
Trajectory Redundancy in Point-to-Point Tracking and
Applications to Obstacle Avoidance

Shou-Han Zhou, Ying Tan, Denny Oetomo, Chris Freeman and Iven Mareels

Abstract— For tasks which require a robot to track some
particular points along a trajectory (instead of the whole
trajectory), there exits redundancy. This redundancy, which
results from the robot tracking more points than that requir ed
for the task, is called trajectory redundancy. This redundancy
results in a increase in the feasibility of the task, enabling
the possibility of the robot to obtain better performance by
satisfying secondary objectives whilst performing the primary
objective of tracking the target points.

Point-to-point learning control (LC) has been shown to be
an effect tool to deal with the trajectory redundancy since it
has the ability to fully explore the increased feasibility resulting
from such redundancy. This is done using the decomposition
technique, which is widely used in solving kinematic redun-
dancy, where the primary and secondary tasks are achieved
independently using the appropriate LC algorithms. In order
to apply the proposed point-to-point algorithms for tasks such
as tracking a target point whilst avoiding an obstacle, the
algorithms are modified and implemented in an online fashion.
Simulation results shows good performance from the proposed
point-to-point LC online algorithms.

I. INTRODUCTION

In the literature, redundancy generally refers to kinematic
redundancy. In this case, the actuation command in the
joint space which is prescribed for the robot to track a
particular trajectory in task space is not unique. Current
frameworks propose methods to decompose the actuation
commands into those which affect motion in the task space
and those which does not affect motion in the task space
[1][2][3]. The actuation commands which affect task space
motion are used to perform the primary task, leaving the rest
of the actuation commands to be used for secondary task
such as minimization of joint variations [4] or joint obstacle
avoidance [5][6].

When a robot is required to perform a task, conventional
controller design involves the proposition of a vector of
input commands which drives the robot to track a prescribed
trajectory. However, for tasks such as point to point tracking,
the robot is only required to track specific target points at
particular times. In such cases, the trajectory which the robot

S. H. Zhou and D. Oetomo are with Mechanical Engineering
Department, the University of Melbourne, Parkville, VIC
3010, Australia. s.zhou@pgrad.unimelb.edu.au and
doetomo@unimelb.edu.au. Y. Tan is with the Electrical and
Electronic Engineering Department, the University of Melbourne, Parkville,
VIC 3010, Australia. yingt@unimelb.edu.au. C. Freeman is
with the School of Electronics and Computer Science, University of
Southampton, Southampton, SO17 1BJ, UK.cf@ecs.soton.ac.uk.
I. Mareels is with the School of Engineering, the Universityof Melbourne,
Parkville, VIC 3010, Australiai.mareels@unimelb.edu.au.

This work is supported by the Australian Research Council (ARC) under
Future Fellow Project: FT0991385

follows is redundant with respect to the task, resulting in the
proposed vector of input commands to be also non-unique.
This type of redundancy is called trajectory redundancy in
this paper and it exists for both kinematically redundant and
non-redundant manipulators.

This paper presents a method of decomposing the vector
of input commands for a task with trajectory redundancy
in a similar manner as that of kinematic redundancy. To
do this, the Operational Space Formulation (OSF) [4] is
first used to develop an elegant relationship describing the
dynamics between the trajectory and its corresponding vector
of input commands. The vector is then decomposed into
a vector of input commands which affects the tracking of
the task-relevant points and a vector which does not affect
the tracking of the target points. It is observed that such
decomposition naturally agrees with the design of Learning
Controllers (LC) [7]. Such controllers learn the tasks over
iterations. However, LC is not suited for certain reactive
tasks such as obstacle avoidance. These tasks require online
controller design over time instead of over iterations. To
address this, a novel method is proposed for online controller
implementation.

This paper is outlined as follows. First, a review of the
OSF and kinematic redundancy resolution is presented in
Section II. Trajectory redundancy is then presented in Section
III. It is shown in the section that the OSF presents a method
to develop a linear relation between the trajectory and the
corresponding vector of input commands. This enables a
clear separation of the relation into its range and null space
components. Exploiting the two components, a point-to-point
LC updating law is designed in Section IV to enable the robot
end-effector to accomplish the primary task of tracking and
a secondary task using the vector of inputs which does not
affect the target point tracking. An on-line implementation of
the proposed control law is applied in Section IV-B to enable
a manipulator to perform the task of obstacle avoidance.

II. BACKGROUND

In this paper, the motion control problem with trajectory
redundancy is presented and resolved in the task space fol-
lowing OSF [4], which not only represents but also decouples
the dynamics of the manipulator in task space.

Denote the set of real numbers asR, and the set of
integers asN. The iteration number is denoted ask which,
by definition, satisfiesk ∈ N≥0. For any vectorx ∈ R

n,
‖x‖ =

√
xTx andxk refers to the vector at thekth iteration.

For any matrixA ∈ R
n×m, σ(A) is the minimum singular

value of A, σ(A) is the maximum singular value ofA,

A† = A(AAT)−1 is the generalized inverse ofA and
Ξ(A) = I − A†A is the null-space projection ofA. For
the identity and matrixI, Ip denotes ap×p identity matrix.
Similarly, 0p denotesp× p matrix of zeros.

The joint space dynamics of a manipulator withn degrees
of freedoms (DOFs) is described by

Γ = M(q)q̈ + b(q, q̇) + g(q), (1)

where the statesq ∈ R
n is the vector representing then

joint coordinates,M(q) ∈ R
n×n is the kinetic energy matrix,

b(q, q̇) : Rn × R
n → R

n is the vectors of the Coriolis and
centrifugal forces and andg(q) : Rn → R

n represents the
vector of gravity.Γ ∈ R

n is the vector of generalized joint
torque.

Under the OSF, the dynamics of the manipulator of
Equation (1) in task space is modeled as

F = Λ(x)ẍ+ µ(x, ẋ) + p(x), (2)

wherex ∈ R
m is the number of DOFs of the operation

task, which is less than or equal to the number of DOFs
of the manipulator end-effector,Λ(x) ∈ R

m×m is the
kinetic energy matrix as observed from the operational space,
µ(x, ẋ) : Rm × R

m → R
m is the vectors of the Coriolis

and centrifugal forces andp(x) : Rm → R
m represents the

vector of gravity, all acting in operational space. Moreover
F ∈ R

m is the vector of generalized forces as observed from
operational space and is the input vector to the manipulator
plant under the framework. It is related to the generalized
torque vector through the relationship

Γ = J(q)TF, (3)

whereJ(q) ∈ R
m×n is the Jacobian matrix relating the end-

effector and joint velocities.
The OSF enables the control of the end-effector through

decoupling the task space dynamics in the task degrees of
freedom and designing the controller depending on the task.
This is done by:

F = Λ̂(x)ν + µ̂(x, ẋ) + p̂(x), (4)

whereν ∈ R
m represents the task space command to the

decoupled system and is designed depending on the given
task, ·̂ represents estimates of the model parameters. Note
that for clarity of this paper,ν is used instead ofF∗ found
in traditional OSF literature [4].

Assuming perfect estimation of the task space parameters,
such that(̂·) = (·), the system is fully decoupled and the end
effector dynamics is equivalent to that of a single unit mass.
The positionx and velocityẋ of the manipulator end-effector
is related to the inputν through the following continuous-
time linear-time-invariant (LTI) system [8]:

ẋ = x

ẍ = ν (5)

whose the exact discrete-time equivalent sampled at fixed
time steph is determined as

[

x(j + 1)
ẋ(j + 1)

]

= A

[

x(j)
ẋ(j)

]

+Bν(j), (6)

whereA =

[

Im×m hIm×m

0 Im×m

]

andB =

[

h2

2
Im×m

hIm×m

]

andj is the sampling instant. Both position and velocity of
the robot end-effector are considered as the output of the
system, that is,z =

[

x ẋ
]T ∈ R

p wherep = 2m has
twice the dimensions of the operational space size.

In a kinematically redundant robot, i.e. whenn > m,
the corresponding set of joint torquesΓ is not unique
for a given end-effector task space commandν. The OSF
provides an elegant method to decompose the joint torques
into those which affect the end-effector task and those which
do not, enabling the control of the end-effector task to be
independent of the internal joint motion. Hence the joint
torques can be represented as

Γ = ΓR + ΓN ,

ΓR = J(q)TF, (7)

ΓN = (I − J(q)J(q))T τ , (8)

whereΓR and ΓN are the range and null space torques,
respectively;τ is the gradient descent of the cost function
to be minimised in order to satisfy the secondary task.

The null space torqueΓN is obtained by projectingτ
onto the null space of the dynamically consistent gener-
alized inverseJ(q) [9] where, for the given dynamical
system in (2),J(q) = (M(q))−1J(q))TΛ(q) andΛ(q) =
(J(q)M(q))−1J(q)T)−1. The cost function to be minimised
would dictate the desired behaviour of the internal joint mo-
tion (secondary task), such as joint energy minimization [10],
joint collision avoidance [6] and joint movement constraints
[2] without conflicting the end-effector (primary) task.

In the next section, the idea of trajectory redundancy is
formally introduced. The decoupling of the range and null
space projections reviewed in this section is extended to the
case of trajectory redundancy. The redundancy occurs on the
task space and therefore instead of the generalised torque,it
is the task space commandν that is now decomposed.

III. T RAJECTORYREDUNDANCY

Trajectory redundancy occurs when the task is to track
particular points rather than a whole trajectory. An extreme
example is the task of arriving at the goal position from an
initial location of end-effector. In this case, the prescribed
trajectory is redundant with respect to the task since there
exist multiple trajectories which pass through the desired
point. Note that the task and the trajectories are specified in
task/operational space. Using the OSF, the task space dynam-
ics is decoupled in the task space degrees of freedom, under
the assumption of perfect parameter estimation, leading to
the system shown in (5), which is subsequently discretized
in (6). From the discretized system, an elegant relationship
between the task space input vector and the corresponding
task space motion vector, i.e. position and velocity vectors,
is determined in Section III-A. A factor is then introduced
to identify the task-relevant points along the trajectory to be
tracked in Section III-B. This factor is used along with the
relationship in Section III-A to decompose the task space
input ν into those which affects the task-relevant points and

those which do not in Section III-C, analogous to the range
and null space decomposition in kinematically redundant
robots, respectively, as presented in Section II.

A. Trajectory Dynamic Behavior

The OSF use the control structure given in Equation
(4) achieve the decoupling of dynamics in task space. In
the event of perfect estimation, the relationship between
the manipulator outputz, representing the manipulator end-
effector position and velocity, and the task space command
ν is governed by Equation (5) whose exact discrete-time
equivalent model (6) can be re-written as:

z(j + 1) = Az(j) +Bν(j), j = 0, . . . ,N − 1, (9)

whereN is the total number of samples taken across the
time interval[0 T]. The motion trajectory is described by a
vector of end-effector outputs−→z T defined as

−→z T =
[

z(0)T z(1)T ... z(N − 1)T
]T ∈ R

p·N .

(10)
The vector of input commands required to drive the manip-
ulator is given by−→ν T defined as

−→ν T =
[

ν(0)T ν(1)T ... ν(N − 1)T
]T ∈ R

m·N

(11)
Given the dynamics between the end-effector motion and the
command inputs in Equation (9), the relation between−→ν T

and−→z T is determined via the relationship
−→z T = G−→ν T , (12)

where the mappingG ∈ R
p·N×m·N is defined as

G =















B 0 · · · · · · 0
AB B 0 · · · 0
A2B AB B · · · 0

...
...

...
. . .

...
AN−2B AN−3B · · · · · · B















. (13)

This relation is used to present trajectory redundancy in the
next section.

B. Trajectory Redundancy

The reference trajectory is conventionally defined as a
vector of desired outputs
−→z d = [zd(0)

T zd(1)
T ... zd(N − 1)T]T ∈ R

p·N

(14)

The controller is required to determine a vector of input
commands which enables the system output to track the
reference trajectory. However, the class of tasks of interest
in this paper are those which require a set of points to be
followed at particular times. More specifically, the controller
objective is to drive the manipulator end-effector to track
L particular points at sample instances given by0 ≤ w1 <

w2 < · · · < wL < N−1. The remaining points of the output
vector are free variables. Considering that there exist multiple
trajectories which pass through the points of interest, the
trajectory which the manipulator follows is redundant with
respective to the task.

To present this redundancy in the given problem formula-
tion, a task matrix is first defined asΦ ∈ R

p·L×p·N

Φl1,l2 =

{

Ip if l2 = wi, l1 = 1, 2, . . . L
0p otherwise

. (15)

This matrix extracts the task-relevant points from the total
vector of output−→z T and presents them in a task-relevant
sub-vector

Φ−→z T =
[

z(0)T , z(w1)
T , · · · , z(wL)

T
]T ∈ R

p·L (16)

Similarly, desired points of the task trajectory to be tracked
is determined as

−→z ref = Φ−→z d = [zd(0)
T zd(w1)

T . . . zd(wL)
T]T

(17)
where−→z ref ∈ R

p·L is the vector of target points. Using the
relation given in Equation (12), the objective of the controller
is determined as finding a vector of input commands−→ν T

such that the error between the system output, i.e. the end-
effector states, and the task-relevant points is minimizedat
the sample instances.

min
−→
ν T

J1(
−→ν T) = min

−→
ν T

∥

∥

−→z ref − Φ−→z T

∥

∥

2

= min
−→
ν T

∥

∥

−→z ref − ΦG−→ν T

∥

∥

2
(18)

whereΦG ∈ R
p·L×m·N is the matrix governing the relation

between−→ν T and the desired target points.
It has been shown that the vector of input commands

which solves the task given by Equation (18) is determined
by the generalized inverse of the task-input relation [11]:

−→ν T = (ΦG)†−→z ref . (19)

Remark 1: For discrete time representations, trajectory
redundancy exists when the total number of samplesN in
the given time satisfiesm · N − max {d, (m− p) · N} ≥
p · L where d is the relative degree of the system [7,
Theorem 2]. This condition suggests that there exists a higher
number of sampled points than the number of target points.
The condition therefore guarantees the existence and non-
uniqueness of the vector−→ν T which drives the robot states
through the target points.

C. Decoupling of the Task Input

Following the idea of range and null space decomposition
in kinematic redundancy, the corresponding vector of input
commands is decomposed into two components: (1) the
vector of input commands which affects the tracking of
the task relevant pointsΦzT , denoted in this paper as the
tracking relevant vector−→ν R ∈ R

m·N , and (2) the vector of
input commands which does not affect tracking of the task
relevant points, denoted in this paper as tracking independent
vector−→ν N ∈ R

m·N :

−→ν T = −→ν R +−→ν N

To achieve point to point tracking, the controller is designed
to minimize the error between the task-relevant points and

the target points at the specified time. Because only−→ν R

affects tracking of the target points, searching the vectorof
inputs−→ν T which minimizes the tracking error is equivalent
to searching for the vector−→ν R within the set of tracking
relevant vectorsΩR ⊆ R

m·N

min
−→
ν T

J1(
−→ν T) = min

−→
ν R∈ΩR

J1(
−→ν T) (20)

J1(
−→ν T) =

∥

∥zref − ΦG−→ν T

∥

∥

2
=

∥

∥

−→z ref − ΦG−→ν R

∥

∥

2

It has been determined that the vector for the tracking of
target points given by (20) is determined by the generalized
inverse of the task-input relation((ΦG)†) [11]

−→ν ∗
R = (ΦG)†−→z ref (21)

where (ΦG)† = (ΦG)(ΦG(ΦG)T)−1 ∈ R
m·N×p·L. The

tracking independent vector−→ν N , which does not affect
tracking of the target points, can be used to satisfy the
secondary tasks, such as obstacle avoidance. In this case, the
controller is required to search within the setΩN ⊆ R

m·N

for the vector of input commands which satisfies the cost
functionJ2 describing the secondary task

min
−→
ν N∈ΩN

J2(
−→ν ∗

R +−→ν N) (22)

whereΩN represents the set of vectors which does not affect
the tracking of the target points. In this cost function, tracking
relevant vector−→ν ∗

R is a constant defined in Equation (21).
The tracking independent vector−→ν N can be determined
as a projection of an arbitrary vector of input commands−→ν O ∈ R

m·N onto the null space of(ΦG)† using the
matrixΞ(ΦG) = (Im·N −(ΦG)†ΦG) ∈ R

m·N×m·N of rank
m ·N −p ·L. The cost function of Equation (22) is therefore
equivalent to solving the unconstrained optimization problem
of

min
−→
ν O

J2(
−→ν ∗

R + Ξ(ΦG)−→ν O). (23)

A method of searching for the input vector from the cost
function in Equation (23) is to use the gradient descent
algorithm. The update rule is determined as:

−→ν k+1

O = −→ν k
O − ψ

2
∇−→

ν O
J2(

−→ν ∗
R + Ξ(ΦG)−→ν k

O) (24)

where ψ is the update rate of the algorithm. Addition-
ally, for objectives of the formJ2(

−→ν ∗
R + Ξ(ΦG)−→ν k

O) =
∥

∥R(−→ν ∗
R + Ξ(ΦG)−→ν k

O) + c
∥

∥

2
, whereR andc are the system

parameters, it is possible to guarantee the convergence of the
sequence−→ν k

O by choosing the appropriate update rate. For
gradient descent function (24), the update gainψ is required
to satisfy [7, Theorem 5].

0 < ψ < min(
2

σ((R)(R)T)
) (25)

The sequence of input trajectories−→ν k
T is therefore deter-

mined as

−→ν k
T = −→ν ∗

R + Ξ(ΦG)−→ν k
O (26)

and is used in the next section to design an online controller
applicable to a manipulator.

IV. POINT-TO-POINT LC CONTROLLER

IMPLEMENTATION FOR OBSTACLE AVOIDANCE

A. On-line point-to-point LC controller design

Point-to-point LC updates iteratively using (26) and en-
sures that the optimal input with respect toJ2 can be
found across iterations. However, under some situations, it
is difficult to update the vector of inputs iteratively. One
example is the task of obstacle avoidance which requires the
robot to avoid a certain obstacle for all time instances. In
this case, the robot cannot learn to “avoid” the obstacle from
“experience” and it is preferable that the proposed point-to-
point LC can be implemented on-line.

This paper proposes a novel method which implements
the point-to-point LC online in a feed-forward fashion. Two
facts are noted in the point-to-point LC algorithm (26):

Fact 1 The updating law (26) generates a sequence of
output trajectories:

−→z k
ff = G−→ν k

T . (27)

This sequence is convergent and can be computed
off-line for any k ∈ N≥0.

Fact 2 For any fixed iterationk, if a feedback controller
along discrete-time domain is designed to track this
sequence−→z k

ff , it is possible to obtain a sequence,

which is an approximation of
{−→z k

ff

}

k∈N≥0

pro-

vided that the feedback controller settles down
quickly enough.

Therefore, it is possible to combine the feedback controller
with point-to-point LC to generate an online algorithm. The
following notations are introduced

ζk(j) := zkff (j)− zkT (j), (28)

νk
fb(j) := −Kζ

k(j), j = 0, . . . ,N − 1, (29)

where K is a feedback gain matrix with an appropriate
dimension. Herezk(j) is the j + 1th component of−→z k.
Moreover, we have

νk(j) := νk
fb(j) + νk

T (j), j = 0, . . . ,N − 1, (30)

whereνk
fb(j) is obtained from (29), andνk

T (j) is obtained
from (26). In order to implement this updating law online,
the following control law is used:

ν(j) = νk(j), k = j, j = 0, . . . ,N − 1 (31)

As observed in Figure 2, the controller input at samplej
is chosen to be the samplej from the input sequence of
iterationj.

Remark 2: The updating law (26) is used in (30) as a
feed-forward and serves as “model-based” prediction (or path
planning). The feedback updating law in (29) serves as online
“correction”. To obtain good convergence performance using
the updating law, the online “correction” term is required to
be sufficiently fast such that the dynamics along the discrete-
time domain converges quickly to the desired “set-point”
computed from feed-forward updating law. This usually
requires a high gain feedback controller.

−0.1 0 0.1
−0.1

0

0.1

0.2

0.3

(a) µO = −0.05m

−0.1 0 0.1
−0.1

0

0.1

0.2

0.3

(b) µO = 0.05m

−0.1 0 0.1
−0.1

0

0.1

0.2

0.3

(c) µO = 0.11m

−0.1 0 0.1
−0.1

0

0.1

0.2

0.3

(d) µO = 0.19m

−0.1 0 0.1
−0.1

0

0.1

0.2

0.3

(e) µO = 0.21m

−0.1 0 0.1
−0.1

0

0.1

0.2

0.3

(f) µO = 0.23m

Fig. 1: Trajectories of the end-effector given difference circle obstacles

0 0.1 0.2 0.3 0.4 ...
1

2

3

4

..
.

Sample

It
e
ra

ti
o

n

Feedforward Control Input

Fig. 2: The inputs used for the online controller

Remark 3: Due to space limitation, the convergence anal-
ysis is omitted. Obviously, the convergence proof will use
singular perturbation techniques [12] as there is a time-
scale separation in discrete-time domain (feedback should
be much faster than the feed-forward controller). The control
input is computed on-line using (31). Therefore, only finite
iterations (N iterations) are used. Due to existence of the
feedback (an approximation along iteration domain) as well
as finite iteration updating, the proposed updating law (30)
ensures practical convergence (the output will converge toa
neighborhood of the optimal value).

Robot Simulation Parameters Value Units
Link 1

Length 1.93 m
Length to Center of Mass 0.165 m

Inertia 0.0141 kgm2/rad2

Mass 0.31 kg
Link 2

Length 1.52 m
Length to Center of Mass 0.19 m

Inertia 0.0188 kgm2/rad2

Mass 0.34 kg

TABLE I: Table of Robot Parameters

B. Simulation Results

In this paper, the controller defined in Equation (31) is
applied to a simulation of a two-link robot. The parameters
of the robot in the simulation are given in Table I.

The task of interest is planar reaching for a target point
while avoiding an obstacle. Considering that the task is
planar reaching with two DOFs, the joint configuration size
is the same as that of the operational coordinatesm = n.
Therefore, there does not exist any kinematic redundancy
in the manipulator, only trajectory redundancy caused by
the task being reaching for a target point. This enables a
transparent observation of the controller’s use of trajectory
redundancy. It is worth to note that this scheme is extend-
able to redundant manipulators. In this case, the trajectory
redundancy decoupling is considered along with kinematic
redundancy decoupling performed using the dynamically

consistent inverse [4].
The control design for online trajectory redundancy reso-

lution described in Section IV-A is applied to the problem of
obstacle avoidance. The task to be carried out is for the robot
to perform planar reaching for a target point25cm away in
600ms whilst avoiding an obstacle. The obstacle chosen is
a circle with a radius of5cm located at a particular point
along the straight line trajectory.

The cost function describing the obstacleJ2 is defined as

J2(
−→ν O) =

N
∑

j=1

1

r(j)σ
√
2π

exp

(−0.5(r(j)− µ)

σ

)10

(32)

wherer(j) is the desired distance of the robot end-effector
from the obstacle center at samplej and is defined as

∥

∥

−→ν k
T

∥

∥

where−→ν k
T is defined in (26),σ = 2cm is the radius of the

circle obstacle andµ is the center of the obstacle. Under
this cost function, the obstacle is represented as a bounded
artificial potential field function [5]. Using gradient descent
of Equation (24) and the control law of Equation (31), the
control input at any time instantν(j) is able to be defined.
The gains of the controller are chosen asK = 50 andψ = 5.

The results of the simulation using the controller are
observed in Figure 1. The target is a transparent circle while
the obstacle is the filled circle. From the results, it is observed
that if the target is not in the path between the start and target
points, the end-effector follows the straight line path (Figure
1a). If the obstacle is in between the start and target points
(Figure 1b to Figure 1e), the end-effector moves around the
obstacle to the target. If the obstacle is at the target point,
the end-effector moves along the straight line and stops
before the obstacle (Figure 1f), which shows the practical
convergence as discussed in Remark 3.

V. CONCLUSIONS

When given a task, traditional controllers drive the robot
end-effector to follow a prescribed trajectory. However, for
tasks such as point-to-point tracking, multiple trajectories
are available to complete the task. This is called trajectory
redundancy. This paper presents a method of analyzing
trajectory redundancy in a similar manner to the resolution
of kinematic redundancy in the literature. Through the use
of OSF and discretizing the resulting dynamics, an elegant
relationship is developed between the trajectory sequence
of the end-effector and the corresponding task command
sequence to the robot. This relationship forms a basis of
decoupling the sequence of task commands into those which
affects tracking and those which do not affect tracking.

Previously, this theory has been incorporated in the frame-
work of point-to-point learning control. Such controller en-
ables the determination of a vector of inputs which drive the
manipulator to perform the task over iterations. However,
point-to-point LC is not suitable for some applications such
as obstacle avoidance. Online implementation of the algo-
rithm is proposed, enabling the robot to perform such tasks.
Simulation results are obtained and are shown to be able to
incorporate different obstacles.

Future work includes analysis of the update gainsK, ψ
and their relationships rigorously in order to ensure conver-
gence of the proposed method.

REFERENCES

[1] J. Hollerbach, “Redundancy resolution of manipulatorsthrough torque
optimization,”IEEE Journal on Robotics and Automation, vol. 3, no. 4,
pp. 308–316, Aug. 1987.

[2] P. Hsu, J. Hauser, and S. Sastry, “Dynamic control of redundant
manipulators,”Proceedings. 1988 IEEE International Conference on
Robotics and Automation, no. 6, pp. 183–187, 1988.

[3] B. Siciliano, “Kinematic control of redundant robot manipulators: A
tutorial,” Journal of Intelligent and Robotic Systems, vol. 3, no. 3, pp.
201–212, 1990.

[4] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,”IEEE Journal on
Robotics and Automation, vol. 3, no. 1, pp. 43–53, Feb. 1987.

[5] ——, “Real-Time Obstacle Avoidance for Manipulators andMobile
Robots,”The International Journal of Robotics Research, vol. 5, no. 1,
pp. 90–98, Mar. 1986.

[6] A. a. Maciejewski and C. a. Klein, “Obstacle Avoidance for Kinemati-
cally Redundant Manipulators in Dynamically Varying Environments,”
The International Journal of Robotics Research, vol. 4, no. 3, pp. 109–
117, Sep. 1985.

[7] C. T. Freeman and Y. Tan, “Iterative Learning Control With Mixed
Constraints for Point-to-Point Tracking,”IEEE Transactions on Con-
trol Systems Technology, pp. 1–13, 2012.

[8] O. Egeland, “Task-space tracking with redundant manipulators,” IEEE
Journal on Robotics and Automation, vol. 3, no. 5, pp. 471–475, Oct.
1987.

[9] O. Khatib, “Inertial Properties in Robotic Manipulation: An Object-
Level Framework,”The International Journal of Robotics Research,
vol. 14, no. 1, pp. 19–36, Feb. 1995.

[10] S.-w. Kim, K.-b. Park, and J.-j. Lee, “Redundancy resolution of robot
manipulators using optimal kinematic control,”Proceedings of the
1994 IEEE International Conference on Robotics and Automation, pp.
683–688, 1994.

[11] J. Peters, M. Mistry, and F. Udwadia, “A unifying methodology for the
control of robotic systems,” inIntelligent Robots and Systems, 2005.
(IROS 2005). 2005 IEEE/RSJ International Conference on, no. 1,
2005, pp. 1824 – 1831.

[12] H. K. Khalil, Nonlinear systems, 3rd ed. Upper Saddle River, N.J:
Prentice Hall, 2002.

