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Abstract

Labor composition by gender, age, and education has undergone dra-
matic changes over the last forty years in the United States. Furthermore,
the volatility of total market hours differs systematically between genders,
age, and education groups. I develop a large-scale business cycle model
which suggests that demographic changes by gender and education affect
labor supply elasticities at the micro level. This has important repercus-
sions on aggregate volatility. Changes in labor composition account for 30%
of the observed changes in aggregate volatility over this period of time. To
solve the model over this large transition, I develop a new algorithm which
extends perturbation methods to the stochastic transition path and can be
applied to a broad class of DSGE models.
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1 Introduction

This paper uses a structural model to investigate the possible significance of demo-
graphic changes on aggregate volatility. Jaimovich and Siu (2009) (J-S) exploited
the exogeneity to current economic activity of the changes in the population dis-
tribution by age, to measure their impact on business cycle volatility, through
regression analysis. They found that changes by age played a significant role in
determining business cycle volatility over the last 40 years.! Meanwhile, labor
composition changes by gender and education have been equally dramatic (see
for instance Katz and Autor (1999) for the US, Katz and Freeman (1994) for a
cross-country comparison) and appear to be correlated to the changes by age.
Through a decomposition exercise, J-S show that if the response to the business
cycle of hours worked by each demographic group is not affected by these compo-
sitional changes, the contribution of education is half the one of age, and the one
of gender composition is negligible. This is an important benchmark but raises
the question: is the group-specific response to business cycle shocks affected by
demographic composition? And how much do gender, age, and education compo-
sition affect business cycle volatility once these endogenous responses are taken
into account?

To address these questions I build an overlapping generations model in which
males and females choose education, intrafamily time allocation, and savings. The
model builds on the perfect foresight model of Heathcote et al. (2010) and extends
it to an environment with aggregate uncertainty.”

The model is able to replicate the evolution of aggregate output volatility over
time. Since most of the shocks are identified from disaggregated data, this re-
sult was not obvious and signals a good model specification.® It is then possible
to measure the contribution that the labor reallocation played on the changes in
aggregate volatility: counterfactual simulations suggest that had the labor compo-
sition remained trendless at its steady-state levels, business cycle volatility would

!The finding is robust to considering a larger pool of countries (Lugauer and Redmond
(2012)), or exploiting the variation in demographic change across the United States (Lugauer
(2012b)). Lugauer (2012a) reconciles the result with a search and matching model. Janiak and
Monteiro (2011) find that differences in tax rates explain some of the differences in aggregate
volatility across countries through their effects on the age distribution of labor.

2To link this model to the data, I use the National Income and Product Accounts, the March
supplement of the Current Population Survey (CPS), and other US demographic information.
Following Attanasio and Weber (1995), by grouping the labor force by the observables men-
tioned, I create a synthetic panel which has an exact counterpart in the model.

3The dynamic stochastic general equilibrium literature concerned with changes in business
cycle volatility has mainly focused on the volatility slow-down from the 1980s, and accounts for
it essentially by a reduction in the volatility of aggregate shocks (see Arias et al. (2007) and
Smets and Wouters (2007)). The present framework decomposes the effects that aggregate Solow
residuals have on volatility, into less aggregate productivity shocks and the labor composition.



have been 17% lower in the early 1970s and close to the observed volatility in the
1980s and 1990s (when there was little volatility). By accounting for part of the
high volatility of the early 1970s and of the slowdown in the 1980s, labor reallo-
cation also accounts for 30% of the Great Moderation, the large volatility decline
in the 1980s, initially documented by Kim and Nelson (1999) and McConnell and
Perez-Quiros (2000)." In addition, had the labor composition converged to its
steady state, the business cycle would have been 5% more volatile than it was
over the last decade. This last result suggests that a return to times of low busi-
ness cycle volatility is not likely; in fact, aggregate volatility can be expected to
increase somewhat if labor composition continues to follow current trends.®

The paper confirms the finding of J-S that the age composition has an impact.
However it suggests that its effect is not as important. In fact, its role is smaller
than the one played by educational composition and comparable to the one of
gender composition. That changes by education and gender played a stronger
role relies on a relationship uncovered in this paper between demographic trends
by gender and education, and labor supply elasticities. Education and gender
composition trends are largely due to increases in market hours per worker of the
highly educated and the female population. In this model, labor supply elastic-
ities decline with the increase in hours worked. This decline contributes to the
observed moderation in aggregate volatility. Instead, demographic changes by
age essentially affect a more extensive margin—the number of people in each age
bracket—which does not affect labor supply elasticities.

That demographic trends induced a decline in labor supply elasticities is a pre-
diction of the model, and relies on the utility function chosen. As such, it should
be validated. First, that elasticities decrease in labor is broadly consistent with
the cross-sectional evidence that groups that work more hours have less elastic
labor supplies. E.g. males versus females, prime age versus closer to retirement,
women without children versus women with children; see Reichling and Whalen
(2012). Furthermore, with the chosen utility specification—widely adopted in the
literature—the model is successful at predicting how the hours volatility ratio
across groups has evolved over time, as well as the aforementioned trends in ag-
gregate volatility. This is not the case with a specification with constant Frisch
elasticities. Lastly, the prediction that female labor supply elasticities declined
over time is consistent with direct estimations of married women’s elasticities

4Between the two sub-samples, aggregate output volatility decreased by log(1.64) —log(.99) =
50.47 log points. Had the shares remained stable as in the counterfactual, we would have
observed a reduction in volatility of log(1.42) — log(1.00) = 35.07 log points. Therefore, these
demographic changes account for (50.47-35.07)/50.47 or 30.53% of the moderation in output.

®One intuitive reason for this result is that the fraction of prime age workers (those least
sensitive to business cycle shocks compared with other age groups) declines as the baby boomers
grow older.



(Heim (2007) and Blau and Kahn (2007)). These papers called for an explanation
of this fact but Heim (2007) and Bargain et al. (2012) find that the decline in these
elasticities is not accounted for by demographics in the sense that it is due to a
decline in all female sub-groups’ elasticities rather than because of the change in
the demographic composition, holding sub-group elasticities constant. My model
confirms their finding that elasticity declines for all women’s sub-groups; however,
it suggests that the decline was indeed due to demographics.

The link between labor supply elasticities and demographic composition also
relates to a growing literature aimed at reconciling micro and macro estimates
of labor supply elasticities by moving beyond the representative household. For
instance, Dyrda et al. (2012) distinguish between stable and unstable workers and
target the average relative volatility of market hours between these groups. The
uncovered links between demographic trends, labor supply elasticities, trends in
the relative volatility of hours, and aggregate fluctuations, may have implications
for a wide array of policy questions and guide further the identification of labor
elasticities; see Blundell and MaCurdy (1999) among others.

The over-all effect of gender, age and education composition on the Great Mod-
eration (30%) is comparable to what J-S attributed to the age composition alone
through regression analysis. This discrepancy in our results could either come
from the fact that the model is misspecified, or from the fact that the regression
analysis overstates the role of the age composition. To assess this, I adapt the
analysis of J-S, where business cycle volatility is regressed over the age composi-
tion, to the data generated by the model, where age does not play a predominant
role. I find that the estimated effect of age composition for aggregate volatility is
significant and quantitatively similar to what was found by J-S for the true data.
From this result one cannot conclude that the model understates the role of age
composition. On the other hand, the exercise highlights that regression analysis
overstates the importance of age composition relative to the role it has in the
model.

Highlighting how demographic changes are related to the business cycle, this
paper shows that heterogeneity matters for aggregate volatility. This is in contrast
to the general message that has emerged from a naive reading of the literature on
heterogeneous agents and, in particular, of Krusell and Smith Jr (1998) and Rios-
Rull (1996), who find no major differences between the business cycle properties of
their models with heterogeneity either in income and wealth or over the life-cycle,
and a representative agent model simulated around the steady state. Perhaps
not surprisingly, this paper finds that large demographic changes—mnot just those
around the steady state—do matter for aggregate volatility. Furthermore, and
perhaps more interestingly, when heterogeneity changes over time as much as is
observed in the data, the business cycle properties of the model are affected in a
way which is consistent with how aggregate volatility has evolved over time.



A computational challenge arises from the fact that the model is solved for a
period of large transition, this makes standard perturbation methods—the typical
technique used to solve large scale models—an inaccurate solution method.® To
address this issue, I develop a technique which consists of applying perturbation
methods at many points over the equilibrium path. The solution is much more
accurate than that found by applying perturbation methods only to the deter-
ministic steady state, and can be applied to a broad class of dynamic stochastic
general equilibrium (DSGE) models. Similarly to the Parameterized Expectation
Approach (PEA), the curse of dimensionality is broken because the model is only
solved over the equilibrium path, see Den Haan and Marcet (1990). However,
the method proposed here does not rely on a contraction mapping of the policy
functions which often leads to convergence issues with large models. Judd et al.
(2012) propose a substantial improvement that allows them to solve a model with
80 variables. The model in this paper has 800 variables and is effectively solved
over the transition with the proposed method, on a normal desktop computer.
Matlab code is available from www.southampton.ac.uk/~alexmen/.

The paper proceeds as follows. In Section 2, a first look at the labor data will
motivate the conjecture that the reallocation of labor across groups plays a role in
business cycle volatility. Section 3 sets up the model and Section 4 parameterizes
it. Section 5 tests the model, and measures the effects of labor reallocation on
aggregate volatility. Section 6 concludes. Appendix A describes the data used,
Appendix B offers a description of the original computation algorithm developed
and Appendix C details the estimation of some parameters of the production
function and the identification of the shocks.

2 Stylized facts

As it is well known, aggregate output volatility in the U.S. increased during the
early 1970s and declined during the 80s and 90s.” Recently, volatility has increased
again and there is renewed curiosity about its future unfolding. To relate these
facts to the labor force composition, following Gomme et al. (2005) and J-S, I use
data from the March supplement of the CPS to construct annual series of hours
for the demographic groups considered. Figure 1 shows the share of paid hours
worked over time by gender, age (young (15-29), prime age (30-55) and older
workers) and low and high education (at least four years of college).

6As Caldara et al. (2012) point out, in practice perturbation methods are the only computa-
tionally feasible method for solving medium- and large-scale DSGE models, but these techniques
guarantee accurate solutions only in the proximity of the steady state.

"See Kim and Nelson (1999), McConnell and Perez-Quiros (2000) and Stock and Watson
(2003) among others.
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As is shown in the first two columns of Table 1, hours worked by prime age
workers increased relative to those by other age groups, moving from an average
of 58% prior to 1984 to an average of 71% from 1984.° By contrast, hours by
the young fell, while hours by the old remained more stable. Furthermore, the
cyclical volatility of hours is substantially lower for prime age workers as initially
documented by Clark and Summers (1981): after removing the trend from each
series,” the standard deviation of hours is 2.37% for the young, 1.36% for the prime
and 1.87% for older workers. In addition, hours volatility of the prime relative to
the young and old even reduces over time, as shown in Figure 2, second panel.

The relative increase in prime-age hours and the fact that hours are less volatile
for this age group may have contributed to the observed reduction in aggregate
hours volatility. These two facts also characterized the distribution of hours by
gender and education.

As shown in Table 1, hours worked by women increased relative to those by men
between the first and second sub-sample. It is less well known however that hours
worked by men are more volatile than hours worked by women: the standard
deviation of hours is 1.29% for women and 1.87% for men.!® Furthermore, the
relative volatility is remarkably stable over time as shown in Figure 2, first panel.

Similarly, the share of the highly educated increased relative to that of the less
educated and the cyclical volatility of the highly educated is lower. Figure 2,
upper right-hand panel, shows how the relative volatility of hours over time has
a kink around the mid 80s; it remains however true over the whole sample that
the relative volatility between the two groups is smaller than one. Since hours
may be measured with error, Figure 2, lower right-hand panel, shows the relative
volatility of employment by education; apart from the period 87-92 just after the
kink, the ratio is always below 1.!!

It is important to notice, however, that hours volatility for each group decreased
in the Great Moderation period as shown in the last column of Table 1.2

81984 is the reference year adopted by the literature as the beginning of the great moderation.
See for instance Stock and Watson (2003)

9Here and throughout the paper I use the Hodrick-Prescott (HP) filter with a smoothing
parameter of 6.28 as suggested by Ravn and Uhlig (2002). Using 10 as suggested by Baxter and
King (1999), or looking at growth rates, essentially does not affect the results.

10T his fact is all the more surprising given that at the individual level, hours worked by women
are more volatile than for men.

1VWeights and classifications in the CPS data are such that data are essentially comparable
over time. It is known however that comparability does not hold in some cases (see for instance
Abraham and Shimer (2002)); the observed kink might be partly due to some reclassification
that induced discrepancies over time.

12T highlight this volatility slowdown, the Great Moderation period is ended in year 2000 in
order not to confound this period with the more turbulent past decade.



Table 1: Hours Volatility by Gender, Age and Education

Share of hours 67-83 Share of hours 84-10 St. dev %
Age
Young 30.11 20.39 2.37 91.82
Prime age 58.35 70.72 1.36 79.12
Old 11.54 8.89 1.87 87.08
Gender
Women 33.88 42.19 1.29 70.50
Men 66.12 57.81 1.87 90.38
Education
Low 81.69 70.36 1.16 82.13
High 18.31 29.64 1.90 99.72

Notes: numbers are expressed in percentage terms. Share of hours is the ratio of hours by each
group to total hours.

2.1 A simple accounting exercise

J-S complement their analysis with a simple accounting exercise that measures the
contribution of these demographic changes to the Great Moderation in total hours
worked. The accounting exercise consists of constructing a counterfactual time
series for total market hours using the observed group-specific hours per capita,
but setting the population shares constant. They find that age changes account
for 20% of the Great Moderation in total hours, while education accounts for 10%.
Gender composition is not important.'® As they acknowledge, the experiment as-
sumes that the volatility of group-specific market work is independent of the labor
composition. That is, it assumes the absence of indirect effects of changing la-
bor composition on aggregate volatility via changes in the group-specific response
to shocks. They argue that this assumption is reasonable for age groups. The
structural analysis in this paper finds that indeed the labor supply elasticities
are not affected by changes in the age composition. However, changes by gender
and education have strong effects on these elasticities, including elasticities by age
groups. This suggests that the group-specific market hours’ response to shocks
are endogenous to the labor composition. A theory is necessary to predict how
these responses are affected by the labor composition.

130ne issue with the exercise by gender is that the demographic transition involves the number
of women participating in the labor market. So rather than holding population shares constant,
as can be done by age and education, one can hold participation rates constant. However, this
way one removes a very large portion of the business cycle, making the exercise less meaningful.



3 The Model

In each period, the economy is populated by a continuum of individuals and an
equal random number py of males and females are born. Following Heathcote et al.
(2010), the life cycle of an individual comprises 3 sequential stages: education,
matching and work. The first decision—high or low education—is made by a newly
born individual before entering the marriage market. At this point, members of
the opposite sex are randomly matched (no one remains single). For tractability,
these two stages happen during the first period of life.'* From the second period
of life, the couple enters the working stage and jointly chooses hours of work for
husband and wife, as well as consumption and savings.

3.1 Education

In each period the newly born have to make a discrete choice between college (h)
or lower schooling (1). When they are born, they draw an idiosyncratic cost x of
acquiring high education from the distribution k ~ F9(k), with g indicating male
(m) or female (f). This cost captures in reduced form the utility and financial
factors that make acquiring a college degree costly and is assumed log-normal:

In(k) ~ N(k9,09). (1)

With this simple specification, it is possible to match the evolution of the education
composition through changes in k9. Individuals’ decisions are made by comparing
their education cost with the value gain upon entering the labor market with
higher education: MY9(h;w) — M9(l;w). M9(e;w) is the gender-specific expected
lifetime utility of entering the marriage stage as a function of education e € {h, [}
and all the other relevant state variables represented by w.!® They choose higher
education if M9(h;w) — M9(l;w) > k. For each gender, the share of the highly
educated in the cohort just born is therefore

¢’ (w) = F7 (M?(h;w) = M%(l;w)) . (2)

14The role of marriage is not predominant but is kept as in the framework of Heathcote et al.
(2010) because it can improve the model capacity to predict the evolution of relative hours
volatility by gender and education. Furthermore, focusing on married couples relates more
closely to the bulk of empirical studies on labor supply research (see Blundell and MaCurdy
(1999) and Blau and Kahn (2007) among others). However, it would be interesting to also
allow for singles as the proportion of married households is declining. This would complicate
the model.

15 As is discussed in section 3.6, w contains all the shocks, the distribution of assets across
households, and the distribution of households by age and education of husband and wife.



3.2 Marriage

At this point, individuals are characterized by gender g and education e. Men
and women match according to the gender-specific probability 77, (w)e [0, 1].
The expected value upon entering the matching state for a woman of education

level e/ is
M (ef;w) = W}{ef(w)V(h, el w) + W{ef(w)V(l, el w), (3)

where V (e™, e/, w) is the expected lifetime utility of a household with education
pair e™ and e/. A similar expression can be derived for M™ (e, w):

M™(e™;w) = Tgm , (W)V (€™, hs;w) + 7l (W)V (™, [ w). (4)

Enrollment rates ¢f(w) and matching probabilities 77, (w) jointly determine the
education composition of newly formed households. For instance, the fraction of
new households formed by men with high education and women with low educa-
tion is

(@) m(w) = (1 - ¢ (@)l ). (5)

Since no individual will remain single, for any e/
f W)+ g w) =1 (6)
ﬂ-l,ef w ﬂ-h,ef w 9

and similarly for men: 7. ;(w) + 70 ,(w) = 1 for any e™. One can show that the
cross-sectional Pearson correlation between education levels of husband and wife,
a measure of the degree of assortative matching is

o= ¢ (w) T (w) — ¢ (w)g! (w) |
V(W) (1 — g™ (w)gf (W) (1 — ¢f (w))

Following Heathcote et al. (2010), g is treated as a parameter through which the
probability function 77, (w) is pinned down.

(7)

3.3 Work

Households are distinguished by the husband and wife’s education levels ™, e/,
their age 7 and their amount of assets a. They choose consumption ¢ and assets
a’, and hours of work for each gender /9, in order to solve the following problem:

v (e™, el g a;w) = max u(c,1 — 1", 1 — V' — 1)+ BGE [V (e, el j+1, a;w')]
subject to the constraints: (ja’' + ¢ = a(l+ )+ w(m, j,e™)I™ +w(f, j, e ),
a>0if j=J, a=0if j=1, c>0, ™+, €100,1], (8)

9



where 7 is the interest rate and w(g, j,e?) the wage for each age, education and
gender. (; € [0,1] is the survival factor for the household at age j; it is such
that people die for sure at age J, i.e. {5 = 0.1 When the household is alive,
the period utility function « is increasing, twice continuously differentiable and
strictly concave in its 3 arguments.!” Husband and wife die together and their
period utility u after death is equal to 0, hence V (em,ef, J+ 1,a;w) = 0 and
the zero debt constraint in the last period of life J. [, is an exogenous time cost
specific to women.'® The expectation is taken over w’ given w.

New households start with zero assets. Thus, the value at the time of forming
a household is equivalent to the expected lifetime utility of a formed household of
age 1 and with zero assets:

Viem elsw)=E (V(e™ e/, 1,0;w)) . 9)

3.4 Household Distribution and its Law of Motion

Denote pugeedn : {1,...,J} x {h,1} x {h,I} — R4 the mass of households by
age and education of the couple. p;ge,edu(l,h, ef) = ngefqmpo is the mass of
newly formed households composed of men with high education and women of
education e/ = {h,1}. pl,.. .qu(1,1,€/) = 7' (1=¢™)po is the mass of newly formed
households composed of men with low education and women with education e’.
Let the mass of older households be defined recursively as p;ge’edu(j,em,ef ) =

page,edu(j - 17 em7 ef)Cj—l-
3.5 Firms
Competitive firms maximize profits using the following production function
_A1/6 6 . 0\ 1/0
y=A"" (ak’ + (1—a)L?)"", (10)

where A is total factor productivity (TFP), « is associated with the labor share
of total output and # measures the complementarity across capital and L, which

16The fact that ¢; multiplies a’ in the budget constraint reflects competitive annuity markets,
see Rios-Rull (1996) for a digression.

17The utility function can depend on education and age. To simplify notation, u is not indexed
accordingly.

18In the absence of a more sophisticated theory of the household, the evolution of this param-
eter will help reproduce the distribution of hours by gender. Its reduction over time captures
housework production technology improvements and a fall in child care cost, which on top of
the reducing gender wage gap help explain increases in female market hours. See among others
Greenwood et al. (2005) and Attanasio et al. (2008).

10



is a composite of several labor groups:
I 1/o

L={) (zm)"] (11)

i=1

o measures the degree of complementarity across groups.'? z;s are labor-augmenting
technology shocks specific to each labor group, n; is hours worked by all indi-
viduals categorized in group i. This specification, distinguishing between labor-
augmenting and a TFP shock makes it possible to match aggregate production
given the inputs, while matching hours and wages through labor demand.?’

There is a mapping between groups ¢ (which have an empirical counterpart) and
individuals: each group 7 is formed of agents of the same gender, age group and ed-
ucation level.”!’ The mapping is represented by I dummy matrixes x;(g,e™, e/, 5)
which contain zeros and ones depending on whether the labor input of the agent
belongs to group ¢. So, for instance, group 1 is formed of women, young and with
low education. For a generical i,

J
=3 S ST ST (€ 5) ugecan (€7, 5) xilg € e ). (12)
g

em of j=1
Calling the number of age groups ngg., the total number of groups I is 2n44.2, i.e.
the two genders times the age groups times the two education levels.
The representative firm hires labor according to the following condition
I o1
(1—a)Ay*™* Z(Ami)" 27t = w; (13)

=1

for every i, where w; is the wage rate for group i; so if y;(g,e™, e/, j) = 1, then
w(g, j,e%) = w;. Capital is demanded according to the following condition

Aa(kfy)' ™ =71+, (14)

where ¢ is the depreciation rate of capital.

19Tt is assumed here that all the groups have the same complementarity across them and with
capital. It would be interesting to extend this function to the one introduced by Krusell et al.
(2000) as done by Castro and Coen-Pirani (2008) and Jaimovich et al. (2009) to study the hours
cyclicality by skill and age (see also Johnson and Keane (2007)). However, in the presence of
several groups, this makes it harder to identify the shocks analytically, thereby complicating
the estimation procedure. See Zoghi (2010) for a survey of possible ways to estimate a labor
composition index.

20By Euler’s theorem, the capital demand equation is also satisfied with no need for an extra
shock.

21Consistently with the empirical section, there are three age groups: the young (1-10), the
prime age (11-35) and the older agents (36-40).

11



3.6 State Space

To make rational choices, agents need to know their type.”? They also need to
predict prices, which depend on the shocks and on the distribution of assets and
households across age and education pairs of husband and wife. The next sub-
sections define the state space in more detail.

Exogenous Processes

Group-specific productivity levels z; in (11) are the sum of gender, age and
education specific shocks (g9 € £9,e%9°¢ € £%¢ M ¢ £°) 50 that

log(2,) Zs (1,7 +Zeagelage i,J +Zsed“]€du (15)

for all 4, ¢, where I.4,(7,7) = 1 if education in labor group i is equal to j and zeros
otherwise. Dummies by gender and age are defined the same way. Gender, age
and education-specific shocks may be seen as capturing sectorial shocks and other
aspects of the production process not explicitly modeled, which moves relative
demands of labor inputs. For instance, an increase in women’s productivity may
be capturing an increase in the productivity of a female-intensive sector of the
economy, such as the service sector.

Let the logarithm of the productivity processes €9,%9¢, ¢ the logarithm of
TFP process A € A and the logarithm of the mass of new born py € Py be AR1
stochastic processes. Furthermore, the mean of the distribution of the cost of
acquiring education k € K for men and women, and women’s housework I, € L,
are deterministic processes with an AR1 structure.?’

Let G = AXE9 x £ x £ x PO x IC? x L;, be the state space for these variables.

Household Distribution

Since the distribution pyge cqr is a state variable, one needs to define its set. From
how pyge.can has been constructed in section 3.4, it follows that it depends on the
series of py € P%, ¢™ € [0,1] and ¢/ € [0,1] at the period of birth of each cohort
which is alive.”* puge cau is therefore generated from the set M = PO x 0, 1]%.
Let P be the set of all admissible distributions pgge cqu generated from the set M.
The state space for each household is

S={1,..,J} x{h,}*x K xGxPx KV

22A type is gender and the idiosyncratic education shock for someone who is at the education
stage, gender and education for someone who is at the marriage stage, age and education of
husband and wife for households.

23Gtarting with initial values away from their steady states, these two variables will help make
trends in hours by gender and education behave as in the data.

2447 has not been directly used to construct Dage,edu DUt it affects 7rem of -

12



The first dimensions of the state space, {1,..J} x {h,[}? x K, contain the house-
hold’s state variables: age, education of husband and wife, and asset holdings
which belong to the set K = [min (aj> ,d}, where a; for j = 1,...,J — 1 are
age-specific lower bounds on the amount of assets implied by the borrowing con-
straint in equation (8). The remaining dimensions of the state space contain
aggregate state variables that affect households’ decisions through prices and
expectations: the shocks, the distribution of households by age and education,
and the distribution of assets across households grouped by age and educational
composition.??»?6:27 Consistently with what was used in previous subsections, the
aggregate state variables are collected in the set

=G x P x KW,

3.7 Equilibrium

Definition 1 A recursive competitive equilibrium is composed of discounted val-
ues M9(e%;w), college enrolment rates q%(w), matching probabilities 7%, ;(w) for

each gender g, a value function at the time of forming a household V (e™, e/;w),
a value function for households V(e™, el j, a;w), consumption and assets func-
tions c(e™, e, j,a;w) and a'(e™, el j,a;w), labor functions 19(e™, el j,a;w") for
each gender, a household’™ distribution function pggmdu(em,ef,j;w) and pricing
functions r(w) and w(g, 7, e;w) such that the following conditions are satisfied:

1. ¢°(w) is determined by (2). The matching probabilities 7%, (w) satisfy
(5)—(6) and are consistent with the degree of assortative matching pin (7).
Moreover, the pre-marriage discounted utilities MY and M™ are defined by
(3) and (4). The pre-labor value V is defined by (9).

2. The decision rules for consumption, labor and assets c, a', I™ and I, and
the value function V solve the household problem in 5.5.

3. Capital and labor inputs satisfy equations (13)—(14).

4. Labor markets clear. i.e. equation (12) holds for all i.

Z5Since there is no idiosyncratic risk across households belonging to the same group (defined
by age and education of husband and wife), the state variable individual asset holdings is also
part of the distribution of assets across all groups. While this repetition is not necessary and is
avoided in the code, it is used here because it simplifies notation.

26The distribution of capital across groups only involves J — 1 age groups because at age 1
households hold zero assets.

2"The distribution of idiosyncratic shocks x affects enrollment rates ¢? only through the mean

k. k for each individual is therefore omitted from this characterization of the state space.
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5. The capital market clears: k=3 n > s ijl a(e™, ef,j)p;gwdu(em, el jiw).

6. The goods market clears: c+ k' — k(1 —0) =y,
J m . m .
where ¢ = Zem Zef Zj:l C(@ ) ef? Js w>pizge,edu<e 7€f7j; w)
and k' = Zem Zef Z;‘Izl &/(em’ ef,j,w)p;gwdu(em, ef’j5 w)'

7. The distribution of households evolves as stated in section 3.4.

4 Parametrization

It is useful to divide the parameters of this model into two categories: the produc-
tion function parameters and all the other parameters. It is possible to calibrate
the parameters belonging to the latter group by drawing on an extensive litera-
ture. On the other hand, the presence of heterogeneous groups of workers with
their specific shocks makes the production side non-conventional. Therefore, some
of its parameters need to be estimated. The procedure is detailed in appendix C.
Parameter values are reported in Table 4.

4.1 Preferences, depreciation and survival probabilities

The utility specification for a generic household of age j, with education levels
e™ = {h,l} for men and e/ = {h, 1} for women is:

m _O—f
(1 —m)t-o PR S

1—om /ijef f

u]‘7em7ef (C, lm, lf> - lIl(C) + ry;tlem 1
e — Oe

(16)

o™ and o/ regulate the Frisch elasticity of labor supply. Heathcote et al. (2010)
calibrate this parameter to be the same for both men and women and indepen-
dently of education. I find that this way one cannot match how the male-female
ratio of hours volatility evolves over time, an important fact for this paper. In
particular, the Frisch elasticity of women has to be lower than that of men in
order to make female hours less volatile than male ones.?® Similarly, the labor
supply of the highly educated has to be less elastic than that of the less educated

28This parametrization contrasts micro estimates which suggest that labor supply for women
is more elastic than for men, see for instance Blundell and MaCurdy (1999). For the aim of this
paper, it is however necessary to match the relative volatility between male and female total
hours. The inability to reconcile micro estimates with the relative volatility between male and
female total hours is a puzzle which may be interesting to study further in future research. It
also highlights how the agents in this model are not “micro” agents in the sense that they are
representative of their groups. Section 5.2.3 discusses the implications that this misspecification
may have for the results of the paper.
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in order to match hour volatility by education.?’ I calibrate the four parameters
o™ and o™ with e™, e/ = {h,(} in order to match four moments:
a. The relative volatility of hours by gender,
b. The relative volatility of hours by education,
c. The relative volatility of hours by age (prime over young and older workers),
d. An average elasticity equal to 2.3

Table 2 shows how closely these moments are matched. To give a sense of the

Table 2: Calibration of elasticities

\ Relative hours volatility \ Average elasticity
gender age education
Targets 0.7 0.7 0.6 2.0
Model 0.6 0.8 0.6 2.0

Note: Relative hours volatility by age refers to the standard deviation of total hours
over time of prime workers over the one of young and older workers.

elasticities implied by the chosen levels of ¢* and o}, table 3 reports the average
labor supply elasticity by various labor groups. As can be seen in the table, with

Table 3: Average elasticities

Total Young Prime Old High educ. Low educ.
Total 2.0 2.2 1.9 2.2 0.70 2.5
Men 2.6 2.9 2.5 2.7 0.9 3.2
Women 1.2 1.3 1.1 1.3 0.4 1.4

Notes: Statistics are averages of the Frisch elasticities for each representative agent
in a given group, weighted by their mass. For instance, total elasticity is equal to
Sem Sof 2goa (Lol (11" (Ge™ el ) /U Ghe™ e )1/ ol (117 (j.e™ D)) /1 (j,e™ 7)) Page,eau (™ e 1jiw)

23 om Do of 3i—1 Page,edu(e™ef jiw) :
These statistics are computed period by period in the simulation, the numbers reported
are the averages over the time.

the selected utility specification the model naturally matches the fact that prime

29The fact that these parameters are gender and education specific may reflect unmodeled
labor contracts and matching frictions specific to sectors or types of worker.

30The business cycle literature typically chooses a high level of Frisch elasticities in order to
have sufficient aggregate hours volatility, which tends to be significantly lower than that found
in the data. The chosen level of 2, lies in between micro estimates and RBC calibrations. See
Ljungqvist and Sargent (2011), Prescott et al. (2009) and Erosa et al. (2011) among others for
a discussion of how extensive margins can be incorporated into a life cycle model to reconcile
micro and macro labor supply elasticities.
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age workers are less elastic than the young and the old.*!

Vjem and vjj.i s are such that the model in steady state matches average hours
per capita by gender, age and education between 2000 and 2007.

The discount factor (8 is equal to 0.99 and the depreciation rate of capital is
0.05. With these values, and given the parameters of the production function, the
steady state capital output ratio is 2.8, the net interest rate 0.06 and the saving
rate 0.14.

Survival probabilities ¢; for j = {1, ..., J} come from the National Center for
Health statistics Vital statistics of the US, 1992. Since this paper focuses on active
workers, attention is restricted to people from age 20 to 60. Therefore, no one can
live for more than 40 periods and (49 = 0. This is counterfactual, and it could
affect the labor supply decision over the life-cycle. However, as shown in Section
5.2.3, the model is very successful at predicting relative hours volatilities over time
by age group, which is crucial for the experiment of this paper. Therefore, adding
retirement or more years of labor would further complicate this model without
inducing an obvious improvement for what this model is constructed for.

4.2 Trends in the composition of labor

Po, the share of new infants is modeled as an exogenous AR1 process with constant
2

Ypo, DeTSistence py,, and variance o, . This quite simplistic way to model birth
has the purpose of generating variable fertility that matches changes in the labor
distribution by age; see Rios-Rull (2001) for a discussion of alternative fertility
regimes.

The initial level and the persistence p;, of the deterministic AR1 process for
female housework [, is calibrated to replicate trends in the labor composition by
gender and education. [, is zero in steady state. Its initial level accounts for 36%
of the average total working time for women, i.e. {;,/(I¥ +1,,) = 0.36. The gradual
decay of this variable “liberates women from the home” and increases their market
labor supply and educational attainments. See Greenwood et al. (2005).

k™ and kf; the means of the cost distribution of acquiring education - equation
(1) - are modeled as deterministic AR1 processes. Their steady state levels are
such that the model matches the share of the highly educated by gender between
age 25 and 29 in the period 1999-2007, which is ¢/ = 0.36, ¢™ = 0.29. Initial
conditions and persistence are picked to replicate trends in the labor composition
by gender and education between 1967 and 2010. The variance of the cost distri-

31Since these parameters are not age specific, it is remarkable that it is possible to match the
relative volatility of hours by age. With these preferences, the Frisch elasticity of labor supply
is 1/09(1 —19)/19. Thus, this elasticity is lower for prime age workers because they work more
hours. See Jaimovich et al. (2009) for an alternative approach based on imperfect substitution
in production between age groups and Dyrda et al. (2012) for a discussion of the two approaches.
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bution of acquiring education for men v™ is set equal to 10, that for women, v/
is equal to 5. The lower variance for women implies more response to the wage
premium, which is consistent with the increase in female enrolment rates over
time.*?

Following Heathcote et al. (2010), the degree of assortative matching in the
marriage market, g in equation (7), is set equal to 0.517.

Table 4 summarizes the parameters of the model, other than the ones of the

productivity processes, which are set in C.

Table 4: Summary of Parametrization

Parameter Moment to Match Value
B interest rate 0.99
1) capital-output ratio 0.05
O’lf relative group volatility and average labor supply elasticity 5.8
O’£ relative group volatility and average labor supply elasticity 18.4
o relative group volatility and average labor supply elasticity 1.6
o relative group volatility and average labor supply elasticity 5.0
Gj age-specific survival rates see text
%g, o average market hours by group see text
Pro> VporTpo share of 20-year-olds over population 0.97, 0.001, 0.002
k™ evolution of educational composition for men see text
k! evolution of educational composition for women see text
lh, pn evolution of female market hours 0.05, 0.975
v sensitivity of educational composition to wage premium for men 10
vl sensitivity of educational composition to wage premium for women 5
0 intra-family correlation of education at ages 25-35 0.517
o see appendix C 0.91
« labor share 0.41
0 see appendix C -0.25

To run simulations, as initial conditions for the remaining state variables I take
the values that solve the model for a steady state in which the level for the shocks
is the average in the first 5 years of the sample (1967-1971).

Figure 3 shows actual versus predicted shares of hours by sex, age and education;
the model does quite well at replicating these trends. However, shares by age
cannot be matched perfectly because of the presence of migration, absent in the
model, and because the initial age distribution does not perfectly match the data.*

32These variances are quite large in the sense that they imply a low elasticity of the enrolment
rates to wage premia. This feature is convenient because it permits matching the evolution of
enrolment rates with the evolution of the other parameter of the education cost distribution:
the average cost of acquiring education k9, which can be easily changed in the counterfactual
experiments aimed at removing trends in the labor distribution by education.

33The initial age distribution at the beginning of the sample is not stationary. One could
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5 Quantitative analysis

5.1 Computation

The computation of this model is challenging because the state space is quite large:
805 variables, of which 324 are state variables. Large DSGE models can be handled
by perturbation methods around the steady state.** This method generates two
sources of inaccuracy: one due to the assumption of certainty equivalence and the
other one due to the fact that policy functions are evaluated at points different
than the deterministic steady state. When simulations remain fairly close to
the deterministic steady state, the solution method is quite accurate even for
models that induce large Jensen inequalities (Caldara et al. (2012)). This is not
the case here because the model is simulated from starting conditions which are
quite far from the steady state. To resolve this, I propose a new methodology
which essentially consists of applying repeated local approximations over the entire
transition path, between the initial conditions and the steady state.*”

The algorithm is detailed in B and a brief summary of its logic is given here. The
goal is to find the equilibrium path given initial conditions for the state vector,
call zp, and time series for the shocks (the actual time series of shocks is known
to the computer programmer, but is unknown to the agents in the model). A
path from z( to the steady state is drawn through the policy functions obtained
by perturbation around the steady state. Then, new perturbations are computed
backward along this path: from the proximity to the steady state back to the
initial conditions. The policies approximated at the initial conditions are used
to compute the next point, x;. To compute xs, a new path is drawn through
the steady state policies, treating x; as initial conditions. New perturbations are
computed along this path from the proximity to the steady state till 1. The
policies approximated at x; are used to compute the next point x5. Then, the
algorithm iterates until initial conditions coincide with the final period of the time
series of the shocks. In practice, for all the applications tried so far, the maximum
error from the equilibrium conditions is several orders of magnitude smaller with
this method than with 2nd order perturbation of the steady state. Figure 19
compares the solution computed with these two methods applied to a version of
the RBC model with full depreciation, for which the true solution has analytical
form.*¢

impose it but it would be inconsistent with the other initial conditions found by solving for an
initial steady state.

34See Rios-Rull (1996) for an application of linear quadratic methods in a model that shares
a similar OLG structure to the one in this paper.

35By limiting the local approximations to the transition path, the number of grid points does
not increase with the number of state variables.

36Since the true solution of this model is linear in the logs of the variables, Taylor expanding on
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5.2 Testing the model

Before carrying out the main experiments for which the model has been built,
some tests are performed in order to get a sense of how satisfactory a description
of the economy it provides, at least for the dimensions that are relevant for this
study. The tests proposed below have direct implications for the counterfactual
experiments aimed at quantifying the importance of labor reallocation to aggre-
gate volatility. Therefore, the degree of success over these dimensions will help
assess how reliable the outcomes of these experiments are.

5.2.1 Aggregate volatility trend

Since this model is restricted to match the observed changes in the labor compo-
sition and shocks come from disaggregated data, it is interesting to see whether it
matches the typical aggregate statistics analyzed by the RBC literature initiated
by Kydland and Prescott (1982) and whether it replicates the observed trends in
output volatility.

Table 5, column 1 contains data and model standard deviations for the whole
sample (67-10). It can be inferred that the model accounts for 1.29/1.45, or
about 89 % of total volatility, more than the 60-85% typically accounted for by
RBC models.?” Two features of the model that contribute to the higher volatility
compared to other RBC models are that it distinguishes between TFP and labor
augmenting shocks, and that these shocks are less persistent than the Solow resid-
ual of an aggregate Cobb-Douglas production function (see table 13). The lower
the persistence of shocks is, the lower are the offsetting wealth effects they induce
and the greater is the labor response.

To quantify and compare the volatility slowdown of the mid 80s, columns 2
and 3 show the standard deviation of output over a period of high volatility
(67-83) and over the period of moderate volatility (84-00). The model predicts
the volatility slow down between the first and second sub-samples; the slowdown
predicted by the model is actually larger than the one in the data, where volatility
reduced by 38 log points (log(1.75) — log(1.20)), as opposed to the 51 log points
predicted by the model. This prediction is actually in line with measurements of
the moderation computed with aggregate data.*® Strikingly, between the periods
84 — 00 and 00 — 10 the model predicts a log(1.22) — log(.99) or 21 % increase

the logs of the variables gives the exact solution with both methods. To introduce approximation
error, the Taylor expansion is computed on the variables in levels. This way the computed policy
functions do not coincide with the true ones, but are only tangent around the point where the
Taylor expansion has been taken.

37See for instance Prescott (1986). Volatility is measured as the standard deviation of log
output minus its HP-trend with parameter 6.28.

38For instance, Arias et al. (2007) computes a moderation of about 50% using quarterly NIPA
data. The statistic changes very little when using annual NIPA data. Another difference between
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in volatility, which is the same size as that in the data (log(1.48) — log(1.20),
equal to 0.21). An alternative way to appreciate the extent to which the model
can replicate aggregate volatility over time is offered by Figure 4, which shows the
trend over time of aggregate output volatility.?” This Figure shows that the model
is not only successful at predicting the business cycle volatility decrease from the
80s mentioned, but it can also replicate the initial volatility increase from 67 to
the early 70s. The Figure, however, highlights a misalignment in the volatility
trend from the 90s.

Table 5: Standard deviation of output

\ 67 — 10 67 — 83 84 — 00 00— 10
Data 1.45 1.75 1.20 1.48
Model 1.29 1.64 0.99 1.22

Notes: Statistics are computed after having HP-filtered the logs of
the annual data with parameter 6.28.

5.2.2 Aggregate business cycle statistics

Table 6 reports standard deviations and correlations with output of consumption,
investments and total hours. Consistently with the data, the model predicts that
while consumption is less volatile than output, investments are much more volatile.
Similarly to other RBC models, the model matches correlations rather well but
under-predicts the volatility of hours. These statistics remained fairly stable over
the whole sample and cannot be held responsible for the changes in aggregate
volatility. See for instance Arias et al. (2007).

An interesting result of this model is that it reconciles the employment-productivity
puzzle,*’ which lies at the root of an important critique to the RBC model. See
Gali (1999). In this model, the correlation of labor productivity (output over total
hours) with output is 0.003 and the correlation of labor productivity with hours
is —0.078. This result relies on the fact that distinguishing between labor-specific

NIPA and CPS data is that using the latter dataset, output volatility started declining in the
late 70s rather than in the 80s. Indeed, Blanchard and Simon (2001) suggest that the sharp
and sudden volatility decline of the 80s masks a trend decline which started earlier. With CPS
data, when the turbulent sub-sample is restricted to the period 70-76, the volatility slowdown
is of 50%.

390utput volatility is measured as the standard deviation over three consecutive periods.
This statistic is computed period by period to construct a time series. To highlight its trend
the Figure plots the HP trend with smoothing parameter 6.28

4OThe near zero and often negative correlation between total hours and labor productivity
found in the data. This fact is puzzling for RBC models, which predict this correlation to be
very high. See Hansen and Wright (1992).
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Table 6: Standard deviations relative to output and correlations

Standard deviations Correlations with output
Data Model Data Model
Output 1 1 1 1
Consumption 0.8 0.6 0.90 0.61
Investment 4.6 4.4 0.94 0.87
Hours 0.9 0.5 0.85 0.91

Notes: Statistics for Consumption and Investment in the Data column are com-
puted using annual NIPA data in logs and HP-filtered with parameter 6.28.

and TFP shocks, upward shifts in the labor demand schedules do not necessarily
imply an increase in output over hours as with a simple Cobb-Douglas technology
and homogeneous hours. See also Ballern and van Rens (2011). The discrepancy
between labor productivity and output is also reflected in the labor share: the fit
with the empirical labor share shown in Figure 5 is remarkable if compared with
the constant labor share predicted with the benchmark Cobb-Douglas production
function. Figure 6 shows actual versus predicted wages by sex, age and education.

5.2.3 Trends in Hours Volatility Ratios

Labor supply elasticities have been calibrated to match the average hours volatility
ratios across gender, age and education. But does the model predict how these
ratios have evolved over time? Figure 7, shows these trends in the data and in the
model. Apart from a misalignment in the 70s, the model predicts the trendless
path by gender, the decreasing ones by age (prime over young and old) and the
increasing one by education.

This result is best understood in the light of the Frisch labor supply elasticity
by gender, which, with the adopted utility function is 1/09(1 —19)/19, decreasing
in (9.*1 The fact that hours volatility ratio by age is smaller than one is consistent
with the fact that elasticity is lower for prime age workers, who work more hours.
The fact that in the model hours volatility ratio by age is decreasing over time
depends upon the fact that prime age hours increase over time.

The increasing hours volatility ratio by education is mainly due to an increase
in the volatility of highly skilled wages. However, this effect is mitigated by the
contrasting effect that the increase in white collar hours has on Frisch elasticities.*?

“IThat elasticities decrease in labor is broadly consistent with the fact that groups that work
more hours have less elastic labor supplies. E.g. males versus females, prime age versus closer
to retirement, women without children versus women with children; see Reichling and Whalen
(2012).

42This last effect on Frisch elasticities is important to match the trend in Figure 7. This

21



The model replicates the roughly constant trend in relative hours volatility by
gender. Marriage plays a role in this: as female hours and education levels in-
crease, men respond more to shocks because their offsetting wealth effect decreases
as the wealth they earn becomes a smaller fraction of the whole family wealth. The
contrary is true for wives: the more women work and the higher their education
level, the less responsive they are to the income of men. This aspect is fostered
by the increasing share of families with highly educated women who command a
high share of family income.

The model also predicts that as women’s labor input increases over time, their
Frisch elasticities decline. This decline is consistent with the findings of Heim
(2007) and Blau and Kahn (2007) on married women. These papers called for
an explanation of this fact. Through a decomposition exercise, Heim (2007) and
Bargain et al. (2012) find that the decline is not accounted for by demographics in
the sense that the decline in elasticities occurred for all female sub-groups rather
than because of the change in the demographic composition, holding sub-group
elasticities constant. My model confirms their finding that elasticity declines for
all women’s sub-groups as shown in Figure 8; however, it suggests that the decline
was indeed due to demographics.

It is worth mentioning that in this model female labor trends come from each
woman working more hours. Instead, part of the increase in female total hours is
due to participation decisions. This may imply an overstatement of the repercus-
sion of female labor trends on their Frisch elasticities. However, it is likely that
distinguishing between the intensive and the extensive margin would in fact en-
hance the results because participation elasticities decrease as participation rates
increase: for example, if a large number of women have a market wage close to
their reservation wage, then the participation elasticity will be high: a small in-
crease in wages will lead to a number of women’s market wages exceeding their
reservation wage, and hence they will participate. As more women participate,
the number of such women near the margin gets smaller and the participation
elasticity will be small (Heim (2007)). Indeed, the drop in female total hours’
elasticity between 1980 and 2000 is one third in the model, which is lower than
the one half drop estimated by Blau and Kahn (2007). Thus, the contribution to

observation can be appreciated by observing Figure 9, produced with the following alternative
utility function with constant Frisch elasticities:

(17)
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In this case, the relative volatility by education has a much steeper and counterfactual trend.
This exercise also shows how matching trends in relative hours volatilities is not obvious and it
is a useful exercise to choose among alternative utility specifications.
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the aggregate volatility slowdown due to the decline in these elasticities may have
been even larger than what is found in this paper.

These results are reassuring given the important role played by these statistics
for the questions of this paper.*® Indeed, part of the merit of the structural
approach adopted is being able to explain how these statistics evolve over time,
so that then one can rely on the model to predict how the agents would have
responded in the counterfactual experiments.

5.3 Counterfactual Experiments

The counterfactual experiments consist of changing the exogenous low frequency
trends in the amount of female housework [, the birth rate dynamics py and the
cost of acquiring education—k™ and k/-so that shares remain closer to their steady
state levels, while maintaining all the shocks as in the original simulation.**

5.3.1 Removing all trends

Figure 10 shows hours shares by gender, age and education in the counterfactual
and original simulations. As can be seen from comparing with the original sim-
ulation, most of the trends in these shares have been removed. Table 7 contains
the standard deviation of output during the sub-samples of interest: the period
before the Great Moderation 1967-1983, and the period of the Great Moderation:
1984-2000 (until before the 2001 recession). It is also instructive to focus on the
initial 10 periods of especially high volatility, 1967-1976 (column 1), and the last
part of the sample: 2000-2010 (last column).”® As can be deduced from the table,
aggregate volatility in the counterfactual is log(1.53) —log(1.81), or approximately
17% lower than in the original simulation in the 70s, essentially unchanged in the
80s and 90s and 5% more volatile in the last decade. To get a visual sense of how
volatility is affected over time, Figure 11, first panel, shows the trend of actual
and counterfactual cyclical volatility measured as a 3-year roll over standard de-

43In particular, it is reassuring that the model is consistent with these trends, given that
the average relative volatilities have been matched through a calibration that contrasts micro
estimates. Presumably, additional structure missing in this model should be included to reconcile
relative volatilities with micro estimates on labor supply. However, this missing structure does
not seem to prevent this model from predicting the endogenous evolution of these trends.

44 Alternatively, one could try to keep share of hours at their initial levels. However, this would
imply a different calibration of the parameters of the exogenous fertility rates, educational costs
and female housework, thereby implying a different steady state for the model. Then, the
differences between the original and counterfactual simulation would depend not only on a
different transition, but also on a different calibration, making the comparison between the
original and counterfactual simulation less transparent.

45This last sample starts in year 2000, rather than 2001, to capture the 2001 recession: starting
in 2001, the fact that output contracted would not be apparent.
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Table 7: Standard deviation of output over time

\ 67 — 76 67 — 83 84 — 00 00— 10
Original simulation 1.81 1.64 0.99 1.22
Counterfactual simulation 1.53 1.42 1.00 1.28

Notes: statistics are computed on the deviation from the HP-trend of the logs.

viation of output. The fact that counterfactual volatility is slightly higher in the
2000s (and from the late 90s as indicated in Figure 11) seems interesting: since
in the counterfactual, share of hours are roughly constant at their steady state
levels, counterfactual volatility in the last decade can be taken as a prediction of
the future volatility that we should expect as share of hours by gender, age and
education are converging to a steady state. From this prediction one may hazard
that a return to the Great Moderation is unlikely; in fact, given the size of the
shocks, volatility should slightly increase rather than decline.*¢

To get a concise statistic that quantifies the amount of the Great Moder-
ation explained, I follow J-S and proceed as in section 5.2.1, comparing the
standard deviations in the first sub-sample (1967-1983) and in the second one
(1984-2000). Between the two sub-samples, aggregate output volatility decreased
by log(1.64) — log(.99) = 50.47 log points. Had the shares remained stable
as in the counterfactual, we would have observed a reduction in volatility of
log(1.42) — log(1.00) = 35.07 log points. Therefore, these demographic changes
account for (50.47-35.07)/50.47 or 30.53% of the moderation in output.

Figure 11, second panel, shows the volatility of total hours; as can be seen,
labor reallocation accounts for a sizable part of the high volatility in the 70s.*”
This pattern can be traced back to the elasticities of labor supply shown in Figure
12. As can be observed, in the counterfactual elasticities were lower at the begin-
ning of the sample. Instead, they become higher than in the original simulation
from the late 90s for men, the young, and workers with low education. Thus,
these groups are likely to be the ones responsible for the fact that counterfactual
volatility becomes higher from the late 90s. One issue with this exercise is that
removing female housework, directly affects female Frisch elasticities (see Section
5.2.3). Thus, an alternative exercise is also carried out where, instead of removing
female housework, the parameter 4/ that multiplies female leisure in the utility

46Tt should be noted that this prediction abstracts from the aging of the population on top of
the retirement of the baby boomers as in the model life expectancy is constant.

4TIn the original (counterfactual) simulation the standard deviation of the percentage deviation
of total market hours from the trend is 0.90 (0.80) between 67 and 76, 0.84 (0.75) between 67 and
83, 0.44 (0.44) between 84 and 2000 and 0.48 (0.49) between 2000 and 2010. Therefore, hours
volatility is 12 % lower between 67 and 76, unaffected in the period of the Great Moderation
and slightly (2 %) higher between 2000-2010.
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function (16) is rescaled. Other things equal, this parameter does not affect Frisch
elasticities. Indeed labor supply elasticity is slightly higher at the beginning but
the business cycle results are not that much affected: hours volatility between 67
and 76 is now 11% rather than 12% lower. The model accounts for 25% rather
than 30% of the Great Moderation in output.

Lastly, Figure 13 shows how labor reallocation played an important role in
output levels: in the counterfactual, output is much higher in the early part of the
sample: this depends on the fact that in the counterfactual the labor distribution
is roughly constant at the end-of-sample levels, with a higher level of education
and prime age workers, and more hours worked by women.*®

5.3.2 Removing trends one by one

What is the importance of each of the three factors? Table 8, lines 2, 3 and 4
report the outcomes of a counterfactual experiment where only one of the long-run
trends is removed. Table 9, column 1, reports the various contributions to the

Table 8: Standard deviation of output over time

\ 67 — 76 67 — 83 84 — 00 00— 10
Original simulation 1.81 1.64 0.99 1.22
Gender 1.77 1.61 1.01 1.25
Age 1.75 1.59 0.98 1.25
Education 1.62 1.50 1.00 1.27

moderation; the other columns report the evolution of the volatility ratio relative
to the original simulation.

These numbers suggest that the major contributors to changes in volatility were
changes in the labor composition by education, followed by gender and age.

The results do not change qualitatively and all the conclusions remain true
with different parameter values concerning the complementarity of labor groups
in the production function (where values ranging between 0.7 and 1 have been
considered), the average elasticity of labor supply (where values ranging between
1.8 and 3 have been considered) and changing the age classes, moving the young-
to-prime age threshold to 34 and the old threshold to 50.

48See Marimon and Zilibotti (1998) for an analysis of the importance of reallocation to growth:
they find that sectoral effects account for more than 80% of the long-run differentials across
countries and industries in employment growth.
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Table 9: Standard Deviation ratios

Great Counterf.-Actual Counterf.-Actual Counterf.-Actual
Moderation St.Dv. 67-76 St.Dv. 84-00 St.Dv. 00-10
All 30.5 -15.4. 0.7 4.6
Gender 8.7 -2.3 2.3 2.3
Age 6.2 -3.4 -0.3 2.4
Education 19.9 -10.7 1.2 1.2

Notes: numbers are expressed in percentage terms. Great Moderation is a measure of the
size of the volatility reduction that is accounted for by changes in the composition of labor.
Counterfactual-Actual St.Dv. measures the percentage difference between output and counter-
factual output volatility.

5.3.3 Comparison with Jaimovich and Siu (2009)

The result confirms the finding of J-S that the age composition has an impact.
However it suggests that its effect is not as important. A similar answer is found
when only looking at hours: counterfactual volatility by age is 4.4% lower in
the first decade, it is also 4% lower in the 80s and 1% higher from the mid 90s.
This is nowhere near to explaining the 20% of the Great Moderation in hours as
found by J-S in their accounting exercise. In fact, the role of age is smaller than
the one played by educational composition and comparable to the one of gender
composition.

There is a simple intuition for why changes by education and gender play a
stronger role, likely not to be captured by reduced-form accounting exercises such
as the one in Section 2.1: educational and gender trends have important reper-
cussions on labor supply elasticities; age trends do not. This is shown in Figures
14 and 15: it is evident how in the gender and educational counterfactuals, labor
elasticities are much lower in the first sub-sample, thereby lessening the effect of
shocks when turbulence is at its peak. This is not the case for demographic trends
by age (Figure 16). The reason for this is that education and gender composition
induce large changes in the intensive margin, increasing labor supply of women
and of agents with high education, thereby reducing labor supply elasticities as
explained in Section 5.2.3. Instead, changes in the age composition are essentially
changes in the extensive margin (number of people in each age bracket).

The effect of age is also lessened for the following reason: removing age trends
implies that there are fewer young in the first part of the sample, which should
imply less volatility. This effect is mitigated by the fact that the fewer young, the
higher the relative volatility by gender and education.*” This result is consistent

49Tndeed, in the absence of age trends, the average relative volatility by gender and education
is 0.64 and 0.61; higher than those in the original simulation, 0.63 and 0.56.
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with the fact that relative volatility differences by gender are more pronounced
for the young as pointed out by Gomme et al. (2005), in Table 10.?

Notwithstanding the intuitive explanation above, the reader may be left wonder-
ing whether the result depends on the fact that the model generates counterfactual
data that understate the role of age relative to the true data. To see if this is
the case, I adapt the panel regression analysis of J-S to the single-country data
generated by the model. If the regression on the simulated data correctly detects
a minor role for the age composition, then it is likely that the model understates
the role of the age composition. If instead the regression overstates the role of
age relative to what it is in the model, so that the data generated by the model
are consistent with the results found by J-S, then one may not conclude that the
model understates the role of the age composition.”

The regression considered is:

oy = a + yshare; + ¢, (18)

where o; is a measure of output volatility at year ¢ generated by the model and
share; is the fraction of the population share which is not in its prime age (young
and old).?% 5% Following J-S, results are reported for heteroskedasticity and two-
period autocorrelation robust standard errors constructed using the Newey-West
estimator. See Table 10. The coefficient v is significant and it implies a stronger

Table 10: Regression analysis: age

\ Coef. Newey West Std. Err P>t
o 038 015 019
o -.002 .005 .75

role for age than the true one in the artificial economy: when the independent
variable share moves from its first sample average (41%) to its second sample
average (32%), the relative change in predicted volatility is 23%, which is quite
close to the results found by J-S. This result suggests that the regression overstates
the role of age.

S0Furthermore, McGrattan and Rogerson (2004) find that the decline in hours worked by
older individuals is primarily accounted for by a decline in the hours worked by males, whereas
the increase in hours of prime-age workers comes primarily from females.

51This case would not strictly imply that the analysis of J-S is biased as they are also exploiting
the cross-country panel dimension, which here is ignored.

524, is constructed by taking a 5-period standard deviation of the residual between log output
and its HP-filter with parameter 6.28.

%3Reverse causality is not an issue because population shares are exogenous by model
construction.
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A possible explanation is that the regression may be capturing the overall ef-
fects of demographic changes, including those in gender and education, which are
correlated with the changes by age. Is it possible to verify this conjecture by
simply including the labor composition by gender and education as regressors?
It depends on whether they are actually exogenous or endogenous. Indeed, to
motivate the structural methodology, it has been mentioned that movements in
the labor composition by gender and education are partly endogenous, thereby
invalidating the results of a regression analysis. It is possible to assess the impor-
tance of these endogenous implications in the model and see whether in practice a
regression would be biased.”® With this aim, I augment equation (18) by including
regressors for the labor composition by gender and education (including the share
of males and low education over total hours):

Ot = & + YogeShare,ge, + Yeausharecgu; + Vgenasharegeng, + &;. (19)
The results from the estimation of equation (19) are reported in table 11. The

Table 11: Regression analysis: age, gender and education

\ Coef. Newey West Std. Err P> |t
Yage ~.022 026 399
Yedu .002 .065 976
Ygend .094 .068 178
o} -.039 .013 .070

coefficient for age is no longer positive, and all the coefficients tend to neutralize
each other as none of them are significant. This exercise suggests that endogeneity
plays a role and motivates further the structural methodology adopted in this

paper.

6 Conclusion

This paper has documented that while the composition of the labor force by
gender, age and education has changed substantially over the last 40 years, the
relative volatility of market hours between these groups differs systematically.

54There are several channels through which the labor force composition is affected by aggre-
gate risk: female income is less sensitive to aggregate risk than male income, so the gender
composition of hours can be affected by the level of aggregate risk. For a similar argument, the
hours composition by education and educational choices are affected by aggregate risk. Fur-
thermore, the effect of aggregate risk on the hours composition may vary over time with the
movements in labor supply elasticities that this paper has uncovered, which affect within-group
variances.
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These facts lead to the conjecture of this study: that changes in the composition
of labor have a causal impact on the evolution of aggregate volatility over time.

To take into account the possible change in behavior induced by these demo-
graphic changes and the fact that they might be affected by aggregate fluctuations,
a general equilibrium model of the business cycle with overlapping generations,
educational choices, intrafamily time allocation, and savings, has been developed.

The model accounts for the initial increase, subsequent slowdown and recent
surge in aggregate volatility and is consistent with several cross-sectional facts.
The demographic changes considered play a non-negligible role in aggregate volatil-
ity. Changes in education levels have the greatest impact of all the factors consid-
ered. The role of age composition changes in business cycle fluctuations is relevant
but greatly curtailed compared with that previously found through reduced-form
analysis by J-S. Key to this discrepancy is the endogenous effect that demographic
trends have on labor supply elasticities: they decline with the increase in the labor
supply of highly educated workers and females. While this paper highlights the
business cycle implications of this newly found relationship, it may prove fruitful
to assessing its implications for a variety of public debates, ranging from tax and
welfare reforms to the regulation of institutional features of labor markets.

One challenge has been to find a solution method for this large model of more
than 800 variables which guarantees sufficient precision over the dramatic demo-
graphic transition path that has characterized the last 40 years. This has been
done by developing a technique that can be applied to a wide range of dynamic
stochastic general equilibrium models, which essentially consists of applying per-
turbation methods at many points along the equilibrium path.

This computational innovation may enable researchers to extend this transi-
tional analysis to a wide array of aspects neglected here, which are evolving in
modern societies. To name a few, marital status, number of children and retire-
ment decisions affect labor supply elasticities. Furthermore, the model abstracts
from labor supply participation decisions, sectors and occupations.
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Figure 1: Share of hours by gender, age and education
Notes: young workers range from 15 to 29 years old. Prime age ranges from 30 to 55. The old
are those 56 and above. By high education is meant at least four years of college.
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simulation
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Figure 13: Output, original versus counterfactual simulation
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Figure 18: Group factors versus labor-specific shocks z.
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Figure 19: Capital and consumption from the analytical example of Appendix B
compared with the solution computed with local and dynamic perturbation.
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A Data

The data series for aggregate consumption are from the Bureau of Economic Anal-
ysis (BEA). Aggregate capital is constructed by multiplying the capital output
ratio by aggregate income constructed using CPS data.

The capital output ratio is constructed by dividing non-residential fixed assets
with GDP from BEA.

Survival probabilities are from the National Center for Health statistics Vital
statistics of the US 1992, Vol II, sec. 6 life tables page 13, Washington: Public
Health Service. 1996.

The remaining data are from the March supplement of the CPS, downloaded from
the Integrated Public Use Microdata Series (King et al. (2010), cps.ipums.org).
Data for hours and wages are constructed by including individuals of at least 15
years old who reported their gender and education level and declared they worked
a positive amount of weeks and for a positive wage.

B Dynamic Perturbation

Following Schmitt-Grohe and Uribe (2004) and Gomme and Klein (2011), the
model can be expressed as

Et[f ($t+17yt+1,$t7yt)] =0, (20)

where F; is the expectation given information at time ¢, x; is a vector of state
variables sorted so that all shocks enter in the lower part of the vector, y; is a
vector of all the other variables of the model.! A recursive representation of the

!To familiarize with the notation, consider the following simple model:

max Ey Z Bt log(ct)

t=0

subject to feasibility and to the productivity process:

kt+1 +c = kt(]. — 5) + eA‘kf, (21)
Ay = pAi—1 + oug, up ~ d(0,vary,). (22)
The equilibrium conditions are the last two equations 21-22 and
1 1 a—1
— = BEt 7(1 + At+1al€t+1 - 6) . (23)
Ct Ce+1

With z; = [k, A;] and y; = ¢, the three equilibrium conditions 21-23 are easily casted into
equation 20.
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solution to Equation 20 which satisfies transversality conditions takes the form

yr = g(1,0) (24)

and
Tir1 = h(l’t, 0') + OMNt+1, (25)

where, following Schmitt-Grohe and Uribe (2004), o is a scalar that scales the
variance of 7, = [0, u], where {u;} is an i.i.d. sequence of innovations with zero
mean and variance matrix . An approximated solution can be found by Taylor
expanding the deterministic version of equation 20 around its steady state, where
Ty = Tp41 = Tssy Yt = Yer1 = Yss Such that

f (T, Yeyr, 2, 9:) = 0. (26)

This can be done, for instance, by applying the algorithm of Gomme and Klein
(2011). Taylor expansions of Equation 26 are done around the deterministic steady
state because this point is typically the easiest point to find where Equation 26
holds and equations 24-25 hold with ¢ = 0. However, if there is another point
Z in the state space where one knows the values #; = ¢(z,0), y = h(Z,0) and
y1 = h(21,0) so that
f(21,91,2,9) =0,

one could take the Taylor expansion there and have a solution approximated
around that point. The algorithm that I am about to introduce seeks to find such
points and use them to derive better approximated policy functions with which
to run a simulation.

Call
F(z,0,h,9) = E, (f[h(z,0) + on,g(h(z,0) + on,0),z,9(x,0)]),  (27)

where F, is the expectation over 7 given the state variables x. Pick € > 0. The
algorithm seeks to find points {z;}7 given an initial condition xy and for a given
sequence of shocks’ innovations {u,;}?, with precision

|\F (24,0, hy,,90,)| <€  for t=0,...,T—1, (28)

where hy,, g,, are policy functions approximated around z;.?

2A point 1, ¥1, x, y that satisfies Equation 26 but not 24-25 is on a path that violates
transversality conditions.

3Note that in equation (28) o = 0. This is because the expectation operator in equation 27
is replaced by the certainty equivalence assumption of zero innovations.

42



1. Put to = 1.

2. Taylor expand f (Zss, Yss, Tss, Yss) ), Where g, Yss is the deterministic steady state
of the model, and obtain the policy functions h,, (x,0), gz..(x,0). If these are
stable, then go to step 3 (for stability, see for instance Blanchard and Kahn
(1980)).*

3. Put h(-) = hy,, (") and () = .. ()

4. Simulate from z4,—1 with the policy function E() and with o = 0, generating a
time series {ft};‘ro with 7' > T.° If this time series does not converge to the steady
state, increase T' and go back to step 4.

5. Putt =T.

6. Pick a point # = aZ;_1 + (1 — a)%; with a € (0,1] such that [F(&,0,h, )| < &

7. If ]F(@,O,ﬁ,ﬁ)\ > 0, find Z; and § such that f(#1,91,2,9) = 0 where g1 =
g(#1,0).7

8. Derive the functions hz(-), gz(-) Taylor expanding f (x1,y1,x,y) = 0 around the
latter point (#1,91,%, 7).

9. Put h(-) = hs(-) and §(-) = gs(").

e If « < 1, increase it to a number smaller or equal to 1 and such that
|F(%,0,h,q)| < € where & has been updated accordingly: & = azy—1 + (1 —
a)Z¢. Go back to step 7.

e Ifa=1andt >ty put t =t— 1 and go back to step 6.
o If « = 1 and t = to, policy functions at z4,—1 have been found. Store

Tty = h(Z,0) + on, Yyi,—1 = g(Z,0) and go to the next step.

10. If tg = T the whole solution has been found! Otherwise, put ty = tg + 1 and go
back to step 3.

4This algorithm is described for models that are stable around the steady state. In fact, it
could be extended to models that do not have a steady state provided that a point (&1, 91, Z,7)
such that f (21,91, 2,9) = 0 is known. Indeed, it has worked for models that are locally unstable
in some regions of the state space.

5Since ¢ = 0, this simulation is independent of any time series for the innovations to the
shocks. It provides a path along which to move backward from the steady state.

60ne can start with o = 1, thereby moving from Z; to Z;_;. However, sometimes this
movement is too large so that [F(Z,0, k, §)| > &; in this case it is advisable to pick a smaller a.

"This step is similar to a step in the policy function iteration algorithm. Here, this step makes
sure that the function f (21,91, #,9) = 0 holds and hence a Taylor expansion is admissible.
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Variations of this algorithm can be conceived; for instance, to increase speed
one could avoid going backward through all the points on the equilibrium path,
but make larger jumps from the steady state until z.

The iteration procedure over the equilibrium path is reminiscent of the Parametrized
Expectation Approach (PEA. See Den Haan and Marcet (1990) and Marcet and
Lorenzoni (1999)): both algorithms break the curse of dimensionality by only ap-
proximating the global policy function over the equilibrium path rather than over
the entire state space. In practice however, the PEA may show convergence prob-
lems that make its implementation hard for high-dimensional applications.® An
important advantage of the proposed method is that, unlike the PEA it does not
iterate on the equilibrium path and hence does not rely on a contraction mapping,
which explains why convergence problems do not arise. On the other hand, the
invertibility conditions necessary to derive policy functions through perturbation
methods need to be satisfied at all the points where the perturbation is applied;
these invertibility conditions have not been violated in the models solved so far.”

To evaluate this algorithm, I test it on the model in note 1, equations 21-23, and
with full depreciation, for which the analytical solution is known. I then compare
the true equilibrium path {z},y;}J with the one generated by this algorithm,
{x;*,y*}T, and with the one generated by a second-order expansion around the
steady state {z;**,y;**}. For an initial condition quite far from the steady state,
rg = [.2kys, —.5], with variance of the shock equal to 0.007, ' the maximum error

ok sk

ma(max (|2} — 27, |v; — ")) (29)

using second-order approximation around the steady state is 0.0077. Using the
proposed algorithm, the maximum error

max(mas (|27 — 27", 1y} — v7" )]

is 2.26107°, which is 340 times smaller than taking the expansion only around
the steady state. The simulation computed with the two methods is compared
with the true solution in Figure 19. I conclude that this method makes a notable

8See in this respect the improvements made by Judd et al. (2009) (typically, this approach
is also less accurate because it interpolates across the points).

9In addition, this method is only valid on the specific equilibrium path generated by the
initial conditions and the time series of innovations. However, it is possible to simulate for a
long time horizon and then interpolate over the solution to obtain policy functions valid over
the whole ergodic set.

10T his is the typical calibration of a TFP shock in the RBC model. The other parameters are
0 =.33, p=.99 and g = .99.
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improvement in terms of accuracy versus perturbation around the steady state.!!

In this example the code takes 27 seconds to run a simulation of 60 periods on
a laptop. Solving the main model of the paper in section 3 takes about 11 hours
and 20 minutes. As a measure of accuracy, I compute the error

|f (Ee(@41), Et(Yer1) 2o, ye) | (30)

for all t. Abstracting from Jensen’s inequality, a solution to the model is such
that the error (30) is equal to 0 for all . Hence, the size of this error gives a sense
of the accuracy of the approximated solution. The maximum error with local
approximation of the steady state is 0.29; with this algorithm it is 1.7107!2.1?

C Production function estimation

C.1 Estimating the complementarity across labor groups

First divide (13) for each i by the same equation for group 1.

o o—1
Zi Uz Wi
2 G -0 @
21 nq w1
Multiplying by % and taking logs one gets '

ni

log(z;) — log(z1) + log <”—) — 1/ log (w”) , (32)

n1 w1y
which gives I —1 linear equations from which o can be estimated directly, without
knowing the other parameters of the production function.!* In order to facilitate
notation I define ¢; = log(z;) —log(z;), A = log (%) and z = log <%) [ assume
that the vector of ¢;s follows an AR1 process:

€ =V + pr€—1 + Uy, (33)

HEurthermore, the accuracy seems robust to initial errors. In fact, using a small T such that
the initial path does not converge to the steady state and the backward procedure starts with
an initial error, has a negligible effect on accuracy. Intuitively, step 7 corrects for such errors.

12 Although this result is quite reassuring, it should be noticed that an explosive solution, or
a solution which alternates explosive to implosive patterns, can be consistent with this result.
However, from a graphical inspection, the solution does not present an oscillating path and all
variables converge to a steady state.

13The multiplication by - is done to work with wage income rather than wage rates, thereby
attenuating measurement error.

141t is equivalent to dividing (13) for each i by the same equation for a group j different to
group 1 as done in equation (31). This expression can be obtained as the ratio of (31) for groups
7 and j and therefore does not convey any further information.
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where 7 is a vector and p, is a scalar. I rewrite (32) with the new notation
)\t:1/0$t+€t+ut, (34)

where p; is an I — 1 vector of measurement errors. Since \; affects z;, the latter is
not orthogonal to ;4 p;. However, through (33)—(34) one can derive the following:

A =1/oxy + U+ pr(Me—1 — 1/owi—1) + Ve + e — pafie—1. (35)

Similarly to Arellano and Bond (1991), I pick the parameters in order to match
the following moment conditions: E[z}_,_,(An)], E[N;_o_;(Any)], with i = 1,..,5,
where 7, = v;+ pi; — pajis—1 and A stands for first difference.'® T use these 10(7—1)
moments to estimate py and ¢.'% o is estimated to be 0.91, which suggests that
there is not very much complementarity across these groups.'” As can be inferred
from equation (31), the fact that o is close to one depends upon the fact that
changes in the input of labor in one group have little impact on relative wages.

A virtue of this specification is that the estimation above is independent of the
complementarity between labor and capital, 6: this parameter is calibrated to
—0.25 in accordance with the literature that suggests a parameter value which
induces more complementarity than the Cobb-Douglas case. See for instance
Leandoacute;n-Ledesma et al. (2010) and Choi and Rios-Rull (2009). « is such
that the model predicts the average labor share found in the data: in the model,
the capital share of output is Aa(%)e. « is identified by normalizing total factor
productivity A to be one on average, its value is 0.4.'

Table 12 summarizes the key parameters estimated.

Table 12: Estimation Results

\ o DO Q 0

Value 0.909 0.527 0.409  -0.250
St. Error 0.021 0.056 - -

13149, which is present in A, could influence A\;_o and x;_5. Only X\;,_a_; and z;_o_;, with
1 > 1, are uncorrelated with p;_o.

167 has been removed by differentiating 7,

TIncluding more or fewer lags does not change the result that groups are quite substitutable
into the production process. This result persists when the estimation is carried out with residuals
in levels, considering  and A in first differences, or adding a trend to equation (33).

8The average level of A is not pinned down and can be normalized: for any level of A, it
is possible to find a value of o and the shocks z; such that output is preserved, as well as the
marginal productivity of capital and of labor in each group. Since « is a constant, changes in A
and z; are identified independently of the normalization on the average level of A.
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C.2 Identifying the productivity shocks

From the labor demand equation for group one, one can derive:

I 6/c w; 5_1 zin;)°
<1——a>Aylf’<§:<an»“> (2 - ") (36)

i=1 {1

Since z;/z; has been identified through (32), it is convenient to rewrite the ex-
pression above as follows

! b/e w Z-Izl zZini/z1)°?
(1—a)Ay'* (Z(Zini)a) = (2 il ) (37)

o—1
i=1

Ny
Substituting this into the production function and solving for A gives

P P R0 p (39)

L3

As a result, z; can be backed out from (37) and finally, z; for every i can be
derived through (32). a =log(A) is assumed to be an AR1 process:

ar = PaQt—1 + Ugt- (39)

A time trend is found not to be significant.'” Figure 17 panel A, shows the time
series for A. The initial trend depends on the process starting below steady state.

C.3 Decomposition of labor productivity shocks

Consistently with the theoretical model, group-specific shocks z; in (11) are de-
composed into gender, age and education-specific shocks (g9, £%9¢, £%") so that

log(zt,4) Zsfjf i, +Ze€?gelage i,j) + Zefduledu )+ v (40)

for all 4,t, where I.q,(7,7) = 1 if education in group i is equal to j and zeros
otherwise. Dummies by gender and age are defined the same way. v ; is a residual

19 A time trend on the neutral shock would also be inconsistent with a balanced growth path.
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capturing what cannot be accounted for by a combination of the other shocks.?’:
21 The problem can be written in vectoral form:

log(z:) = Aey + 14, (41)

where z; and v; are respectively the vector of I labor specific shocks and residuals
at time ¢, g; is the vector of the seven group-specific shocks by gender, age and
education. A is a I x 7 matrix that collects the group dummies introduced in
equation (40). &; are identified by minimizing the sum of squares of residuals v;:
min,, v;v;. This problem can be considered a factor model with factors €; and
where the factor loading matrix A is given by the theoretical structure.

Figure 18 shows how closely Ae; can replicate labor-specific shocks z;. As is
evident from the figure, the the difference is negligible and hence in the simulations
I will only include Ae; and abstract from v;. I assume an AR1 process for &;:

€t = Ve + PEt—1 + Uy, (42)

where p is assumed to be a diagonal matrix.”* Figure 17 panels B,C and D plots
these shocks. Table 13 contains parameter values estimated with OLS and the
covariance matrix for the innovation components.

Table 13: Estimation Results

Ef Em €l €h Eyoung Eprime €old A
p .89 .87 .89 .89 .90 .89 .90 .89
¥ .05 .10 .05 .09 .01 .07 .05 0

Innovation covariances

Ef 0.0048  0.0047 0.0033 0.0031 0.0032 0.0050 0.0045 0.0021

Em 0.0050  0.0032  0.0032 0.0033 0.0050 0.0047 0.0022
€ 0.0024  0.0021  0.0020  0.0035 0.0030  0.0015
Eh 0.0021  0.0020 0.0033 0.0030 0.0014
Eyoung 0.0025 0.0033 0.0032 0.0014
Eprime 0.0054  0.0046  0.0022
€old 0.0046  0.0020
A 0.0010

20Residuals 14 ; come about from the fact that labor-specific shocks z; for all the groups cannot
be accounted for by only 7 shocks: 2 by gender, 2 by education and 3 by age.

21This exercise being a mere decomposition does not affect the estimated complementarity
across groups.

22A time trend was found not to be significant and therefore it is omitted. Over the sample,
the model predicts growth that essentially comes from the transition of the shocks, capital and
demographics to the steady state.
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