University of Southampton Electronics and Computer Science Communications, Signal Processing and Control Research Group

Fault Tolerant Stochastic LDPC Decoders in Voltage Scaling Scenarios

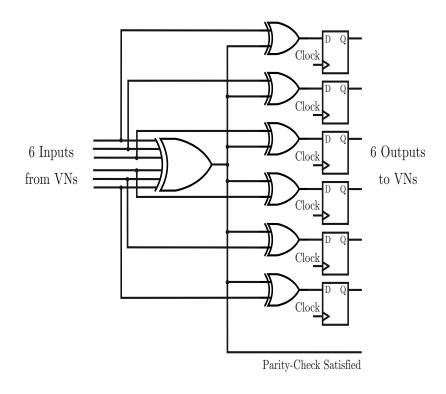
Isaac Perez-Andrade, Xin Zuo, Robert G. Maunder, Bashir M. Al-Hashimi and Lajos Hanzo

Presented by Robert G. Maunder

Email: {ip1g10, xz3g08, rm, bmah, lh}@ecs.soton.ac.uk

Shanghai, China April - 2012

Outline


- Motivation
- ☐ Stochastic LDPC decoder
- Timing error analysis
- □ Error correction capability
- Modified stochastic LDPC decoder
- ☐ Performance comparison
- ☐ Processing energy consumption
- Conclusion

Motivation

- Low Density Parity Check (LDPC) codes can correct transmission errors.
- LDPC codes allow low transmission energies and/or high transmission throughputs.
- But, overall energy consumption may be limited by LDPC decoder energy consumption and overall throughput may be limited by processing throughput.
- Voltage and clock scaling techniques can be employed for reducing processing energy consumption and increasing processing throughput.
- These techniques might induce timing errors, but LDPC codes have an inherent error correction capability.
- In fixed-point LDPC decoders, timing errors affecting the most significant bit are catastrophic.
- In stochastic LDPC decoders, all bits have equal significance. $0.3 \rightarrow \dots 00100100010\dots$

Stochastic LDPC decoder

LDPC codes have two types of nodes: Check Nodes (CNs) and Variable Nodes (VNs).

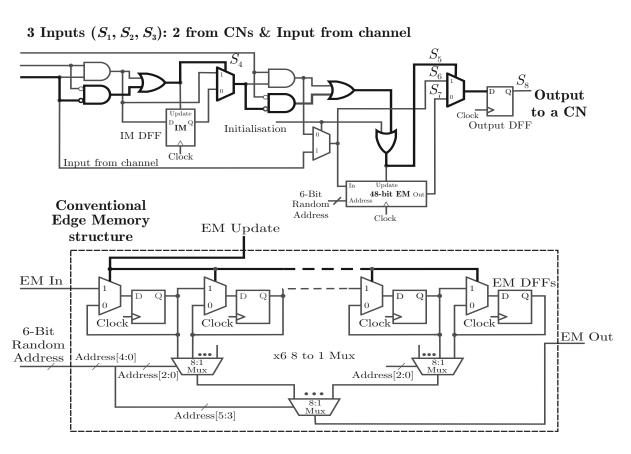


Figure 1: Stochastic CN degree 6.

Figure 2: Stochastic VN degree 3.

Timing error analysis

- ullet Timing errors occur when $t_p > T_{
 m clk}$
 - t_p is the propagation delay of the signal path p
 - $T_{\rm clk}$ is the clock period.
- Cause of timing errors:
 - Excessive propagation delays owing to noise reducing the supply voltage.
- Effect of timing errors:
 - Erroneous values are clocked into memories and/or output flip flops in VNs.

• Propagation delay t_p in different critical paths as a function of the supply voltage.

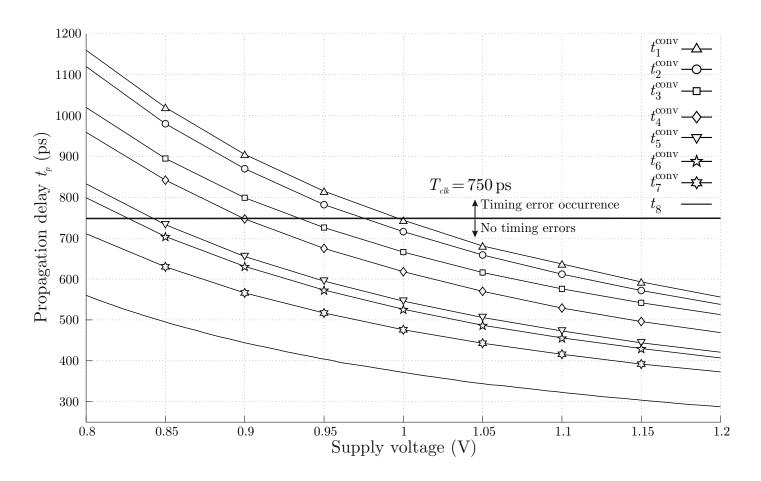


Figure 3: Propagation delays for stochastic LDPC decoders obtained using STMicro-electronics 90 nm technology.

WCNC 2013

Error correction capability

• (1056,528) WiMAX LDPC decoder, BPSK modulation over AWGN channel.

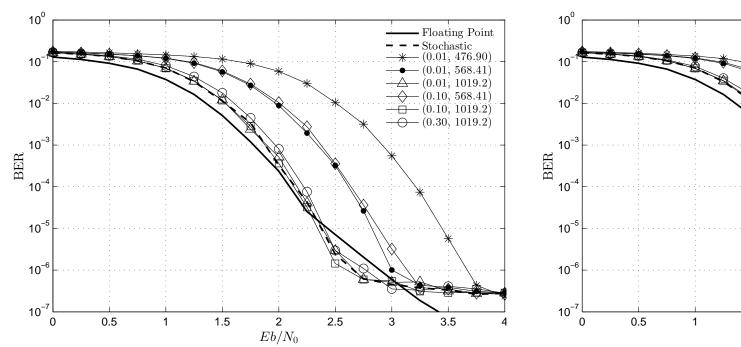


Figure 4: BER with $\mu = 1.0 \text{ V}$

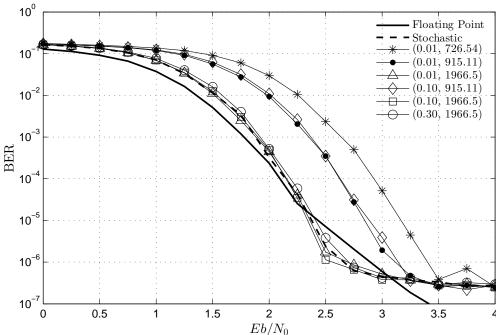


Figure 5: BER with $\mu=0.8~{
m V}$

Modified stochastic LDPC decoder.

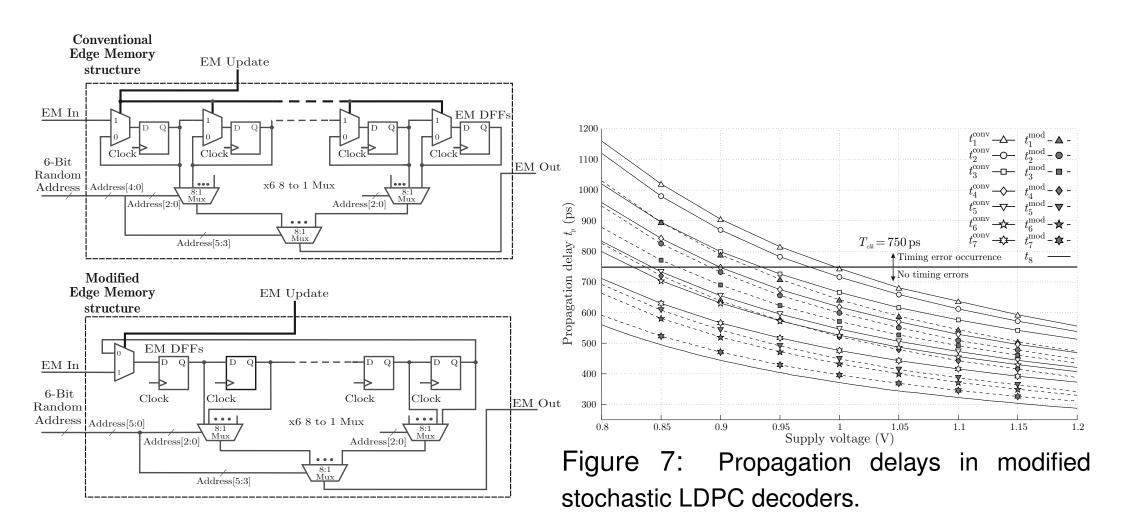


Figure 6: Conventional and Modified EM structures.

Error correction capability of the modified stochastic LDPC decoder.

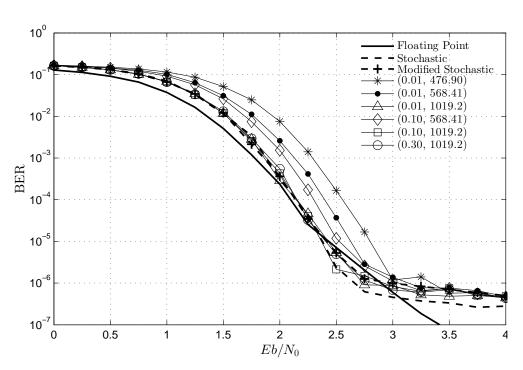


Figure 8: BER with $\mu = 1.0 \text{ V}$

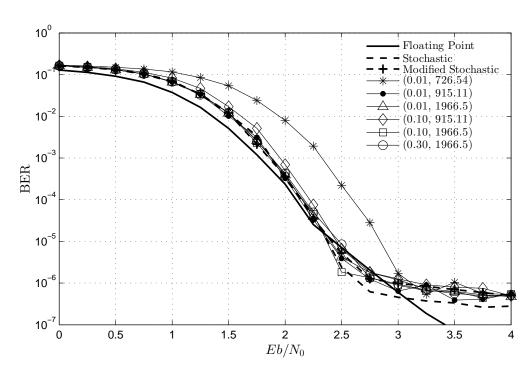


Figure 9: BER with $\mu = 0.8 \text{ V}$

Performance comparison

• Similar error correction capabilities in the modified design at $(V_{DD}, T_{\rm clk})$ =(0.8 V, 915.11 ps) and the conventional decoder at $(V_{DD}, T_{\rm clk})$ =(1.0 V, 1019.2 ps).

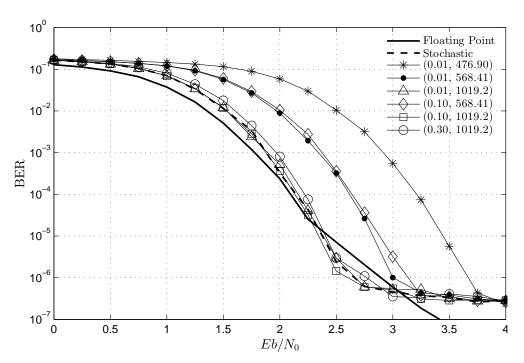


Figure 10: Nominal with $\mu = 1.0 \text{ V}$

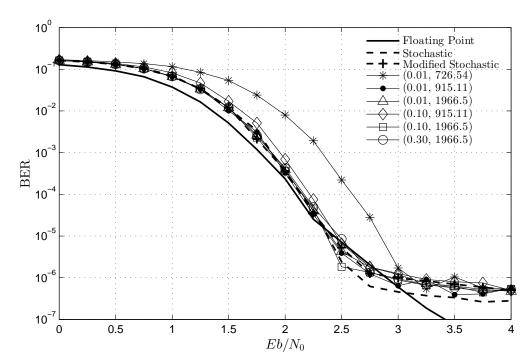


Figure 11: Modified with $\mu=0.8~{
m V}$

Processing Energy Consumption

Table 1: Average energy consumption per decoding iteration with $\mu=1.0~{\rm V}$

	$T_{ m clk}=476.90~ m ps$	$T_{ m clk}=568.41~ m ps$	$T_{ m clk}=1019.20~ m ps$
TOTAL ^{conv}	3.93 nJ	3.69 nJ	3.90 nJ
TOTAL ^{mod}	3.99 nJ	4.03 nJ	4.02 nJ

Table 2: Average energy consumption per decoding iteration with $\mu=0.8$ V.

	$T_{ m clk}=726.54~ m ps$	$T_{ m clk}=915.11~ m ps$	$T_{ m clk}=1966.5~ m ps$
TOTALconv	2.46 nJ	2.29 nJ	$2.45~\mathrm{nJ}$
TOTAL ^{mod}	2.48 nJ	2.47 nJ	$2.50~\mathrm{nJ}$

Conclusions

- Voltage- and clock-scaled modified LDPC decoder presents a similar decoding performance of that of the conventional decoder at nominal operation conditions.
- This is translated into:
 - 20% reduction in supply voltage
 - 10.2% reduction in the clock period
 - 36.7% reduction in processing energy consumption
- Stochastic LDPC decoders have an inherent tolerance to correct not only transmission errors but also timing errors, when employing voltage and clock scaling.

Thank you!

LDPC decoder

• LDPC codes can be represented with factor graphs composed of VNs and CNs.

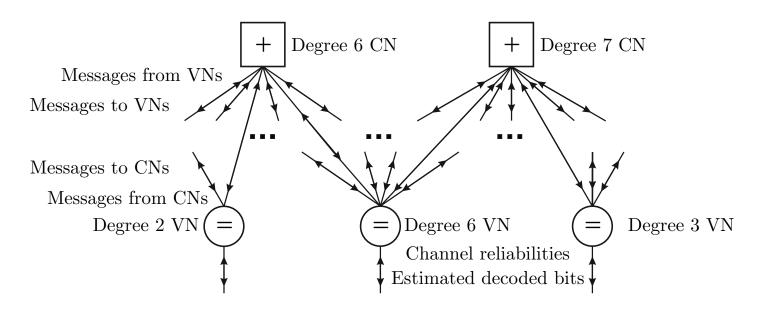


Figure 12: Fraction of a factor graph.

- Type I timing error.
 - Occurs when EM MUX selector signal has a constant value of 0.
 - Previous output value of EM Output signal is erroneously clocked into the output flip flop.
- Type II timing error.
 - Occurs when EM MUX selector signal toggles and arrive late, but EM Output signal arrives on time.
 - Wrong signal is clocked into Output flip flop.
- Type III timing error.
 - Occurs when both EM MUX selector signal and EM Output signal arrive late and EM MUX has been toggled.
 - Previous values of signals are clocked into Output flip flop.

Occurrence of timing errors when voltage scaling is applied.

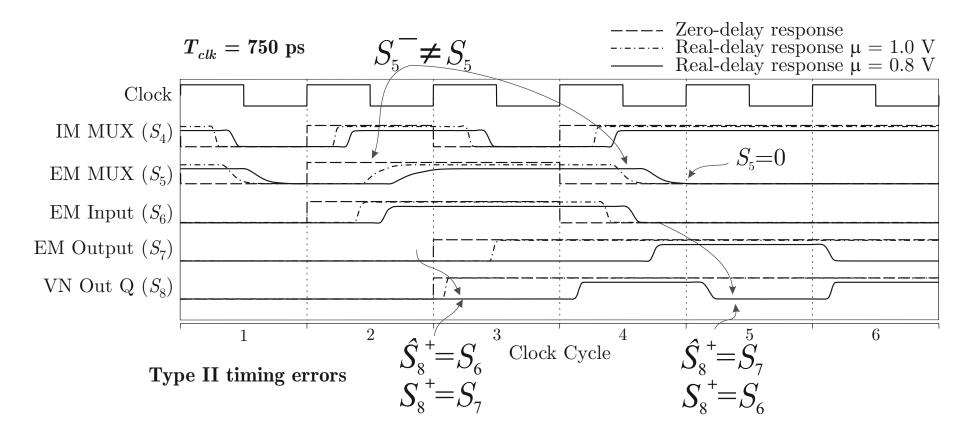


Figure 13: SPICE simulation demonstrating the occurrence of timing errors Type II in the conventional stochastic VN having a degree 3.

 Table 3: Combinations of MUX selector signal values corresponding to each path p that is considered for timing analysis.

Path	Node	Degree	Affected	MUX sele	ector signal
p	Node	d	D-type Flip Flops (DFFs)	Edge Memory (EM)	Internal Memory (IM)
1		6	Output	constant value	any
			and EM	$(0 \rightarrow 0)$	any
2	2	3	Output	constant value	any
	3	and EM	$(0 \to 0)$	arry	
3	2	6	Output	toggle value	toggle at least
	0	and EM	(any)	one value (any)	
4 VN	2	Output	constant value	N/A	
		and EM	$(0 \to 0)$	I V/ / A	
			Output	toggle value	constant values
5	6	and EM	(any)	(at least one	
				is $1 o 1$)	
6		6	Output	toggle value	constant values
			and EM	$(0 \rightarrow 1)$	(both are $0 \to 0$)
7		3	Output	toggle value	toggle value
'			and EM	$(0 \rightarrow 1)$	(any)
8	CN	7	Output	N/A	N/A