SpinLink: An interconnection system for the
SpiNNaker biologically inspired multi-computer

Kier Dugan, Jeff Reeve, and Andrew Brown
School of Electronics and Computer Science, University of Southampton, UK
{kjd1v07, jsr, adb} @ecs.soton.ac.uk

Abstract—SpiNNaker is a large-scale biologically-inspired
multi-computer designed to model very heavily distributed prob-
lems, with the flagship application being the simulation of
large neural networks. The project goal is to have one million
processors included in a single machine, which consequently
span many thousands of circuit boards. A computer of this
scale imposes large communication requirements between these
boards, and requires an extensible method of connecting to
external equipment such as sensors, actuators and visualisation
systems. This paper describes two systems that can address each
of these problems.

Firstly, SpinLink is a proposed method of connecting the
SpiNNaker boards by using time-division multiplexing (TDM)
to allow eight SpiNNaker links to run at maximum bandwidth
between two boards. SpinLink will be deployed on Spartan-6
FPGAs and uses a locally generated clock that can be paused
while the asynchronous links from SpiNNaker are sending data,
thus ensuring a fast and glitch-free response. Secondly, SpiNNter-
ceptor is a separate system, currently in the early stages of design,
that will build upon SpinLink to address the important external
I/O issues faced by SpiNNaker. Specifically, spare resources in
the FPGAs will be used to implement the debugging and I/O
interfacing features of SpiNNterceptor.

I. INTRODUCTION TO THE SPINNAKER MACHINE

Falling under the auspices of the overarching Biologically
Inspired Massively Parallel Architectures (BIMPA) project,
SpiNNaker is an experimental chip design that can achieve
computing on very large scales [!]. An application specific
asynchronous network fabric allows up to 2'6 nodes to com-
municate with small source-addressed multicast packets [2]. A
node contains, at present, 16 ARM processor cores that can be
used for the application and additional processor reserved for
monitoring and control of the node. A completely populated
SpiNNaker system may hence contain up to 220 (1,048,576)
compute-cores available for a single application.

Communication has been a prime emphasis of the project
because it is the most obvious potential bottleneck [3]. The
solution is an attempt to mimic the connectivity of a mam-
malian brain on a much smaller scale. Brains are comprised
of very large population of densely interconnected neurons.
Each neuron is often considered a simple element and that
complexity is derived from the interconnection of many neu-
rons. Similar logic was applied in the design of SpiNNaker.
Rather than grouping together complex processors with a large
power budget, much simpler processors are used in a much
vaster quantity. This technique allows SpiNNaker to achieve
around 200TIPS (trillion instructions per second) across the
whole computer while also minimising the power consumed.

Fig. 1. A single SpiNNaker node showing both the compass direction labels
and the hexagonal conceptual representation.

2Gbps Inter-board
connection

P

comprised of 8x

N
o /
\ 250Mbps Inter-chip
~ connections

. 250Mbps
~ Inter-chip
connection

Fig. 2. A multi-node SpiNNaker machine (this case specifically being the
thousand processor machine, i.e. the 103) comprised of many nodes tiled
together to form a larger tile.

However, connecting this many processors into a single ma-
chine requires a sensible circuit board demarcation. A singular
node has six 250Mbps ports that are used for communication
with its direct neighbours. Traditionally these connections have
been given compass references based on position around the
chip but it can also be represented as a hexagon (Figure 1).

Following the hexagonal representation further allows the
machine to be constructed by simply tiling many nodes
together. Figure 2 shows how a SpiNNaker machine containing
816 total processors (768 of which are available for general
purpose computation) can be assembled using this technique.

In the figure, nodes have been grouped into several rings

TABLE I
SPINNAKER MILESTONE MACHINE DESIGNATIONS AND SIZES (T DENOTES
A SPECULATIVE MILESTONE THAT HAS YET TO BE DETERMINED).

Designation | Number of Processors | Number of Nodes

101 17 1

102 68 4
103 816 48
104f 9762 576
1051 97620 5760
1067 976200 57600

to help demonstrate how the machine must be constructed.
A single node can be used in isolation by connecting the
diametrically opposed edges together (i.e. N—S, NE—SW,
and E—W) but rings cannot be formed around a single tile
because the number of edges increases uniformly in each
direction and hence cannot be connected correctly. By instead
using three tiled nodes as the base element (the darkest nodes
in Figure 2) the number of edges still increases uniformly in
each direction but the mapping between edges is preserved.

Each group of SpiNNaker nodes arranged in this manner
can therefore also be treated as a hexagonal tile and the
technique continues to apply. Obviously as the number of
nodes in a group increases so does the bandwidth required
at the boundary. For this reason 48 nodes will constitute a
board because there are eight 250Mbps node edges that can
be multiplexed through a high-bandwidth connection. This is
an engineering decision influenced by available hardware and
a convenient address space for the multiplexing.

A. Objectives

The final SpiNNaker machine will include over a million
processors but this cannot be achieved in a single step. Instead,
several milestone machines will be constructed throughout
the project each stage building on the previous by an order
of magnitude. Each milestone is designated by rounding the
number of processors it contains to the nearest power-of-ten
as shown in Table I. The 102 machine is the current testing
platform being used at the member universities while the 103
design is being completed.

II. BOARD-LEVEL INTERCONNECTION

Tiling many SpiNNaker boards together to build larger
machines is a simple and scalable method of construction but
it does present a communication issue. Inter-node links use
a self-timed asynchronous bundled protocol that operates at
250Mbps. Each symbol is two-phase 2-of-7 encoded which
means that bit transitions represent a logic ‘1’ and that two
transitions must occur to represent a symbol. There are 21
valid transitions in 2-of-7 encoding but only 17 are used in
SpiNNaker; 16 convey data (i.e. 4 bits per symbol) and 1 is
used as the end of packet (EOP) symbol [4].

Figure 3 shows the physical layer connections used by
SpiNNaker. Each symbol presented on a data connection

‘ SpiNNaker| | SpiNNaker
Lout[6:0] » Lin[6:0]
LoutAck | LinAck
Lin[6:0] Lout[6:0]
LinAck » LoutAck

Fig. 3. Electrical connections used by the SpiNNaker inter-node connections.

(Lin/Lout) must be acknowledged by toggling the acknowl-
edgement line (LinAck/LoutAck) before another symbol
can be produced. This behaviour is not dependent on the clocks
in either node which removes the need for clock recovery.
However, it requires the two nodes to be located physically
close together on the circuit board, otherwise the propagation
delay of the tracks introduces enough delay to prevent the
maximum bandwidth from ever being achieved.

Each bidirectional link comprises 16 physical wires mean-
ing that each node has 96 pins purely for the inter-node
communication ports. Furthermore each edge of 48-node board
of Figure 2 contains 8 of these links which leads to a total
requirement of 128 pins for board-to-board communication.
This is impractical for two reasons: (a) the length of the
wires may incur too great a propagation delay (especially
if the connection is between two boards located in different
cabinets); and (b) the cost required for specialised connectors
and large cables would be too great.

A practical solution to this problem is to multiplex each set
of inter-node links at each edge within a much faster serial link
between the boards. Three Xilinx Spartan-6 LX45T FPGAs
will be fitted to each 103 board for this purpose. The LXT se-
ries include a number of high-speed serial transceivers (called
GTP modules) that provide up to 3.125Gbps of bandwidth.
Figure 4 shows the conceptual layout of the current 103 board
design.

The LX45T part was primarily chosen because it has a
suitable number of IO pins to service two edges of the 48-node
board hexagon and it has GTP transceivers capable of provid-
ing the required bandwidth. A serendipitous consequence of
this design decision is that the part has four GTP modules
where only two are required; hence the spare connections
can be used for high-speed IO to devices that can provide
simulations with real-time and real-world data, thus allowing
SpiNNaker to be used for robotics applications.

Network Links High-speed I/O Links
\
\
k2 A0 IJ_—|<—|————\——r ————————— —F———————— - \‘l—»':‘_l IO_AO ><m
5 AIL = v Y v | 10_A1 F
%4 B0 tk_: Spartan-6 Spartan-6 Spartan-6 I_b:Ll 16_BO (é'
g Bl il*l FPGA (A) FPGA (B) FPGA (C) !*ﬂ I0_B1 T
3 O e B B — > 10.C0 §
4 4 73
C1 |J_—|<_| L 3K j_*_.]_ J{._*._j_._.J ~—10cCc ”
v v y y y y
250Mbps
SpiNNaker
Links
48-node
SpiNNaker
Array
Fig. 4. Proposed layout of the 103 SpiNNaker milestone machine.
A. Physical Layer
Bytes 0 1 2 3 4
The Spartan-6 FPGA includes a silicon IP module that 0
provides a bidirectional high-speed serial physical layer. A Header Clz)I:tYol Logical Link 0
4

single module can provide a channel with a bandwidth of
up to 3.125Gbps which is sufficient to allow eight 250Mbps
SpiNNaker links to be time-division multiplexed (TDM).
There is also enough headroom to support some simple control
mechanisms as well as 8b10b encoding to ensure accurate and
reliable clock recovery.

SpinLink uses a 20-byte frame (shown in Figure 5) which
contains two bytes worth of data for each time-multiplexed
link and has a timeslot of 64ns. Hence 16 bits of data are
transmitted per link every 64ns leading to a bandwidth allo-
cation of 250Mbps per logical link. A ninth logical link exists
that can be used for out-of-band communication between the
FPGAs but it is only a single byte wide and hence only has a
bandwidth allocation of 125Mbps.

Each bit in the flow control byte simply maps onto the

Logical Link 1 Logical Link 2

8

Logical Link 3 Logical Link 4
12

Logical Link 5 Logical Link 6
16

Logical Link 7 | Control | CRC

20

Fig. 5. Structure of the frame used for TDM transmission.

equivalent logical link in the remote transmitter (i.e. bit O
corresponds to logical link 0) and acts as an enable signal.
Normally every bit in this byte is set thus enabling every

link in the remote transmitter; however, if a local receive
buffer approaches its upper limit (set by a register) then it
can request that the local transmitter clear the appropriate bit
in the flow control byte, which will disable the corresponding
remote logical link.

Finally, the header byte is used to differentiate the main
data frame as shown in Figure 5 from control frames that
are used to re-synchronise the FPGAs at each end of the
connection. The Spartan-6 has over a hundred large block
RAMs which can be used as ring buffers. Each frame is
pushed into this ring buffer before it is transmitted. In the
event of a de-synchronisation, each FPGA transmits the last
known remote read-pointer and transmission continues from
there. This process does incur some delay but it prevents any
data from being lost.

B. Packet Checking

Symbols are pushed into an inspection buffer as they are
received from SpiNNaker which allows the full packet to
be built up in the FPGA before it is passed onto the high-
speed serial subsystem described in the previous section. The
primary use case for this design is that the parity can be
checked in the inspection buffer and the packet can be dropped
here if the check fails. Discarding packets that fail the parity
check is not detrimental to SpiNNaker because this behaviour
occurs internally [5].

C. Synchronisation with SpiNNaker

The interface to SpiNNaker presents an interesting set of
problems because the protocol is asynchronous and self-timed
thus containing no clock or time information. Each symbol can
therefore be considered an event that triggers the decoding
process. The event is generated by a completion detection
circuit that asserts a signal when a valid symbol has been
received. This interface is further complicated by the GTP
modules requiring a consistent, stable and glitch free clock
signal.

Initially this problem was addressed with a dual-clock FIFO
buffer where the write port clock was driven by the output of
the completion detection circuit and the read port clock came
from the GTP module clock source. This did not scale to the
required number of SpiNNaker links (sixteen) for two reasons:
(a) the FIFO buffers require several clock cycles after reset
signal has been asserted to successfully initialise, and (b) the
clock inputs must be driven by global clock buffers, and these
are a finite resource inside the FPGA.

A modified version of the circuit proposed by Moore et
al. [6] has been used to generate clock signals that may
be paused by the asynchronous receive logic, as shown in
Figure 6. The original circuit was designed to be used with a
four-phase system using return-to-zero (RTZ) encoding. It has
been extended to function with 2-phase signals [7], however
this extension is not suitable here as it would introduce another
layer of decoding. By adding a specific acknowledgement
generation flip-flop and a non-return-to-zero (NRZ) to RTZ
decoder (shown inside the dashed boxes of Figure 6), it is

—t= 16 06— 16 O6 I6 06—
5 05 5 05 5 O5
14 14 14
13 3 e ' I3
12 12 12
11 11 n
LUTO LUT1 LUTN

Fig. 8. Delay line implementation at block diagram level.

possible to generate the acknowledgement signal within a
single clock cycle. This is essential here because the ac-
knowledgement must be generated no more than 8ns after a
symbol has been received to ensure that the link can operate at
maximum bandwidth. A similar circuit, shown in Figure 7, has
been used to read symbols from an output FIFO and transmit
them into SpiNNaker.

These circuits do not remove the requirement for a large
number of global clock buffers but they do provide a way to
circumvent it. Both figures show a single mutual exclusion
element (MUTEX) to arbitrate between the clock feedback
and the asynchronous request signals. Each MUTEX may be
swapped for an N-input concurrent arbiter which allows a
single clock generator to be shared by N links. This solution
is fully compatible with SpiNNaker because each link is truly
asynchronous.

D. Clock generation with FPGA elements

The delay line must be accurately tuned for these circuits
to work correctly. A clock with a period of 8ns will provide
a window that will guarantee a response within 8ns if the
event from SpiNNaker arrives in the positive level of the
clock. This cannot be guaranteed when the clock is first started
or even for the first symbol transmitted, but SpiNNaker is
guaranteed to synchronise with the proposed circuits after the
first acknowledgement has been generated.

Tuning the period of the clock generators was achieved
using a combination of Xilinx FPGA Editor and Xilinx
PlanAhead (both contained within the Xilinx ISE Design
Suite), and a parameterised Verilog module that instantiated
a set of identity look-up tables (LUTs) as shown in Figure 8.
Xilinx PlanAhead was used to deliberately position the LUTs
to introduce a large propagation delay, then the design was
resynthesized using the Xilinx XST tool-chain and the de-
lays estimated by Xilinx FPGA Editor. The estimations were
valid for a half-cycle of the generated clock and were hence
doubled to estimate the period. Three tuned delay-lines were
synthesised into the clock generator designs discussed previous
and then instantiated multiple times in the target Spartan-6
FPGA. Overall eight type A and ten of each type B and
C were included in the test design. Table II lists the delay

Acknowledgement < SYNC_ACCEPT
generator

LinAck—= il\l ;

C AT
Lin[6:0]—» .
. [| |
o | N EN > SYNC_DATA[6:0]
Completion CLR -
Detection T »— SYNC_REQ
NRZ to RTZ
decoder i
<
m —
5
= ’:@ » SYNC_CLK

Fig. 6. Input SpiNNaker synchronisation circuit and clock generator.

T — SYNC_REQ
NRZ encoder and ; ;
output register | N ;
Lout[6:0]—= ; f < SYNC_DATA[6:0]

@j i L+ » SYNC_ACK
LoutAck —» I EN

NRZ to RTZ
decoder

=
| C »—SYNC_CLK
L
<

f | Must reset l‘:o ‘1

Fig. 7. Output SpiNNaker interface circuit and clock generator.

measurements obtained experimentally and those predicted by minimum, and maximum periods measured respectively.
Xilinx FPGA Editor for ease of comparison. _ _
T —Thin Tmaw — T
W RE = max (e mar)
The worst relative error given in the table was calculated T T
using Equation 1, where T', T}, and T4, are the average, This technique shows that even the most extreme outliers

€))

TABLE I
AVERAGE DELAY-LINE MEASUREMENTS TAKEN FROM THE
INSTANTIATION OF THREE TYPES OF TUNED CLOCK GENERATORS
COMPARED TO THE PREDICTED RESULTS.

SpinLink GTP

Port 0

Spy Taps
/N

SpinLink GTP

Port 1

Ry

'
SpinLink [(——=)

1 -

SpiNNterceptor

~ i

Al
(———){ SpinLink

=>

2-0f-7 Port 0

L

I

AXI/AXI4-lite Bus

I

I

I

MicroBlaze
Processor

Expansion
Ports

Service
Network

1310 £-§0-C

Average Worst
Estimated | Measured Relative
Type | Delay (ns) | Delay (ns) | Error (%)
A 2.91 2.92 0.96
B 391 3.58 1.56
C 4.67 4.07 1.41
Type A Type B
3 3
2 2
1 1
0 0
5.7 5.8 5.9 67 7.1 7.2 7.3
Period (ns) Period (ns)
Type C
5 6 7.3 8.3
T
4
@ 59 C 72 © 82
: 5 1z ||z I
2 es8l|@71) 581
1 +
5.7 7 8
0 B
8 8.1 8.2 8.3 Oscillator Type
Period (ns)

Fig. 9. Histograms of the measured periods of multiple instantiations of the
three clock-generator designs. The box plots show that the spread of each
period is minimal with regards to the mean.

were within at most 1.6% of the mean for each type of clock
generator, which can also been seen in the various plots of
Figure 9.

This implies that the oscillators can be reliably instantiated
as part of a design for the Spartan-6 FPGA despite the
clear differences between the estimated and measured delays.
Delay-lines can be manually optimised post-synthesis based on
experimental measurements to reduce this difference. Another
possible solution to this problem is to replace the fixed delay-
line with a dynamically recalibrating design as proposed by
Taylor et al. [8].

III. SPINNTERCEPTOR

While SpinLink can address the issue of connecting multiple
boards together to form a functioning machine, it does not
provide a method of allowing SpiNNaker to interact with other
equipment. The current testing and development boards, and
those being developed, use a single 100Mbps Ethernet connec-
tion to allow SpiNNaker to be controlled from a conventional
PC. This interface is adequate for issuing commands and can
support small real-time simulations with data, but it simply
cannot scale as the machine grows.

SpiNNterceptor is currently being developed to address this
problem by combining two similar concepts: debugging and
high-speed I/O. Firstly, the debugging aspect comes from
an existing concept design that behaves as a packet-sniffer
between two Xilinx Virtex-5 FPGAs containing a much older

Fig. 10. Proposed high-level plan for the implementation of SpinLink and
SpiNNterceptor.

SpinLink implementation. SpinLink packet data is streamed
through the SpinLink-Spy (installed in a host PC as a single-
lane PCI-Express device) and each packet is compared to a
trigger. All packets received after a match has been detected
are stored in a sample RAM that can be inspected by software
running on the PC.

Secondly, a high-speed I/O interface is being design to
make use of the FPGA resources that are not being used by
SpinLink. These include two 3.125Gbps GTP transceivers and
a large (but not accurately determined at the present time)
number of the logic resources. A protocol will be developed
that will allow various real-time and real-world peripherals to
be connected to SpiNNaker. Auditory sensors and a Silicon
Retina [9] are two types of input device that have been
identified as candidates for this interface.

A. Proposed Implementation

SpiNNterceptor can be thought of as an extension of the
inspection buffer explained previously. Two registers can be
added to this part of the design to provide comparison
and mask values that can be used to trigger the packet-
sniffing interface. Additionally, extra logic can be included
to detect packets that are intended for SpiNNterceptor instead
of standard SpinLink traffic. We intend to delegate one bit
of the reserved address range of multicast packets for this
purpose so the logic should be simple. If a SpiNNterceptor
packet is detected then it will be removed from the stream
as it will serve no further purpose and forwarded onto the
SpiNNterceptor module.

We intend to connect the FPGAs together as a ring so that
output packets can be received by any FPGA on a board
and then routed to the required expansion port outside of
the SpiNNaker network so that unnecessary congestion is not
introduced. Devices connected to the expansion ports will
communicate using a high-speed serial protocol that is yet to
be designed. A standard protocol will be chosen, if possible,
to maximise the scope of devices that can be used.

Figure 10 shows the current design plan for the FPGAs
of Figure 4. Here the service network will be ring topology
connecting the FPGAs together and the expansion ports will be
the GTP modules unused by SpinLink. The MicroBlaze may
provide a flexible and convenient approach to implementing

the protocols required to support the inter-FPGA network,
communication with external peripherals, and advanced de-
bugging and packet sniffing behaviour. Further investigation
is required to determine the feasibility of this design however.

B. Software Implications

Simulating large-scale neural networks is the flagship appli-
cation of SpiNNaker but any problem that can be sufficiently
discretised can be written as a SpiNNaker application. Ap-
plications are currently described by a problem graph that
represents the connectivity between interrupt handlers that
implement the desired functionality. This implies that the prob-
lem graph should contain information about the connectivity
of the program to external I/O devices.

The notion of source and monitor nodes will be included
into the problem graph and allowing them to be bound to
specific expansion ports on the SpiNNaker board (shown in
Figure 4). Input data can therefore be routed into a specific
problem circuit using the existing SpiNNaker routing topology
but it will originate from one of the Spartan-6 FPGAs. Outputs
can be realised simply emitting a packet in a single direction
because it will be guaranteed to reach a board boundary where
it will be read into one of the FPGAs. We intend to delegate
one bit of the multi-cast packet address range to indicate that
the packet is intended for SpiNNterceptor and not transmitted
with SpinLink. The inspection buffer can be used to detect the
value of this bit and hence remove the packet from the stream
and instead send it to the SpiNNterceptor module.

IV. CONCLUDING REMARKS

SpiNNterceptor will be an important enabling technology
for SpiNNaker because it addresses two distinct problems.
Streaming real-world data into SpiNNaker in real-time allows
for sophisticated simulations to be executed on SpiNNaker, but
data can also be streamed out in real-time into post-processing
and novel visualisation systems. We hope to provide a very
simple and extensible interface that will allow commodity
computing equipment to be easily connected to SpiNNaker
to serve this purpose. Further work is required to allow
SpiNNterceptor to be conveniently used in the compilation
and runtime stages of an application, and to integrate it into
SpinLink.

Most of the design work has now been completed on
SpinLink and has been verified by simulation and simple tests.
Connecting SpinLink to a physical SpiNNaker test board is the
next logical step in this process. Following the production of
the 103 test board, SpinLink can be verified in situ and will
allow the 103 board to function as a complete and standalone
SpiNNaker machine.

REFERENCES

[1] SpiNNaker home page. Unpublished. University of Manchester. [Online].
Available: http://apt.cs.man.ac.uk/projects/SpiNNaker/

[2] L. A.Plana, S. B. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, and S. Yang,
“A GALS Infrastructure for a Massively Parallel Multiprocessor,” IEEE
Design & Test of Computers, vol. 24, no. 5, pp. 454463, Sep. 2007.

[3] S. Furber and A. Brown, “Biologically-Inspired Massively-Parallel Ar-
chitectures - Computing Beyond a Million Processors,” in 2009 Ninth
International Conference on Application of Concurrency to System De-
sign. 1EEE, Jul. 2009, pp. 3-12.

J. Wu and S. Furber, “Delay Insensitive Chip-to-Chip Interconnect Using
Incomplete 2-of-7 NRZ Data Encoding,” in Proceedings of the 18th
UK Asynchronous Forum. Newcastle upon Tyne, UK: University of
Newcastle, 2006, pp. 16-19.

[5] J. Wu, S. Furber, and J. Garside, “A Programmable Adaptive Router for a
GALS Parallel System,” in 2009 15th IEEE Symposium on Asynchronous
Circuits and Systems. 1EEE, May 2009, pp. 23-31.

S. Moore, G. Taylor, R. Mullins, and P. Robinson, “Point to point
GALS interconnect,” in Proceedings Eighth International Symposium on
Asynchronous Circuits and Systems. 1EEE Comput. Soc, 2002, pp. 69—
75.

J. Pontes, R. Soares, E. Carvalho, F. Moraes, and N. Calazans, “SCAFFI:
An intrachip FPGA asynchronous interface based on hard macros,” in
2007 25th International Conference on Computer Design. 1EEE, Oct.
2007, pp. 541-546.

G. Taylor, S. Moore, S. Wilcox, and P. Robinson, “An on-chip dy-
namically recalibrated delay line for embedded self-timed systems,” in
Proceedings Sixth International Symposium on Advanced Research in
Asynchronous Circuits and Systems (ASYNC 2000) (Cat. No. PR00586).
IEEE Comput. Soc, 2000, pp. 45-51.

T. Delbruck, “Frame-free dynamic digital vision,” in Proceedings of Intl.
Symp. on Secure-Life Electronics, Advanced Electronics for Quality Life
and Society, 2008, pp. 21-26.

[4

=

[6

[t}

[7

—

[8

[l

[9

[t

http://apt.cs.man.ac.uk/projects/SpiNNaker/

	Introduction to the SpiNNaker Machine
	Objectives

	Board-level interconnection
	Physical Layer
	Packet Checking
	Synchronisation with SpiNNaker
	Clock generation with FPGA elements

	SpiNNterceptor
	Proposed Implementation
	Software Implications

	Concluding Remarks
	References

