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Abstract

We consider testing the null hypothesis of no spatial autocorrelation against the
alternative of first order spatial autoregression. A Wald test statistic has good first-
order asymptotic properties, but these may not be relevant in small or moderate-sized
samples, especially as (depending on properties of the spatial weight matrix) the usual
parametric rate of convergence may not be attained. We thus develop tests with more
accurate size properties, by means of Edgeworth expansions and the bootstrap. The

finite-sample performance of the tests is examined in Monte Carlo simulations.
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1 Introduction

The modelling and analysis of spatially correlated data can pose significant complica-
tions and difficulties. Correlation across spatial data is typically a possibility, due to
competition, spillovers, aggregation and other circumstances. Such correlation might
be anticipated in observable variables or in the unobserved disturbances in an econo-
metric model, or both. In, for example, a linear regression model with exogenous
regressors, if only the regressors are spatially correlated the usual rules for large sam-
ple inference (based on least squares) are unaffected. However, if also the disturbances
are spatially correlated then though least squares estimates of the regression coeffi-
cients are likely to retain their consistency property, their asymptotic variance matrix
reflects the correlation. This matrix needs to be consistently estimated in order to
carry out statistical inference, and its estimation (whether parametric or nonparamet-
ric) offers greater challenges than when time series data are involved, due to the lack
of ordering in spatial data, as well as possible irregular spacing or lack of reliable infor-
mation on locations. In addition least squares estimates are rendered asymptotically
inefficient by spatial correlation, and developing generalized least squares estimates is
similarly beset by ambiguities.

A sensible first step in data analysis is therefore to investigate whether or not
there is evidence of spatial correlation, by carrying out a statistical test of the null
hypothesis of no spatial correlation. Many such asymptotically valid tests are poten-
tially available, so one might focus on ones that are likely to have reasonable power
against anticipated alternatives. This requires specifying a parametric model for the
spatial correlation. A widely applicable and popular model is the (first-order) spatial
autoregression (SAR). For simplicity we stress the case of zero mean observable data,
we shall also allow in some of the paper for an unknown intercept but our work can
also be extended to test for lack of spatial correlation in unobservable disturbances
in more general models, such as regressions. Given the n x 1 vector of observations

y = (y1,..-,yn)’, the prime denoting transposition, the SAR model is
y=A\Wy+e, (1.1)

where € = (e1,...,€,)" consists of unobservable, uncorrelated random variables with
zero mean and unknown variance o2, X is an unknown scalar, and W is an n x n
user-specified “weight” matrix, having (i,7)-th element w;;, where w;; = 0 for all
¢ and (in order to identify \) normalization restrictions satisfied. Such restrictions
imply that in general each element w;; changes with n as n increases, implying that
W, and thus y, form triangular arrays (i.e. W = W,, = (wijn), Yy = Yn = (Yin)) but we
suppress reference to the n subscript. The element w;; can be regarded as a (scaled)
inverse economic distance between locations ¢ and j, where symmetry of W is not

necessarily imposed. Thus knowledge of actual locations is not required, extending



the applicability of the model beyond situations when they are known, and entailing
simpler modelling than is typically possible when one attempts to incorporate locations
of irregularly spaced geographical observations.

The null hypothesis of interest is
Hp: A=0, (1.2)

whence the y; are uncorrelated (and homoscedastic). An obvious statistic for testing
(1.2) is the Wald statistic based on the least squares estimate X of A\, which is given
by

yWy
ywwy

Due to the dependence between right-hand side observables and disturbances in (1.1),

A= (1.3)

X is inconsistent for ), as discussed by Lee (2002). However, A does converge in
probability to zero when A = 0, so a test statistic for (1.2) based on A might be
expected to be asymptotically valid. In particular, under (1.1), (1.2) and regularity
conditions a central limit theorem for independent non-identically distributed random

variables gives
[tr (ww) / {tr (W2 + W)} ] X —a N (O, ). (1.4)

Since the square-bracketed norming factor can be directly computed, asymptotically
valid Wald tests against one-sided (A > 0 or A < 0) or two-sided (A # 0) hypotheses
are readily carried out.

The accuracy of such tests is dependent on the magnitude of n, and the normal
approximation might not be expected to be good for smallish n. Moreover, under
conditions described later and as shown by Lee (2004) for the Gaussian maximum
likelihood estimate of A, the rate of convergence in (1.4) can be less than the usual
parametric rate n'/?, depending on the assumptions imposed on W as n increases.
In particular if w;; = O (1/h) is imposed, where the positive sequence h = h, can
increase no faster than n, the rate is (n/h)1/2, which increases more slowly than n'/2
unless h remains bounded. This outcome renders the usefulness of the Wald test based
on (1.4) more dubious than in standard parametric situations.

The present paper attempts to remedy these concerns by developing refined tests,
which can be expected to perform better in moderate-sized samples. Formal Edge-
worth expansions are established in the following section for both A and also for the
least squares estimate of A when (1.1) is extended to include an unknown intercept. In
Section 3 we deduce corrected critical values and as an alternative, corrected (asymp-
totically normal) test statistics. In each case the critical values are more accurate than
ones based on the first-order normal approximation implied by (1.4). Both one-sided

and two-sided tests are considered. Section 4 examines finite-sample performance of



our tests in Monte Carlo simulations, comparing also with the simple uncorrected test
and tests based on the bootstrap, which (see e.g. Singh (1981) or Hall (1992a)) might
be expected to achieve our Edgeworth correction. Proofs are left to an appendix.
Our results are fairly straightforwardly extendable to situations in which y rep-
resents unobservable disturbances in regression models, and in which the intercept
model we consider is extended to include explanatory variables, but as the topic of
higher-order approximations in spatial econometrics is relatively new, we focus here

on the most basic, classical settings.

2 Edgeworth expansions for the least squares es-
timate

The present section develops a (third-order) formal Edgeworth expansion for N in
(1.3) under the null hypothesis of no spatial correlation (1.2). We introduce first some

further definitions and assumptions.

Assumption 1 The ¢; are independent normal random variables with mean zero

and unknown variance o>.

Normality is an unnecessarily strong condition for the first-order result (1.4), but
it provides some motivation for stressing a quadratic form objective function and is
familiar in higher order asymptotic theory. Edgeworth expansions and resulting test
statistics are otherwise complicated by the presence of cumulants of €;. Assumption 1
implies that under (1.2) the y; are spatially independent.

For a real matrix A, let ||A|| be the spectral norm of A (i.e. the square root of the
largest eigenvalue of A’A) and let ||A]|cc be the maximum absolute row sums norm of

A (i.e. ||A||oo = max)_|aij|, in which a;; is the (4, j)th element of A and ¢ and j vary

J
respectively across all rows and columns of A). Let K be a finite generic constant.

Assumption 2
(i) Forall n, w;; =0,1=1,...,n.
(ii) For all sufficiently large n, W is uniformly bounded in row and column sums in
absolute value, i.e. |[W||so + [|[W']|loc < K
(iif) For all sufficiently large n, uniformly in i,5 = 1,...,n, w;; = O(1/h), where
h = hy, is a positive sequence bounded away from zero for all n such that h/n — 0

as n — o0.

Parts (i) and (ii) of Assumption 2 are standard conditions on W imposed in the

literature. In particular, part (ii) was introduced by Kelejian and Prucha (1998)



to keep spatial correlation manageable. Commonly in practical applications W is
symmetric with non-negative elements and row normalized, such that X7_jw;; = 1
for all 4, in which case Assumption 2(ii) is automatically satisfied. Part (iii) covers
two cases which have rather different implications for our results: either h is bounded

(when in (1.4) A enjoys a parametric n'/?

rate of convergence), or h is divergent (when
A has a slower than parametric, (n/h)'/?, rate).

By way of illustration consider (see Case (1991)),

1

Wn:I'r®Bm7 Bmzi
m—1

(Lndyy — L), (2.1)

where I is the s X s identity matrix, [,, is the m x 1 vector of 1’s, and ® denotes
Kronecher product. Here W is symmetric with non-negative elements and row nor-
malized, n = mr. Parts (i) and (ii) of Assumption 2 are satisfied, and h ~ m, where
“~" throughout indicates that the ratio of left and right sides converges to a finite,
nonzero constant. Thus in the bounded h case only r — oo as n — 0o, whereas in the
divergent h case m — oo and r — oo.

Now define

tij:%tr(WiW,j), i>0, j>0, i+j>1, (2.2)

t= %tr((WW’)Q). (2.3)

Under Assumption 2 all ¢;; in (2.2) and ¢ are O(1) (because, for any real A such
that ||A|lcc < K, we have tr(AW) = O(n/h) ). To ensure the leading terms of the

expansion in the theorem below are well defined, we introduce

Assumption 3

h
lim —(t20 + t11) > 0. (2.4)

n—r00

By the Cauchy inequality, Assumption 3 implies lim, , hti1/n > 0, and the
two conditions are equivalent when W is symmetric or when its elements are all
non-negative. Assumption 3 is automatically satisfied under (2.1). It follows from

Assumptions 2 and 3 that in (1.4) the norming factor

tr(WW') B 1 (ﬁ)l/z (2)1/2 (25)
(tr(W2) + WW/)L/2  (to + t11)'/2 \h h ’ :
Now define

tn ta1 2t30 + 6t21
a= ? b= ) c= 5 2.6
(t20 + t11)'/? (ta0 +t11)Y/2t1 (t20 + t11)3/2 26)

t 12(ts1 + t22) 6tao + 24t31 + 6tao + 12t 1
= 5 e = s = 5 , g=—— (27)
(581 (t20 + t11)t11 (t20 + t11) oo + t11



and

U(¢) = 26¢* — £ Ha(C), (2.8)
V(Q) = gle— 6be)CHa(Q) — (d — 67)C° — o FHs() + 2bec Ha(€) — 26°C°,  (2.9)

where H;(¢) is the jth Hermite polynomial, such that

Hy(()=¢"—1 Hs(¢)=¢" -3¢ (2.10)

Thus U(() is an even, generally non-homogeneous, quadratic function of ¢, while V()
is an odd, generally non-homogeneous, polynomial in ¢ of degree 5.

Write ®(¢) = Pr(Z < () for a standard normal random variable Z, and ¢(¢) for
the probability density function (pdf) of Z. Let F(¢) = P ((n/h)lma;\ < () .

Theorem 1 Let (1.1) and Assumptions 1-3 hold. Under Hy in (1.2), for any real C,
F(¢) admits the third order formal Edgeworth expansion

1/2 3/2
FO =20+ U000 (£) T+ Vet +0 ((Z) ) S e
where
U =0, V(Q)=00), (212)
as n — oQ.

Generally, U(¢) and V(¢) are non-zero, whence there are leading correction terms

of exact orders (h/n)'/? and h/n, and both terms are known functions of (.

A corresponding result to Theorem 1 is available for the pure SAR model with
unknown intercept, i.e.
y=pl+A\Wy+e, (2.13)

where 1 is an unknown scalar and [ = l,,. The least squares estimate of X in (2.13) is

/ U
5 y W'Py
A= ————— 2.14
yW'PWy’ ( )
where P = I,, — (') "*I’. Under (1.2), the same kind of regularity conditions and the

additional
Assumption 4 For all n, ¥j_jw;; =1,i=1,...,n,

X has the same first-order limit distribution as 5\, so (1.4) holds with A replaced by A
However the second- and higher-order limit distributions differ. In case Assump-

tion 4 is not satisfied also the first-order limit distribution of A under (1.2) differs from



that of A and, in particular, A converges to the true value at the standard n'/? rate
whether h is bounded or divergent as n — oco. Since the main goal of this paper is to
provide refined tests when the rate of convergence might be slower than the parametric

rate n'/?, the case of model (2.13) when W is not row-normalized is not considered

here.
Define
Q) =U)+4g"? (2.15)
and
> g 1/2 94 2.3 091/2
70 =v©+{Su+n+me - S hoomic 1 Lm0, @a9)
where
p=IWW'l/n. (2.17)

(When W is symmetric Assumption 4 implies p = 1). Let F(¢) = P((n/h)?aX < ().

Theorem 2 Let (2.13) and Assumptions 1-4 hold. Under Hy in (1.2), for any real C,
F(C) admits the third order formal Edgeworth expansion

1/2 3/2
FO =20+ 0000 (1) + 7002 +0 ((Z) ) L e

where
U(¢)=0(1), V() =0(1), (2.19)

as n — o0.

The second- and third-order correction terms are again generally non-zero, and of
orders (h/n)*/? and h/n respectively. Notice that U(¢) > U(C), so the second-order
approximate distribution function (df) of A is greater than that of . The Edgeworth
approximation in (2.18) is unaffected by p (and the approximations in both (2.11) and
(2.18) are unaffected by 02). Consequently results can be similarly obtained when
there is a more general linear regression component than in (2.13), at least when
regressors are non-stochastic or strictly exogenous. Indeed, similar techniques will
yield approximations with respect to the model y — ul = AW (y — pl) + €, or more
general linear regression models with SAR disturbances.

Finally, it is worth stressing that Theorems 1 and 2 hold not only under Assump-
tion 1, but also for the class of spherically symmetric distributed disturbances (e.g.
Hillier (2001) or Forchini (2002)). Specifically, let w = €e(¢'¢)~'/2, where € satisfies
Assumption 1. Thus, w is uniformly distributed on the unit sphere in ™. It can
be shown that the distributions of both €We/e'W'We and ¢ W' Pe/e' W' PWe are
the same as those of w'Ww/w'W'Ww and w' W' Pw/w' W’ PWw, respectively. Hence

Theorems 1 and 2 hold for scale-mixtures of normals and, more generally, under a



spherically symmetric distribution for €, since any random vector within such class

would imply w being uniformly distributed on the unit sphere in R".

3 Improved tests for no spatial correlation

We consider first tests of the null hypothesis (1.2) against the alternative
Hi: A>0 (3.1)

in the no-intercept model (1.1).
For o € (0,1) (for example a = 0.05 or @ = 0.01) define the normal critical value
Zo such that 1 — a = ®(z,). Write ¢ = (n/h)*2aX. On the basis of (1.4) a test that
rejects (1.2) against (3.1) when
q> 2a (3.2)

has approximate size a. Theorem 1 readily yields more accurate tests that are simple
to calculate because the coefficients of U(¢) and V ({) are known, W being chosen by
the practitioner.

Define the exact critical value wq such that 1 — a = F(wa), so a test that rejects

when ¢ > w, has exact size a. Also introduce the Edgeworth corrected critical value

ey = 7o — (")I/Q U(ze)- (3.3)

n

Corollary 1 Let (1.1) and Assumptions 1-8 hold. Under Hy in (1.2), as n — oo

Wo =26 + O ((Z)m) (3.4)

o + O <%) . (3.5)

Corollary 1 follows follows immediately from Theorem 1. From Corollary 1, the
test that rejects (1.2) against (3.1) when

q > Ua (3.6)

is more accurate than (3.2). Of course when the alternative of interest is A < 0, the
same conclusion can be drawn for the tests which reject when ¢ < —za, ¢ < —ua,
respectively.

Instead of correcting critical values we can derive from Theorem 1 a corrected test



statistic that can be compared with z,. Introduce the polynomial

G()=C+ (%) v U + %% (zb — %)2 &, (3.7)

which has known coefficients (see Yanagihara et al. (2005)). Since G(¢) has derivative
(1+¢(2b—¢/6)(h/n)*/?)? > 0, it is monotonically increasing. Thus F(¢) = P(G(q) <

G(¢)) and we invert the expansion in Theorem 1 to obtain

Corollary 2 Let (1.1) and Assumptions 1-8 hold. Under Ho, as n — oo

P(G(q) > 2a) =a+ O (%) . (3.8)

Thus the test that rejects when
G(q) > za (3.9)

has size that differs from « by smaller order than the size of (3.2).

Still more accurate tests can be deduced from Theorem 1 by employing also the
third-order correction factor V' ({), but the above tests have the advantage of simplicity.
The V term, however, is especially relevant in deriving improved tests against the two-
sided alternative hypothesis

Ho: X#0. (3.10)

Because U(() is an even function it follows from Theorem 1 that

h B\ 32
Pl <0 =20(0) ~ 1428V +0 ((2) ). (311)
Thence define the Edgeworth-corrected critical value for a two-sided test,

n
Vaj2 = Zaj2 — EV(Za/2)7 (3.12)

noting that the approximate size-a two-sided test based on (1.4) rejects Hy against
(3.10) when

Also, define s, /2 such that P(|g] < sq/2) =1—a.



Corollary 3 Let (1.1) and Assumptions 1-8 hold. Under Hy, as n — oo

h
Saj2 = Zaj2 + O (ﬁ) (3.14)

=42+ 0 ((Z)M>. (3.15)

Thus rejecting (1.2) against (3.10) when
lal > va2 (3.16)

rather than (3.13) reduces the error to O((h/n)3/?). In fact, Theorem 1 can be estab-
lished to fourth-order, with fourth-order term that is even in ¢, and error O((h/n)?),
so the error in (3.15) can be improved to O((h/n)?).

As with the one-sided alternative (3.1), a corrected test statistic that can be com-

pared with z,/; can be derived from Theorem 1. Define (Yanagihara et al. (2005))

L) = ¢+ 2V(Q)

WY1 (pep, L3 L3¢ 20 0 5 2, 0 5 2, o o
-] = (L ~L,L —L,L —LyL 1
+(n)4<1c+5+9+312C+513C+723C:(37)
where Ly = —1(e—6bc)+1 f, L2 = 1(e—6bc)—3(d—6b>)— 2 f—3bc and Ls = Sbc—10b%,
so L({) is a degree-7 polynomial in ¢ with known coefficients. It is readily checked
that V(¢) has derivative L1 + L2¢? 4 L3¢*, where L(¢) has derivative (1+ (h/n)(L1 +
Lo¢? 4 L3¢*)/2)* > 0 and is thus monotonically increasing. Therefore, from (3.11),

we obtain

Corollary 4 Let (1.1) and Assumptions 1-8 hold. Under Hy, as n — oo

3/2
P(L(|q]) > 2ay2) =+ O <(Z) > (3.18)

The transformation in (3.17) and Corollary 4 follow from (3.11) using a minor
modification of Theorem 2 of Yanagihara et al. (2005). From the latter result, we
conclude that the test that rejects Ho against (3.10) when

L(lql) > za/2 (3.19)

has size which is closer to « than (3.13).

Improved tests can be similarly derived from Theorem 2 for the intercept model
in (2.13). We first consider tests of Ho in (1.2) against (3.1). Let § = (n/h)*2aX.
A standard test based on first order asymptotic theory rejects (1.2) against (3.1) at

10



approximate level @ when
4> Za. (3.20)

Define the exact and Edgeworth-corrected critical values wq, such that 1 —a = F(a),
and o = 2o — U(2a)(h/n)Y? = uq — g'/*(h/n)"/?, respectively.

Similarly to Corollaries 1 and 2, from Theorem 2 we deduce

Corollary 5 Let (2.18) and Assumptions 1-4 hold. Under Hy in (1.2), as n — oo

ma_za+()(<z>1m> (3.21)

“avo(t). 522

Notice that i, < uq for any «, so that the second-order corrected critical value is
lower for the intercept model.
Let

do=c+(1) o0+ @ e =co+ ()0 e

n n 3 6 n
Corollary 6 Let (2.18) and Assumptions 1-4 hold. Under Hy in (1.2), as n — oo

PG(G) > 2) =a+ O (%) . (3.24)

Thus, tests that reject (1.2) against (3.1) when either
G > o (3.25)

or

G(q) > za, (3.26)

are more accurate than (3.20).
Also, from Theorem 2 improved tests of (1.2) against (3.10) can be deduced. From

(2.18), since U(¢) is an even function we obtain,

3/2
P(il < ¢ = 20(0) ~ 1+2" 70 + 0 <(h> ) | (3.27)

n

Define 5,/ such that P(|¢] < 34/2) = 1 — a and ¥4/2 = za/2 — (n/h)V(za/g). A

standard, approximate size «, two-sided test rejects (1.2) against (3.10) when

|(ﬂ > Za/g. (328)

11



From (3.27) we deduce

Corollary 7 Let (2.18) and Assumptions 1-4 hold. Under Hy, as n — o0

- h
Sa/2 = Ra/2 +0 (E) (329)

= Bujs+ O ((Z)m> . (3.30)

Finally, define

L) =¢+ ()

h\*1 (72,  L5¢° L3¢° 2: - 5 2: 5 22 o
-] - (L —I1L —I1L —LoL 3.31
+<n) 4<1§+ 5 + 9 +3 1L2C +5 1L3¢ +723C , ( )

1 gl/2 cgl/?

Whereil:L1+%(1+p)+2bg1/27% 5 ,E2:L2766g1/2+7.

Corollary 8 Let (2.18) and Assumptions 1-4 hold. Under Hy, as n — o0

. 3/2
P(L(|G]) > zay2) =+ O ((Z) ) (3.32)

From Corollaries 7 and 8, we conclude that the tests that reject Hy against (3.10)
when either
|a] > Va2 (3.33)

or
L(1gl) > a2 (3.34)

have sizes closer to « than that obtained from (3.28).

Before concluding this section we should acknowledge that the distribution func-
tions under (1.2) and Assumption 1 of both ¢ and ¢ can also be evaluated numerically
using the procedure introduced by Imhof (1961) (for implementation details see e.g. Lu
and King (2002)). Exact critical values can then be numerically calculated. However,
Imhof-type of implementations heavily rely on numerical solutions of highly non-linear

equations and therefore might not be not fully reliable.

4 Bootstrap correction and simulation results

In this section we report and discuss a Monte Carlo investigation of the finite sample
performance of the tests derived in Section 3 and of bootstrap tests, given that in many

circumstances the bootstrap is known to achieve a first-order Edgeworth correction (see

12



e.g. Singh (1981)). For the no-intercept model (1.1) the bootstrap test is as follows
(e.g Paparoditis and Politis (2005)). We construct 199 n x 1 vectors €}, whose elements
are independently generated as N(O,&Z), 7 =1,....;199. The bootstrap test statistic
is ¢f = (n/h)1/2ae;lW’e;/e;,W'We;, j=1,....,199, its (1 — «)th percentile being u},
which solves 2;9:91 1(g; < ug)/199 < 1—a, where 1(.) indicates the indicator function.
We reject (1.2) against the one-sided alternative (3.1) when

q > up. (4.1)

Defining the (1—a)th percentile of |¢}| as the value v, solving Z;igl 1(lg7] < v5)/199 <
1 — «, we reject (1.2) against the two-sided alternative (3.10) if

gl > 2. (4.2)

For the intercept model (2.13) we define §; = (n/h)l/Qaé‘}‘lW’P€;/€;IW'PW€;,

j =1,.....,199, where the components of each ¢; are independently generated from

3
N(0,5?) with 6% = 3 Py/n. The (1 — a)th quantiles of G; and |¢}|, @5, and 93, solve
SUE UG < a5)/199 < 1—a, and Y1 1(|g5] < 05)/199 < 1 — a, respectively. We
reject (1.2) against (3.1) or (3.10) when

G > tg (4.3)

or

gl > o3, (4.4)

respectively.

In the simulations we set 0® = 1 in Assumption 1, 4 = 2 in (2.13) and choose W
as in (2.1), for various m and r. Recalling that orders of magnitudes in Theorems 1
and 2 are affected by whether h diverges or remains bounded as n — oo, we represent
both cases by different choices of m ~ h. We choose (m,r) = (8,5), (12,8), (18,11),
(28,14), i.e. n = 40, 96, 198, 392, to represent “divergent” h, and (m,r) = (5,8),
(5,20), (5,40), (5,80), i.e. n = 40, 100, 200, 400 to represent “bounded” h. For each
of these combinations we compute X and X from the same realization of € across 1000
replications. In all tests o = 0.05.

Empirical sizes are displayed in Tables 1-8, in which “normal”, “Edgeworth”,
“transformation” and “bootstrap” refer respectively to tests using the standard normal
approximation, Edgeworth-corrected critical values, Edgeworth-corrected test statis-
tic and bootstrap critical values, and the respective abbreviations N, E; T, B will be

extensively used in the text.
(Tables 1 and 2 about here)

Tables 1 and 2 cover one-sided tests (3.2), (3.6), (3.9), (4.1) in the no-intercept

13



model (1.1), when h is respectively “divergent” and “bounded”. Test N is drastically
under-sized for each n in both tables. The sizes for E are somewhat better, and improve
as n increases, in particular for “divergent” h the discrepancy between empirical and
nominal sizes is 18.2% lower relative to N, on average across sample size, while as n
increases this discrepancy decreases by about 0.7% for N, but by 9.5% for E. Both
T and B perform well for all n. Indeed, on average, when h is “divergent” empirical
sizes for T and B are 80.4% and 85.4%, respectively, closer to 0.05 than those for N,
with a similar pattern in Table 2. Tables 1 and 2 are consistent with Theorem 1 in
which F' converges to ® at rate n'/? when h is bounded, but only at rate (n/h)/?
when h is divergent. Indeed, when h is “bounded”, on average the difference between
empirical and nominal size decreases by 6.8% as n increases for N, while this difference
only decreases by 0.7% in case h is “divergent”. Also, from Table 2, the average
improvements offered by E, T and B over N are about 41%, 88% and 84%, respectively.
Overall, T and B perform best.

(Tables 3 and 4 about here)

Tables 3 and 4 cover two-sided tests for the no-intercept model (1.1), namely (3.13),
(3.16), (3.19) and (4.2). Again, N is very poor, though contrary to the one-sided test
case the problem is now over-sizing, and E, T and B all offer notable improvements.
Indeed, when h is “divergent” the difference between empirical and nominal sizes is
reduced respectively on average across sample sizes by 87.4%, 59% and 94% for E, T
and B relative to N, and by 86%, 59% and 95% when h is “bounded”. In the tables B

seems overall most accurate, followed by E.
(Tables 5 and 6 about here)

Tables 5 and 6 contain results for one-sided tests for the intercept model (2.13),
the N, E, T and B tests being given in (3.20), (3.25), (3.26) and (4.3). The pattern
is similar to that displayed in Tables 1 and 2. For “divergent” h, on average across
sample sizes, empirical sizes for E, T and B are 12%, 65% and 89% closer to 5%
than ones for N, with figures of 21.7%, 78.7% and 81% for “bounded” h. Overall, B
performs best for “divergent” h, but it is difficult to choose between B and T when h

is “bounded”.
(Tables 7 and 8 about here)

Tables 7 and 8 correspondingly describe two-sided tests given in (3.28), (3.33),
(3.34) and (4.4). The improvements on average across sample sizes offered by E, T
and B over N are 58%, 27% and 87%, respectively, when h is “divergent”, and 64%,
64% and 50%, respectively, when h is “bounded”. For “divergent” h B again comes
out top overall, followed by E, but for “bounded” h B is outperformed by both E and
T.
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(Figures 1 and 2 about here)

To illustrate the effect of the transformations G(.) and G(.) used in Section 3, in
Figures 1 and 2 we plot the histograms with 100 bins of ¢ and G(q) (Figure 1) and
of ¢ and G(§) (Figure 2) obtained from 1000 replications when m = 28 and r = 14.
Both figures suggest that the densities of ¢ and ¢ are very skewed to the left and that

most of the skewness is removed by the transformations, as in Hall (1992b).
(Tables 9-12 about here)

In Tables 9-12 we assess power against a fixed alternative, i.e.
Hi:A=X>0. (4.5)

Tables 9 and 10 display the empirical power of one-sided tests in the no-intercept
model (1.1) when h is “divergent” and “bounded” respectively, while Tables 11 and
12 correspondingly contain results for the intercept model (2.13). These are non-size-
corrected tests. Exept for the smallest sample size when h is “divergent”, even N
performs well for the largest A = 0.8, as do all other tests in all settings. N also does
comparably well to E, T and B when h is bounded and X = 0.5. But overall N is
outperformed by the other tests, with T and B offering the greatest power.

A remark on consistency of standard and corrected tests is desirable. As previously
mentioned, X and ) are inconsistent when \ is non-zero. Therefore, in case plimS\ <
A (> A) asn — oo for A > 0 (A < 0), it might be that under Hi, plimA = 0 as
n — oo, with the same possibilities for X. Then the standard and corrected tests
would be inconsistent. For the special case of W in (2.1), the following theorem shows

that the direction of inconsistency follows the sign of .

Theorem 3

(i) Let model (1.1) hold. Under Assumption 1 and (2.1), plim (A—\) is finite and

n— oo
has the same sign as \.

(ii) Let model (2.13) hold. Under Assumption 1 and (2.1), plim (X — \) is finite

n—oo
and has the same sign as A.

The proof is in the Appendix. Assumption 1 could be relaxed here, but is retained
for algebraic simplicity. Under (1.1), as n — oo plimA > A (< A) as n — oo when
A > 0 (A < 0) and hence, P(q > zo|H1) = 1, P(q > ua|H1) — 1 and P(G(q) >
zo|H1) — 1. Similarly under (2.13), P(§ > za|H1) — 1, P(§ > Ga|H1) — 1 and
P(G(§) > za|H1) — 1 as n — co. The direction of inconsistency could be computed
similarly for other choices of W, although it might not always be possible to obtain

closed form expressions.
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Appendix

Proof of Theorem 1

Under Hp, A = €W’'e/é W We and thus P(A\ < z) = P(s < 0), where ¢ =
€(C+Ce/2, C =W —zW’'W and z is any real number. We proceed much as in,
e.g., Phillips (1977). Under Assumption 1, the characteristic function (cf) of < is

B3+ _ 5 )}Lm n/e”ucw o 5a% de
s ag
§Rn
1 — Ly (I—ite®(C+C"))E
=— | e 202 d§
2 n/QO-n/
(2m) .
= det(I —ito®(C+ C")) "V = [ (1 —ito®n;) /2, (A1)
j=1

where the 7; are eigenvalues of C'+C" and det(A) denotes the determinant of a generic

square matrix A. From (A.1) the cumulant generating function (cgf) of ¢ is

= —7Zln (1 —ito’n;) ZZ (ite” 7]]

]131

zta zta
22 JZ; ;= QZ r((C+C)%). (A2)

Denoting by ks the s—th cumulant of ¢, from (A.2)

k1 = o tr(C), (A.3)
Ko = %4757"((0 +C"?), (A.4)
o = 022351 tr((C :— C')?) s> 2. (A.5)

Let ¢¢ = (s — k1) /ks/?. The cgf of ¢° is

e Lo Cnes(it)®
v =g+ 3 (A.6)
where
c Rs
Rs = s/27 (A7)
D)
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so the cf of ¢¢ is

kS (3 1 = kE(it)® 1 = kS(it
{1+Z *Z i,))2+§(2 g,))3+ ..... }
5=3 : s=3 '
_ 53(“5) ri(it) | wE(it) kg (K8 6
= {1 + 3' + 4' + 5' + { 6' + (3')2 }(Zt) + """ }
(A.8)
Thus by Fourier inversion, formally
P(° < 2) = /¢(z)dz+ /H3 dz—l— 1l /H4 o(z)dz+.... . (A9)

Collecting the above results,

P(A< 1) = P(s <0) = P(s°ky* + 51 <0) = P(s" < =)
c K4 ¢ K4
= ®(—kS) — 3?<1><3 (—K5) + Zj‘<1><4>(—f41) o (A.10)

From (A.3), (A.4) and (A.7),

. tr(C)
= . A1l
T G (C o) (A-1D)
The numerator of k{ is
tr(W) — atr(WW') = —atr(WW') = f%xtn, (A.12)

while its denominator is

(51r(C + V)2 = (er(W2) 4 tr(WW') — datr(W2W) + 20%r ((WW')2) /2.

1/2
= (%) (tzo + t11 — 4dator + 22 t)l/z (A.13)
Thus
oo etuG/mV —atu (n/h)"? (A14)
(t2o0 + t11 — 4ty + 2x2t)1/2 (t20 + t11)1/2(1 — %)1/2

Choose 1/2 /

1/2
. (ﬁ) (ootti) 7 (Pyrrzg1e (A.15)

n t11 n
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where a was defined in (2.6). By Taylor expansion

kS = —C (1 - At = 20l 2m2t>1/2 =2 (h)m SN M——E
! (t20 + t11) n t11(t20 + t11)1/2
ht s _h to 2, R\ /2
L B S ) S 1o} v
* n it ¢ n ((t20 + t11)1/2t11> ¢+ n

1/2 3/2
(-2 (h) bC2+%d§3f6%b2C3+O ((Z) ) (A.16)

n
where b and d were defined in (2.6) and (2.7). Then by Taylor expansion and using
(=d/dz) ®(z) = —H;-1(x)¢(), (A7)

we have

1/2 3/2
O(=ri) = @ (C +2 <ﬁ) b - Ract + 620 v 0 <(h) >>
n n n n

1/2 3/2

n n

1/2 3/2
=002 () 000 + (41766~ 2 (0) 6(0) + O ((Z) )
1/2 372
=®(¢) +2 (%) bC*$(C) + % (—d¢® + b2(6¢% — 2¢%)) $(C) + O <(Z> ) ,
(A.18)
Similarly,
1/2
@ (—xf) = () +2 (%) oW (C) + 0 (%)
1/2
= <H2(C) -2 (%) bC2H3(C)> #(¢)+0 (%) : (A.19)
From (A.5), (A.7), (€4 P
e tr((C+C

(r(C+ TP
By standard algebra, for = defined in (A.15),

1/2 1/2
r(C+oy) =5 (t” st (7)o (h))
n n

t11

1/2 1/2
Tl on), (a)

n
= E(tzo +t11)—4 (*

h ti
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1/2 1/2
tr(C+CP) =2 <2t30 + 6tor — 12 <ﬁ) (b0 + t11) Tt +t22) | <h>>
h n t11 n
n 1/2 (t20+t11)1/2(t31 + t22)
= — —1 1
h(2t30+6t21) Z(h) - ¢+0(1)
(A.21)
and thus
e R0+ 6ta) — 12 (3)"7 (t20 + 111) (a1 + t2)t5' C + O(1)
s = 3/2 1/2 h 3/2
(7)77 (a0 +111)2/2 (1 =4 () oty (2o + 1) T2+ O (5)
_ (h>1/2 2t30 + 6t21 _12ﬁ 31 + t22 ct+0
n (t20 + t11)3/2 n t11(t20 + t11)
h\'? ta1 h
X|1+6(— _ Ol —
( +0(3) it o (3)
h\"? 250 + 6t h  t31 + oo h 6(2t30 + 6t21)t21 n\*"?
=(- — — 12— —= ¢+O0|(|—=
n (t20 + t11)3/2 n t11(t20 + t11) n (tao +t11)2t11
1/2 3/2
= <%> c— %(e — 6bc)(+ O ((Z) > , (A.22)
where b, ¢ and e were defined in (2.6) and (2.7).
Similarly,
4 n 1/2
3r((C + ")) = 7 (6tao + 24t + 12 + 622) + O (h) (A.23)
and thus

o h 6ty + 24t3; + 12t + 6oy h\*? h R\ 32
_h n _n n A.24
Ri= (a0 + 112 +0 <(n> nf+0 ” , )

where f was defined in (2.7).
Substituting (A.15), (A.18), (A.19), (A.22) and (A.24) in (A.10) and rearranging
using (2.8) and (2.9) completes the proof.

Proof of Theorem 2

Under Hy and by Assumption 2(i), A = ¢ W'Pe/e'W' PWe. Proceeding as before,
P(A < z) = P(s < 0), which can be written as the right side of (A.10), with ¢ =
€'(C + C")e/2 and

C=W'P(I - zW). (A.25)

Derivation of the cumulants «; of ¢ is very similar to that in the proof of Theorem
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1, and so is not described in detail. From (A.25), (2.2) and (2.17),

2 2 ’ Ty / _ 2 n _
k1 =o0tr(C)=—0o (1 + ztr(W'W) n(l %7747 l)) o (1 + a:htn ZEp) .
(A.26)
Similarly, since
IWiW9l=0(n) forall i>0, j>O0, (A.27)

4

Ko = Etr((C +C"?)

ot <tr(W2) +tr(WW)—1-— %Z’W’Wl —dx(tr(WW'W) + 0(1)) + 22> (tr(W'W)?) + 0(1)))

o* (%(m Ft)—1—p—dz (%tm T 0(1)) + 222 (%t T 0(1))) . (A.28)

Proceeding as in the proof of Theorem 1, the first centred cumulant of ¢ is

—1/2
= —zRtn —14+xp 14 p+da (Ftar + O(1)) — 227 (2t + O(1)) /
1= - - .

(%(tzo +t11))1/2 H(t20 +t11)
(A.29)

Setting z as in (A.15) and by Taylor expansion,

_ MJ&)
= <C+(t20+t11)1/2 ﬂt11<

R\ Y2 201 h < 1 1 p t o 612, 2>
x[1+ (2 +2 + o -t
( <n) t11(t20 + t11)1/2 ¢ n \2(t20 +t11) 2t +tun  t3 ¢ 2, (t20 + 1511)C
O

— h1/21/2 h p h\'? hrg g 2 2.2
(<+<n) g7 -k H(E) 20¢+ (4 + §p— dg® + 6°¢%)

1/2 3/2
= (- (@> (26¢% + ¢'/?) — h (gc +9pc —dc® + 662 + 2bgl/2§> +0 <<h> ) ;
n n \2 2 n
(A.30)

with b, d, g and p defined in (2.6), (2.7) and (2.17). Similarly, by standard algebra
and using (A.27),

1/2 (90 + t11)1/2(t31 + t22)
t11

tr((C +C")?) = = (2tg0 + 6t21) — 12 (%) ¢+0(1), (A.31)

>3
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agreeing with the corresponding formula in the proof of Theorem 1, so that the third
centred cumulant of ¢, k3, is (A.22), whereas the fourth centred cumulant of ¢, x§, is
again (A.24).

Next,

1/2
B(-nd) =00+ (5) @64 960+ 1 (5 + a0 — dct + 00 + 20972 00

Lope? 14 o1/229® ol (" v
+5(26C7 + g7 77)7e () + (n>
h 1/2 1/
o+ (1) @0
2 (G4 a0 — et + 006" 4 292 = L6t + 9P Q) ) 000
3/2
+0 <(Z> ) (A.32)

and
@ (=rf) =2 () + (Z)m 262 + g™ (¢) + O (%)
= <H2(<) - (Z>1/2 (26¢° +gl/2)H3(o> ¢(¢) +0 (%) . (A33)

Substituting (A.15), (A.22), (A.24), (A.32) and (A.33) in the right side of (A.10)

complete the proof.

Proof of Theorem 3

(i) From (1.1), y = S™' ()¢, where S(x) = I, — xW. Under (2.1), S™'()\) exists for
any A € (—1,1) and

[e']

STH) =D (W) (A.34)

i=0
From (A.34) S7!()) is symmetric, STH(A\)W = WS™(A) and ||S7 (V)] < K.
For any A € (—1,1),
. yWe he' ST (AN We/n

ATAS Wy T he S TO)WRS (N (A-35)

As n — o0, the numerator of the RHS of (A.35) converges in probability to
lim(h/n)o?tr(S™H(N)W) since (h/n)(eS™ (A We — a*tr(S™H(A)W)) — 0 in second

mean. Similarly, as n — oo, the denominator of the RHS of (A.35) converges in
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probability to lim(h/n)o*tr((S™H(A\)W)?). Thus
lim Ltr(STH ()W)
lim Ltr((S—1(N)W)2)’

A-2B (A.36)

First we show that the RHS of (A.36) is finite. Since ||S™'(\)||e < K,
(h/n)tr(S™H(A\)W) = O(1). The denominator in the RHS of (A.36) is non-negative
and, by (A.34), (h/n)tr((STHANW)?) ~ (h/n)tr(W?), which is non-zero under (2.1).
Hence, the RHS of (A.36) is finite and its sign depends on its numerator.

From (2.1) and (A.34),

tr(ST VW) = tr(i)\itr(WiH)) = rixitr(B:;jl). (A.37)

Since B,, has one eigenvalue equal to 1 and the other (m — 1) equal to —1/(m — 1),

i+1
tr(By') =14 (m —1) (m;—ll> (A.38)

and hence, since |\| < 1,

1 _ Sl B -1 \° _r r A rm
tr(s (/\)W)*Tz_:/\ (1 (m—l))l—A I+ 20 1-Am—1+X\

i=0 -1
(A.39)
By substituting h = m — 1 and n = mr into (A.39),
h _1 m—1 A\ rm A m—1
i = = A4
ntr(S (W) mr 1—-Am—1+X 1-Am—-1+X (A.40)

which, for all A € (=1, 1), has the same sign of A\, whether m is divergent or bounded,
for all m > 1.

(ii) Under (2.13),

< yWPe hEIS_l()\)WPe/n
AAE yWPWy — he STLAWPWS—1(\)e/n’ (A.41)

where y = S™'(A\)(ul + €) and since from (A.34) I'S™*(\NWP =1I'S™*(\)W’'P = 0.
Thus, similarly to (A.36),

lim Ltr(S~'(A)WP)
n— oo

A-25 :
lim Ltr((S=1(N\)W)2P)
n—o0

(A.42)

The result in (ii) follows from the proof of part (i), after observing that, as n — oo,
lim(h/n)tr(S™H(NWP) = lim(h/n)tr(S™H (AN W)+o(1) and lim(h/n)tr((S™ (A\)W)?P)

22



= lim(h/n)tr((S~ (\)W)2) + o(1).

References

Case, A.C. (1991). Spatial Patterns in Household Demand. Econometrica, 59,
953-65.

Forchini, G. (2002). The Exact Cumulative Distribution Function of a Ratio of
Quadratic Forms in Normal Variables, with Applications to the AR(1) Model.
Econometric Theory 18, 823-52.

Hall, P. (1992a). The Bootstrap and Edgeworth Expansion. Springer-Verlag.

Hall, P. (1992b). On the Removal of Skewness by Transformation. Journal of
the Royal Statistical Society. Series B 54, 221-28.

Hillier, G. (2001). The Density of a Quadratic Form in a Vector Uniformly
Distributed on the n—Sphere. Econometric Theory 17, 1-28.

Imbhof, J.P. (1961). Computing the Distribution of Quadratic Forms in Normal
Variables. Biometrika, 48, 266-83.

Kelejian, H.H. and I.R. Prucha (1998). A Generalized Spatial Two-Stages Least
Squares Procedure for Estimating a Spatial Autoregressive Model with Autore-
gressive Disturbances. Journal of Real Estate Finance and Economics 17, 99-
121.

Lee, L.F. (2002). Consistency and Efficiency of Least Squares Estimation for
Mixed Regressive, Spatial Autoregressive Models. Econometric theory 18, 252-
7.

Lee, L.F. (2004). Asymptotic Distribution of Quasi-Maximum Likelihood Esti-
mates for Spatial Autoregressive Models. Econometrica 72, 1899-1925.

Lu, Z.H. and M.L.King (2002). Improving the Numerical Techniques for Com-
puting the Accumulated Distribution of a Quadratic Form in Normal Variables.
FEconometric Reviews 21, 149-65.

Paparoditis, E. and D.N. Politis (2005). Bootstrap Hypothesis Testing in Re-
gression Models. Statistics € Probability Letters T4, 356-65.

Phillips, P.C.B. (1977). Approximations to Some Finite Sample Distributions
Associated with a First-Order Stochastic Difference Equation. FEconometrica,
45, 463-85.

Singh, K. (1981). On the Asymptotic Accuracy of Efron’s Bootstrap. Annals of
Statistics, 9, 1187-95.

23



Yanagihara, H. and K. Yuan (2005). Four Improved Statistics for Contrasting
Means by Correcting Skewness and Kurtosis. British Journal of Mathematical
and Statistical Psychology 58, 209-37.

24



m =38 m =12 m =18 m = 28

r=2>5 r=2=8 r=11 r=14
normal 0 0 0.001 0.001
Edgeworth 0.004 0.008 0.010 0.016
transformation | 0.036 0.038 0.040 0.047
bootstrap 0.039 0.061 0.053 0.054

Table 1: Empirical sizes (nominal a = 0.05) of tests of Hp (1.2) against Hy (3.1) in no-
intercept model (1.1) when h is “divergent”.

m=25 m=2>5 m=2> m=25

r=2_8 r =20 r =40 r =280
normal 0.001 0.001 0.001 0.011
Edgeworth 0.001 0.025 0.028 0.034
transformation | 0.042 0.045 0.043 0.052
bootstrap 0.043 0.040 0.057 0.055

Table 2: Empirical sizes (nominal o = 0.05) of tests of Ho (1.2) against Hy (3.1) in no-
intercept model (1.1) when h is “bounded”.

m =38 m =12 m = 18 m = 28

r=2>5 r=28 r=11 r=14
normal 0.132 0.130 0.126 0.106
Edgeworth 0.062 0.058 0.060 0.057
transformation | 0.105 0.088 0.073 0.060
bootstrap 0.048 0.044 0.045 0.047

Table 3: Empirical sizes (nominal a = 0.05) of tests of Hy (1.2) against H; (3.10) in
no-intercept model (1.1) when h is “divergent”.
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Table 4: Empirical sizes (nominal a = 0.05) of tests of Hy (1.2) against Hi (3.10) in

m =25 m=2>5 m=2>5 m =25

r=2_8 r =20 r =40 r =80
normal 0.096 0.078 0.068 0.061
Edgeworth 0.062 0.051 0.049 0.052
transformation | 0.055 0.025 0.042 0.052
bootstrap 0.049 0.047 0.051 0.050

no-intercept model (1.1) when h is “bounded”.

m =8 m =12 m =18 m = 28

r=>5 r==8 r=11 r=14
normal 0 0 0.001 0.001
Edgeworth 0.003 0.005 0.007 0.010
transformation | 0.076 0.068 0.064 0.061
bootstrap 0.040 0.048 0.047 0.046

Table 5: Empirical sizes (nominal a = 0.05) of tests of Hp (1.2) against H; (3.1) in intercept

model (2.13) when h is “divergent”.

m =25 m =295 m=2>5 m =25

r=28§ r =20 r =40 r =280
normal 0.002 0.005 0.020 0.024
Edgeworth 0.007 0.022 0.027 0.028
transformation | 0.062 0.064 0.053 0.055
bootstrap 0.061 0.039 0.054 0.053

Table 6:

Empirical sizes (nominal o« = 0.05) of tests of Hp (1.2) against H; (3.1) in intercept

model (2.13) when h is “bounded”.
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m =38 m =12 m =18 m = 28

r=2>5 r=28 r=11 r=14
normal 0.281 0.187 0.170 0.148
Edgeworth 0.127 0.123 0.104 0.084
transformation | 0.220 0.168 0.140 0.107
bootstrap 0.080 0.070 0.062 0.062

Table 7: Empirical sizes (nominal a = 0.05) of tests of Ho (1.2) against H; (3.10) in intercept
model (2.13) when h is “divergent”.

m=25 m=2>5 m=2> m=25

r=2_8 r =20 r =40 r =280
normal 0.156 0.082 0.063 0.062
Edgeworth 0.103 0.068 0.047 0.048
transformation | 0.112 0.065 0.052 0.053
bootstrap 0.042 0.058 0.061 0.040

Table 8: Empirical sizes (nominal o = 0.05) of tests of Ho (1.2) against Hy (3.10) in intercept
model (2.13) when h is “bounded”.

3 m=2_8 m =12 m =18 m = 28
r=2>5 r=2_8 r=11 r=14
0.1 0 0 0.005 0.009
normal 0.5 0 0.335 0.673 0.854
0.8 0.257 0.994 1 1
0.1 0.001 0.008 0.013 0.019
Edgeworth 0.5 0.200 0.562 0.764 0.904
0.8 0.957 0.998 1 1
0.1 0.059 0.087 0.129 0.130
transformation 0.5 0.680 0.854 0.924 0.958
0.8 0.986 0.999 1 1
0.1 0.111 0.119 0.155 0.164
bootstrap 0.5 0.725 0.873 0.938 0.966
0.8 0.996 1 1 1

Table 9: Empirical powers of tests of Hp (1.2) against H; (4.5), with nominal size a = 0.05

in no-intercept model (1.1) when h is “divergent”.
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X m=23 m=2 m=2>5 m=25
r==8 r=20 r =40 r =80
0.1 0.010 0.083 0.187 0.363
normal 0.5 0.551 0.988 1 1
0.8 0.999 1 1 1
0.1 0.016 0.095 0.200 0.375
Edgeworth 0.5 0.676 0.992 1 1
0.8 1 1 1 1
0.1 0.122 0.172 0.280 0.420
transformation 0.5 0.858 0.993 1 1
0.8 1 1 1 1
0.1 0.139 0.203 0.296 0.451
bootstrap 0.5 0.888 0.992 1 1
0.8 1 1 1 1

Table 10: Empirical powers of tests of Hg (1.2) against H (4.5), with nominal size o = 0.05

in no-intercept model (1.1) when h is “bounded”.

X m=2_8 m =12 m =18 m = 28
r=>5 r=2_8 r=11 r=14
0.1 0 0 0.001 0.008
normal 0.5 0 0.243 0.627 0.802
0.8 0.176 0.988 1 1
0.1 0.002 0.004 0.006 0.013
Edgeworth 0.5 0.231 0.493 0.699 0.852
0.8 0.924 0.991 1 1
0.1 0.146 0.147 0.172 0.169
transformation 0.5 0.727 0.863 0.950 0.967
0.8 0.991 1 1 1
0.1 0.095 0.121 0.133 0.167
bootstrap 0.5 0.670 0.836 0.924 0.960
0.8 0.988 0.999 1 1

Table 11: Empirical powers of tests of Hy (1.2) against H; (4.5), with nominal size a = 0.05

in intercept model (2.13) when h is “divergent”.
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X m=2>5 m=>5 m=>5 m=2>5
r==8 r=20 r =40 r =80
0.1 0.004 0.061 0.161 0.316
normal 0.5 0.455 0.981 1 1
0.8 0.992 1 1 1
0.1 0.016 0.055 0.155 0.343
Edgeworth 0.5 0.597 0.981 1 1
0.8 0.995 1 1 1
0.1 0.151 0.225 0.313 0.465
transformation 0.5 0.869 0.998 1 1
0.8 1 1 1 1
0.1 0.101 0.175 0.302 0.437
bootstrap 0.5 0.858 0.995 1 1
0.8 0.998 1 1 1

Table 12: Empirical powers of tests of Hy (1.2) against H (4.5), with nominal size o = 0.05
in intercept model (2.13) when h is “bounded”.
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Figure 1: Histograms of q (left picture) and G(g) (right picture) for 1000 replications,
m =28, r =14
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Figure 2: Histograms of ¢ (left picture) and G(§) (right picture) for 1000 replications,
m =28, r=14
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