On the Complexity of Unary Error Correction Codes for the Near-Capacity Transmission of Symbol Values from an Infinite Set

Wenbo Zhang, Robert G. Maunder, Lajos Hanzo

Presented by

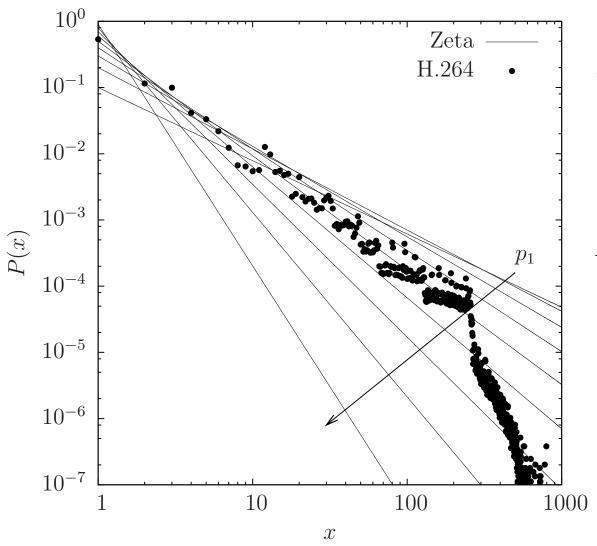
Rob Maunder

Electronics and Computer Science, University of Southampton, SO17 1BJ, UK.

Email:{wz4g11,rm,lh}@ecs.soton.ac.uk
 http://cspc.ecs.soton.ac.uk

Outline

- Motivation and SSCC benchmarker
- ☐ Proposed JSCC scheme using UEC code
- □ Near-capacity analysis
- □ Error ratio performance
- Conclusions and future work
- * Separate Source and Channel Coding (SSCC)
- * Joint Source and Channel Coding (JSCC)
- * Unary Error Correction (UEC) code


Background

	Finite symbol set	Infinite symbol set
	e.g. $\{a,b,c,\ldots,z\}$	e.g. $\mathbb{N}_1=\{1,2,3,\ldots,\infty\}$
Separate Source and	Huffman code	Unary code
Channel Coding (SSCC)	 Shannon-Fano code 	Elias Gamma code
Joint Source and	Variable Length Error	• Unary Error Correc-
Channel Coding (JSCC)	Correction (VLEC) code	tion (UEC) code

When decoding symbol values selected from an infinite set:

- existing SSCC schemes have significant capacity loss;
- existing JSCC schemes have infinite complexity.

Symbol values from an infinite set

Zeta distribution

$$P(x) = \frac{x^{-s}}{\zeta(s)},$$

$$\zeta(s) = \sum_{x \in \mathbb{N}_1} x^{-s},$$

$$s > 1,$$

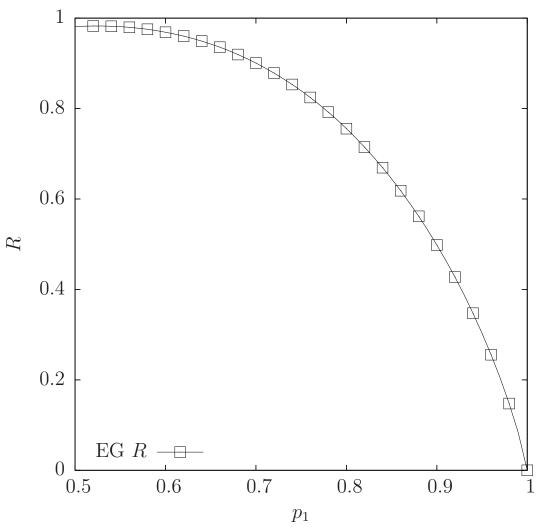
$$p_1 = 1/\zeta(s).$$

Symbol entropy

$$H_X = \sum_{x \in \mathbb{N}_1} P(x) \cdot \log_2(1/P(x)).$$

Here, $p_1 \in \{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9\}$

x_i		\mathbf{y}_i		
	$p_1 = 0.7$	$p_1 = 0.8$	$p_1 = 0.9$	EG
1	0.7000	0.8000	0.9000	1
2	0.1414	0.1158	0.0717	010
3	0.0555	0.0374	0.0163	011
4	0.0286	0.0168	0.0057	00100
5	0.0171	0.0090	0.0025	00101
6	0.0112	0.0054	0.0013	00110
7	0.0079	0.0035	0.0007	00111
8	0.0058	0.0024	0.0004	0001000
9	0.0044	0.0017	0.0003	0001001
10	0.0034	0.0013	0.0002	0001010

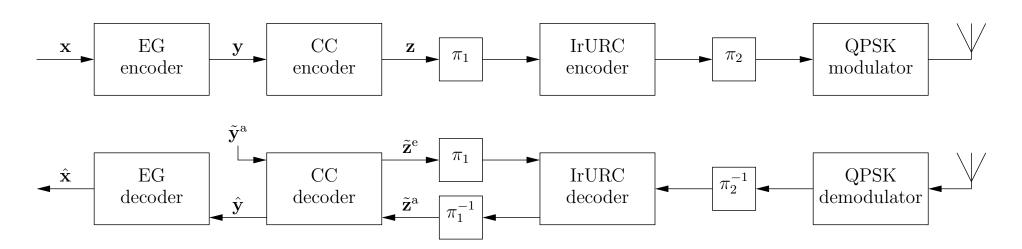

Elias Gamma code

Average codeword length

$$l = \sum_{x \in \mathbb{N}_1} P(x) \left(2 \lfloor \log_2(x) \rfloor + 1 \right).$$

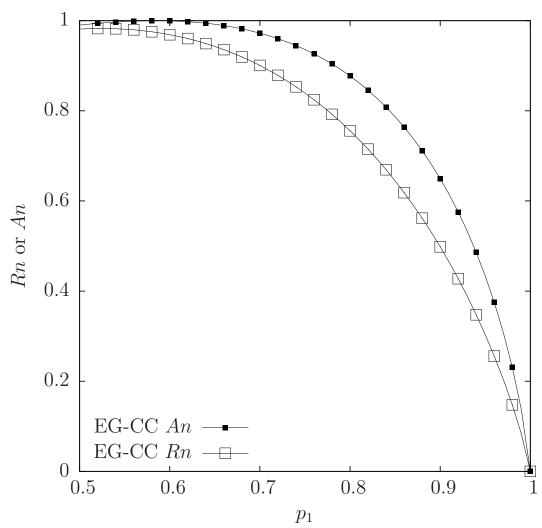
Table 1: The first ten codewords of Elias Gamma (EG) code.

EG coding rate


Coding rate

$$R = \frac{H_X}{l}.$$

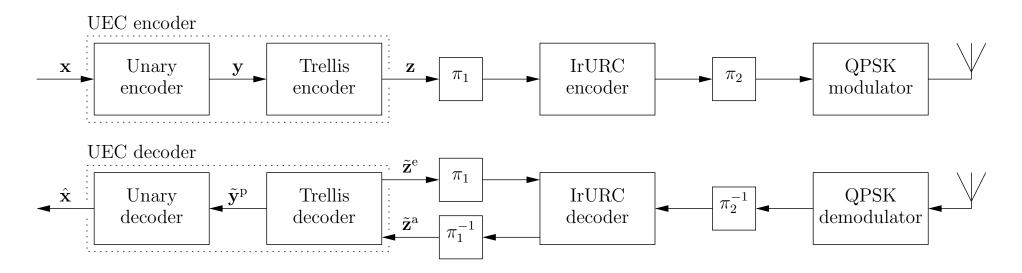
Region above curve represents residual redundancy


Coding rate of EG code for zeta distribution.

EG-CC SSCC benchmarker

- \Rightarrow EG code is identical to k=0 Exponential-Golomb code.
- \Rightarrow Convolutional Code (CC) with n=2 encoded bits, 4 states and recursive generator polynomial.
- \Rightarrow Irregular Unity Rate Code (IrURC), whose components have n=1 encoded bit, 2, 4 or 8 states and recursive generator polynomial.
- ⇒ Quaternary Phase Shift Keying (QPSK) with Gray mapping and puncturing.

Significant EG-CC capacity loss


 ${\it Rn}$ and ${\it An}$ of EG-CC scheme, for zeta distribution.

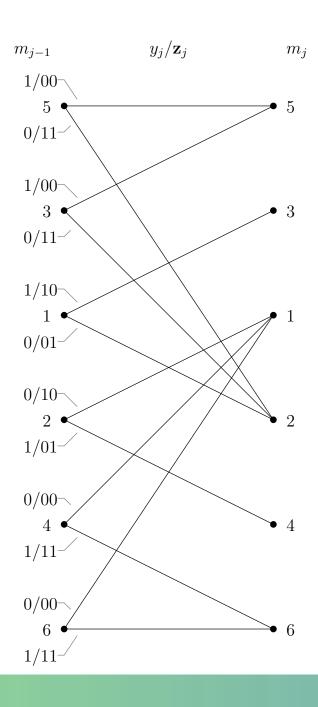
A is area beneath EXtrinsic Information Transfer (EXIT) curve of EG-CC decoder

Region above An curve represents residual redundancy exploited for error correction

Region between curves represents unexploited residual redundancy, giving capacity loss

Proposed JSCC UEC scheme

- ⇒ Replace EG code with a unary code.
- \Rightarrow Replace CC code with novel trellis code, having n=2 encoded bits and r states.


x_i		$P(x_i)$	\mathbf{y}_i			
	$p_1 = 0.7$	$p_1 = 0.8$	$p_1 = 0.9$	Unary	EG	
1	0.7000	0.8000	0.9000	0	1	
2	0.1414	0.1158	0.0717	10	010	
3	0.0555	0.0374	0.0163	110	011	
4	0.0286	0.0168	0.0057	1110	00100	
5	0.0171	0.0090	0.0025	11110	00101	
6	0.0112	0.0054	0.0013	111110	00110	
7	0.0079	0.0035	0.0007	1111110	00111	
8	0.0058	0.0024	0.0004	11111110	0001000	
9	0.0044	0.0017	0.0003	111111110	0001001	
10	0.0034	0.0013	0.0002	1111111110	0001010	

Unary code

Average codeword length

$$l = \sum_{x \in \mathbb{N}_1} P(x)x.$$

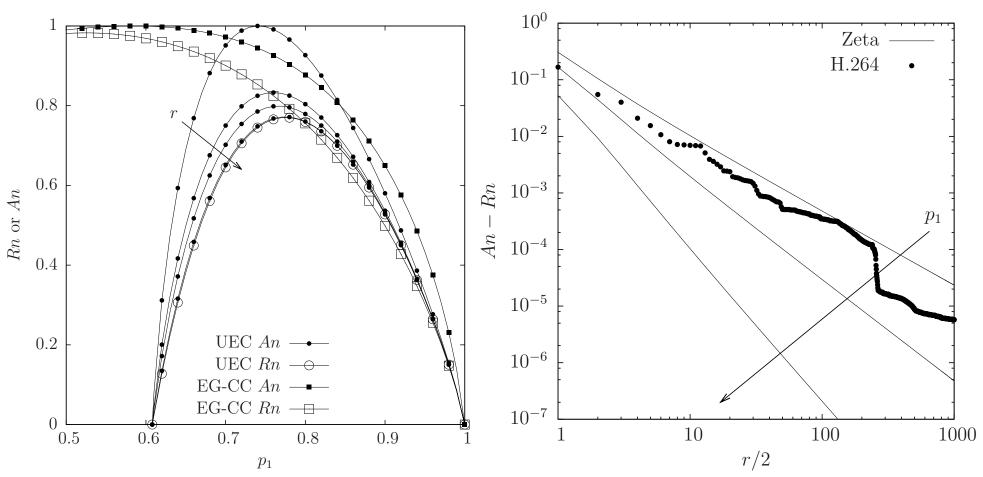
Table 2: The first ten codewords of unary and EG codes.

Trellis code

Here, the trellis has r = 6 states.

Encoding begins in state $m_0 = 1$.

e.g. for symbols $\mathbf{x} = [4, 1, 2, 1, 3, 1, 1, 1, 2, 2]$,

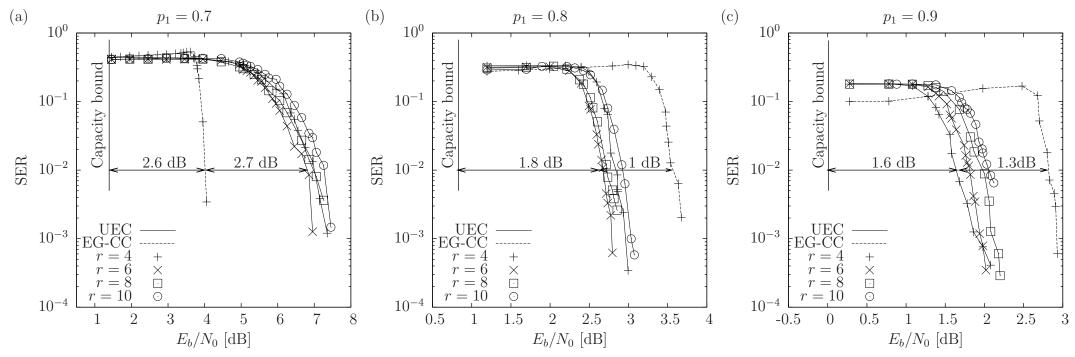

 \Rightarrow y = [111001001100001010].

 \Rightarrow **m** = [1, 3, 5, 5, 2, 1, 3, 2, 1, 3, 5, 2, 1, 2, 1, 3, 2, 4, 1].

 \Rightarrow **z** = [100000111010111010001110011001110100].

Each transition occurs with a different probability, which is exploited during soft-in soft-out decoding.

Vanishing UEC capacity loss



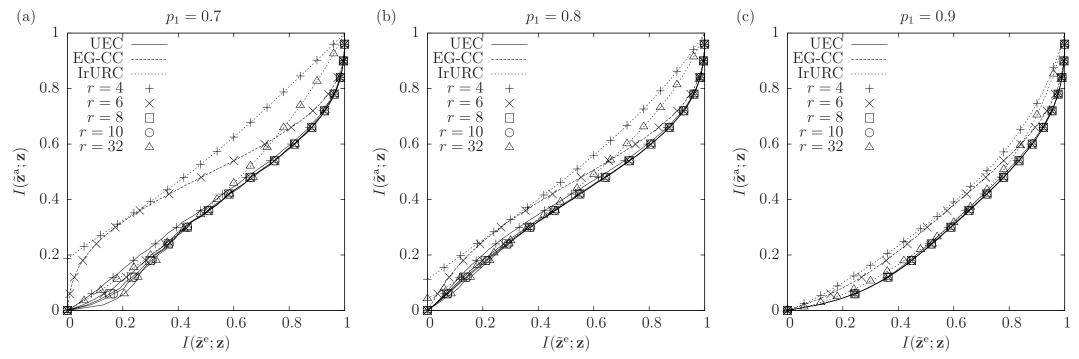
Rn and An of EG-CC scheme and UEC scheme having $r \in \{2,4,6,30\}$ states, for zeta distribution.

Capacity loss in UEC scheme, for zeta distribution having $p_1 \in \{0.7, 0.8, 0.9\}.$

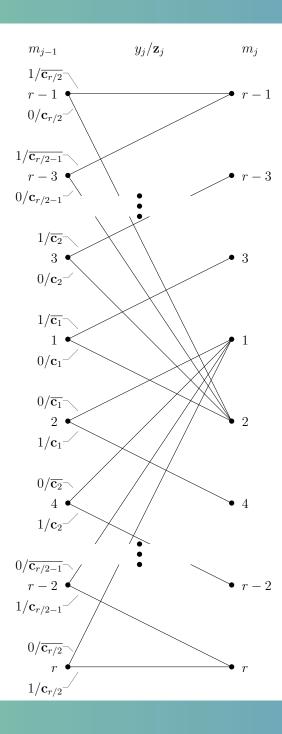
Symbol Error Ratio (SER) performance

SER performance of EG-CC and UEC schemes, for zeta distribution having $p_1 \in \{0.7, 0.8, 0.9\}$. Uncorrelated narrowband Rayleigh fading channel. 10^4 symbols per frame and up to 10^4 Add-Compare-Select (ACS) operations per symbol.

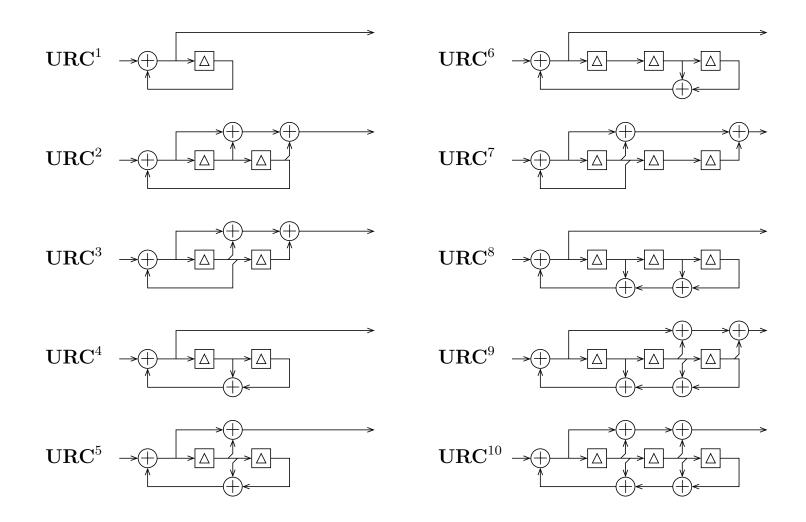
Conclusions and future work


- □ SSCC benchmarker suffers from significant capacity loss.
- ☐ All previous JSCC schemes have infinite complexity when decoding symbols selected from infinite sets.
- ☐ Proposed JSCC UEC scheme has only moderate complexity and its capacity loss asymptotically approaches zero as *r* increases.
- ☐ As much as 1.3 dB gain within 1.6 dB of capacity bound, without any increase in transmission energy, duration, bandwidth or decoding complexity.
- ☐ Future work will develop a universal error correction code, which can be applied for all monotonic symbol value distributions.

Thank you!


If you liked this, you may also like...

R. G. Maunder, W. Zhang, T. Wang and L. Hanzo, A Unary Error Correction Code for the Near-Capacity Joint Source and Channel Coding of Symbol Values from an Infinite Set, *IEEE Transactions on Communications (In Press)*, available:


http://eprints.soton.ac.uk/341736/.

Inverted EXIT curves for the UEC decoder having $r \in \{4,6,8,10,32\}$ states and EG-CC decoder having r = 4 states, where $p_1 \in \{0.7,0.8,0.9\}$. Corresponding EXIT curves are provided for the IrURC schemes at the lowest $E_{\rm b}/N_0$ values that facilitates the creation of an open tunnel with the EXIT curves of the r = 32-state UEC and the r = 4-state EG-CC.

$$P(m,m') = \begin{cases} \frac{1}{2l} \left[1 - \sum_{x=1}^{\left\lceil \frac{m'}{2} \right\rceil} P(x) \right] & \text{if } m' \in \{1,2,\ldots,r-2\}, m = m'+2 \\ \frac{1}{2l} P(x) \Big|_{x=\left\lceil \frac{m'}{2} \right\rceil} & \text{if } m' \in \{1,2,\ldots,r-2\}, m = 1 + \operatorname{odd}(m') \\ \frac{1}{2l} \left[1 - \sum_{x=1}^{\frac{r}{2}-1} P(x) \right] & \text{if } m' \in \{r-1,r\}, m = 1 + \operatorname{odd}(m') \\ \frac{1}{2l} \left[l - \frac{r}{2} - \sum_{x=1}^{\frac{r}{2}-1} P(x) \left(x - \frac{r}{2} \right) \right] & \text{if } m' \in \{r-1,r\}, m = m' \\ 0 & \text{otherwise} \end{cases}$$

	IrURC component code fractions α									
p_1	r=2	r=4				r = 8				
	(2,3)	(7,5)	(7,6)	(4,7)	(6,7)	(8,B)	(D,C)	(8,F)	(B,F)	(E,F)
0.7	0	0	0.44	0	0.44	0	0.10	0	0.02	0
0.7	0.35	0	0	0.18	0.17	0.05	0	0.25	0	0
0.8	0.18	0	0.71	0.10	0.01	0	0	0	0	0
0.0	0.30	0	0.33	0.27	0.10	0	0	0	0	0
0.9	0	0	0.33	0	0	0.09	0.58	0	0	0
	0	0	0.85	0	0	0.02	0.13	0	0	0

Table 3: The fraction of the IrURC input bit sequence that is encoded by each component code.

Decoder	$\mid r \mid$	max*	add	ACS
$n=2$ -bit CC Viterbi decoder $\hat{\mathbf{y}}$	4	2	8	18
$n=2$ -bit CC BCJR decoder $\tilde{\mathbf{z}}^{\mathrm{e}}$	4	10	22	72
	4	7	20	55
$n=2$ -bit Trellis BCJR decoder $ ilde{\mathbf{y}}^{\mathrm{p}}$		11	30.5	85
	8	15	40.5	115.5
	4	10	22	72
$n=2$ -bit Trellis BCJR decoder $\tilde{\mathbf{z}}^{\mathrm{e}}$	6	16	32	112
	8	22	42	152
	2	6	19	49
URC BCJR decoder	4	14	37	107
	8	30	73	223

p_1	Scheme	r	$R_{ m o}$	A_{o}	$R_{ m i}$	η	$E_{\rm b}/N_0~[dB]~{ m for}$ $C=\eta$	$E_{\rm b}/N_0~[dB]$ for $A_{\rm i}=A_{\rm o}$	$E_{ m b}/N_0 \; [dB] \; { m for} \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \;$
	EG-CC	4	0.4503	0.4861	1		1.39	2.03	3.5
		4		0.3751		0.9006		2.70	3.8
0.7		6		0.3510	1.3958			2.09	3.7
0.1	UEC	8	0.3226	0.3412				1.85	3.7
		10		0.3361				1.72	3.6
		32		0.3253				1.46	3.4
	EG-CC	4	0.3779	0.4387	1.0048		0.83	1.96	3.1
	UEC	4		0.4019	1	0.7594		1.24	2.4
0.8		6	0.0505	0.3896				1.01	2.0
		8	0.3797	0.3853				0.92	1.8
		10		0.3833				0.90	1.8
	FO 00	32	0.0400	0.3801	1.0550			0.84	1.8
	EG-CC	4	0.2492	0.3247	1.0578			1.72	2.2
	UEC	4		0.2682	1	0.5272	0.01	0.11	0.9
0.9		6	0.0000	0.2651				0.04	0.9
		8	0.2636	0.2642				0.02 0.01	0.8
		32		0.2636				0.01	0.8
		52		0.2030				0.01	0.7

Outer coding rate $R_{\rm o}$, inner coding rate $R_{\rm i}$ and total throughput η for two schemes with different values of p_1 and r. Three categories of $E_{\rm b}/N_0$ where $C=\eta$ and $A_{\rm i}=A_{\rm o}$ in theory, and where tunnel is open in simulation, respectively.

