Evaluation Metrics . 30

3.3.1 Mean Absolute Error (MAE) and related metrics 32

3.3.2 Receiver Operating Characteristic (ROC)-sensitivity 33

3.3.3 Precision, recall, and F1 measure 33

3.3.4 Coverage . 35

3.3.5 Other metrics . 35

3.3.5.1 Learning rate . 35

3.3.5.2 Confidence in a prediction 36

3.3.6 Evaluation from the user’s point of view 37

3.4 Presenting Recommendations to Users . 37

3.5 Evaluation Methodology . 37

3.6 Feature Extraction . 38

3.6.1 Pre-processing . 38

3.6.2 Indexing . 39

3.6.3 Dimensionality reduction techniques 40

3.7 Building the Classification/Regression Approaches Based on Features . . 41

3.7.1 Training the model using the content features 42

3.8 Demographic Information . 42

3.9 Summary . 43

4 Switching Hybrid Recommender Systems 44

4.1 Introduction . 44

4.2 Related Work . 45

4.3 Background . 48

4.3.1 Naive Bayes classifier . 48

4.3.2 Support Vector Machines (SVM) 49

4.4 Combining the Item-based CF and Classification Approaches for Im-
proved Recommendations . 51

4.4.1 Combining the item-based CF and the Naive Bayes classifier . . . 51

4.4.2 Combining the item-Based CF and the SVM classifier 53

4.5 Results and Discussion . 53

4.5.1 Learning the optimal system parameters 53

4.5.1.1 Finding the optimal number of neighbours (l) in the
item-based CF . 54

4.5.1.2 Finding the optimal value of C for the SVM classifier . . 55

4.5.1.3 Finding the optimal values of δ and λ 55

4.5.2 Performance evaluation with other algorithms 56

CONTENTS vii

4.5.2.1 Performance evaluation in terms of MAE, ROC-Sensitivity,
and coverage . 59

4.5.2.2 Performance evaluation under cold-start scenarios 59

4.5.2.3 Performance evaluation in terms of cost 60

4.5.3 Eliminating over-specialisation problem 60

4.6 Variant of the Proposed Algorithms . 61

4.7 Conclusion and Future Work . 61

5 Exploiting Imputation in SVD-Based Recommender Systems 63

5.1 Introduction . 63

5.2 Related Work . 64

5.3 Background: Singular Value Decomposition 66

5.4 SVD-Based Recommendations . 67

5.4.1 Using imputation in SVD . 67

5.4.2 SVD-based collaborative filtering 67

5.4.3 Applying SVD combined with EM algorithm 71

5.5 Proposed Approaches to Approximate the Missing Values in the User-
item Rating Matrix . 72

5.6 Results and Discussion . 75

5.6.1 Learning the optimal system parameters 75

5.6.1.1 Finding the optimal number of dimensions for SVD . . . 75

5.6.1.2 Finding the optimal number of neighbours and dimen-
sions in CF . 76

5.6.2 Performance evaluation of different imputation methods 77

5.6.3 Performance evaluation of the SVD-based CF 79

5.6.4 Performance evaluation of SVD combined with the EM algorithm
(ItrSvd) . 80

5.6.5 Performance evaluation under different sparsity levels 83

5.6.6 Performance evaluation under cold-start and long tail scenarios . . 84

5.6.7 A comparison of the proposed algorithms with others 85

5.7 When and How Much Imputation is Required 86

5.7.1 When to do imputation by the proposed approaches 86

5.7.2 How much imputation is required 86

5.8 Discussion . 88

5.9 Conclusion and Future Work . 89

6 Using Clustering Algorithms to Solve the Gray-Sheep Users Problem 90

6.1 Introduction . 90

6.2 Related Work . 91

6.2.1 Clustering in recommender systems 91

6.2.2 Gray-sheep users problem in recommender systems 94

6.3 Centroid Selection Approaches . 95

6.4 Distance Measure . 97

6.5 Detecting Gray-Sheep Users: A Clustering Solution 98

6.6 Results and Discussion . 99

6.6.1 Learning the optimal system parameters 100

6.6.1.1 Distance measure . 100

viii CONTENTS

6.6.1.2 Centroid selection approaches 100

6.6.1.3 Optimal similarity threshold to detect the gray-sheep users103

6.6.2 Results of CF-based algorithms for different types of users 104

6.6.3 Results of TC-based algorithms for the gray-sheep users 104

6.6.4 Combining the CF with CBF for the gray-sheep users 105

6.6.5 A comparison of different algorithms for all users 106

6.6.6 Rating distribution of different kinds of users 106

6.6.7 Complexity of the proposed solution 107

6.7 Conclusion . 107

7 Kernel Mapping Recommender (KMR) System Algorithms 109

7.1 Introduction . 109

7.2 Related Work . 110

7.3 Item-based KMR . 112

7.3.1 Learning the Lagrange multipliers 114

7.3.2 Predicting unseen ratings . 116

7.3.3 A small scale example . 116

7.4 Extensions to the Basic Algorithm . 119

7.4.1 User-based KMR . 119

7.4.2 Combining the user- and item-based KMR 119

7.4.3 Combining different kernels . 120

7.4.4 Cold-start, long tail, and imbalanced datasets 121

7.4.5 Two-way clustering . 122

7.4.6 Standard deviation in the output Gaussian kernel 122

7.5 Learning the Optimal System Parameters 123

7.5.1 Number of iterations . 123

7.5.2 The optimal kernel parameters . 124

7.5.3 Parameters βrat, βfeat, and βdemo 125

7.5.4 Parameter θlinear . 125

7.5.5 Threshold θcnt . 125

7.5.6 Threshold θvar . 126

7.5.7 Parameter σ and other parameters 127

7.6 Results and Discussion . 130

7.6.1 Direct comparison . 130

7.6.2 Indirect comparison . 131

7.6.3 Combining different kernels . 132

7.6.4 Combining the user- and item-based versions 133

7.6.5 Sparse, skewed, and imbalanced datasets 136

7.6.5.1 New user cold-start scenario 136

7.6.6 Two-way clustering . 137

7.7 Conclusion . 138

8 Incremental and On-line KMR Algorithms 140

8.1 Introduction . 140

8.2 Proposed Algorithms . 141

8.2.1 KMRincr . 142

8.2.2 KMRpercept . 142

CONTENTS ix

8.3 Experimental Setup . 148

8.4 Results and Discussion . 148

8.4.1 Results of the KMRincr algorithms 149

8.4.1.1 New users are added in the system 149

8.4.1.2 New movies are added in the system 151

8.4.2 Results of the KMRpercept algorithms 152

8.5 Conclusion . 155

9 Conclusion and Future Work 157

9.1 Summary of the Work . 157

9.2 Future Work . 159

9.3 Challenges in Practical Recommender Systems Algorithms 161

A Switching Hybrid Recommender Systems 162

A.1 Rating Distribution of the FilmTrust Dataset 162

A.2 Learning the Optimal System Parameters 164

A.2.1 Finding the optimal value of DF thresholding 164

A.2.2 Learning the optimal value for parameter ν 164

A.3 Implementation . 164

B Imputation in SVD-based Recommender Systems 165

B.1 Learning the Optimal System Parameters 165

B.2 Performance Evaluation of the ImpSvd in Terms of ROC-Sensitivity and
Top-N Metrics . 166

B.3 Performance Evaluation of the ItrSvd in Terms of ROC-Sensitivity and
Top-N Metrics . 166

B.4 Performance Evaluation of ImpSvd Under Different Training and Test Sizes168

B.5 Performance Evaluation of ImpSvd Under Cold-Start and Long Tail Sce-
narios . 168

B.6 Implementation . 173

C Using K-Means Clustering Algorithms to Solve the Gray-Sheep Users
Problem 174

C.1 Learning the Optimal System Parameters 174

C.1.1 Optimal Number of Clusters . 174

C.1.2 Optimal Number of Neighbours for the CCF 174

C.1.3 Optimal Number of Iterations . 175

C.1.4 Optimal value of powthr . 175

C.2 Performance Evaluation of Different CF-Based Algorithms for the Gray-
Sheep Users . 175

D KMR Algorithms 177

D.1 Comparing the KMR with Others in Terms of ROC-Sensitivity and F1
Measure . 177

D.2 New Item Cold-Start Scenario . 177

D.3 Long Tail Scenario . 177

D.4 Very Sparse and Imbalanced Dataset . 181

D.5 Adding Contextual Information . 182

x CONTENTS

E Incremental and On-line KMR Algorithms 185

E.1 Comparing the Performance of the KMRincrub Algorithm With the KMRfullub 185

E.2 Results of the KMRpercept Algorithm, When New Users/Movies are In-
troduced in the System . 185

References 188

List of Figures

3.1 Hierarchy of a movie genre. 43

4.1 Determining the optimal value of neighbourhood size (l) for the Movie-
Lens (SML) and FilmTrust (FT1) datasets over the validation set. 54

4.2 Determining the optimal value of parameter C for the SVM classifier . . . 55

4.3 Finding the optimal values of δ and λ in the SwitchRecNBCF and SwitchRecSVMCF ,
through grid search . 56

5.1 Determining the optimal number of dimensions in the ImpSvd. 75

5.2 Determining the optimal neighbourhood size and number of dimensions
in the SVD-based CF through grid search. 76

5.3 Performance comparison of different approaches for the ItrSvd (fixed
dimension case) algorithm (MovieLens datasets). 80

5.4 Performance comparison of different approaches for the ItrSvd (fixed
dimension case) algorithm (FilmTrust datasets). 81

5.5 The effect of dimension parameter over the MAE in the SVD-based rec-
ommender systems. 82

5.6 Performance comparison of different approaches for the ItrSvd (variable
dimension case) algorithm (MovieLens datasets). 83

5.7 The effect of sparsity in the SVD-based recommender systems. 84

5.8 When and how much imputation is required. 85

6.1 Finding the optimal similarity threshold (ω) for the MovieLens (SML)
and FilmTrust (FT1) datasets through the validation set. 103

6.2 Rating distribution of FT1 datasets for different types of users. 107

7.1 Schematic showing the aim of the KMR algorithm. 117

7.2 Plotting the probability density function of mixture of two Gaussians with
r̂={−5:0.2:5}. 119

7.3 How two-way clustering derives the user-item rating matrix into the block
structure. 122

7.4 The number of iterations and time required to converge the KMR algo-
rithms (FT5 dataset). 123

7.5 The number of iterations and time required to converge the KMR algo-
rithms (SML dataset). 124

7.6 Learning the optimal value of threshold parameter θlinear, over the vali-
dation set. 126

7.7 Learning the optimal value of threshold parameter θcnt, over the validation
set. 127

xi

xii LIST OF FIGURES

7.8 Learning the optimal value of threshold parameter θvar, over the valida-
tion set. 128

7.9 Weight learning for the new user cold-start problem over the validation set.137

8.1 Comparing the performance of the proposed algorithm, KMRincr, with
the baseline one, KMRfull, when new users are added in the system (SML
dataset). 149

8.2 Comparing the performance of the proposed algorithm, KMRincr, with
the baseline one, KMRfull, when new users are added in the system (FT5
dataset). 150

8.3 Comparing the performance of the proposed algorithm, KMRincr, with
the baseline one, KMRfull, when new movies are added in the system
(SML dataset). 151

8.4 Comparing the performance of the proposed algorithm, KMRincr, with
the baseline one, KMRfull, when new movies are added in the system
(FT5 dataset). 152

8.5 Comparing the performance of the proposed algorithm, KMRpercept, with
the baseline one, KMRfull, under various sizes of datasets. 154

A.1 Rating distribution of the FilmTrust dataset. 162

A.2 Finding the optimal value of DF threshold for the Naive Bayes classifier
over the validation set. 163

A.3 Finding the optimal value of parameter ν over the validation set (SML
dataset). 163

C.1 Finding the optimal number of clusters, neighbourhood size, and iteration
in cluster based CF (CCF) algorithm. 176

D.1 The conventional user-item rating matrix extended by the context infor-
mation. 182

D.2 Defining social context for each user. 183

D.3 Adding social context to the KMR algorithms. 184

E.1 Comparing the performance of the proposed algorithm, KMRincrub , with

the baseline one, KMRfullub , when new users are added in the system. . . . 186

E.2 Comparing the performance of the proposed algorithm, KMRincrub , with

the baseline one, KMRfullub , when new movies are added in the system. . . 186

E.3 Comparing the performance of the proposed algorithm, KMRpercept, with
the baseline one, KMRfull, when new users/movies are added in the system.187

List of Tables

2.1 Example: a subset of the user-item rating matrix in a movie recommender
system. 12

3.1 Characteristics of the datasets used in this work. 30

3.2 The information crawled from the IMDB against a movie. 31

3.3 Confusion matrix. 34

4.1 A comparison of the proposed switching hybrid algorithms (SwitchRecNBCF
and SwitchRecSVMCF) with others in terms of accuracy metrics and coverage. 58

4.2 Performance evaluation of SwitchRecNBCF and SwitchRecSVMCF under the
new item cold-start scenario. 58

5.1 The MAE observed in different imputation methods in the ImpSvd algo-
rithm. 78

5.2 The item-based CF applied over the dataset reduced by employing SVD. . 79

5.3 The user-based CF applied over the dataset reduced by employing SVD. . 79

5.4 Comparing different imputation methods under hybrid SVD-based user-
and item-based CF recommender system. 79

5.5 The MAE observed in different imputation methods in the ItrSvd algo-
rithm. 83

5.6 A comparison of the proposed imputed SVD-based algorithms with the
existing ones in terms of the cost and MAE. 87

5.7 Comparing the MAE observed in different imputation methods under the
new item cold-start scenario. 87

6.1 Checking the effect of different distance measures in the K-means cluster-
ing algorithm over the validation set. 100

6.2 Checking the effect of different centroid selection algorithms over the val-
idation set. 102

6.3 The within-cluster similarity of different centroid selection algorithms. . . 102

6.4 The performance of the Clustering-based CF (CCF) algorithm over dif-
ferent types of users. 105

6.5 The performance of different algorithms computed over the gray-sheep
users. 105

6.6 The performance of different algorithms computed over all users. 106

7.1 Example: a subset of the user-item rating matrix with 3 users and 3 movies.116

7.2 Example: a subset of the normalised user-item rating matrix with 3 users
and 3 movies. 117

7.3 The optimal value of the design variables (α) for each user-item pair. . . . 118

xiii

xiv LIST OF TABLES

7.4 A comparison of the KMR algorithms with others in terms of the MAE. 129

7.5 A comparison of KMR algorithms with others in terms of the NMAE
(Normalised MAE) for the ML dataset. 131

7.6 A comparison of KMR algorithms with others in terms of the RMSE for
the ML10 dataset. 132

7.7 Comparing the performance of KMR algorithms found with different
combinations of kernel. 134

7.8 Combining the user- and item-based KMR algorithms under imbalanced
datasets. 134

7.9 Comparing the MAE observed in different KMR approaches under new
user cold-start scenario. 135

8.1 Comparing the performance of the proposed algorithm, KMRincr, with
the baseline one, KMRfull, when new users are added in the system. . . . 153

8.2 Comparing the performance of the proposed algorithm, KMRincr, with
the baseline one, KMRfull, when new movies are added in the system. . . 153

8.3 Comparing the performance of the proposed algorithm, KMRpercept, with
the baseline one, KMRfull, at a sample size of 10 000, for the SML and
FT5 dataset. 153

8.4 Comparing the performance of the proposed algorithm, KMRpercept, with
the baseline one, KMRfull, at a sample size of 400 000, for the Netflix
dataset. 155

B.1 Learning parameter sets α and β over the validation set through cross
validation. α and β show the relative impact of user- and item-based CF
in a prediction respectively. 166

B.2 The ROC-sensitivity observed in different imputation methods in the
ImpSvd algorithm. 167

B.3 The F1 observed in different imputation methods in the ImpSvd algorithm.167

B.4 The precision observed in different imputation methods in the ImpSvd
algorithm. 168

B.5 The recall observed in different imputation methods in the ImpSvd algo-
rithm. 169

B.6 The ROC-sensitivity observed in different imputation methods in the
ItrSvd algorithm. 169

B.7 The F1 observed in different imputation methods in the ItrSvd algorithm.170

B.8 The precision observed in different imputation methods in the ItrSvd
algorithm. 170

B.9 The recall observed in different imputation methods in the ItrSvd algo-
rithm. 170

B.10 Comparing the MAE observed in different imputation methods under
varying training set sizes. 170

B.11 Comparing the MAE observed in different imputation methods under the
new user cold-start scenario. 172

B.12 Comparing the MAE observed in different imputation methods under the
long tail scenario. 172

C.1 Comparing the performance of different variants of the CF-based algo-
rithms over the gray-sheep users. 175

LIST OF TABLES xv

D.1 A comparison of the KMR algorithms with others in terms of ROC-
sensitivity. 178

D.2 A comparison of the proposed algorithm with others in terms of F1. . . . 178

D.3 Comparing the MAE observed in different KMR approaches under the
new item cold-start scenario. 179

D.4 Comparing the MAE observed in different KMR approaches under the
long tail scenario. 180

D.5 Comparing the performance of different KMR approaches under imbal-
anced and sparse datasets. 181

Declaration of Authorship

I, Mustansar Ali Ghazanfar , declare that the thesis entitled Robust, Scalable, and Prac-

tical Algorithms for Recommender Systems and the work presented in the thesis are

both my own, and have been generated by me as the result of my own original research.

I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as: (Ghazanfar and Prügel-Bennett, 2010a),

(Ghazanfar and Prügel-Bennett, 2010b), (Ghazanfar and Prügel-Bennett, 2010c),

(Ghazanfar and Prügel-Bennett, 2010d), (Ghazanfar and Prügel-Bennett, 2010e),

(Ghazanfar and Prügel-Bennett, 2011a), (Ghazanfar and Prügel-Bennett, 2011b),

(Ghazanfar et al., 2011), and (Ghazanfar et al., 2012)

Signed:...

Date:..

xvii

mailto:mag208r@ecs.soton.ac.uk

Acknowledgements

First of all, I would like to express my heartfelt gratitude to Dr. Adam Prugel-Bennett

for his supervision, help, support, concern, and valuable suggestions from the day I

started working with him until the completion of this project. He has been a driving

force behind this project. I really appreciate his assistance, guidance and sincerity, and

for always being there with valuable feedback that put flesh on the bones of the work.

I would also like to extend my grateful thanks to Dr. Sandor Szedmak who gave me a

plethora of ideas. I am grateful to Dr. Craig Saunder who helped me start this PhD

in the first place. I am also deeply indebted to Prof. Paul Lewis for providing me the

valuable feedback in the transfer report, which helped shape this thesis. I am also very

thankful to Prof. Steve R. Gunn and the PASCAL Network of Excellence1 for the travel

grant given to me during this time.

I am very grateful for the prayers and love of my parents who have always been a

source of inspiration and help for me. I thank my family members: Mudassar, Alnasar,

Mubashir, Zamurd, Shakira, Nusrat, Mazia, Rozina, Esba, Hamza, Zaeem, Hazik, and

Arham for their constant support and unconditional love.

I enjoyed the company of a number of friends who were with me through the final stages

of this thesis. It is hard to list all them; however, I would like to mention some of them -

thanks guys. In alphabetical order: Ali, Bassam, Daisy, Darko, Fahime, Gondal, Imran,

Kei, Qassem, Ramanan, Sung, Tayarani, Tayyaba, Umer, and Wei.

This work has been supported by the Instant Knowledge project by MobileVCE (the Vir-

tual Center of Excellence in Mobile & Personal Communications, www.mobielvce.com),

jointly funded by the UK Technology Strategy Boards Collaborative Research and De-

velopment Programme. This work has also been partially funded by UET (University

of Engineering and Technology) Taxila, Pakistan.

1http://www.pascal-network.org/

xix

Nomenclature

U List of users

I List of items

ua The active user

it The target item

M The total number of users in the system

N The total number of items in the system

R The user-item rating matrix

D The set of user-item pairs that have been rated

T The total number of ratings in the system

R The rating scale of a recommender system

Iu List of items rated by u

Ui List of users who rated item i

Iua,ub The subset of items that have been rated by both users ua and ub

Uix,iy The subset of users that have rated both items ix and iy

riu The rating given by user u on item i (for simplicity we use riu)

ři,u The prediction for user u on item i (for simplicity we use řiu)

f(i, u) A utility function

f̌(i, u) A model that can predict the rating for user u on item i

r̄i Arithmetic mean rating for item i

r̄u Arithmetic mean rating for user u

r̄ Arithmetic overall mean rating

r̃i Geometric mean rating for item i

r̃u Geometric mean rating for user u

r̃ Geometric overall mean rating

µi,u µi,u = ri,u − ru
r̂iu The (arithmetic) residual value of rank riu. It is equal to r̂iu = riu−r̄i−r̄u+r̄

Sim(x, y) The similarity between two objects x and y (can be two users or items)

l The number of neighbouring users (or items) against an active user (or item)

A Word-by-document matrix

D Collection of document vectors

aw,d The weight of word w in document d

nd The total number of documents in a collection

xxi

xxii NOMENCLATURE

nw The total number of words in a collection

TF Term Frequency

IDF Inverse Document Frequency

DF Document Frequency

C1, · · ·Cz The number of classes (categories) for classification algorithms

T A target concept T : D→ C, which maps given documents to a class

nsv The number of support vectors in the Support Vector Machine (SVM) clas-

sifier

P (Cj |d) The posterior probability in the Naive Bayes (NB) classifier

P (Cj) The prior probability in the NB classifier

P (d|Cj) The likelihood in the NB classifier

P (d) The evidence in the NB classifier

P̂ (Cj) An estimate for P (Cj)

Pr(Cj) The posterior probability of class j computed by the NB classifier or SVM’s

estimated probability for class j

L A list containing the posterior probabilities of all classes

d(i, j) The absolute difference between the posterior probabilities of two classes, i

and j, computed by the NB classifier (i.e. d(i, j) = |L(i)−L(j)| = |Pr(Ci)−
Pr(Cj)|)

X The input space

F The feature space

ν The parameter that stores the difference between the posterior probabilities

of two classes, i and j (i.e. ν = d(i, j))

λ The parameter that stores the difference between the predictions computed

by the CF and a classifier

SwitchRecsupCF Proposed switching hybrid recommender system made up of the item-based

CF (IBCF) and a classifier. The superscript can be nb for the NB and svm

for the SVM classifier

SV D(A) Singular Value Decomposition (SVD) of matrix A

S The singular matrix

U, V The orthogonal matrices obtained after applying SVD

EM The expectation maximisation algorithm

k Represents the number of dimensions for SVD in Chapter 5 and represents

the number of clusters in Chapter 6

k∗ The optimal number of dimensions for SVD

Sk∗ , Uk∗ , Vk∗ S, U , V matrices reduced to dimensions k∗

neigh∗ The optimal number of neighbours in the SVD-based CF algorithm

error∗ The minimum MAE observed

r′iu A rating assigned by a pseudo-user u on item i (in the SVD-based recom-

mender system)

NOMENCLATURE xxiii

α, β Parameters that measure the relative weights of the SVD-based User-Based

CF (UBCF) and Item-Based CF (IBCF) in the ImpSvdhybridCF algorithm re-

spectively

M The optimised SVD model

ϑ A threshold parameter to terminate the EM algorithm

Θsparse A parameter that shows when to do imputation

Θdense A parameter that shows how much imputation is enough

ImpSvd Imputed SVD algorithm (SVD enhanced by an imputation method)

ItrSvd Iterative SVD algorithm (SVD combined with the EM algorithm)

ImpSvdCF The SVD-based CF

ImpSvdhybridCF A hybrid algorithm that linearly combines the SVD-based UBCF and SVD-

based IBCF

up The user, which has rated the maximum number of items

ip The item, which has been rated by the maximum number of users

dist(u) A variable representing the shortest distance from a user u to the closest

centroid we have already chosen

cj A centroid of K-means clustering algorithm

Dcj The set of user-item rating pairs in a cluster represented with centroid cj

ri,cj The rating given on item i by centroid cj

gj A cluster with centroid cj

G Total number of clusters (G = {g1, · · · , gk)
TotalSim The within-cluster total similarity

P(u) The number of ratings provided by a user, normalised by the number of

ratings given by up

ω The similarity threshold to detect the gray-sheep users

itr The maximum number of iteration in the K-means clustering algorithm

powthr Threshold parameter to detect the power users in the system

Υ A parameter that linearly combines the CF with the Content-Based Filtering

(CBF) for the gray-sheep users

KMR Kernel Mapping Recommender system algorithms

KMRib The item-based version of the KMR algorithms

KMRub The user-based version of the KMR algorithms

KMRsuphybrid A hybrid recommender system made up of KMRib and KMRub. The sub-

script can be linear, cnt, and var representing the different types of hybrid

KMR as defined in Chapter 7

θsub Parameter to combine the user- and item-based KMR in the case of

KMRsuphybrid. The subscript can be linear, cnt, and var.

xxiv NOMENCLATURE

KMRsupsub Different variants of the KMR algorithms. The subscript can be the item-

based (ib), the user-based (ub), demographic (D), and feature (F). The

superfix can be M4 representing the corresponding version of the KMR

algorithms, where we take into account the max, mean, mode, and median

of the output probability distribution.

řsupi,u The prediction for user u on item i by an algorithm. The subscript represents

the algorithm (e.g. ib for the item-based CF, nb for the Naive Bayes classifier

etc.)

qi The information about item i

qu The information about user u

Hr Feature space of object class Xr
φx, ψx Functions mapping object Xx into Hx
ψ(r̂iu) The residue ranks (ratings) information mapped in some Hilbert space (H)

φ(qi) The item information, qi, mapped in some Hilbert space (H)

N (x|r̂, σ) Normal distribution with mean r̂ and variance σ2

Ksub A Kernel function. The subscript can be rat for rating, feat for feature and

demo for demographic kernel

Kq The input feature kernel

Kr̂ The residual kernel

W Linear mapping

L(f) Lagrangian of a function

αiu Lagrangian multiplier. The design variable to be updated and optimised in

the algorithm, for all i ∈ I, u ∈ U
λi Lagrangian multiplier

ξi Slack variable belonging to movie i
∂f(x,y,z)

∂x Partial derivative of a function w.r.t variable x

C Penalty parameter

σ Variance parameter

⊗ Tensor product

〈 〉 Inner product

‖ ‖F Frobenius norm

KMRincr The incremental version of the KMR algorithms

KMRpercet The perceptron-type (on-line) version of the KMR algorithms

t Time counter of the observed rank items

(i, u, riu)t The tuple of an observation at time t (i(t),u(t) and riu(t) denote the com-

ponents)

I(t) The set of all movies observed by time t

U(t) The set of all users observed by time t

R(t) The set of all ranks arrived by time t. It is equal to {riu|i ∈ I(t), u ∈ U(t)}
Iu(t) The set of movies observed by time t, which have been by user u

Ui(t) The set of users observed by time t, which have seen movie i

NOMENCLATURE xxv

E(t) The overall average rating at time t

Ei(t) The average rating of item i at time t

Eu(t) The average rating of user u at time t

Eα(t) The design variables’s average at time t

r̂iu(t) The residual value of rank riu at time t and is equal to r̂iu(t) = riu(t) −
Ei(t)− Eu(t) + E(t).

αiu(t) The value of a design variable αiu at time t

ξi(t) The value of slack variable, ξi, at time t

β The discounting factor. It is in (0, 1)

s The step function. It is in (0, 1)

βk The accumulated discounting normaliser up to k updates

tk Time at update k

MAE Mean Absolute Error

NMAE Normalized Mean Absolute Error

RMSE Root Mean Square Error

ROC Receiver Operating Characteristic

KNN K-Nearest Neighbours

IMDB Internet Movie Database

CF Collaborative Filtering

CBF Content-Based Filtering

KB Knowledge-Based

DM Demographic-Based

RS Recommender System

1V1 One Versus One

1VR One Versus Rest

DAG Directed Acyclic Graph

UBCF The User-Based CF

IBCF The Item-Based CF

RBF Radial Basis Function

PCC The Pearson Correlation

PCCDV The Pearson Correlation with Default Votes

VS The Vector Similarity

VSDV The Vector similarity with Default Votes

w.r.t. With Respect To

To my parents, Ch. Ghazanfar Ali and Sughra Begum, for their
love, affection, and prayers!

xxvii

Chapter 1

Introduction

This chapter discusses the problem under investigation in this thesis, the motivations

and the design objectives, the contributions made to the field, and outlines the structure

of the remaining chapters.

1.1 Recommender Systems

“Every day, approximately 20 million words of technical information are

recorded. A reader capable of reading 1000 words per minute would require 1.5

months, reading eight hours every day, to get through one day’s output, and

at the end of that period would have fallen 5.5 years behind in his reading”

(Murray, 1966).

There has been an exponential increase in the volume of available digital informa-

tion (e.g. videos in Youtube (youtube.com) and Netflix (netflix.com), music in LastFm

(last.fm)), electronic resources (e.g. research papers in CiteULike (citeulike.org)), and on-

line services (e.g. Flicker (flickr.com), Delicious (delicious.com), Amazon (amazon.com))

in recent years. This information overload has created a potential problem, which is how

to filter and efficiently deliver relevant information to a user. Furthermore, information

needs to be prioritised for a user rather than just filtering the right information; oth-

erwise, it could become overwhelming. Search engines help Internet users by filtering

pages to match explicit queries, but it is very difficult to specify what a user wants by

using simple keywords. The Semantic Web also provides some help to find useful infor-

mation by allowing intelligent search queries; however, it depends on the extent to which

the web pages are annotated. These problems highlight a need for information filtering

systems that can filter unseen information and can predict whether a user would like

a given resource. Such systems are called recommender systems, and they mitigate the

aforementioned problems to a great extent.

1

2 Chapter 1 Introduction

1.2 Research Objectives

Recommender systems have been a very active topic of research for around twenty

years. This, in part, has been spurred on by the Netflix prize competition (Bennett

and Lanning, 2007) to improve the performance of a baseline algorithm by 10%. A

number of approaches have been proposed to solve the recommendation problem in-

cluding: content-based filtering, Ontology-based approaches, supervised classification

techniques, unsupervised clustering techniques, memory-based Collaborative Filtering

(CF), model-based approaches spanning a number of algorithms such as Singular Value

Decomposition (SVD), Matrix Factorisation (MF) techniques, and principal component

analysis, all of which suffer from some problems (see below) in one way or the other. By

careful examination of the literature, we find that the current state-of-the-art algorithms

(especially the ones proposed in the Netflix prize competition) attain an increased ac-

curacy rate by using a specific dataset’s peculiar characteristics or by blending dozens

(or hundreds) of matrix factorisation-based predictors trained on a static dataset. Al-

though, such systems are interesting, they are not very flexible, practical or ideal for the

real world applications. The reason is that the recommendation generation is a complex

process and the quality of a recommendation algorithm depends on a number of factors.

For instance, the accuracy of a recommendation algorithm might be very good given a

dense dataset and it may suffer under sparse settings. There are a number of design

objectives to be satisfied in order to make a recommendation algorithm to be effectively

used in real world scenarios as follows:

1. Accurate: An algorithm should be able to provide accurate recommendations for a

user. If a user trusts and leverages a recommender system, and then discovers that

they are unable to find what they want then it is unlikely that they will continue

with that system. Consequently, the most important task for a recommender

system is to accurately predict the rating of the non-rated user-item combination

and recommend items based on these predictions.

2. Robustness with sparsity: The performance of an algorithm should not degrade

badly with sparsity. In many commercial recommender systems like Amazon, it

is not unusual, even for an active user, to provide ratings for well under 1% of all

the available items. Besides, an increase in the number of items in the database

will decrease the density of each user with these items. Furthermore, most of the

recommender systems have imbalanced data, i.e. a user may have provided one

rating and others may have provided hundreds of ratings and the same is true for

items as well, which might result in a performance bottleneck.

3. Long tail problems: Newly introduced or unpopular items having only a few ratings

can create a potential problem for a recommender system. Many recommender

systems, for example, the CF ones, ignore these items or cannot produce reliable

Chapter 1 Introduction 3

recommendations for these items. This problem is called the long tail problem

(Park and Tuzhilin, 2008). As the majority of the items in a recommender system

generally falls into this category (Park and Tuzhilin, 2008), there is a need to

develop algorithms which can filter, personalise, and accurately recommend from

the huge amount of items available in the long tail.

4. Cold-start scenarios: Generally, while testing recommender systems, a dataset is

used where some sets of ratings are treated as unseen while the other ratings are

used for learning. The unseen data are then used to test the performance of the

algorithm. To obtain accurate results, datasets are usually selected with users that

have made a relatively high number of ratings. However, in real applications, the

datasets are often highly skewed; for example, a large number of users may have

made only a small number of ratings and a large number of items may have received

very few ratings. These are important scenarios in practical systems as making

reasonable recommendations to new users can be crucial in attracting more users.

There are two important cold-start scenarios as described below (Schein et al.,

2002):

• New user cold-start problem: When a new user enters the system, initially

the system does not have enough data for that user, and hence the quality of

the recommendations would suffer, a potential problem called the new user

cold-start problem (Adomavicius and Tuzhilin, 2005).

• New item cold-start problem: When a new item is added to a system, then

initially it is not possible to get a rating for that item from a significant

number of users, and consequently the CF recommender systems would not

be able to recommend that item effectively. This problem is called the new

item cold-start problem (Adomavicius and Tuzhilin, 2005).

Often, recommendation algorithms that have been optimised to give good recom-

mendations on dense datasets perform poorly under these scenarios. Hence, there

is a need to devise algorithms that give sensible and accurate recommendations

under these scenarios.

5. Scalable: An algorithm should be designed to scale well with large datasets. Since

the search space grows very quickly as the number of users and items increases,

it is extremely difficult to perform an exhaustive search (a brute-force search)

where every possible candidate for the solution is examined (e.g. given 4000 users

and 4000 items, the number of comparisons required to produce recommenda-

tions in case of the conventional CF algorithm (Shardanand and Maes, 1995) are

40002(4000) = 64 × 109). It must be noted that there is a conflicting trade-off

between the accuracy and scalability of a system.

6. Practical: The recommendation algorithm should be practical—producing recom-

mendation in real-time with minimum off-line and on-line cost. With the current

4 Chapter 1 Introduction

state-of-the-art algorithms proposed in the Netflix prize competition (Bennett and

Lanning, 2007), we consider the recommendation generation process to be theoret-

ically applicable, but practically infeasible, because the final solution is generated

by blending dozens (or even hundreds) of recommendation algorithms. For in-

stance; the winner of the Netflix prize team states that: “Moreover, the solution

is based on a huge amount of models and predictors which would not be practi-

cal as part of a commercial recommender system. However, this result is a direct

consequence of the nature and goal of the competition: obtain the highest possible

accuracy at any cost, disregarding completely the complexity of the solution and

the execution performance” (Piotte and Chabbert, 2009).

7. Flexible: It is desirable for an algorithm to be flexible, i.e. it should be able to

easily incorporate additional information—ratings, demographics, features, and

context information—when available. It must be noted that the complexity of an

algorithm must not increase significantly when given more information.

8. Incorporating new users and items efficiently: Since most of the recommender

system domains are dynamic—data (new users and items) are being added con-

tinuously in the system—an algorithm must be able to incorporate new users and

items effectively. It must be noted that retraining the whole model from scratch

(given millions of ratings) upon the arrival of new data is not pragmatic due to

the tremendous cost related to the execution time and memory required.

9. On-line model building: Since most of the recommender system datasets are

huge, typical batch processing algorithms that require multiple passes through

the datasets are not ideal for this situation. Hence, the on-line model building

algorithms are called for.

10. Maximum coverage: The coverage of an algorithm should be maximum, i.e. it

should be able to make recommendations for all the existing items and the coverage

should not degrade under cold-start and sparse scenarios.

11. Gray-sheep users problem: In the CF domain, the gray-sheep users—users who

partially agree/disagree with other users and have low correlation coefficients with

almost all users—pose some potential problems. It is desirable for an algorithm

to detect and satisfy their needs, as they might not get useful recommendations

from the opinions of the user community.

12. Overcome conventional problems: It should overcome conventional problems with

the recommender systems, such as stability vs. plasticity (Burke, 2002), confidence

in a prediction (Mcnee et al., 2003), and over-specialisation (Burke, 2002) prob-

lems.

Chapter 1 Introduction 5

Therefore, by developing recommendation algorithms that satisfy the above mentioned

design objectives, we aim at making recommender system techniques applicable to a

wider range of practical situations and real-world scenarios.

1.3 Research Contributions

Against the aforementioned research objectives, we first propose hybrid recommender

system algorithms (Chapters 4, 5, and 6) that can be used to make reliable recom-

mendations under different conditions. We then propose a new class of recommender

system algorithm based on the structure-learning technique (Chapters 7 and 8) that

gives state-of-the-art performance on high dimensional datasets.

This thesis makes significant contributions to the state-of-the-art recommender system

algorithms in the following ways:

1. We propose a novel switching hybrid recommender system framework using Col-

laborative Filtering (CF) and classification approaches (Naive Bayes and support

vector machines classifiers) trained on the content profiles of users. We show em-

pirically that the proposed hybrid recommender system gives more accurate results

than the conventional hybrid recommender systems and the individual ones and,

moreover it helps in overcoming some of the recorded problems with the recom-

mender systems.

2. We propose an imputed version of the Singular Value Decomposition (SVD)-based

recommender systems, to overcome the sparsity and other problems associated

with recommender systems. We show how a careful selection of imputation meth-

ods in the SVD-based recommender systems can provide potential benefits ranging

from cost saving to performance enhancement. The proposed missing value im-

putation methods have the ability to exploit any underlying correlations in the

data and are proven to exhibit superior performance compared to the traditional

missing value imputation strategy—item average—that has been the preferred ap-

proach in the literature to resolve this problem. Furthermore, we show that the

convergence and accuracy of the traditional approach suffer when SVD is com-

bined with the Expectation Maximisation (EM) algorithm. Finally, we present a

trade-off between the accuracy and scalability by showing when and how much

imputation is required.

3. We propose various centroid selection approaches and distance measures for the

K-means clustering algorithm. We employ the best approach to partition the

recommender system dataset into clusters and offer a simple strategy that separates

the so-called gray-sheep users into a distinct group. We show that the performance

of the CF-based algorithms suffer in the case of gray-sheep users. We offer a hybrid

6 Chapter 1 Introduction

recommendation algorithm to overcome the gray-sheep users problem. To the best

of our knowledge, this is the first attempt to solve the gray-sheep users problem

associated with a recommender system.

4. We propose a new class of Kernel Mapping Recommender (KMR) system methods

for solving the recommendation problem1. The proposed methods are based on

a structure-learning technique, where the main idea is to exploit the relationship

between two data sources that can be expressed by real-value functions. These

functions can be approximated by multi-linear functions and the missing values

for items can be estimated by turning this problem into a convex one-class classifi-

cation problem. The data sources are represented in the inner-product space, and

hence the flexibility of the kernel-based learning can be employed. The estimation

of the inference is based on the well-known maximum margin principle (Joachims,

2006). We propose the user- and item-based versions of the KMR and offer var-

ious ways to combine them. We empirically show on five different datasets that

the proposed algorithms outperform (or give comparable results to) the state-of-

the-art algorithms. We demonstrate that the proposed algorithms maintain robust

performance under cold-start, long tail, sparse, skewed, and imbalanced datasets.

Furthermore, they are quite flexible: (1) more information—ratings, demograph-

ics, features, and contextual information—can be added in the forms of kernels,

(2) the residues in the ratings can be mapped onto a density function that helps

to overcome the cold-start and imbalanced dataset problems, and (3) they can

switch between the user- and item-based versions depending on the reliability of

the predictions as measured by the uncertainty in the prediction of the algorithms.

5. The KMR algorithms are batch processing algorithms, so they cannot accom-

modate the incremental update with the arrival of new data, thus making them

unsuitable for the dynamic environments. From this line of research, we propose

a heuristic method that we call KMRincr, which can effectively incorporate new

data, providing significant computation savings compared to the case where we

retrain the model from scratch upon the arrival of new training data. Finally, we

introduce an on-line version of the KMR algorithms that we call KMRpercept,

which is a novel, fast incremental method for building the model that maintains

a good level of accuracy and scales well with the data. The proposed algorithm

implements an incremental subgradient descent step. The implemented version

of the algorithm follows the dual perceptron schema where only the knowledge of

the corresponding kernels is required. We present a simple solution to eliminate

the stability vs. plasticity problem associated with a recommender system. We

1This work is done in collaboration with Dr. Szedmak Sandor, when he was a research fellow in the
School of Electronics and Computer Science, University of Southampton UK. He has proposed a general
framework to handle missing data sources. We applied this framework to the recommender system’s
domain after some modifications and presented various refinements and improvements.

Chapter 1 Introduction 7

also provide the temporal analysis of the proposed algorithm and show that it can

effectively incorporate new data when available.

1.4 Thesis Outline

This thesis has been organised as follows:

Chapter 2 gives an overview of recommender systems and existing algorithms. It

describes the taxonomy of the existing recommendation algorithms and highlights their

advantages and disadvantages. It also describes the limitations of the current state-of-

the-art algorithms.

Chapter 3 describes the datasets and metrics used in this work. It also sheds light on the

feature extraction and selection algorithms that have been used in this work. Moreover,

it demonstrates how the content-based and demographic recommender systems are built.

Chapter 4 introduces and evaluates a switching hybrid framework that combines Col-

laborative Filtering (CF) with the content-based filtering algorithm. After giving the

details of the existing hybrid recommender systems, it proposes a simple strategy that

can be used effectively to combine the individual systems.

Chapter 5 presents an imputed version of the Singular Value Decomposition (SVD)-

based recommender systems. It shows by thorough evaluation that the baseline impu-

tation strategy—item average—fails to produce effective recommendations under cold-

start, long tail, and sparse settings. It proposes various imputation strategies that can

effectively be used under all scenarios.

Chapter 6 proposes a clustering algorithm to detect the gray-sheep users. After de-

scribing extensive experiments conducted to improve the quality of K-means cluster-

ing algorithms using different centroids selections approaches and distance measures, it

shows that the CF algorithms fail to produce effective and accurate recommendations

for the gray-sheep users. It proposes a hybrid recommender system to provide effective

recommendations for the gray-sheep users.

Chapter 7 introduces a new class of Kernel Mapping Recommender (KMR) system

algorithms for solving the recommendation problem. It shows that the proposed algo-

rithms outperform (or give comparable performance to) the state-of-the-art algorithms.

Furthermore, it shows that the proposed algorithms are quite flexible and produce reli-

able recommendations under all recommender system scenarios.

Chapter 8, the final contributory chapter, presents a heuristic method based on the

KMR algorithms that we call KMRincr that can update the model effectively on the

arrival of new data. Furthermore, it proposes an on-line version of the KMR algorithms,

8 Chapter 1 Introduction

namely KMRpercept, that can build the model by sequentially processing one data point

at a time.

Chapter 9 concludes the thesis by highlighting the most significant contributions and

outlines the directions for future research.

1.5 Publications

In this section, we outline the papers that have been peer reviewed and published in

support of these contributions:

1. Ghazanfar M.A. and Prügel-Bennett A. (2010). An Improved Switching Hybrid

Recommender System Using Naive Bayes Classifier and Collaborative Filtering. In

Lecture Notes in Engineering and Computer Science: Proceedings of The Interna-

tional Multi Conference of Engineers and Computer Scientists 2010, (pp. 493502).

IMECS 2010, 1719 March, 2010, Hong Kong.

2. Ghazanfar M.A. and Prügel-Bennett A. (2010). Building Switching Hybrid Rec-

ommender System Using Machine Learning Classifiers and Collaborative Filtering.

In IAENG International Journal of Computer Science, 37(3), 272 287.

3. Ghazanfar M.A. and Prügel-Bennett A. (2011). Fulfilling the Needs of Gray-Sheep

Users in Recommender Systems, A Clustering Solution. In 2011 International

Conference on Information Systems and Computational Intelligence.

4. Ghazanfar M.A. and Prügel-Bennett A. (2011). The Advantage of Careful Impu-

tation Sources in Sparse Data-Environment of Recommender Systems: Generating

Improved SVD-based Recommendations. In IADIS European Conference on Data

Mining, 24-26 July 2011, Rome Italy 2011. (Was granted the best student

paper award)

5. Ghazanfar M.A., Szedmak S., and Prügel-Bennett A. (2011). Incremental Kernel

Mapping Algorithms for Scalable Recommender Systems, 23rd IEEE International

Conference on Tools with Artificial Intelligence (ICTAI), Special Session on Rec-

ommender Systems in e-Commerce (RSEC), Nov 2011, USA.

6. Ghazanfar M.A., Prügel-Bennett A., and Szedmak S. (2011). Kernel Mapping

Recommender System Algorithms, In Information Sciences Journal, Dec 2011

(Accepted).

The following paper is under review (going through second round):

Chapter 1 Introduction 9

1. Ghazanfar M.A. and Prügel-Bennett A. (2011). The Advantage of Careful Impu-

tation Sources in Sparse Data-Environment of Recommender Systems: Generating

Improved SVD-based Recommendations, In Informatica Journal, Jan 2011.

Furthermore, during this time period, we have completed some other publications, re-

lating to the broad area of recommender systems (hybrid recommender systems and

distributed recommender systems); however, they have not been addressed by this the-

sis:

1. Ghazanfar M.A. and Prügel-Bennett A. (2010). A Scalable, Accurate Hybrid Rec-

ommender System. In The 3rd International Conference on Knowledge Discovery

and Data Mining (WKDD 2010). IEEE, 910 January, 2010, Thailand.

2. Ghazanfar M.A. and Prügel-Bennett A. (2010). Novel Significance Weighting

Schemes for Collaborative Filtering: Generating Improved Recommendations in

Sparse Environments. In DMIN10, the 2010 International Conference on Data

Mining. WORLDCOMP10, 1215 July, 2010, USA.

3. Ghazanfar M.A. and Prügel-Bennett A. (2010). Novel Heuristics for Coalition

Structure Generation in Multi-Agent Systems, In The 2010 International Confer-

ence of Computational Intelligence and Intelligent Systems, ICCIIS10, 30 June2

July 2010, London, U.K., 2010.

1.6 Summary

In this chapter, after defining the problem statement, we present various design objec-

tives that have laid the foundations of our work. We present various contributions of

the thesis and a list of publications in support of these contributions, and outline the

content of the following chapters.

Chapter 2

Recommender Systems:

Background and Existing

Algorithms

In this chapter, we discuss background information about recommender systems. After

giving some definitions and examples of application, we formalise the recommendation

problem. Then we discuss how users’ and items’ profiles can be defined. After that,

we discuss various types of recommender systems, starting from the most widely used

collaborative filtering and content-based filtering systems that this work (mainly) focuses

on, and continue to describe different types that have been used in the literature. We

illustrate how these approaches differ from each other, bring to light their merits and

drawbacks, and describe some of their applications. At the end, we describe the state-

of-the-art recommendation algorithms and the algorithms we have used to benchmark

our results.

2.1 What are Recommender Systems?

Recommender systems are information filtering systems, which suggest interesting re-

sources1 (i.e. movies, books, music, people, etc.) to users based on their preferences—

what they like or dislike about a particular resource—with the goal that these resources

are likely to be of interest to users. They process the historical data about users’ pref-

erences using machine learning algorithms and learn a model that can compile a ranked

list of all resources available for recommendation for each user based on the informa-

tion encoded in their profile. The highly ranked resources are then recommended to

the corresponding user based on the rationale that these resources are most likely to be

consumed next by this user.

1The terms resource and item are used interchangeably in this work.

11

12 Chapter 2 Recommender Systems: Background and Existing Algorithms

Nowadays, a number of recommender systems have been built that help people to

find useful resources, spanning a number of areas such as movies (MovieLens (movie-

lens.org), Netflix (netflix.com), FilmTrust (trust.mindswap.org/FilmTrust), Moviefinder

(moviefinderonline.com), reel.com); music (CDNOW (CDNOW.com), Ringo (ringo.com),

LastFm (last.fm), Pandora (pandora.com)); pictures (flickr.com); e-commerce (Amazon

(amazon.com), Ebay (ebay.com), Dietorecs (Dietorecs.com), choicestream.com, Entree

(Burke, 2002)); expertise finder (Referral Web (referralweb.net), Linkedin (linkedin.com));

news filtering (GroupLens (Konstan et al., 1997), PHOAKS (Terveen et al., 1997), P-

Tango (Claypool et al., 1999), Google news (Das et al., 2007)); email filtering (Tapestry

(Goldberg et al., 1992)); web (citeseer (citeseerx.ist.psu.edu), Fab (Balabanović and

Shoham, 1997), QuickStep (Middleton, 2002), Foxtrot (Middleton, 2002)); books (which-

book.net, WhatShouldIReadNext.com, librarything.com, Libra (Mooney and Roy, 2000));

electronic program guides (Barragáns-Mart́ınez et al., 2010); and holidays and travel

(tripadvisor.co.uk).

Recommender systems are now considered a salient part of any modern e-commerce

system because they help increase the e-commerce systems sales by making useful

recommendations—items a customer/user would be most likely to consume. The state-

ment, given by Greg Linden, who implemented the first recommendation system for

Amazon, shows how the recommender systems help industry to make profits:

“(Amazon.com) recommendations generated a couple orders of magnitude

more sales than just showing top sellers”2

Next, we set out the formalisation of the recommendation problem.

2.2 Formalisation of the Recommendation Problem

A Recommender System (RS) consists of two basic entities: users and items, where users

provide their opinions (ratings) about items. We denote these users by U = {u1, u2,
· · · , uM}, where the number of users using the system is |U| = M , and denote the set

of items being recommended by I = { i1,i2, · · · , iN}, with |I| = N . We can represent

each element of user space U and item space I with a profile. We usually represent a

user’s profile by defining their characteristics like age, gender, geographical location, etc.;

however, in simple cases we represent it by a unique user Identifier (ID). Similarly, we

represent each item by defining some characteristic; for example in a book recommender

system, each book can be represented by author, topic, year of release, etc.

Recommender systems store the history of the user’s interactions with the system; for

example, user purchase history, types of items they purchase together, their ratings, etc.

2http://glinden.blogspot.com/2007/05/google-news-personalization-paper.html

Chapter 2 Recommender Systems: Background and Existing Algorithms 13

Most of the recommender systems require users to rate some item, in order to recommend

unknown items; for example, in the MovieLens movie recommender system, when a new

user registers they have to rate some movies in order to get proper recommendations from

the system. The users will have given ratings of some but not all of the items. We denote

these ratings by (ri,u|(i, u) ∈ D), where D ⊂ I×U is the set of user-item pairs that have

been rated. We denote the total number of ratings made by |D| = T . Typically each

user rates only a small number of the possible items, so that |D| = T � |I×U| = N×M .

It is not unusual in practical systems to have T/(N ×M) u 0.01. The set of possible

ratings made by users can be thought of as elements of an M ×N rating matrix R. This

matrix is called the user-item rating matrix, an example of which is shown in Table 2.1.

Troy The Godfather Titanic Forrest Gump
(Action) (Crime) (Romantic) (Comedy)

Fahime 5 � 5 1

Musi 5 � � 1

Hamza 4 4 5 1

Paul 4 � 5 5

Adam 1 2 � 5

Table 2.1: Example: a subset of the user-item rating matrix in a movie recom-
mender system. We have five users (rows) and four movies (columns). The case
where a user has not rated a particular movie is shown by the � symbol. The
rating scale consisting of integer values between 1 and 5, captures the extreme
likes (5) and extreme dislikes (1) behaviour of a user.

We denote the items for which there are ratings by user u as Iu (i.e. Iu ⊆ {I|∀i∈Iri,u 6=
�}), and the users who have rated an item i by Ui (i.e. Ui ⊆ {U|∀u∈Uri,u 6= �}). We

use the term Iua,ub to denote the subset of items that have been rated by both users

ua and ub (i.e. Iua,ub = Iua ∩ Iub). Likewise, the term Uix,iy denotes the subset of users

that have rated both items ix and iy (i.e. Uix,iy = Uix ∩ Uiy).

Let f be a utility function that measures the utility of item i to user u, i.e.

f : I × U → R,

where R is a totally ordered set. Now for each user u ∈ U , the aim of a recommender

system is to choose certain items Iu ∈ I that maximise the user’s utility (Adomavicius

and Tuzhilin, 2005). We can specify this as follows:

Iu = arg max
i∈I\Iu

f(i, u) ∀u∈U ,

where the utility of an item is application-dependent; for example in a movie recom-

mender system, this can be represented by a rating in some numeric scale that indicates

to what extent a particular user liked a specific movie.

14 Chapter 2 Recommender Systems: Background and Existing Algorithms

Typically, the utility, f , is defined on a subset of I ×U and not on the whole space. For

instance, in the case of a movie recommender system, the utility is defined over items

previously rated by the users. The task of the recommender systems then becomes to

extrapolate utility, f , to the whole space I × U in order to make recommendations.

There are different ways to extrapolate the utility function over the whole I × U space

(Adomavicius and Tuzhilin, 2005). In the simplest case, utility function can be defined

by specifying some heuristics and its performance can be validated empirically. Alter-

natively, utility function can be estimated by optimising certain performance criteria,

such as the mean absolute error.

The utility function, f , essentially explains the mapping of a user u ∈ U and an item

i ∈ I to a rating ri,u, i.e. f(i, u) = ri,u . This mapping can be estimated by a model f̌

that predicts the rating of a non-rated user-item combination. Formally:

f̌(i, u) = f(i, u) + e ∀i∈I u∈U ,

where e is a small error between prediction made by the model and the actual rating

assigned by a user. Once a model has been built, the unknown ratings can be predicted

and recommended to users. We can use machine learning algorithms, approximation

theory, and some heuristics for prediction. Next, we discuss how users’ and items’

profiles can be built.

2.3 Users’ and Items’ Profiles

The main building elements of the recommender systems, i.e. users and items, need to

be modelled in such a way that recommendation algorithms can exploit them. Recom-

mender systems usually get initial information about users when they first register with

the system. The simplest way is to create an empty user’s profile, which is updated as

the system gathers the user’s feedback. This method, however, would not be able to

recommend any items unless it gathers some information about the user’s preferences.

An alternative approach is where the user manually creates a profile. The user might

need to give their interests (e.g. types of domain they are interested in), demographic

(e.g. age, genre, etc.) information, and geographical (e.g. country) information. Another

approach, used by the MovieLens video recommender system and iLike music recom-

mender system (ilike.com), requires user to provide ratings on a predefined set of items.

For example, when a new user registers with the iLike web-site, the system presents

them a list of artists they need to rate before getting the recommendations.

After getting the initial information, the system maintains the user’s profile, as they

provide feedback. The feedback can be explicit or implicit (Mobasher, 2007). Explicit

feedback, where the user provides their opinions about certain items, can be positive

or negative and usually comes in the forms of ratings. Rating scales can be discrete

Chapter 2 Recommender Systems: Background and Existing Algorithms 15

(real values from 0 to N) or binary (likes and dislikes of a user), although most of the

recommender systems use discrete scales. Explicit feedback can also be gathered by

allowing users to write comments and opinions about certain items. In implicit feedback

the user’s interaction with the item is observed; for example, web usage mining (e.g. time

spent in a web page), analysing the listening/watching habits in media player (e.g. in

YouTube the system might store how a user plays, re-plays, skips, and stops videos),

and observing the history of the transactions in the e-commerce website (e.g. items

purchased or returned by a user). Like explicit feedback, implicit feedback can be

positive and negative, although the negative feedback is not reliable. Explicit feedback

is noise free although the user is unlikely to rate many items, whereas implicit feedback

is noisy (error prone), but can collect a lot of training data (Alag, October, 2008). In

general, a trade-off between implicit and explicit user feedback is used.

The different techniques to gather the information about users, called knowledge ac-

quisition techniques (Middleton et al., 2004), are beyond the scope of this thesis. We

assume that we have some ratings provided by users about items and the task is to make

useful recommendations.

An item’s profile can be defined in different ways: (1) by getting features (or meta

data) about the item (Mooney and Roy, 2000), (2) by using the ratings provided by

users on that item (Sarwar et al., 2001), (3) by using the domain-specific Ontologies

(Maidel et al., 2008), and (4) by using demographic information (category) about items

(Vozalis and Margaritis, 2007). The vector space model (van Meteren and van Someren,

2000) (described in the next chapter) is the most widely used method to represent the

item’s profiles. Next, we give the classification of the existing recommender system’s

algorithms.

2.4 Classification of Recommender Systems

Recommender systems fall into five main classes: collaborative filtering, content-based

filtering, demographic-based, knowledge-based, and hybrid recommender systems. In

this thesis, we have focused (mainly) on collaborative filtering, content-based filtering,

and demographic filtering. Next, we discuss the approaches they use for recommenda-

tion, their merits and drawbacks, and some domains where they have been successfully

applied.

2.4.1 Collaborative Filtering (CF) recommender systems

Collaborative Filtering (CF) recommender systems (Goldberg et al., 1992; Resnick et al.,

1994; Shardanand and Maes, 1995; Terveen et al., 1997; Konstan et al., 1997; Ghazanfar

and Prügel-Bennett, 2010d) recommend items by taking into account the taste (in terms

16 Chapter 2 Recommender Systems: Background and Existing Algorithms

of preferences of items) of users, under the assumption that users will be interested in

items that users similar to them have rated highly. Examples of these systems include

GroupLens system (Konstan et al., 1997) and Ringo (ringo.com). Collaborating filtering

recommender systems are based on the assumption that people who agreed in the past

will agree in the future too. In these systems, the utility f(i, u) of item i for user u is

estimated based on the utilities f(i, u′|u′ ∈ U) assigned to item i by those users U ⊂ U
who have similar taste to user u (also called neighbours of user u).

These systems take into account the ratings provided by users on items and build the

user-item rating matrix, where each row of the matrix represents a user profile and the

column represents an item profile. The following example, based on the user-item rating

matrix given in Table 2.1, illustrates how these systems make predictions.

Example 1: User Musi has not seen the movie “The Godfather” and he is in a

dilemma—whether or not to rent this movie. Only two users, Hamza and Adam have

already seen this movie. He knows that Hamza has the same taste in movies as he has,

as both of them have liked “Troy” and disliked “Forest Gump” movies. Furthermore,

he knows that Adam has quite opposite tastes to his, as Adam has liked the movies he

disliked (i.e. “Forest Gump”) and vice versa. Considering this he asks Hamza’s opinion

and discards (or acts opposite to) Adam’s opinion and makes the decision accordingly.

It must be noted that Fahime has exactly the same taste as Musi; however, her opinion

cannot be taken into account, as she has not rated the “The Godfather”.

These systems can be classified into two sub-categories: memory-based and model-based

CF, which are discussed next.

2.4.1.1 Memory-based CF

Memory-based approaches (Goldberg et al., 1992; Resnick et al., 1994; Konstan et al.,

1997; Breese et al., 1998) make a prediction by taking into account the entire collection

of previous rated items by a user. There are three main steps in this approach:

• In the first step, users rate some items they have experienced previously.

• In the second step, an active user (the user for whom the recommendations are

computed)’s profile is matched with other users’ profiles in the system. A set of

similar users also called neighbours of the active user are found.

• In the last step, predictions are made for items that the active user has not rated

based on the ratings provided by its nearest neighbours. Finally, these items are

presented to the active user in a suitable order.

There are several methods to define the nearest neighbours: (1) choosing the top l-

nearest neighbours, (2) choosing all neighbours whose similarity is greater than a given

Chapter 2 Recommender Systems: Background and Existing Algorithms 17

similarity threshold, and (3) filtering out the neighbours with negative similarities. The

approach that uses the l most similar neighbours has been widely used (Breese et al.,

1998; Ma et al., 2007; Vozalis and Margaritis, 2007). The l nearest neighbour approach

gave us the best results and hence this work is based on this approach3. In the l-nearest

neighbour approach, the value of an unknown rating ri,ua for item i and user ua is

computed by aggregating the ratings of other l similar users for the same item i:

ři,ua = aggru∈Uneigh ri,u . (2.1)

Where Uneigh ⊂ U represent the set of l users (l < M) that are the most similar to user

ua and who have rated item i, and aggr represents an aggregate function. Aggregate

functions include:

ři,ua =
1

l

∑
u∈Uneigh

ri,u, (2.2)

ři,ua =
1∑

u∈Uneigh

|sim(ua, u)|
∑

u∈Uneigh

sim(ua, u)× ri,u, (2.3)

ři,ua = r̄ua +
1∑

u∈Uneigh

|sim(ua, u)|
∑

u∈Uneigh

sim(ua, u)× (ri,u − r̄u), (2.4)

where sim(ua, u) is the similarity between user ua and u, and r̄u is the average rating

of user u. The average rating of user u is computed as follows:

r̄u =
1

|Iu|
∑
i∈Iu

ri,u, (2.5)

where Iu represents the set of items that have been rated by user u. In equation 2.2,

the aggregate function is a simple average function, whereas in equation 2.3, it is a

weighted sum of the ratings. The prediction of ri,ua depends on the sim(ua, u) which

is used as a weight here. The function sim(ua, u) is a heuristic that gives more weight

to similar users than to dissimilar ones, while making predictions. It is worth noting

that the similarity measure is application-dependent, i.e. different applications can use

different similarity measures that suit their requirements. Equation 2.4 is called the

adjusted weighted sum that considers the deviation of ratings from the average rating

of the corresponding user. This aggregate function overcomes the dissimilar rating scale

used by different users.

Several approaches can be used for measuring the similarity between two users. Two

famous approaches are correlation-based and cosine-based similarity measures. In the

correlation-based approach, the similarity between two users is measured by the Pearson

3We have not shown the results comparing these approaches. Interested candidates can refer to
Herlocker et al. (2002).

18 Chapter 2 Recommender Systems: Background and Existing Algorithms

correlation. The Pearson correlation (Breese et al., 1998) between two users ua and ub

is computed as follows:

sim(ua, ub) =

∑
i∈Iua,ub

µi,uaµi,ub√ ∑
i∈Iua,ub

µ2i,ua

∑
i∈Iua,ub

µ2i,ub

, (2.6)

where µi,u = ri,u − ru. The output of the Pearson coefficient is 1 when two users are

perfectly similar, 0 when they are not similar, and −1 if they are totally dissimilar.

Another famous similarity function is the cosine-based approach (Breese et al., 1998). In

the cosine-based approach, the profiles of two users ua and ub are represented by vectors

in the X-dimensional space, where X = |Iua,ub |. The cosine of the angle between two

vectors gives the similarity measure and is computed as follows:

sim(ua, ub) = cos(~ua, ~ub)

=
(~ua. ~ub)

(~||ua||2 × ~||ub||2)

=

∑
i∈Iua,ub

ri,ua ri,ub√∑
i∈Iua

r2i,ua

∑
i∈Iub

r2i,ub

, (2.7)

where ~ua. ~ub represents the dot product between ~ua and ~ub. The output of the cosine-

based approach is 1 when two users are similar, and is 0 when they are not similar.

Furthermore, Ahn (2008) proposed a new heuristic similarity measure to overcome the

cold-start problems.

2.4.1.2 Model-based CF

Model-based approaches (Sarwar et al., 2000b, 2002b; Vozalis and Margaritis, 2006a;

Rendle and Lars, 2008; Park and Tuzhilin, 2008) learn a model from a collection of ratings

and use this model for making predictions. A well-known example of these approaches

is the item-based CF (Sarwar et al., 2001). It builds a model of item similarities using

an off-line stage. Let us assume that we want to make prediction on item it for user u.

There are three main steps in this approach as follows:

• In the first step, all items rated by an active user are retrieved.

• In the second step, the target item’s similarity is computed with the set of retrieved

items. A set of l most similar items i1, i2 · · · il with their similarities {sim(it, i1),

sim(it, i2), · · · sim(it, il)} are selected. Similarity sim(ix, iy), between two items

ix and iy, is computed by first isolating all the users who have rated these items

Chapter 2 Recommender Systems: Background and Existing Algorithms 19

(i.e. Uixiy), and then applying the Adjusted Cosine similarity (Sarwar et al., 2001)

as follows:

sim(ix, iy) =

∑
u∈Uix,iy

µix,u µiy ,u√ ∑
u∈Uix,iy

µ2ix,u
∑

u∈Uix,iy

µ2iy ,u

. (2.8)

Where, µi,u = ri,u − ru, i.e. normalising a rating by subtracting the respective

user’s average from the rating, which is helpful in overcoming the discrepancies

in the user’s rating scale. We used the significance weighting schemes (Ghazanfar

and Prügel-Bennett, 2010d) while measuring the similarities.

• In the last step, prediction for the target item is made by computing the weighted

average of the active user’s rating on the l most similar items. Using the weighted

sum, the prediction rit,u on item it for user u is computed as follows:

řit,u =

l∑
j=1

(sim(it, j)× rj,u)

l∑
j=1

(|sim(it, j)|)
. (2.9)

Equation 2.9 cannot be generalised to all datasets. If most of the item-item similarities

are negative, then it would result in negative prediction, which is not correct. This

formula can be corrected, by using the adjusted weighted sum that considers the deviation

of ratings from the average rating (ru) of a user.

řit,u = r̄u +

l∑
j=1

(sim(it, j)× µj,u)

l∑
j=1

(|sim(it, j)|)
, (2.10)

where µi,u = ri,u − ru. Next, we highlight the advantages and disadvantages of CF

recommender systems.

2.4.1.3 Advantages and disadvantages of CF recommender systems

Their advantages include:

1. Can identify cross-genre niches: They can make recommendations outside the

preferences (“outside the box” (Burke, 2002)) of an individual, for instance, a user

who loves watching action movies can also enjoy getting a good romantic movie.

20 Chapter 2 Recommender Systems: Background and Existing Algorithms

2. Domain knowledge is not needed: These systems do not require domain knowledge

as required in knowledge-based recommender systems.

3. Adaptive: They capture more information about users’ preferences over time,

which results in improved recommendations.

4. Produce high quality recommendations: They produce high quality recommenda-

tions compared to the other types of recommender systems. Furthermore, they

work well for complex objects such as music and movies.

5. Implicit feedback is sufficient: They can generate recommendations by only taking

a user’s implicit feedback into consideration.

Their disadvantages include:

1. New user/item cold-start problem: The performance of these systems suffer under

new user and item cold-start problems. The new item problem is also known as

the early-rated problem (Burke, 2002), since the first user to rate the new item

gets little reward.

2. Sparsity: In most of these systems, the percentage of ratings assigned by users is

very small compared to the percentage of ratings the system has to predict; hence

prediction accuracy of a recommender system suffers in this case.

3. Coverage: Due to the sparsity problem, the coverage of a typical CF recommender

system is typically very low.

4. Scalability: Memory-based CF approaches do not scale well with the number of

users/items and ratings. Some dimensionality reduction techniques, such as Sarwar

et al. (2002b) and Xue et al. (2005) have been proposed to overcome this problem.

5. Users with unique taste: There can be users in the system that have unusual taste

compared to the rest of the community, so the CF recommender systems would

produce poor recommendations for these users.

6. Stability vs. Plasticity problem: Once a detailed user’s profile has been built, then

it becomes very difficult for these systems to change this profile.

7. Long tail problem: The performance of these systems suffers under the long tail

scenario.

2.4.2 Content-Based Filtering (CBF) recommender systems

Content-Based Filtering (CBF) recommender systems (Lang, 1995; Mooney and Roy,

2000; van Meteren and van Someren, 2000; Pazzani and Billsus, 2007) recommend items

Chapter 2 Recommender Systems: Background and Existing Algorithms 21

based on the description information of an item, under the assumption that users will

like similar items to the ones they liked before. The description of the items can be

automatic, where the feature extraction algorithms are used to extract features from

the description of the item, or manual, where the domain experts annotate the items.

Furthermore, recent social tagging websites (e.g. Flicker) allow the user to tag certain

items that can be used to describe an item. In Chapter 3, we discuss how features can

be extracted from the description of items. The content-based filtering systems estimate

the utility f(i, u) of item i for user u based on the utilities f(i′|i′ ∈ I, u) assigned by

user u to items I ⊂ I that are similar to item i.

These approaches have their roots in Information Retrieval (IR) (Berry et al., 1995)

research. The IR approaches focus on answering the ephemeral interest queries of a

user, for instance, finding all the movies that involve the James Bond character. As

these approaches only store the specific user’s queries and not the long-term user’s

interests, hence they are less valuable for actual recommendation process. The CBF

approaches differ from IR in a sense because they store and update the user’s profile—

tastes, preferences, and needs—in the system which can be used to give personalised

results.

There are four main steps in these approaches, as described below:

• In the first step, the system gathers information about items; for example, in a

movie recommender system, this would be on movie title, genre, actors, producers,

etc.

• In the second step, a user is asked to rate some items. Binary scale (in terms of

their likes/dislikes) or some numeric scale (e.g. 1 to 5) are used for capturing the

user’s ratings.

• In the third step, a user’s profile is built based on the information gathered in the

first step and the rating provided in the second step. Different machine learning or

information retrieval techniques are used for this purpose. Users’ profiles (which

are long-term models) update as more information about users’ preferences is

observed and are highly dependent on the learning method employed.

• In the last step, the system matches the content of un-rated items with the active

user’s profile and assigns a score to items based on the quality of match.

For example, in a movie recommender system, the system finds movies similar to the ones

a user has rated highly in the past based on a specific actor/actress, director, subject,

etc. Different similarity measures can be used for measuring the similarity between the

item and user profiles. A frequently used similarity measure is the cosine similarity.

Furthermore, different machine learning techniques, such as classification (Mooney and

22 Chapter 2 Recommender Systems: Background and Existing Algorithms

Roy, 2000; Melville et al., 2002), regression and clustering (Steinbach et al., 2000) can be

used for content-based recommendations. Next, we highlight the main advantages and

disadvantages of CBF recommender systems (Adomavicius and Tuzhilin, 2005; Pazzani

and Billsus, 2007).

2.4.2.1 Advantages and disadvantages of CBF recommender systems

The advantages of the content-based filtering systems are essentially the same as those of

CF: they do not need domain knowledge, they are adaptive, and can operate with implicit

feedback. Furthermore, they do not have the new item problem. Their disadvantages

include:

1. Limited content analysis: These systems depend on the features that are explicitly

associated with items; hence there should be a sufficient number of features. For

this purpose, the features should be machine-readable as manual assignment of

features to items is not pragmatic due to limited resources.

2. Over-specialisation: These systems only recommend items that are the most sim-

ilar to a user’s profile. In this way, a user cannot find any recommendation that is

different from the ones they have already rated or seen.

3. New user problem: In order to build the model of user preferences, a content-

based filtering system requires users to rate a large number of items, which is not

possible for a newly registered user. Hence, the system would produce poor quality

recommendations.

2.4.3 Knowledge-Based (KB) recommender systems

2.4.3.1 Utility-based recommender systems

Utility-based recommender (Burke, 2002, 1999) systems do not attempt to build long-

term users’ profiles, but rather attempt to suggest items based on inferences about users’

needs and preferences. The users’ profiles can be any knowledge structure that endorses

this inference. Mainly, these systems have catalogue, functional and user knowledge.

2.4.3.2 Ontology-based recommender systems

Ontology-based recommender systems (Middleton, 2002; Middleton et al., 2002; Buri-

ano et al., 2006; Cantador et al., 2007; Weng and Chang, 2008; Shoval et al., 2008) use

Ontologies to define the users’ and items’ profiles. These systems generate recommen-

dations by assessing the similarities between the instances associated with the users and

Chapter 2 Recommender Systems: Background and Existing Algorithms 23

all other instances in the system’s knowledge bases. Different heuristics are used for

assigning the weights to super- and sub-instances. In the next chapter, we show how we

can exploit this idea to define the genre vector of a movie. Next, we discuss the main

advantages and disadvantages of KB recommender systems.

2.4.3.3 Advantages and disadvantages of KB recommender systems

They have no new user and sparsity problems. They are sensitive to the change of

preferences of users and can map users’ needs to products. Furthermore, it has been

claimed that that Ontology-based representation of context information can give us

benefits; for instance, information can be augmented, enriched, and synthesised using

suitable reasoning mechanisms (Buriano et al., 2006).

The disadvantages of these systems are: they require labour-intensive knowledge engi-

neering techniques to capture the catalogue and user knowledge, and they (utility-based)

are static in a sense that they do not learn users’ profiles over time.

2.4.4 Demographic-Based (DM) recommender systems

Demographic-Based (DM) recommender systems categorise users based on their personal

attributes (e.g. age, gender, etc.) and make recommendations based on these categori-

sations. Furthermore, items can be categorised based on their attributes; for example,

a movie can be categorised into different groups based on its genre information (Voza-

lis and Margaritis, 2007), and hence recommendations can be generated based on this

categorisation. Next, we discuss the advantages and disadvantages of DM recommender

systems.

2.4.4.1 Advantages and disadvantages of DM recommender systems

Like CF recommender systems, they do not need domain knowledge, they are adaptive,

and can identify cross-genre niches. They share a number of common problems with

CF recommender systems, such as sparsity, stability, plasticity, poor recommendations

for the gray-sheep users and in some cases, they do not have enough demographic data

against a user. Furthermore, with an increase in the sensitivity to on-line privacy, users

are reluctant to supply demographic information, which is a potential problem for these

systems.

24 Chapter 2 Recommender Systems: Background and Existing Algorithms

2.4.5 Hybrid recommender systems

Hybrid recommender systems combine CBF, CF, KB and DM recommenders to avoid

certain aforementioned limitations of the individual systems. Several hybrid recom-

mender systems have been proposed (Pazzani, 1999; Claypool et al., 1999; Burke, 1999;

Melville et al., 2002; Burke, 2002, 2007). We show in Chapter 4 how we can combine

individual systems systematically to produce effective recommendations under different

scenarios.

2.4.6 Other types of recommender systems

We briefly outline other recommender systems.

2.4.6.1 Context-aware recommender systems

Context-aware recommender systems (Hayes and Cunningham, 2004; Baltrunas, 2008)

are relatively new and little work has been done in this area. The basic idea is that

the appropriateness of recommendations is highly dependent on the context in certain

scenarios. The basic recommendation algorithms cannot fulfill the user’s immediate in-

terests or needs so any recommendation made may not be appropriate for the current

context. Certain approaches are used to incorporate the context information into the

recommendation generation process; for example feature selection, exploiting the most

relevant items based on the current context, and weighting scheme, using all the items

and assigning higher weights to items that are relevant to the current context. A multi-

dimensional approach to incorporate the context information into collaborative filtering

has been proposed in Adomavicius et al. (2005). We show in Appendix D how our Kernel

Mapping Recommender (KMR) system algorithms can exploit the context information.

2.4.6.2 Rule filtering recommender systems

Rule filtering recommender systems define some rules either based on a user’s history

or require them to explicitly formulate rules (e.g. I never watch horror movies), and

recommend unknown items based on these rules. An example of these systems is the

Tapestry (Goldberg et al., 1992) recommender system. These systems can also be cat-

egorised under utility-based systems. Their drawbacks include (1) inferring rules can

become very complicated as users rate more and more items and inferred rules might

conflict with one another, (2) users might find defining rules in formal languages an

awkward process, and (3) to precisely define the rule, the user needs to know exactly

what they would like to be recommended, which is somewhat in conflict with the notion

of a recommender system. We have not focused on these systems in this thesis.

Chapter 2 Recommender Systems: Background and Existing Algorithms 25

2.5 State-of-the-art Recommendation Algorithms

Over the last 20 years, a number of recommender system algorithms have been pro-

posed, which use different techniques to solve the recommendation problem, including

neighbourhood Collaborative Filtering (CF) (Sarwar et al., 2001), clustering-based ap-

proaches (Connor and Herlocker, 2001; Sarwar et al., 2002b; Xue et al., 2005; Rashid

et al., 2006; Park and Tuzhilin, 2008; Shepitsen et al., 2008), Bayesian network (Stern

et al., 2009), Singular Value Decomposition (SVD)-based approaches (Sarwar et al.,

2000b, 2002a; Vozalis and Margaritis, 2007; Barragáns-Mart́ınez et al., 2010), and var-

ious matrix factorisation techniques (Srebro et al., 2005; Rennie and Srebro, 2005; Bell

et al., 2007; Wu, 2007; Takács et al., 2008; Salakhutdinov and Mnih, 2008; Lawrence

and Urtasun, 2009; Koren et al., 2009; Takács et al., 2009).

Several Matrix Factorisation (MF)-based approaches have been devised and applied in

the CF domain. The idea of MF is to approximate the original user-item rating matrix

with a low-rank one. There are several ways to achieve this goal; for example, a well-

known approach, Maximum Margin MF (MMMF) (Srebro et al., 2005), minimises the

sum of squared error between the observed and the predicted ratings. The complexity of

the model is controlled by penalising the trace/nuclear norm (sum of singular values) of

the matrix. Other approaches extending the MMMF approach have been proposed; for

example, Salakhutdinov and Mnih (2008) offer the Bayesian treatment of the problem

and Lawrence and Urtasun (2009) offer the non-linear MF using the Gaussian latent

variable model. Some other well-known MF techniques are expectation maximisation

for MF (Kurucz et al., 2007), alternative least square (Bell and Koren, 2007b), mixed

membership matrix factorisation (Mackey et al., 2010), and ensembles of MF techniques

(Takács et al., 2008).

Different MF-based approaches have been combined together for improving the predic-

tion accuracy; for example, Bell et al. (2007) proposed a solution for the Netflix prize

(Bennett and Lanning, 2007) by blending 107 individual predictors, and won the Netflix

2007 prize. A similar approach is presented in Paterek (2007), where the author proposed

a linear combination of SVD-based predictor, K-means clustering, SVD combined with

K Nearest Neighbours (KNN), SVD post processed with ridge regression, and others (to-

tal of 72 predictors) and claimed that it gave 7.04% improvement in terms of Root Mean

Square Error (RMSE) over the Netflix’s Cinematch4 on the Netflix prize competition.

Wu (2007) combined (using ensemble methods) different variants of matrix factorisation,

such as regular matrix factorisation, and non-negative matrix factorisation, and claimed

that the combined approach gave 7% improvement, in terms of RMSE, over the Net-

flix’s CineMatch recommender system. Furthermore, hybrid approaches combining the

neighbourhood-based methods with MF have been devised (Koren, 2008; Takács et al.,

4Cinematch is the Netflix proprietary recommender system.

26 Chapter 2 Recommender Systems: Background and Existing Algorithms

2009). Though, theoretically, we can increase the accuracy of a recommender system by

these methods; however, it is not pragmatic (Piotte and Chabbert, 2009).

Most of the aforementioned algorithms used the rating information ignoring the feature

and demographic information about users/items. Some of the algorithms employed the

side-information; for example, Stern et al. (2009) used meta-data about users/items;

Lawrence and Urtasun (2009) used the meta-data about items, Koren (2008) used im-

plicit feedback provided by users (information about which items have been rated by

users, even if we do not know the actual ratings). However, none of them incorporated

more general forms of the side-information (e.g. features and demographics).

These algorithms offer state-of-the-art performance in terms of accuracy on static datasets.

However, our goal is very different from the aforementioned algorithms, i.e. to satisfy a

broader set of design objectives discussed in the previous chapter (Section 1.2) and not

just improving the accuracy of recommendations. Furthermore, most of these algorithms

perform well using a dataset’s particular peculiarities; hence their performance cannot

be generalised to other datasets.

Next, we briefly describe the algorithms that we have used for benchmarking our pro-

posed algorithms. We chose several other algorithms based on the number of citations

given in the literature, the algorithm classification space (i.e. memory-based or model-

based approaches), and whether the algorithm claims to give state-of-the-art results

(over the datasets described in Chapter 3, Section 3.1). We have used the following

algorithms to benchmark our proposed Kernel Mapping Recommender (KMR) system

algorithms:

UBCFDV : Breese et al. (1998) proposed a variant of the user-based CF (refer to Sec-

tion 2.4.1.1), where the main idea is to use some default votes to decrease the

sparsity of the user-item rating matrix. The author claimed that it outperformed

the conventional user-based CF algorithm.

IBCF: The item-based CF proposed by Sarwar et al. (2001) has been described in

Section 2.4.1.2. The author claimed that it is more accurate and scalable than the

conventional user-based CF.

Hybrid CF: A naive approach which combines the user- and item-based CF by taking

the average of their results.

Baseline SVD: Baseline SVD, proposed by Sarwar et al. (2000b), is the conventional

SVD-based approach for solving the recommendation problem. The steps to make

predictions using this approach are given in Chapter 5 (Section 5.3).

MatchBox: The MatchBox recommender system (Stern et al., 2009) is based on the

fully Bayesian matrix factorisation (similar to one proposed by Salakhutdinov and

Mnih (2008)). It employs users’ features, items’ features, and binary feedback as

Chapter 2 Recommender Systems: Background and Existing Algorithms 27

input and learns the model by mapping these features into a shared latent space,

where the correlation between users and items is learned in order to predict the

users’ preferences for unknown items. It is an on-line learning algorithm which can

incrementally add new data. The authors claimed that the meta-data about users

and items (they used the demographic data provided with the MovieLens dataset)

can help overcoming some of the cold-start problems.

MMMF: Maximum Margin MF (MMMF) proposed by Srebro et al. (2005) is a variant

of MF-based techniques as described above. The author compared the results with

several other algorithms proposed by Marlin (2004) over the MovieLens dataset

and claimed that the MMMF outperforms them in terms of the MAE.

E-MMF: The E-MMF (DeCoste, 2006) makes predictions using the ensembles of max-

imum margin MF technique (Srebro et al., 2005). The authors combined different

variants of the MMMF using ensemble methods, such as voting by averaging, vot-

ing by confidence, and bagging and claimed that ensembles of the MMMF provide

better results than a single MMMF over the MovieLens dataset.

NLMF: The non-linear matrix factorisation technique, NLMF, offered by Lawrence

and Urtasun (2009), extend the Maximum Margin MF (Srebro et al., 2005) using

a Bayesian framework. They tested their algorithm over the MovieLens dataset

and claimed that it outperforms several other state-of-the-art algorithms. The

authors also suggested to use the meta-data about items to overcome the new

item cold-start problem; however, no results were provided to support this claim.

M3F-TIB: The M3F-TIB proposed by Mackey et al. (2010) integrates two comple-

mentary algorithms—discrete mixed membership modelling and continuous latent

factor modelling (i.e. matrix factorisation)—into a common framework using the

Bayesian approach, which illustrates the power of carefully combining different

algorithms. The authors trained the model by performing Bayesian posterior in-

ference with Gibbs sampling. They tested their algorithm over the MovieLens and

Netflix dataset and claimed that the algorithm gives state-of-the-art performance

outperforming Lawrence and Urtasun (2009)’s results. It must be noted that the

Gibbs sampling in a rich Bayesian model is more computationally expensive than

some alternative approaches (like maximum a posteriori). Furthermore, this pa-

per totally ignores other design objectives as discussed in the previous chapter

(Section 1.2).

To benchmark our hybrid recommendation algorithms, we have used the IBCF, UBCFDV ,

Baseline SVD, and the following algorithms:

cBoosted: Melville et al. (2002) offered a hybrid recommender algorithm to recommend

movies to users. In the content-based filtering part, the authors train a Naive

28 Chapter 2 Recommender Systems: Background and Existing Algorithms

Bayes classifier based on a user’s profile. The Naive Bayes classifier is used to

approximate the missing entries in the user-item rating matrix, and a user-based

CF is applied over this dense matrix. They claimed that the proposed approach

outperformed the conventional user-based CF in terms of accuracy.

Baseline SVD-based IBCF: The baseline SVD-based IBCF algorithm, proposed by

Vozalis and Margaritis (2006a), extends the Sarwar et al. (2000b)’s approach to

item-based CF. The authors reduce the dimensions of the original user-item rating

matrix by applying SVD. They claimed that applying item-based CF over the

reduced dimensions outperforms the conventional item-based CF in terms of MAE.

Idemsvd− 2svd: Idemsvd− 2svd algorithm, proposed by Vozalis and Margaritis (2007),

combines the SVD-based IBCF approach with demographic data. The authors ap-

plied SVD over the user-item rating matrix and demographic data of users and

items, and claimed that a system consisting of a linear combination of SVD-based

demographic correlation and SVD-based (item-based) CF increases the accuracy

of the recommender system.

2.6 Summary

In this chapter we discuss and formalise the recommender system problem. The rec-

ommender systems consist of two main entities: users and items, where users provide

their opinion about the items. The users’ profiles are defined based on the their opinions

about items (e.g. ratings, comments, etc.) and information (e.g. demographic informa-

tion); whereas items’ profiles are defined based on the item’s description (e.g. keywords

describing the item). We show how, by exploiting the users’ and items’ profiles, a rec-

ommendation algorithm can solve the problem of recommending items to users. We

provide a classification of the existing recommendation algorithms based on their princi-

pal characteristics. We discuss their main benefits as well as their pitfalls by highlighting

several factors under which their performance would suffer. At the end, we discuss the

limitations of the state-of-the-art algorithms and the algorithms that we have used to

benchmark our work.

Chapter 3

Experimental Methodology

In this chapter, we discuss in detail the experimental set up of our system. We start

with the description of the datasets used in this work. Then we give an overview of

the different metrics that we have used to evaluate this work. We present the feature

extraction and selection algorithms and show how they are used to extract the features

from the content descriptions of movies. After that, we discuss how these features are

used to train the classification techniques that we will use in this work. At the end, we

explain how we employ the demographic information to build the demographic-based

recommender systems.

3.1 Datasets

As is common in the field of recommender systems, we used data from film recommen-

dation sites to test our algorithms. These provide some of the largest available datasets

allowing us to test the scaling performance of the algorithms. In addition, as these

datasets are very commonly used in the literature it allows us to benchmark our algo-

rithm against the state-of-the-art. The datasets we have used in our work are described

as below.

• MovieLens 100K ratings: This dataset (denoted by “SML” in this work) con-

tains 943 users, 1 682 movies, and 100 000 ratings on an integer scale from 1 (bad)

to 5 (excellent). It has been used in many research projects, such as Sarwar

et al. (2000b), Sarwar et al. (2001), Sarwar et al. (2002a), Vozalis and Margaritis

(2006b), Vozalis and Margaritis (2007) and Barragáns-Mart́ınez et al. (2010).

• MovieLens 1M ratings: This dataset (denoted by “ML” in this work) contains

6 040 users, 3 900 movies, and 1 000 000 ratings. It has been used in projects such

as Melville et al. (2002), Lawrence and Urtasun (2009) and Takács et al. (2009).

This dataset has the same rating scale as the 100K one.

29

30 Chapter 3 Experimental Methodology

• MovieLens 10M ratings: This dataset (denoted by “ML10” in this work) con-

tains 71 567 users, 10 681 movies, and 10 000 054 ratings on a floating point scale

from 1.0 to 5.0 (with a difference 0.25). It has been used in projects such as

Melville et al. (2002), Lawrence and Urtasun (2009) and Mackey et al. (2010).

• FilmTrust: We created this dataset by crawling the FilmTrust website. The

dataset retrieved (on 10th March 2009) contains 1 214 users, 1 922 movies, and

28 645 ratings on a floating point scale of 1 (bad) to 10 (excellent) (with a difference

of 0.25). The FilmTrust dataset adequately captures the new user and new item

cold-start problems. It has imbalanced data, i.e. one user may have provided one

rating and others may have provided hundreds of ratings and the same is true for

items as well. We also created a subset of this dataset by filtering all users and

movies which have less than 5 ratings. The resulting dataset contains 1 016 users,

314 movies, and 25 730 ratings. In this work, we have used the terms “FT1” and

“FT5” to denote the original and the filtered FilmTrust datasets respectively. It is

worth noting that the FT5 dataset is relatively denser than the FT1 dataset (refer

to Table 3.1).

• Netflix: Random sub-sample of 20 000 users from the Netflix dataset (denoted

by “NF” in this work). The sub-sampled dataset contains 20 000 users, 17 766

movies, and 4 260 735. It has the same rating scale as that of the SML dataset.

It has been very widely used (Bell et al., 2007; Bell and Koren, 2007a; Wu, 2007;

Koren, 2008; Piotte and Chabbert, 2009), in part because of the prize (Bennett and

Lanning, 2007) offered for achieving a level of improvement over a benchmark. We

have not attempted to compare our algorithm against the state-of-the-art Netflix

algorithms for three reasons. First, they have been highly tuned to that particular

dataset, while we have concentrated on developing general purpose recommender

algorithms. Second, the full Netflix dataset is so large (training dataset consists of

100 480 507 ratings provided by 480 189 users on 17 770 movies) that it is difficult

to process on a normal desktop machine without spending significant time on

optimising memory management. Third, the performance of those algorithms was

evaluated over a sub-set of the dataset called the “qualifying set” and only the

jury (Netflix organisers) knows the actual ratings of the qualifying set. After the

completion of the Netflix prize, there is no longer any support for this.

The characteristics of the datasets described earlier are given in Table 3.1. The sparsity

of a dataset is calculated as
(

1− non zero entries
all possible entries

)
; for instance for the SML dataset it

is: 1 − 100000
943×1682 = 0.937. This means that only 6.3% of the total user-item pairs have

been rated.

Chapter 3 Experimental Methodology 31

Table 3.1: Characteristics of the datasets used in this work. FT5, FT1, SML,
ML, ML10, and NF represent the FilmTrust filtered, FilmTrust original, Movie-
Lens 100K, MovieLens 1M , MovieLens 10M , and Netflix datasets respectively.
Average rating represents the average rating given by all users in the dataset.

Characteristics
Dataset

FT5 FT1 SML ML ML10 NF

Number of users 1 016 1 214 943 6 040 71 567 20 000
Number of movies 314 1 922 1 682 3 706 10 681 17 766
Number of ratings 25 730 28 645 100 000 1 000 209 10 000 054 4 260 735
Rating scale 1.0 to 10.0 −− 1 to 5 1 to 5 1.0 to 5.0 1 to 5
Sparsity 0.919 0.988 0.934 0.955 0.987 0.988
Max number of ratings
given by a user 133 244 737 2 314 7 359 17 653
Max number of ratings
given to a movie 842 880 583 3 428 34 864 9 667
Average rating 7.601 7.607 3.529 3.581 3.512 3.591

3.2 Getting Additional Features About Movies

In this work, we have used content information about movies in addition to the rating

information for the FT, SML, and ML10 datasets. For the ML10 dataset, we used the

tag information provided with the dataset (http://www.grouplens.org/node/12). For

the FT and SML datasets, we obtained the additional information by crawling the

Internet Movie Database (IMDB) web site (www.imdb.com). Specifically, we matched

the titles and URLs provided in the dataset with those given in IMDB, using the jmdb

(www.jmdb.com). The information crawled from the IMDB against a movie is given in

Table 3.2.

We found keywords, tags, and cast (e.g. actors, actresses, etc.) as the most important

information about movies. We did not take into account the critics or user reviews which

might also be helpful.

3.3 Evaluation Metrics

Several metrics have been used to evaluate the performance of recommender systems;

however, there is a lack of standardisation, which makes it hard to compare published

results. Herlocker et al. (2004) give an overview of the different metrics that have been

used along with their merits/demerits. To date, the majority of the published work has

focused on the accuracy metrics, which can broadly be categorised into three categories:

(1) predictive accuracy metrics, (2) classification accuracy metrics, and (3) rank accuracy

metrics (Herlocker et al., 2004).

32 Chapter 3 Experimental Methodology

Table 3.2: The information crawled from the IMDB against a movie.

Crawled Information Description of the Information

Keywords Keywords given to a movie (variable length)

Plot summary/synopsis Summary or synopsis of the movie (variable length)

Tags Tags given to a movie (variable length)

Movie links Links between movie e.g. followed by, series of, version of a
movie

Actors/Actresses Top five actors/actresses

Directors Top five directors

Producers Top three producers

Editors Top three editors

Writers Top three writers

Production companies Top three companies

Technical Sound mix (e.g. DTS), colour info, film negative format
e.g. 35 mm film

Soundtracks Music by and lyric by information

MPAA (The Motion
Picture Association of
America) ratings

Ratings that provide parents with advance information
about the content of films. Ratings can be G, PG, PG-13,
R and NC-17

AKA-Titles Movie is also known as

Language Original language of the movie (e.g. English, French, etc.)

Ratings Global rating given by the community of users (rounded to
the nearest integer)

Votes Number of votes (v) given to a movie by the community of
users. We divide the movies into 10 clusters (C) based on
the number of votes they received as follows: {C1|v ≤ 100,
C2|(v > 100AND v ≤ 500), C3|(v > 500AND v ≤ 1000),
· · · , C10|v > 5 000 }. Any two movies residing in the same
cluster are considered similar

• Predictive accuracy metrics measure how close is the recommender system’s pre-

dicted value of a rating, with the true value of that rating assigned by the user.

They are used in cases where the task is to display the predicted ratings to users;

for instance the MovieLens recommender system displays the number of stars (from

1 to 5) a user would give to an unknown movie. These metrics include Mean Ab-

solute Error (MAE), Root Mean Squared Error (RMSE), and Normalised Mean

Absolute Error (NMAE) and have been used extensively in research projects such

as Breese et al. (1998), Sarwar et al. (2000a), Sarwar et al. (2000b), Sarwar et al.

(2001), Sarwar et al. (2002b) and Xue et al. (2005).

• Classification accuracy metrics (sometimes referred to as the decision support

metrics) determine the frequency of decisions made by a recommender system,

for finding and recommending a high quality item (the item the user would like to

consume) to a user. These are used in cases where the exact rating prediction is not

required, rather the task is to help the user to classify high quality items from the

available ones; for instance presenting the user with a list of top-N recommended

Chapter 3 Experimental Methodology 33

items. These metrics include Receiver Operating Characteristic (ROC)-sensitivity,

precision, recall, and F1 measure, and have been used in Sarwar et al. (2000b,a)

and Zanardi (2011).

• Rank accuracy metrics measure the proximity between the ordering predicted by

a recommender system to the ordering given by the actual user, for the same set

of items. These metrics present users with a ranked list of recommendations with

the assumption that they are unlikely to browse every recommendation. These

metrics include half-life utility metric proposed by Breese et al. (1998) and have

not been used widely.

We have focused on predictive accuracy metrics and classification accuracy metrics be-

cause our specific task in this work is to predict scores for items that have already been

rated by actual users, and to check how well this prediction helps users in selecting

high quality items. Furthermore, these metrics allow us to benchmark our results with

other state-of-the art algorithms. Specifically, we have used the MAE, RMSE, NMAE,

ROC-sensitivity, precision, recall, and F1 measure. In addition to the accuracy metrics,

we used coverage. We also showed how learning rate and confidence can be defined.

3.3.1 Mean Absolute Error (MAE) and related metrics

The Mean Absolute Error (MAE) measures the average absolute deviation between the

rating predicted by a recommendation algorithm and the true rating assigned by the

user. It is computed as follows:

MAE =
1

|Dtest|
∑

ri,u∈Dtest

|ři,u − ri,u|,

where ri,u and ři,u are the actual and predicted values of a rating respectively, and Dtest
is the set of rating records in the test set. A rating record is a tuple consisting of a user ID

(Identifier), movie ID, and rating, < uid,mid, r >, where r is the rating a recommender

system has to predict. It has been used in Breese et al. (1998), Sarwar et al. (2000b),

Sarwar et al. (2001), Sarwar et al. (2002a), Vozalis and Margaritis (2006a), Ma et al.

(2007), Zhang and Pu (2007), Vozalis and Margaritis (2007), Ghazanfar and Prügel-

Bennett (2010e) and Ghazanfar and Prügel-Bennett (2010a). The aim of a recommender

system is to minimise the MAE score.

The Normalised Mean Absolute Error (NMAE) has been used in Marlin (2004), DeCoste

(2006), and Lawrence and Urtasun (2009), and is computed by normalising the MAE by

a factor. The value of the factor depends on the range of the ratings; for example, for

the MovieLens dataset, it is 1.6. For further information, refer to Lawrence and Urtasun

(2009).

34 Chapter 3 Experimental Methodology

A closely related measure to the MAE is the Root Mean Squared Error (RMSE), which

is calculated as follows:

RMSE =

√√√√ 1

|Dtest|
∑

ri,u∈Dtest

(ři,u − ri,u)2.

The RMSE has been used in Bell and Koren (2007b), Rendle and Lars (2008), Lawrence

and Urtasun (2009), and Piotte and Chabbert (2009). It will be slightly more sensitive

to large outliers than MAE.

3.3.2 Receiver Operating Characteristic (ROC)-sensitivity

The Receiver Operating Characteristic (ROC) model assumes that there are two classes

for the items: relevant or good items (positive) and irrelevant or bad items (negative).

Sensitivity (also called recall rate or true positive rate) determines a classifier’s perfor-

mance on classifying a relevant item correctly among all relevant items available during

the test. It measures the proportion of the actually relevant items which are correctly

identified by the filter. specificity measures the proportion of the actually irrelevant items

which are correctly identified by the filter. 1-specificity (also called the false positive

rate or false alarm rates) measures how many bad items are returned by the filter.

The ROC curve is generated by plotting, for each predicted item, the sensitivity (true

positive rate) vs. 1-specificity (false positive rate) against the threshold values. It shows

how the number of correctly classified relevant (positive) items varies with the number

of incorrectly classified irrelevant (negative) items. The Area Under the Curve (AUC)

called ROC-sensitivity, increases if the filter classifies more relevant examples correctly.

The AUC varies between 1 for a perfect filter to 0 for an imperfect filter, with 0.5 for a

random filter.

To use this metric for recommender systems, we must first determine which items are

relevant or good (signal) and which are irrelevant or bad (noise). In Melville et al. (2002)

the authors consider a movie “good” if the user awarded it a rating of 4 or higher and

“bad” otherwise. The flaw with this approach is that it does not take into account the

inherent difference in the user rating scale—a user may consider a rating of 3 in a 5-point

scale to be good, while another may consider it bad. We consider an item good if a user

rated it with a score higher than their average (in the training set) and bad otherwise.

3.3.3 Precision, recall, and F1 measure

Precision, recall, and F1 measure evaluate the effectiveness of a recommender system

by measuring the frequency with which it helps users in selecting/recommending a good

item. The most appropriate way (Herlocker et al., 2004) to measure the precision and

Chapter 3 Experimental Methodology 35

Table 3.3: Confusion matrix: each row represents the instance in an actual
class, while each column represents the instance in the predicted class.

Selected Not Selected Total

Relevant Irs Irn Ir
Irrelevant Iis Iin Ii

Total Is In I

recall in the context of recommender systems, is to predict the top-N items for the known

ratings, which can be done by splitting each user’s ratings into the training and test set,

training the model on the training set, and then predicting the top-N items from the test

set. This has been used in Billsus and Pazzani (1998). Here the underlying assumption

is that the distribution of relevant and irrelevant items in each user’s test set is the same

as the true distribution for that user across all items.

The information retrieval (Berry et al., 1995) area defines an “objective” measure for

precision, recall and related metric, where the relevance is independent of the user, and

is only associated with the query. However in the context of recommender systems, the

term “objective relevance” does not fit well—as every user has different tastes, opinions,

and reasons to rate an item, hence, relevance is inherently “subjective” in recommender

systems (Herlocker et al., 2004). The first step in computing the precision and recall is

to divide items into two classes: relevant and irrelevant (refer to Table 3.3), which is the

same as in ROC-sensitivity.

Precision gives us the probability that a selected item is relevant (Herlocker et al., 2004).

Mathematically, it is defined as follows:

Precision =
Irs
Is
.

Recall gives us the probability that a relevant item is selected (Herlocker et al., 2004).

Mathematically, it is defined as follows:

Recall =
Irs
Ir
.

Example 2: Precision and Recall: Let us assume that a recommender system’s database

has 100 movies, 50 of which are starring James Bond. Suppose a user initiates a query

to watch a movie starring James Bond. Let us further assume that the recommendation

algorithm returns 10 movies in response to the query. If 9 of the movies in the list

actually star James Bond, then the precision of the system is 9/10. This means the

precision of the system is very high because it contains many relevant items from the

retrieved ones. On the other hand, the recall of the system is 9/50, which is very low,

because it is unable to retrieve all the relevant movies (which are 50). A simple, solution

to increase the recall is to retrieve all the items in the database, i.e. 100, and send them

36 Chapter 3 Experimental Methodology

to the user. In this case, the recall would increase to 1; however, the precision would

decrease to 1/2.

From Example 2, we see that precision and recall are inversely proportional to each

other, and furthermore, they depend on the size of the resultant vector returned to

the user. Hence, they must be measured together. F1 measure (Herlocker et al., 2004)

combines the precision and recall into a single metric and has been used in many research

projects, such as Sarwar et al. (2000b,a). F1 is computed as follows:

F1 =
2× Precision×Recall
Precision+Recall

.

We calculated precision, recall, and F1 measures for each user over the top-20 recom-

mendations, and reported the average results over all users.

3.3.4 Coverage

Coverage measures how many items a recommender system can make recommendation

for. Coverage is an important metric, as many modern e-commerce services contain

millions of items in the catalogue, which should be recommended to customers. In this

work, we did not take coverage as the percentage of items that can be recommended/pre-

dicted from all available ones. The reason is, a recommendation algorithm can increase

coverage by making bogus predictions, hence coverage and accuracy must be measured

simultaneously. We selected only those items that have already been rated by the actual

users. Herlocker et al. (2004) have used the term prediction coverage for this metric. It

can be defined as follows:

Coverage =

∑
u∈Utest

∑
i∈Itestu

1R>0(ři,u)

|Dtest| , (3.1)

where U test denotes all users in the test set, Itestu denotes the items rated by user u in

the test set, R>0 denotes the set of real numbers which are greater than zero, |Dtest| is

the total number of rating records in the test set, and 1R>0(ři,u) is an indicator function,

which is defined as:

1R>0(ři,u) =

{
1 if ři,u ∈ R>0,

0 otherwise.

3.3.5 Other metrics

3.3.5.1 Learning rate

Learning rate is usually a parameter in an iterative learning model. This is the perfor-

mance as a function of the number of learning examples. Learning rate has not been

Chapter 3 Experimental Methodology 37

studied widely in the recommender systems literature and hence there is no well doc-

umented metric to report the results. Learning rates are non-linear (Herlocker et al.,

2004), and are concerned with the performance of a recommendation algorithm against

the available ratings to learn the model. Three different learning rates are (Herlocker

et al., 2004) (1) overall learning rate—the recommendation quality as a function of over-

all ratings in the systems; (2) per-item learning rate—the recommendation quality for

an item as a function of available ratings for that item; and (3) per-user learning rate—

the recommendation quality for a user as a function of available ratings given by that

user. A recommendation algorithm should produce robust and “acceptable” recommen-

dations at different rates. The term acceptable is application-dependent; for example

when a new user enters the system, it is highly desirable to give them quite accurate

recommendations to build their trust in the system. The learning rate metric can be

thought of as checking the performance of an algorithm under artificially created new

user, new item, and sparse dataset. In a sense, if an algorithm produces consistently

good performance under different (learning) conditions, then its learning rate is much

higher than others.

3.3.5.2 Confidence in a prediction

Confidence is concerned with the assurance a recommendation algorithm has in a pre-

diction to be accurate. The importance of the confidence metric becomes visible when

we consider a recommender system as a part of a decision-support system—a tool which

helps people to make the best possible decisions about what to buy or what to watch,

by guiding them in a personalised way to interesting resources in a large space of pos-

sible resources. It has been claimed in Mcnee et al. (2003) that showing a confidence

display along with recommendations can influence the user’s decision making. Showing

the best confidence display increases the user’s trust in the system, while showing the

worst confidence display worsens the decision making. It is worth noting that trust is a

major factor which influences the user’s decision (McNee, 2006).

Again, there is no standard metric to measure the confidence. High confidence implies

that the corresponding recommendation should be accurate, which can be checked in the

test set. The authors in Mcnee et al. (2003) and McNee (2006) used the number of ratings

given by a user and to an item as a confidence measure, where the recommendations

made by a few ratings were considered “risky”. The problem with this approach is that

this scheme is “non-personalised”, measuring the same confidence for all users/items

who have the same number of ratings in the system.

We show how confidence can effectively be measured by our Kernel Mapping Recom-

mender (KMR) system algorithms (refer to Chapter 7). We take into account the

variance in the output probability distribution of a prediction. We show through ex-

periments that if we have less variance in the output probability distribution, then the

38 Chapter 3 Experimental Methodology

prediction is more accurate and vice versa. This variance in the output probability

distribution can directly be mapped to confidence, where a low variance means high

confidence and vice versa.

3.3.6 Evaluation from the user’s point of view

In this thesis, we have not focused on the metrics which measure the performance of

a recommendation algorithm from purely human-computer interaction theory point of

view (McNee, 2006; Loizou, 2009). This approach requires user intervention in the

evaluation process; for instance conducting online system surveys which are beyond the

scope of this thesis.

3.4 Presenting Recommendations to Users

Recommendations can be presented to a user in the following two ways: by predicting

ratings of items a user has not seen before and by constructing a list of items ordered

by their preferences. In the former case, an active user provides the prediction engine

with the list of items to be predicted; the prediction engine uses other users’ (or items’)

ratings or content information, and then predicts how much the user would like the given

item in some numeric or binary scale. In the latter case, different heuristics are used

for producing an ordered list of items, sometimes termed as top-N recommendations

(Sarwar et al., 2000b; Rashid et al., 2006). For example, in the collaborative filtering

recommender system, this list is produced by making the rating predictions of all items

that an active user has not yet rated, sorting the list, and then keeping the top-N items

the active user would like the most. In this work, we have focused on both of these

approaches.

3.5 Evaluation Methodology

We performed 5-fold cross validation by randomly dividing the dataset into a test and

training set and reported the average results. We further subdivided our training set

into a test and training set for measuring the parameters’ sensitivity. For learning the

parameters, we conducted k-fold (where k = 2 for the KMR algorithms, and 5 for

remaining algorithms) cross validation on the training set. We show the average of the

results with error-bars over 5-folds.

Chapter 3 Experimental Methodology 39

3.6 Feature Extraction

Information extraction techniques search for specific pieces of data in natural language

documents and extract structured information (Cardie, 1997; Nahm and Mooney, 2002).

By extracting information from a corpus of textual data, they construct a structured,

searchable database, thus making data more easily accessible. We downloaded textual

descriptions of each movie from IMDB. We then built items’ profiles based on the textual

description of items. There are two main techniques for building a user’s profile as

follows:

• A model of the user’s preferences is built using the descriptions and types of the

items they are interested in.

• A history of the user’s interactions with the system is stored. The history of a

user can be gathered by explicit feedback (e.g. their ratings) or implicit feedback

(e.g. time spent in a web page).

We focused on both techniques where we use the explicit feedback (i.e. ratings) only

for the second approach. Creating and learning a user profile is a form of classification

problem, where training data can be divided into two categories: items liked by a user

and items disliked by a user.

For the remainder of this chapter, we view each item as a text document, since an item’s

textual description can be thought as a text document. There are certain steps involved

to get the features from a text document as discussed next.

3.6.1 Pre-processing

In the pre-processing step, documents, which typically are strings of characters, are

transformed into a representation suitable for the machine learning algorithms. The

documents are first converted into tokens, which are sequences of letters and digits, and

then usually the following modifications are performed (Aas and Eikvil, 1999):

- HTML (and others) tags are removed

- Stop words are removed

- Stemming is performed

Stop words are frequently occurring words that carry little information. They have

the following syntactical classes: conjunctions, articles, particles, prepositions, pronouns,

40 Chapter 3 Experimental Methodology

anomalous verbs, adjectives, and adverbs (Witten et al., 1999). We customised Google’s

stop word list (ranks.nl/resources/stopwords.html) for this task.

Stemming removes the case and inflections information from a word and maps it to

the same stem. For example, the words recommender, recommending, recommendation,

and recommended are all mapped to the same stem recommend. We used the Porter

stemmer (Alag, October, 2008) algorithm for this task.

3.6.2 Indexing

Each document is usually represented by a vector of weighted index terms. A Vector

Space Model is the most commonly used document representation technique, in which

documents are represented by vectors of words. A word-by-document matrix, A, is used

to represent a collection of documents, where each entry symbolises the occurrence of a

word in a document,

A = aw,d. (3.2)

In equation 3.2, aw,d is the weight of word w in document d. This matrix is typically

very sparse, as not every word appears in every document.

Let nd be the number of documents in a collection, nw be the total number of words

(after stop word removal and stemming) in the collection, DF (w) be the number of

times word w occurs in the whole collection, and TF (w, d) be the frequency of word

w in document d. Different approaches are used for determining the weight aw,d of

word w in document d; for example, boolean weighting, word frequency weighting, TF -

IDF weighting, and entropy weighting (Aas and Eikvil, 1999). We used the TF -IDF

approach due to its simplicity and wide use in the literature (Joachims, 1998; Mooney

and Roy, 2000)

Term Frequency-Inverse Document Frequency (TF -IDF) is a well-known ap-

proach that uses the frequency of a word in a document as well as in the collection of

documents for computing weights. The weight aw,d of word w in document d is computed

as a combination of TF (w, d) and IDF (w). Term Frequency, TF (w, d), treats all words

as equally important when it comes to assessing the relevance of a query. It is a potential

problem, as in most of the cases, certain terms have little or no discriminating power in

determining relevance. For example, a collection of documents relating to the software

industry is likely to have the term ‘software’ in almost every document. Hence, there is

a need for a mechanism which attenuates the effect of frequently occurring terms in a

collection of documents. Inverse Document Frequency, IDF (w), is used for this purpose

and is calculated from Document Frequency, DF (w), as follows:

IDF (w) = log
(nd
DF (w)

)
. (3.3)

Chapter 3 Experimental Methodology 41

Intuitively, the IDF of a word is high if it occurs in one document and is low otherwise.

A composite weight aw,d for word w in document d is calculated by combining the TF

and IDF as follows:

aw,d = TF (w, d)× IDF (w). (3.4)

The TF -IDF approach does not take the length of document into account, which could

be a problem in certain situations where documents have different lengths. We can

eliminate this problem by normalising the weights:

aw,d =
TF (w, d)× IDF (w)√√√√ nw∑

j=1

[
TF (j, d)× IDF (j)

]2 . (3.5)

The indexing step leads to a bag-of-words representation of documents, which is equiv-

alent to attribute-value representation in machine learning (Witten and Frank, 1999).

We represent tokens as attributes and corresponding weights as values.

3.6.3 Dimensionality reduction techniques

The feature space in a typical attribute-value representation can be very large (there is

one dimension for each unique word found in the collection of documents, after removing

stop words and stemming.). In some cases, where we have a large number of documents,

machine learning techniques cannot deal with this high dimensional matrix due to limited

memory and processing power. The dimensionality reduction techniques overcome this

problem by reducing the feature set without significantly sacrificing the information. In

this way, the conventional learning methods can be used to improve the generalisation

accuracy and to avoid over-fitting1. These techniques usually fall into two categories as

follows:

1. Feature Selection: Feature selection process reduces the feature space by elimi-

nating useless noise words—words having little (or no) discriminating power in a

classifier, or having low signal-to-noise ratio. Several approaches are used for fea-

ture selection; for example, Document Frequency (DF) thresholding, information

gain, χ2, and mutual information gain. We used DF thresholding and χ2 which are

effective in reducing the dimensions without loss of accuracy (Sebastiani, 2002).

• DF thresholding: This approach computes the Document Frequency (DF)

for each word in the training set and removes words having DF value less

than a predetermined threshold. The assumption behind this is that these

1Over-fitting is a problem with machine learning algorithms, where an algorithm becomes too specific
to a dataset, and cannot be generalised to other datasets or domains.

42 Chapter 3 Experimental Methodology

rare words neither have the discriminating power for a category prediction

nor do they influence the global performance.

• χ2 statistic: This approach measures how independent word w and class Cj

are:

χ2(w,Cj) =
nd × (AD − CB)2

(A+ C)× (B +D)× (A+B)× (C +D)
. (3.6)

Where A is the number of documents from class Cj that contain word w, B

is the number of documents that contain word w but are not from class Cj ,

C is the number of documents from class Cj that do not contain word w, and

D is the number of documents that neither contain word w nor are they from

class Cj . This approach computes χ2 for each word. The lower the χ2, the

more independent a word will be from a class. The words having the lowest

value for χ2 are removed because we are interested in words which are not

independent from Cj (Sebastiani, 2002).

2. Re-Parametrisation: Re-Parametrisation process transforms the original fea-

tures and constructs new ones. Latent Semantic Indexing (LSI) is a well-known

technique used for this purpose. LSI assumes that words’ usage across documents

has some latent structure that can be estimated by using statistical techniques.

LSI uses Singular Value Decomposition (SVD) which in turn uses factor analysis

and eigenvector decomposition. We show in Chapter 5 how LSI can be helpful in

reducing the dimensions of the feature space.

3.7 Building the Classification/Regression Approaches Based

on Features

We trained the text categorisation approaches based on the features information to pre-

dict an unknown rating. It have been claimed that the text categorisation and recom-

mender system share a number of characteristics (Zhang and Iyengar, 2002); for example

high dimensions of the matrix, sparsity, etc. Zhang and Iyengar (2002) argue that each

user can be viewed as a document and each item rated by a user can be represented by

a word appearing in a document. Another approach using the content features of an

item has been proposed in Mooney and Roy (2000), for a book recommender system.

In this approach, each item was considered as a document represented by a vector of

bags of words and a user’s rating as one of the class labels. A Naive Bayes classification

approach was used to learn a user’ profile, from a set of movies the user have rated

(i.e. labelled documents). This approach has been used by many other researchers such

as Melville et al. (2002). We used this approach for building the classification and re-

gression approaches. Next, we show how a text categorisation algorithm can be trained

using the content features.

Chapter 3 Experimental Methodology 43

3.7.1 Training the model using the content features

Text categorisation is the process of automatically assigning one or more predefined

categories to text documents (Sebastiani, 2002). To this end, let D be the collection of

document vectors, Dtest = { d′1, · · · , d′n } be the n document vectors to be classified, C=

{C1, · · · , Cz} be the z possible categories (classes), Dtraining = { d1, · · · , dm } be the

training set consisting of m document vectors with corresponding class labels {y1, · · · ,
ym}, and T be a target concept T : D → C, which maps given documents to a class.

We assume that each document is assigned to exactly one category. We use information

contained in the training examples to find a model Ť : D→ C, which approximates T .

The function Ť (d) defines the class to which the learned model assigns the document d

and is used for classification of new documents. The objective here is to find a model

which maximises the accuracy, i.e. assigns a new document to the most appropriate

class.

In recommender system settings, we build a multi-class classifier for each user, where

the number of classes are equal to the rating scale of the corresponding system. In the

MovieLens dataset, we have 5 classes, whereas in the case of the FilmTrust dataset we

have 8 classes (refer to Appendix A for the histogram of the FilmTrust dataset). A user’s

profile is learned from the movies in Dtraining. Specifically, for each user, the feature

vectors consisting of TF-IDF weights are constructed against each class. A model can

easily be trained over these feature vectors, which can classify any test movie, into one

of the classes. We give more details about training a classifier in Chapter 4.

3.8 Demographic Information

The term “demographic” primarily refers to users’ attributes that can be used to cate-

gorise users into different groups (Pazzani, 1999; Burke, 2002). Some researchers have

claimed that items can also be categorised based on certain information such as genre

vector, which can be termed as items’ demographic information. This analogy is ar-

guable, because genre information can be classified as the feature information of a movie.

Regardless of the use of the term “genre” as a distinct feature or demographic infor-

mation of an item, the same genre vector is used to generate recommendations. In our

work, the term “demographic” information about a movie refers to the genre information

about that movie.

To construct the demographic vector of items we used the hierarchy of genre as shown

in Figure 3.1. To determine the weight of a genre in the genre vector, we used a

simple weighting scheme as employed in QuickStep, an Ontology-based recommender

system (Middleton et al., 2009). The main idea is that the immediate super class is

assigned 50% of a subject’s value, the next super class is assigned 25%, and so on until

44 Chapter 3 Experimental Methodology

Null

UnKnown

Animation

Children Fantasy

Drama

Musical ComedyRomance

Thriller

MysteryCrimeHorror

Film-Noir

Adventure

Action SciFi

WarWestern

Themes

1 *

Documentary

Figure 3.1: Hierarchy of genres modified from Schickel-Zuber and Faltings
(2006). All the super classes of a genre get a share when a genre receives
some interest. For instance if a rated movie falls into the “Crime” genre, then
the “Crime” subject will get weight q, the immediate super class, the “Thriller”
will get weight of q/2; the next super class “Unknown” will get a weight of q/4.

the most general subject in the Ontology is reached. By making a hierarchy of the genre

and assigning different weights to sub and super classes, we hope to enrich an item’s

profile.

3.9 Summary

In this chapter, we give the details of our methodology. We discuss the characteristics

of various datasets and shed light on the evaluation metrics that are used in this work.

We provide justification for using these datasets and evaluation metrics. We discuss

the types of information that are crawled from the IMDB against each movie. Then

we discuss the steps in the feature extraction and selection algorithms that we have

employed to extract and select features from the content information. We illustrate how

these features are used to build the classification and regression approaches used in this

work. Finally, we explain how the genre information about movies is used to build the

demographic-based recommender systems.

Chapter 4

Switching Hybrid Recommender

Systems

4.1 Introduction

Collaborative Filtering (CF) and Content-Based Filtering (CBF) recommender systems

suffer from potential problems, such as sparsity, reduced coverage, cold-start, and over-

specialisation, which reduce the effectiveness of these systems. Hybrid recommender

systems combine individual recommendation approaches to overcome some of the afore-

mentioned problems. In this chapter, we propose novel switching hybrid recommendation

algorithms using classification approaches trained on the content profiles of users and

item-based CF. A switching hybrid recommender system is intelligent in the sense that

it can switch between recommendation approaches using some criteria. The benefit of

a switching hybrid hybrid recommender is that it can make efficient use of strengths

and weaknesses of its constitutional recommender systems. We show empirically that

the proposed algorithms outperform (or give comparable results to) other recommender

system algorithms in terms of the MAE, ROC-Sensitivity, and coverage; while at the

same time eliminate some of the recorded problems with recommender systems. We

evaluate our algorithm over the MovieLens (SML) and FilmTrust (FT1) datasets.

The rest of the chapter has been organised as follows. Section 4.2 discusses the related

work. Section 4.3 presents some background concepts relating to the Naive Bayes and

SVM classifiers. Section 4.4 outlines the proposed algorithms. Section 4.5 compares

the performance of the proposed algorithms with others. Section 4.6 offers a variant of

the proposed algorithms based on the singular value decomposition. Finally, Section 4.7

concludes and outlines the future work.

45

46 Chapter 4 Switching Hybrid Recommender Systems

4.2 Related Work

A significant part of research in recommender systems concerns the techniques to com-

bine the individual recommendation algorithms. A number of hybrid recommender

systems have been proposed, a vast majority of which combines the collaborative filter-

ing with content-based filtering (Balabanović and Shoham, 1997; Sarwar et al., 1998;

Good et al., 1999; Claypool et al., 1999; Melville et al., 2002; Uchyigit and Clark, 2002;

Li and Kim, 2003; Das et al., 2007; Barragáns-Mart́ınez et al., 2010; Gemmell et al.,

2010), while a few combine the collaborative filtering with the knowledge-based tech-

niques (Burke, 1999; Tran and Cohen, 2000; Burke, 2002; Middleton et al., 2004) or

demographic filtering (Pazzani, 1999; Vozalis and Margaritis, 2006b, 2007).

Based on Burke (2007)’s taxonomy of hybrid recommender systems, hybrid recommender

systems can be categorised into the following seven classes: (1) weighted—where the

score of a recommended item is computed by employing some weighting scheme to com-

bine the results from all of the available recommendation techniques present in the sys-

tem. Examples include Pazzani (1999) and Claypool et al. (1999); (2) switching—which

can switch between the individual techniques using some switching criteria. Examples

include Billsus and Pazzani (2000); (3) mixed—which presents recommendations from

several different recommenders at the same time. Examples include Cotter and Smyth

(2000) and McNee (2006); (4) feature combination—which augments the feature data

associated with each example by adding collaborative information into them, and then

uses content-based technique over this data set. Examples include Basu et al. (1998);

(5) cascade—where a recommendation technique is applied to produce a coarse recom-

mendation list of items that are refined by applying another recommendation technique.

Examples include EntreeC (Burke, 2002); (6) feature augmentation—where one recom-

mendation technique is applied to produce a rating or classification of an item and then

a second recommendation technique incorporates that information. Examples include

Melville et al. (2002) and McNee (2006); and (7) meta-level—where one recommendation

technique is applied to generate a model, which is then given as an input to a second

recommendation technique. Examples include Fab (Balabanović and Shoham, 1997).

Sarwar et al. (1998), Good et al. (1999) and Park et al. (2006) all proposed a (feature

augmentation hybrid) scheme to combine the content-based filtering with CF by adding

FilterBots or information filtering agents. For example, in Sarwar et al. (1998), the

authors used simple agents, such as spell-checking, which analyse a new document in

the news domain and rate it to reduce the sparsity of the dataset. These agents behave

like users and can be correlated with the actual users. They claimed that the integration

of information filtering agents with CF outperformed the simple CF in terms of accuracy.

The problem with these approaches is that the recommendation quality would heavily

depend on the training of individual agents, which may not be desired in certain cases,

especially given limited resources.

Chapter 4 Switching Hybrid Recommender Systems 47

Pazzani (1999) introduced a hybrid recommendation approach called “collaboration via

content” in which a content profile of each user is used to find the similar users that

are used for making predictions. The author used Winnow to extract features from

users’ home pages to build the content profile of users. The problem with this approach

is that if the content profile of a user is erroneous (maybe due to synonyms problems

or others), then it will result in poor recommendations. Furthermore, they proposed a

consensus scheme to combine the predictions generated by CF, collaborative via content,

and demographic approaches and claim that the combined approach outperformed the

simple ones.

Another way of combining the different recommender systems has been presented in

Vozalis and Margaritis (2006b, 2007). The authors applied Singular Value Decomposi-

tion (SVD) over the user-item rating matrix and items’ demographic data and claimed

that a linear hybrid recommender system consisting of item-based CF and demographic

recommender system give more accurate results than the individual ones. A related

example is given in Ghazanfar and Prügel-Bennett (2010e), where the authors used a

linear combination of collaborative filtering, content-based filtering, and demographic

recommenders and claimed that the combined version give more accurate results than

the conventional hybrid recommender systems. Another example is the P-Tango system

(Claypool et al., 1999), which uses the weighted average of collaborative filtering and

content-based filtering recommender systems for news recommendations. The downside

of these approaches is that they assume that the relative weight of different techniques

is, more or less, uniform across the space of possible items, which is not true.

Commercial systems relying on the hybrid recommender systems have been proposed;

for example, the Google news recommender system (Das et al., 2007) combines several

approaches to produce scalable and real time recommendations. Specifically, it is a lin-

ear combination of collaborative filtering using clustering, probabilistic latent semantic

indexing, and covisitation count. A personalised TV recommender system has been

brought forward by Cotter and Smyth (2000). A mixed hybrid recommendation ap-

proach was proposed where CF was used to overcome over-specialisation problems and

content-based filtering was used to overcome new item problems. Another example of a

mixed hybrid TV recommender is proposed in Barragáns-Mart́ınez et al. (2010), where

the authors combined content-based filtering with collaborative filtering coupled with

SVD. A user is given a list of top ranked items by employing some sort of combination

technique.

Various hybrid recommender systems have been proposed using Ontology and CF (Mobasher

et al., 2003; Middleton et al., 2004; Szomszor et al., 2007; Cantador et al., 2008; Weng

and Chang, 2008) to overcome the sparsity problem of the user-item rating matrix. For

example Mobasher et al. (2003) used domain-specific Ontologies to enhance the simi-

larity between the items in the item-based CF. They linearly combine the similarities

between items based on the user-item rating matrix and structure semantic knowledge

48 Chapter 4 Switching Hybrid Recommender Systems

about items to generate recommendations, and claimed that this semantically enhanced

approach outperforms the conventional item-based CF particularly given the sparse

dataset. The problems with these approaches is that they require time-consuming knowl-

edge engineering techniques to capture the domain-specific knowledge, which may not

be pragmatic given millions of items that is common with e-commerce domains.

Various classification approaches have been employed for solving the recommendation

problem, for example Billsus and Pazzani (1998); Basu et al. (1998); Mooney and Roy

(2000); Zhang and Iyengar (2002); Melville et al. (2002). Hybrid recommender systems

combining the classification technique with collaborative filtering have been proposed, for

example, in Melville et al. (2002), the authors offered a hybrid recommender framework

that combines collaborative filtering with a Naive Bayes classifier to recommend movies

to users. The problem with this approach is that it is not very scalable (see section

4.5.2.3 for details). Another example is given in McNee (2006), where the author used a

Naive Bayes classifier and collaborative filtering for research paper recommendations. He

combined the individual recommenders by a mixed and a feature augmentation technique

and claimed that the combined approach gives more accurate results than the individual

ones.

In this work, we have focused on switching hybrid recommender systems. The litera-

ture specifically focusing on switching hybrid recommender systems includes news rec-

ommender systems (Billsus and Pazzani, 2000), recommender systems for e-commerce

(Tran, 2007), case-based reasoning systems (Cheetham and Price, 2004), movies recom-

mender system (Lekakos and Caravelas, 2008), and others (Nakagawa and Mobasher,

2003; Van Setten, 2005). For example, Tran (2007) proposes a strategy for top-N recom-

mendations, which chooses the collaborative filtering approach as the main recommender

and triggers the knowledge-based approach if the collaborative filtering cannot classify

an item as good. An item is classified as good if its predicted value is more than a pre-

defined threshold; for example, user average on certain group of items in the training

set. The value of the threshold was changed based on the user behaviour. The problem

with this approach is that knowledge-based approaches are computationally expensive.

Switching hybrid recommender systems differ in the selection of switching criteria; for ex-

ample, some of them have used the confidence value in a recommendation component as

a switching criteria (e.g. the similarity of a new case with the existing ones, where a high

value of the similarity implies high confidence) (Billsus and Pazzani, 2000; Nakagawa

and Mobasher, 2003; Cheetham and Price, 2004; Van Setten, 2005), while others have

focused on some external criteria (e.g. Web site topology and the degree of connectivity

in a Web personalisation system) (Nakagawa and Mobasher, 2003). Switching criteria

can also choose the different implemented versions of a recommendation approach; for

example in News Dude (Billsus and Pazzani, 2000), a news recommender system, the

authors used different content-based filtering algorithms based on the short-term and

long-term interest profiles of a user. They used a nearest neighbourhood approach to

Chapter 4 Switching Hybrid Recommender Systems 49

recommend news stories based on users’ short-term profiles and a Naive Bayes classifier

to recommend news stories based on users’ long-term profiles.

4.3 Background

In this section, we give an overview of the Naive Bayes and SVM classifiers. We explain

how we use and modify them for building the switching hybrid recommender systems.

4.3.1 Naive Bayes classifier

The Naive Bayes classifier is based on the Bayes theorem with strong (Naive) indepen-

dence assumption, and is suitable for the cases having high input dimensions. Using

the Bayes theorem, the probability of a document d being in class Cj is calculated as

follows:

P (Cj |d) =
P (Cj)P (d|Cj)

P (d)
, (4.1)

where P (Cj |d), P (Cj), P (d|Cj), and P (d) are called the posterior, prior, likelihood, and

evidence respectively.

The Naive assumption is that features are conditionally independent; for instance, in a

document the occurrence of words (features) do not depend upon each other (Witten

and Frank, 1999). Formally, if a document has a set of features w1, · · · , wh then we can

express the numerator of equation 4.1 as follows:

P (Cj)P (d|Cj) = P (Cj)P (w1, · · · , wh|Cj)
= P (Cj)P (w1|Cj)P (w2, · · · , wh|Cj)
= P (Cj)P (w1|Cj)P (w2|Cj , w1)P (w3, · · · , wh|Cj)
= P (Cj)P (w1|Cj)P (w2|Cj , w1) · · ·P (wh|Cj , w1 · · · , wh−1). (4.2)

Now the naive assumption says that each feature wi is conditionally independent of

every other feature wj for j 6= i, i.e. P (wi|Cj , wj) = P (wi|Cj). Hence, we can simplify

equation 4.2 as follows:

P (Cj)P (d|Cj) = P (Cj)P (w1|Cj)P (w2|Cj , w1) · · ·P (wh|Cj , w1 · · · , wh−1)
= P (Cj)P (w1|Cj)P (w2|Cj)P (w3|Cj) · · ·

= P (Cj)
h∏
x=1

P (wx|Cj). (4.3)

50 Chapter 4 Switching Hybrid Recommender Systems

After substituting equation 4.3 into 4.1, we have:

P (Cj |d) =

P (Cj)
h∏
x=1

P (wx|Cj)

P (w1, · · · , wh)
. (4.4)

An estimate P̂ (Cj) for P (Cj) can be calculated as:

P̂ (Cj) =
|Dtraining

j |
|Dtraining| , (4.5)

where |Dtraining
j | is the number of training documents that belongs to category Cj and

|Dtraining| is the total number of training documents. To classify a new document, Naive

Bayes calculates posteriors for each class, and assigns the document to the class having

the highest posterior.

In our case, we used the approach employed in Mooney and Roy (2000) for a book

recommender system and in Melville et al. (2002) for a movie recommender system, with

the exception that we used DF thresholding feature selection scheme for selecting the

most relevant features. We assume we have z possible classes, i.e. C = {C1, C2, · · · , Cz},
where z = 5 for the MovieLens dataset and z = 8 for the FilmTrust dataset. We have

H types of information about a movie—keywords, tags, actors/actress, etc. (refer to

Section 3.2). We constructed a vector of bags-of-words (Aas and Eikvil, 1999), dt, against

each type. The posterior probability of a movie, i, is calculated as follows:

P (Cj |i) =

P (Cj)

H∏
t=1

|dt|∏
x=1

P (wtx|Cj , Ht)

Pi
, (4.6)

where P (wtx|Cj , Ht) is the probability of a word wtx (xth word in slot t) given class Cj

and type Ht. We used Laplace smoothing (Witten and Frank, 1999) to avoid the zero

probabilities and log probabilities to avoid underflow.

4.3.2 Support Vector Machines (SVM)

Support Vector Machines (SVM) are a set of related supervised learning methods with a

special property in that they simultaneously minimise the empirical classification error

and maximise the geometric margin; hence they are also known as maximum margin clas-

sifiers. SVM works well for classification and especially for text categorisation (Witten

and Frank, 1999; Joachims, 1998). Joachims (1998) compared different text categorisa-

tion algorithms under the same experimental conditions, and showed that SVM perform

better than conventional methods like Rocchio, decision tree, K-NN, etc. SVM work

well for text categorisation problems, because (1) they can cope with high dimensional

Chapter 4 Switching Hybrid Recommender Systems 51

input space, (2) they assume that the input space contains few irrelevant features, and

(3) they are suited for problems with sparse instances.

If we consider a two-class, linearly separable classification problem we can have many

decision boundaries. In SVM, the decision boundary should be as far away from the

data of both classes as possible. The training of SVM tries to maximise the distance

between the training samples of the two classes. The (binary class) SVM classifies a new

vector d′ into a class by a following decision rule:

nsv∑
j=1

αjyjdjd
′ + b, (4.7)

where nsv is the number of support vectors, αj are the support vectors (which determines

the decision boundary), yi ∈ { +1,−1 } are the class labels, and dj are the training

vectors. This decision rule classifies d′ as class +1 if the sum is positive and class -1

otherwise.

SVM can also handle the non-linear decision boundary using the kernel trick (Burges,

1998). The key idea is to transform the input space into a high dimensional feature space.

After applying this transformation, the linear operation in the feature space becomes

equivalent to a non-linear operation in the input space. Hence it reduces complexity

and classification task becomes relatively easy. This transformation is denoted as:

φ : X 7→ F ,

where X is the input space and F is the feature space. An example of polynomial kernel

transformation is:

φ(x1, x2) 7→ (x1
2, x2

2,
√
x1x2, x1, x2, 1).

After the transformation, equation 4.7 can be written as follows:

nsv∑
j=1

αjyj φ
T (dj)φ(d′)︸ ︷︷ ︸
K(dj ,d′)

+b, (4.8)

where K(dj ,d
′) = φT (dj)φ(d′) is a kernel function. A kernel function is a symmetric

positive semi-definite function of two variables. Many kernel functions can be used; for

example, linear kernel, polynomial kernel, and radial basis kernel (Hsu et al., 2003).

For recommender system settings, vectors of features (i.e. words) consisting of TF-IDF

weights, are constructed against each class. Like the Naive Bayes classifier, we have 5

classes for the MovieLens dataset and 8 classes for the FilmTrust dataset respectively.

We normalised the data in the scale of 0− 1 and used LibSVM (Chang and Lin, 2011)

for binary classification. We used linear kernel and trained the cost parameter C using

the validation set. We used linear kernel rather than radial basis function (RBF), as

52 Chapter 4 Switching Hybrid Recommender Systems

other researchers have found that if the number of features are very large compared to

the number of instances, there is no significant benefit of using RBF over linear kernel

(Hsu et al., 2003). Furthermore, parameters tuning in RBF and polynomial kernels is

computationally intensive given a large feature size. For the multi class problem, several

methods have been proposed, such as one-verse-one (1v1), one-verse-all (1vR), Directed

Acyclic Graph (DAG) (Witten and Frank, 1999). We did not find any significant differ-

ence between the results obtained by 1v1, 1vR, and DAG; hence we used 1v1 for this

work.

4.4 Combining the Item-based CF and Classification Ap-

proaches for Improved Recommendations

In this work, we have used classification techniques trained on the content profiles of

users as a content-based filtering approach. Our framework1 is based on the intuition

that the classification approaches can accurately predict an unknown rating, if they have

sufficient evidence for doing so. We use the classification approach as the main predictor

in case we have sufficient evidence that the prediction made is correct and trigger the

Item-Based Collaborative Filtering (IBCF) approach otherwise. We provide a simple

generalised algorithm for combining the classification approach with the IBCF. We first

show how the Naive Bayes classification approach can be combined with the IBCF, and

then show how the SVM (or any other) classification approach can be combined with

the IBCF.

4.4.1 Combining the item-based CF and the Naive Bayes classifier

(SwitchRecNBCF)

The basic idea is to use the prediction computed by the Naive Bayes classifier if we

have sufficient confidence in the Naive Bayes’s prediction; otherwise, the prediction

computed by the item-based CF is used. We propose a simple approach for determining

the confidence in the Naive Bayes’s prediction.

Let řnbi,u, řcfi,u, and řfinali,u represent the predictions generated by the Naive Bayes classifier,

item-based CF, and the prediction we are confident will be accurate. Let Pr(Cj) be

the posterior probability of class j computed by the Naive Bayes classifier, L be a list

containing the posterior probabilities of each class, and diff(i, j) be the absolute difference

between the posterior probabilities of class i and j, i.e. diff(i, j) = |L(i) − L(j)| =

|Pr(Ci)−Pr(Cj)| where i 6= j. The proposed hybrid approach is outlined in Algorithm 1.

Steps 2 to 5 represent the case, where the IBCF fails to make a prediction or where very

few users have rated the target item. This can happen under the new item cold-start

1Appendix A gives details of packages and libraries used for the implementation.

Chapter 4 Switching Hybrid Recommender Systems 53

Algorithm 1 SwitchRecNBCF ; Combines the IBCF and the NB classifier

Input: řnbi,u, NB’s prediction; řcfi,u, IBCF’s prediction; L, a list containing posterior
probabilities of each class; |Ui|, the number of users who have rated the target item

Output: řfinali,u , Final prediction

1: procedure SwitchRec(řcfi,u, řnbi,u, L, |Ui|)
2: if (řcfi,u = ∅) OR |Ui| < ν then

3: řfinali,u ← řnbi,u
4: return řfinali,u

5: end if
6: Sort the list L in ascending order, so that L(1) contains the lowest value and
L(z) contains the highest value.

7: if (L(z) 6= L(z − 1)) then
8: if diff(z, z − 1) > δ then

9: řfinali,u ← řnbi,u
10: return řfinali,u

11: else
12: if (|řnbi,u − řcfi,u| < λ) then

13: řfinali,u ← řnbi,u
14: return řfinali,u

15: end if
16: end if
17: else (i.e. L(z) = L(z − 1))
18: for t← z − 1, 1 do
19: if (L(z) = L(t)) then

20: if (|řcfi,u − t| < λ) then

21: řfinali,u ← t

22: return řfinali,u

23: end if
24: else
25: Break for
26: end if
27: end for
28: end if
29: řfinali,u ← řcfi,u
30: return řfinali,u

31: end procedure

54 Chapter 4 Switching Hybrid Recommender Systems

scenario. As the prediction quality of the IBCF depends heavily on the available data,

it would suffer under this scenario. In this case, we use the prediction computed by

the Naive Bayes classifier. Steps 7 to 16 determine the confidence in the Naive Bayes’s

prediction. The confidence in the Naive Bayes’s prediction is high when the posterior

probability of the predicted class is sufficiently larger than the others. If diff(z, z− 1) is

sufficiently large, then we can assume that the actual value of an unknown rating has

been predicted. The parameter δ represents this difference and can be found empirically

over the validation set. The parameter λ tells us if the difference between the predictions

made by the individual recommender systems is small; then again we are confident that

the Naive Bayes is able to predict a rating correctly. This is a kind of heuristic learned

from the prediction behaviour of the IBCF and the Naive Bayes. The IBCF gives

predictions in a floating point scale, and the Naive Bayes gives predictions in an integer

point scale. The IBCF recommender systems typically give accurate recommendation,

but mostly they do not predict actual value; for example, if the actual value of an

unknown rating is 4, then the IBCF’s prediction might be 3.9 (or 4.1, or some other

value). On the other hand, the Naive Bayes can predict the actual value; for example,

in the aforementioned case, it might result in 4. However, if the Naive Bayes is not very

confident, then it might result in a prediction that is not close to the actual one, e.g. 3,

2, etc. We take the difference between the individual recommender’s predictions, and if

it is less than a threshold (λ), then we use the Naive Bayes’s prediction, assuming that it

has been predicted correctly. Steps 17 to 28 represent the case, where we have tie cases

in the posterior probabilities of some classes. In this scenario, we take the difference of

each tie class with the IBCF’s prediction and use that class as the final prediction, if the

difference is less than λ. Steps 29 to 30 describe the case where we do not have sufficient

trust in the Naive Bayes’s prediction, so we use the prediction made by the IBCF.

4.4.2 Combining the item-Based CF and the SVM classifier (SwitchRecSVMCF)

Algorithm 1 can be used to combine the item-based CF and the SVM classifier. The

methodology is the same, except that Pr(Cj) represents the SVM’s estimated probability

for the class j. Similarly any other classifier can be combined with the collaborative

filtering.

4.5 Results and Discussion

4.5.1 Learning the optimal system parameters

The purpose of these experiments is to determine which of the parameters affects the

prediction quality of the proposed algorithms, and to determine their optimal values.

Chapter 4 Switching Hybrid Recommender Systems 55

0 5 10 15 20 25 30 35 40 45 50
0.74

0.75

0.76

0.77

0.78

Neighbourhood Size (SML DataSet)

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

0 5 10 15 20 25 30 35 40 45 50
1.4

1.42

1.44

1.46

1.48

1.5

1.52

Neighbourhood Size (FT1 Dataset)

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

Figure 4.1: Determining the optimal value of neighbourhood size (l) for the
MovieLens (SML) and FilmTrust (FT1) datasets over the validation set.

We describe the tuning of the important parameters. The tuning of other parameters is

given in Appendix A.

4.5.1.1 Finding the optimal number of neighbours (l) in the item-based CF

To measure the optimal number of neighbours, we changed the neighbourhood size from

5 to 50 with a difference of 5, and observed the corresponding MAE. Figure 4.1 shows

that the MAE decreases in general with an increase in the neighbourhood size. This is

in contrast with the conventional item-based CF proposed in Sarwar et al. (2001), where

the MAE is minimum for a small neighbourhood size (< 10 for the SML dataset) and

then starts increasing as the neighbourhood size increases. The reason is that Sarwar

et al. (2001) did not use any significance weighting scheme and used the weighted sum

prediction generation formula, whereas we are using a significance weighting scheme and

adjusted weighted sum prediction generation formula2. Figure 4.1 shows that the MAE

keeps on decreasing with the increase in the number of neighbours, reaches its minimum

for l = 25 for the SML dataset and l = 15 for the FT1 dataset, and then either starts

increasing (although the increment is very small) or stays constant. For the subsequent

experiments, we choose l = 25 for the SML and l = 15 for the FT1 dataset as the

optimal neighbourhood size.

56 Chapter 4 Switching Hybrid Recommender Systems

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05

M
e

a
n

 A
b

so
lu

te
 E

ro
rr

 (
M

A
E

)

Value of Parameter C (Log Scale)

Figure 4.2: Determining the optimal value of parameter C for the SVM (SML
dataset). X-axis shows the value of C in log scale. The corresponding MAE is
shown on y-axis. The MAE decreases with an increase in the value of C, and
becomes stable after C = 2−9 (1× 10−3).

4.5.1.2 Finding the optimal value of C for the SVM classifier

The cost parameter, C, controls the trade-off between permitting training errors and

forcing rigid margins. It allows some misclassification by creating soft margins. A more

accurate model can be created by increasing the value of C that increases the cost of

misclassification; however, the resulting model may over-fit. Similarly, a small value of

C may under-fit the model. Figure 4.2 shows how the MAE varies with a change in

the value of C. We changed the value of C from 2−15 to 215 by increasing the power

by 2. Figure 4.2 shows that the MAE is large for the small value of C, which may be

due to under-fitting. The MAE decreases with the increase in the value of C, reaches

its minimum for C = 2−9, and then becomes stable for C > 2−9 (between 1 × 10−3

and 1 × 10+5 in log scale). We choose C = 2 for the MovieLens dataset to avoid any

over-fitting and under-fitting of the model. The FilmTrust dataset shows similar results

(not shown); hence we choose C = 2 as an optimal value for the FilmTrust dataset.

4.5.1.3 Finding the optimal values of δ and λ

For the MovieLens dataset, we performed a series of experiments by changing the value

of δ from 0.02 to 0.4 with a difference of 0.02. For each experiment, we changed the

value of λ from 0.05 to 1.0 with a difference of 0.05, keeping the δ parameter fixed,

and observed the corresponding MAE. The grid coordinates giving the lowest MAE are

recorded to be the optimal parameters. Figure 4.3(a) shows how the MAE changes with

2The details are not in the scope of this work; please refer to Ghazanfar and Prügel-Bennett (2010d).

Chapter 4 Switching Hybrid Recommender Systems 57

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Parameter δParameter λ

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

(a) SwitchRecNB
CF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Parameter δParameter λ

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

(b) SwitchRecSV M
CF

Figure 4.3: Finding the optimal values of δ and λ in the SwitchRecNBCF and
SwitchRecSVMCF , through grid search (SML dataset).

these parameters in the case of SwitchRecNBCF algorithm. Figure 4.3(a) shows that the

MAE decreases with an increase in the value of δ, reaches its peak at δ = 0.34, and after

that it either increases or stays constant. We note (keeping δ = 0.34) that the MAE is

minimum between λ = 0.70 to λ = 0.80. The grid coordinates {δ, λ}, which gave the

lowest MAE, are found to be {0.34, 0.70}. Similarly, we tuned these parameters for the

FilmTrust dataset, which are found to be {0.20, 0.90}.

Figure 4.3(b) shows how the MAE varies with these parameters in the case of SwitchRecSVMCF

algorithm. Figure 4.3(b) shows that the MAE decreases with an increase in the value of

δ, reaches its peak at δ = 0.36, and after that it either increases or stays constant. We

note (keeping δ = 0.36) that the MAE is minimum at λ = 0.70. Considering the results,

we choose the optimal value of {δ, λ} to be {0.36,0.70}. For the FilmTrust dataset, the

optimal values of parameters are found to be {0.20,0.85}.

4.5.2 Performance evaluation with other algorithms

We compared our algorithm with seven different algorithms: user-based CF using Pear-

son correlation with default voting (UBCFDV) proposed in Breese et al. (1998), item-

based CF (IBCF) using Adjusted cosine similarity proposed in Sarwar et al. (2001), a

Naive Bayes classification approach (NB) using item content information, a SVM classifi-

cation approach using item content information, two naive hybrid approaches (NBIBCF,

SVMIBCF) by taking the average of the predictions generated by the NB and the item-

based CF, and the SVM and the item-based CF, and the content-boosted algorithm

(cBoosted) proposed in Melville et al. (2002).

58 Chapter 4 Switching Hybrid Recommender Systems

We are more interested to compare our algorithm SwitchRecNBCF with a well-known

cBoosted algorithm because both of them use the collaborative filtering and Naive Bayes

classifier, although in different ways. Furthermore, we tuned all algorithms for the best

parameters.

C
h
a
p
ter

4
S
w
itch

in
g
H
y
b
rid

R
ecom

m
en

d
er

S
y
stem

s
59

Table 4.1: A comparison of the proposed algorithms with others in terms of accuracy metrics and coverage. IBCFSW represents the
item-based CF (IBCF) with significance weights applied over the rating similarities. The best results are shown in bold font.

Algorithm On-line Cost
Best MAE ROC-Sensitivity Coverage

SML FT1 SML FT1 SML FT1

UBCFDV O(M2N) +O(NM) 0.746± 0.001 1.462± 0.008 0.714± 0.004 0.502± 0.008 100 99.981± 0.006
IBCF O(N2) 0.764± 0.001 1.449± 0.007 0.654± 0.003 0.534± 0.007 99.867± 0.011 95.262± 0.008
IBCFSW O(N2) 0.744± 0.001 1.433± 0.007 0.753± 0.002 0.540± 0.006 99.867± 0.011 95.262± 0.008
SwitchRecNBCF O(N2) +O(Nnw) 0.704± 0.002 1.398± 0.008 0.785± 0.002 0.544± 0.007 100 99.990± 0.007
SwitchRecSVMCF O(N2) +O(Nnsv) 0.701± 0.002 1.392± 0.006 0.793± 0.002 0.548± 0.007 100 99.990± 0.007
NB O(Nnw) 0.815± 0.003 1.471± 0.009 0.685± 0.006 0.512± 0.011 100 99.990± 0.007
SVM O(Nnsv) 0.779± 0.003 1.463± 0.009 0.687± 0.004 0.513± 0.010 100 99.990± 0.007
NBIBCF O(N2) +O(Nnw) 0.768± 0.003 1.458± 0.008 0.717± 0.004 0.526± 0.008 100 99.990± 0.007
SVMIBCF O(N2) +O(Nnsv) 0.759± 0.002 1.445± 0.008 0.723± 0.004 0.534± 0.008 100 99.990± 0.007
cBoosted O(M2N) +O(NM)

+O(Nnw) 0.711± 0.002 1.412± 0.006 0.748± 0.003 0.539± 0.006 100 99.994± 0.006

Table 4.2: Performance evaluation under new item cold-start problem. We observe that the proposed algorithms produce more accurate
results than the conventional ones. The SwitchRecSVMCF algorithm produces the best results shown in bold font.

Algo. MAE2 MAE5 MAE10 MAE15 MAE20

UBCFDV 0.925± 0.020 0.887± 0.011 0.860± 0.006 0.844± 0.005 0.835± 0.005
IBCFSW 0.884± 0.022 0.877± 0.007 0.875± 0.007 0.873± 0.009 0.868± 0.005
cBoosted 0.831± 0.018 0.819± 0.009 0.816± 0.006 0.812± 0.006 0.804± 0.004
SwitchRecNBCF 0.806± 0.016 0.806± 0.013 0.808± 0.009 0.806± 0.005 0.805± 0.004
SwitchRecSVMCF 0.777± 0.013 0.777± 0.011 0.776± 0.007 0.775± 0.004 0.775± 0.004

60 Chapter 4 Switching Hybrid Recommender Systems

4.5.2.1 Performance evaluation in terms of MAE, ROC-Sensitivity, and cov-

erage

The MAE, ROC-sensitivity, and coverage of different algorithms are shown in Table 4.1.

Table 4.1 shows that the proposed algorithms outperform others significantly in terms of

the MAE and ROC-sensitivity; whereas they give comparable results to others in terms

of coverage metric. The percentage decrease in MAE, in the case of SwitchRecNBCF over

the NBIBCF, is found to be 8.33% and 4.11% for the SML and FT1 dataset respectively.

The percentage decrease in MAE, in the case of SwitchRecSVMCF over the SVMIBCF is

found to be 7.64% and 3.67% for the SML and FT1 datasets respectively.

Table 4.1 shows that the proposed algorithms outperform the cBoosted algorithm in

terms of MAE and ROC-sensitivity; however the coverage of the cBoosted algorithm is

better than the proposed ones for the FT1 dataset. The percentage improvement over

the cBoosted algorithm in terms of MAE is found to be (1) 0.98% and 1.0% for the SML

and FT1 datasets respectively in the case of SwitchRecNBCF , and (2) 1.41% and 1.42%

for the SML and FT1 datasets respectively in the case of SwitchRecSVMCF .

It is worth noting that for the FilmTrust dataset, the ROC-sensitivity is lower, for all

algorithms in general, as compared to the MovieLens dataset. We believe that this is

due to the rating distribution—in FilmTrust, the majority of the users have rated the

popular set of movies and their rating tends to match the average rating of the movies.

Furthermore, the coverage of the algorithms is much lower in the case of the FilmTrust

dataset, which is due to the reason that it is very sparse (98.8%).

4.5.2.2 Performance evaluation under cold-start scenarios

We checked the performance of different algorithms under the new item cold-start sce-

nario. When an item is rated by only a few users, then item- and user-based CF will not

give good results. Our proposed scheme works well in the new item cold-start scenario,

as it does not depend solely on the number of users who have rated the target item for

finding the similarity.

For testing our algorithm in this scenario, we selected 100 random items. While making

prediction for the target item, the number of users in the training set who have rated

the target item were kept 2, 5, 10, 15, and 20. The corresponding MAE, represented by

MAE2, MAE5, MAE10, MAE15, and MAE20, is shown in Table 4.2. Table 4.2 shows

that the CF approaches give inaccurate predictions. The poor performance of user-

based CF is due to the reason that we have less neighbours against an active user, hence

performance degrades. The reason in the case of item-based CF is that the similarity

computed between two items is not reliable. As, while finding similarity, we isolate all

users who have rated both target item and the item we are finding similarity with. In

Chapter 4 Switching Hybrid Recommender Systems 61

this case, we have very few users who have rated both items; as a result, similarity

found by adjusted cosine measure will be misleading. Both cBoosted and the proposed

approaches give good results as they make effective use of a user’s content profile that

can be used by a classifier for making predictions.

4.5.2.3 Performance evaluation in terms of cost

Table 4.1 shows the on-line cost3 of different algorithms used in this work. Here, N , M ,

nw, and nsv represent the number of items, number of users, number of features/words in

the dictionary (used in a classifier), and the number of support vectors in the case of the

SVM classifier. The training computation complexity of the SVM and NB classifiers for

one user are O(N3) and O(Nnw) respectively. We train M classifiers, so total training

computation complexity becomes O(MN3) for the SVM and O(MNnw) for the NB.

The classifying computation complexity for one sample (rating) is O(nsv) for the SVM

and O(nw) for the NB. If we classify N items then it becomes O(Nnsv) for the SVM

and O(Nnw) for the NB.

Table 4.1 shows that the proposed algorithms are scalable and practical as their on-line

cost is less than or equal to the cost of other algorithms. We are using the item-based CF,

whose on-line cost is less than that of the user-based CF used in Melville et al. (2002)4.

Even if we consider using the Naive Bayes classifier to fill the user-item rating matrix

and then apply the item-based CF over this filled matrix, our cost will be less than that.

The reason is, in the filled matrix case, one has to go through all the filled rows of the

matrix for finding the similar items. For a large e-commerce system like Amazon, where

we already have millions of neighbours against an active user/item, filling the matrix and

then going through all the users/items to find the similar users/items is not practical

due to limited memory and other constraints on the execution time of the recommender

system.

4.5.3 Eliminating over-specialisation problem

Content-based filtering recommender systems recommend items that are the most simi-

lar to a user’s profile. In this way, a user cannot find recommendations that are different

from the ones it has already rated or seen. The proposed algorithms can overcome the

over-specialisation problem caused by the pure content-based filtering recommender sys-

tems. The reason is that they do not totally depend on classification algorithms trained

on the content information. By switching between the machine learning classifiers and

3It is the cost for generating predictions for N items. We assume that we compute item similarities
and train classifiers in off-line fashion.

4It is because we can build expensive and less volatile item similarity model in off-line fashion. Hence
on-line cost becomes O(N2) in worst case, and in practice it is O(lN), where l is the number of top l
most similar items against a target item (l < N).

62 Chapter 4 Switching Hybrid Recommender Systems

the CF approach, our algorithms can balance the accuracy and diversity (Herlocker

et al., 2004) of recommendations. If we construct a list of top-N recommendations for

an active user, then our algorithms would introduce some sort of randomness in the rec-

ommendation list, resulting in a range of alternatives to be recommended rather than a

homogeneous set of items.

4.6 Variant of the Proposed Algorithms

We investigated whether we could improve the performance of proposed algorithms by

reducing the dimensions of the data matrix. our intuition being that the resulting system

would become scalable without sacrificing any performance. We applied Singular Value

Decomposition (SVD) over the user-item rating matrix and then used the item-based

CF to generate recommendations (refer to the next chapter for the steps involved in

applying the item-based CF over the reduced matrix).

The results of the item-based CF over the reduced dataset were rather surprising. For

the FilmTrust dataset, the performance of the item-based CF applied over the reduced

dataset degraded. It might be due to the reason that the FilmTrust dataset is very

sparse. In the next chapter, we will analyse how sparsity affects the performance of the

SVD-based recommender systems.

4.7 Conclusion and Future Work

In this chapter, we propose switching hybrid recommendation algorithms by combining

the item-based Collaborative Filtering (CF) with classification approaches trained on the

content profiles of users. We empirically show that our recommendation algorithms give

more accurate results than the conventional hybrid approaches. They also outperform

(or give comparable results to) the well-known content-boosted algorithm (Melville et al.,

2002). Furthermore, they maintain robust performance under the cold-start scenarios.

As a future work, we would like to use over sampling and under sampling (Witten and

Frank, 1999) schemes in classifiers to overcome the imbalanced dataset problem. More-

over, feature selection algorithms such as singular value decomposition can be applied

to remove the useless features, which might increase the performance of the classifiers.

In this work, we have used a simple approach by taking the difference between the

posterior probabilities as the measure of uncertainty in the prediction computed by a

classifier. Other techniques to measure the uncertainty can be used; for example, entropy

measure, the mean square difference, etc. Using these techniques might further increase

the performance of the proposed algorithms. Furthermore, an aggregate confidence

measure might give better results than the single confidence measure.

Chapter 4 Switching Hybrid Recommender Systems 63

Finally, individual predictions computed by the user- and item-based CF can be com-

bined in switching hybrid way. We hope that combining these two approaches will result

in an increase in accuracy, as both of them focus on different kinds of relationship. Com-

bining these approaches with classification ones can further increase the performance of

the proposed algorithms.

Chapter 5

Exploiting Imputation in Singular

Value Decomposition-Based

Recommender Systems

5.1 Introduction

Singular Value Decomposition (SVD)-based approaches have been proposed to solve the

recommendation problem (Sarwar et al., 2000b, 2002a; Barragáns-Mart́ınez et al., 2010);

however, approximating the missing values in the user-item rating matrix by the item

average prior to applying SVD, which has been heavily used in the literature, is not

a reasonable approach. It can lead to poor quality recommendations especially under

cold-start and sparse scenarios. We proposed various missing value imputation methods,

which exhibited much superior accuracy and performance compared to the traditional

missing value imputation method - item average.

We performed extensive experiments over the SML (MovieLens 100K ratings dataset),

ML (MovieLens 1M ratings dataset), FT1 (FilmTrust original dataset), and FT5 (FilmTrust

filtered dataset) datasets under different conditions. Our empirical study shows that the

results are dataset-dependent; however, rather than using the traditional approach to

approximate the missing values or merely ignoring the missing values, robust and ad-

vanced approaches can provide considerable performance benefits in the (1) SVD-based

recommendations, (2) SVD applied in the Expectation Maximisation (EM) fashion, (3)

SVD-based CF (CF applied over the dataset reduced by employing SVD), and (4) cold-

start, long tail, and sparse scenarios.

The rest of the chapter has been organised as follows. Section 5.2 discusses the related

work in detail. Section 5.3 sheds light on the background concepts related to SVD.

Section 5.4 outlines SVD algorithms used for recommendations. Section 5.5 describes

65

66 Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems

the proposed approaches used to approximate the missing values in the sparse user-item

rating matrix. Section 5.6 presents results comparing the performance of the proposed

approaches with the traditional one. Section 5.7 discusses when and how much impu-

tation is sufficient to achieve good performance. Section 5.8 gives a discussion of the

work, and Section 5.9 concludes the work.

5.2 Related Work

The Singular Value Decomposition (SVD)-based approach for solving the recommenda-

tion problem was first introduced by Billsus and Pazzani (1998). Sarwar et al. (2000b)

presented a detailed analysis of the behaviour of SVD-based recommender systems.

Various algorithms combining the SVD-based approach with the item-based CF have

been advocated (Vozalis and Margaritis, 2005, 2006a; Martinez et al., 2009; Barragáns-

Mart́ınez et al., 2010); for example, Vozalis and Margaritis (2006a) combined SVD with

the item-based CF and claimed that their approach outperformed the conventional item-

based CF. An example of using the SVD-based approach with demographic data has

been presented in Vozalis and Margaritis (2007), where the authors applied SVD over

the user-item rating matrix and demographic data of users and items, and claimed that

a system consisting of a linear combination of SVD-based demographic correlation and

SVD-based (item-based) CF, increases the accuracy of the recommender system. Sar-

war et al. (2002a) suggested an incremental SVD model building approach and claimed

that it is more scalable than the conventional SVD-based recommender systems, while

producing recommendations with same accuracy. All of the aforementioned approaches

used the item average of the data matrix to approximate the missing values, which may

destroy the covariance structure of the data, resulting in inaccurate recommendations.

Another way of applying SVD is presented in Goldberg et al. (2001), where the authors

applied Principal Component Analysis (PCA)1 over a so-called ‘gauge-set’ of items—set

of items rated by every user in the system. Although it may reduce sparsity, getting this

dataset is hard in real-life scenarios, and also it may lead to potential loss of information

as we are ignoring ratings not in the gauge-set. Sometimes, case deletion strategy (Kim

and Yum, 2005) is used for dealing with the missing values where all variables with

missing values are omitted in the data matrix resulting in loss of information, which is

not desirable. Some other well-known approaches to approximate the missing values are

filling by zero and scaling the known entries as suggested by Azar et al. (2001).

The missing values have been handled by the Expectation Maximisation (EM) algorithm

(Do and Batzoglou, 2008) by Canny (2002), Srebro and Jaakkola (2003), Zhang et al.

(2005), Kim and Yum (2005), Zhang et al. (2006) and Kurucz et al. (2007). In this

1PCA is a closely related concept to SVD, which reduces the dimensionality by projecting high
dimensional data along a smaller number of orthogonal dimensions.

Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems 67

approach, the predictions generated by the current model are replaced by the previous

one and the procedure is repeated until some stopping criteria are reached; for example,

the error between two successive models becomes less than a threshold. The problem

with this approach is that the final error and the convergence is highly dependent on

the method used to approximate the initial values. Srebro and Jaakkola (2003) showed

the convergence behaviour of the EM algorithm by approximating the missing entries by

zeros (Azar et al., 2001) and using the gauge-set (Goldberg et al., 2001). Furthermore,

they proposed an approach by starting with a large rank approximation and gradually

reducing the rank of SVD in each iteration of EM.

The most similar work with ours is that undertaken by Kurucz et al. (2007), where the

authors used an item-item imputation technique in addition to the user-average over the

Netflix dataset. Our work, however, differs from theirs in a number of areas, as follows:

(1) they only used an item-item imputation while we are using 17 different approaches

to analyse the behaviour of SVD and EM algorithms; (2) they only used one dataset;

however, we are using three different datasets and furthermore, we find out that the

results are highly dataset-dependent; (3) they claimed that the item-item imputation

scheme is outperformed by the average, which is in contrast with our findings; and (4) we

are applying CF over the reduced dataset; however, they did not apply it. In summary,

their focus was on the efficient implementation of Lanczos, power iteration, and other

algorithms rather than imputation; however, we are analysing the behaviour of the SVD-

based algorithms under different recommender system conditions—cold-start, long tail,

and sparsity problems.

Various matrix factorisation techniques, such as Srebro et al. (2005), Bell et al. (2007),

Wu (2007), Takács et al. (2008), Salakhutdinov and Mnih (2008) and Takács et al. (2009)

have been proposed to solve the recommendation problem. In this work, we have focused

on the SVD-based recommender systems (Sarwar et al., 2000b; Vozalis and Margaritis,

2007; Kurucz et al., 2007; Martinez et al., 2009; Barragáns-Mart́ınez et al., 2010) rather

than matrix factorisation techniques.

The imputation has been used in collaborative filtering domain. The idea of using

imputation in the collaborative filtering domain was proposed by Breese et al. (1998),

where the authors used some default votes to decrease the sparsity of the user-item

rating matrix. The author claimed that using the default votes in the user-based CF

outperforms the conventional user-based CF in terms of accuracy. This idea has further

been used by many researchers in various ways to approximate the missing values in the

user-item rating matrix; for example, Melville et al. (2002) used a Naive Bayes classifier

trained on the content profiles of users, Good et al. (1999) and Park et al. (2006) used

information filtering agents or “Filterbot”, Ma et al. (2007) used a linear combination of

user- and item-based CF, Zhang and Pu (2007) used a recursive CF algorithm, and Su

et al. (2008b,a) used several methods. The problem with these approaches is that they

are not very scalable (refer to previous chapter). Our approach is different from these

68 Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems

because we are doing imputation in the SVD domain and CF is applied over the dataset

reduced by employing SVD. Furthermore, imputation has been used in other domains;

for example, for Epistatic miniarray profiles (Ryan et al., 2010).

5.3 Background: Singular Value Decomposition

Singular Value Decomposition (SVD) (Berry et al., 1995; Scott C. et al., 1990) is a matrix

factorisation technique that takes an m × n matrix A, with rank r and decomposes it

into three component matrices as follows:

SVD(A) = U × S × V T. (5.1)

U and V (V T is for the transpose of V) are orthogonal matrices with dimensions m×m,

and n × n respectively, and S, called the singular matrix, is a m × n diagonal matrix

consisting of non-negative real numbers. These matrices reflect the decomposition of

the original matrix into linearly independent vectors (factor values). The set of initial

r diagonal values of S (s1, s2, · · · , sr) are all positive with s1 ≥ s2 ≥ s3, · · · ,≥ sr. The

first r columns of U are eigenvectors of AAT and represent the left singular vectors of

A. Similarly, the first r columns of V are eigenvectors of ATA and represent the right

singular vectors of A. The best low-rank approximation of matrix A is obtained by

retaining the first k diagonal values of S, by removing r − k columns from U , and by

removing r − k rows from V , which can be represented as follows:

Ak = Uk × Sk × V T
k . (5.2)

By keeping only the k largest singular values of S, the effective dimensions of the SVD

matrices U , S, and V become m × k, k × k, and k × n respectively. The best-k rank

approximation of matrix A with respect to the Frobenius norm can be represented by:

||A−Ak||2F =
∑
i,u

(aiu −
∑
k

Uuk × Sk × V T
ki) (5.3)

SVD can be applied over the user-item rating matrix, of dimensions M×N , generated by

a recommender system. It assumes that there is some latent structure—overall structure

that relates to all or most items (or users)—in the matrix that is partially obscured by

variability in ratings assigned to items (or assigned by users). This latent structure can

be captured by transforming the matrix in low dimensions. After transformation, users

and items can be represented by a vector in the k-dimensional space. The matrix product

Uk.
√
Sk

T
represents M users and

√
Sk.V

T
k represents N items in the k-dimensional space.

For example, in a movie domain, each element of
√
Sk.V

T
k (i) (1 ≤ i ≤ N) can be a feature

of movie i, such as whether it is a horror movie, whether it is rated PG-13 or not, etc.

Similarly, the corresponding element of Uk.
√
Sk

T
(u) (1 ≤ u ≤ M) shows whether the

Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems 69

user likes these features in movies. A rating assigned by a pseudo-users u on item i is

denoted by r′i,u. The prediction ři,u for the uth user on the ith item can be computed

by the following equation:

ři,u = Uk.
√
Sk

T

(u).
√
Sk.Vk

T(i). (5.4)

If we normalise the user-item rating matrix by subtracting the respective user average

(ri) from a rating, then a prediction is given by the equation:

ři,u = ri + Uk.
√
Sk

T

(u).
√
Sk.Vk

T(i). (5.5)

5.4 SVD-Based Recommendations

5.4.1 Using imputation in SVD

We used various imputation methods, F (discussed in the next section), for approxi-

mating the missing values in the user-item rating matrix R and then applied SVD for

reducing the dimensions of the matrix. The pseudo code to generate improved recom-

mendations is given in Algorithm 22. In step 7, which serves as a pre-processing step, we

fill in the missing values in the initial sparse user-item rating matrix by an imputation

source. In step 8, we normalise the filled rating matrix by subtracting the respective

user average from the filled rating matrix. In step 9, we reduce the dimensions of the

filled normalised rating matrix by applying SVD. In the ImputedError procedure,

from steps 12 to 26, we find the optimal number of dimensions (k) by changing the

dimension from 1 to 50 and observing the corresponding MAE.

5.4.2 SVD-based collaborative filtering

We can apply the user- and item-based CF over the matrix components generated by

the Impute procedure. Algorithm 3 outlines the steps required to apply CF over the

reduced data matrix. The similarity between two items can be found by Adjusted cosine

or cosine measure (Adomavicius and Tuzhilin, 2005). We used Adjusted cosine similarity

because it gave us more accurate results. The similarity between two items ix and iy

can be found by measuring the cosine of angle computed over k users as follows:

sim(ix, iy) =

k∑
u=1

r′ix,u.r
′
iy ,u√√√√ k∑

u=1

r′2ix,u

k∑
u=1

r′
2
iy ,u

, (5.6)

2Appendix B gives details of packages and libraries used for the implementation.

70 Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems

Algorithm 2 : ImpSvd; Impute the matrix, compute SVD, and generate recommen-
dations
Input: R, the user-item rating matrix; f , an imputation method
Output: error∗, the minimum MAE; k∗, the optimal number of dimensions for SVD

1: procedure SVDRecommendation(R, f)
2: (U, S, V)=Impute(R, f)
3: (error∗, k∗)=ImputedError(U, S, V)
4: return (error∗, k∗)
5: end procedure

6: procedure Impute(R, f)
7: Fill in the missing values in the user-item rating matrix R by an imputation

method f . Call the resulting dense matrix Rf .
8: Normalise the dense matrix (Rf) and call it RN .
9: Apply SVD over the normalised matrix RN and find three components of the

matrix as shown in equation 5.1. Call these matrices U , S, and V .
10: return (U, S, V)
11: end procedure

12: procedure ImputedError(U, S, V)
13: error∗ ← 10
14: k∗ ← 1
15: for k ← 1, 50 do
16: (Uk, Sk, Vk)=DimReduce(U, S, V, k)
17: Compute Uk.

√
Sk

T
and
√
Sk.Vk

T

18: Make predictions using equation 5.5
19: Compute MAE for all predictions, call this errornew
20: if errornew < error∗ then
21: error∗ ← errornew
22: k∗ ← k
23: end if
24: end for
25: return (error∗, k∗)
26: end procedure

27: procedure DimReduce(U, S, V, k)
Perform dimensionality reduction step:

28: Find Sk by setting Si,i = 0 for i > k
29: Find Uk by removing r − k columns from U
30: Find Vk by removing r − k rows from V
31: return (Uk, Sk, Vk)
32: end procedure

Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems 71

Algorithm 3 : ImpSvdCF; Apply SVD over the reduced dataset
Input: R, the user-item rating matrix; f , an imputation method; flag, a variable to
decide between the user- and item-based CF
Output: error∗, the minimum MAE; k∗ and neigh∗, the optimal number of dimensions
and neighbours for CF

1: procedure CFRecommendation(R, f , flag)
2: (U, S, V)=Impute(R,f)
3: Start grid search over dimensions, k and neighbourhood size, neigh to find the

optimal number of dimensions, k∗ and neighbourhood size, neigh∗

4: (Uk, Sk, Vk)=DimReduce(U, S, V, k)
5: if flag = 1 then
6: řibi,u = ImpSvdibCF (Uk, Sk, Vk, neigh)
7: else
8: řubi,u = ImpSvdubCF (Uk, Sk, Vk, neigh)
9: end if

10: Store the minimum MAE, error∗; the optimal number of dimensions, k∗; and
the optimal number of neighbours, neigh∗

11: End grid search
12: return (error∗, k∗, neigh∗)
13: end procedure

14: procedure ImpSvdibCF (Uk, Vk, Sk, l)
15: Find the matrix product

√
Sk.Vk

T

16: Find the similarity between two items using equation 5.6
17: Isolate l most similar items to the target item (neighbours of the target item)

found using equation 5.6
18: Make a prediction, řibi,u, using equation 5.8

19: return řibi,u
20: end procedure

21: procedure ImpSvdubCF (Uk, Vk, Sk, l)
22: Find the matrix product Uk.

√
Sk

T

23: Find the similarity between two users using equation 5.7
24: Isolate l most similar users to the active user (neighbours of the active user)

found using equation 5.7
25: Make a prediction, řubi,u, using equation 5.9

26: return řubi,u
27: end procedure

72 Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems

where r′ix,u and r′iy ,u are the ratings assigned by user u on items ix and iy respectively.

The ratings shown by r′ are obtained from the matrix product
√
Sk

T
.Vk, which represents

the rating given by k (pseudo) users on N items3. We used the significance weighting

schemes as proposed by Ghazanfar and Prügel-Bennett (2010d) while measuring the

similarity between users (or items).

The similarity between two users can be found by the Pearson correlation or the cosine of

angle (Herlocker et al., 2002). We used the cosine of angle, which gave us more accurate

results than the Pearson correlation. The similarity between two users can be found by

the cosine of angle, computed over k items, as follows4:

sim(ua, ub) =

k∑
i=1

r′i,ua .r
′
i,ub√√√√ k∑

i=1

r′2i,ua

k∑
i=1

r′
2
i,ub

, (5.7)

where r′i,ua and r′i,ub are the ratings assigned on item i by users ua and ub respectively.

The ratings shown by r′ are obtained from the matrix product Uk
√
Sk

T
, which represents

the ratings given by M users on k (pseudo) items.

In the case of item-based CF, the prediction for an active user ua on target item it is

made by using the adjusted weighted sum formula as follows:

řit,ua = rua +

l∑
i=1

sim(i, it)× r′i,ua

l∑
i=1

|sim(i, it)|
, (5.8)

where l represents the l most similar items against a target item, found after applying

equation 5.6.

In the case of the user-based CF, the prediction for an active user ua on target item it

is made by using the adjusted weighted sum formula as follows:

řit,ua = rua +

l∑
u=1

sim(u, ua)× (r′it,u − r̄u)

l∑
i=u

|sim(u, ua)|
, (5.9)

where l represents the l most similar users against an active user, found after applying

equation 5.7.

3We do not need to subtract the respect user average while measuring the similarity as the matrix
has already been normalised prior to applying SVD.

4In this case, we do not normalise the user-item rating matrix prior to applying SVD.

Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems 73

Individual predictions made by the user- and item-based CF can be combined linearly.

We expect that combining these two approaches will result in an increase in the accuracy,

as both of them focus on different kinds of relationships. Let řubi,u and řibi,u represent the

prediction generated by the user- and item-based CF respectively. The final prediction

is a linear combination of these predictions as follows:

ři,u = α× řubi,u + β × řibi,u, (5.10)

where parameters α and β can be found over the validation set. We call this algorithm

ImpSvdhybridCF .

5.4.3 Applying SVD combined with EM algorithm

Algorithm 4 : ItrSvd; Apply SVD in EM fashion
Input: R, the user-item rating matrix; f , an imputation method; ϑ, threshold value to
terminate the EM algorithm
Output: t, the number of iterations in the EM algorithm; error∗, the MAE observed
after the EM algorithm converges

1: procedure IterativeRecommendation(R, f , ϑ)
2: t← 0
3: error(t) ← 0
4: repeat
5: (U, S, V) = Impute(R, f)
6: (Uk∗ ,Vk∗ ,Sk∗)=DimReduce(U, S, V, k∗) ## k∗ is the optimal number of di-

mensions learned through the validation set
7: Compute Uk∗

√
Sk∗

T
,
√
Sk∗Vk∗

T

8: Call the current SVD model Mk∗

9: Make predictions using equation 5.5
10: Compute the MAE for Mk∗ , call it errornew
11: t← t+ 1
12: error(t) ← errornew
13: f ←Mk∗

14: until |error(t) − error(t−1)| < ϑ
15: error∗ ← error(t)

16: return t, error∗

17: end procedure

The ItrSvd (Algorithm 4) uses the combination of SVD and Expectation Maximisation

(EM) (Do and Batzoglou, 2008) to estimate the missing values. As SVD calculations

require the filled matrix, missing values are replaced by an imputation method prior to

the k most effective eigenvalues being selected. In each iteration of the EM algorithm,

the missing values are replaced by the corresponding values in the previous estimated

model in the expectation step, i.e.

R
(t)
iu =

{
Riu if iu ∈ D ,
[
∑

k Uk × Sk × V T
k]

(t−1)
iu otherwise,

(5.11)

74 Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems

and in the maximisation step the aim is to find the model (M(t)) parameters that

minimises ∑
iu

(R
(t)
iu −Miu)2, (5.12)

where Miu = [
∑

k Uk × Sk × V T
k]iu. The algorithm keeps alternating between expec-

tation and maximisation (SVD computation) steps, until it converges (the change in

the MAE between two iterations becomes less than a pre-determined threshold (0.001)).

This algorithm usually gives more accurate results after convergence; however, its draw-

back is that it is highly sensitive to the noise in the dataset and it only considers the

global data correlation, which means that in a locally correlated dataset, it will lead to

higher estimation error.

5.5 Proposed Approaches to Approximate the Missing Val-

ues in the User-item Rating Matrix

The imputation approaches we have used are discussed below:

1- Filling by zero (Zeros): In this approach, we replace an unknown rating in the user-

item rating matrix by zero. This approach is very simple, and computationally

efficient, which makes it attractive. It does not take into account the underlying

correlation structure of the data affecting the data variance that is generally high.

Subsequently, if we have a large number of missing values, then this imputation

approach can result in inaccurate recommendations.

2- Filling by random number (Rand): In this approach, we replace an unknown rat-

ing in the user-item rating matrix by a random number generator function that

generates a random number in the range of 1 to 5 in the case of MovieLens and 1

to 10 in the case of FilmTrust dataset. Its advantages and disadvantages are the

same as those of Zeros.

3- Filling by normal distribution (NorU , NorI): In this approach, we replace an

unknown rating in the user-item rating matrix by normal distribution N (µ, σ2).

Here we use NorU to represent the case where the corresponding user average and

standard deviation of ratings are used as µ and σ respectively. Similarly, we use

NorI to represent the case where the corresponding item average and standard

deviation of ratings (given by other users) are used as µ and σ respectively.

4- Filling by uniform distribution (UniformDist): In this approach, we replace an un-

known rating in the user-item rating matrix by uniform distribution U(a, b), where

(a, b) = (1, 5) for the MovieLens dataset and (a, b) = (1, 10) for the FilmTrust

dataset.

Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems 75

5- Filling by items’ averages (ItemAvg): In this approach, we replace an unknown

rating in the user-item rating matrix by the average rating given by all the users

in the training set. If no one has rated that item it is replaced by zero. This

approach serves as a baseline for our experimental evaluation, as it has been the

preferred approach in the literature to resolve this problem.

6- Filling by users’ averages (UserAvg): In this approach, we replace an unknown

rating in the user-item rating matrix by the average rating given by the active user

in the training set. If the active user has rated no item, then it is replaced by zero.

This approach is very simple; however, it can distort the shape of the distribution

and can reduce the variance of the data. We use the term conventional methods

for the ItemAvg and UserAvg imputation methods.

7- Filling by the average of users’ and items’ averages (UserItemAvg): In this ap-

proach, we replace an unknown rating in the user-item rating matrix by averaging

the user’s average rating and the item’s average rating.

8- Filling by the user-based CF (UBCF): In this approach, we replace an unknown

rating in the user-item rating matrix by using the user-based CF5.

9- Filling by the item-based CF (IBCF): In this approach, we replace an unknown

rating in the user-item rating matrix by using the item-based CF.

10- Filling by the average of user- and item-based CF (UBIBCF): In this approach,

we replace an unknown rating in the user-item rating matrix by averaging the

predictions generated by the user- and item-based CF.

11- Filling by SVM classifier (SVMClass): In this approach, we replace an unknown

rating in the user-item rating matrix by using the results obtained by applying the

SVM classifier over the training set. The details of building and using the SVM

have been given in the previous chapter.

12- Filling by the Naive Bayes classifier (NBClass): In this approach, we replace an

unknown rating in the user-item rating matrix by using the results obtained by

applying the Naive Bayes classifier over the training set. The details of building

and using the Naive Bayes classifier for recommender system have been given in

the previous chapter.

13- Filling by the K Nearest Neighbours (KNN): In this approach, we replace an un-

known rating in the user-item rating matrix by using the results obtained by

applying the K Nearest Neighbours (KNN) using the Weka collection of machine

learning algorithms (Hall et al., 2009). KNN estimates missing values by searching

for the K nearest neighbours (users) and then taking the weighted average of these

5If the algorithm fails to predict a rating, then it is replaced by the average of users’ and items’
average ratings. The same is true for the item-based CF.

76 Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems

K neighbours’ ratings. In our work, the proposed scheme is similar to the KNN;

however, it differs in that the contribution of each neighbour is weighted by its

similarity to the active user. As the degree of contribution will be determined by

the choice of weighting system, hence we tested our scheme with two weighting

systems. In the first approach (shown by KNN in the results) we weight neigh-

bours by 1−dist, where dist is the distance between two neighbours. In the second

approach (shown by WKNN in the results), we weight neighbours according to the

following scheme employed by Ryan et al. (2010):

weight(i, j) =
(dist2

1− dist2 + ε

)2
,

where ε = 10−6 is added to avoid dividing by zero. This function is similar to

the Gaussian kernel function, which gives more weight to closer neighbours than

distant neighbours. WKNN has proven to give good results in Ryan et al. (2010).

14- Filling by the decision tree (C4.5): In this approach, we replace an unknown

rating in the user-item rating matrix by using the results obtained by applying the

decision tree (C4.5) using the Weka library. Although the process of constructing

the tree tries to minimise the error rate using the training data for evaluation, it

will probably not perform well while classifying the test data. The reason is that it

can easily be over-fitted to the training data (Witten and Frank, 1999). Therefore,

in order to generalise its performance, we pruned the tree by learning the pruning

confidence over the validation set.

15- Filling by the SVM regression (SVMReg): In this approach, we replace an unknown

rating in the user-item rating matrix by using the results obtained by applying the

SVM regression over the training set. We used the linear kernel and trained the

cost parameters. We used the nu-SVR version of the SVM regression using the

LibSVM (Chang and Lin, 2011) library.

16- Filling by the linear regression (LinearReg): In this approach, we replace an un-

known rating in the user-item rating matrix by using the results obtained by

applying the linear regression using the Weka library. This method tries to lower

the data variance of missing value estimates by exploiting the underlying localised

or global correlation structure of the data.

17- Filling by the logistic regression (LogisticReg): In this approach, we replace an

unknown rating in the user-item rating matrix by using the results obtained by

applying the logistic regression using the Weka library.

Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems 77

0 5 10 15 20 25 30 35 40 45 50
0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

Number of Dimensions (k)

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

ItemAvg
UserAvg
UBIBCF
UBCF
IBCF
SVMReg

Figure 5.1: Determining the optimal number of dimensions in the ImpSvd over
the validation set (SML dataset). The error bars, lying between 0.001 and 0.004
for all approaches, are not shown for reasons of clarity.

5.6 Results and Discussion

5.6.1 Learning the optimal system parameters

The purpose of these experiments is to determine which of the parameters affects the

prediction quality of the proposed algorithms, and to determine their optimal values.

We show the tuning of important parameters. The tuning of other parameters is given

in Appendix B.

5.6.1.1 Finding the optimal number of dimensions for SVD

Two factors are important while finding the optimal number of dimensions. First, the

number of dimensions must be small enough to make the resulting system scalable and

second it must be big enough to capture the important latent information between the

users or items. Figure 5.1 shows how the MAE changes as a function of the number of

dimensions (k) in the case of SML dataset. We show results only for the conventional

approaches and the ones giving us good results. We observe that, in the case of UBCF,

IBCF, and UBIBCF, the MAE keeps on decreasing, reaches its minimum between k =

{30 − 40}, and then starts increasing again. We choose k = 36 for these imputation

methods. We further observe that the MAE is minimum at k = 18, k = 8, and k = 10

in the case of SVMReg, UserAvg, and ItemAvg respectively. Similarly, we tuned all

approaches for the optimal dimensions for other datasets.

78 Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems

0
10

20
30

40
50

0

20

40

60

80

100
0.745

0.75

0.755

0.76

0.765

0.77

0.775

Number of Dimensions (k)Neighbourhood Size

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

(a) User-based CF

0
10

20
30

40
50

0

10

20

30

40

50
0.74

0.745

0.75

0.755

0.76

0.765

0.77

0.775

0.78

0.785

Number of Dimensions (k)Neighbourhood Size

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

(b) Item-based CF

Figure 5.2: Determining the optimal parameters in the SVD-based CF for the
SML dataset (with the IBUBCF imputation), through grid search over the val-
idation set. The “Number of Dimensions (k)” represents the number of dimen-
sions in the reduced space and “Neighbourhood Size” represents the number
of most similar items against the target item in the case of the item-based CF
and the number of most similar users against the active user in the case of the
user-based CF.

5.6.1.2 Finding the optimal number of neighbours and dimensions in CF

The neighbourhood size is dataset-dependent and furthermore, a change in the distri-

bution and sparsity of the dataset will change the neighbourhood size. We performed a

series of experiments by changing the dimension each time from 2 to 50 with a differ-

ence of 2. For each experiment (keeping the dimension parameter fixed), we changed the

neighbourhood size from 5 to 100 with a difference of 10 for the user-based CF and from

5 to 50 with a difference of 5 for the item-based CF, and observed the corresponding

MAE. Figure 5.2 shows how the MAE changes with these parameters in the cases of the

user- and item-based CF. Figure 5.2(a) shows that, in the case of the user-based CF, the

MAE is minimum at the neighbourhood size of 15. We observe in the dimension scale,

keeping the neighbourhood size fixed to 15, that the MAE decreases with an increase in

the rank of the lower dimension space, reaches its peak at k = 46, and after that it ei-

ther increases or stays constant. The grid coordinates {neighbours, dimensions}, which

gave the lowest MAE, are found to be {15, 46}. Figure 5.2(b) shows that the MAE

is minimum at {5, 44}. Considering these results, we choose the optimal parameters

({neighbours, dimensions}) to be {15, 46} and {5, 44} for the user- and item-based CF

respectively. Similarly, we tuned the parameters for all approaches for other datasets.

Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems 79

5.6.2 Performance evaluation of different imputation methods

The results obtained by the ImpSvd algorithm (Algorithm 2) under different imputation

methods are shown in Table 5.1. Note that we only show the best results obtained by

varying k from 1 to 50. The table shows that the SVMReg, UBCF, IBCF, and UBIBCF

imputation approaches give more accurate results than others. The % decrease in MAE

over the baseline approach ItemAvg is found to be (1) 4.79%, 5.62%, and 6.58% in the

case of UBCF, IBCF, and UBIBCF respectively for the ML dataset; (2) 5.17%, 5.56%,

5.94%, and 7.23% in the case of SVMReg, UBCF, IBCF, and UBIBCF respectively

for the SML dataset; (3) 17.0%, 14.71%, 14.53%, and 15.53% in the case of SVMReg,

UBCF, IBCF, and UBIBCF respectively for the FT1 dataset; and (4) 5.87%, 2.76%,

2.56%, and 4.59% in the case of SVMReg, UBCF, IBCF, and UBIBCF respectively

for the FT5 dataset. The ranking of different approaches (with respect to the MAE)

with the respective p-value in the case of pair t test is found to be: (1) UBIBCF

(p < 0.001) > IBCF (p < 0.05) > UBCF (p < 0.05) for the ML dataset; (2) UBIBCF

(p < 0.001) > IBCF (p < 0.001) > UBCF (p < 0.001) >SVMReg (p < 0.05)

for the SML dataset; (3) SVMReg (p < 0.001) > UBIBCF (p < 0.001) > IBCF

(p < 0.001) >UBCF (p < 0.001) for the FT1 dataset; and (4) SVMReg (p < 0.001) >

UBIBCF (p < 0.005) > IBCF (p < 0.001) >UBCF (p < 0.005) for the FT5 dataset.

Furthermore, the proposed imputation approaches give 5% to 10% improvement over

the baseline approach, in terms of ROC-sensitivity, precision, recall, and F1 (refer to

Appendix B). In the following, we will concentrate on the conventional approaches and

the ones which gave good results.

The FilmTrust dataset effectively demonstrates the real world recommender system’s

characteristics. It adequately captures the new user and item cold-start problems. What

is evident from Table 5.1 is that the baseline approach gives the worst results in this

case. We observe that the SVMReg approach outperforms others in the case of the

FilmTrust dataset. This is because the FilmTrust dataset is very sparse, and hence we

do not have comprehensive users’ (or items’) rating profiles that can be used to make

predictions for other unknown items. However, we can capture users’ profiles in terms of

the important features in which they are interested, resulting in improved users’ profiles

and predictions.

In the case of the FT5 dataset, the performance of different approaches, even the con-

ventional ones, improves simply because we have removed users and items with less clear

profiles. Again, the baseline approach gives the worse results.

80
C
h
ap

ter
5
E
x
p
loitin

g
Im

p
u
tation

in
S
V
D
-B

ased
R
ecom

m
en

d
er

S
y
stem

s

Table 5.1: Best MAE observed in different imputation methods. k represents the number of dimensions, which gave the most accurate
results. The best results are shown in bold font.

Imp. Method
Best MAE Number of dimensions (k)

ML SML FT1 FT5 ML SML FT1 FT5

Zeros 2.425± 0.001 2.321± 0.001 4.354± 0.009 3.898± 0.013 26 12 2 2

Rand 1.092± 0.001 1.072± 0.002 2.214± 0.005 2.064± 0.012 14 4 2 2

ItemAvg 0.730± 0.001 0.774± 0.001 1.700± 0.005 1.483± 0.005 22 10 10 4

UserAvg 0.759± 0.001 0.778± 0.001 1.452± 0.007 1.433± 0.002 22 8 4 4

UserItemAvg 0.724± 0.001 0.754± 0.001 1.527± 0.008 1.442± 0.006 30 12 14 4

UniformDist 0.911± 0.001 0.905± 0.001 2.061± 0.012 1.933± 0.011 10 4 2 2

NorU 0.790± 0.001 0.810± 0.001 1.505± 0.008 1.491± 0.005 4 2 2 2

NorI 0.766± 0.001 0.800± 0.001 1.796± 0.008 1.562± 0.010 2 2 2 2

UBCF 0.695± 0.001 0.731± 0.001 1.450± 0.008 1.442± 0.006 40 36 4 10

IBCF 0.689± 0.001 0.728± 0.001 1.453± 0.005 1.445± 0.005 40 36 6 8

UBIBCF 0.682± 0.001 0.718± 0.001 1.436± 0.006 1.415± 0.006 40 36 6 10

KNN −− 0.804± 0.002 1.485± 0.008 1.479± 0.008 −− 18 4 4

WKNN −− 0.793± 0.002 1.481± 0.007 1.474± 0.008 −− 18 4 4

NBClass −− 0.775± 0.002 1.475± 0.008 1.468± 0.007 −− 26 8 6

SVMClass −− 0.763± 0.002 1.455± 0.007 1.445± 0.007 −− 18 6 4

C4.5 −− 0.781± 0.002 1.495± 0.005 1.485± 0.005 −− 22 10 12

SVMReg −− 0.734± 0.002 1.411± 0.005 1.396± 0.005 −− 18 6 6

LinearReg −− 0.783± 0.002 1.447± 0.005 1.437± 0.005 −− 16 4 2

LogisticReg −− 0.781± 0.002 1.443± 0.007 1.434± 0.007 −− 14 4 4

Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems 81

Table 5.2: The MAE observed in different imputation methods in the case of
ImpSvdibCF . The best results are shown in bold font.

Imp. Method
Best MAE

ML SML FT1 FT5

ItemAvg 0.741± 0.001 0.781± 0.001 1.702± 0.005 1.475± 0.006

UserAvg 0.767± 0.001 0.788± 0.002 1.496± 0.005 1.442± 0.005

UBCF 0.721± 0.001 0.739± 0.001 1.483± 0.005 1.434± 0.005

IBCF 0.701± 0.001 0.738± 0.001 1.459± 0.004 1.462± 0.004

UBIBCF 0.691± 0.000 0.723± 0.001 1.432± 0.005 1.418± 0.007

SVMReg −− 0.744± 0.001 1.417± 0.006 1.404± 0.006

Table 5.3: The MAE observed in different imputation methods in the case of
ImpSvdubCF . The best results are shown in bold font.

Imp. Method
Best MAE

ML SML FT1 FT5

ItemAvg 0.742± 0.001 0.776± 0.001 1.731± 0.005 1.465± 0.006

UserAvg 0.773± 0.001 0.786± 0.001 1.483± 0.004 1.439± 0.005

UBCF 0.709± 0.001 0.734± 0.001 1.465± 0.004 1.422± 0.006

IBCF 0.706± 0.001 0.732± 0.001 1.446± 0.005 1.445± 0.007

UBIBCF 0.692± 0.000 0.722± 0.001 1.445± 0.005 1.419± 0.007

SVMReg −− 0.743± 0.001 1.416± 0.005 1.401± 0.006

5.6.3 Performance evaluation of the SVD-based CF

Tables 5.2 and 5.3 show that the proposed approaches give more accurate results than

the conventional ones, when we apply CF over the reduced dataset. It is worth noting

that the results (in general) obtained by applying CF over the reduced dataset do not

have any advantages over the results obtained by applying SVD. However, in the case

of the FilmTrust dataset, some of the proposed approaches (UBCF, IBCF, UBIBCF)

give (insignificantly) better results when CF is applied over the reduced dataset. It is

due to the reason that the FilmTrust dataset is very sparse, which implies the latent

structure between movies and users might not be captured by applying SVD, and can

be found by applying CF over the reduced dataset. Another factor to note is that the

results obtained in the case of the proposed approaches are (almost) equivalent to the

Table 5.4: The MAE, ROC-sensitivity, precision, recall, and F1 observed in the
case of hybrid recommender system (ImpSvdhybridCF) proposed in Section 5.4.2.
The SMVReg is used for the FilmTrust dataset and the UBIBCF is used for the
remaining datasets as an imputation method, prior to applying SVD.

DataSet MAE ROC Precision Recall F1

ML 0.686± 0.000 0.790± 0.001 0.518± 0.002 0.595± 0.001 0.524± 0.002
SML 0.719± 0.001 0.695± 0.002 0.543± 0.002 0.555± 0.001 0.513± 0.002
FT1 1.409± 0.005 0.566± 0.003 0.591± 0.003 0.568± 0.003 0.549± 0.003
FT5 1.394± 0.005 0.578± 0.003 0.598± 0.005 0.574± 0.003 0.556± 0.005

82 Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0 2 4 6 8 10 12 14

M
e

a
n

 A
b

so
lu

te
 E

rr
o

r
(M

A
E

)

Number of Iterations

ItemAvg

UserAvg

UBCF

IBCF

UBIBCF

SVMReg

(a) ItrSvd (SML dataset)

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0 2 4 6 8 10 12 14

M
e

a
n

 A
b

so
lu

te
 E

rr
o

r
(M

A
E

)

Number of Iterations

ItemAvg

UserAvg

UBCF

IBCF

UBIBCF

(b) ItrSvd (ML dataset)

Figure 5.3: Comparing the performance (in terms of the MAE) of the proposed
approaches with others in the case of ItrSvd (fixed dimension case) over the
SML dataset. X-axis shows the number of iterations of the EM algorithm and
y-axis shows the corresponding MAE observed. The proposed approaches con-
verge much quicker than the conventional ones. The error bars (< 0.001 for all
approaches) are not shown for reasons of clarity.

ones obtained in the ImpSvd algorithm. Furthermore, in general, the user-based CF

performs better than the item-based CF in the case of FT1, FT5, and SML dataset,

whereas the item-based CF performs better than the user-based CF in the case of the

ML dataset.

The user- and item-based CF can be combined linearly as discussed in Section 5.4.2.

Table 5.4 shows that linearly combining the user- and item-based CF gives the improved

results with MAE equal to 0.686, 0.719, 1.409, and 1.394 in the case of SML, ML, FT1,

and FT5 datasets respectively. The reason of improvements in the results is that the

user- and item-based CF focus on different kinds of relationship in the dataset.

5.6.4 Performance evaluation of SVD combined with the EM algo-

rithm (ItrSvd)

There are two options to find the optimal number of dimensions in the ItrSvd algorithm;

(1) learning the optimal number of dimensions in the first iteration using the validation

set and keeping them fixed for all the iterations, and (2) learning the optimal number

of dimensions in each iteration using the validation. In the following, we represent the

former case with fixed dimension and the latter one with variable dimension. We first

show results for the fixed dimension and then proceed to the variable dimension case.

Figure 5.3(a) and 5.3(b) show how the MAE changes with the number of iterations for

the SML and ML datasets respectively. We observe that the conventional approaches

Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems 83

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

0 2 4 6 8 10 12 14

M
e

a
n

 A
b

so
lu

te
 E

rr
o

r
(M

A
E

)

Number of Iterations

ItemAvg

UserAvg

UBCF

IBCF

UBIBCF

SVMReg

(a) ItrSvd (FT1 dataset)

1.38

1.4

1.42

1.44

1.46

1.48

1.5

1.52

0 2 4 6 8 10 12 14

M
e

a
n

 A
b

so
lu

te
 E

rr
o

r
(M

A
E

)

Number of Iterations

ItemAvg

UserAvg

UBCF

IBCF

UBIBCF

SVMReg

(b) ItrSvd (FT5 dataset)

Figure 5.4: Comparing the performance (in terms of the MAE) of the proposed
approaches with others in the case of ItrSvd (fixed dimension case), over the
FilmTrust dataset. X-axis shows the number of iterations and y-axis shows
the corresponding MAE observed. The proposed approaches give better results
than the conventional ones. The error bars (lying between 0.001 and 0.004 for
all approaches) are not shown for reasons of clarity.

converge much slower compared to the proposed ones. Figure 5.3(a) shows that in the

case of the baseline approach, the MAE keeps on decreasing until it converges after 10

iterations. The minimum MAE observed after 10 iterations is 0.738. We observe that

the MAE for the proposed approaches is much lower (about 5% less) compared to the

conventional ones, and they converge much faster than the conventional ones. The IBCF

and UBIBCF converge after 2−3, whereas the UBCF and SVMReg converge after 5−6

iterations, and then the MAE starts increasing, which may be due to the over-fitting. We

further observe that the CF imputation method gives better results than the SVMReg.

Furthermore, Figure 5.3(b) shows that the results are the same for the ML dataset.

The baseline approach gives the worst results in the case of the FT1 dataset. Fig-

ure 5.4(a) shows that for the baseline approach, the MAE keeps on decreasing until

it converges after 4 − 5 iterations. The IBCF and SVMReg approaches show similar

behaviour, where the MAE reaches its minimum after 3 − 4 iterations, and then starts

increasing again. The remaining approaches do not show any improvement in the MAE

with an increase in the number of iterations.

The results in the case of FT5 dataset are shown in Figure 5.4(b). The results of the

baseline approach are surprisingly good where the MAE keeps on decreasing, until it

converges after 12− 14 iterations. The lowest MAE observed after 12 iterations is still

higher than the ones obtained in the first iteration of the proposed approaches. In

the case of the UBCF and IBCF approaches, the MAE increases with a corresponding

increase in the number of iterations. The MAE in the case of the remaining approaches

84 Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0 2 4 6 8 10 12 14

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(M
A

E)

Number of Iterations

Dim=1

Dim=3

Dim=6

Dim=7

Dim=Fixed (15)

Figure 5.5: How the MAE changes with an increase in the number of dimensions
for the SVMReg approach, over the SML dataset. X-axis shows the number of
iterations and y-axis shows the corresponding MAE observed. Fixed dimensions
represents the case where the optimal numbers of dimensions are learned in the
first iteration through the validation set and kept fixed for all iterations. We
observe that the results are highly dependent on the dimension parameter.

decreases with an increase in the number of iterations, reaches its minimum at 2 − 3

iterations and then starts increasing. Again, the SVMReg imputation approach gives

more accurate results.

The optimal number of dimensions can be learned at each iteration using the validation

set; although this would be expensive, it may increase accuracy. To check how the

MAE changes with the dimension parameter, we show results in the case of SVMReg

imputation approach over the SML dataset for 1, 3, 5, 7, and 15 dimensions. Figure 5.5

shows that the MAE is highly dependent on the dimension parameter. To further

investigate the results, we perform experiments where the optimal numbers of dimensions

are learned at each iteration. We only show results in the case of the SML dataset,

although similar results were observed for other datasets as well.

The results6 for the SML dataset are shown in Figure 5.6. Figure 5.6 shows that learning

the optimal number of dimensions at each iteration decreases the MAE of all approaches

in general. Furthermore, all approaches except the SVMReg show similar behaviour as

shown by the fixed dimension case. The MAE in the case of the SVMReg approach

keeps on decreasing with an increase in the number of iterations, reaches its minimum

when the number of iterations is 6, and then either stays stable or increases again. We

further observe that the SVMReg outperforms others, which is not true in the fixed

dimension case.

6Note that we used the training data to estimate the best parameters and used an independent test
set to give the unbiased estimate of the generalisation error.

Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems 85

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0 2 4 6 8 10 12 14

M
ea

n
A

bs
ol

ut
e

Er
ro

r (
M

A
E)

Number of Iterations

ItemAvg

UserAvg

UBCF

IBCF

UBIBCF

SVMReg

Figure 5.6: Comparing the proposed approaches with others in the case of
ItrSvd (variable dimension case) over the SML dataset. X-axis shows the num-
ber of iterations and y-axis shows the corresponding MAE observed. The pro-
posed approaches converge much quicker compared to the conventional ones.
The error bars (< 0.001) are not shown for reasons of clarity.

Table 5.5: Comparing the MAE observed in different imputation methods in
the ItrSvd (fixed dimension case). The best results are shown in bold font.

Imp. Method
Best MAE

ML SML FT1 FT5

ItemAvg 0.685± 0.001 0.738± 0.001 1.661± 0.002 1.438± 0.005

UserAvg 0.697± 0.001 0.734± 0.001 1.451± 0.002 1.430± 0.002

UBCF 0.672± 0.001 0.723± 0.001 1.450± 0.002 1.442± 0.005

IBCF 0.664± 0.001 0.722± 0.001 1.448± 0.002 1.442± 0.005

UBIBCF 0.659± 0.001 0.715± 0.001 1.436± 0.002 1.418± 0.004

SVMReg −− 0.721± 0.001 1.401± 0.001 1.390± 0.004

Table 5.5 compares the performance in terms of MAE of different approaches under the

ItrSvd (fixed iteration case). We observe that the proposed approaches produce better

results than the baseline approach. We further observe that, in the case of the MovieLens

dataset, the UBIBCF and IBCF approaches outperform others; whereas in the case of

the FilmTrust dataset, the SVMReg and UBCF perform the best. Similar results were

observed in terms of ROC-sensitivity and top-N metrics (refer to Appendix B).

5.6.5 Performance evaluation under different sparsity levels

To check the performance of the proposed approaches under sparsity, we increased the

sparsity level of the training set by removing some randomly selected rating records,

whereas, we kept the test set the same for each sparse training set. We used the ImpSvd

algorithm to make recommendations. Figure 5.7 shows how different approaches perform

86 Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems

0.7

0.75

0.8

0.85

0.9

0.95

0.982 0.984 0.986 0.988 0.99 0.992 0.994 0.996

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(M
A

E)

Sparsity Level

ItemAvg

UserAvg

UBCF

IBCF

UBIBCF

SVMReg

Figure 5.7: How sparsity affects the performance of different approaches for the
SML dataset. Algorithm 2 was used to make recommendations.

under sparse conditions. The figure shows that the performance of the conventional ap-

proaches suffer more than the proposed ones. The reason is that under sparse conditions,

the items’ and users’ averages can be misleading resulting in erroneous recommendations.

It must be noted that under very sparse conditions (sparsity ≥ 0.994), SVMReg out-

performs the rest. The reason is the same as discussed in Section 5.6.2. We also note

that the remaining approaches give the equivalent results. Hence, under very sparse

conditions, the SVMReg can be used provided sufficient resources (e.g. content features)

are available, and the conventional approaches can be used otherwise.

We also performed experiments with different test and training sizes and again observed

similar results (refer to Appendix B for details.).

5.6.6 Performance evaluation under cold-start and long tail scenarios

We tested the proposed ImpSvd algorithm for cold-start and long tail scenarios. As

an example, we present results in the case of a new item scenario. Similar results were

observed for other scenarios as well, which are given in Appendix B.

For testing the performance of different approaches under the new item cold-start sce-

nario, we selected 100 random items, and kept the number of users in the training set

who have rated these item to 2, 5, 10, 15, and 20. The corresponding MAE, represented

by MAE2, MAE5, MAE10, MAE15, and MAE20, is shown in Table 5.7. Table 5.7

shows that the SVMReg gives the best performance when an item has been rated by

less than (or equal) to 10 items, and UBCF gives the best performance otherwise. We

note that the IBCF does not perform very well compared to the UBCF. The reason is

that we do not have the comprehensive items’ rating profiles.

Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems 87

10 20 30 40 50 60 70 80 90 100
0.735

0.74

0.745

0.75

0.755

0.76

0.765

0.77

0.775

0.78

0.785

Training Set: Sparsity of Profiles in percentage (Θ
sparse

)

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

10 20 30 40 50 60 70 80 90 100
0.71

0.72

0.73

0.74

0.75

0.76

0.77

Test Set: Sparsity of Profiles in percentage (Θ
sparse

)

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

UBIBCF
IBCF
UBCF
SVMReg

UBIBCF
IBCF
UBCF
SVMReg

(a) When is imputation required?

10 20 30 40 50 60 70 80 90 100
0.735

0.74

0.745

0.75

0.755

0.76

0.765

0.77

Training Set: Sparsity of Profiles in percentage (Θ
dense

)

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

UBIBCF
IBCF
UBCF
SVMReg

10 20 30 40 50 60 70 80 90 100
0.715

0.72

0.725

0.73

0.735

0.74

0.745

0.75

0.755

0.76

Test Set: Sparsity of Profiles in percentage (Θ
dense

)

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

UBIBCF
IBCF
UBCF
SVMReg

(b) How much imputation is required?

Figure 5.8: Figures showing when and how much imputation is required for
the SML dataset. Θsparse shows the sparsity of users’ (or items’) profiles in
percentage. Θdense shows the percentage up to which users’ (or items’) profiles
are filled using the proposed approaches. The optimal number of dimensions
have been kept the same as shown in Table 5.1.

5.6.7 A comparison of the proposed algorithms with others

Table 5.6 gives a comparison of different algorithms in terms of MAE. We compared the

proposed algorithms with others as discussed in Chapter 2, Section 2.5. Furthermore,

we tuned all algorithms for the optimal parameters. For the proposed algorithms, we

used UBIBCF and SVMReg as imputation methods in the MovieLens and FilmTrust

datasets respectively. Table 5.6 shows that the proposed algorithms are scalable and

practical as they have on-line cost less than or equal to the cost of other algorithms;

however, they are more accurate. It must be noted that the baseline SVD-based CF

algorithms do not perform very well compared to the user- and item-based CF applied

over the original user-item rating matrix, which is in contrast with the work proposed

by Vozalis and Margaritis (2007)7. The proposed ItrSvd algorithm performs the best

out of all of them; however, it would incur the biggest off-line cost (depending on the

number of iterations required to converge), and must be used given the availability of

sufficient resources. The same is true for the ImpSvdhybridCF , which gives more accurate

results compared to baseline or simple CF; however, it would incur the greater cost. The

7It might be due to the reason that Vozalis and Margaritis (2007) did not use any significance
weighting schemes, and used weighted sum prediction formula (Ghazanfar and Prügel-Bennett, 2010d)
in the item-based CF.

88 Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems

ImpSvd algorithm comes the next, and can be used if we want the lowest off-line cost

(as SVD is applied only once), fast on-line performance, and prefer (good) accuracy.

5.7 When and How Much Imputation is Required

As it is costly to do imputation by the proposed approaches, hence we investigate when

it is beneficial to switch to the conventional approaches, which are cheap to compute.

Next, we shed light on the following two questions: (1) when is imputation required?

and (2) how much imputation is required?

5.7.1 When to do imputation by the proposed approaches

To answer this question, we look into the sparsity of users’ and items’ profiles. We only

do imputation by the proposed approaches when a user’s (or item’s) profile is Θsparse%

sparse, where Θsparse = {10, 20, · · · , 100}. A value of ΘSparse = 10 shows that the

proposed approaches are used to fill in the missing values if the sparsity of a profile is

less than 10% = 0.1, and the UserItemAvg approach is used otherwise. Figure 5.8(a)

shows that the MAE is minimum at Θsparse = 100. For the subsequent experiments, we

choose to do imputation when Θsparse = 100.

5.7.2 How much imputation is required

Users’ (or items’) profiles can be filled up to Θdense% of the missing values in their

profiles. To investigate how much imputation is necessary, we performed experiments

with different values of Θdense and observed the corresponding MAE. A value of Θdense =

10 shows that 10% missing values of a profile are filled using the proposed approaches

and UserItemAvg is used for the remaining 90% missing values. Figure 5.8(b) shows that

after Θdesne = 60, the change in the MAE becomes very small. Hence, 60% imputation

is sufficient to achieve good accuracy.

C
h
a
p
ter

5
E
x
p
loitin

g
Im

p
u
ta
tio

n
in

S
V
D
-B

ased
R
ecom

m
en

d
er

S
y
stem

s
89

Table 5.6: A comparison of the proposed algorithms with the existing ones in terms of cost and accuracy metrics. The SMVReg is used
for the FilmTrust dataset and the UBIBCF is used for the remaining datasets as an imputation method prior to applying SVD. The
best results are shown in bold font.

Algorithm On-line Cost Best MAE
ML SML FT1 FT5

User-based CF with DV O(N2) 0.706± 0.000 0.746± 0.001 1.462± 0.008 1.419± 0.008
Item-based CF O(NM) 0.705± 0.000 0.744± 0.001 1.433± 0.007 0.418± 0.006
Baseline SVD O(1) 0.730± 0.001 0.774± 0.001 1.700± 0.005 1.483± 0.005
Baseline SVD-based IBCF O(N2) 0.741± 0.001 0.781± 0.001 1.702± 0.005 1.475± 0.006
Idemsvd− 2svd O(N2) 0.738± 0.001 0.775± 0.001 1.682± 0.005 1.469± 0.006
ImpSvd O(1) 0.682± 0.001 0.718± 0.001 1.411± 0.005 1.396± 0.005
ImpSvdibCF O(N2) 0.691± 0.000 0.723± 0.001 1.417± 0.006 0.404± 0.006
ImpSvdubCF O(NM) 0.692± 0.000 0.722± 0.001 1.416± 0.005 0.401± 0.006

ImpSvdhybridCF O(N2) +O(NM) 0.686± 0.000 0.719± 0.001 1.409± 0.005 1.394± 0.005
ItrSvd O(1) 0.659± 0.001 0.715± 0.001 1.401± 0.001 1.390± 0.004

Table 5.7: Comparing the MAE observed in different imputation methods under new item cold-start scenario, for the SML dataset.
The best results are shown in bold font

Imp. Method
Best MAE

MAE2 MAE5 MAE10 MAE15 MAE20

ItemAvg 1.010± 0.003 0.876± 0.003 0.854± 0.003 0.840± 0.002 0.838± 0.002

UserAvg 0.876± 0.003 0.874± 0.003 0.872± 0.003 0.870± 0.002 0.867± 0.002

UserItemAvg 0.865± 0.003 0.833± 0.003 0.832± 0.003 0.824± 0.002 0.822± 0.002

UBCF 0.911± 0.003 0.829± 0.003 0.810± 0.003 0.800± 0.002 0.790± 0.002

IBCF 0.850± 0.003 0.834± 0.003 0.829± 0.003 0.818± 0.002 0.813± 0.002

UBIBCF 0.858± 0.003 0.826± 0.003 0.812± 0.003 0.802± 0.002 0.795± 0.002

SVMReg 0.846± 0.003 0.824± 0.003 0.809± 0.002 0.804± 0.002 0.802± 0.002

90 Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems

5.8 Discussion

What is evident from the experimental results is that the approximation of missing

values in the sparse user-item rating matrix, prior to applying SVD, plays an important

role in SVD-based recommendations. The literature proposes using item average to

approximate the missing values in the sparse user-item rating matrix. We find out that

this is not a feasible solution in terms of accuracy. Moreover, the convergence of the

baseline approach is very slow in the case of the ItrSvd algorithm. It is worth noting

that the SVD computation is an expensive task (despite the fact that it is done off-

line) which implies that the conventional approaches are not pragmatic, and hence the

proposed approaches should be used to save resources.

We note that the imputation approaches based on the content-based filtering (except

the SVMReg) are not very accurate compared to the collaborative filtering ones in

the recommender system domain, although content-based filtering has successfully been

applied to text categorisation and it gives accurate results as well (Sebastiani, 2002).

The reason is that the text categorisation and recommender system problems are quite

different from each other. First, a user rates the same item differently under different

contexts (Baltrunas, 2008) and the reason for the rating might be complex. Similarly,

the positive feedback (Oard and Kim, 1998) given by a user, e.g. purchased an item, is

dependent on the context; for example, a user might purchase an item as a gift, hence

we cannot predict that they will purchase other similar items. Second, the user feedback

(Pazzani and Billsus, 2007) in a recommender system is noisy, the observations, did not

buy an item, or did not watch a movie, do not necessarily mean that the user is not

interested in that item or movie. It may be the case that the user likes that item or

movie but has not purchased or watched it. Third, the evaluation criteria for both are

different; the recommender system usually provides a list of top items a user would like to

consume, whereas text categorisation classifies a given document to a set of pre-defined

categorisations. Furthermore, in text categorisation a document belongs to a single or

a very few categories, whereas a user in a recommender system might be interested in a

large number of different items (Zhang and Iyengar, 2002). Fourth, a user might change

their taste over time and this temporal change in the profile is not shared by the text

categorisation tasks. Making accurate recommendation given the noisy input is different

and more difficult compared to the text categorisation task.

Based on the experimental results, we can underline five interesting points: (1) the

results of different imputation approaches are dataset-dependent and no approach is

a panacea. Due to dataset characteristics—data distribution, scale, and sparsity—one

approach might be very good for one dataset while it may fail to produce good results

for the second dataset; (2) collaborative filtering and SVM provide more accurate and

much more computationally tractable results under all experiments; (3) although the

conventional approaches are straightforward to implement, they do not provide good

Chapter 5 Exploiting Imputation in SVD-Based Recommender Systems 91

results. The same is true for many classification and regression approaches; (4) the hy-

brid recommender system algorithms provide more accurate recommendations than the

individual ones. Different recommendation algorithms, if combined in a systemic way,

have complementary roles for recommendation generation; and (5) different imputation

methods can be chosen depending the different circumstances and priorities—time and

frequency of running the off-line computation, required accuracy, required recommen-

dation time—and available resources (e.g. the content features and memory).

5.9 Conclusion and Future Work

This chapter makes the following contributions to the state-of-the-art in recommender

systems:

1- We show that SVD-based recommendations highly depend on the imputation

methods used to approximate the missing values in the user-item rating matrix.

We provide the best imputation methods and empirically show that they signif-

icantly outperform the traditional approach—item average—used extensively in

the literature. We show that the traditional approach fails to produce accurate

recommendations under cold-start scenarios and sparse datasets.

2- We show that the results obtained by applying collaborative filtering over the

reduced user-item rating matrix vary with the imputation methods used to ap-

proximate the missing values in the user-item rating matrix, and moreover point

out under what conditions these results are significant over SVD-based results.

3- We show that in the case of ItrSvd—an algorithm that combines SVD with the

expectation maximisation algorithm to estimate the missing values—the proposed

approaches converge more quickly and produce better recommendations compared

to the traditional one.

As a future work, we would like to explore in detail the questions discussed in Section 5.7.

Another avenue for future work would be to incorporate external sources of information,

such as Ontology of items, which might improve the results, particularly under sparse

conditions. Furthermore, Boosting algorithms, such as AdaBoost algorithm (Witten

and Frank, 1999) can be used for increasing the performance of classifiers, such as C4.5,

which is a subject of future research.

Chapter 6

Using Clustering Algorithms to

Solve the Gray-Sheep Users

Problem

6.1 Introduction

Two of the important design objectives of a recommender system (refer to Chapter 1)

are accuracy and scalability. In the Collaborative Filtering (CF) domain, they are in

conflict, since the less time an algorithm spends searching for neighbours, the more

scalable it will be, but produces worse quality recommendations. The CF approaches

based on K-means clustering algorithms have been proposed to increase the scalability

of recommender systems. We investigate how to improve the quality of clusters and

recommendations focusing on the following key issues:

1- How do different centroid selection approaches affect the quality of clusters/rec-

ommendations?

2- How does the choice of distance metric affect the quality of clusters/recommenda-

tions?

Humans typically do not have predictable simple taste—they rate items differently and

the reasons for rating an item are likely to be complex. In the CF domain, the correlation

coefficient (in the case of Pearson correlation) between two users varies between 1, in-

dicting absolute agreement, to −1, indicating absolute disagreement between two users.

Based on the correlation coefficient, we can categorise users into two main classes1: (1)

1Some authors have used another class “black-sheep” for the users having no (or very few) other
users with whom they correlate. The CF-based algorithms cannot make predictions for these users (Su
and Khoshgoftaar, 2009).

93

94 Chapter 6 Using Clustering Algorithms to Solve the Gray-Sheep Users Problem

white sheep—the users who have high correlation value with many other users; and

(2) gray-sheep—the users who partially agree/disagree with other users and have low

correlation coefficient with almost all users.

In this chapter, we systematically explore the gray-sheep users problem. Specifically, we

look at four key questions:

1- How can the gray-sheep users be effectively detected in a recommender system?

2- Does the presence of the gray-sheep users affect the recommendation quality of

the community?

3- How do the CF algorithms perform over these users?

4- How do the text categorisation algorithms trained on the content profiles perform

over these users?

We proposed a clustering solution to detect the gray-sheep users in off-line fashion.

We offered a switching hybrid recommender system (Burke, 2002) and showed that the

proposed approach reduces the recommendation error rate for the gray-sheep users while

maintaining reasonable computational performance. To the best of our knowledge, this

is the first attempt to propose a formal solution to satisfy the needs of gray-sheep users.

We evaluate our algorithm over the MovieLens and FilmTrust datasets.

The rest of the chapter has been organised as follows. In Section 6.2, we present the

related work by giving an overview of different clustering algorithms and shed light

on the gray-sheep users problem. In Section 6.3, we present various centroid selection

algorithms. In Section 6.4, we discuss various distance measures that we have used in

this work. We outline our algorithm to detect the gray-sheep users in Section 6.5. In

Section 6.6, we discuss the results in detail, followed by the conclusion in Section 6.7.

6.2 Related Work

In this section, we give a brief overview of clustering algorithms that have been used in

recommender systems. We then discuss the gray-sheep users problem and describe how

this problem has been overlooked by the recommender system’s community.

6.2.1 Clustering in recommender systems

Clustering belongs to unsupervised classification algorithms, whose goal is to discover

natural grouping (clustering) of patterns (observations, data points, etc.) (Witten and

Frank, 1999). There are two main types of clustering algorithms (Jain, 2010; Berkhin,

Chapter 6 Using Clustering Algorithms to Solve the Gray-Sheep Users Problem 95

2002): hierarchical and partitional. Hierarchical clustering algorithms produce a nested

series of partitions either in agglomerative mode—starting with each pattern in a dis-

tinct cluster and merging the most similar pairs of clusters successively to form a cluster

hierarchy—or divisive mode—starting with each pattern into a single cluster and split-

ting each cluster into smaller clusters until some stopping criteria are met. Partitional

clustering algorithms do not impose a clustering hierarchy and find all clusters once as

a partition. Examples of hierarchical clustering algorithms include single link, complete

link, and average link and those of partitional clustering algorithms include K-means,

graph theoretic, and expectation maximisation.

Several CF recommendation approaches based on the partition clustering algorithms

have been proposed (Sarwar et al., 2002b; Xue et al., 2005; Rashid et al., 2006). In Sarwar

et al. (2002b) the authors proposed an approach, which divides the user-item rating

matrix into k non-overlapping partitions, using a variant of K-means clustering algorithm

called Bisecting K-means clustering. To find neighbours for an active user, it scans the

cluster where the active user belongs, and generates recommendation by picking the

top most similar users (i.e. neighbours) from that cluster. This approach has been

extended in Xue et al. (2005), where the authors used the active user’s average rating

and the average deviated rating given to a target item in a cluster to approximate the

missing values in the user-item rating matrix. They assigned different weights to items

that have been rated by the user and items that were predicted using approximation

function. They claimed that their approach increases the accuracy and efficiency of

recommendations by overcoming the problems of data sparsity and scalability.

The proposed evaluation criteria in Xue et al. (2005) is somewhat biased. For example,

for the MovieLens dataset, the authors used the last 200 users as the test and remaining

300 as the training users. In our opinion, a cross validation scheme (e.g. k-fold cross

validation, leave one out cross validation, etc.) or at least a random selection of users

(e.g. 20% randomly selected users as test users) should have been used for this purpose.

The reason is that, using this approach, it is possible that one might select users with

less ratings in the test set and with more ratings in the training set.

A highly scalable algorithm using a variant of K-means clustering algorithm and CF

has been proposed by Rashid et al. (2006). This algorithm makes predictions using the

following three steps: (1) the similarity between an active user and k other centroids is

computed using the Pearson correlation, (2) the l (l ≤ k) most similar centroids, called

neighbours of the active user, are selected, and (3) the prediction on target item is made

using the ratings provided by neighbours. They claimed that the proposed approach

gives results comparable to the conventional CF approaches.

Several hierarchical clustering algorithms have been employed to solve the recommen-

dation problem (Kohrs and Merialdo, 1999; Kelleher and Bridge, 2003; Uchyigit and

Clark, 2004; Haruechaiyasak et al., 2005; Shepitsen et al., 2008). In Kelleher and Bridge

96 Chapter 6 Using Clustering Algorithms to Solve the Gray-Sheep Users Problem

(2003), the authors proposed a clustering approach which recursively splits successive

datasets into child clusters by building a binary tree of clusters using K-means cluster-

ing algorithm, where the root represents the whole dataset. The average rating of the

cluster for an item, to which the active user belongs, is used as recommendation. If no

one in a cluster has rated a target item, then the algorithm continues climbing up to the

parent cluster until it finds a cluster which has rated that item or it reaches the root

node. This algorithm has been used in Bridge and Kelleher (2002), where the author de-

termine how the conventional CF, users, and items clusters are affected by the sparsity.

Another example of the hierarchical clustering is given in Shepitsen et al. (2008), where

the authors proposed a personalisation algorithm for recommendation of resources in

folksonomies, which relies on hierarchical tag clusters. They applied K-means and hier-

archical agglomerative clustering algorithms over the last.fm (www.last.fm/home) and

delicious (www.delicious.com) datasets and claimed that a later clustering algorithm

gave better results. They represented resources and user profiles with vectors of tags

and used the cosine-similarity measure for computing the similarity. Furthermore, they

modified the clustering algorithm to choose clusters according to the user context, and

claimed that this technique is suited to folksonomies which are sparse and where tags

can take on a range of meanings across different topic areas, like delicious.

Various hybrid recommender systems employing the clustering techniques have been

proposed (Clerkin et al., 2003; Puntheeranurak and Tsuji, 2007); for example, Pun-

theeranurak and Tsuji (2007) offered a hybrid recommender system using fuzzy K-means

clustering. They linearly combined the results of CF applied over the original and clus-

tered data and claimed that it outperforms the conventional CF. Furthermore, several

other clustering algorithms have been employed in the recommender system domain,

for example, Connor and Herlocker (2001) applied random partition, genre partition,

average link hierarchical agglomerative, k-Metis, h-Metis, and multilevel k-way graph

partitioning over the MovieLens dataset using Pearson correlation as a similarity mea-

sure, and showed that k-Metis produced better results than others in terms of MAE and

coverage.

We find out that the literature of the clustering algorithms is very rich ranging from

partitioning-based clustering to hierarchical clustering spanning a number of algorithms.

We have used the K-means clustering algorithm to partition the dataset into different

clusters, as it has effectively been applied in different domains (Berkhin, 2002; Jain,

2010). In the recommender system domain, different authors, for instance Rashid et al.

(2006), have claimed that K-means-based collaborative filtering yields results compara-

ble to several other recommendation algorithms. Furthermore, the K-means clustering

algorithm has small computation complexity
(
O(M × k × itr)

)
, which is linear in the

number of users being clustered (M), number of clusters (k), and number of itera-

tions (itr).

Chapter 6 Using Clustering Algorithms to Solve the Gray-Sheep Users Problem 97

To make predictions we can use the technique proposed in Sarwar et al. (2002b) and Xue

et al. (2005) or in Rashid et al. (2006). The approaches proposed in Sarwar et al. (2002b)

and Xue et al. (2005) are not very scalable as there might be many potential neighbours

for an active user in a cluster. Moreover, their coverage is arguable, as they only find

the neighbours against an active user in the cluster where the active user belongs. If

the quality of the clusters are not very good, it would result in increased error and

reduced coverage. The approach proposed in Rashid et al. (2006) claimed to be more

scalable and accurate, and yields results comparable to several other algorithms such

as conventional CF, singular value decomposition, and Personality diagnosis (Pennock

et al., 2000). We have employed this algorithm (denoted by CCF in the results section)

for making predictions, with the exception that we use the conventional K-means clus-

tering algorithm for partitioning the user-item rating matrix. Furthermore, we choose

centroids using the centroid selection algorithms as described in Section 6.3.

6.2.2 Gray-sheep users problem in recommender systems

The gray-sheep users problem was highlighted in Claypool et al. (1999), where the au-

thors proposed an on-line hybrid recommender system for news recommendation. They

used a weighted average approach to combine the CF approach with the content-based

filtering (CBF) approach, where the weights are learned per user basis. This approach

is very expensive both in terms of memory requirement and time. In Cantador et al.

(2008), the authors offered a hybrid recommender system which builds a multi-layered

community of interests by dividing the user profiles, defined in domain Ontologies, into

different areas of interest. The authors divided the users’ and items’ profiles into groups

based on the cohesive interests, and claimed that taking into account the profiles at dif-

ferent semantic interest layers, while establishing the similarities between two users, can

provide better correlation measure and hence might help in overcoming the gray-sheep

users problem. The problem with this approach is that it require labour-intensive do-

main Ontology building stage. Neither of these approaches proposes any formal solution

focussing specifically on gray-sheep users, nor provides any results.

There has been some work on the gray-sheep users in other domain; for example, Wurst

(2005) presented the agent-based simulation for distributed knowledge management.

They instantiated this framework for the CF domain using the MovieLens dataset. They

claimed that the gray-sheep agents—agents belonging to several communities—do not

affect the regular agents—agents belonging to one community, which is in contrast with

our results (refer to Section 6.6). As it was a simulation, they did not describe a method

to identify these users and satisfy their needs. Furthermore, none of the aforementioned

approaches provides any benchmarks, making it unclear how to compare the proposed

algorithm with them.

98 Chapter 6 Using Clustering Algorithms to Solve the Gray-Sheep Users Problem

A closely related problem is the long tail problem. Park and Tuzhilin (2008) proposed

a scheme for dividing the items into heads and tails sections and applying clustering

algorithms over the tail part only for overcoming the long tail problem associated with

a recommender system.

6.3 Centroid Selection Approaches

As the conventional K-means clustering algorithm (Jain, 2010) randomly selects the

k initial centroids, an important research question would be, “how does the quality of

clusters vary with the choice of different initial centroids”? In Arthur and Vassilvitskii

(2007), the authors proposed an algorithm, namely K-means++, that uses a probabilistic

approach for choosing the centroids and claimed that it yields much finer clusters than

the K-means clustering algorithm.

We applied a modified version of the K-means++ clustering algorithm for clustering

the user-item rating matrix. We used the K-means++ concept over the so-called power

users—users that have rated a large number of items in a recommender system (Her-

locker et al., 2004). The concept of the power user has been used in Amatriain et al.

(2009), where the authors employed the power users as neighbours of an active user for

producing the scalable CF-based recommendations. The authors used the term “ex-

perts” to emphasise the importance of these users. Other researchers (Zanardi, 2011;

Zanardi and Capra, 2011) have claimed that in the tag-based social tagging website such

as CiteULike (www.citeulike.org), there are a relatively small number of users, called

leaders, which provide a large number of tags, and other users in the system, known as

followers, who just follow these tags. They claimed that taking into account the opinion

of only the leaders, one can provide scalable and accurate recommendations. We propose

to use the power users as the initial centroids and the rationale behind this is that it

might speed up the convergence and improve the quality of the resulting clusters.

Let up denote the user who has rated the maximum number of items in the training set.

Rather than using the raw rating count, we normalise the number of ratings provided

by user u by dividing it by the number of ratings provided by up, i.e.

P(u) =
|Iu|
|Iup |

, (6.1)

where |Iu| and |Iup | denote the number of items rated by users u and up respectively.

Let Upower = { u1, u2, · · · , uz } be the set of z power users having the highest value for

P(u) (i.e. P(um) > P(un) : ∀um∈UpowerANDun /∈Upower); G = {g1, g2, · · · gk} represents the

k clusters and C = {c1, c2, · · · ck} denotes the k centroids of the corresponding clusters;

Dcj denotes the set of user-item pairs that have been rated in cluster gj represented with

centroid cj (i.e. (ri,u|(i, u) ∈ Dcj)); ri,cj denotes the rating given by centroid cj on item

Chapter 6 Using Clustering Algorithms to Solve the Gray-Sheep Users Problem 99

i, i.e. ri,cj = 1
|Dcj |

∑
i,u∈Dcj

ri,u; and dist(u) denotes the shortest distance from user u to

the closest centroid we have already chosen.

Algorithm 5 : CentroidSelect, Selects k users as centroids from the dataset
Input: U , training users; k, the number of clusters; P(u), the normalised rating count
of a user; powthr, a threshold to detect the power users
Output: { c1, c2, · · · ck } , k centroids

1: procedure KMeans(U , k)
2: Choose k centroids, { c1, c2, · · · ck }, at random without repeating.
3: return { c1, c2, · · · ck } . k centroids
4: end procedure

5: procedure KMeansP lus(U , k)
6: repeat
7: Choose the initial centroid c1 uniformly at random from U .
8: Choose the next centroid ci by selecting ci = u′ ∈ U with probability:

Prob =
dist(u′)2∑
u∈U dist(u)2

.

9: until k centroids are found
10: return { c1, c2, · · · ck } . k centroids
11: end procedure

12: procedure KMeansP luspower(U , k)
13: Upower = ∅
14: for all u ∈ U do
15: if P(u) > powthr then
16: Upower = Upower ∪ u
17: end if
18: end for
19: { c1, c2, · · · ck } = KMeansP lus (Upower, k)
20: return { c1, c2, · · · ck } . k centroids
21: end procedure

22: procedure KMeansP lusProbPower(U , k)
23: repeat
24: Choose the initial centroid c1 to be up.
25: Choose the next centroid ci by selecting ci = u′ ∈ U with the probability:

Prob =

(
dist(u′)2∑
u∈U dist(u)2

+
P(u′)2∑
u∈U P(u)2

)
2

.

26: until k centroids are found
27: return { c1, c2, · · · ck } . k centroids
28: end procedure

Algorithm 5 outlines the pseudo code of the different centroid selection algorithms. In

Algorithm 5, the variant of the centroid selection algorithm denoted byKMeans uses the

100 Chapter 6 Using Clustering Algorithms to Solve the Gray-Sheep Users Problem

randomly selected k users from the training set as centroids. The variant of the centroid

selection algorithm denoted by KMeansP lus implements the K-means++ algorithm.

Specifically, it uses a randomly selected user as an initial centroid and then keeps on

choosing the next centroid with a probability which is proportional to the shortest

distance of the candidate centroids with the existing one(s) until all k centroids have been

chosen. The variant of the centroid selection algorithm, denoted by KMeansP lupower,

applies the K-means++’s centroid selection concept over the power users only. From

steps 13 to 18, we identify power users, Upower—users having P(u) > powthr. We then

call KMeansP lus procedure with these users as candidate centroids, which chooses

centroids using the K-means++’s centroid selection algorithm. The last variant of the

centroid selection algorithm, denoted by KMeansP lusProbPower, aims at finding the

centroids with probability proportional to distance and the number of ratings (see step

25 in Algorithm 5). This variant is based on the rationale that users who have the

maximum distance (minimum similarity) with the current ones(s) and who have rated

a large number of items might provide potential benefits, such as reduced error and

increased coverage.

6.4 Distance Measure

In Algorithm 5, the dist function measures the distance between a centroid and a user.

In our case, we are measuring the similarity (sim) between a user and a centroid. As

the distance between two points is maximum when the similarity is zero and vice versa;

we can use a simple equation to model the distance function as follows:

dist =

{
1

sim if sim 6= 0 ,

MAXDIST otherwise,
(6.2)

where MAXDIST (chosen as 1000 in our case) represents the maximum distance between

two points. In the case of the Pearson correlation, the similarity between two points can

be negative, which cannot be modeled by equation 6.2. To avoid this, we add 1 to all

similarities returned by the Pearson correlation (i.e. sim(u)← sim(u)+1 ,∀u∈U), before

applying equation 6.2, while experimenting with the centroid selection algorithms.

A common problem with the CF approach is that if there are less common items between

an active user and the centroid, then it will not perform well. The reason is that, it only

takes into account the intersection of the items that both the active user and the centroid

have voted on. If we assume some default votes for items a user or centroid has not

voted on, then we can extend the correlation over the union of items, which can increase

the coverage and accuracy of the system. This concept is similar to the one used by

Xue et al. (2005) to smooth the missing values in a user’s profiles. The difference is that

Xue et al. (2005) find the similarity between a user and each cluster and then use the

Chapter 6 Using Clustering Algorithms to Solve the Gray-Sheep Users Problem 101

average of most similar cluster to smooth the missing values in a user’s profile; however,

we are using a user’s and cluster’s average to smooth the missing values in a user’s and

cluster’s profile respectively. Xue et al. (2005) used the Pearson correlation as a distance

to measure the similarity between a cluster and the user; nevertheless as we will see in

the results section, this similarity measure fails under sparse datasets (e.g. FilmTrust).

We assume the users’ and clusters’ averages for the missing values as follows:

r =


1
|Du|

∑
i∈Du

ri,u, if ri,u = ∅ ,
1
|Dcj |

∑
i,u∈Dcj

ri,u, if ri,cj = ∅.
(6.3)

In this work, we used the following distance measures: (1) Pearson Correlation (PCC),

(2) Pearson Correlation with Default Votes (PCCDV), (3) Vector Similarity (VS), and

(4) Vector Similarity with Default Votes (VSDV). The results of using these distances

are shown in the results section.

6.5 Detecting Gray-Sheep Users: A Clustering Solution

This concept has been inspired from the shape detection in the image processing domain.

While generating clusters for shape detection, a separate cluster is made for the features

that are not very similar with the current clusters2. Other researchers have found that

this can result in a decrease of error in shape detection (Ramanan, 2010). Gray-sheep

users can be handled in the same way, and can be separated into a distinct cluster using

our proposed algorithm, Algorithm 6.

In step 2, we choose k initial centroids using the CentroidSelect centroid selection

algorithm. Then we initialise the loop counter, which counts the number of iterations

for which the algorithm will be executed. In step 5, we assign each user to the most

similar cluster found measuring the similarity between the user and the corresponding

centroid. In step 6, we update centroids which now contain the set of user-item pairs

rated by all users belonging to that cluster. We then increment the loop counter and

check its value with itr, which is the maximum number of iterations the algorithm will be

executed. If the loop counter is less than itr, then we keep executing the steps from 5 to

7, which are essentially the same as those of the K-means clustering algorithm (Arthur

and Vassilvitskii, 2007). Nevertheless, if the value of the loop counter is equal to itr,

then the steps from 9 to 15 are executed, which detect the gray-sheep users by grouping

users having similarity with the most similar cluster, less than a pre-defined threshold

ω, into a separate cluster. In step 17, we return the clustered data.

We can think of each centroid as a vector of length N , the number of items in the system.

Any centroid cj can be represented as: cj = {ri1,cj , ri2,cj , · · · , riN ,cj}, where ri,cj denotes

2For example, a separate cluster is made for a distinct pimple on the face. The details are beyond
the scope of this thesis. Please refer to Ramanan (2010).

102 Chapter 6 Using Clustering Algorithms to Solve the Gray-Sheep Users Problem

the rating given by centroid cj on item i, i.e. ri,cj = 1
|Dcj |

∑
i,u∈Dcj

ri,u. If no one has

rated the item in that cluster then the rating value is essentially zero in the case that

we use a distance measure without default votes, and is estimated using equation 6.3

otherwise.

Algorithm 6 : ClustAndDetect, Clusters the user-item rating matrix into k + 1
clusters, and groups the gray-sheep users into a separate cluster
Input: U , training users; k, the number of clusters; itr, the number of iteration for the
K-means clustering algorithm; ω, a similarity threshold to detect the gray-sheep users
Output: G, C; the clusters with corresponding centroids

1: procedure GSUDetector(U , k, itr, ω)
2: C = CentroidSelect
3: t = 0
4: repeat
5: Set the cluster gj , for each j ∈ 1, ..., k, to be the set of users in U that are

closer to cj than they are to cl for all l 6= j.
6: Set cj , for each j ∈ 1, ..., k, to be the centre of mass of all users in gj , i.e.

cj =
1

|gj |
∑
u∈gj

u .

7: t = t+ 1
8: if t = itr then
9: Create a new centroid ck+1

10: for all u ∈ U do
11: if sim(u) < ω then
12: Assign user u to cluster gk+1

13: end if
14: end for
15: end if
16: until (t = itr)
17: return (G,C)
18: end procedure

6.6 Results and Discussion

In this section, we show the results of recommendation algorithms over different kinds

of users. We assume that the CF-based algorithms would not perform well over gray-

sheep users, because they have partial agreement with the rest of the community. This

assumption argues that the recommendations can be generated based on the content

profile of these users (by training the machine learning classifiers) and ignoring the

contributions of the community (neighbours). We trained (using the Weka library) the

following Text Categorisation (TC) algorithms over the content profiles of users: K

Nearest Neighbours (KNN), Naive Bayes classifier (NB), decision tree (C4.5), Support

Vector Machines Classification (SVMClass), and Support Vector Machines Regression

Chapter 6 Using Clustering Algorithms to Solve the Gray-Sheep Users Problem 103

Table 6.1: Checking the effect of different distance measures in the K-means
clustering algorithm over the validation set. The number of clusters (k) and
iteration (itr) have been fixed to 50 and 5 respectively. The randomly selected
50 users have been selected as initial centroids. The distance measure denoted
by PCCDV (Pearson Correlation with Default Votes) gives the best results
shown in bold font.

Distance Measure
MAE Coverage

FT1 SML FT1 SML

PCC 1.518± 0.019 0.784± 0.005 94.010± 0.180 99.953± 0.025
PCCDV 1.515± 0.020 0.785± 0.006 95.519± 0.180 100
VS 1.525± 0.034 0.786± 0.004 95.401± 0.180 99.967± 0.017
VSDV 1.533± 0.030 0.788± 0.006 95.510± 0.190 100

(SVMReg). Furthermore, we tuned them for the optimal parameters over the validation

set.

6.6.1 Learning the optimal system parameters

We give the tuning of important parameters. The tuning of other parameters (the

optimal number of clusters, the optimal number of iterations in the K-means cluster-

ing algorithm, and the optimal number of neighbours in CCF algorithm) is given in

Appendix C.

6.6.1.1 Distance measure

The results of the Clustering-based Collaborative Filtering (CCF) algorithm for different

distance measures are shown in Table 6.1. Table 6.1 shows that (in general) the PCC

with default votes gives insignificantly better results than others in terms of MAE and

coverage. We observe that for the FilmTrust dataset, the coverage degrades in the case

of the PCC and VS distance similarity measures. It is because the FilmTrust dataset

is very sparse and it is not possible to find reliable similarities between a user and the

cluster centroid. Considering the results, we choose the PCCDV similarity measure for

the subsequent experiments.

6.6.1.2 Centroid selection approaches

We experimented with different centroid selection algorithms under various cluster sizes

and number of iterations. As an example, we show results at k = 60 and itr = 10 in

Table 6.2; however, similar results were observed at other cluster sizes and iterations.

We observe that the KMeansP lusProbPower algorithm gives better results—in terms of

104 Chapter 6 Using Clustering Algorithms to Solve the Gray-Sheep Users Problem

the MAE and coverage—than others; however, the improvement is not significant. The

same was true for the convergence rate (results are not shown).

C
h
a
p
ter

6
U
sin

g
C
lu
sterin

g
A
lg
orith

m
s
to

S
olve

th
e
G
ray

-S
h
eep

U
sers

P
rob

lem
105

Table 6.2: Checking the effect of different centroid selection algorithms over the validation set. The number of clusters (k) and iterations
(itr) have been fixed to 60 and 10 respectively. The PCCDV distance measure has been used for measuring the similarity between a
centroid and a user. The best results are shown in bold font.

Centroid Selection
MAE Coverage

FT1 SML FT1 SML

KMeans 1.518± 0.020 0.783± 0.006 95.519± 0.175 100
KMeansP lus 1.515± 0.020 0.784± 0.007 95.518± 0.179 100
KMeansP luspower 1.513± 0.022 0.782± 0.005 95.523± 0.171 100
KMeansP lusProbPower 1.512± 0.022 0.783± 0.006 95.524± 0.168 100

Table 6.3: Checking the within-cluster similarity of different centroid selection algorithms at a cluster size of 60 over the validation set.
The PCCDV distance measure has been used for measuring the similarity between a centroid and a user. “TotalSim” represents the
total inter-cluster similarity between each user and the cluster it belongs to. The best results are shown in bold font.

Centroid Selection Dataset
TotalSim observed at different number of iterations (Itr)

Itr: 2 Itr: 4 Itr: 6 Itr: 8 Itr: 10

KMeans
FT1

863.465± 13.66 1876.580± 16.06 2905.367± 17.02 3936.42± 18.80 4969.706± 23.19
KMeansP lus 859.966± 11.06 1877.867± 15.37 2913.732± 27.05 3955.408± 40.06 4999.748± 52.64
KMeansP luspower 861.975± 37.84 1886.001± 73.03 2926.699± 108.98 3973.713± 142.38 5022.389± 174.99
KMeansP lusProbPower 1022.715± 11.78 2132.155± 21.20 3252.587± 28.64 4373.327± 36.91 5495.665± 44.61

KMeans
SML

339.501± 23.50 724.634± 35.03 1120.735± 32.67 1517.206± 30.99 1795.767± 161.79
KMeansP lus 333.344± 12.03 720.172± 9.52 1113.141± 10.48 1506.744± 13.68 1820.095± 163.87
KMeansP luspower 353.691± 15.25 746.031± 9.50 1140.712± 26.25 1535.806± 32.43 1814.008± 202.41
KMeansP lusProbPower 354.426± 15.96 745.214± 9.36 1143.308± 12.16 1538.061± 15.91 1855.608± 172.96

106 Chapter 6 Using Clustering Algorithms to Solve the Gray-Sheep Users Problem

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
1.48

1.5

1.52

1.54

1.56

1.58

1.6

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

Similarity Threshold (FT1)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0.77

0.775

0.78

0.785

0.79

0.795

0.8

Similarity Threshold (SML)

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

Figure 6.1: Finding the optimal similarity threshold (ω) for the MovieLens
(SML) and FilmTrust (FT1) datasets through the validation set.

Table 6.3 shows the total within-cluster similarity between each user and the cluster it

belongs to. Formally, for each user u ∈ U in the training set, we measure the within-

cluster total similarity, i.e.

TotalSim(U , G) =
∑
gj∈G

∑
u∈Ugj

sim(u, cj), (6.4)

where Ugj represents the number of users in cluster gj and cj is the centroid of the corre-

sponding cluster gj . We note that the within-cluster similarity of KMeansP lusProbPower

is the highest amongst the rest for each iteration. Considering the results, we choose

KMeansP lusProbPower centroid selection algorithm for the subsequent experiments.

6.6.1.3 Optimal similarity threshold to detect the gray-sheep users

The similarity threshold ω parameter determines and controls the number of gray-sheep

users. A large value of ω (e.g. ω = 1) would results in all users being gray-sheep users,

whereas a smaller value of ω (e.g. ω = −1) would result in no user being a gray-sheep

user. We changed the value of ω from 1.0 to −1.0 with a difference of 0.05 and measured

the corresponding MAE of the users not identified as gray-sheep users. The value of ω

that gives the minimum MAE is termed as the optimal value of ω. Figure 6.1 shows

how the MAE changes with a change in ω. We observe that the MAE is minimum at

ω = 0.1 and ω = 0.15 for the SML and FT1 datasets respectively. A further increase

in the similarity threshold increases the MAE. We chose these optimal values for the

subsequent experiments. Hence the answer to the question: “How can the gray-sheep

users be effectively detected in a recommender system?” is that these users can be

Chapter 6 Using Clustering Algorithms to Solve the Gray-Sheep Users Problem 107

detected using a K-means clustering algorithm, where the similarity threshold to isolate

these users from the rest of clusters can be found empirically.

6.6.2 Results of CF-based algorithms for different types of users

We show the results of the Clustering-based Collaborative Filtering (CCF) algorithm

over (1) all users, (2) the gray-sheep users3, and (3) the users not classified as gray-sheep

users. Taking the results of Table 6.4 into account, the answer to the question “Does the

presence of the gray-sheep users affect the recommendation quality of the community?”

is that it is dataset-dependent. Their presence does not make any difference to the

recommendation quality, in the case of the MovieLens dataset, because only 25 users

are detected as gray-sheep users. However, it does make some difference in the case

of the FilmTrust dataset (with 1.47% improvement in MAE), as a greater number of

users are detected as the gray-sheep users (283). Considering these results, we claim

that the presence of a large number of gray-sheep users might significantly affect the

recommendations quality of the community (i.e. the MAE for all users).

We observe that the performance of the CCF algorithm suffers the most for gray-sheep

users, because they rely on the similar users (neighbours). In this case, the correlation

coefficient is poorly approximated, and thus less reliable recommendations are produced.

The percentage increase in the MAE for the gray-sheep users, compared with the re-

maining users, is 2.29% for the MovieLens dataset and 8.75% for the FilmTrust dataset.

Taking these results into account, the answer to the question: “How do the CF algo-

rithms perform over these users?” is that the performance of the CF algorithms suffer

for these users4.

6.6.3 Results of TC-based algorithms for the gray-sheep users

To answer the question: “How do the text categorisation algorithms trained on the con-

tent profiles perform over these users?”, we perform experiments with different Text

Categorisation (TC) algorithms and the results are shown in Table 6.5. The results

show that these algorithms improve the recommendation quality compared to the CF

ones. We note that the SVMReg outperforms the rest, with 3.68% and 8.32% im-

provement over the CCF’s result in the case of the MovieLens and FilmTrust datasets

respectively.

3After detecting the gray-sheep users, the steps of algorithm 1 from 8 to 15 are not executed. This
ensures that a user groups with the most similar clusters.

4The results were the same for other conventional CF algorithms. Refer to Appendix C for details.

108 Chapter 6 Using Clustering Algorithms to Solve the Gray-Sheep Users Problem

Table 6.4: The performance of the Clustering-based CF (CCF) algorithm over
different types of users. “All” represents all users, “GS” represents the gray-
sheep users, and “Remaining” represents the users not identified as gray-sheep.

Metric Dataset
Users

All GS Remaining

MAE SML 0.772± 0.001 0.787± 0.012 0.769± 0.001
FT1 1.492± 0.021 1.611± 0.042 1.470± 0.022

ROC-Sensitivity SML 0.737± 0.002 0.701± 0.015 0.746± 0.002
FT1 0.492± 0.008 0.412± 0.021 0.513± 0.008

Coverage SML 100 100 100
FT1 95.539± 0.080 91.243± 0.901 95.770± 0.071

Table 6.5: The performance in terms of MAE, ROC-sensitivity, and coverage of
different algorithms computed over the gray-sheep users. The best results are
shown in bold font.

Dataset Approach MAE ROC-Sensitivity Coverage

SML SVMReg 0.758± 0.006 0.702± 0.004 100
SVMCalss 0.781± 0.005 0.704± 0.004 100
NB 0.811± 0.006 0.698± 0.005 100
KNN 0.816± 0.006 0.666± 0.004 100
C4.5 0.819± 0.005 0.642± 0.005 100
CCF 0.787± 0.012 0.701± 0.015 100
CBFCF 0.761± 0.009 0.698± 0.008 100

FT1 SVMReg 1.477± 0.008 0.518± 0.009 99.993± 0.005
SVMCalss 1.483± 0.008 0.514± 0.010 99.993± 0.005
NB 1.501± 0.009 0.511± 0.010 99.993± 0.005
KNN 1.515± 0.010 0.504± 0.009 99.993± 0.005
C4.5 1.522± 0.014 0.491± 0.011 99.993± 0.005
CCF 1.611± 0.042 0.412± 0.021 91.243± 0.901
CBFCF 1.497± 0.010 0.478± 0.012 99.993± 0.005

6.6.4 Combining the CF with CBF for the gray-sheep users

As described above, the accuracy of the recommender system increases if we use Content-

Based Filtering (CBF) for the gray-sheep users; however, these users will not benefit from

the individual advantages offered by the CF. The CF and CBF can be combined linearly

and weights can be learned per user; nevertheless it would be computationally expensive.

We propose a very simple scheme, which combines the CF and CBF for these users, by

taking into account the similarity of a user with the most similar cluster (found after

running Algorithm 6) and the number of ratings provided by a user

ři,u = Υ× CCF + (1−Υ)× CBF, (6.5)

where Υ = min
(

1,max
(
0, sim(u) +P(u)

))
. The intuition is based on the analysis that

the CBF was better for users having relatively less ratings or having less similarity with

the community of users. For the gray-sheep users the CBF has more weight initially

Chapter 6 Using Clustering Algorithms to Solve the Gray-Sheep Users Problem 109

Table 6.6: The performance in terms of MAE, ROC-sensitivity, and coverage
of different algorithms computed over all users. The best results are shown in
bold font.

Dataset Approach MAE ROC-Sensitivity Coverage

SML SVMReg 0.788± 0.003 0.689± 0.004 100
SVMCalss 0.806± 0.003 0.687± 0.004 100
NB 0.826± 0.004 0.685± 0.006 100
KNN 0.832± 0.004 0.669± 0.005 100
C4.5 0.847± 0.004 0.631± 0.006 100
CCF 0.772± 0.001 0.737± 0.002 100

FT1 SVMReg 1.485± 0.009 0.515± 0.008 99.990± 0.007
SVMCalss 1.489± 0.009 0.513± 0.010 99.990± 0.007
NB 1.507± 0.012 0.512± 0.011 99.990± 0.007
KNN 1.520± 0.011 0.499± 0.012 99.990± 0.007
C4.5 1.527± 0.014 0.488± 0.014 99.990± 0.007
CCF 1.492± 0.021 0.492± 0.008 95.539± 0.080

and the CF acquires more weight as these users rate more items, and their similarity

increases with the community of users. Table 6.6 shows that the proposed approach

(CBFCF) gives quite good results despite its simplicity.

6.6.5 A comparison of different algorithms for all users

Table 6.5 shows how different algorithms perform over the MovieLens and FilmTrust

datasets. We observe that, for the MovieLens dataset, the CF-based algorithm performs

the best, whereas for the FilmTrust dataset, the SVM regression performs the best.

This is because the FilmTrust dataset is relatively sparse as compared to the MovieLens

dataset.

We observe from Tables 6.5 and 6.6 that the CCF algorithm gives good results for the

MovieLens and FilmTrust datasets; however, the performance degrades for the gray-

sheep users. The reason is that gray-sheep users have unclear rating profiles, and in

the worse case, we might find very few or no similar users (neighbours) for a gray-sheep

user. The text categorisation approaches give good results, for these users, as they make

effective use of users’ content profiles that are used for making predictions.

6.6.6 Rating distribution of different kinds of users

We argue that a user cannot be identified as a gray-sheep user based solely on the number

of ratings provided by the user. Figure 6.2 shows the rating distribution of all kinds of

users for the FilmTrust dataset. We observe that 97% of the users identified as gray-

sheep users (0.97× 283 = 274) have provided less than or equal to 5 ratings. Figure 6.2

further shows that 56% of users not identified as gray-sheep users (0.56 × 931 = 521)

110 Chapter 6 Using Clustering Algorithms to Solve the Gray-Sheep Users Problem

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

P
e

rc
e

n
ta

g
e

 o
f

U
s

e
rs

Number of Ratings

All Users

Remaining Users

Gray-sheep Users

Figure 6.2: Rating distribution of FT1 datasets for different types of users.

have provided less than or equal to 5 ratings. Hence, we discover that there are roughly

twice as many users as gray-sheep users who have provided less than or equal to 5 ratings

and yet they are not identified as gray-sheep users by the algorithm. This analysis shows

that there is no potential correlation between the rating count of a user and its being

the gray-sheep user.

6.6.7 Complexity of the proposed solution

The training of SVM can be done off-line and it has a time complexity of O(N3). To

make a prediction, SVM takes O(nsv), where nsv is the number of support vectors. The

training cost5 of the proposed clustering algorithm is O(MN). To make a prediction for

a user using the clustering technique, we find the active user’s similarity with k other

clusters, which takes O(k) calculations. It must be noted that the on-line cost is less

than the conventional hybrid algorithm; for example, the one offered by Claypool et al.

(1999).

6.7 Conclusion

In this chapter, we focus on K-means clustering-based collaborative filtering algorithms.

We propose new centroid selection approaches for the K-means clustering algorithm and

analyse how they affect the quality of clusters and recommendations. We also check how

the choice of distance metric affects the performance of recommendations. Our analysis

shows that different centroid selection algorithms do not significantly affect the cluster

5In addition to this, we incur the cost of choosing the cluster centroids, which is O(kM).

Chapter 6 Using Clustering Algorithms to Solve the Gray-Sheep Users Problem 111

quality; however, the performance of the clustering algorithm varies with the distance

measure.

Furthermore, we point out the gray-sheep users problem associated with a recommender

system. We find out that the presence of gray-sheep users in a community of users poses

two problems: (1) after the initial start-up phase of a system, as more and more users

enter the system, for obvious statistical reasons the chances of finding other users with

similar tastes increases and hence better recommendations can be made. The gray-sheep

users are a potential problem for the CF-based systems because they do not get useful

recommendations due to their idiosyncratic tastes, even after the initial start-up phase;

and (2) they can negatively affect the recommendations of the rest of the community.

A clustering solution is proposed to detect these users and the recommendations for

these users are generated based on the SVM regression trained on the content profiles

of the users, whereas for other users based on the clustering-based collaborative filtering

algorithm.

Although the K-means++ algorithm proposed by Arthur and Vassilvitskii (2007) claims

to give significant computation savings in terms of speed and accuracy compared to the

K-means clustering algorithms, it did not perform competitively in our experiments. The

performance of different centroid selection algorithms can be checked over the NetFlix

dataset, which is a subject of future research.

Chapter 7

Kernel Mapping Recommender

(KMR) System Algorithms

7.1 Introduction

In this chapter, we propose a new class of kernel-mapping methods for solving the

recommender system problem that gives state-of-the-art performance. The main idea

is to find a multi-linear mapping between two vector spaces. The first vector space

might, for example, have vectors encoding information about the items that we wish to

rate, while the second vector space may contain a probability density describing how a

particular user will rate an item. Learning an appropriate mapping can be expressed as a

quadratic optimisation problem. As the problem involves a linear mapping the solution

to the optimisation problem involves inner products in the two vector spaces. This allows

us to use the kernel trick. Directly solving the optimisation problem using quadratic

programming would be too slow for most recommendation datasets. Instead, we find an

approximate solution iteratively, following an idea first developed by Joachims (2006).

This allows us to train the recommender in linear time. The method described here is

a specialisation of a general structured-learning framework developed by Szedmak and

used in Szedmak et al. (2010) for handling incomplete data sources.

The approach we have adopted is easily adapted to different sources of information. We

can, for example, use either rating information from other users or textual information

about the items. Similarly, we are able to build either an item- or a user-based version

of the algorithm. Because we have chosen to build a mapping to a space of functions

approximating the probability density of the ratings, we have an intuitive interpretation

of the recommendations produced by the algorithm. This gives us flexibility in how we

make our final recommendation, which we can exploit to improve the final prediction

for different datasets.

113

114 Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms

Our algorithm relies on a single coherent method (albeit with several variants) that

has not been designed for a specific dataset. We have thus compared our approach

with other general purpose recommenders. To the best of our knowledge the state-

of-the-art algorithms are by Lawrence and Urtasun (2009) and Mackey et al. (2010).

These achieve a considerable gap in performance advantage over the older algorithms.

Our algorithm achieves similar performance to these approaches, although it is out-

performed by Lawrence and Urtasun (2009) on a dataset with 1 000 000 ratings and

by Mackey et al. (2010) on a dataset of 10 000 000 ratings. Our approach is however

very different. The other two approaches are based on matrix factorisation, although

Lawrence and Urtasun (2009) also uses kernel functions. There has been considerable

work on developing matrix factorisation techniques which are at the heart of many of

the most competitive algorithms for this problem. Part of the interest of our algorithm

is that it takes a very different viewpoint from the matrix factorisation approaches, yet

still has very competitive performance.

The main contributions of this chapter are highlighted in the following:

1. We present a new class of Kernel Mapping Recommender (KMR) system algo-

rithms for solving the recommendation problem. We describe both the user- and

item-based versions and show empirically that they outperform (or give compara-

ble results to) the state-of-the-art algorithms.

2. We propose various ways of combining the user- and item-based versions. We

show that both versions are complementary as they focus on different types of

relationship in the dataset.

3. We show how more information can be added (linearly and non-linearly) and how

it affects the recommendation quality.

4. We show how the cold-start, long tail, sparsity, and imbalanced datasets problems

can be solved effectively.

The rest of the chapter has been organised as follows. In the next section we briefly

outline related work. Section 7.3 outlines the proposed algorithm using an item-based

approach. In Section 7.4 we describe extensions to the basic algorithm. Section 7.5

presents the tuning of parameters. This is followed in Section 7.6 by a presentation of

results from our experimental evaluation. We conclude in Section 7.7.

7.2 Related Work

A large number of approaches have been proposed to remedy the accuracy, sparsity,

and scalability problems associated with a recommender system, ranging from super-

vised classification techniques (Billsus and Pazzani, 1998) to unsupervised clustering

Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms 115

techniques (Park and Tuzhilin, 2008; Ghazanfar and Prügel-Bennett, 2011b), to di-

mensionality reduction techniques like Singular Value Decomposition (SVD) or matrix

factorisation (Srebro et al., 2005; Rennie and Srebro, 2005; Bell et al., 2007; Wu, 2007;

Takács et al., 2008; Salakhutdinov and Mnih, 2008; Lawrence and Urtasun, 2009; Ko-

ren et al., 2009; Takács et al., 2009). Classification techniques do not scale well with

the dataset and furthermore they do not give accurate results. The clustering methods

are effective at reducing the dimensionality of the datasets; however, they do not give

accurate results. Singular value decomposition or matrix factorisation techniques give

reasonably accurate results; however, they are expensive in terms of training and mem-

ory requirements, and often lead to the over-fitting. The proposed algorithms can be

trained in linear time and provide accurate recommendations under all datasets.

In this work, we propose to use the rating data effectively to overcome the cold-start

problems. Some other well-known approaches to overcome the cold-start problems using

only the rating data have been offered by Ahn (2008) and Kim et al. (2011). For example,

Kim et al. (2011) proposed to add an error correction term in the predictions computed

by the collaborative filtering algorithm for the cold-start users or items. The error

correction term, computed over all items rated by a user, is the difference between

the predicted value of a rating and the actual value assigned by the user. This is

very expensive heuristic, as it has to build the model for all user-item pairs that have

been rated in the system making it unrealistic for large scale systems and dynamic

environments. Our approach to overcome the cold-start (and related) problems is very

simple and effective.

Hybrid recommender systems have been proposed elsewhere (Melville et al., 2002; Burke,

2002; Pazzani, 1999; Claypool et al., 1999; Burke, 1999; Ghazanfar and Prügel-Bennett,

2010a,e,b), which combine individual recommender systems to avoid certain limitations

of individual recommender systems. In our approach we can add more information

(about items) in the forms of additional kernels, which can be thought of combining

collaborative filtering with content-based filtering. A related approach has been pro-

posed in Basilico and Hofmann (2004), where the authors employed a unified approach

for integrating the user-item ratings information with user/item attributes using kernels.

They learned a prediction function using an on-line perceptron learning algorithm. They

claimed that adding more kernels increases the performance, which is in contrast with

our findings1.

In Szedmak et al. (2010), the authors proposed a structured-learning algorithm for

learning from incomplete datasets. The idea of the structure-learning has been used in

Astikainen et al. (2008), where the authors employed the structured output prediction

for enzyme prediction. We show how the structure-learning approach can be used to

solve the recommender system problem effectively.

1It might be due to the reasons that they used very simple kernels, such as correlation, identity, etc.;
however, we used polynomial kernels, which in turn are addition of correlation, identity, etc.

116 Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms

7.3 Item-based KMR

In this work, we only consider the ratings provided by actual users and assume all other

ratings to be missing values, i.e.

riu =

{
riu if riu is given,

∅ otherwise.

To perform the recommendation task we consider building the additive and multiplica-

tive models for the residual ratings. The additive model is shown in equation 7.1

r̂iu = riu − r̄i − r̄u + r̄, (7.1)

where r̄i, r̄u and r̄ are respectively the mean rating for the item, of the user, and the

overall mean. The multiplicative model can be expressed as follows:

r̂iu =
riur̃

r̃ir̃u
, (7.2)

where r̃, r̃i and r̃u are the geometric means for all the ratings, the ratings for item i,

and the rating of user u respectively. We found the additive model to be (marginally)

better than the multiplicative one, and hence this work is based on the additive model.

We use a technique developed by Szedmak and co-workers for learning structured data

(Szedmak et al., 2010). In the following, we outline how this approach is adapted for

solving the collaborative filtering problem. We assume that we have some information

about the items which we denote by qi. This may, for example, be the set of ratings riu

for u ∈ Di, or it could be text describing the item i. We map the information to some

vector φ(qi) in some extended feature (Hilbert) space. Similarly, we map the rating

residues, r̂iu, to ‘vectors’ in some other Hilbert space. In this work, we consider these

objects to lie in the function space L2(R). In particular we represent each residual r̂iu,

by a normal distribution with mean r̂iu and variance σ2. That is,

ψ(r̂iu) = N (x|r̂iu, σ). (7.3)

The motivation of this choice is to model possible errors in the rating either due to the

discretisation of the rating scale or the variability in assigning a rating (e.g. due to the

mood of the user on the day they made the rating).

The method developed by Szedmak is to seek a linear mapping between these two spaces

which can be used for making predictions. More specifically, in our application, we look

for a linear mapping Wu from the space of φ vectors to the space of ψ vectors, such

that the inner product satisfies the inequality

〈ψ(r̂iu),Wuφ(qi)〉 ≥ 1− ζi,

Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms 117

where ζi ≥ 0 is a slack variable. We then seek to minimise the Frobinius norm of Wu

and the slack variables ζi. We can describe the optimisation problem succinctly as

min 1
2

∑
u∈U ‖Wu‖2 + C

∑
i∈I ζi

with respect to Wu, u ∈ U , ζi, i ∈ I
subject to 〈ψ(r̂iu),Wuφ(qi)〉 ≥ 1− ζi

ζi ≥ 0, i ∈ I, u ∈ Di.

(7.4)

Note that minimisation will be achieved when the vectors Wuφ(qi) are as uniformly

aligned as possible with the vector ψ(r̂iu). Having learned the mappings Wu we can

then make predictions for a new item j using Wuφ(qj). This outputs a function which

informally we can think of as an estimate for the probability density of the residue

r̂ju. However, Wuφ(qj) does not need to be, and typically is not, positive everywhere

or normalised. Thus, it is not itself a probability density. We discuss later different

methods for interpreting Wuφ(qj).

To solve this constrained optimisation problem, we define the Lagrangian

L =
1

2

∑
u∈U
‖Wu‖2 + C

∑
i∈I

ζi −
∑

(i,u)∈D

αiu

(
〈ψ(r̂iu),Wuφ(qi)〉 − 1 + ζi

)
−
∑
i∈I

λiζi,

where αiu ≥ 0 are Lagrange multipliers introduced to ensure that 〈ψ(r̂iu),Wuφ(qi)〉 ≥ 1− ζi
and λi ≥ 0 are Lagrange multipliers introduced to ensure that ζi ≥ 0. The optimum

mapping is found by solving

min
{Wu},{ζi}

max
{αiu},{λi}

L,

subject to the constraints that αiu ≥ 0 for all (i, u) ∈ D and λi ≥ 0 for all i ∈ I. For a

general linear mapping, Wu, we have that

∂

∂Wu
〈ψ(r̂iu),Wuφ(qi)〉 = ψ(r̂iu)⊗ φ(qi),

where ⊗ is the tensor-product of the two vectors. This is clearly the case when the

Hilbert spaces are finite dimensions so that the mapping Wu can be represented by

a matrix, but this can be extended for linear mappings between more general Hilbert

spaces. Using this result we find

∂L
∂Wu

= Wu −
∑
i∈Du

αiuψ(r̂iu)⊗ φ(qi).

The Lagrangian is minimised with respect to Wu when Wu =
∑

i∈Du
αiuψ(r̂iu)⊗φ(qi).

Taking derivatives with respect to ζi we find

∂L
∂ζi

= C −
∑
u∈Di

αiu − λi.

118 Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms

Setting these derivatives to 0 we find that the Lagrangian is minimised with respect to

ζi when ∑
u∈Di

αiu = C − λi ≤ C

where the inequality arises because λi ≥ 0.

After substituting back the expressions containing only the Lagrange multipliers into

the Lagrangian we obtain the dual problem of (7.4) which is a maximisation problem

with respect to the variables αiu

f(α) =− 1

2

∑
u∈U

∑
i,i′∈Du

αiuαi′u〈ψ(r̂iu),ψ(r̂i′u)〉〈φ(qi),φ(qi′)〉+
∑

(i,u)∈D

αiu

subject to the constraint that α ∈ Z(α) where

Z(α) =

α
∣∣∣∣∀u ∈ U , ∑

u∈Di

αiu ≤ C ∧ ∀(i, u) ∈ D, αiu ≥ 0

 .

We are now in the position where we can apply the usual kernel trick. The kernel

functions can be defined by

Kr̂(r̂iu, r̂i′u) = 〈ψ(r̂iu),ψ(r̂i′u)〉
Kq(qi, qi′) = 〈φ(qi),φ(qi′)〉,

and then we can write f(α) as

f(α) = −1

2

∑
u∈U

∑
i,i′∈Du

αiuαi′uKr̂(r̂iu, r̂i′u)Kq(qi, qi′) +
∑

(i,u)∈D

αiu

where we are free to choose any pair of positive definite kernel functions. With our

choice of mapping the rating residual, r̂, to ψ(r̂) = N (x|r̂, σ), we note that

Kr̂(r̂, r̂
′) = 〈ψ(r̂),ψ(r̂′)〉 = N (r̂ − r̂′|

√
2σ),

which is inexpensive to compute. We could build more complex kernels for Kr̂(r̂, r̂
′),

by mapping ψ(r̂) into another extended feature space, although we would then lose the

interpretation of Wuφ(qi) as an approximation to the density function for r̂iu.

7.3.1 Learning the Lagrange multipliers

For large-scale recommender systems, solving this quadratic programming problem using

a general quadratic programming solver would be impractical due to the large number

of data points. However, we can find an approximate solution iteratively using the

Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms 119

conditional gradient method. To understand this method it is helpful to write f(α) in

matrix form

f(α) = −1

2
αTMα+ bTα

with α ∈ Z(α). We obtain a series of approximations αt for the optimal parameters

starting from some initial guess α0 ∈ Z(α). At each step we use a linear approximation

for f(α)

f(α) ≈ f̂αt(α) = f(αt) + (α−αt)∇f(αt).

We compute the next approximation using two stages. We first solve the linear pro-

gramming problem

α∗ = argmax
α∈Z(α)

f̂αt(α)

= argmax
α∈Z(α)

−αT(Mαt − b) + const.

We then find the new approximation αt+1 to be

αt+1 = αt + τ(α−αt)

where we choose τ to be

τ = argmax
τ

f(αt+1) =
(b−Mαt)T(α∗ −αt)

(α∗ −αt)TM(α∗ −αt)
.

This guarantees that no step increases the objective function.

We note that in the linear programming problem we have an objective function of the

form ∑
i∈I

∑
u∈Di

αiu
∂f(αt)

∂αiu
+ const,

which decouples for every set of Lagrange multipliers Ai = {αui|u ∈ Di}. The linear

constraints Z(α) also decouple into a set of constraints for each set of Lagrange multi-

pliers Ai. Thus we can perform the linear programming independently for each set of

variables Ai. Furthermore, due to the simplicity of the constraint, it turns out that the

linear programming problem can be solved in linear time (as opposed to cubic time for

a general linear programming problem). The training is stopped after a fixed number of

iterations which is a parameter of the training algorithm. The total complexity of this

step for all users is O(|D|). This leads to an algorithm with linear complexity in the

number of available ranks. Note that the non-zero elements of the matrix M is equal to

|Du| which tends to be constant, i.e. it does not increase with the number of users.

120 Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms

Table 7.1: Example: a subset of the user-item rating matrix in a movie recom-
mender system. We have four users (rows) and three movies (columns). The
case, where a user has not rated a particular movie is shown by the � symbol.
The rating scale, consisting of integer values between 1 and 5, captures the ex-
treme likes (5) and extreme dislikes (1) behaviour of a user. The rating we want
to predict is shown by “?” symbol.

i1 i2 i3
u1 5 � 1

u2 5 5 1

u3 5 4 2

u4 1 3 ?

7.3.2 Predicting unseen ratings

To make a prediction for the rating riu where (i, u) 6∈ D, we estimate the residue r̂iu =

riu − r̄i − r̄u + r̄ using the function

piu(r̂) = 〈ψ(r̂),Wuφ(qi)〉
=
∑
i′∈Du

αi′uKr̂(r̂, r̂i′u)Kq(qi, qi′),

where ψ(r̂) = N (r̂, σ). We have a choice in how to obtain a single prediction from this

function. Our standard max predictor will be to find the maximum argument of piu(r̂)

řiu = argmax
r̂

piu(r̂).

To make it clear how the algorithm makes predictions, next, we provide a small scale

example.

7.3.3 A small scale example

Suppose a recommender system has four users (i.e. U = {u1, u2, u3, u4}) and three

items (i.e. I = {i1,i2,i3}). The information about each item is a column vector of the

user-item rating matrix, shown in Table 7.1. The users’, items’, and overall averages

are:

r̄u1 = 3.000, r̄u2 = 3.666, r̄u3 = 3.666, r̄u4 = 2.000,

r̄i1 = 4.000, r̄i2 = 4.000, r̄i3 = 1.333, r̄ = 3.200,

After applying the additive model (equation 7.1), the user-item rating matrix can be

represented in the residual form as shown in Table 7.2. The input feature kernel, Kq,

using the polynomial kernel (refer to Section 7.5.2) is shown in equation 7.5.

Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms 121

Table 7.2: Example: a subset of the user-item rating matrix in a movie recom-
mender system after normalisation.

i1 i2 i3
u1 1.200 � −0.1333

u2 0.533 0.533 −0.800

u3 0.533 −0.466 0.200

u4 −1.800 0.200 ?

q1 = (5, 5, 5, 1) −→ φ(q1)
W4−→

-3 -2 -1 0 1 2

residual, r̂

r̂14 = −1.8

q2 = (∅, 5, 4, 3) −→ φ(q2)
W4−→

-3 -2 -1 0 1 2

residual, r̂

r̂24 = 0.2

Figure 7.1: Schematic showing the aim of the algorithm. Information, qi (in this
case a rating vector) about an item i, is first mapped to a vector in an extended
feature space φ(qi). We then try to find the best linear mapping, W4, for user
u4, to the vector, ψ(r̂iu4), describing the residual.

Kq =

 1.000 0.067 0.003

0.067 1.000 0.300

0.003 0.300 1.000

 (7.5)

We can compute the residual kernel, Kr̂, based on the inner products between Gaussian

densities functions with expected values r̂ and r̂′, and sharing the common standard

deviation σ.

Kr̂(r̂, r̂
′) = 〈ψ(r̂),ψ(r̂′)〉 =

1

2σ
√
π
e−(r̂−r̂

′)2/4σ2

Assume that σ = 0.5 then we have

Kresidual =


Kr̂,u1

Kr̂,u2

Kr̂,u3

Kr̂,u4

 ,

122 Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms

where

Kr̂,u2 =

 0.564 0.564 0.149

0.564 0.564 0.149

2.140 2.140 0.564

 Kr̂,u1 =

[
0.564 0.149

2.140 0.564

]

Kr̂,u3 =

 0.564 0.208 0.404

1.534 0.564 1.099

0.788 0.290 0.564

 Kr̂,u4 =

[
0.564 0.149

2.140 0.564

]
.

Table 7.3: The optimal values of design variable, α, for each user-item pair.

i1 i2 i3
u1 1.000 � 1.000

u2 0.993 0.993 0.999

u3 0.993 0.768 0.769

u4 1.000 1.000 ?

The optimal values for the design variable, α, are learned using the conditional gradient

method, and are shown in Table 7.3. After learning α parameters, the mapping Wu, can

be defined for each user (recall Wu =
∑

i∈Di
αiuψ(r̂iu)⊗ φ(qi)). To make a prediction

for the rating riu, where (i, u) 6∈ D

Wuφ(qi) =
∑
i′∈Du

αi′uψ(r̂iu) < φ(qi′),φ(qi) >,

=
∑
i′∈Du

αi′uψ(r̂iu)Kq(qi′ , qi).

In our case, we have u = u4 and i = i3, so

Wu4φ(qi3) = αi1u4ψ(r̂i1u4)Kq(qi1 , qi3) + αi2u4ψ(r̂i2u4)Kq(qi2 , qi3)

= 1.000ψ(r̂i1u4)0.003 + 1.000ψ(r̂i2u4)0.300,

= 0.003ψ(r̂i1u4) + 0.300ψ(r̂i2u4),

= 0.003N (r̂i1u4 , σ) + 0.300N (r̂i2u4 , σ).

It is an unnormalized probability density function of mixture of two Gaussians. The

optimal rating then can be derived by

pi3u4(r̂) = 〈ψ(r̂),Wu4φ(qi3)〉
= arg max

r̂
〈ψ(r̂), 0.003ψ(r̂i1u4) + 0.300ψ(r̂i2u4)〉,

= arg max
r̂
〈0.003Kr̂(r̂, r̂i1u4) + 0.300Kr̂(r̂, r̂i2u4)〉,

= arg max
r̂
〈0.003N (r̂|r̂i1u4 ,

√
2σ) + 0.300N (r̂|r̂i2u4 ,

√
2σ)〉

Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms 123

Taking the optimum solution (refer to Figure 7.2), ri3u4 , the prediction for the residual

is 0.2. Hence, user u4 would rate item i3 with rating of r̂i3u4 + r̂i + r̂u − r̂ = 0.2 + 2.0 +

1.333− 3.2 = 0.33.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Figure 7.2: Plotting the probability density function of mixture of two Gaussians
with r̂={−5:0.2:5}. The optimal solution is found to be 0.2.

7.4 Extensions to the Basic Algorithm

In this section we describe extensions to the basic algorithm which are relevant to prac-

tical recommender systems.

7.4.1 User-based KMR

Depending on the dataset characteristics (e.g. number of items rated by the active user,

number of users which have rated the target item, etc.) different models can be trained

along the rows or columns of the data matrix. A related algorithm is proposed, which

solves the problem from the user point of view, hence it is named as user-based KMR

(KMRub). To perform a user-based recommendation, we use information qu about

users u and try to find a linear mapping Wi to align some extended feature vectors

φ(qu) to the residue vector ψ(r̂iu). The derivation is identical to that for the item-based

recommender when we interchange the subscripts i and u.

7.4.2 Combining the user- and item-based KMR

The user- and item-based versions provide complementary roles in generating predictions

as they focus on different types of relationships in a dataset. Let řubiu and řibiu be the

predictions made by the user- and item-based versions respectively. We have considered

three different ways of combining the user- and item-based predictions.

124 Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms

• Using the simple linear combination: In this approach, the user- and item-based

versions are linearly combined, where the parameter θlinear is learned from a vali-

dation set.

řiu = θlinearř
ub
iu + (1− θlinear)řibiu (7.6)

We denote the resulting hybrid recommender system by KMRlinearhybrid.

• Switching on number of ratings: Here, we take into account the information about

user and item profiles. The rationale behind this approach is the intuition that if

we have a large number of ratings for an item compared to the number of ratings

made by the active user, then the user-based version is likely to give better results

than the item-based version and vice-versa. Rather than using the raw number of

ratings, we normalise by the number of ratings given by the power user, up (i.e. the

user that has rated the most number of items) and by the power item ip (i.e. the

item with the maximum number of ratings). That is, we used

řiu =

{
řubiu : if |Ui||Uip |

− |Iu|
|Iup |

> θcnt

řibiu : otherwise.
(7.7)

We denote the resulting hybrid recommender system by KMRcnthybrid.

• Switching on uncertainty in prediction: Here we use a different strategy for switch-

ing between the user- and item-based predictors. We try to estimate the uncer-

tainty in the prediction by examining the “variance” in Wuφ(qi) and Wiφ(qu).

Since they are not real probability distributions, we must first exclude the regions

where the functions go negative and normalise the output so that we can treat

them as densities and compute their variance. We denote the variance by varub

and varib for the user- and item-based versions, respectively. We then switch the

recommendation we use according to

řiu =

{
řubiu : if varub − varib > θvar

řibiu : otherwise.
(7.8)

We denote the resulting hybrid recommender system by KMRvarhybrid.

7.4.3 Combining different kernels

In many applications there are multiple sources of information that can be used to make

a recommendation. We can easily accommodate different sources of information by

combining kernels. To illustrate this we will test our algorithm on datasets consisting of

film ratings where we have three types of information available (see chapter 3 for details)

• The ratings of other users from which we can construct a kernel Krat

Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms 125

• “Demographic” information obtained from genre about the films from which we

can construct a kernel Kdemo

• “Feature” information obtained form a textual description of the films from which

we construct a kernel Kfeat.

These kernels can be combined linearly

K = βratKrat + βdemoKdemo + βfeatKfeat, (7.9)

where the parameters βrat, βdemo and βfeat = 1−βrat−βdemo can be tunn by measuring

the generalisation performance on a validation set. This way of combining kernels can

be viewed as a concatenation of the feature vectors

φ = (
√
βratφrat,

√
βdemoφdemo,

√
βfeatφfeat)

=
√
βratφrat ⊕

√
βdemoφdemo ⊕

√
βfeatφfeat,

where ⊕ represents the direct sum. Alternatively we can combine the kernels non-

linearly

K = Krat ·Kdemo ·Kfeat, (7.10)

where the · denotes the point-wise product of the kernel matrices. This corresponds to

taking a tensor product of the feature vectors

φ = φrat ⊗ φdemo ⊗ φfeat. (7.11)

7.4.4 Cold-start, long tail, and imbalanced datasets

The standard max predictor works well when we have a sufficient number of ratings

for the user and the item. However as we will see it gives poor predictions in scenarios

where we have a small amount of training data. Since we argued earlier Wuφ(qi)

as an approximation for the probability density of r̂iu. It will not generally be positive

everywhere, but by removing the negative part of the function we can treat the remaining

function as a probability density. In this case we can consider the mean, mode, or median

as approximations for the most likely value of r̂iu. Under conditions where we lack

sufficient data we find that using a combination of the mean, mode and median together

with the standard (max) prediction gives a considerable improvement in accuracy. In

particular, we consider a predictor

r̂M4 = wmaxr̂max + wmeanr̂mean + wmoder̂mode + wmedianr̂median

126 Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms

r̂j for j ∈ {max, mean, mode, median} are the standard predictors and the predictors

using the mean, mode and median, while wj are a set of weights that are learned from

a validation set. We consider the weights to be constrained so that wj ≥ 0 and they

sum to 1. In the results shown later we denote those that use this predictor by the

superscript M4.

7.4.5 Two-way clustering

In an attempt to increase the performance, we tried clustering both the users and items.

The optimal clustering is intractable; however, fast approximate clustering algorithms

are abundant. We propose a simple sorting algorithm for clustering the dataset. We

used an iterative process of sorting first the columns and then the rows of the user-

item rating matrix. This is repeated in an attempt to derive the matrix into a block

structure2. While normalising the dataset (see equation 7.1), the user or item averages

are taken from the cluster in which a user or item resides. This ensures that the average

values are taken from the most similar group of users or items. The clustered dataset is

shown in Figure 7.3. We observe that the ratings are in the block structure.

200 400 600 800 1000 1200 1400 1600

100

200

300

400

500

600

700

800

900

Figure 7.3: Clustering the rows and columns for the SML dataset for 2000
number of iterations. Note that the user-item rating matrix has been derived
into a block structure.

7.4.6 Standard deviation in the output Gaussian kernel

The parameter, σ, is used in mapping ψ(r̂) = N (x|r̂, σ). It models the uncertainty or

the fluctuation in a user’s rating. The simplest solution is to use a single value of σ for

2The process is terminated when either there is no change in the sorting process or maximum number
of iterations are repeated (10 000).

Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms 127

the dataset. However, as different users rate items differently (for example some rate

items systematically, some rate arbitrary, depending on the context), hence, changing

the value of σ per user is conceivable. Nevertheless, having more parameters in the

system increases the complexity of the system and the system might suffer from over-

fitting problem. Changing the value of σ per group is less ideal compared to changing

the value of σ per user, yet it offers a good trade-off between the complexity of the

system and modeling the uncertainty in the user’s rating.

7.5 Learning the Optimal System Parameters

There are number of parameters that need to be learned. In this section, we discuss the

training of important parameters.

7.5.1 Number of iterations

50 100 150 200 250 300 350 400

1.5

2

2.5

3

3.5

4

Number of Iterations (FT5 DataSet)

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

KMR

ub

KMR
ib

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

Number of Iterations (FT5 DataSet)

Ti
m

e
(m

s)

KMR

ub

KMR
ib

Figure 7.4: The number of iterations and time required to converge the KMR
algorithms (FT5 dataset).

The algorithm we develop uses an iterative technique to learn the Lagrange multipliers.

As we increase the number of iterations the mean absolute error improves. The speed of

convergence will depend on the dataset and the type of information we are using (e.g.

the user- or item-based). Figure 7.4 and 7.5, show the mean absolute error and the time

taken to learn the Lagrange multipliers versus the number of iterations for the FT5 and

SML datasets respectively.

128 Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms

50 100 150 200 250 300 350 400
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Iterations (SML DataSet)

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

KMR

ub

KMR
ib

KMR
F

KMR
D

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

Number of Iterations (SML DataSet)

Ti
m

e
(m

s)

KMR

ub

KMR
ib

KMR
F

KMR
D

Figure 7.5: The number of iterations and time required to converge the KMR
algorithms (SML dataset).

We note that for the FT5 dataset, the performance of the item-based version suffers badly

when the number of iterations are very small. However, the performance of the user-

based version is quite good even after a few iterations. Hence, if one has a constraint on

the time required to build the model, then it is better to switch to the user-based version

rather than the item-based version for the dataset. In contrast in the SML dataset the

convergence of all the methods was relatively quick. The convergence clearly depends on

the number of users/items and the user/item profile length (e.g. rating profile, feature

profile length etc.). It is not obvious a priori how many iterations are needed to get good

rating predictions. For the consequent experiments, we chose the number of iterations

to be 400 for the SML dataset, 300 for FT5, 400 for ML, and 600 for ML10 and NF.

7.5.2 The optimal kernel parameters

We trained linear, polynomial, and poly-Gaussian kernels and chose the one giving the

most accurate results. The polynomial kernel is of the form

K(x,y) =
(
〈x,y〉+R

)d
.

For the rating based version, the best polynomial kernel parameters (d,R) are found

to be, for the user- and item-based versions respectively: (3, 0.5) and (4, 0.5) for the

SML dataset; (6, 0.4) and (6, 0.4) for the FT5 dataset; and (6, 0.1) and (9, 0.1) for the

ML dataset. For the feature based version, the best polynomial kernel parameters were

found to be (5, 0.5) for the SML dataset and; (5, 0.1) for the FT5 dataset.

Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms 129

We did not tune the parameters for ML10 and NF dataset, as it was computationally

expensive. We fixed them to (14, 0.5) for user and item-based versions for both datasets;

and (12, 0.5) for the feature-based version for the ML10 dataset.

For the demographic based version, we found the best kernel was the poly-Gaussian

kernel (which is a simple extension of the Gaussian one) given by

K(x,y) = exp

(
−‖x− y‖

q

τ

)
, (7.12)

where the best parameter (q, τ) were found to be (0.1, 0.1) for the SML dataset; and

(0.2, 0.1) for the FT5 dataset. Again we did not tune parameters for ML10 dataset and

they were fixed to (0.5, 0.1).

7.5.3 Parameters βrat, βfeat, and βdemo

Parameters βrat, βfeat, and βdemo = βrat−βfeat determine the relative weights of rating,

feature, and demographic kernels in the final prediction. The 66 parameter sets were

generated by producing all possible combination of parameters values, ranging from 0

to 1.0 with differences of 0.1. We assume that βrat + βfeat + βdemo = 1 without the loss

of generalization. The parameters sets βrat = 1 and βfeat = 0 gave the lowest MAE for

all the datasets.

7.5.4 Parameter θlinear

Parameters θlinear and (1− θlinear) determine the relative weights of the user- and item-

based KMR in the final prediction respectively. We changed the value of θlinear from 0

to 1 with a difference of 0.1 and the resulting MAE has been shown in Figure 7.6 (for

Case 1, as discussed in Section 7.6.4). Figure 7.6 shows that for the SML dataset, the

MAE is minimum at θlinear = 0.3, after which it starts increasing again; whereas, for

the FT5 dataset, the MAE keeps on decreasing, reaches its minimum at θlinear = 0.9,

an then increases again. For this reason, we choose the optimal value of θlinear to be 0.3

and 0.9 for SML and the FT5 dataset respectively. Similarly, the value of θlinear was

trained for other datasets.

7.5.5 Threshold θcnt

In the hybrid variant, KMRcnthybrid the threshold θcnt determines the switching point

between using the item-based and user-based algorithms depending on the number of

ratings of the item and user. We determine the best value of θcnt by varying it between

0 and 1 in steps of 0.04. Figure 7.7 shows the parameter θcnt learned (for Case 1,

130 Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

Value of Threshold Parameter (θ
linear

) (SML DataSet)

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

KMR
hybrid
linear

KMR
ub

KMR
ib

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

1.6

1.7

1.8

1.9

Value of Threshold Parameter (θ
linear

) (FT5 DataSet)

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

KMR
hybrid
linear

KMR
ub

KMR
ib

Figure 7.6: Learning the optimal value of threshold parameter θlinear, over the
validation set.

as discussed in Section 7.6.4) over the validation set. We observe that for the SML

dataset, the MAE keeps on decreasing with the increase in the value of θcnt, reaches at

its minimum between θcnt ∈ [0.64−0.68] and then either stays stable or starts increasing

again. For the FT5 dataset, the MAE decreases initially, when the value of θcnt changes

from 0 to 0.04 and then starts increasing when the value of θcnt increases beyond 0.04.

For this reason, we choose the value θcnt to be 0.68 and 0.04 for SML and the FT5

datasets respectively. Similarly, the value of θcnt was trained for other datasets.

7.5.6 Threshold θvar

In the hybrid algorithm, KMRvarhybrid, the parameter θvar controls the switching from

the user-based prediction to the item-based prediction depending on the uncertainty in

the predictions measured by the variance in the Wuφ(qi). To learn this parameter we

changed its value from 0 to 1 in steps of 0.04 and observed the corresponding MAE.

Figure 7.8 shows the parameter θvar learned (for Case 1, as discussed in Section 7.6.4)

over the validation. We observe that for the SML dataset, the MAE keeps on decreasing

with the increase in the value of θvar, reaches a minimum at 0.24, and then starts

increasing again. For the FT5 dataset, the decrease in the MAE is not very significant,

when θvar < 0.44, however, afterwards, a sharp decrease in the MAE is observed. The

MAE keeps on decreasing, reaches its minimum at 0.64, and then either it stays stable

or starts increasing again. For this reason we choose the optimal value θvar to be 0.24

Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms 131

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

Value of Threshold Parameter (θ
cnt

) (SML DataSet)

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (M

A
E

)

KMR
hybrid
cnt

KMR
ub

KMR
ib

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

1.6

1.7

1.8

1.9

2

Value of Threshold Parameter (θ
cnt

) (FT5 DataSet)

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (M

A
E

)

KMR
hybrid
cnt

KMR
ub

KMR
ib

Figure 7.7: Learning the optimal value of threshold parameter θcnt, over the
validation set.

and 0.64 for SML and the FT5 datasets respectively. Similarly, the value of θvar were

trained for other datasets.

7.5.7 Parameter σ and other parameters

We experimented with learning this parameter for each user, but found this computa-

tionally very expensive. We then tried grouping the users according to the variance in

their ratings into 100 groups and tuned σ for each group. Although this gave improved

performance, it was not found to be statistically significant. We therefore just used a

single parameter σ = 12, which we tuned using a validation set.

132 Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

Value of Threshold Parameter θ
var

 (SML DataSet)

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (M

A
E

)

KMR
hybrid
var

KMR
ub

KMR
ib

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.4

1.5

1.6

1.7

1.8

1.9

2

Value of Threshold Parameter θ
var

 (FT5 DataSet)

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (M

A
E

)

KMR
hybrid
var

KMR
ub

KMR
ib

Figure 7.8: Learning the optimal value of threshold parameter θvar, over the
validation set.

C
h
a
p
ter

7
K
ern

el
M
ap

p
in
g
R
ecom

m
en

d
er

(K
M
R
)
S
y
stem

A
lgorith

m
s

133

Table 7.4: A comparison of the KMR algorithms with others in terms of the MAE. The best results are shown in bold font.

Algo. Best MAE
SML ML ML10 FT5 NF

UBCFDV 0.746± 0.001 0.706± 0.000 0.678± 0.000 1.419± 0.008 0.713± 0.001
IBCF 0.764± 0.001 0.715± 0.000 0.675± 0.001 1.429± 0.006 0.719± 0.001
Hybrid CF 0.752± 0.001 0.702± 0.001 0.667± 0.000 1.427± 0.002 0.717± 0.001
SVD 0.774± 0.001 0.730± 0.001 0.691± 0.001 1.483± 0.005 0.725± 0.001
KMRib 0.715± 0.001 0.663± 0.001 0.638± 0.001 1.381± 0.002 0.684± 0.001
KMRub 0.731± 0.001 0.686± 0.001 0.649± 0.001 1.398± 0.002 0.687± 0.001
KMRvarhybrid 0.711± 0.001 0.658± 0.001 0.633± 0.001 1.377± 0.002 0.682± 0.001

134 Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms

The parameter C (that punishes the slack variables in the Lagrange formulation) was

fixed to 20, after initial experimentation.

7.6 Results and Discussion

In this section, we describe the results obtained from our experiments. In the following,

we have denoted our proposed algorithm by KMRsupsub , where the subscript denotes the

variant of the algorithm and the occasional superscript describes the variant in more

detail where necessary. The main variants are item-based (ib), user-based (ub), feature-

based (F) that use feature vectors rather than rating vectors, demographic (D) that use

demographic vectors rather than rating vectors, and hybrid (hybrid) that uses a mixture

of the user- and item-based predictions. For the hybrid algorithm we use the superscript

to denote the different mechanisms for combining the user- and item-based predictions.

When we use combinations of information, e.g. item-based ratings and features, we use

KMRib+F to denote the case when we add the kernels and KMRib⊗F when we multiply

the kernels. Finally, for the datasets with limited amount of ratings, instead of using

the standard approach to predicting a new rating, we combined the standard approach

(value of r̂ that maximises the predictor p(r̂)) with the mean, mode and median of

Wuφ(qi) (for the item-based approach). We denote this version of the algorithm with

a superscript M4.

7.6.1 Direct comparison

We compared our algorithms with three different algorithms: the user-based CF with

default votes (Breese et al., 1998) (shown by UBCFDV , which provides a useful baseline

for comparing algorithms), the item-based CF (Sarwar et al., 2001) (shown by IBCF),

and a SVD-based approach (Sarwar et al., 2000b) (shown by SVD). To provide as fair

comparison as possible, we tuned all parameters of the algorithms.

Table 7.4 shows that the KMR algorithms outperforms all the aforementioned algo-

rithms. The percentage decrease in error of KMRib, KMRub, and KMRvarhybrid over the

baseline approach is found to be 2.68%, 1.48%, and 2.96% for the FT5 dataset; 4.16%,

2.01%, and 4.69% for the SML dataset; 6.09%, 2.83%, and 6.80% for the ML dataset;

5.90%, 4.28%, and 6.64% for the ML10 dataset; and 4.07%, 3.65%, and 4.35% for the

NF dataset. Appendix D compare the KMR with others in terms of ROC-sensitivity

and F1 measure.

Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms 135

Table 7.5: A comparison of different algorithms in terms of the NMAE (Nor-
malised MAE) for the ML dataset. The proposed algorithms outperform Match-
Box (Stern et al., 2009), ImputedSVD (Ghazanfar and Prügel-Bennett, 2011a),
and MMMF (Rennie and Srebro, 2005). They give the comparable results to E-
MMF (DeCoste, 2006) and NLMF (Lawrence and Urtasun, 2009). Our results
and the best results are shown in bold font.

Algorithm NMAE

MatchBox 0.4206± 0.0055

ImputedSVD 0.4192± 0.0025

MMMF 0.4156± 0.0037

E-MMF 0.4029± 0.0027

NLMF Linear 0.4052± 0.0011

NLMF RBF 0.4026± 0.0020

KMRib 0.4125± 0.0034

KMRub 0.4251± 0.0032

KMRvarhybrid 0.4065± 0.0021

7.6.2 Indirect comparison

In this section, we compare our results with other algorithms indirectly, i.e. we take the

result from the respective papers without re-implementing them, which might make the

comparison less than ideal. We conducted the weak generalization test procedures of

Marlin (2004) using the All-But-One protocol—for each user in the training set a single

rating is withheld for the test set. We averaged the results over the 3 random train-test

splits as used in Lawrence and Urtasun (2009), Marlin (2004) and Rennie and Srebro

(2005).

A comparison in terms of the Normalized MAE (NMAE) of the algorithms is given in

Table 7.5. In Table 7.5, the MatchBox3 is proposed in Stern et al. (2009), ImputedSVD

is proposed in (Ghazanfar and Prügel-Bennett, 2011a), MMMF represents the Maximum

Margin Matrix Factorisation algorithm proposed in (Rennie and Srebro, 2005), E-MMF

represents the Ensemble Maximum Margin Matrix Factorisation technique proposed in

(DeCoste, 2006), and NLMF represents the Non-Linear Matrix Factorisation technique

(with linear and RBF versions) as proposed in Lawrence and Urtasun (2009).

Table 7.5 shows that the NLMF and E-MMF perform better than the rest. The proposed

hybrid algorithm gives slightly poorer results to them with NMAE = 0.4065. It is worth

mentioning that the E-MMF is an ensemble of about 100 predictors, which makes this

algorithm unattractive. From this table, we may conclude that the proposed algorithm

is comparable to the state-of-the-art algorithm for the MovieLens (1M) dataset.

3The authors did not provide any numeric value, only a graph is presented showing the minimum
value approximately to 0.673. Furthermore, the test procedures of this paper were different from the
rest.

136 Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms

Table 7.6: A comparison of different algorithms in terms of the RMSE for the
ML10 dataset. NLMF represents the Non-Linear Matrix Factorisation tech-
nique as proposed in Lawrence and Urtasun (2009) and M3F-TIB represents
the Mixed Membership Matrix Factorisation model as proposed in Mackey et al.
(2010). Our results and the best results are shown in bold.

Algorithm RMSE

NLMF 0.8740± 0.02

M3F-TIB 0.8447± 0.009

KMRib 0.8721± 0.011

KMRub 0.8994± 0.015

KMRvarhybrid 0.8612± 0.011

To the best of our knowledge, the best results for the MovieLens 10M dataset that has

been reported in the literature are those proposed in Lawrence and Urtasun (2009) and

Mackey et al. (2010). They claimed their proposed algorithm gives RMSE accuracy of

0.8740±0.02 and 0.8447±0.009, respectively. We followed their experimental setup and

the results have been shown in Table 7.6. Table 7.6 shows that the proposed algorithms

outperform Lawrence and Urtasun (2009)’s results. The percentage improvement is

found to be 1.46% in the case of KMRvarHybrib. The M3F-TIB algorithm gave the best

results outperforming our best algorithm KMRvarhybrid with 1.92% decrease in error.

Unfortunately, no NMAE (or MAE) was provided for M3F-TIB technique (Mackey

et al., 2010) over the MovieLens 1M dataset, which makes it harder to compare differ-

ent algorithms results with M3F-TIB. Considering these result, we conclude that our

approach appears to be competitive with the current state-of-the-art.

7.6.3 Combining different kernels

As discussed in Section 7.4.3, there can be different sources of information that can

be used for making recommendations. Our framework allows these different sources to

be exploited by combining different kernels built from different information vectors. In

particular, we consider the rating information, feature information, and demographics

information as described in Section 7.4.3.

Table 7.7 shows the performance of the different combinations of kernels on the SML

dataset. We have shown not only the Mean Absolute Error (MAE), but also a number

of measures of the ability to classify films as either highly rated or poorly rated. We

observe reasonable performance using just rating information, demographic information

and feature information. Interestingly, for this dataset, combining kernels does not

give significantly better performance than using a kernel based on a single source of

information. A plausible explanation of this observation is that our error rates are close

to the optimum that can be achieved (there is a limit on the performance of any system

due to the fickleness of the users making the ratings). Or, at least, we are close to the

Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms 137

optimum given the way we have represented the problem. On other datasets where, for

example, ratings for some users are very sparse, demographic and feature information

can be much more significant. The other striking feature of Table 7.7 is that multiplying

kernels together seem to be more successful than adding different kernels.

Similar results (not shown) were observed in the case of FilmTrust and MovieLens ML10

datasets. We also attempted to linearly combine the predictions from different kernels,

but again this gave no improvement.

7.6.4 Combining the user- and item-based versions

The methods of combining the user- and item-based versions (mentioned in Section 7.4.2)

did not give any significant improvement over the individual results for the whole dataset.

To check the performance for imbalanced datasets, we (randomly) selected 200 users and

300 movies from the SML dataset, and 200 users and 50 movies from the FT5 dataset;

and randomly withheld their x% ratings. We checked the performance for two cases:

for Case 1, the value of x lies between 0 to 50 (i.e. x ∈ {0, 50}), whereas for Case 2, the

value of x lies between 0 to 100 (i.e. x ∈ {0, 100}). The latter case creates a relatively

imbalanced subset of the dataset as compared to the former one.

Table 7.8 shows the performance of user-based, item-based, and different methods used

to combine the individual versions. We use the average of the user- and item-based

versions as a baseline. We observe that linearly combining the individual recommender

systems does not give significant improvement over the baseline and the same is true for

the second method (discussed in Section 7.4.2). However, KMRvarhybrid does significantly

improve the performance, with p-value in the case of pair-t test compared with the

baseline recommender (max) found to be less than 10−6 for both datasets. Similar

results were observed for other datasets as well. What is evident from Table 7.8 is that

the user- and item-based versions of the algorithm are complementary and can improve

the performance, if combined in a systematical way, for the imbalanced dataset.

Furthermore, we combined different kernel’s results linearly; however, again it did not

give any significant improvement in the results.

13
8

C
h
ap

ter
7
K
ern

el
M
a
p
p
in
g
R
ecom

m
en

d
er

(K
M
R
)
S
y
stem

A
lgorith

m
s

Table 7.7: Comparing the performance of KMR algorithms found with different combinations of kernel for the SML dataset. The best
results are shown in bold font.

Algorithm MAE ROC Precision Recall F1

KMRib 0.715± 0.001 0.708± 0.002 0.562± 0.002 0.546± 0.005 0.533± 0.003

KMRD 0.748± 0.001 0.692± 0.002 0.546± 0.003 0.532± 0.004 0.505± 0.004

KMRF 0.729± 0.001 0.693± 0.002 0.552± 0.003 0.526± 0.005 0.506± 0.003

KMRib+F+D 0.733± 0.001 0.705± 0.002 0.550± 0.002 0.540± 0.003 0.517± 0.002

KMRib+F 0.721± 0.001 0.706± 0.003 0.561± 0.002 0.545± 0.005 0.522± 0.002

KMRib+D 0.732± 0.001 0.705± 0.002 0.556± 0.003 0.542± 0.005 0.517± 0.003

KMRF+D 0.735± 0.001 0.699± 0.002 0.544± 0.002 0.516± 0.005 0.501± 0.002

KMRib⊗F⊗D 0.736± 0.001 0.697± 0.003 0.551± 0.002 0.542± 0.016 0.510± 0.003

KMRib⊗F 0.714± 0.001 0.698± 0.002 0.555± 0.004 0.532± 0.005 0.510± 0.003

KMRib⊗D 0.727± 0.001 0.705± 0.002 0.554± 0.002 0.542± 0.003 0.518± 0.003

KMRF⊗D 0.739± 0.001 0.695± 0.002 0.551± 0.002 0.540± 0.003 0.509± 0.003

Table 7.8: Combining the user-based and item-based versions under imbalanced datasets. The Case 2 produces a relatively sparse
subset of the dataset compared to Case 1. The best results are shown in bold font.

Approach

MAE
Case1 Case2

FT5 SML FT5 SML

KMRib 1.969± 0.002 0.882± 0.002 1.996± 0.002 0.941± 0.002

KMRub 1.525± 0.001 0.831± 0.002 1.751± 0.001 0.903± 0.002

(KMRib +KMRub)/2 1.675± 0.002 0.829± 0.002 1.763± 0.002 0.901± 0.002

KMRlinearhybrid 1.524± 0.002 0.826± 0.002 1.715± 0.002 0.895± 0.002

KMRcnthybrid 1.516± 0.002 0.825± 0.001 1.704± 0.002 0.903± 0.001

KMRvarhybrid 1.463± 0.002 0.765± 0.001 1.545± 0.002 0.802± 0.001

C
h
a
p
ter

7
K
ern

el
M
ap

p
in
g
R
ecom

m
en

d
er

(K
M
R
)
S
y
stem

A
lgorith

m
s

139

Table 7.9: Comparing the MAE observed in different approaches under the new user cold-start scenario, for the SML dataset.
The superfix M4 represents the corresponding version of the KMR algorithms, where we take into account the max, mean, mode, and
median of the output probability distribution. Average represents the average rating given by all users in the dataset. The best results
are shown in bold font.

Approach
Best MAE

MAE2 MAE5 MAE10 MAE15 MAE20

KMRib 3.841± 0.002 3.542± 0.002 2.872± 0.002 2.683± 0.002 2.504± 0.002

KMRub 2.102± 0.002 1.984± 0.002 1.672± 0.002 1.547± 0.002 1.374± 0.001

KMRD 3.623± 0.002 3.321± 0.002 2.091± 0.002 1.955± 0.002 1.896± 0.002

KMRF 3.652± 0.002 3.452± 0.002 1.944± 0.002 1.836± 0.002 1.757± 0.002

KMRM
4

ib 0.858± 0.002 0.851± 0.002 0.809± 0.001 0.790± 0.001 0.784± 0.001

KMRM
4

ub 0.843± 0.002 0.841± 0.002 0.795± 0.001 0.776± 0.001 0.774± 0.001

KMRM
4

F 0.860± 0.002 0.856± 0.002 0.814± 0.002 0.801± 0.002 0.783± 0.002

KMRM
4

D 0.866± 0.002 0.865± 0.002 0.815± 0.002 0.795± 0.002 0.786± 0.002

KMRM
4

ib+F 0.859± 0.002 0.857± 0.002 0.810± 0.002 0.786± 0.002 0.779± 0.002

Average 0.887± 0.002 0.883± 0.002 0.863± 0.002 0.851± 0.002 0.829± 0.002

140 Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms

7.6.5 Sparse, skewed, and imbalanced datasets

In practical applications recommender systems often have access to limited and highly

skewed information. Examples of these are

New user cold-start scenario where new users have relatively few ratings.

New item cold-start scenario where new items have relatively few ratings.

Long tail scenario where the majority of items have only a few ratings.

Imbalanced sparse datasets where the majority of users/items have only a few rat-

ings.

In the datasets that we have used so far our test set consists of randomly chosen ratings

and these are overwhelming in the dense region of the rating matrix. That is, the

users that we tested, typically have rated many items and the items have been rated by

many users. Thus, the results we have described so far are not strongly influenced by

problems of limited and skewed information. However, these problems are often vital

for a recommender system to prosper. For example, to attract new users it is highly

beneficial to be able to give them good quality recommendations before they have made

many ratings. Similarly, to introduce new items into the system it is useful to make

sensible recommendations even if the item has only gained a few ratings.

We have tested the four scenarios outlined above by modifying the datasets we have

been using to exaggerate the sparseness or skewness of the data. We found that in all

cases the standard predictor that we have been using up to now gives very poor perfor-

mance. However, we could very substantially improve the performance by combining the

standard predictor with predictions using the mean, median and mode of Wuφ(qi) as

described in Section 7.3.2. In the tables shown below we denote the modified predictor

with a superscript M4.

We concentrate on the new user cold-start scenario as the results are representative of

all four scenarios. The only major difference is in the new-item cold-start scenario where

the feature-based and demographic-based recommenders also perform well as they are

less influenced by a lack of ratings. Results for the new item cold-start, long tail, and

sparse data scenarios are given in Appendix D.

7.6.5.1 New user cold-start scenario

To test the performance of the proposed algorithms under the new user cold-start sce-

nario, we selected 100 random users, and kept their number of ratings in the training set

to 2, 5, 10, 15, and 20. Keeping the number of ratings less than 20 ensures that a user

Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms 141

is new and it captures well the new user cold-start problem. The corresponding MAE,

represented by MAE2, MAE5, MAE10, MAE15, and MAE20 is shown in Table 7.9.

Using the standard predictor provides very poor performance. We can substantially

improve the performance by combining the standard predictor with predictions using

the mean, median and mode of Wuφ(qi) as described in Section 7.3.2.

Recall that we learn the weights for combining the standard predictor with the predictor

using the mean, mode and median. The value of the weights depend on the dataset.

Figure 7.9 shows how the weights that have been learned change in the new user cold-

start scenario as we increase the number of ratings in the training set4. The x-axis shows

the number of ratings given by users (selected as cold-start users) and the y-axis shows

the weights associated with different predictors. We observe that the contribution of

the mode, mean, and median predictors decreases with the increase in the number of

ratings, and finally become zero when the maximum number of ratings are available.

Whereas, the contribution of the standard (ratings-based) predictor increases with the

increase in the number of ratings, and becomes 1 when the maximum number of ratings

are available.

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Ratings (SML DataSet)

W
eig

ht
s o

f t
he

 in
div

idu
al

pr
ed

ict
or

s i
n

th
e

fin
al

pr
ed

ict
ion

Rating Weight
Mean Weight
Mode Weight
Median Weight

Figure 7.9: Weight learning over the validation set for the new user cold-start
problem (SML dataset). “Number of Ratings” represents the number of ratings
given by an active user in the training set.

7.6.6 Two-way clustering

Our intuition in the clustering algorithm being that a particular group of users might

share their taste on whole group of items. To test the hypothesis, we clustered both the

users and items using the clustering techniques described earlier. Although there was

4The new user cold-start scenario is taken as an example; similar results were observed in both the
new item cold-start and long tail scenarios.

142 Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms

a slight improvement in the performance it was not statistically significant. It remains

unclear whether the reasons for not getting a larger improvement is due to the fact that

users and items do not neatly cluster, the proposed algorithms successfully exploit this

information anyways, or if our clustering algorithm was too naive.

7.7 Conclusion

In this chapter, we propose a new class of Kernel Mapping Recommender (KMR) system

algorithms that give state-of-the-art performance and eliminates the recorded problems

with the recommender systems making the recommendation generation techniques ap-

plicable to a wider range of practical situations and real-world scenarios. The proposed

kernel-mapping methods is competitive with what we believe to be the recommender

with the best performance proposed by Lawrence and Urtasun (2009) and Mackey et al.

(2010). Interestingly both the proposed algorithm and Lawrence and Urtasun (2009)

recommender use kernel-based methods though in a very different way. Although, kernel-

based techniques are known to give excellent performance, recommender systems are

challenging because of the size of the datasets. By carefully choosing the constraints we

have been able to create a kernel-based learning machine that can be trained in linear

time in the number of data points.

The algorithm we have developed is very flexible, thus we can easily adapt it so that

it is either user-based or item-based. In addition it can use other information such as

text-based features and these features can be easily combined. Furthermore, context

information can easily be added in the form of kernels5. The best algorithm on the

large datasets switches between the user- and item-based information depending on

the reliability of the predictions as measured by the spread in the output probability

distribution of the algorithms.

One interesting feature of our approach is that we map the residues in the ratings onto

a density function which encodes the uncertainty in the residue. For unseen residues we

have interpreted the mapping Wuφ(qi) as an approximation to a density function for the

residue. Even though this function is not itself a density function (it becomes negative

in some regions and is not normalised), nevertheless, it is very useful to consider the

positive part of the function as a density function from which we can measure the mean,

mode, median and variance. These measurements help in improving the performance,

particularly in the case of sparse data.

Based on the experimental results, we can underline five interesting points: (1) the user-

and item-based KMR are complementary and can be combined in a systematical way to

improve the performance of a recommender system; (2) a hybrid recommender system

5Refer to Appendix D for an example of adding context information.

Chapter 7 Kernel Mapping Recommender (KMR) System Algorithms 143

that combines the user- and item-based KMR, by taking into account the variance in

the output probability distribution, provides more accurate recommendations than the

individual ones under the sparse and imbalanced datasets; (3) adding more information

in the form of kernel does not give any significant improvements in the results, however

it does help in the cold-start scenarios; (4) the max predictor fails under cold-start,

long tail, and sparse dataset scenarios, and the performance can be improved by taking

into account the max, mean, mode, and median of the output probability distribution;

and (5) two-way clustering of the dataset does improve the performance; however, it is

statistically insignificant.

Chapter 8

Incremental and On-line Kernel

Mapping Recommender (KMR)

System Algorithms

8.1 Introduction

The issue of large scale learning is becoming an increasingly important topic of interest

in data mining and machine learning communities. As most of the recommender systems

consist of millions of ratings and moreover they are dynamic—new data (users or items)

are being continuously added to the system—estimating a reasonably efficient, compact,

and accurate prediction function is a difficult problem, that has attracted a number of

researchers, and a range of algorithms have been proposed.

The batch-processing algorithms, which require multiple passes through the dataset, are

not pragmatic for these scenarios. Certain tricks (e.g. updating certain rows or columns

of the data matrix) in the batch-processing algorithms can help saving computation

time and memory. In contrast to the batch processing algorithms, the on-line algorithms

construct a hypothesis by processing data points one at a time as they arrive and update

it whenever the new data are available. These algorithms are typically fast, memory-

efficient and simple to implement, and have the ability to adapt and learn in difficult

situations (Bassam, 2010). An important practical advantage of the on-line algorithms

is that they can accommodate the incremental update of the model upon the arrival

of new data, without re-training from scratch. They are well suited to (1) large scale

datasets where the off-line model building is the most computationally expensive task,

and (2) to situations where the data arrive continuously, for example in e-commerce

websites.

145

146 Chapter 8 Incremental and On-line KMR Algorithms

The Kernel Mapping Recommender (KMR) system algorithms introduced in the pre-

vious chapters build the model using an off-line stage and hence are not well suited to

dynamic environments. For practical recommender systems this is a significant prob-

lem, as with the incremental and gradual arrival of the new data, it is desirable that

the updates are performed on such data. It is unrealistic to recompute the model from

scratch, based on these updates, due to the tremendous cost related to computation

time and storage capacity. From this line of research, first, we have introduced a heuris-

tic method that we call KMRincr, which can be used to update the model effectively

upon the arrival of new data. Second, we have proposed a perceptron-like algorithm

namely KMRpercept, which is a novel, fast, on-line algorithm for learning on the large

recommender system datasets. The proposed algorithm implements an incremental sub-

gradient descent step (Bertsekas, 1999; Cristianini and Shawe-Taylor, 2000) to minimise

a utility function similar to the one described in the previous chapter. The implemented

version of the algorithm follows the dual perceptron schema where only the knowledge

of the corresponding kernels is required.

Both of the proposed algorithms overcome the accuracy and scalability problems asso-

ciated with a recommender system. Furthermore, the proposed algorithm, KMRpercept,

overcomes the stability vs. plasticity problem (Burke, 2002). Once a detailed user profile

has been established over a period of time, it becomes hard to change it. This is a po-

tential problem with many of the recommender systems, which is sometimes referred to

as the user-interest drifting problem. For example, in a movie recommender system, if a

user was interested in action movies last year, but their taste then changed to romantic

movies, then they would not receive useful recommendations. This is because, up to

this point, their profile has been heavily shaped by action movies. Hybrid recommender

systems employing the knowledge-based approaches (Burke, 1999) are less affected by

this problem; however, it is desirable to solve this problem using only the rating infor-

mation. This has motivated us to use the temporal discount concept—giving less weight

to the old ratings—that can solve this problem effectively.

The rest of the chapter has been organised as follows: Section 8.2 outlines the proposed

algorithms, namely KMRincr and KMRpercept. Section 8.3 describes the experimental

setup of the work. Section 8.4 shows results comparing the performance of the proposed

algorithms with the baseline ones. Finally Section 8.5 concludes the work.

8.2 Proposed Algorithms

In the following, the base dataset, denoted by Dbase, represents the dataset used to train

the initial model and the resulting model is called the base model. Similarly, the dataset

added afterwards, denoted by Dnew, represents the new dataset and the resulting model

is called the updated model. Let I, U , E, Ei, Eu, α, and Eα represent the model

Chapter 8 Incremental and On-line KMR Algorithms 147

items, users, overall average, items’ average, users’ average, design variables, and design

variables’ average respectively. Furthermore, let Ĩ, Ũ , Ẽ, Ẽi, Ẽu, α̃, and Ẽα̃ denote the

corresponding base model parameters.

8.2.1 KMRincr

The pseudo-code of the proposed algorithm is given in Algorithm 7. From steps 3 to 4,

we initialise the model parameters: items’ vector, users’ vector, overall average, users’

average, items’ average, design variable, and design variable’s average. We then build

the base model with Dbase. In step 6, we find the mean of the design variables (α̃)

computed while building the base model. We update the model by adding Dnew to the

existing dataset and initialise the new model parameters by the base model parameters.

In the solver procedure, from steps 10 to 12, we read the data. From steps 13 to 18,

we initialise the design variables which are different for Dbase and Dnew. Formally, the

initialisation of the design variables for two different type of datasets is as follows:

αiu =


∑

i′,u′∈Dbase α̃i′u′

|Dbase| , if (i, u) ∈ Dnew,
α̃iu otherwise.

(8.1)

From steps 19 to 28, we keep track of the users and items entering the system by

updating the users’ and items’ vector. From steps 30 to 34, we update the total, users’,

and items’ averages. Then from steps 36 to 37, we compute the residual ranks and the

feature vectors. Next, we compute the kernel function as shown in step 38. Afterwards,

we can find the optimal design variables by feeding the above found parameters to the

optimiser (see Chapter 7, Section 7.3.1), as shown in step 40.

8.2.2 KMRpercept

The on-line implementation of the KMR recommender system is realised via a perceptron-

type algorithm. The problem behind the perceptron algorithm is derived from the fol-

lowing optimisation problem (described in Chapter 7, Section 7.4);

min 1
2

∑
u∈U ‖Wu‖2 + C

∑
i∈I ζi

with respect to Wu, u ∈ U , ζi, i ∈ I
subject to 〈ψ(r̂iu),Wuφ(qi)〉 ≥ 1− ζi

ζi ≥ 0, i ∈ I, u ∈ Ui,

(8.2)

by ignoring the regularisation term and only minimising the sum of the slack variables,

i.e.
∑

i∈I ζi which measures the value of the overall loss. The implemented version of

148 Chapter 8 Incremental and On-line KMR Algorithms

Algorithm 7 :KMRincr; Build and update the model
Input: Dbase, base dataset; Dnew, new dataset
Output: I, items; U , users; E(t), overall average; Eu(t), users’ average; Ei(t), items’
average; α, design variables

1: procedure BuildModel(Dbase,Dnew)
2: ## Initialise the model parameters
3: I = ∅; U = ∅;
4: E = 0, Eu = 0, Ei = 0, α = 0 Eα = 0
5: ## Build the base model

(Ĩ, Ũ , Ẽ, Ẽu, Ẽi, α̃) = Solver(I, U , E, Eu, Ei, Eα,α, Dbase, ∅)
6: Ẽα̃ =

∑
i,u∈Dbase α̃iu

|Dbase|
7: ## Update the base model

(I, U , E, Eu, Ei, α) = Solver (Ĩ, Ũ , Ẽ, Ẽu, Ẽi, Ẽα̃,α̃ ,Dbase,Dnew)
8: end procedure

Solve the optimisation problem and find the design variables
9: procedure Solver(I, U , E(t− 1), Eu(t− 1), Ei(t− 1), Eα, α, Dbase, Dnew)

10: for all t ∈ {1, · · · ,Dbase ∪ Dnew} do
11: read (u(t),i(t),riu(t)) ## user, item, rating
12: u = u(t);i = i(t);riu = riu(t)
13: ## Initialization of design variables
14: if i /∈ I || u /∈ U then ## for new, earlier unseen items and users
15: αiu(t) = Eα
16: else
17: αiu(t) = αiu(t) ## for earlier seen items
18: end if
19: if i /∈ I then
20: I = I ∪ {i} ; Ui = ∅
21: Ei(t− 1) = 0
22: end if
23: if u /∈ U then
24: U = U ∪ {u}; Iu = ∅
25: Eu(t− 1) = 0
26: Ui = Ui ∪ {u}
27: Iu = Iu ∪ {i}
28: end if
29: ## Update average values
30: if Dnew = ∅ || i, u ∈ Dnew then

31: E(t) =
(t− 1)E(t− 1) + riu(t)

t

32: Eu(t) =
(|Iu| − 1)Eu(t− 1) + riu(t)

|Iu|
33: Ei(t) =

(|Ui| − 1)Ei(t− 1) + riu(t)

|Ui|
34: end if
35: ## Compute residual ranks and inner products
36: r̂iu = r̂iu(t) = riu(t)− Ei(t)− Eu(t) + E(t)
37: qi(t) = (r̂iu |u ∈ Ui)
38: γinu(t)

def
= Kr̂(r̂iu(t), r̂nu(t))Kq(qi(t),qn(t))

39: end for
40: Solve the optimisation problem given I, U , E(t), Eu(t), Ei(t), γnu(t),α
41: return (I, U , E(t), Eu(t), Ei(t), α)
42: end procedure

Chapter 8 Incremental and On-line KMR Algorithms 149

Algorithm 8 :KMRpercept; Sequentially process the data and build the model
Input: Dpercept, dataset
Output: I, items; U , users; E(t), overall average; Eu(t), users’ average; Ei(t), items’
average; α, design variables

1: procedure BuildModel(Dpercept)
2: ##Initialise model parameters
3: k = 0; I = ∅; U = ∅; E(t) = 0; s > 0; ##step size
4: 0 < β < 1; βk = 1 ##discount factor and discount initialisation
5: for all t ∈ {1, · · · ,Dpercept} do
6: read (i(t),u(t),riu(t))
7: i = i(t);u = u(t);riu = riu(t)

Initialisation for new, earlier unseen items and users
8: if i /∈ I || u /∈ U then
9: αiu(t) = 0

10: end if
11: if i /∈ I then
12: I = I ∪ {i} ; Ui = ∅
13: Ei(t− 1) = 0
14: ζi(t) = 0
15: end if
16: if u /∈ U then
17: U = U ∪ {u}; Iu = ∅
18: Eu(t− 1) = 0
19: Ui = Ui ∪ {u}
20: Iu = Iu ∪ {i}
21: end if
22: ## Update average values

23: E(t) =
(t− 1)E(t− 1) + riu(t)

t

24: Eu(t) =
(|Iu| − 1)Eu(t− 1) + riu(t)

|Iu|
25: Ei(t) =

(|Ui| − 1)Ei(t− 1) + riu(t)

|Ui|
26: ## Compute residual ranks
27: r̂iu = r̂iu(t) = riu(t)− Ei(t)− Eu(t) + E(t)
28: qi(t) = (r̂iu |u ∈ Ui)
29: ## Test the constraint belonging to (i(t), u(t))
30: if

∑
n∈Iu αnu(t)γinu(t) < 1− ζi(t) then

31: ## Discounted update of the variables
32: βk+1 = 1 + ββk
33: k = k + 1; ## update counter
34: for all n ∈ Iu do
35: αnu(t+ 1) = 1

βk
[βαnu(t) + sγinu(t)]

36: end for
37: if ζi(t) > 1−∑n∈Iu αnu(t+ 1)γinu(t) then
38: ζi(t+ 1) = 1−∑n∈Iu αnu(t+ 1)γinu(t)
39: end if
40: ## Where we used the shorthand notation

41: γinu(t)
def
= Kr̂(r̂iu(t), r̂nu(t))Kq(qi(t),qn(t))

42: end if
43: end for
44: return (I, U , E(t), Eu(t), Ei(t), α)
45: end procedure

150 Chapter 8 Incremental and On-line KMR Algorithms

the perceptron algorithm follows the dual perceptron schema where only the knowledge

of the corresponding kernels is required.

The pseudo-code of the proposed perceptron-like algorithm, KMRpercept, is given in

Algorithm 8. From steps 3 to 4, we initialise the model parameters1: counter (that

counts the number of updates of the design variable), items’ vector, users’ vector, overall

average, step size, discount factor, and discount parameter. From steps 5 to 7, we read

the arriving data. From steps 8 to 21, we initialise the design variable of the rating

made by user u on item i to zero if either the user or item is new; initialise the item

slack variable to zero if the arriving item has not been rated by anyone in the system;

and keep track of how many users and items have entered the system by adding them

to users’ and items’ vector. From steps 22 to 25, we update the total, users’, and items’

average. Then we compute the residual ranks and feature vectors from steps 26 to 28.

The part of the algorithm from steps 29 to 42 implements an incremental subgradient

descent step (Bertsekas, 1999; Nocedal and Wright, 1999; Cristianini and Shawe-Taylor,

2000) to minimise a problem similar to the one described in equation 8.2. After omitting

the regularisation term 1
2‖W‖2, the objective function in equation 8.2 becomes:

minW
∑

i∈I max
(
0, 1−minu∈Ui 〈ψ(r̂iu),Wuφ(qi)〉

)
, (8.3)

with the substitution

ζi = max
(
0, 1− min

u∈Ui
〈ψ(r̂iu),Wuφ(qi)〉

)
. (8.4)

Based on the Lagrangian of problem (8.2), assume that there are non-negative real

numbers {αiu}, (i, u) ∈ D, such that Wu for any u can be expressed by:

Wu =
∑
n∈Iu

αnuψ(r̂nu)⊗ φ(qn). (8.5)

Equation 8.5 tells us that Wu can be represented in the tensor product space of the

Hilbert spaces Hφ and Hψ with non-negative coefficients.

After substituting the value of Wu from equation 8.5 for all u into equation 8.3 we have

min
∑

i∈I max
(
0, 1−minu∈Ui

∑
n∈Iu αnuγ

i
nu

)
,

w.r.t. α ∈ R|D|

s.t. α ≥ 0,

(8.6)

where

γinu
def
= 〈ψ(r̂iu),ψ(r̂nu)〉︸ ︷︷ ︸

Kr̂(r̂iu,r̂nu)

〈φ(qi),φ(qn)〉︸ ︷︷ ︸
Kq(qi,qn)

. (8.7)

1In this work, we choose β = 0.5 and s = 0.5.

Chapter 8 Incremental and On-line KMR Algorithms 151

The optimisation problem of (8.6) has a convex, non-differentiable, piecewise linear

objective function. In minimising an objective function similar to this we can use some

variants of the subgradient descent method. In this case, we can follow three basic

strategies:

• Computing the subgradient of the entire objective function.

• Using the coordinate descent algorithm (Cristianini and Shawe-Taylor, 2000) which

optimises only one variable in each of the steps.

• Exploiting the structure of the objective function, which can be partitioned into

blocks relating to the users, we can apply a block descent technique optimising

only one block in each of the steps.

The last two methods are sub-cases of so-called incremental subgradient methods (Bert-

sekas, 1999; Cristianini and Shawe-Taylor, 2000) since only a subset of the elements of

the subgradient is used in one iteration step. The first strategy requires time consuming

computation of the full subgradient and a relatively large amount of memory. The sec-

ond strategy, the coordinate descent algorithm, is efficient in the sense that it requires

only a small computation effort in each step of the iteration; however, it improves the

objective function very slowly. The third strategy, the block descent, is relatively faster

and requires small storage requirement. In this work, we have used the block descent

approach.

The user-specific blocks can be found in the second summation of the objective function

(i.e.
∑

n∈Iu αnuγ
i
nu in equation 8.6). Note that one can make a descending step if this

inequality

minu∈Ui
∑

n∈Iu αnuγ
i
nu < 1 (8.8)

holds; otherwise, the corresponding ζi is zero and is not to be further decreased.

To this end, we assume that the index t counts the arriving data blocks in Algorithm 8

and the index k counts the updates of the variables when the condition (8.8) is fulfilled.

The subgradient relating to the user block is equal to the vector γinu(t), n ∈ Iu; thus

the update with a fixed step size can be carried out by

αnu(t+ 1) = αnu(t) + sγinu(t), ∀n ∈ Iu. (8.9)

To make the algorithm more robust, a discounting factor-based averaging is carried out

when the design variables of the underlying optimisation problem are updated. Refer

to the steps in Algorithm 8 after line 30, where β is the discounting factor and is

chosen from the open interval (0, 1). The discounting can reduce the effect of the earlier

observations on the most recent estimation of the variables, since at the beginning of

152 Chapter 8 Incremental and On-line KMR Algorithms

the algorithm the values of averages can have high variance caused by the small samples

used to estimate them.

The variable βk is used to normalise the accumulated values of the discounted variables.

The subscript k refers to the number of updates of the design variable presented in

Algorithm 8. This normalisation gives a convex combination of values of all updates of

variables, where the weights diminish more if the update happened earlier. The current

values of the βk are computed by a recursive formula:

βk =

{
1 if k = 0,

1 + ββk−1 otherwise.

Thus its accumulated value is equal to

βk =

k∑
j=0

βj . (8.10)

Based on βk the discounted value of the variables {αiu} can be computed for a fixed

pair of i and u. Let tk be the index of the observation in update step k, then we can

write up the following recursive formula for all n ∈ Iu

αnu(t+ 1)=
βαnu(t) + sγnu(t)

βk
|t=tk . (8.11)

This update is applied whenever the constraint∑
n∈Iu

αnu(t)γinu(t) ≥ 1− ζi(t) (8.12)

is violated.

After updating the variables {αnu}, n ∈ Iu, we can revise the estimation of the slack

variable ζi used in step 30 of Algorithm 8. Since

ζi(t) = max
(
0, 1− min

u∈Ui

∑
n∈Iu

αnuγ
i
nu(t)

)
, (8.13)

and assuming that

min
u∈Ui

∑
n∈Iu

αnu(t)γinu(t) < 1, (8.14)

then we have

ζi(t) = 1− min
u∈Ui

∑
n∈Iu

αnu(t)γinu(t). (8.15)

Now if ∑
n∈Iu

αnu(t+ 1)γinu(t) > min
u∈Ui

∑
n∈Iu

αnu(t)γinu(t), (8.16)

Chapter 8 Incremental and On-line KMR Algorithms 153

and (8.15) holds then we can decrease the value of the slack by

ζi(t+ 1) = 1−∑n∈Iu αnu(t+ 1)γinu(t) < ζi(t). (8.17)

In this way, we decrease the value of the objective function in equation (8.3) directly, as

shown in lines 37 and 38 in Algorithm 8.

8.3 Experimental Setup

To check the performance of the KMRincr algorithm, we describe the results for two

related scenarios: (1) when new users are introduced in the system, and (2) when new

movies are introduced in the system. For the MovieLens (SML) dataset, we used the

time information present in the dataset and sorted the users in the order in which they

appear in the system (i.e. in the order in which they made ratings). We then used first

X users (X < M) to train the base model, which we call Ubase (Ubase ⊂ U), and added

the remaining users (Unew = U\U base) to update the model. Similarly, we sorted the

movies in the order in which they appear in the system (i.e. in the order in which they

were rated by the users) and used first Y movies (Y < N) to train the base model, which

we call Ibase (Ibase ⊂ I), and added the remaining movies (Inew = I\Ibase) to update

the model. We trained the base model using the optimal kernel parameters found using

the validation set. For the FilmTrust (FT5) dataset, the test procedures were the same;

however, we did not sort the users or movies as no time information was available against

each rating. We conducted 5-fold cross validation and reported the average results.

To check the performance of theKMRpercept algorithm, we built the model incrementally

for DPercept ⊂ D data points, where 20% randomly selected data points from DPercept
were classified as the test set and the remaining as the training set. Again, we sorted

the data points in DPercept based on the time information for the MovieLens dataset.

In this way, we checked the performance of the algorithms by simulating the real world

behaviour of recommender systems.

8.4 Results and Discussion

In the following, we denote the algorithm by KMRsupersub , where the subscript denotes

the variants of the algorithm, which can be item-based (ib) and user-based (ub). The

superscript can be full representing the baseline algorithm, where a full iterative model

is used to build the model as presented in the previous chapter, incr representing the

proposed incremental algorithm, and percept representing the proposed perceptron al-

gorithm.

154 Chapter 8 Incremental and On-line KMR Algorithms

100

200

300

400

500

600

700

800

900

0102030405060708090100

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

Number of IterationsNumber of Base Users (SML dataset)

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (M

A
E

)

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

KMRIncr
ib

KMRfull
ib

Figure 8.1: Comparing the performance of the proposed algorithm, KMRincrib ,

with the baseline one, KMRfullib , for the MovieLens dataset, when new users are
added in the system. “Number of Base Users” represents the number of users
used to build the base model (i.e. Ubase). The model was updated by adding
the remaining users (i.e. Unew). “Number of Iterations” represents the number
of iterations used to train the updated model.

8.4.1 Results of the KMRincr algorithms

We compare our algorithm with the baseline algorithm where we retrain the model from

scratch using some fixed number of iterations. The percentage decrease in the number of

iterations required to update the model is calculated as (itrfull − itrincr)/itrfull, where

itrfull and itrincr represents the number of iterations used to update the model in the

case of the baseline (KMRfull) and proposed (KMRincr) algorithms respectively.

8.4.1.1 New users are added in the system

To check the behaviour of the proposed algorithm when new users enter the system,

we performed a series of experiments by changing the base model size from 100 to 943

with a difference of 100 for the SML dataset and from 200 to 1 412 with a difference of

200 for the FT5 dataset. The base users, Ubase, are trained using optimal parameters.

The remaining users (U\Ubase) are added afterwards in the system and the model was

updated. For each experiment, we changed the number of iterations from 5 to 95 with

a difference of 10, keeping the base model size fixed, and observed the corresponding

MAE.

Figures 8.1 and 8.2 compare the performance of the proposed algorithm, KMRincrib , with

the baseline one, KMRfullib for the SML and FT5 datasets respectively. They show that

Chapter 8 Incremental and On-line KMR Algorithms 155

0

200

400

600

800

1000

1200

0
10

20
30

40
50

60
70

80
90

100

1

2

3

4

5

6

7

Number of IterationsNumber of Base Users (FT5 dataset)

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (

M
A

E
)

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

KMRIncr
ib

KMRfull
ib

Figure 8.2: Comparing the performance of the proposed algorithm, KMRincrib ,

with the baseline one, KMRfullib , for the FilmTrust dataset, when new users are
added in the system. “Number of Base Users” represents the number of users
used to build the base model (i.e. Ubase). The model was updated by adding
the remaining users (i.e. Unew). “Number of Iterations” represents the number
of iterations used to train the updated model.

the proposed algorithm outperforms the baseline algorithm at every combination of base

model size and number of iterations. We observe that for a small number of iterations,

say less than 20, the baseline algorithm gives poor performance; however, the proposed

algorithm maintains a good level of accuracy. Furthermore, the performance of the

baseline algorithm degrades more in the case of the FilmTrust dataset compared to the

MovieLens dataset. This is because, for the FilmTrust dataset, the baseline algorithm

requires a significant number of iterations to converge and make reliable predictions

(refer to previous chapter, Section 7.5.1). The percentage decrease in the MAE in the

case of the proposed algorithm compared to the baseline one, keeping the number of

base users and iterations fixed to 500 and 5 respectively, is found to be 6% for the SML

and 70% for the FT5 dataset. Similar results were observed for the user-based KMR

(refer to Appendix E).

Table 8.1 compares the performance of the proposed algorithm at a model size2 of 500

with the baseline one. The table shows that the proposed algorithm gives better or

comparable results to the baseline one. It must be noted that for the baseline algorithm

shown in the table, the solution is found using the optimal number of iterations, which

is expensive compared to the proposed algorithm. The percentage decrease in the num-

ber of iterations, required to update the model, in the case of the proposed algorithm

compared to the baseline one is found to be 98% for both datasets.

2This model size is chosen as an example. Similar results were observed for the other sizes as well.

156 Chapter 8 Incremental and On-line KMR Algorithms

200

400

600

800

1000

1200

1400

1600

0
10

20
30

40
50

60
70

80
90

100

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

Number of Iterations
Number of Base Movies (SML dataset)

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (M

A
E

)

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

KMRIncr
ib

KMRfull
ib

Figure 8.3: Comparing the performance of the proposed algorithm, KMRincrib ,

with the baseline one, KMRfullib , for the MovieLens dataset, when new movies
are added in the system. “Number of Base Movies” represents the number of
movies used to build the base model (i.e. Ibase). The model was updated by
adding the remaining movies (i.e. Inew). “Number of Iterations” represents the
number of iterations used to train the updated model.

8.4.1.2 New movies are added in the system

To check the behaviour of the proposed algorithm when new movies enter the system,

we performed a series of experiments by changing the base model size from 200 to 1 682

with a difference of 200 for the SML dataset and from 50 to 314 with a difference of 50

for the FT5 dataset. The base movies, Ibase, were trained using the optimal parameters.

The remaining movies (I\Ibase) were added afterwards in the system and the model was

updated. For each experiment, we changed the number of iterations from 5 to 95 with

a difference of 10, keeping the base model size fixed, and observed the corresponding

MAE.

Figures 8.3 and 8.4 compare the performance of the proposed algorithm, KMRincrib , with

the baseline, KMRfullib , for the SML and FT5 datasets respectively. Again, we observe

results similar to those discussed in Section 8.4.1.1. The percentage decrease in the MAE

in case of the proposed algorithm compared to the baseline one, keeping the number of

base movies and iterations fixed to 200 and 5 respectively, is found to be 6.6% for the

SML and 58% for the FT5 dataset. Similar results were observed for the user-based

KMR (refer to Appendix E).

Table 8.2 compares the performance of the proposed algorithm at a model size of 1 000

for the MovieLens dataset and 200 for the FilmTrust dataset with the baseline algorithm

Chapter 8 Incremental and On-line KMR Algorithms 157

0

200

400

600

800

1000

1200

0
10

20
30

40
50

60
70

80
90

100

1

2

3

4

5

6

7

Number of IterationsNumber of Base Users (FT5 dataset)

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (

M
A

E
)

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

KMRIncr
ib

KMRfull
ib

Figure 8.4: Comparing the performance of the proposed algorithm, KMRincrib ,

with the baseline one, KMRfullib , for the FilmTrust dataset, when new movies
are added in the system. “Number of Base Movies” represents the number of
movies used to build the base model (i.e. Ibase). The model was updated by
adding the remaining movies (i.e. Inew). “Number of Iterations” represents the
number of iterations used to train the updated model.

tuned using the optimal number of iterations. Again, we observe results similar to those

in the new user case (Section 8.4.1.1).

8.4.2 Results of the KMRpercept algorithms

We show results by building models at varying sizes (i.e. number of samples) of the

datasets. Specifically, we used the following values of Dpercept: (1) {1 000, 2 000, 5 000,

10 000, 25 000, 50 000, 100 000 } for the SML dataset and (2) {1 000, 2 000, 5 000, 10 000,

15 000, 20 000, 25 730 } for the FT5 dataset. For each size, we used 80% of the samples for

building the model and the remaining 20% for testing (refer to Section 8.3). We compare

the performance of the proposed algorithm KMRpercept with the baseline, KMRfull

(trained using the optimal parameters) under varying dataset sizes. Figure 8.5 shows

that the proposed algorithm gives MAE comparable to the baseline algorithm.

Table 8.3 compares the performance of KMRpercept with KMRfull at sample size3 of

10 000 (i.e. Dpercept = 10 000). We observe that the proposed algorithm gives compa-

rable results to the baseline one. Note that checking the performance of the proposed

algorithm at different dataset sizes is analogous to cases where new users/movies are

introduced in the system. Nevertheless, we performed experiments for the scenarios

discussed in Section 8.3, and the results for the SML dataset are given in Appendix E.

3This value is taken as an example; however, similar results were observed for the other values as
well.

15
8

C
h
a
p
ter

8
In
crem

en
tal

an
d
O
n
-lin

e
K
M
R

A
lgorith

m
s

Table 8.1: Comparing the performance of the proposed algorithm, KMRincr, with the baseline one, KMRfull, at |Ubase|=500, when
new users are added in the system. The performance of the proposed algorithm is better than (or comparable to) the baseline one.

Algorithm
Itr MAE ROC-Sensitivity F1

FT5 SML FT5 SML FT5 SML FT5 SML

KMRincrib 5 5 1.379± 0.001 0.712± 0.000 0.627± 0.001 0.715± 0.000 0.533± 0.000 0.558± 0.000

KMRfullib 300 400 1.380± 0.000 0.713± 0.001 0.629± 0.001 0.715± 0.000 0.531± 0.001 0.564± 0.001

KMRincrub 5 5 1.387± 0.001 0.735± 0.000 0.666± 0.001 0.725± 0.000 0.529± 0.000 0.595± 0.001

KMRfullub 300 400 1.384± 0.001 0.737± 0.001 0.652± 0.001 0.718± 0.000 0.524± 0.000 0.587± 0.001

Table 8.2: Comparing the performance of the proposed algorithm, KMRincr, with the baseline one, KMRfull, at |Ibase|=1 000 for
the SML dataset and |Ibase|=200 for the FT5 dataset, when new movies are added in the system. The performance of the proposed
algorithm is comparable to the baseline one.

Algorithm
Itr MAE ROC-Sensitivity F1

FT5 SML FT5 SML FT5 SML FT5 SML

KMRincrib 5 5 1.417± 0.005 0.721± 0.000 0.562± 0.002 0.683± 0.000 0.498± 0.001 0.514± 0.002

KMRfullib 300 400 1.381± 0.001 0.720± 0.000 0.628± 0.002 0.687± 0.001 0.504± 0.000 0.564± 0.002

KMRincrub 5 5 1.397± 0.000 0.745± 0.000 0.592± 0.005 0.702± 0.001 0.506± 0.000 0.550± 0.003

KMRfullub 300 400 1.382± 0.000 0.742± 0.000 0.651± 0.001 0.705± 0.000 0.507± 0.000 0.588± 0.000

Table 8.3: Comparing the performance of the proposed algorithm, KMRpercept, with the baseline one, KMRfull, at a sample size of
10 000 (DPercept = 10 000) for the SML and FT5 datasets. The performance of the proposed algorithm is comparable to the baseline
one.

Algorithm
MAE ROC-Sensitivity F1

FT5 SML FT5 SML FT5 SML

KMRfullib 1.468± 0.004 0.826± 0.002 0.549± 0.002 0.607± 0.002 0.471± 0.002 0.512± 0.002

KMRperceptib 1.466± 0.004 0.828± 0.002 0.547± 0.002 0.599± 0.002 0.468± 0.002 0.510± 0.002

KMRfullub 1.480± 0.004 0.831± 0.002 0.613± 0.001 0.626± 0.002 0.472± 0.002 0.556± 0.002

KMRperceptub 1.479± 0.004 0.834± 0.002 0.596± 0.002 0.615± 0.003 0.467± 0.003 0.548± 0.002

C
h
a
p
ter

8
In
crem

en
ta
l
an

d
O
n
-lin

e
K
M
R

A
lgorith

m
s

159

1000 2000 5000 10000 25000 50000 100000
0

0.5

1

1.5

2

Number of Samples (SML Dataset)

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (M

A
E

)

KMRfull
ib

KMRpercept
ib

1000 2000 5000 10000 25000 50000 100000
0

0.5

1

1.5

2

Number of Samples (SML Dataset)

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (M

A
E

)

KMRfull
ub

KMRpercept
ub

1000 2000 5000 10000 15000 20000 25730
0

0.5

1

1.5

2

Number of Samples (FT5 Dataset)

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (M

A
E

)

KMRfull
ib

KMRpercept
ib

1000 2000 5000 10000 15000 20000 25730
0

0.5

1

1.5

2

Number of Samples (FT5 Dataset)
M

ea
n

A
bs

ol
ut

e
E

rr
or

 (M
A

E
)

KMRfull
ub

KMRpercept
ub

Figure 8.5: Comparing the performance of the proposed algorithm, KMRpercept, with the baseline one, KMRfull, under various values
of DPercept. The baseline algorithm is trained using 400 and 300 iterations for the MovieLens and FilmTrust datasets respectively.
“Number of Samples” represents the number of samples (i.e. data points) taken from the corresponding dataset to train the models.
80% of the total samples are used to train the model whereas the remaining samples are used for testing.

160 Chapter 8 Incremental and On-line KMR Algorithms

Table 8.4: Comparing the performance of the proposed algorithm, KMRpercept,
with the baseline one, KMRfull, at a sample size of 400 000 (DPercept = 400 000)
for the Netflix dataset. The performance of the proposed algorithm is compa-
rable to the baseline one.

Algorithm MAE ROC-Sensitivity F1

KMRfullib 0.670± 0.001 0.649± 0.004 0.424± 0.003

KMRperceptib 0.681± 0.001 0.628± 0.005 0.418± 0.003

KMRfullub 0.677± 0.001 0.652± 0.004 0.429± 0.003

KMRperceptub 0.689± 0.001 0.644± 0.005 0.409± 0.003

To check the scalability of the proposed on-line algorithm, we performed experiments

over the Netflix dataset. The results under varying sizes of Dpercept showed similar

behaviour to that shown by the MovieLens and the FilmTrust datasets. Table 8.4

compares the performance of the proposed KMRpercept algorithm with KMRfull at a

sample size of 400 000. Table 8.4 shows that the proposed algorithm gives comparable

results to the baseline one.

The space complexity of the proposed algorithms is linear in the number of observations

(i.e. user, movie, and rating). The complexity can be reduced if we use sparse structure

for storage. The time complexity of the proposed algorithm is O(nm), where n < |U| is

the average number of ratings given to a movie and m < |I| is the average number of

ratings by a user.

8.5 Conclusion

The Kernel Mapping Recommender (KMR) system algorithms introduced in the pre-

vious chapter are a new class of kernel-based methods for solving the recommendation

problem that offer state-of-the-art performance. Although the KMR algorithms have

the potential to build the model in the off-line stage, they have to recompute the model

upon the arrival of new data, which is costly both in terms of computation time and

storage. This problem makes this class of algorithms unsuitable for modern e-commerce

systems where data are being added continuously in the system. In this chapter, we

introduce two variants of KMR, namely KMRincr and KMRpercept, that solve the

aforementioned problem.

We have demonstrated by empirical results that the KMRincr algorithm has the follow-

ing important advantages:

• It can effectively incorporate the additional training data, when it is available, and

maintains a good level of accuracy.

• It provides significant computation savings compared to the case where we retrain

the model from scratch upon the arrival of new training data.

Chapter 8 Incremental and On-line KMR Algorithms 161

Likewise, we have shown that the KMRpercept algorithm provides the following impor-

tant advantages:

• It builds the model on-line by sequentially processing the dataset.

• It is able to scale well to large scale problems.

• It provides state-of-the-art performance.

• It can overcome some conventional problems with the collaborative filtering ap-

proaches; for instance, the stability vs. plasticity problem.

One plausible example of scenarios where our algorithms can be applied is Amazon’s

recommender engine. In this scenario, the data are huge, dynamic, and real time rec-

ommendations are required. KMRpercept is well suited to this scenario.

Chapter 9

Conclusion and Future Work

9.1 Summary of the Work

The aim of this thesis has been to propose novel robust, scalable, and practical recom-

mendation algorithms that can effectively be used to make accurate recommendations

under different scenarios. We argue that although the current state-of-the-art algorithms

(and especially the ones proposed in the Netflix prize competition) are quite accurate,

they have certain drawbacks; for example, they get an increased accuracy rate by using

a specific dataset’s peculiar characteristics or by blending dozens (or hundreds in certain

cases) of techniques trained on a static dataset. Furthermore, they ignore other design

objectives, such as sparsity, cold-start, long tail, and dynamic updates, which makes

them impractical for the real-world recommender system applications.

With this in mind, in the first half of the thesis, we proposed hybrid recommendation al-

gorithms to overcome the conventional problems with the recommender systems. More

specifically, we proposed a switching hybrid recommender system framework, which

combines Collaborative Filtering (CF) with Content-Based Filtering (CBF). We showed

empirically that the proposed framework produces accurate recommendations and more-

over maintains good performance under the cold-start scenario. We also shed light on

how Singular Value Decomposition (SVD)-based recommender systems are affected by

the imputation methods used to approximate the missing values in the user-item rating

matrix prior to applying SVD. We provided various imputation methods and empirically

showed that they provide better recommendations than the literature approach under

various recommendation scenarios. We also pointed out the gray-sheep users problem,

associated with a recommender system, responsible for the increased error rate in the

CF-based recommender systems. We demonstrated how the K-means clustering algo-

rithm can be used to detect these users by treating them as outliers. We offered a hybrid

recommender system to make recommendations and showed that the proposed approach

163

164 Chapter 9 Conclusion and Future Work

reduces the recommendation error rate for the gray-sheep users while maintaining rea-

sonable computational performance.

In the second half of the thesis, we introduced a new class of kernel mapping recom-

mender systems algorithms, namely KMR, based on the structure-learning. Comparing

our algorithm with other current state-of-the-art algorithms, we observe that the perfor-

mance of the proposed algorithms was better than (or comparable to) them. Experimen-

tal results on five different datasets support our claim. These experiments demonstrate

the generality of our approach and the flexibility that makes this class of algorithm

run on large-scale datasets. It is worth mentioning that the proposed algorithms give

small improvement in results compared to the state-of-the-art algorithms; however, they

are very practical and robust, and give consistently good performance for all datasets

under all recommender system scenarios. Finally, we adapted the KMR algorithms

to effectively incorporate the new arriving data and to build the model on-line. More

specifically, we proposed a heuristic method, namely KMRincr, that can incorporate

additional data without retraining the whole model from scratch. We compared the

performance of the KMRincr with the KMR when new users and movies are added

in the system and find out that the proposed method maintains good accuracy while

providing significant computation savings. Furthermore, we introduced a novel on-line

perceptron-like algorithm that we call KMRpercept, which can incrementally build the

model by sequentially processing the data points. We show that the proposed algorithm

is highly scalable and maintains a good level of accuracy. We provide the temporal

analysis of the performance of the KMRpercept algorithm.

An important lesson learned is that systematically combining different recommendation

algorithms gives a robust performance. For example, in Chapter 4, a linear combination

of CF and CBF did not give any improvement in the results; however, their non-linear

combination increased the performance. The findings in Chapter 6 further support this

idea. We propose to use a switching hybrid recommender system and the switching

criterion is based on the type of user. Certain users do not get useful recommenda-

tions from a single algorithm and moreover their presence might negatively affect the

recommendations of the rest of the community. Hence, it is beneficial to use different

algorithms for different types of users. Furthermore, in Chapter 7, we note that a hybrid

recommender system that switches between the user- and item-based KMR, depending

on the reliability of the predictions as measured by the spread in the prediction of the

algorithms, increases the performance of the system particularly under sparse and im-

balanced datasets. Another finding is that different sources of information, e.g. rating,

feature, and demographic, can help in cold-start, long tail, and sparse settings. We

observe this behaviour especially in Chapter 7, where a linear or non-linear combination

of different kernels (constructed using different sources of information) did not give any

improvement in the results; however, they helped under cold-start, long tail, and sparse

settings.

Chapter 9 Conclusion and Future Work 165

We believe that the KMR algorithms can effectively be used in domains, such as Ama-

zon’s and Netflix’s recommender system. The proposed algorithms will bring consider-

able benefits to these systems. First, they provide high quality recommendations, which

can increase the sale of a system. Second, they can overcome system start-up problems,

where we have very few ratings and the resulting dataset is very sparse and imbalanced.

Third, as they overcome cold-start and long tail problems, they would help the system

in attracting more customers and recommending niche items. Finally, they can lead to

significant savings, while updating the model upon the arrival of new data. Taking the

results into account, we conclude that the algorithms proposed in this thesis make an

important contribution towards improving current thinking on the subject.

9.2 Future Work

In future work, we would like to explore the following areas:

• Combining the KMR with matrix factorisation techniques: The KMR

technique maps the vectors encoding information about the items (e.g. rating or

text information) and the rating residual to vectors in some extended feature

(Hilbert) space, where the main idea is to find the multi-linear mapping between

these two vectors. The Matrix Factorisation (MF) technique is useful for finding

the overall structure which is related to all (or most) of the users or items. Hence,

these techniques deal with two different kinds of information—KMR deals with

the local effects in the dataset, whereas the MF technique deals with the global

(overall) effects in the dataset. We expect these two techniques to be complemen-

tary, and by capitalising the strengths of both we can increase the performance

of the resulting system. Various approaches can be used to combine these two

techniques. One simple approach is to measure the confidence in the prediction

computed by the KMR (refer to Chapter 7, Section 7.4.2). We might switch to

the MF technique when we have low confidence in the prediction computed by

both the user- and item-based KMR.

• Generalising the ranking, feedback, and adding context to KMR: In

certain cases, the ranks are not expressed by numbers but by a complex object;

for example, an intelligent mobile phone, while scanning a user’s activities, can

observe the force of the touch, the speed and the direction, which give some clues

to ranking. Moreover, the implicit feedback provided by users can be used; for

example, individual downloads, viewing records, etc. One example of such a sys-

tem is the MyExperiment (www.myexperiment.com) recommender system, which

allows users to provide ratings and records their implicit feedback. Certain heuris-

tics can be used for converting implicit feedback into explicit feedback. The users’

166 Chapter 9 Conclusion and Future Work

profiles can be represented in a highly complex way, where a separate kernel can

be computed for each user action.

Furthermore, the context information can be employed. Adomavicius et al. (2005)

provide various ways to add the context information in the recommendation pro-

cess. We have shown in Appendix D how the context information can be added

to the KMR algorithms; however, further experiments are needed to understand

and adapt these algorithms for the context information.

• Temporal shift of users’ profiles: We have claimed that the KMRpercept al-

gorithm can be used to overcome the stability vs. plasticity problem associated

with a recommender system; however, further experiments are needed to analyse

the behaviour of the algorithm. We would like to evaluate the performance of the

KMRpercept algorithm in scenarios where users’ tastes are dynamic; for example,

news personalisation (Das et al., 2007). In this domain, users can have short-term

and long-term profiles and hence recommendations should be tailored according

to the needs and interests of a particular user. The proposed KMRpercept can be

used to learn under this situation, where the earlier ratings provided by users can

be deleted if their discount factors goes beyond a certain threshold. In this way the

complexities can be reduced to a great extent as well. Furthermore, we can inves-

tigate better ways to set the value of the variable β. Ideally, a mechanism should

be devised which can automatically set different values of β for different users de-

pending on their rating behaviour. It might increase the complexity; however, it

can potentially provide better recommendations.

• Detecting gray-sheep users: In this work, we have considered the gray-sheep

users problem as an outlier detection problem, where the similarity between a user

and the closest centroid is used to isolate the gray-sheep users. This similarity will

vary with the number of clusters in the system. An important avenue for future

research is to check the performance by relaxing the constraint of keeping a fixed

number of centroids in applying the clustering algorithm. In the first iteration, a

separate centroid can be made for a data point having a similarity (with existing

centroids) less than a pre-defined threshold.

In our work, the centroid selection approaches did not make any significant dif-

ference in increasing the performance of the K-means clustering algorithm. An

alternative approach is to employ more than one user as the initial centroid, which

might speed up the convergence rate of the K-means clustering algorithm. There

are several issues to look at; for example, how will different users be selected as

candidates for a centroid? What will be the initial size of each centroid? Should

each centroid have the same size? Further experiments are needed to analyse this

behaviour.

Chapter 9 Conclusion and Future Work 167

Another appealing area is to use the one-pass clustering algorithms (Bassam, 2010)

to cluster the dataset. These algorithms will decrease the off-line cost of clustering

the dataset; however, the accuracy of the resulting system might suffer.

9.3 Challenges in Practical Recommender Systems Algo-

rithms

There are a number of challenges for practical recommender system algorithms. A few

of these are discussed below:

• Hybrid recommender systems: We argue that different recommender sys-

tems taking into account different kinds of information, e.g. rating, demographic,

feature, tags, social, etc. can be systematically combined to make reliable recom-

mendations. The success of commercial recommender systems based on the hybrid

technique; for example, Google news (Das et al., 2007), further supports this claim.

It is an open research question for the recommender system’s community to devise

efficient mechanisms combining different recommender systems.

• Scalable, flexible, and robust recommendation algorithms: In order to ex-

ploit the recommender system algorithms effectively in the real-world recommender

engines, the cost of model building should be small. Moreover, an algorithm should

be designed to overcome potential problems, such as sparsity, cold-start, and long

tail, in addition to the accuracy and scalability. It is an open challenge to the field

to devise algorithms that are flexible and robust to give consistent performance

under all recommender system scenarios.

• Consistent performance over dynamic rather than static datasets: Gen-

erally, while evaluating the performance of a recommendation algorithm, a random

partition of a static dataset is used. The real-world recommender systems; how-

ever, have different characteristics, i.e. imbalanced dataset where dynamic updates

occur frequently. Furthermore, users’ tastes can change over time. The datasets

describing such scenarios should be standardised and the performance of a recom-

mendation algorithm should be evaluated over such datasets.

Appendix A

Switching Hybrid Recommender

Systems

A.1 Rating Distribution of the FilmTrust Dataset

Figure A.1 shows the rating distribution of the FilmTrust dataset. We observe that

there are total 8 classes against which the users have provided the ratings.

0 1 2.5 3.75 5 6.25 7.5 8.75 10

5

10

15

20

25

30

35

Rating Scale

Fr
eq

ue
nc

y
of

 R
at

in
gs

 (%
)

Figure A.1: Rating distribution of the FilmTrust dataset.

169

170 Appendix A Switching Hybrid Recommender Systems

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.8

0.85

0.9

0.95

1

1.05

DF Threshold (SML DataSet)

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
1.4

1.45

1.5

1.55

1.6

DF Threshold (FT Dataset)

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

Figure A.2: Finding the optimal value of DF threshold for the Naive Bayes
classifier over the validation set.

0 10 20 30 40 50 60 70 80 90 100
0.75

0.8

0.85

0.9

0.95

1

Number of ratings against the target item (SML DataSet)

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (M

A
E

)

IBCF
NB

0 10 20 30 40 50 60 70 80 90 100
0.75

0.8

0.85

0.9

0.95

1

Number of ratings against the target item (SML DataSet)

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (M

A
E

)

IBCF
SVM

Figure A.3: Finding the optimal value of parameter ν over the validation set
(SML dataset). X-axis represents the number of users who have rated the target
item.

Appendix A Switching Hybrid Recommender Systems 171

A.2 Learning the Optimal System Parameters

A.2.1 Finding the optimal value of DF thresholding

To determine the optimal value of the Document Frequency (DF) thresholding1 (refer

to Section 3.6.3), we varied the value of DF from 0.02 to 0.4 with a difference of 0.02.

The results for the Naive Bayes classifier are shown in Figure A.2. Figure A.2 shows

that DF = 0.20 and DF = 0.12 gave the lowest MAE for the MovieLens and FilmTrust

dataset respectively. We choose these values of DF threshold for the subsequent exper-

iments.

To determine the optimal value of DF threshold for the SVM classifier, we repeated the

same experiment. The results (not shown) did not show any improvement in the results,

hence we did not perform any feature selection for the SVM classifier.

A.2.2 Learning the optimal value for parameter ν

Figure A.3 shows how the MAE changes with the available number of ratings for the

target item in the case of SML dataset. We observe that the CF fails to produce good re-

sults when we have fewer users who have rated the target item, whereas; the performance

of the Naive Bayes and the SVM classifier does not suffer. Taking these results into ac-

count, we choose ν = 30 and ν = 40 in the case of SwitchRecNBCF and SwitchRecSVMCF

respectively. Similarly, we tunned the optimal value of ν for the FilmTrust dataset, which

are found to be 20 and 25 in the case of SwitchRecNBCF and SwitchRecSVMCF respectively.

A.3 Implementation

We used the Weka collection of machine learning algorithms (Hall et al., 2009) for

building the Naive Bayes classifier. For the SVM classifier, we normalised the data

in the scale of 0 − 1 and used LibSVM (Chang and Lin, 2011) for binary classifi-

cation. We used the Lucene (lucene.apache.org/core/) for text processing tasks

(e.g. Stemming). We reused and extended the code from Carleton College, North-

field, MN (http://www.cs.carleton.edu/cs_comps/0607/recommend/recommender/

index.html) for building the Collaborative Filtering algorithms (and clustering algo-

rithms in Chapter 6). Java (Jre 6) language was used for implementation. A copy of

the code can be obtained on request (eng.musi@gmail.com).

1We also experimented with χ2 feature selection method; however, the DF thresholding gave us better
results.

lucene.apache.org/core/
http://www.cs.carleton.edu/cs_comps/0607/recommend/recommender/index.html
http://www.cs.carleton.edu/cs_comps/0607/recommend/recommender/index.html
mailto:eng.musi@gmail.com

Appendix B

Imputation in SVD-based

Recommender Systems

B.1 Learning the Optimal System Parameters

• K Nearest Neighbour (KNN): The optimal number of neighbour are found to be

for {KNN,WKNN} (1) {300, 250} for the SML dataset, (2) {150, 150} for the

FT1 dataset, and (3) {150, 100} for the FT5 dataset.

• Decision tree (C4.5): The pruning confidence was found to be 0.9 for the SML

dataset and 0.5 for the FT dataset. We used Laplace smoothing for predicted

probabilities.

• SVM regression (SVMReg): The optimal value of the cost parameters C is found

to be 2, 1, and 1 for the SML, FT1, and FT5 datasets respectively. Furthermore,

the loss parameter (nu) is found to be 0.9 for the SML and 0.2 for the FT dataset.

• Linear and logistic regression (LinearReg and LogisticReg): We found the param-

eter tuning in linear and logistic regression very expensive and hence we used the

default parameters, given in the Weka library, for these methods.

• Finding the optimal number of neighbours for the user-based CF (UBCF): The

optimal number of neighbours are found to be 90, 60, 30, 25 for the ML, SML,

FT1, and FT5 datasets respectively.

• Finding the optimal values of neighbours for the item-based CF (IBCF): The op-

timal number of neighbours are found to be 35, 25, 15, 10 for the ML, SML, FT1,

and FT5 datasets respectively.

• Finding the optimal values of parameters α and β: Parameters α and β determine

the relative weights of user-based and item-based CF in the final prediction. The 9

parameter sets were generated by producing all possible combination of parameters

173

174 Appendix B Imputation in SVD-based Recommender Systems

Table B.1: Learning parameter sets α and β over the validation set through
cross validation. α and β show the relative impact of user- and item-based CF
in a prediction respectively.

Parameters MAE

α β ML SML FT1 FT5

0.1 0.9 0.7101 0.7407 1.4836 1.4499

0.2 0.8 0.7098 0.7398 1.4763 1.4408

0.3 0.7 0.7086 0.7386 1.4717 1.4344

0.4 0.6 0.7060 0.7362 1.4701 1.4308

0.5 0.5 0.7076 0.7376 1.4715 1.4295

0.6 0.4 0.7082 0.7379 1.4752 1.4312

0.7 0.3 0.7078 0.7386 1.4810 1.4355

0.8 0.2 0.7097 0.7398 1.4891 1.4429

0.9 0.1 0.7121 0.7414 1.4995 1.4522

values, ranging from 0.1 to 1.0 with differences of 0.1. Table B.1 presents the

parameter sets learned. The parameters sets α = 0.4, β = 0.6; α = 0.4, β = 0.6;

α = 0.4, β = 0.6; and α = 0.5, β = 0.5 gave the lowest MAE in the case of ML,

SML, FT1 and FT5 dataset respectively. It is worth noting that the values of

parameters are found different for the MovieLens and FilmTrust dataset. We note

that the item-based CF has more weight in the final prediction.

B.2 Performance Evaluation of the ImpSvd in Terms of

ROC-Sensitivity and Top-N Metrics

Tables B.2, B.3, B.4, and B.5 compare the performance—in terms of ROC-sensitivity,

F1, precision, and recall—of different approaches in the ImpSvd algorithm. The per-

formance improvement of the proposed approaches over the baseline one is found to be

5% to 10%.

B.3 Performance Evaluation of the ItrSvd in Terms of ROC-

Sensitivity and Top-N Metrics

Tables B.6, B.7, B.8, and B.9 compare the performance—in terms of ROC-sensitivity,

F1, precision, and recall—of different approaches in the ItrSvd. We observe that the

performance of the proposed approaches is better than the baseline one.

Appendix B Imputation in SVD-based Recommender Systems 175

Table B.2: The ROC-Sensitivity observed in different imputation methods in
the ImpSvd algorithm. The optimal number of dimensions have been kept the
same as shown in Table 5.1. The best results are shown in bold font.

Imp. Method
Best ROC-sensitivity

ML SML FT1 FT5

Zeros 0.048± 0.002 0.017± 0.001 0.004± 0.002 0.005± 0.001

Rand 0.051± 0.002 0.056± 0.001 0.048± 0.003 0.045± 0.002

ItemAvg 0.634± 0.002 0.607± 0.002 0.472± 0.004 0.469± 0.012

UserAvg 0.732± 0.001 0.691± 0.002 0.560± 0.004 0.555± 0.011

UserItemAvg 0.652± 0.002 0.620± 0.002 0.477± 0.004 0.491± 0.012

UniformDist 0.131± 0.002 0.167± 0.002 0.065± 0.040 0.071± 0.003

NorU 0.651± 0.002 0.585± 0.010 0.471± 0.001 0.482± 0.010

NorI 0.611± 0.002 0.588± 0.002 0.438± 0.003 0.452± 0.013

UBCF 0.741± 0.001 0.696± 0.002 0.548± 0.011 0.539± 0.003

IBCF 0.801± 0.001 0.722± 0.011 0.541± 0.011 0.549± 0.003

UBIBCF 0.791± 0.001 0.661± 0.002 0.540± 0.004 0.555± 0.004

KNN −− 0.730± 0.002 0.498± 0.012 0.512± 0.013

WKNN −− 0.739± 0.002 0.498± 0.012 0.512± 0.013

NBClass −− 0.731± 0.002 0.512± 0.013 0.528± 0.013

SVMClass −− 0.739± 0.002 0.520± 0.014 0.539± 0.014

C4.5 −− 0.723± 0.002 0.502± 0.014 0.514± 0.014

SVMReg −− 0.685± 0.002 0.566± 0.013 0.567± 0.014

LinearReg −− 0.662± 0.002 0.531± 0.012 0.542± 0.014

LogisticReg −− 0.667± 0.002 0.532± 0.013 0.540± 0.014

Table B.3: The F1 observed in different imputation methods in the ImpSvd
algorithm. The optimal number of dimensions have been kept the same as
shown in Table 5.1. The best results are shown in bold font.

Imp. Method
Best F1

ML SML FT1 FT5

Zeros 0.001± 0.004 0.002± 0.002 0.017± 0.002 0.009± 0.002

Rand 0.010± 0.001 0.018± 0.001 0.047± 0.004 0.045± 0.002

ItemAvg 0.407± 0.003 0.441± 0.002 0.444± 0.004 0.445± 0.003

UserAvg 0.471± 0.002 0.512± 0.004 0.534± 0.011 0.529± 0.014

UserItemAvg 0.419± 0.002 0.453± 0.004 0.454± 0.012 0.475± 0.003

UniformDist 0.053± 0.001 0.091± 0.001 0.060± 0.003 0.067± 0.003

NorU 0.407± 0.002 0.429± 0.011 0.451± 0.012 0.467± 0.004

NorI 0.398± 0.002 0.430± 0.002 0.395± 0.003 0.414± 0.013

UBCF 0.478± 0.002 0.515± 0.002 0.530± 0.011 0.527± 0.002

IBCF 0.513± 0.002 0.537± 0.003 0.517± 0.012 0.523± 0.012

UBIBCF 0.506± 0.002 0.491± 0.001 0.534± 0.004 0.543± 0.012

KNN −− 0.492± 0.003 0.502± 0.012 0.508± 0.016

NBClass −− 0.508± 0.003 0.514± 0.014 0.518± 0.015

SVMClass −− 0.511± 0.003 0.521± 0.012 0.531± 0.013

C4.5 −− 0.492± 0.003 0.499± 0.011 0.506± 0.012

SVMReg −− 0.492± 0.003 0.541± 0.013 0.544± 0.014

LinearReg −− 0.483± 0.003 0.512± 0.012 0.519± 0.013

LogisticReg −− 0.485± 0.003 0.521± 0.012 0.522± 0.013

176 Appendix B Imputation in SVD-based Recommender Systems

Table B.4: The precision observed in different imputation methods in the
ImpSvd algorithm. The optimal number of dimensions have been kept the
same as shown in Table 5.1. The best results are shown in bold font.

Imp. Method
Best Precision

ML SML FT1 FT5

Zeros 0.005± 0.001 0.009± 0.001 0.049± 0.003 0.025± 0.005

Rand 0.029± 0.001 0.030± 0.001 0.072± 0.001 0.074± 0.004

ItemAvg 0.468± 0.002 0.504± 0.004 0.495± 0.004 0.502± 0.004

UserAvg 0.492± 0.002 0.549± 0.004 0.569± 0.004 0.567± 0.006

UserItemAvg 0.480± 0.002 0.514± 0.002 0.505± 0.004 0.542± 0.003

UniformDist 0.075± 0.002 0.119± 0.003 0.116± 0.004 0.097± 0.003

NorU 0.447± 0.002 0.483± 0.012 0.493± 0.004 0.516± 0.006

NorI 0.455± 0.002 0.485± 0.003 0.425± 0.004 0.459± 0.006

UBCF 0.498± 0.002 0.549± 0.004 0.574± 0.005 0.584± 0.005

IBCF 0.506± 0.002 0.560± 0.003 0.566± 0.005 0.526± 0.004

UBIBCF 0.507± 0.002 0.535± 0.003 0.568± 0.004 0.573± 0.005

KNN −− 0.441± 0.005 0.514± 0.006 0.519± 0.006

WKNN −− 0.452± 0.005 0.525± 0.006 0.528± 0.006

NBClass −− 0.501± 0.004 0.532± 0.006 0.544± 0.006

SVMClass −− 0.503± 0.003 0.546± 0.005 0.552± 0.006

C4.5 −− 0.492± 0.004 0.518± 0.005 0.524± 0.005

SVMReg −− 0.531± 0.004 0.580± 0.005 0.594± 0.006

LinearReg −− 0.509± 0.004 0.543± 0.005 0.553± 0.005

LogisticReg −− 0.512± 0.004 0.544± 0.005 0.553± 0.005

AdaBoost −− 0.506± 0.004 0.529± 0.006 0.541± 0.006

B.4 Performance Evaluation of ImpSvd Under Different

Training and Test Sizes

We performed experiments with different sizes of the test and training set by randomly

dividing the rating records into X% training set and (100 − X)% test set. A value

of X = 20% for the SML dataset indicates that 100 000 ratings have been divided

into 20 000 training cases and 80 000 test cases. Table B.10 shows that the proposed

approaches outperform others at each value of X. We note that the SVMReg gives the

best performance for smaller training set sizes. The reason is the same as discussed in

Section 5.6.5.

B.5 Performance Evaluation of ImpSvd Under Cold-Start

and Long Tail Scenarios

For testing the performance of approaches under new user cold-start scenario, we selected

100 random users, and kept their number of ratings in the training set to 2, 5, 10, 15,

and 20. The corresponding MAE, represented by MAE2, MAE5, MAE10, MAE15, and

Appendix B Imputation in SVD-based Recommender Systems 177

Table B.5: The recall observed in different imputation methods in the ImpSvd
algorithm. The optimal number of dimensions have been kept the same as
shown in Table 5.1. The best results are shown in bold font.

Imp. Method
Best Recall

ML SML FT1 FT5

Zeros 0.006± 0.004 0.002± 0.003 0.011± 0.001 0.009± 0.002

Rand 0.019± 0.001 0.020± 0.001 0.050± 0.002 0.045± 0.002

ItemAvg 0.043± 0.002 0.473± 0.002 0.471± 0.004 0.468± 0.005

UserAvg 0.510± 0.002 0.545± 0.003 0.560± 0.004 0.554± 0.006

UserItemAvg 0.490± 0.002 0.481± 0.002 0.474± 0.004 0.491± 0.004

UniformDist 0.069± 0.002 0.102± 0.002 0.080± 0.003 0.071± 0.003

NorU 0.434± 0.002 0.448± 0.003 0.470± 0.005 0.481± 0.004

NorI 0.426± 0.002 0.467± 0.001 0.434± 0.003 0.452± 0.006

UBCF 0.528± 0.002 0.555± 0.002 0.548± 0.005 0.534± 0.003

IBCF 0.594± 0.002 0.592± 0.005 0.553± 0.005 0.550± 0.001

UBIBCF 0.577± 0.002 0.520± 0.002 0.537± 0.004 0.555± 0.004

KNN −− 0.623± 0.004 0.482± 0.006 0.491± 0.006

WKNN −− 0.653± 0.004 0.491± 0.006 0.501± 0.006

NBClass −− 0.585± 0.004 0.512± 0.005 0.518± 0.007

SVMClass −− 0.616± 0.003 0.524± 0.005 0.531± 0.006

C4.5 −− 0.534± 0.003 0.501± 0.005 0.508± 0.006

SVMReg −− 0.528± 0.003 0.581± 0.005 0.576± 0.007

LinearReg −− 0.512± 0.003 0.551± 0.005 0.544± 0.007

LogisticReg −− 0.515± 0.003 0.553± 0.005 0.545± 0.007

AdaBoost −− 0.551± 0.004 0.522± 0.005 0.530± 0.007

Table B.6: Comparing the ROC-sensitivity observed in different imputation
methods in the ItrSvd (fixed iteration case). The best results are shown in
bold font.

Imp. Method
Best ROC-sensitivity

ML SML FT1 FT5

ItemAvg 0.685± 0.001 0.651± 0.002 0.504± 0.006 0.569± 0.005

UserAvg 0.721± 0.001 0.683± 0.004 0.572± 0.005 0.571± 0.006

UBCF 0.724± 0.001 0.691± 0.002 0.546± 0.005 0.530± 0.005

IBCF 0.759± 0.001 0.724± 0.006 0.534± 0.005 0.544± 0.006

UBIBCF 0.747± 0.001 0.711± 0.002 0.517± 0.005 0.563± 0.004

SVMReg −− 0.695± 0.003 0.574± 0.006 0.583± 0.006

178 Appendix B Imputation in SVD-based Recommender Systems

Table B.7: Comparing the F1 observed in different imputation methods in the
ItrSvd (fixed iteration case). The best results are shown in bold font.

Imp. Method
Best F1

ML SML FT1 FT5

ItemAvg 0.445± 0.002 0.481± 0.002 0.486± 0.005 0.547± 0.004

UserAvg 0.463± 0.002 0.503± 0.003 0.540± 0.005 0.538± 0.006

UBCF 0.468± 0.002 0.514± 0.002 0.531± 0.005 0.520± 0.004

IBCF 0.487± 0.002 0.531± 0.003 0.505± 0.005 0.519± 0.005

UBIBCF 0.481± 0.002 0.528± 0.001 0.507± 0.005 0.534± 0.004

SVMReg −− 0.508± 0.003 0.556± 0.005 0.563± 0.006

Table B.8: Comparing the precision observed in different imputation methods
in the ItrSvd (fixed iteration case). The best results are shown in bold font.

Imp. Method
Best Precision

ML SML FT1 FT5

ItemAvg 0.502± 0.002 0.548± 0.004 0.533± 0.005 0.591± 0.004

UserAvg 0.493± 0.002 0.547± 0.003 0.571± 0.005 0.571± 0.006

UBCF 0.502± 0.002 0.556± 0.003 0.578± 0.005 0.576± 0.005

IBCF 0.501± 0.002 0.551± 0.003 0.542± 0.005 0.565± 0.003

UBIBCF 0.503± 0.002 0.557± 0.003 0.578± 0.005 0.595± 0.005

SVMReg −− 0.551± 0.004 0.586± 0.006 0.589± 0.006

Table B.9: Comparing the recall observed in different imputation methods in
the ItrSvd (fixed iteration case). The best results are shown in bold font.

Imp. Method
Best Recall

ML SML FT1 FT5

ItemAvg 0.454± 0.002 0.502± 0.002 0.502± 0.005 0.569± 0.005

UserAvg 0.493± 0.002 0.531± 0.003 0.570± 0.005 0.564± 0.005

UBCF 0.496± 0.002 0.546± 0.003 0.543± 0.003 0.532± 0.005

IBCF 0.532± 0.002 0.580± 0.005 0.532± 0.005 0.543± 0.007

UBIBCF 0.520± 0.002 0.565± 0.002 0.514± 0.005 0.551± 0.004

SVMReg −− 0.537± 0.0074 0.588± 0.006 0.590± 0.006

Table B.10: Comparing the MAE observed in different imputation methods
under varying training set sizes, for the SML dataset. The best results are
shown in bold font.

Imp. Method
Best MAE

X = 20% X = 40% X = 60% X = 80%

ItemAvg 0.838± 0.002 0.809± 0.002 0.788± 0.002 0.774± 0.001

UserAvg 0.839± 0.002 0.818± 0.002 0.792± 0.002 0.778± 0.001

UserItemAvg 0.798± 0.002 0.784± 0.002 0.767± 0.002 0.754± 0.001

UBCF 0.807± 0.002 0.766± 0.002 0.746± 0.003 0.732± 0.001

IBCF 0.804± 0.002 0.762± 0.002 0.740± 0.003 0.730± 0.001

UBIBCF 0.802± 0.002 0.760± 0.002 0.733± 0.003 0.721± 0.001

SVMReg 0.796± 0.002 0.756± 0.003 0.748± 0.003 0.736± 0.001

Appendix B Imputation in SVD-based Recommender Systems 179

MAE20 is shown in Table B.11. Table B.11 shows that the conventional approaches

suffer the most under this scenario. It is worth noting that, when a user has rated less

than (or equal to) 10 movies, then UserItemAvg gives the best results; however, as a

user rates more items, the UBIBCF gives reliable recommendations.

To test the performance of the proposed algorithms under long tail scenario, we created

the artificial long tail scenario by randomly selecting the 80% of items in the tail. The

number of ratings given in the tail part were varied between 2, 4, 6, 8, 10 and 15. The

results, shown in Table B.12, demonstrated the similar behaviour as in the case of new

item case (refer to Chapter 5, Section 5.6.6).

18
0

A
p
p
en

d
ix

B
Im

p
u
tation

in
S
V
D
-b
ased

R
ecom

m
en

d
er

S
y
stem

s

Table B.11: Comparing the MAE observed in different imputation methods under the new user cold-start scenario, for the SML
dataset. The best results are shown in bold font.

Imp. Method
Best MAE

MAE2 MAE5 MAE10 MAE15 MAE20

ItemAvg 0.908± 0.002 0.887± 0.002 0.885± 0.002 0.883± 0.002 0.882± 0.002

UserAvg 1.087± 0.002 0.928± 0.002 0.903± 0.002 0.878± 0.002 0.877± 0.002

UserItemAvg 0.901± 0.002 0.855± 0.002 0.850± 0.002 0.843± 0.002 0.839± 0.002

UBCF 1.080± 0.002 0.886± 0.002 0.865± 0.002 0.841± 0.002 0.825± 0.002

IBCF 1.082± 0.002 0.896± 0.002 0.868± 0.002 0.844± 0.002 0.817± 0.002

UBIBCF 1.071± 0.002 0.891± 0.002 0.862± 0.002 0.837± 0.002 0.816± 0.002

SVMReg 0.962± 0.002 0.912± 0.002 0.873± 0.002 0.841± 0.042 0.836± 0.002

Table B.12: Comparing the MAE observed in different imputation methods under the long tail scenario, for the SML dataset. The
best results are shown in bold font.

Imp. Method
Best MAE

MAE2 MAE4 MAE6 MAE8 MAE10 MAE15

ItemAvg 1.090± 0.003 0.891± 0.003 0.879± 0.003 0.867± 0.003 0.861± 0.003 0.853± 0.002

UserAvg 0.881± 0.003 0.878± 0.003 0.869± 0.003 0.866± 0.003 0.865± 0.002 0.865± 0.002

UserItemAvg 0.884± 0.003 0.882± 0.003 0.871± 0.003 0.863± 0.003 0.861± 0.003 0.858± 0.002

UBCF 0.881± 0.003 0.874± 0.003 0.847± 0.003 0.838± 0.003 0.819± 0.002 0.814± 0.002

IBCF 0.886± 0.003 0.875± 0.003 0.861± 0.003 0.860± 0.003 0.856± 0.003 0.842± 0.002

UBIBCF 0.882± 0.003 0.869± 0.003 0.844± 0.003 0.836± 0.003 0.824± 0.002 0.820± 0.002

SVMReg 0.879± 0.002 0.865± 0.002 0.842± 0.002 0.833± 0.002 0.817± 0.002 0.815± 0.002

Appendix B Imputation in SVD-based Recommender Systems 181

B.6 Implementation

We used the Weka collection of machine learning algorithms (Hall et al., 2009) for build-

ing the classification and regression algorithms. For the SVM classifier, we normalised

the data in the scale of 0− 1 and used LibSVM (Chang and Lin, 2011) for binary classi-

fication. We used the Colt library (acs.lbl.gov/software/colt/) for computing the

SVD. Java (Jre 6) language was used for implementation. A copy of the code can be

obtained on request (eng.musi@gmail.com).

acs.lbl.gov/software/colt/
mailto:eng.musi@gmail.com

Appendix C

Using K-Means Clustering

Algorithms to Solve the

Gray-Sheep Users Problem

C.1 Learning the Optimal System Parameters

C.1.1 Optimal Number of Clusters

For finding the optimal number of clusters, we changed the cluster size from 10 to

200 with a difference of 10 (keeping the remaining parameters fixed), and measured

the corresponding MAE, over the validation set. Figure C.1(a) shows that the MAE

decreases with an increase in the number of clusters. We observe that the MAE keeps

on decreasing, however after 140 clusters for the SML dataset and 100 clusters for the

FT1 dataset, the decrease is very insignificant. For this reason we choose the cluster

sizes to be 140 and 100 for the SML and FT1 datasets respectively for the subsequent

experiments.

C.1.2 Optimal Number of Neighbours for the CCF

We changed the number of neighbours for the Cluster-based CF (CCF) from 10 to 100

and measured the corresponding MAE. Figure C.1(b) shows how the MAE changes as a

function of neighbourhood size. We note that in the case of SML dataset, the MAE keeps

on decreasing with an increase in the number of neighbours, reaches at its minimum for

neighbourhood size of 50, and then starts increasing again. For the FT1 dataset, the

neighbourhood size of 40 gives the lowest MAE. We choose the optimal neighbourhood

sizes to be 50 and 40 for the SML and FT1 datasets respectively.

183

184
Appendix C Using K-Means Clustering Algorithms to Solve the Gray-Sheep Users

Problem

Table C.1: Comparing the performance of different variants of the CF-based
algorithms over different types of users. “All” represents all users, “GS” repre-
sents the gray-sheep users, and “Remaining” represents the users not identified
as the gray-sheep. We observe that the CF-based algorithms fail to produce
good recommendations for the gray-sheep users.

Metric Approach
Users

All GS Remaining

MAE UBCF 1.486± 0.008 1.601± 0.032 1.457± 0.007
IBCF 1.449± 0.007 1.567± 0.052 1.432± 0.007
CCF 1.492± 0.021 1.611± 0.042 1.470± 0.022

ROC-Sensitivity UBCF 0.441± 0.008 0.351± 0.022 0.462± 0.007
IBCF 0.534± 0.007 0.421± 0.019 0.564± 0.005
CCF 0.492± 0.008 0.412± 0.021 0.513± 0.008

Coverage UBCF 93.851± 0.071 76.732± 1.23 94.871± 0.006
IBCF 95.262± 0.088 89.11± 0.901 95.674± 0.082
CCF 95.539± 0.080 91.243± 0.901 95.770± 0.071

C.1.3 Optimal Number of Iterations

Figure C.1(c) shows how the MAE changes with an increase in the number of iterations.

For the SML dataset the MAE keeps on decreasing with an increase in the number of

iterations until it converges. After 5 iterations, the difference in MAE observed between

two iterations becomes very small. To keep a good balance between computation and

performance requirement, we choose the optimal number of iterations to be 5. Similarly,

we tuned the optimal number of iterations for the FT1 dataset, which are found to be 2.

C.1.4 Optimal value of powthr

The optimal value of powthr is found to be 0.63 for the SML and 0.26 for the FT1

dataset.

C.2 Performance Evaluation of Different CF-Based Algo-

rithms for the Gray-Sheep Users

Table C.1 shows the performance of different algorithms for the gray-sheep users. In

the table, UBCF represents the user-based CF, IBCF represents the item-based CF,

and CCF represents the clusters-based CF (refer to Section 6.2). We observe that the

CF-based algorithms fail to produce good recommendations for the gray-sheep users.

The reason is the same as discussed in Chapter 6.

Appendix C Using K-Means Clustering Algorithms to Solve the Gray-Sheep Users
Problem 185

0 20 40 60 80 100 120 140 160 180 200
1.51

1.52

1.53

1.54

1.55

1.56

1.57

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (

M
A

E
)

Number of Clusters (FT1)

0 20 40 60 80 100 120 140 160 180 200
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Number of Clusters (SML)

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (

M
A

E
)

(a) Finding the optimal numbers of clusters

10 20 30 40 50 60 70 80 90 100
1.515

1.52

1.525

1.53

1.535

1.54

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (

M
A

E
)

Number of Neighbours (FT1)

10 20 30 40 50 60 70 80 90 100
0.77

0.775

0.78

0.785

0.79

0.795

0.8

Number of Neighbours (SML)

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (

M
A

E
)

(b) Finding the optimal neighbourhood size

1 2 3 4 5 6 7 8
1.505

1.51

1.515

1.52

1.525

1.53

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (

M
A

E
)

Number of Iterations (FT1)

1 2 3 4 5 6 7 8
0.77

0.775

0.78

0.785

0.79

0.795

Number of Iterations (SML)

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (

M
A

E
)

(c) Finding the optimal numbers of iterations

Figure C.1: (From left to right, top to bottom) Determining the optimal num-
ber of clusters, neighbourhood size in the Cluster-based CF algorithm (CCF),
and number of iterations (itr) in K-means clustering algorithm through the
validation set.

Appendix D

KMR Algorithms

D.1 Comparing the KMR with Others in Terms of ROC-

Sensitivity and F1 Measure

Tables D.1 and D.2 compare the performance of the KMR algorithms with others in

terms of ROC-sensitivity and F1 measure respectively. We observe that the KMR

algorithms outperform (or gives comparable results to) other algorithms.

D.2 New Item Cold-Start Scenario

We tested the new item cold-start scenario in exactly the same way we did the new user

cold-start scenario. That is, we selected 100 random items, and kept the number of users

in the training set who have rated these item to 2, 5, 10, 15, and 20. Table D.3 shows

again that the standard predictor fails under this scenario, whereas including the mean,

mode and median predictor gives very good performance. We note that for new items

the feature-based and demographic-based recommenders work well for the cold-start

scenario as these measures are not strongly influenced by a lack of rating information

for an item.

D.3 Long Tail Scenario

The long tail scenario (Park and Tuzhilin, 2008) is an important scenario for practical

recommender systems. In a large e-commerce system like Amazon, there are huge num-

ber of items that are rated by very few users and hence the recommendations generated

for these items would be poor, which could weaken the customers trust in the system.

187

18
8

A
p
p
en

d
ix

D
K
M
R

A
lgorith

m
s

Table D.1: A comparison of the KMR algorithm with others in terms of ROC-sensitivity. The best results are shown in bold font.

Algorithm Best ROC-Sensitivity
SML ML ML10 FT5 NF

UBCFDV 0.714± 0.004 0.742± 0.001 0.721± 0.002 0.526± 0.008 0.651± 0.002
IBCF 0.654± 0.003 0.730± 0.002 0.731± 0.002 0.541± 0.006 0.642± 0.002
Hybrid CF 0.708± 0.003 0.755± 0.002 0.724± 0.001 0.535± 0.006 0.658± 0.002
SVD 0.607± 0.002 0.634± 0.002 0.652± 0.002 0.469± 0.012 0.624± 0.003
KMRib 0.708± 0.002 0.732± 0.001 0.732± 0.002 0.570± 0.008 0.654± 0.003
KMRub 0.716± 0.002 0.752± 0.001 0.718± 0.002 0.590± 0.006 0.661± 0.003
KMRvarhybrid 0.729± 0.002 0.758± 0.001 0.738± 0.002 0.592± 0.006 0.662± 0.002

Table D.2: A comparison of the proposed algorithm with others in terms of F1. The best results are shown in bold font.

Algorithm Best F1
SML ML ML10 FT5 NF

UBCFDV 0.536± 0.003 0.549± 0.002 0.542± 0.041 0.516± 0.004 0.427± 0.002
IBCF 0.526± 0.002 0.542± 0.002 0.550± 0.040 0.521± 0.004 0.434± 0.003
Hybrid CF 0.528± 0.021 0.562± 0.002 0.549± 0.040 0.518± 0.004 0.436± 0.002
SVD 0.441± 0.002 0.407± 0.003 0.477± 0.012 0.445± 0.003 0.404± 0.003
KMRib 0.533± 0.003 0.596± 0.003 0.549± 0.018 0.523± 0.005 0.439± 0.003
KMRub 0.531± 0.003 0.587± 0.003 0.545± 0.013 0.540± 0.004 0.440± 0.003
KMRvarhybrid 0.539± 0.003 0.606± 0.003 0.551± 0.004 0.545± 0.004 0.442± 0.003

A
p
p
en

d
ix

D
K
M
R

A
lg
o
rith

m
s

189

Table D.3: Comparing the MAE observed in different approaches under new item cold-start scenario, for the SML dataset. The
superfix M4 represents the corresponding version of the KMR algorithm, where we take into account the max, mean, mode, and median
of the output probability distribution. Average represents the average rating given by all users in the dataset. The best results are
shown in bold font.

Approach
Best MAE

MAE2 MAE5 MAE10 MAE15 MAE20

KMRib 1.782± 0.003 1.692± 0.004 1.421± 0.004 1.321± 0.004 1.221± 0.004

KMRub 3.253± 0.005 3.055± 0.004 2.811± 0.004 2.610± 0.004 2.453± 0.004

KMRF 0.881± 0.005 0.821± 0.002 0.792± 0.002 0.783± 0.003 0.776± 0.002

KMRD 0.924± 0.005 0.873± 0.002 0.813± 0.002 0.809± 0.004 0.809± 0.002

KMRM
4

ib 0.953± 0.003 0.948± 0.004 0.928± 0.003 0.918± 0.003 0.887± 0.003

KMRM
4

ub 0.840± 0.002 0.848± 0.004 0.847± 0.003 0.837± 0.003 0.832± 0.002

KMRM
4

F 0.905± 0.003 0.904± 0.003 0.838± 0.003 0.790± 0.003 0.782± 0.003

KMRM
4

D 0.916± 0.003 0.916± 0.003 0.863± 0.003 0.815± 0.003 0.796± 0.003

KMRM
4

F+ib 0.849± 0.002 0.837± 0.002 0.807± 0.002 0.795± 0.002 0.786± 0.002

Average 0.918± 0.003 0.915± 0.003 0.840± 0.003 0.831± 0.002 0.824± 0.002

19
0

A
p
p
en

d
ix

D
K
M
R

A
lgorith

m
s

Table D.4: Comparing MAE observed in different approaches under the long tail scenario, for the SML dataset. The superfix M4

represents the corresponding version of the KMR algorithm, where we take into account the max, mean, mode, and median of the
output probability distribution. Average represents the average rating given by all users in the dataset. The best results are shown in
bold font.

Approach
Best MAE

MAE2 MAE4 MAE6 MAE8 MAE10 MAE15

KMRib 3.666± 0.005 3.652± 0.005 3.487± 0.005 3.432± 0.005 3.414± 0.004 3.371± 0.005

KMRub 3.481± 0.004 3.415± 0.004 3.336± 0.005 3.265± 0.004 3.239± 0.004 3.208± 0.004

KMRF 3.022± 0.004 3.017± 0.004 2.964± 0.004 2.894± 0.005 2.822± 0.004 2.761± 0.004

KMRD 2.963± 0.004 2.946± 0.004 2.872± 0.004 2.820± 0.005 2.683± 0.004 2.608± 0.004

KMRM
4

ib 0.976± 0.005 0.966± 0.003 0.865± 0.003 0.840± 0.003 0.820± 0.004 0.817± 0.003

KMRM
4

ub 0.884± 0.005 0.875± 0.005 0.843± 0.003 0.834± 0.003 0.828± 0.003 0.820± 0.003

KMRM
4

F 0.988± 0.003 0.970± 0.003 0.869± 0.003 0.845± 0.003 0.818± 0.003 0.810± 0.003

KMRM
4

D 0.966± 0.004 0.964± 0.004 0.867± 0.004 0.841± 0.004 0.819± 0.004 0.815± 0.004

KMRM
4

ib+F 0.885± 0.003 0.860± 0.003 0.835± 0.003 0.829± 0.003 0.809± 0.003 0.802± 0.002

Average 0.956± 0.004 0.951± 0.004 0.927± 0.004 0.881± 0.003 0.872± 0.003 0.863± 0.003

Appendix D KMR Algorithms 191

Table D.5: Comparing the performance of different KMR approaches under
imbalanced and sparse datasets. The superfix M4 represents the corre-
sponding version of the KMR algorithm, where we take into account the max,
mean, mode, and median of the output probability distribution. Average rep-
resents the average rating given by all users in the dataset. The best results are
shown in bold font.

Approach
MAE

x ∈ {50%,100%} x ∈ {75%,100%}
FT5 SML FT5 SML

KMRib 1.790± 0.002 1.040± 0.002 1.930± 0.002 1.171± 0.002

KMRub 2.237± 0.002 1.091± 0.002 2.250± 0.002 1.182± 0.002

KMRD 1.801± 0.002 1.052± 0.001 1.943± 0.002 1.174± 0.002

KMRF 1.773± 0.002 1.030± 0.001 1.912± 0.002 1.162± 0.002

KMRM
4

ib 1.752± 0.002 0.941± 0.001 1.771± 0.002 0.981± 0.001

KMRM
4

ub 1.775± 0.001 0.945± 0.001 1.791± 0.002 0.983± 0.001

KMRM
4

D 1.762± 0.002 0.931± 0.001 1.781± 0.003 0.955± 0.001

KMRM
4

F 1.758± 0.002 0.938± 0.001 1.775± 0.002 0.951± 0.001

KMRM
4

ib+F 1.739± 0.001 0.921± 0.001 1.749± 0.001 0.931± 0.001

Average 1.788± 0.001 1.021± 0.001 1.943± 0.001 1.152± 0.001

To test the performance of the proposed algorithms under long tail scenario, we created

the artificial long tail scenario by randomly selecting the 80% of items in the tail. The

number of ratings given in the tail part were varied between 2 to 15—this ensure that

the item is new and have very few ratings. Table D.4 again shows the failure of the

standard predictor in the long tail scenario and the improvement obtained by using the

mean, mode and median predictor.

D.4 Very Sparse and Imbalanced Dataset

To check the performance of the proposed approaches under (very) sparse and imbal-

anced dataset, we created subsets of the datasets by withholding x% ratings from the

rating profiles of users/items, where x ∈ [xmin, xmax]. We show results for two scenarios:

(1) xmin = 50%, xmax = 100%, (2) xmin = 75%, xmax = 100%. Changing the value of

xmin creates different sparse subsets of the dataset, whereas, keeping the value of xmax

to 100% ensures that the imbalanced dataset is created for each scenario.

For the SML and FT5 dataset, the results are shown in Table D.5. Again this follows

the same pattern as the long tail and cold-start scenarios.

192 Appendix D KMR Algorithms

Users (U)

Context (C)

Items (I)

Figure D.1: The conventional user-item rating matrix extended by the context
information.

D.5 Adding Contextual Information

In the case of two-dimensional users × items space, the ratings given by U users on I
items can be expressed by:

f : U × I → R,

For the contextual data, each item rated by a user is associated with the context (C =

{c1, c2, · · · , cc}. We might express this relationship by:

f : U × I × C → R

f : (Uc1 × Ic1 × c1) + (Uc2 × Ic2 × c2) + · · · (Ucc × Icc × cc)→ R,

f : (Uc1 × Ic1 × c1)︸ ︷︷ ︸
γ
c1
iu

+ (Uc2 × Ic2 × c2)︸ ︷︷ ︸
γ
c2
iu

+ · · · (Ucc × Icc × cc)︸ ︷︷ ︸
γcciu

→ R

where, γciu = Kr̂(r̂iu(c), r̂i′u(c))Kq(qi(c),qi′(c)). We compute separate feature and resid-

ual kernels (refer to Section 7.3) for the data associated with each context.

We considered trusted friends of an active users as their social context and shed light

on how does the recommendation accuracy improves if we use information from friend

of a friend (FOAF), or friend of FOAF, and so on. Specifically, we want to answer

the question: “how many friends must I ask to get a good recommendation”? In the

following, KMRfull represents the KMR algorithm that takes the whole network of

the users into account, KMRfoaf , which produce recommendation by taking friends,

Appendix D KMR Algorithms 193

FItem FOAF FOAFOAF

Number of users who have rated this item (feature vector of the item)

FOAFOAF...

Build feature and residual kernels for each portion of the dataset separately.

Figure D.2: We divide the users who have rated an item into different blocks
based on their relation with the active user. Specifically, we divide users into
friends, friend of a friend (FOAF), and so on. We compute separate kernel
functions for each block of data. The final recommendation is defined as an
aggregate function of these kernels.

friend of a friend (FOAF), etc. information into account, KMRrand, which produces

recommendations by taking random users into account.

We obtained relationships between users in the FilmTrust dataset using FOAF. We

constructed a simple undirected graph containing 1 092 symmetrical relationships. We

removed all users with no friends and fewer than 5 ratings, leaving 513 users. We also

removed movies with only 1 rating, leaving 881 movies. This filtered dataset has a

sparsity level of approximately 97%. It leaves total rating to 13 560.

Figure D.3 shows that the performance of KMRfoaf is comparable to the KMRfull

when a sufficient number of users are consulted. Furthermore, the performance of the

KMRfoaf is better than the KMRrand. This is probably because friends are more

trusted and have similar tastes. It also shows that in movies domains, users develop

social connections based on similar preferences. It must be noted that both of these

variants, i.e. KMRfoaf and KMRrand consider the same number of users to produce

recommendations. The difference is that, KMRfoaf only takes users who are friends

(or friends of the friends etc.) of the active users, where as KMRrand takes any random

user into account.

194 Appendix D KMR Algorithms

1 2 3 4 5 6 7

1.4

1.45

1.5

1.55

1.6

1.65

1.7

Degree of Friendship

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

KMR

full

KMR
foaf

KMR
rand

Figure D.3: Comparing the performance of the KMRfull with KMRfoaf . The
degree 1 means friends of an active user, 2 means friends and FOAF (friend of
a friend) of an active user, and so on. KMRrand employs the same number of
randomly selected users as many friends we have in that degree of separation.

Appendix E

Incremental and On-line KMR

Algorithms

E.1 Comparing the Performance of the KMRincr
ub Algorithm

With the KMRfull
ub

Figure E.1 compares the performance of the proposed algorithm, KMRincrub , with the

baseline one, KMRfullub , when new users enter the system. We observe that the proposed

algorithm outperforms the baseline algorithm at every combination of base model size

and number of iterations. The percentage decrease in the MAE in case of the proposed

algorithm compared to the baseline one, keeping the number of base users and iterations

fixed to 500 and 5 respectively, is found to be 7% for the SML and 1.5% for the FT5

dataset.

Figure E.2 compares the performance of the proposed algorithm, KMRincrub , with the

baseline one, KMRfullub , when new movies enter the system. The percentage decrease

in the MAE in case of the proposed algorithm compared to the baseline one, keeping

the number of base movies and iterations fixed to 200 and 5 respectively, is found to be

8.3% for the SML and 1.4% for the FT5 dataset.

E.2 Results of the KMRpercept Algorithm, When New User-

s/Movies are Introduced in the System

We performed experiments for the scenarios discussed in Section 8.3. Figure E.3 shows

that the performance of the proposed algorithm, KMRpercept, is comparable to the

baseline one, KMRfull. Note that, the KMRfull updates the model using 400 iterations

on the arrival of new data, which is expensive.

195

196 Appendix E Incremental and On-line KMR Algorithms

100
200

300
400

500
600

700
800

900

0
10

20
30

40
50

60
70

80
90

100

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Number of Iterations
Number of Base Users (SML dataset)

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

(M
A

E
)

0.74

0.76

0.78

0.8

0.82

0.84

0.86

KMRIncr
ub

KMRfull
ub

(a) KMRincr
ub vs. KMRfull

ub (SML dataset)

0

200

400

600

800

1000

1200

0
10

20
30

40
50

60
70

80
90

100

1.38

1.39

1.4

1.41

1.42

1.43

1.44

Number of Iterations
Number of Base Users (FT5 dataset)

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

(M
A

E
)

1.385

1.39

1.395

1.4

1.405

1.41

1.415

1.42

1.425

KMRIncr
ub

KMRfull
ub

(b) KMRincr
ub vs. KMRfull

ub (FT5 dataset)

Figure E.1: Comparing the performance of the proposed algorithm, KMRincrub ,

with the baseline one, KMRfullub , when new users are added in the system.
“Number of Base Users” represents the number of users used to build the base
model (i.e. Ubase). The model was updated by adding the remaining users
(i.e. Unew). “Number of Iterations” represents the number of iterations used to
train the updated model.

200

400

600

800

1000

1200

1400

1600

0
10

20
30

40
50

60
70

80
90

100

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Number of Iterations
Number of Base Movies (SML dataset)

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

(M
A

E
)

0.76

0.78

0.8

0.82

0.84

0.86

0.88KMRIncr
ub

KMRfull
ub

(a) KMRincr
ub vs. KMRfull

ub (SML dataset)

50

100

150

200

250

300

0
10

20
30

40
50

60
70

80
90

100

1.39

1.4

1.41

1.42

1.43

1.44

1.45

1.46

Number of Iterations
Number of Base Movies (FT5 dataset)

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

(M
A

E
)

1.395

1.4

1.405

1.41

1.415

1.42

1.425

1.43

1.435

1.44KMRIncr
ub

KMRfull
ub

(b) KMRincr
ub vs. KMRfull

ub (FT5 dataset)

Figure E.2: Comparing the performance of the proposed algorithm, KMRincrub ,

with the baseline one, KMRfullub , when new movies are added in the system.
“Number of Base Movies” represents the number of movies used to build the
base model (i.e. Ibase). The model was updated by adding the remaining movies
(i.e. Inew). “Number of Iterations” represents the number of iterations used to
train the updated model.

Appendix E Incremental and On-line KMR Algorithms 197

100 200 300 400 500 600 700 800 900
0.71

0.711

0.712

0.713

0.714

0.715

0.716

0.717

0.718

0.719

0.72

Number of Base Users (SML dataset)

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

KMRfull
ib

KMRpercept
ib

200 400 600 800 1000 1200 1400 1600
0.72

0.721

0.722

0.723

0.724

0.725

0.726

0.727

0.728

0.729

0.73

Number of Base Movies (SML dataset)

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

KMRfull
ib

KMRpercept
ib

100 200 300 400 500 600 700 800 900
0.735

0.736

0.737

0.738

0.739

0.74

0.741

0.742

0.743

0.744

0.745

Number of Base Users (SML dataset)

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

KMRfull
ub

KMRpercept
ub

200 400 600 800 1000 1200 1400 1600
0.74

0.745

0.75

0.755

Number of Base Movies (SML dataset)

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

KMRfull
ub

KMRpercept
ub

Figure E.3: Comparing the performance of the proposed algorithm KMRpercept

with the baseline one, KMRfull, when new users and movies are added in the
system. The “Number of Base Movies” represents the number of movies used
to build the base model (i.e. Ibase). The model was updated by adding the
remaining movies (i.e. Inew). Similarly, the ‘Number of Base Users” represents
the number of users used to build the base model (i.e. Ubase). The model was
updated by adding the remaining users (i.e. Unew). The KMRfull is trained
using 400 iterations.

References

Kjersti Aas and Line Eikvil. Text categorisation: A survey., 1999.

Gediminas Adomavicius, Ramesh Sankaranarayanan, Shahana Sen, and Alexander

Tuzhilin. Incorporating contextual information in recommender systems using a mul-

tidimensional approach. ACM Trans. Inf. Syst., 23:103–145, January 2005. ISSN

1046-8188.

Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of rec-

ommender systems: A survey of the state-of-the-art and possible extensions. IEEE

Trans. on Knowl. and Data Eng., 17:734–749, June 2005. ISSN 1041-4347.

Hyung Jun Ahn. A new similarity measure for collaborative filtering to alleviate the

new user cold-starting problem. Inf. Sci., 178:37–51, January 2008. ISSN 0020-0255.

Satnam Alag. Collective Intelligence in Action. Manning Publications, October, 2008.

Xavier Amatriain, Neal Lathia, Josep M. Pujol, Haewoon Kwak, and Nuria Oliver. The

wisdom of the few: a collaborative filtering approach based on expert opinions from

the web. In Proceedings of the 32nd international ACM SIGIR conference on Research

and development in information retrieval, SIGIR ’09, pages 532–539, New York, NY,

USA, 2009. ACM. ISBN 978-1-60558-483-6.

David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In

Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,

SODA ’07, pages 1027–1035, Philadelphia, PA, USA, 2007. Society for Industrial and

Applied Mathematics. ISBN 978-0-898716-24-5.

Katja Astikainen, Liisa Holm, Esa Pitkanen, Sandor Szedmak, and Juho Rousu. Towards

structured output prediction of enzyme function. BMC Proceedings, 2(Suppl 4):S2+,

2008. ISSN 1753-6561.

Yossi Azar, Amos Fiat, Anna Karlin, Frank McSherry, and Jared Saia. Spectral analysis

of data. In Proceedings of the thirty-third annual ACM symposium on Theory of

computing, STOC ’01, pages 619–626, New York, NY, USA, 2001. ACM. ISBN 1-

58113-349-9.

199

http://doi.acm.org/10.1145/1055709.1055714
http://doi.acm.org/10.1145/1055709.1055714
http://dx.doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1109/TKDE.2005.99
http://dl.acm.org/citation.cfm?id=1296345.1296682
http://dl.acm.org/citation.cfm?id=1296345.1296682
http://doi.acm.org/10.1145/1571941.1572033
http://doi.acm.org/10.1145/1571941.1572033
http://doi.acm.org/10.1145/1571941.1572033
http://dl.acm.org/citation.cfm?id=1283383.1283494
http://view.ncbi.nlm.nih.gov/pubmed/19091049
http://view.ncbi.nlm.nih.gov/pubmed/19091049
http://doi.acm.org/10.1145/380752.380859
http://doi.acm.org/10.1145/380752.380859

200 REFERENCES

Marko Balabanović and Yoav Shoham. Fab: content-based, collaborative recommenda-

tion. Commun. ACM, 40:66–72, March 1997. ISSN 0001-0782.

Linas Baltrunas. Exploiting contextual information in recommender systems. In Pro-

ceedings of the 2008 ACM conference on Recommender systems, RecSys ’08, pages

295–298, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-093-7.

Ana Belén Barragáns-Mart́ınez, Enrique Costa-Montenegro, Juan C. Burguillo, Marta

Rey-López, Fernando A. Mikic-Fonte, and Ana Peleteiro. A hybrid content-based

and item-based collaborative filtering approach to recommend tv programs enhanced

with singular value decomposition. Inf. Sci., 180:4290–4311, November 2010. ISSN

0020-0255.

J. Basilico and T. Hofmann. Unifying collaborative and content-based filtering. In

Proceedings of the twenty-first international conference on Machine learning, pages

65–72, New York, NY, USA, 2004. ACM Press.

Farran Bassam. One-pass algorithms for large and shifting data sets. PhD thesis, UNI-

VERSITY OF SOUTHAMPTON, UK, 2010.

Chumki Basu, Haym Hirsh, and William Cohen. Recommendation as classification:

using social and content-based information in recommendation. In Proceedings of the

fifteenth national/tenth conference on Artificial intelligence/Innovative applications

of artificial intelligence, AAAI ’98/IAAI ’98, pages 714–720, Menlo Park, CA, USA,

1998. American Association for Artificial Intelligence. ISBN 0-262-51098-7.

R.M. Bell, Y. Koren, and C. Volinsky. The BellKor solution to the Netflix prize, in:

AT&T Labs–Research: Technical report November, 2007.

Robert M. Bell and Yehuda Koren. Lessons from the netflix prize challenge. SIGKDD

Explor. Newsl., 9:75–79, December 2007a. ISSN 1931-0145.

Robert M. Bell and Yehuda Koren. Scalable collaborative filtering with jointly derived

neighborhood interpolation weights. In Proceedings of the 2007 Seventh IEEE In-

ternational Conference on Data Mining, pages 43–52, Washington, DC, USA, 2007b.

IEEE Computer Society. ISBN 0-7695-3018-4.

James Bennett and Stan Lanning. The netflix prize. In Proceedings of KDD Cup and

Workshop, volume 2007. Citeseer, 2007.

Pavel Berkhin. Survey of clustering data mining techniques. Technical report, Accrue

Software, San Jose, CA, 2002.

Michael W. Berry, Susan T. Dumais, and Gavin W. O’Brien. Using linear algebra

for intelligent information retrieval. SIAM Rev., 37:573–595, December 1995. ISSN

0036-1445.

http://doi.acm.org/10.1145/245108.245124
http://doi.acm.org/10.1145/245108.245124
http://doi.acm.org/10.1145/1454008.1454056
http://dx.doi.org/10.1016/j.ins.2010.07.024
http://dx.doi.org/10.1016/j.ins.2010.07.024
http://dx.doi.org/10.1016/j.ins.2010.07.024
http://dl.acm.org/citation.cfm?id=295240.295795
http://dl.acm.org/citation.cfm?id=295240.295795
http://doi.acm.org/10.1145/1345448.1345465
http://dl.acm.org/citation.cfm?id=1441428.1442050
http://dl.acm.org/citation.cfm?id=1441428.1442050
http://citeseer.ist.psu.edu/berkhin02survey.html
http://dl.acm.org/citation.cfm?id=222504.222514
http://dl.acm.org/citation.cfm?id=222504.222514

REFERENCES 201

Dimitri P. Bertsekas. Nonlinear programming. Athena Scientific Belmont, MA, 1999.

Daniel Billsus and Michael J. Pazzani. Learning collaborative information filters. In

Proceedings of the Fifteenth International Conference on Machine Learning, ICML

’98, pages 46–54, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

ISBN 1-55860-556-8.

Daniel Billsus and Michael J. Pazzani. User modeling for adaptive news access. User

Modeling and User-Adapted Interaction, 10:147–180, February 2000. ISSN 0924-1868.

John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive

algorithms for collaborative filtering. In Proceedings of the Fourteenth conference on

Uncertainty in artificial intelligence, UAI’98, pages 43–52, San Francisco, CA, USA,

1998. Morgan Kaufmann Publishers Inc. ISBN 1-55860-555-X.

Derek G. Bridge and Jerome Kelleher. Experiments in sparsity reduction: Using clus-

tering in collaborative recommenders. pages 144–149, 2002.

Christopher J. C. Burges. A tutorial on support vector machines for pattern recognition.

Data Min. Knowl. Discov., 2:121–167, June 1998. ISSN 1384-5810.

Luca Buriano, Marco Marchetti, Francesca Carmagnola, Federica Cena, Cristina Gena,

and Ilaria Torre. The role of ontologies in context-aware recommender systems. In

Proceedings of the 7th International Conference on Mobile Data Management, MDM

’06, pages 80–, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-

2526-1.

Robin Burke. Integrating knowledge-based and collaborative-filtering recommender sys-

tems. In In AAAI Workshop on AI in Electronic Commerce, pages 69–72. AAAI,

1999.

Robin Burke. Hybrid recommender systems: Survey and experiments. User Modeling

and User-Adapted Interaction, 12(4):331–370, November 2002.

Robin Burke. The adaptive web. chapter Hybrid web recommender systems, pages

377–408. Springer-Verlag, Berlin, Heidelberg, 2007. ISBN 978-3-540-72078-2.

John Canny. Collaborative filtering with privacy via factor analysis. In Proceedings of

the 25th annual international ACM SIGIR conference on Research and development

in information retrieval, SIGIR ’02, pages 238–245, New York, NY, USA, 2002. ACM.

ISBN 1-58113-561-0.

Iván Cantador, Alejandro Belloǵın, and Pablo Castells. A multilayer ontology-based

hybrid recommendation model. AI Commun., 21:203–210, April 2008. ISSN 0921-

7126.

http://dl.acm.org/citation.cfm?id=645527.657311
http://dl.acm.org/citation.cfm?id=598285.598352
http://dl.acm.org/citation.cfm?id=2074094.2074100
http://dl.acm.org/citation.cfm?id=2074094.2074100
http://dl.acm.org/citation.cfm?id=647301.721468
http://dl.acm.org/citation.cfm?id=647301.721468
http://dl.acm.org/citation.cfm?id=593419.593463
http://dx.doi.org/10.1109/MDM.2006.149
http://dl.acm.org/citation.cfm?id=1768197.1768211
http://doi.acm.org/10.1145/564376.564419
http://dl.acm.org/citation.cfm?id=1460172.1460184
http://dl.acm.org/citation.cfm?id=1460172.1460184

202 REFERENCES

Iván Cantador, Pablo Castells, and Alejandro Belloǵın. Modelling Ontology-based Mul-

tilayered Communities of Interest for Hybrid Recommendations. In Workshop on

Adaptation and Personalisation in Social Systems: Groups, Teams, Communities, at

the 11th International Conference on User Modeling, June 2007.

Claire Cardie. Empirical methods in information extraction. AI magazine, 18:65–79,

1997.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines.

ACM Trans. Intell. Syst. Technol., 2:27:1–27:27, May 2011. ISSN 2157-6904.

William Cheetham and Joseph Price. Measures of Solution Accuracy in Case-Based

Reasoning Systems. Advances in Case-Based Reasoning, pages 106–118, 2004.

Mark Claypool, Anuja Gokhale, Tim Mir, Pavel Murnikov, Dmitry Netes, and Matthew

Sartin. Combining content-based and collaborative filters in an online newspaper. In In

Proceedings of ACM SIGIR Workshop on Recommender Systems, Berkeley, California,

1999. ACM.

Patrick Clerkin, Pádraig Cunningham, and Conor Hayes. Concept discovery in collab-

orative recommender systems. pages 34–39, Dublin, Ireland, September 17–19 2003.

Mark Connor and John Herlocker. Clustering items for collaborative filtering. 2001.

Paul Cotter and Barry Smyth. Ptv: Intelligent personalised tv guides. In Proceedings of

the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference

on Innovative Applications of Artificial Intelligence, pages 957–964. AAAI Press, 2000.

ISBN 0-262-51112-6.

Nello Cristianini and John Shawe-Taylor. An introduction to support Vector Machines:

and other kernel-based learning methods. Cambridge Univ Pr, 2000.

Abhinandan S. Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. Google news

personalization: scalable online collaborative filtering. In Proceedings of the 16th

international conference on World Wide Web, WWW ’07, pages 271–280, New York,

NY, USA, 2007. ACM. ISBN 978-1-59593-654-7.

Dennis DeCoste. Collaborative prediction using ensembles of maximum margin matrix

factorizations. In Proceedings of the 23rd international conference on Machine learn-

ing, ICML ’06, pages 249–256, New York, NY, USA, 2006. ACM. ISBN 1-59593-383-2.

C.B. Do and S. Batzoglou. What is the expectation maximization algorithm? Nature

biotechnology, 26(8):897–899, 2008.

Jonathan Gemmell, Thomas Schimoler, Bamshad Mobasher, and Robin D. Burke. Re-

source recommendation in collaborative tagging applications. In Francesco Buccafurri

and Giovanni Semeraro, editors, EC-Web, volume 61 of Lecture Notes in Business In-

formation Processing, pages 1–12. Springer, 2010. ISBN 978-3-642-15207-8.

http://arantxa.ii.uam.es/~{}cantador/doc/2007/socium07.pdf
http://arantxa.ii.uam.es/~{}cantador/doc/2007/socium07.pdf
http://doi.acm.org/10.1145/1961189.1961199
http://www.springerlink.com/content/mkl87lfx92jr02k0
http://www.springerlink.com/content/mkl87lfx92jr02k0
file:citeseer.ist.psu.edu/connor01clustering.html
http://dl.acm.org/citation.cfm?id=647288.760209
http://dx.doi.org/10.1145/1242572.1242610
http://dx.doi.org/10.1145/1242572.1242610
http://doi.acm.org/10.1145/1143844.1143876
http://doi.acm.org/10.1145/1143844.1143876

REFERENCES 203

Mustansar A. Ghazanfar and Adam Prügel-Bennett. An Improved Switching Hybrid

Recommender System Using Naive Bayes Classifier and Collaborative Filtering. In

Lecture Notes in Engineering and Computer Science: Proceedings of The International

Multi Conference of Engineers and Computer Scientists 2010, pages 493–502. IMECS

2010, 17–19 March, 2010, Hong Kong, 2010a.

Mustansar A. Ghazanfar and Adam Prügel-Bennett. Building Switching Hybrid Rec-

ommender System Using Machine Learning Classifiers and Collaborative Filtering.

IAENG International Journal of Computer Science, 37(3):272–287, 2010b.

Mustansar A. Ghazanfar and Adam Prügel-Bennett. Novel heuristics for coalition struc-

ture generation in multi-agent systems. In The 2010 International Conference of

Computational Intelligence and Intelligent Systems. ICCIIS’10, 30 June–2 July 2010,

London, U.K., 2010c.

Mustansar A. Ghazanfar and Adam Prügel-Bennett. Novel significance weighting

schemes for collaborative filtering: Generating improved recommendations in sparse

environments. In DMIN, pages 334–342. CSREA Press, 2010d. ISBN 1-60132-138-4.

Mustansar A. Ghazanfar and Adam Prügel-Bennett. A scalable, accurate hybrid rec-

ommender system. In Proceedings of the 2010 Third International Conference on

Knowledge Discovery and Data Mining, WKDD ’10, pages 94–98, Washington, DC,

USA, 2010e. IEEE Computer Society. ISBN 978-0-7695-3923-2.

Mustansar A. Ghazanfar and Adam Prügel-Bennett. The advantage of careful impu-

tation sources in sparse data-environment of recommender systems: Generating im-

proved svd-based recommendations. In IADIS European Conference on Data Mining,

July 2011a.

Mustansar A. Ghazanfar and Adam Prügel-Bennett. Fulfilling the needs of gray-sheep

users in recommender systems, a clustering solution. In 2011 International Conference

on Information Systems and Computational Intelligence, January 2011b.

Mustansar A. Ghazanfar, Adam Prügel-Bennett, and Sándor Szedmák. Kernel mapping

recommender system algorithms. Information Sciences, 2012.

Mustansar A. Ghazanfar, Sándor Szedmák, and Adam Prügel-Bennett. Incremental

kernel mapping algorithms for scalable recommender systems. In ICTAI, pages 1077–

1084, 2011.

David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using collaborative

filtering to weave an information tapestry. Commun. ACM, 35:61–70, December 1992.

ISSN 0001-0782.

Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. Eigentaste: A con-

stant time collaborative filtering algorithm. Information Retrieval, 4:133–151, July

2001. ISSN 1386-4564.

http://eprints.ecs.soton.ac.uk/18483/
http://eprints.ecs.soton.ac.uk/18483/
http://eprints.ecs.soton.ac.uk/18788/
http://eprints.ecs.soton.ac.uk/18788/
http://dx.doi.org/10.1109/WKDD.2010.117
http://dx.doi.org/10.1109/WKDD.2010.117
http://eprints.ecs.soton.ac.uk/21770/
http://eprints.ecs.soton.ac.uk/21770/
http://doi.acm.org/10.1145/138859.138867
http://doi.acm.org/10.1145/138859.138867
http://dl.acm.org/citation.cfm?id=593963.594023
http://dl.acm.org/citation.cfm?id=593963.594023

204 REFERENCES

Nathaniel Good, J. Ben Schafer, Joseph A. Konstan, Al Borchers, Badrul Sarwar, Jon

Herlocker, and John Riedl. Combining collaborative filtering with personal agents

for better recommendations. In Proceedings of the sixteenth national conference on

Artificial intelligence and the eleventh Innovative applications of artificial intelligence

conference innovative applications of artificial intelligence, AAAI ’99/IAAI ’99, pages

439–446, Menlo Park, CA, USA, 1999. American Association for Artificial Intelligence.

ISBN 0-262-51106-1.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and

Ian H. Witten. The weka data mining software: an update. SIGKDD Explor. Newsl.,

11:10–18, November 2009. ISSN 1931-0145.

Choochart Haruechaiyasak, Chatchawal Tipnoe, Sarawoot Kongyoung, Chaianun Dam-

rongrat, and Niran Angkawattanawit. A dynamic framework for maintaining cus-

tomer profiles in e-commerce recommender systems. In Proceedings of the 2005 IEEE

International Conference on e-Technology, e-Commerce and e-Service (EEE’05) on

e-Technology, e-Commerce and e-Service, EEE ’05, pages 768–771, Washington, DC,

USA, 2005. IEEE Computer Society. ISBN 0-7695-2274-2.

Conor Hayes and Padraig Cunningham. Context boosting collaborative recommenda-

tions. Knowledge-Based Systems, 17(2-4):131–138, May 2004. ISSN 09507051.

Jon Herlocker, Joseph A. Konstan, and John Riedl. An empirical analysis of design

choices in neighborhood-based collaborative filtering algorithms. Inf. Retr., 5:287–

310, October 2002. ISSN 1386-4564.

Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl. Eval-

uating collaborative filtering recommender systems. ACM Trans. Inf. Syst., 22:5–53,

January 2004. ISSN 1046-8188.

C.W. Hsu, C.C. Chang, C.J. Lin, et al. A practical guide to support vector classification,

2003.

Anil K. Jain. Data clustering: 50 years beyond k-means. Pattern Recogn. Lett., 31:

651–666, June 2010. ISSN 0167-8655.

Thorsten Joachims. Text categorization with suport vector machines: Learning with

many relevant features. In Proceedings of the 10th European Conference on Machine

Learning, pages 137–142, London, UK, 1998. Springer-Verlag. ISBN 3-540-64417-2.

Thorsten Joachims. Training linear svms in linear time. In Proceedings of the 12th ACM

SIGKDD international conference on Knowledge discovery and data mining, KDD

’06, pages 217–226, New York, NY, USA, 2006. ACM. ISBN 1-59593-339-5.

Jerome Kelleher and Derek Bridge. Rectree centroid: An accurate, scalable collaborative

recommender. In Procs. of the Fourteenth Irish Conference on Artificial Intelligence

and Cognitive Science, pages 89–94. Citeseer, 2003.

http://dl.acm.org/citation.cfm?id=315149.315352
http://dl.acm.org/citation.cfm?id=315149.315352
http://doi.acm.org/10.1145/1656274.1656278
http://dx.doi.org/10.1109/EEE.2005.8
http://dx.doi.org/10.1109/EEE.2005.8
http://dl.acm.org/citation.cfm?id=593967.594047
http://dl.acm.org/citation.cfm?id=593967.594047
http://doi.acm.org/10.1145/963770.963772
http://doi.acm.org/10.1145/963770.963772
http://dx.doi.org/10.1016/j.patrec.2009.09.011
http://dl.acm.org/citation.cfm?id=645326.649721
http://dl.acm.org/citation.cfm?id=645326.649721
http://doi.acm.org/10.1145/1150402.1150429

REFERENCES 205

Dohyun Kim and Bong-Jin Yum. Collaborative filtering based on iterative principal

component analysis. Expert Syst. Appl., 28:823–830, May 2005. ISSN 0957-4174.

Heung-Nam Kim, Abdulmotaleb El-Saddik, and Geun-Sik Jo. Collaborative error-

reflected models for cold-start recommender systems. Decision Support Systems, 51

(3):519 – 531, 2011. ISSN 0167-9236.

Arnd Kohrs and Bernard Merialdo. Clustering for collaborative filtering applications.

Computational Intelligence for Modelling, Control & Automation. IOS Press, 1999.

Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Herlocker, Lee R.

Gordon, and John Riedl. Grouplens: applying collaborative filtering to usenet news.

Commun. ACM, 40:77–87, March 1997. ISSN 0001-0782.

Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative

filtering model. In Proceedings of the 14th ACM SIGKDD international conference

on Knowledge discovery and data mining, KDD ’08, pages 426–434, New York, NY,

USA, 2008. ACM. ISBN 978-1-60558-193-4.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for

recommender systems. Computer, 42:30–37, August 2009. ISSN 0018-9162.

M. Kurucz, A.A. Benczúr, and K. Csalogány. Methods for large scale SVD with missing

values. In Proceedings of KDD Cup and Workshop. Citeseer, 2007.

Ken Lang. NewsWeeder: learning to filter netnews. In Proceedings of the 12th Interna-

tional Conference on Machine Learning, pages 331–339. Morgan Kaufmann publishers

Inc.: San Mateo, CA, USA, 1995.

Neil D. Lawrence and Raquel Urtasun. Non-linear matrix factorization with gaussian

processes. In Proceedings of the 26th Annual International Conference on Machine

Learning, ICML ’09, pages 601–608, New York, NY, USA, 2009. ACM. ISBN 978-1-

60558-516-1.

George Lekakos and Petros Caravelas. A hybrid approach for movie recommendation.

Multimedia Tools Appl., 36:55–70, January 2008. ISSN 1380-7501.

Qing Li and Byeong Man Kim. An approach for combining content-based and collabora-

tive filters. In Proceedings of the sixth international workshop on Information retrieval

with Asian languages - Volume 11, AsianIR ’03, pages 17–24, Stroudsburg, PA, USA,

2003. Association for Computational Linguistics.

Antonis Loizou. How to recommend music to book lovers: Enabling the provision of

recommendations from multiple domains. PhD thesis, 2009.

Hao Ma, Irwin King, and Michael R. Lyu. Effective missing data prediction for collabora-

tive filtering. In Proceedings of the 30th annual international ACM SIGIR conference

http://dx.doi.org/10.1016/j.eswa.2004.12.037
http://dx.doi.org/10.1016/j.eswa.2004.12.037
http://www.sciencedirect.com/science/article/pii/S0167923611000868
http://www.sciencedirect.com/science/article/pii/S0167923611000868
http://doi.acm.org/10.1145/245108.245126
http://doi.acm.org/10.1145/1401890.1401944
http://doi.acm.org/10.1145/1401890.1401944
http://dl.acm.org/citation.cfm?id=1608565.1608614
http://dl.acm.org/citation.cfm?id=1608565.1608614
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.6286
http://doi.acm.org/10.1145/1553374.1553452
http://doi.acm.org/10.1145/1553374.1553452
http://dl.acm.org/citation.cfm?id=1327423.1327424
http://dx.doi.org/10.3115/1118935.1118938
http://dx.doi.org/10.3115/1118935.1118938
http://doi.acm.org/10.1145/1277741.1277751
http://doi.acm.org/10.1145/1277741.1277751

206 REFERENCES

on Research and development in information retrieval, SIGIR ’07, pages 39–46, New

York, NY, USA, 2007. ACM. ISBN 978-1-59593-597-7.

Lester Mackey, David Weiss, and Michael I. Jordan. Mixed membership matrix factor-

ization. In Proceedings of the 27th International Conference on Machine Learning,

June 2010.

Veronica Maidel, Peretz Shoval, Bracha Shapira, and Meirav Taieb-Maimon. Evalua-

tion of an ontology-content based filtering method for a personalized newspaper. In

Proceedings of the 2008 ACM conference on Recommender systems, RecSys ’08, pages

91–98, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-093-7.

Benjamin Marlin. Collaborative Filtering: A Machine Learning Perspective. Master’s

thesis, University of Toronto, 2004.

A. Martinez, J. Arias, A. Vilas, J. Garcia Duque, and M. Lopez Nores. What’s on tv

tonight? an efficient and effective personalized recommender system of tv programs.

Consumer Electronics, IEEE Transactions on, 55(1):286–294, 2009.

Sean M. McNee. Meeting user information needs in recommender systems. PhD thesis,

UNIVERSITY OF MINNESOTA, USA, 2006.

Sean M. Mcnee, Shyong K. Lam, Catherine Guetzlaff, Joseph A. Konstan, and John

Riedl. Confidence Displays and Training in Recommender Systems. In Matthias

Rauterberg, Marino Menozzi, Janet Wesson, Matthias Rauterberg, Marino Menozzi,

and Janet Wesson, editors, INTERACT. IOS Press, 2003. ISBN 1-58603-363-8.

Prem Melville, Raymod J. Mooney, and Ramadass Nagarajan. Content-boosted collab-

orative filtering for improved recommendations. In Eighteenth national conference on

Artificial intelligence, pages 187–192, Menlo Park, CA, USA, 2002. American Associ-

ation for Artificial Intelligence. ISBN 0-262-51129-0.

Stuart E. Middleton. Capturing knowledge of user preferences with recommender sys-

tems. PhD thesis, UNIVERSITY OF SOUTHAMPTON, UK, September 2002.

Stuart E. Middleton, Harith Alani, and David C. De Roure. Exploiting Synergy Between

Ontologies and Recommender Systems. In The Eleventh International World Wide

Web Conference (WWW2002), 2002.

Stuart E. Middleton, David D. Roure, and Nigel R. Shadbolt. Ontology-based recom-

mender systems. pages 779–796. Springer, 2009.

Stuart E. Middleton, Nigel R. Shadbolt, and David C. De Roure. Ontological user

profiling in recommender systems. ACM Trans. Inf. Syst., 22:54–88, January 2004.

ISSN 1046-8188.

Bamshad Mobasher. Recommender systems. KI, 21(3):41–43, 2007.

http://doi.acm.org/10.1145/1454008.1454024
http://doi.acm.org/10.1145/1454008.1454024
http://dblp.uni-trier.de/rec/bibtex/conf/interact/McNeeLGKR03
http://dl.acm.org/citation.cfm?id=777092.777124
http://dl.acm.org/citation.cfm?id=777092.777124
http://doi.acm.org/10.1145/963770.963773
http://doi.acm.org/10.1145/963770.963773

REFERENCES 207

Bamshad Mobasher, Xin Jin, and Yanzan Zhou. Semantically Enhanced Collaborative

Filtering on the Web. 3209:57–76, September 2003.

Raymond J. Mooney and Loriene Roy. Content-based book recommending using learning

for text categorization. In Proceedings of the fifth ACM conference on Digital libraries,

DL ’00, pages 195–204, New York, NY, USA, 2000. ACM. ISBN 1-58113-231-X.

H. Jr. Murray. Methods for satisfying the needs of the scientist and the engineer for

scientific and technical communication. A Press Release, 1966.

U. Nahm and R. Mooney. Text mining with information extraction, 2002.

Miki Nakagawa and Bamshad Mobasher. A hybrid web personalization model based on

site connectivity. In Proceedings of WebKDD, pages 59–70, 2003.

Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer verlag, 1999.

Douglas Oard and Jinmook Kim. Implicit feedback for recommender systems. In Pro-

ceedings of the AAAI Workshop on Recommender Systems, pages 81–83, 1998.

Seung-Taek Park, David Pennock, Omid Madani, Nathan Good, and Dennis DeCoste.

Näıve filterbots for robust cold-start recommendations. KDD ’06, pages 699–705, New

York, NY, USA, 2006. ACM. ISBN 1-59593-339-5.

Yoon-Joo Park and Alexander Tuzhilin. The long tail of recommender systems and how

to leverage it. In Proceedings of the 2008 ACM conference on Recommender systems,

RecSys ’08, pages 11–18, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-093-7.

Arkadiusz Paterek. Improving regularized singular value decomposition for collaborative

filtering. In Proc. KDD Cup and Workshop. Citeseer, 2007.

Michael J. Pazzani. A framework for collaborative, content-based and demographic

filtering. Artif. Intell. Rev., 13:393–408, December 1999. ISSN 0269-2821.

Michael J. Pazzani and Daniel Billsus. The adaptive web. chapter Content-based recom-

mendation systems, pages 325–341. Springer-Verlag, Berlin, Heidelberg, 2007. ISBN

978-3-540-72078-2.

David M. Pennock, Eric Horvitz, Steve Lawrence, and C. Lee Giles. Collaborative

filtering by personality diagnosis: A hybrid memory and model-based approach. In

Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, UAI ’00,

pages 473–480, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

ISBN 1-55860-709-9.

Martin Piotte and Martin Chabbert. The pragmatic theory solution to the netflix grand

prize, in: Netflix prize documentation, 2009.

http://doi.acm.org/10.1145/336597.336662
http://doi.acm.org/10.1145/336597.336662
http://doi.acm.org/10.1145/1150402.1150490
http://doi.acm.org/10.1145/1454008.1454012
http://doi.acm.org/10.1145/1454008.1454012
http://dx.doi.org/10.1023/A:1006544522159
http://dx.doi.org/10.1023/A:1006544522159
http://dl.acm.org/citation.cfm?id=1768197.1768209
http://dl.acm.org/citation.cfm?id=647234.720062
http://dl.acm.org/citation.cfm?id=647234.720062

208 REFERENCES

Sutheera Puntheeranurak and Hidekazu Tsuji. A multi-clustering hybrid recommender

system. In Proceedings of the 7th IEEE International Conference on Computer and In-

formation Technology, pages 223–228, Washington, DC, USA, 2007. IEEE Computer

Society. ISBN 0-7695-2983-6.

Amirthalingam Ramanan. Designing a resource-allocating codebook for patch-based vi-

sual object recognition. PhD thesis, UNIVERSITY OF SOUTHAMPTON, UK, 2010.

Al Mamunur Rashid, Shyong K. Lam, George Karypis, and John Riedl. Clustknn: a

highly scalable hybrid model-& memory-based cf algorithm. In Proc. of WebKDD

2006: KDD Workshop on Web Mining and Web Usage Analysis, in conjunction with

the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (KDD 2006), August 20-23 2006, Philadelphia, PA. Citeseer, 2006.

Steffen Rendle and Schmidt-Thie Lars. Online-updating regularized kernel matrix fac-

torization models for large-scale recommender systems. In Proceedings of the 2008

ACM conference on Recommender systems, RecSys ’08, pages 251–258, New York,

NY, USA, 2008. ACM. ISBN 978-1-60558-093-7.

Jasson D. M. Rennie and Nathan Srebro. Fast maximum margin matrix factorization

for collaborative prediction. In Proceedings of the 22nd international conference on

Machine learning, ICML ’05, pages 713–719, New York, NY, USA, 2005. ACM. ISBN

1-59593-180-5.

Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl.

Grouplens: an open architecture for collaborative filtering of netnews. In Proceedings

of the 1994 ACM conference on Computer supported cooperative work, CSCW ’94,

pages 175–186, New York, NY, USA, 1994. ACM. ISBN 0-89791-689-1.

Colm Ryan, Derek Greene, Gerard Cagney, and Padraig Cunningham. Missing value

imputation for epistatic MAPs. BMC Bioinformatics, 11(1):197+, 2010. ISSN 1471-

2105.

R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. Advances in Neural

Information Processing Systems, 20:1257–1264, 2008.

B. Sarwar, George Karypis, Joseph Konstan, and John Reidl. Item-based collaborative

filtering recommendation algorithms. In Proceedings of the 10th international confer-

ence on World Wide Web, WWW ’01, pages 285–295, New York, NY, USA, 2001.

ACM. ISBN 1-58113-348-0.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Analysis of recom-

mendation algorithms for e-commerce. In Proceedings of the 2nd ACM conference

on Electronic commerce, EC ’00, pages 158–167, New York, NY, USA, 2000a. ACM.

ISBN 1-58113-272-7.

http://dl.acm.org/citation.cfm?id=1317531.1317965
http://dl.acm.org/citation.cfm?id=1317531.1317965
http://doi.acm.org/10.1145/1454008.1454047
http://doi.acm.org/10.1145/1454008.1454047
http://doi.acm.org/10.1145/1102351.1102441
http://doi.acm.org/10.1145/1102351.1102441
http://doi.acm.org/10.1145/192844.192905
http://doi.acm.org/10.1145/371920.372071
http://doi.acm.org/10.1145/371920.372071
http://doi.acm.org/10.1145/352871.352887
http://doi.acm.org/10.1145/352871.352887

REFERENCES 209

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Application of di-

mensionality reduction in recommender system–a case study. In IN ACM WEBKDD

WORKSHOP. Citeseer, 2000b.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Incremental singular

value decomposition algorithms for highly scalable recommender systems. In Proceed-

ings of the 5th International Conference in Computers and Information Technology,

pages 27–28. Citeseer, 2002a.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Recommender sys-

tems for large-scale e-commerce: Scalable neighborhood formation using clustering.

In Proceedings of the Fifth International Conference on Computer and Information

Technology, 2002b.

Badrul M. Sarwar, Joseph A. Konstan, Al Borchers, Jon Herlocker, Brad Miller, and

John Riedl. Using filtering agents to improve prediction quality in the grouplens

research collaborative filtering system. In Proceedings of the 1998 ACM conference

on Computer supported cooperative work, CSCW ’98, pages 345–354, New York, NY,

USA, 1998. ACM. ISBN 1-58113-009-0.

Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M. Pennock. Methods

and metrics for cold-start recommendations. In Proceedings of the 25th annual interna-

tional ACM SIGIR conference on Research and development in information retrieval,

SIGIR ’02, pages 253–260, New York, NY, USA, 2002. ACM. ISBN 1-58113-561-0.

Vincent. Schickel-Zuber and Boi Faltings. Using an Ontological A-priori Score to Infer

User’s Preferences. In Workshop on Recommender Systems-ECAI06, pages 102–106,

2006.

Deerwester Scott C., Dumais Susan T., Landauer Thomas K., Furnas George W., and

Harshman Richard A. Indexing by latent semantic analysis. Journal of the American

society for information science, 41(6):391–407, 1990.

Fabrizio Sebastiani. Machine learning in automated text categorization. ACM Comput.

Surv., 34:1–47, March 2002. ISSN 0360-0300.

Upendra Shardanand and Pattie Maes. Social information filtering: algorithms for

automating word of mouth. In Proceedings of the SIGCHI conference on Human

factors in computing systems, CHI ’95, pages 210–217, New York, NY, USA, 1995.

ACM Press/Addison-Wesley Publishing Co. ISBN 0-201-84705-1.

Andriy Shepitsen, Jonathan Gemmell, Bamshad Mobasher, and Robin Burke. Per-

sonalized recommendation in social tagging systems using hierarchical clustering. In

Proceedings of the 2008 ACM conference on Recommender systems, RecSys ’08, pages

259–266, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-093-7.

http://doi.acm.org/10.1145/289444.289509
http://doi.acm.org/10.1145/289444.289509
http://doi.acm.org/10.1145/564376.564421
http://doi.acm.org/10.1145/564376.564421
http://doi.acm.org/10.1145/505282.505283
http://dx.doi.org/10.1145/223904.223931
http://dx.doi.org/10.1145/223904.223931

210 REFERENCES

P. Shoval, V. Maidel, and B. Shapira. An ontology- content-based filtering method.

International Journal on Information Theories and Applications, 15:303–318, 2008.

Nathan Srebro and Tommi Jaakkola. Weighted low-rank approximations. In ICML,

volume 20, page 720, 2003.

Nathan Srebro, Jasson D. M Rennie, and T. Jaakkola. Maximum-margin matrix factor-

ization. Advances in neural information processing systems, 17:1329–1336, 2005.

Michael Steinbach, George Karypis, and Vipin Kumar. A comparison of document clus-

tering techniques. In Marko Grobelnik, Dunja Mladenic, and Natasa Milic-Frayling,

editors, KDD-2000 Workshop on Text Mining, August 20, pages 109–111, Boston,

MA, 2000.

David H. Stern, Ralf Herbrich, and Thore Graepel. Matchbox: large scale online bayesian

recommendations. In Proceedings of the 18th international conference on World wide

web, WWW ’09, pages 111–120, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-

487-4.

Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative filtering techniques.

Adv. in Artif. Intell., 2009:4:2–4:2, January 2009. ISSN 1687-7470.

Xiaoyuan Su, Taghi M. Khoshgoftaar, and Russell Greiner. A mixture imputation-

boosted collaborative filter. In Proceedings of the 21th International Florida Artificial

Intelligence Research Society Conference (FLAIRS’08), pages 312–317, 2008a.

Xiaoyuan Su, Taghi M. Khoshgoftaar, Xingquan Zhu, and Russell Greiner. Imputation-

boosted collaborative filtering using machine learning classifiers. In Proceedings of the

2008 ACM symposium on Applied computing, SAC ’08, pages 949–950, New York,

NY, USA, 2008b. ACM. ISBN 978-1-59593-753-7.

Sandor Szedmak, Ni Yizhao, and Gunn Steve R. Maximum margin learning with in-

complete data: Learning networks instead of tables. Journal of Machine Learning

Research - Proceedings Track, 11:96–102, 2010.

Martin Szomszor, Ciro Cattuto, Harith Alani, Kieron O’äôhara, Andrea Baldassarri,

Vittorio Loreto, and Vito D. P. Servedio. Folksonomies, the semantic web, and movie

recommendation. In Bridging the Gep between Semantic Web and Web 2.0 (SemNet

2007), pages 71–84, 2007.

Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Investigation of

various matrix factorization methods for large recommender systems. In Proceedings

of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize

Competition, NETFLIX ’08, pages 6:1–6:8, New York, NY, USA, 2008. ACM. ISBN

978-1-60558-265-8.

http://www-users.cs.umn.edu/~karypis/publications/ir.html
http://www-users.cs.umn.edu/~karypis/publications/ir.html
http://doi.acm.org/10.1145/1526709.1526725
http://doi.acm.org/10.1145/1526709.1526725
http://dx.doi.org/10.1155/2009/421425
http://doi.acm.org/10.1145/1363686.1363903
http://doi.acm.org/10.1145/1363686.1363903
http://dblp.uni-trier.de/db/journals/jmlr/jmlrp11.html#SzedmakNG10
http://dblp.uni-trier.de/db/journals/jmlr/jmlrp11.html#SzedmakNG10
http://doi.acm.org/10.1145/1722149.1722155
http://doi.acm.org/10.1145/1722149.1722155

REFERENCES 211

Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Scalable collabo-

rative filtering approaches for large recommender systems. J. Mach. Learn. Res., 10:

623–656, June 2009. ISSN 1532-4435.

Loren Terveen, Will Hill, Brian Amento, David McDonald, and Josh Creter. Phoaks: a

system for sharing recommendations. Commun. ACM, 40:59–62, March 1997. ISSN

0001-0782.

Thomas Tran and Robin Cohen. Hybrid recommender systems for electronic commerce.

In Knowledge-Based Electronic Markets, Papers from the AAAI Workshop, Technical

Report WS-00, volume 4, 2000.

Tran Tran. Combining collaborative filtering and knowledge-based approaches for better

recommendation systems. Journal of Business and Technology, 2(2):17–24, 2007.

Gulden Uchyigit and Keith Clark. Agents that learn to give personalized tv program

recommendations, in aaai technical report fs-02-04, 2002.

Gulden Uchyigit and Keith Clark. Hierarchical agglomerative clustering for agent-based

dynamic collaborative filtering. In IDEAL, pages 827–832, 2004.

Robin van Meteren and Maarten van Someren. Using content-based filtering for rec-

ommendation. In Proceedings of the Machine Learning in the New Information Age:

MLnet/ECML2000 Workshop. Citeseer, 2000.

M. Van Setten. Supporting people in finding information: hybrid recommender systems

and goal-based structuring. 2005.

Manolis Vozalis and Konstantinos G. Margaritis. Applying SVD on generalized item-

based filtering. International Journal of Computer Science and Applications, 3(3):

27–51, 2006a.

Manolis Vozalis and Konstantinos G. Margaritis. On the enhancement of collaborative

filtering by demographic data. Web Intelli. and Agent Sys., 4:117–138, April 2006b.

ISSN 1570-1263.

Manolis Vozalis and Konstantinos G. Margaritis. Using svd and demographic data for

the enhancement of generalized collaborative filtering. Information Sciences, 177:

3017–3037, August 2007. ISSN 0020-0255.

Manolis G. Vozalis and Konstantinos G. Margaritis. Applying svd on item-based filter-

ing. In Proceedings of the 5th International Conference on Intelligent Systems Design

and Applications, ISDA ’05, pages 464–469, Washington, DC, USA, 2005. IEEE Com-

puter Society. ISBN 0-7695-2286-06.

Sung-Shun Weng and Hui-Ling Chang. Using ontology network analysis for research

document recommendation. Expert Syst. Appl., 34:1857–1869, April 2008. ISSN 0957-

4174.

http://dl.acm.org/citation.cfm?id=1577069.1577091
http://dl.acm.org/citation.cfm?id=1577069.1577091
http://doi.acm.org/10.1145/245108.245122
http://doi.acm.org/10.1145/245108.245122
http://dl.acm.org/citation.cfm?id=1239776.1239777
http://dl.acm.org/citation.cfm?id=1239776.1239777
http://dl.acm.org/citation.cfm?id=1243505.1243639
http://dl.acm.org/citation.cfm?id=1243505.1243639
http://dx.doi.org/10.1109/ISDA.2005.25
http://dx.doi.org/10.1109/ISDA.2005.25
http://dl.acm.org/citation.cfm?id=1327543.1327756
http://dl.acm.org/citation.cfm?id=1327543.1327756

212 REFERENCES

I. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques

with Java Implementations. Morgan Kaufmann, October 1999. ISBN 1558605525.

Ian H. Witten, Gordon W. Paynter, Eibe Frank, Carl Gutwin, and Craig G. Nevill-

Manning. Kea: practical automatic keyphrase extraction. In Proceedings of the fourth

ACM conference on Digital libraries, DL ’99, pages 254–255, New York, NY, USA,

1999. ACM. ISBN 1-58113-145-3.

Mingru Wu. Collaborative filtering via ensembles of matrix factorizations. In Proceedings

of KDD Cup and Workshop. Citeseer, 2007.

M. Wurst. Evaluating knowledge management in heterogeneous domains by agent-based

simulation. Agent Mediated Knowledge Management, page 82, 2005.

Gui-Rong Xue, Chenxi Lin, Qiang Yang, WenSi Xi, Hua-Jun Zeng, Yong Yu, and Zheng

Chen. Scalable collaborative filtering using cluster-based smoothing. In Proceedings of

the 28th annual international ACM SIGIR conference on Research and development

in information retrieval, SIGIR ’05, pages 114–121, New York, NY, USA, 2005. ACM.

ISBN 1-59593-034-5.

Valentina Zanardi. Addressing the cold start problem in tag-based recommender systems.

PhD thesis, UCL (University College London), 2011.

Valentina Zanardi and Licia Capra. A scalable tag-based recommender system for

new users of the social web. In Proceedings of the 22nd international conference on

Database and expert systems applications - Volume Part I, DEXA’11, pages 542–557,

Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-23087-5.

Jiyong Zhang and Pearl Pu. A recursive prediction algorithm for collaborative filtering

recommender systems. In Proceedings of the 2007 ACM conference on Recommender

systems, RecSys ’07, pages 57–64, New York, NY, USA, 2007. ACM. ISBN 978-1-

59593-730–8.

Sheng Zhang, Weihong Wang, James Ford, and Fillia Makedon. Learning from incom-

plete ratings using non-negative matrix factorization. In 6th SIAM Conference on

Data Mining (SDM), pages 548–552. Citeseer, 2006.

Sheng Zhang, Weihong Wang, James Ford, Fillia Makedon, and Justin Pearlman. Using

singular value decomposition approximation for collaborative filtering. In Proceedings

of the Seventh IEEE International Conference on E-Commerce Technology, pages

257–264, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2277-7.

Tong Zhang and Vijay S. Iyengar. Recommender systems using linear classifiers. J.

Mach. Learn. Res., 2:313–334, March 2002. ISSN 1532-4435.

http://doi.acm.org/10.1145/313238.313437
http://doi.acm.org/10.1145/1076034.1076056
http://dl.acm.org/citation.cfm?id=2035368.2035419
http://dl.acm.org/citation.cfm?id=2035368.2035419
http://doi.acm.org/10.1145/1297231.1297241
http://doi.acm.org/10.1145/1297231.1297241
http://dl.acm.org/citation.cfm?id=1097108.1097187
http://dl.acm.org/citation.cfm?id=1097108.1097187

