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Abstract

Natural selection favours phenotypes that match prevailing ecological conditions. A rapid

process of adaptation is therefore required in changing environments. Maternal effects can

facilitate such responses, but it is currently poorly understood under which circumstances

maternal effects may accelerate or slow down the rate of phenotypic evolution. Here, we

use a quantitative genetic model including phenotypic plasticity and maternal effects to

suggest that the relationship between fitness and phenotypic variance plays an important

role. Intuitive expectations that positive maternal effects are beneficial are supported

following an extreme environmental shift, but, if too strong, that shift can also generate

oscillatory dynamics that overshoot the optimal phenotype. In a stable environment,

negative maternal effects that slow phenotypic evolution actually minimise variance around

the optimum phenotype and thus maximise population mean fitness.

Keywords: maternal inheritance, maternal effects, quantitative genetics, evolutionary

dynamics
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1 Introduction

Evolutionary mechanisms that enable individuals to adjust rapidly to novel environmental

conditions are ubiquitously considered advantageous [1, 2, 3]. Phenotypic plasticity and

maternal effects are two of many biological pathways that influence an individual’s

phenotype [1, 4, 5, 6, 7], change individual fitness [5, 6, 8] and facilitate adaptation to novel

environments [5, 7]. Less is known about how they interact to shape phenotypic evolution,

however.

Maternal effects are the most commonly studied transgenerational effects [9] and they

provide a flexible way of maximising fitness in a changing environment [10]. Maternal

effects have been defined as the effect of the maternal phenotype on offspring phenotype

[11], due to environmentally induced effects on maternal phenotype or to genetic variation

in maternal phenotypes [12]. Kirkpatrick and Lande [13] defined “maternal inheritance” as

the particular impact of the maternal phenotype on the offspring phenotype independent of

the inherited genes. There is much evidence that this non-genetic path is beneficial

[6, 9, 12, 14], but empirical studies also report results from statistical analyses that show it

can slow phenotypic evolution [12]: maternal effects can be positive or negative. A positive

maternal effect coefficient indicates accelerated rates of microevolution that can facilitate

adaptation, while a negative maternal effect coefficient suggests that maternal effects slow

(or even reverse) any response to selection in the offspring generation. A positive maternal

effect coefficient means that (all other inheritance mechanisms being equal) larger mothers

produce larger offspring, as has been reported in Darwin’s finches and great tits Parus

major [15]. A negative maternal effect coefficient generates fluctuating patterns of

selection: large mothers produce small offspring, who in turn produce large offspring, and

so on. A negative maternal effect coefficient therefore can reverse phenotypic evolution

from one generation to the next. Empirical examples of a negative maternal effect
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coefficient include clutch size in collared flycatchers Ficedula albicollis [16], litter size in

mice, [17], age at maturity in springtails Orchesella cincta [18] or rosette size in the

monocarpic herb Campanulastrum americanum [19]. In red squirrels Tamiasciurus

hudsonicus, three estimates from different statistical and experimental approaches were

remarkably congruent in their estimation of a negative maternal effect coefficient

[20, 21, 22]. These studies show a negative maternal effect because inheritance via this

non-genetic mechanism acts in the opposite direction to that of strict Mendelian

inheritance. If a rapid response to environmental change is a critical coping mechanism in

evolutionary biology, then why would these empirical estimates appear to suggest that

maternal effects often act to slow adaptation to a changing environment?

To understand when maternal effects become more influential in determining the

phenotype, we need to understand the consequences of the predictability of the

environment between the point at which an environmental cue is processed and the point

at which selection acts. The developmental lag before a juvenile reaches maturity is

influenced in part by environmental conditions, but also by other biotic factors such as the

presence and type of predators [23]. This juvenile development lag may therefore operate

on a different timescale from any environmental stochasticity, and we explicitly decouple

them in our model in order to capture their contributions to the phenotype under selection

more accurately. Environmental stochasticity in ecological scenarios is frequently positively

autocorrelated [24, 25, 26], although negative autocorrelation may be becoming more

common [27]. If environmental stochasticity is positively autocorrelated then deviations

from mean conditions at successive times are likely to be in the same direction (e.g. hotter

than average years typically follow hotter than average years), whereas if it is negatively

autocorrelated they are likely to be in opposite directions (e.g. colder than average years

typically follow hotter than average years). There is evidence from theoretical [28],
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laboratory [29] and empirical [27] studies that the predictability of environmental change

propagates through to population mean fitness. Non-genetic inheritance is most likely to be

beneficial when the parental phenotype contains useful information about the environment

that is likely to be experienced by the offspring [30], i.e. if environmental change is

predictable. Our focus is on comparing the impact of maternal effects on phenotypic

evolution in novel and in stable environments. Experiments suggest that maternal effects

affect adult traits most in benign environments [31], but ecological stimuli such as heat

stress [32] or presence of predators [33] can provoke large maternal effects. In a random

environment, Jablonka et al. [34] showed that transgenerational effects delivered higher

fitness than either a plastic only or genetic only strategy; less is known about the benefits

of transgenerational effects when environmental change is autocorrelated, however.

How do non-genetic inheritance and phenotypic plasticity interact to deliver the

optimal phenotype? Here, we extend Lande’s quantitative genetic framework for the

evolution of phenotypic plasticity [8] to incorporate non-genetic inheritance via the

maternal effect coefficient. We show how the optimal level of the maternal effect coefficient

to maximise fitness depends on the extent of environmental shift and the lag between

juvenile development and selection, but is consistently negative or zero for background

levels of environmental change.

2 A quantitative genetic model of adaptation with

fixed maternal effects

We start with the reaction norm approach of [8] and extend it to include m as a fixed

strength maternal effect coefficient [12, 35] to represent maternal inheritance [13, 36].

Furthermore, our extensions include decoupling environmental autocorrelation from
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juvenile development and calculating expectations for population mean fitness and

phenotypic variance. Our modified reaction norm is

zt = at + btǫt−τ +mz∗t−1 + et,

where, as in [8], zt is the adult phenotype of an individual subject to selection in generation

t; ǫt is the environment at time t; τ is the lag between a critical period of juvenile

development and the time when the adult is subject to selection; at gives the additive

genetic effect in the reference environment ǫ = 0; bt describes the plastic phenotypic

response to the environment; z∗t−1 is the phenotype of the parent after selection in

generation t− 1; and et is the residual component of phenotypic variation, which is

assumed to be normally distributed with a constant population mean of zero and variance

σ2
e . We are considering a sexual population, where mating is at random, and where

generations are discrete and non-overlapping.

Averaging over the population distribution, for a given environment ǫt−τ , gives

z̄t = āt + b̄tǫt−τ +mz̄∗t−1, (1)

where the overbar denotes population mean.

The phenotypic variance, σ2
zt , of zt is

σ2
zt = Gaa + 2Gabǫt−τ +Gbbǫ

2
t−τ + 2mGatz∗

t−1
+ 2mGbtz∗

t−1
ǫt−τ +m2σ2

z∗

t−1

+ σ2
e , (2)

where Gaa, Gbb and Gab are the variances of at and bt, and the covariance of at and bt

respectively, which we assume to be constant. Gatz∗

t−1
, Gbtz∗

t−1
and σ2

z∗

t−1

are the

covariances and variance of z∗t−1 in the obvious way. The covariances Gatzt and Gbtzt of zt

with at and bt satisfy

Gatzt = Gaa +Gabǫt−τ +mGatz∗

t−1
, (3)

Gbtzt = Gab +Gbbǫt−τ +mGbtz∗

t−1
. (4)
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At equilibrium in a constant reference environment ǫ, we have σ2
z = σ2

z∗ . Since offspring

share on average half their genes with one parent, then in the case of weak selection, we

also have Gatzt = 2Gatz∗

t−1
≡ Gaz and Gbtzt = 2Gbtz∗

t−1
≡ Gbz at equilibrium [13, 37].

Hence we can deduce

σ2
z =

(2 +m)(Gaa + 2Gabǫ+Gbbǫ
2)

(2−m)(1−m2)
+

σ2
e

1−m2
. (5)

As in [8], we assume that the reference environment ǫ = 0 minimises the phenotypic

variance. The minimum phenotypic variance is achieved at ǫ = −Gab/Gbb and so we must

have Gab = 0. Furthermore, the optimum phenotype, θt, is assumed to be a linear function

of the environment at time t, and fitness, W , to be Gaussian:

θt = A+Bǫt,

W (ǫt, zt) = Wmax exp

{

−
(zt − θt)

2

2ω2

}

,

where A, B, Wmax and ω are constants. If zt is normally distributed with variance σ2
zt ,

then, as in [8], we can average over the phenotype distribution p(zt) to find the mean fitness

W̄ (ǫt, z̄t) =

∫

p(zt)W (ǫt, zt)dzt, (6)

= Wmax

√

γω2 exp
{

−
γ

2
(z̄t − θt)

2
}

, (7)

where γ = 1/(ω2 + σ2
zt).

Assuming that the additive genetic component, at, and plasticity, bt, are bivariate

normally distributed, the per generation change in their population means, āt and b̄t, is

[38]:

∆









ā

b̄









=









Gaa 0

0 Gbb









β,

where

β =









∂/∂āt

∂/∂b̄t









ln W̄ ,
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and where we have used Gab = Gba = 0 to ensure that the phenotypic variance is

minimised in the reference environment ǫ = 0 [8].

Equation (2) indicates that σ2
zt does not depend directly on ā or b̄ and in this case we

have

β = −γ









(āt −A+ b̄tǫt−τ −Bǫt +mz̄∗t−1)(1 +m)

(āt −A+ b̄tǫt−τ −Bǫt +mz̄∗t−1)(ǫt−τ +mǫt−τ−1)









, (8)

where we have used that the average phenotype after selection in the previous generation is

given by

z̄∗t−1 = āt + b̄tǫt−τ−1 +mz̄∗t−2. (9)

Thus, we have

∆ā = −γGaa(āt −A+ b̄tǫt−τ −Bǫt +mz̄∗t−1)(1 +m), (10)

∆b̄ = −γGbb(āt −A+ b̄tǫt−τ −Bǫt +mz̄∗t−1)(ǫt−τ +mǫt−τ−1), (11)

z̄∗t = āt +∆ā+ (b̄t +∆b̄)ǫt−τ +mz̄∗t−1, (12)

where equation (12) gives the mean value of the phenotype in generation t after selection.

Note that the value of A can be set to zero by the linear transformation {θ → θ −A,

z → z −A, a→ a− (1−m)A}, which otherwise leaves the system unchanged, and that the

transformed system is then invariant under the reflection {ǫ→ −ǫ, z → −z, a→ −a}.

Thus beyond these shifts of mean and changes of sign, there is no qualitative effect of the

sign of environmental fluctuations on the behaviour of the system. In particular, whether a

positive or negative value of the maternal effect coefficient, m, benefits fitness in a given

environment is independent of whether that environment is shifted positively or negatively

from the reference ǫ = 0.
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2.1 Adaptation following an extreme environmental shift

To see the impact of maternal effects on the model of phenotypic plasticity when there is a

sudden environmental shift, we will use the same environmental conditions as [8], namely a

noisy step change ǫt = δUt + ξt, where Ut is the unit step function that jumps from 0 to 1

at t = 0, δ is the size of the sudden change in average environment and ξt is a Gaussian

stationary autocorrelated random process with mean zero, variance σ2
ξ and autocorrelation

ρτ over the interval τ . We let each time step equal one generation, so that the time-lag τ is

measured in fractions of a generation.

We now substitute for ǫt in equations (10-12) and take the mean over the distribution of

environments. We therefore obtain the expected changes, E(∆ā) and E(∆b̄) in ā and b̄,

respectively, and the expected value of the phenotype after selection, E(z̄∗t ). We assume

that the environment is uncorrelated over timescales of a generation or longer. We also

regard āt, b̄t and z̄
∗

t−2 as fixed when we average over the distribution of environments. This

is equivalent to neglecting terms of O(γ2G2
aa, γ

2G2
bb) that arise in E(∆ā) and E(∆b̄) as a

result of the dependence of āt, b̄t and z̄
∗

t−1 on ǫt−1 and earlier environmental states. This is

a good approximation when γGaa and γGbb are small. The explicit dependence of z̄∗t−1 on

ǫt−τ−1 in equation (9) is retained. We therefore find:

E(∆ā) ≈ −γeGaa(1 +m){āt −A+ (δUt−τ b̄t − δUtB) +mE(z̄∗t−1)}, (13)

E(∆b̄) ≈ −γeGbb((δUt−τ +mδUt−τ−1){āt −A+ (δUt−τ b̄t − δUtB) +mE(z̄∗t−1)}

+{b̄t(1 +m2)− ρτB}σ2
ξ ), (14)

E(z̄∗t ) ≈ āt + δUt−τ b̄t +mE(z̄∗t−1)− γeGbbδUt−τ{b̄t(1 +m2)−Bρτ}σ
2
ξ

−γeGbb(δUt−τ +mδUt−τ−1)(b̄t −Bρτ )σ
2
ξ

−γe{Gaa(1 +m) +Gbb(δUt−τ (δUt−τ +mδUt−τ−1) + σ2
ξ )}

×{āt −A+ (δUt−τ b̄t − δUtB) +mE(z̄∗t−1)}, (15)
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where we have used the fact that third order moments of stationary Gaussian processes

vanish. We have also approximated γ by γe ≡
1

ω2 + E(σ2
z)

since γ depends on σ2
zt and

hence on ǫt−τ in a nonlinear manner. We use the expected phenotypic variance at

equilibrium to approximate E(σ2
zt) throughout the period of evolution: we use the

expression calculated later in equation (19), but replace δ by δUt−τ . We expect both these

approximations to be good for σ2
zt , σ

2
ξ ≪ ω2.

Equilibrium solutions of equations (13)-(15) in a noisy equilibrium environment

ǫt = δ + ξt, satisfy E(∆ā) = E(∆b̄) = 0 and E(z̄∗t ) = E(z̄∗t−1) = E(z̄∗). At leading order in

γGaa and γGbb, this gives

E(ā)−A+ {E(b̄)−B}δ +mE(z̄∗) = 0,

(1 +m2)E(b̄)− ρτB = 0,

E(z̄∗) = E(ā) + δE(b̄) +mE(z̄∗).

The equilibrium state in the changed environment is thus found to be

E(ā) = (1−m)A+

(

1−m−
ρτ

1 +m2

)

δB, (16)

E(b̄) =
ρτB

1 +m2
, (17)

E(z̄) = E(z̄∗) = A+ δB. (18)

Setting δ = 0 recovers the equilibrium state before the change.

Without maternal effects (i.e., m = 0), these results agree with those of [8]. It is clear

from this analysis that fixed maternal effects make no difference to the expected

equilibrium phenotype, but that they reduce the expected equilibrium plasticity slightly

and the expected equilibrium additive genetic effect to a greater extent, both before and

after the change in environment. Plotting trajectories using equations (13)-(15) and

equation (1) iteratively, starting from the equilibrium state in the original environment,
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shows how maternal effects change the dynamics (figure 1). In particular, the peak

plasticity during the transient phase is lower with positive maternal effects than in their

absence. Here we approximate expected mean fitness as

E(W̄ (ǫt, z̄t)) ≈ Wmax

√

γeω2 exp
{

−
γe
2
E{(z̄t − θt)

2}
}

,

= Wmax

√

γeω2 exp
{

−
γe
2
(āt −A+ (Ut−τ b̄t − UtB)δ +mE(z̄∗t−1))

2
}

×

exp

{

−
γeσ

2
ξ

2
(b̄2t (1 +m2) +B2 − 2b̄tBρτ )

}

,

which holds for σ2
z , σ

2
ξ ≪ ω2. Again we treat āt, b̄t and z̄

∗

t−2 as fixed. For the parameters

used in figure 1 of [8] and setting m = 0.45, it is clear that constant maternal effects speed

up the adjustment to the new environment (figure 1). For m & 0.48, however, we see

oscillations during the transition to the new equilibrium (figure 1 and appendix 3). In

general, the onset of oscillatory behaviour depends on the maternal effect coefficient, m

(appendix 3); for the parameters of figure 1 and in the absence of environmental noise

(σξ = 0), this is at m = 0.48 (2 sf). Although we consider a positive environmental shift,

δ > 0, the results would be the same for an equal and opposite negative shift as discussed

at the end of the last subsection, except that the change in the phenotype, z, and additive

genetic component, a, would be in the opposite direction: in particular, positive m would

still speed up adjustment. While maternal effects make only a slight impact on the expected

equilibrium plasticity, they have a clear impact on the transient dynamics: for m > 0, the

peak plasticity is lower than without maternal effects (m = 0) and the oscillations in the

phenotypic dynamics are driven by oscillations in the plastic component (figure 1). These

overshoots increase the mismatch between optimal and observed phenotype and therefore

provide a natural restriction on unbounded increases in the maternal effect coefficient. It

seems unlikely, however, that overshoots of a new optimum phenotype within the range of

environmental change typically experienced in an ancestral environment are sufficient to
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keep the maternal effect coefficient at the modestly negative levels often reported

empirically (see Discussion). The question therefore remains: what is the optimal maternal

effect coefficient in a stochastic environment? We hypothesise that negative maternal effect

coefficients are, in fact, favoured in relatively stable stochastic environments.

3 Maternal inheritance in relatively stable stochastic

environments

3.1 Numerical simulations

To test if negative values of the maternal effect coefficient are favoured in relatively stable

stochastic environments, we generated stationary sequences of autocorrelated

environmental stochasticity for ρτ set to 1
10
, 1

4
, 1

3
and 1

2
. τ was fixed at 0.25 of a

generation. In this case we considered environmental sequences with no step change, so

that ǫt = δ + ξt. We examined behaviour both in a noisy reference environment (δ = 0) and

away from this (δ = 10).

The evolutionary response to these stochastic environments was modelled numerically

using equations (10)-(12) to update ā, b̄ and z̄, in each generation, starting from the

expected equilibrium values. In order to calculate γ at each step, we first worked out the

phenotypic variance in equation (2) by updating equations (3) and (4) and assuming that

Gatz∗

t−2
≈ Gat−1z∗

t−2
/2 and Gbtz∗

t−2
≈ Gbt−1z∗

t−2
/2 (appendix 2); errors from this

approximation will be small when |mγ| ≪ 1.

We calculated mean fitness over 106 generations, taking the arithmetic mean over

subsequent generations of a single realisation to approximate the mean over realisations for

a single generation, assuming that the system is ergodic. We might also be interested in the
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mean fitness of a population over a number of generations; this is measured by the

geometric mean across generations. Since the trajectories show small fluctuations about an

equilibrium value, the arithmetic and geometric means across generations of the population

mean fitness are in fact equal to leading order in the fluctuations:

N
∏

t=1

(1 + wt)
1/N ≈

1

N

N
∑

t=1

(1 + wt)

for |wt| ≪ 1, where wt is the fluctuation of the population mean fitness in generation t

relative to its deterministic equilibrium value. Thus to leading order our fitness calculations

capture both the expected value of population mean fitness for a single generation and also

the geometric mean of the population mean fitness over a number of generations.

For all values of ρτ considered, fitness was maximised for negative or zero m (figure 2).

Absolute fitness depended on the environmental autocorrelation, i.e. the predictability of

change, hence we report relative differences from the mean value. As the predictability of

environmental change increased (i.e. as ρτ increased), the value of m where fitness was

maximised moved closer to zero and the relative fitness costs (i.e. curvature) of not

expressing the optimal level of maternal effects increased (figure 2). The optimal value of

the maternal effect coefficient was more strongly negative with larger fitness costs in the

δ = 10 environment than in the noisy reference environment when δ = 0. In the noisy

reference environment, an absence of maternal effects (m = 0) maximised fitness if the

environment was sufficiently predictable, namely for values of ρτ of 1/3 and 1/2. There was

no qualitative impact of changing the lag between juvenile development and selection, or of

considering negative environmental autocorrelation. We can shed further light on the

benefits of negative values of the maternal effect coefficient by considering the expected

mean fitness of the population as a function of m.
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3.2 Analytical Refinement

First we take expectations over the distribution of environments in equations (2)-(4) to get

E(Gatzt) = Gaa +mE(Gatz∗

t−1
),

E(Gbtzt) = Gbbδ +mE(Gbtz∗

t−1
),

E(σ2
zt) = Gaa +Gbb(δ

2 + σ2
ξ ) + 2mE(Gatz∗

t−1
) + 2mδE(Gbtz∗

t−1
)

+m2E(σ2
z∗

t−1

) + σ2
e ,

where we have set Gab = 0, as before, and assumed that the environmental stochasticity is

uncorrelated over timescales of a generation or longer, so as to neglect any covariance

between Gbtz∗

t−1
and ǫt−τ in equation (2). Now we look for an equilibrium solution. Under

weak selection, we have E(σ2
zt) = E(σ2

z∗

t−1

) ≡ E(σ2
z), E(Gatzt) = 2E(Gatz∗

t−1
) ≡ E(Gaz)

and E(Gbtzt) = 2E(Gbtz∗

t−1
) ≡ E(Gbz) at leading order in γ and independent of time, and

deduce that the expected equilibrium phenotypic variance is given by

E(σ2
z) ≈

(2 +m)(Gaa + δ2Gbb)

(2−m)(1−m2)
+
σ2
e +Gbbσ

2
ξ

1−m2
. (19)

An equilibrium state can only develop if E(σ2
z) is positive and finite: this restricts the

range of possible maternal effect coefficients, m, as described in appendix 1. Empirical

evidence suggests that m is typically small (see Introduction and Discussion), so in practice

we shall restrict our attention to the range −1 < m < 1, where E(σ2
z) is indeed always

positive and finite (figure 3 and appendix 1).

In the absence of environmental stochasticity, we can set σ2
ξ = 0 and use equation (19)

to get an expression for the equilibrium phenotypic variance.

σ2
z = σ2

zd ≡
(2 +m)(Gaa + δ2Gbb)

(2−m)(1−m2)
+

σ2
e

1−m2
. (20)

Turning now to the population mean fitness, we can rewrite equation (7) as

W̄ (ǫt, z̄t) =Wmax

(

1 +
σ2
z

ω2

)

−
1

2

exp

{

−
(z̄t − θt)

2

2(ω2 + σ2
z)

}

. (21)
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When there is no stochasticity in the environment we have z̄t = θt = A+Bδ, so that for a

given value of m there is no deviation from optimal fitness. However, that optimal fitness

itself varies with m according to

W̄opt(m) ≡ Wmax

(

1 +
σ2
zd

ω2

)

−
1

2

= Wmax

(

1 +
2 +m

ω2(2−m)(1−m2)
(Gaa + δ2Gbb) +

σ2
e

ω2(1−m2)

)

−
1

2

.

Since σ2
z is continuous in the region −1 < m < 1 and tends to positive infinity as m→ ±1

there, we deduce that it must take a local minimum value somewhere between m = −1 and

m = 1. Taking the derivative of equation (20) with respect to m and setting it to zero

shows that σ2
zd(m) has turning points when

m3(x− 1)− 2m2(2x+ 1) + 4m(x+ 1) + 2 = 0,

where x = σ2
e/(Gaa + δ2Gbb). In fact for all positive x, there is a local minimum of σ2

zd, and

correspondingly a local maximum of W̄opt(m) at mopt in the region −1 < mopt < 1. As

x→ 0, we have mopt → m0 = −0.43 (2 sf) and as x→ +∞, we find mopt → 0, with

intermediate values of mopt for intermediate values of x. Thus populations with a modest

negative value of the maternal effect coefficient are expected to be optimally fit. For the

parameters used in figure 1 we have x = 1 in the reference environment (δ = 0) and so

mopt = −0.22 (to 2 s.f.), while x = 0.1 when δ = 10, and thus the optimal m is

mopt = −0.39 (to 2 s.f.) after the environment shift.

If the environment is stochastic then the expected phenotypic variance increases

according to equation (19) and we expect the mean fitness to drop. If the noise is small

enough compared to the width of the fitness function (σ2
ξ ≪ ω2) then from equation (21)

we find

W̄ ≈Wmax

(

1 +
σ2
zd

ω2

)

−
1

2
{

1−
σ2
z − σ2

zd + (z̄t − θt)
2

2(ω2 + σ2
zd)

}

,
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and hence

E(W̄ ) ≈Wmax

(

1 +
σ2
zd

ω2

)

−
1

2
{

1−
E(σ2

z)− σ2
zd + E{(z̄t − θt)

2}

2(ω2 + σ2
zd)

}

.

Using equation (19) and calculating

E{(z̄t − θt)
2} = E{(āt + b̄tǫt−τ +mz̄∗t−1 −A−Bǫt)

2},

= σ2
ξB

2

(

1−
ρ2τ

1 +m2

)

at equilibrium, we have

E(W̄ ) ≈ Wmax

(

1 +
σ2
zd

ω2

)

−
1

2

{

1−
σ2
ξ

2(ω2 + σ2
zd)

[

B2

(

1−
ρ2τ

1 +m2

)

+
Gbb

1−m2

]

}

,

= Wmax

(

1 +
(2 +m)(Gaa + δ2Gbb)

ω2(2−m)(1−m2)
+

σ2
e

ω2(1−m2)

)

−
1

2

×

{

1−
σ2
ξ

2(ω2 + σ2
zd)

[

B2

(

1−
ρ2τ

1 +m2

)

+
Gbb

1−m2

]

}

. (22)

So, environmental noise does indeed reduce the expected population mean fitness. For

low enough noise levels, this expression provides a small correction to the optimal value of

m calculated for the purely deterministic environment, as is confirmed by the observation

that the maximum fitness occurs close to m = −0.2 in the noisy reference environment and

close to m = −0.4 in the noisy δ = 10 environment (figure 2). Analysing equation (22) in

more detail we see that greater autocorrelation of the environmental noise (ρτ closer to 1)

and greater distance from the reference environment (larger δ) both tend to increase the

fitness costs of expressing suboptimal m. Finally, the absence of plasticity (Gbb = 0) would

tend to lessen these fitness costs. Once again these results are independent of the direction

of the environmental shift.

The relative fitness of populations with negative values of the maternal effect coefficient

suggests that in relatively stable environments, the benefit of lower phenotypic variance

from m < 0 (equation 22, figure 2) outweighs other factors. One might ask why the variance
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is minimised at negative m rather than at m = 0. From equation (19) it is clear that this

favouring of negative m comes from the inclusion of m(Gaa + δ2Gbb) in the numerator of

the first term on the righthand side. This arises from the fact that z∗t−1 covaries with at

and bt. In other words, reacting in the opposite way to the maternal phenotype compared

to the inherited genotype in some sense uses the information in the mother’s phenotype to

discount the effect of her genes and remain closer, on average, to the optimum phenotype.

4 Discussion

We used quantitative genetic models to show how positive maternal effects can speed up

adaptation following an extreme environmental shift (figure 1), but, if sufficiently strong,

cause oscillations in the phenotypic dynamics and therefore increase the mismatch between

observed and optimal phenotype. In relatively stable environments, however, the relative

fitness of populations with a negative maternal effect coefficient m suggests that the lower

phenotypic variance achieved when m is negative (equation 22, figure 2) is beneficial. This

means that selection should favour a small negative effect of the maternal phenotype on

offspring phenotype. Direct empirical estimates of a negative m relate either to the case

where a single trait affects itself maternally, [16, 17, 18], which is the situation we have

modelled, or to the case where a given maternal trait affects a different offspring trait, for

example litter size affecting juvenile growth rate in red squirrels [22]. In the latter case, a

negative maternal effect may result from a negative direct-maternal covariance, since the

two quantities are related to one another: statistical decompositions can be used to

estimate the strengths of interactions among phenotypic traits [39] given a model of direct

and indirect genetic effects [40]. There is some overlap between the two categories, in that

the negative maternal effect of a single trait upon itself may be mediated by another trait:
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for example large maternal litter size in mice leads on average to offspring of smaller body

size who in turn have smaller litters [41]. In relatively stable environments, the expected

local fitness maximum in our model occurs at modestly negative values of the maternal

effect coefficient. Thus, however it arises, a negative maternal effect of a single trait on

itself can lead to increased fitness in our model.

Following an extreme environmental shift, there was a clear benefit of a positive

maternal effect coefficient m. Increasing m within the region of monotonic convergence (i)

lowers the peak of plasticity during the transient phase, (ii) accelerates the approach to this

peak (figure 1) and (iii) slightly reduces the equilibrium level of plasticity (equation 17).

The equilibrium level of the additive genetic component is reduced if m > 0 (equation 16,

figure 1), both before and after the step change δ. This lower contribution of the additive

genetic component to the phenotype is consistent with conclusions from statistical

decompositions on empirical populations that do not calculate total heritability [42, 43]

and so do not include maternal effects. For example, significantly more variance in

Collinsia verna seed weight was explained despite a reduction in additive genetic variance

when models included the maternal phenotype compared to those without it [44]. Variance

in maternal phenotype represents an additional pool of raw variation that can amplify the

response to selection, leading to oscillations as the mean phenotype overshoots its optimum

level in the expected environment (figure 1). The amplification of the phenotypic dynamics

induced by m > 0 can cause the population to be further from its optimum than would be

the case in the absence of maternal effects (m = 0). This amplification operates via

phenotypic plasticity (figure 1), emphasising the importance of considering the interplay of

phenotypic plasticity and maternal effects when studying adaptation in natural

populations. An experimental unification of phenotypic plasticity and maternal effects in

driving adaptation would be difficult (and we are unaware of any to date), but there are
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experiments that highlight the importance of both: Lind & Johannson [45] incorporated

maternal effects into statistical analyses of their experiments into the role of phenotypic

plasticity in adaptation on common frogs Rana temporaria, but not into their experimental

design; while Plaistow & Benton [46] manipulated the strength of maternal effects to alter

mean population fitness and transient population dynamics on experimental populations of

soil mites Sancassania berlesei.

In relatively stable environments, a negative maternal effect coefficient minimises

phenotypic variance and hence maximises mean fitness (equation (22), figure 2). This

minimum variance occurs at negative m because this uses the information in the maternal

phenotype to discount the effect of the inherited genes and express a phenotype that is

closer to the average. The level of maternal effects that maximises mean fitness in our

simulations increased with increasing environmental autocorrelation (figure 2), but

remained negative or zero to reach the optimal level of phenotypic variance (equation 22).

This impact of the predictability of environmental change is consistent with conclusions

from the quantitative genetic models of [47], which showed how genetic variance impacts

fitness negatively when environmental change is more predictable. The increased curvature

of the trajectories in figure 2 indicates that, as ρτ increases, so too does the negative

impact of suboptimal m. Increasing ρτ favours greater m because the changes in

environment become more predictable, meaning that the parental phenotype carries more

accurate information to prepare offspring to the environmental conditions they might

experience during their lifetime [30].

Although we have not explicitly incorporated a cost of maternal effects in our model,

the oscillatory dynamics (figure 1) are a constraint on unbounded increases in a positive

maternal effect coefficient. Were we to do so, we expect that plasticity would compensate

for cost-reduced m during the transient phase, whereas additive genetic variance would
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compensate for cost-reduced m once the population reaches its new equilibrium (or always

in the stable environment (figure 1)). Since the consequences of maternal effects depend on

their demographic and environmental contexts [46] and parents frequently adjust their

phenotype in response to changing conditions [48, 49] our assumption of fixed maternal

effects from one generation to the next is a strong one. It does facilitate comparison with

many statistical studies [12], however. In reality, we expect the maternal effect coefficient,

m, to be a continuous trait, varying across the population and subject to selection [50].

Nevertheless, we expect the results that positive maternal effect coefficients are beneficial

in rapidly changing environments, while negative values of m are beneficial in stable ones,

to be robust in a framework where m can vary. Positive m will still increase the rate of

adaptation to a new environment, very likely to an enhanced degree as m evolves towards

more positive values. In stable environments, the phenotypic variance will still involve

covariance between the maternal phenotype and the offspring genotype and so a

discounting of the former against the latter will still favour negative m. However, the

simplified mathematical treatment that we have given here with m fixed makes these points

much more transparently than would otherwise be possible. It seems logical that

populations would benefit from the dampening effect of negative values of m in a stable

environment, while retaining the possibility of evolving positive values to facilitate rapid

adaptation following environmental upheaval. Relaxing the assumption of fixed maternal

effects is the subject of future work.

Conclusion

Using quantitative genetic models of reaction norm evolution, we have shown that maternal

effects can both facilitate rapid adaptation to environmental change and, in more stable

20



environments, keep phenotypes close to the average and so maximise fitness. We suggest

that one reason that the average level of maternal effects in stable environments is negative

is because this minimises the effect of genetic variance on fitness when the environment is

predictable.

Appendix 1: Properties of the phenotypic variance

The expected phenotypic variance at equilibrium is given in equation (19) as

E(σ2
z) = (Gaa + δ2Gbb)

{

2 +m

(2−m)(1−m2)
+

x̃

1−m2

}

,

where x̃ = (σ2
e +Gbbσ

2
ξ )/(Gaa + δ2Gbb). Note that x̃ and (Gaa + δ2Gbb) are both positive

by definition.

Clearly, an equilibrium can only occur if the expected phenotypic variance would be

positive and bounded. For 0 < x̃ < 1, this restricts m to the ranges m < −2(1 + x̃)/(1− x̃),

−1 < m < 1 and m > 2, while for x̃ > 1, m must lie in the ranges −1 < m < 1 or

2 < m < 2(1 + x̃)/(x̃− 1) (figure 3). If x̃ = 1 then −1 < m < 1 and m > 2 are permitted.

For values of m outside these permitted ranges, the system cannot reach an equilibrium.

In the absence of environmental stochasticity (σ2
ξ = 0), the parameter values in figure 1

give x̃ = 0.1 and thus m < −2.44̇, −1 < m < 1 and m > 2 for δ = 10, and x̃ = 1 and so

−1 < m < 1 and m > 2 for the reference environment δ = 0. When there is environmental

noise as in [8] with σ2
ξ = 4, the ranges of valid equilibria are m < −2.63 (3 sf), −1 < m < 1

and m > 2 for δ = 10 (x̃ = 0.136 3 sf), and −1 < m < 1 and 2 < m < 13.11̇ for the

reference environment δ = 0 (x̃ = 1.36 3 sf).
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Appendix 2: Updating covariances

The evolutionary response to stochastic environments was modelled numerically using

equations (10) to (12) to update the population mean additive genetic effect, ā, plasticity,

b̄, and phenotype, z̄, in each generation, starting from the expected equilibrium values. In

order to calculate γ at each step, we first worked out the phenotypic variance

σ2
zt = Gaa +Gbbǫ

2
t−τ + 2mGatz∗

t−1
+ 2mǫt−τGbtz∗

t−1
+m2σ2

z∗

t−1

+ σ2
e ,

and to do this we updated Gatz∗

t−1
, Gatz∗

t−1
and σ2

t−1∗ according to

Gatz∗

t−1
= Gata∗

t−1
+mGatz∗

t−2
≈

1

2
Gaa +

1

2
mGat−1z∗

t−2
,

Gbtz∗

t−1
= Gbtb∗t−1

ǫt−τ−1 +mGbtz∗

t−2
≈

1

2
Gbbǫt−τ−1 +

1

2
mGbt−1z∗

t−2
,

σ2
z∗

t−1

= Gaa +Gbbǫ
2
t−τ−1 + 2mGa∗

t−1
z∗

t−2
+ 2mǫt−τ−1Gb∗

t−1
z∗

t−2
+m2σ2

z∗

t−2

+ σ2
e ,

≈ Gaa +Gbbǫ
2
t−τ−1 + 2mGat−1z∗

t−2
+ 2mǫt−τ−1Gbt−1z∗

t−2
+m2σ2

z∗

t−2

+ σ2
e ,

where the subscripts a∗t−1 and b∗t−1 refer to the values after selection in generation t− 1. We

expect the errors in the value of σ2
zt from approximating Gata∗

t−1
≈ 1

2
Gaa, Gbtb∗t−1

≈ 1
2
Gbb,

Ga∗

t−1
z∗

t−2
≈ Gat−1z∗

t−2
and Gbt−1z∗

t−2
≈ Gbt−1z∗

t−2
to be small when |mγ| ≪ 1.

Appendix 3: Stability Calculations

For m & 0.48 with parameter values from [8], we see oscillations during the transition to

the new equilibrium (figure 1). This can be understood by analysing the stability of the

equilibrium state. Note throughout that when |m| is close to 1, we violate the assumption

that σ2
z ≪ ω2 (see equation (5)) and so our results are not strictly valid in those regions.

However, in practice this is not significant, as we show that only equilibria towards the

middle of the region −1 < m < 1 are of interest.
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Consider an environment ǫ that is constant over time in the absence of environmental

noise. If we set ǫ = δ, then the corresponding equilibrium steady state is given in equations

(16)-(18) and is a fixed point of the map

āt+1 = āt − γGaa(1 +m)(āt −A+ b̄tδ −Bδ +mZt),

b̄t+1 = b̄t − γGbb(1 +m)(āt −A+ b̄tδ −Bδ +mZt)δ,

Zt+1 = āt − γGaa(1 +m)(āt −A+ b̄tδ −Bδ +mZt) +mZt

+{b̄t − γGbb(1 +m)(āt −A+ b̄tδ −Bδ +mZt)δ}δ,

which is derived from equations (10)-(12) with Zt = z̄∗t−1.

We now make a linear change of variables

ct = (δGbbāt −Gaab̄t),

dt = āt + δb̄t,

rt = Zt − āt − δb̄t,

This step reduces the map to a simpler form, from which it is clear that ct is fixed:

ct+1 = ct,

dt+1 = dt − γχ(dt −A−Bδ +m(rt + dt)),

rt+1 = m(rt + dt),

where χ = (1 +m)(Gaa + δ2Gbb). The Jacobian of the map (dt+1, rt+1) = f(dt, rt) is given

by

Df =









1− γχ(1 +m) −γχm

m m









,

and has eigenvalues ζ that satisfy the characteristic equation

ζ2 − ζ(1 +m)ψ +mψ = 0,
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where ψ = 1− γχ. Note that since χ and γ depends on m (see above and equation 5), ψ

will also depend on m.

If |ζ| ≤ 1 for both eigenvalues ζ then the equilibrium state is stable, if |ζ| = 1 for one or

both eigenvalues then the state is neutrally stable and it is unstable otherwise. In the

absence of maternal inheritance (m = 0) we have ζ = 0 and ζ = ψ. For the values of the

parameters given in figure 1, ψ = 0.99 (2 sf) before the change in environment and ψ = 0.91

(2 sf) afterwards, so both these equilibrium states are stable. To see whether maternal

effects can destabilise the equilibria, we will now let m 6= 0. Setting ζ = λ+ iη, where λ and

η are real, and separating the real and imaginary parts of the characteristic equation gives

λ2 − η2 − λ(1 +m)ψ +mψ = 0, (23)

2λη − η(1 +m)ψ = 0. (24)

The equilibrium is unstable when |ζ| > 1, so λ2 + η2 > 1 and (neutrally) stable when

λ2 + η2 ≤ 1.

From equation (24) we see that either η = 0 or λ = (1 +m)ψ/2. Considering the case

η = 0 first, the stability boundary |ζ| = 1 is given by λ = ±1. For λ = 1 and η = 0,

equation (23) gives ψ = 1 and so there is a stability boundary at

γ(1 +m)(Gaa +Gbbδ
2) = 0, which is equivalent to m = −1. If λ = −1 and η = 0, equation

(23) gives a stability boundary at (1 + 2m)ψ(m) + 1 = 0.

If on the other hand we have λ = (1 +m)ψ/2, then if η2 > 0, we have complex

eigenvalues and hence oscillatory dynamics. From equation (23) we get

η2 = mψ(m)−
1

4
(1 +m)2ψ(m)2.

In the range −1 < m < 1, we have η2 > 0 for m > mosc = 0.48 (2 sf) after the

environmental shift. Therefore, once m & 0.48 the step change in the environment δ

triggers oscillations in the convergence to the new phenotypic optimum. However, in this
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region λ2 + η2 = mψ < 1 and so the new equilibrium state remains stable and the

oscillations dampen and eventually die away. If we fix Gaa and require, as in [8], that the

relationship of the genetic variances to δ remain constant at Gbbδ
2/(Gaa +Gbbδ

2) = 0.9,

there is no dependence of mosc on δ. Even when environmental noise is included, as below,

mosc varies very little with δ.

In the oscillatory case, the stability boundary is at λ2 + η2 = mψ = 1. Calculating the

locations of the stability boundaries for both real and complex eigenvalues reveals that in

both the perturbed (δ = 10) and unperturbed (δ = 0) environments, the equilibria in the

range −1 < m < 1 are all stable. When δ = 0, the remaining equilibria lie in the range

m > 2, and these are unstable except in the region 98.0 < m < 99.5 (3 sf). When δ = 10,

the other regions where equilibria exist are i) m < −2.44̇, where they are unstable and ii)

m > 2 where they are also unstable except in the region 7.73 < m < 9.52 (3 sf). Thus in

both cases stable equilibria are found only in the range −1 < m < 1 and a region at

significantly larger positive m that we consider to be implausible on biological grounds.

This provides additional rationale for restricting our attention to values of m in the range

−1 < m < 1.

The above analysis assumes a fixed environment both before and after the step change;

we can repeat it for expected mean quantities in the presence of environmental noise. In

this case, the Jacobian matrix of the map (ct+1, dt+1, rt+1) = f(ct, dt, rt) is

Df =

















1− γeGaaφ γeδGaaφ 0

γeδφ 1− γeχ(1 +m)− γeδ
2Gbbφ −γeχm

γeδ(1 +m)φ m− γeGbb(1 +m)(σ2
ξ + δ2φ) m(1− γeGbbσ

2
ξ )

















,

where φ = Gbb(1 +m2)σ2
ξ/(Gaa +Gbbδ

2).

Analytical expressions for the stability boundaries are harder to obtain, but the
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eigenvalues can be determined numerically. For the parameter values used in figure 1, and

at m = 0.45, the eigenvalues for the equilibrium after the change are ζ = 0.9997, 0.7433 and

0.5290, compared to 1.0, 0.7438 and 0.5325 in the absence of noise, showing that the noise

has a slight stabilising effect. At m = 0.5, the eigenvalues are ζ = 0.9997 and

0.6569± 0.0677i (c.f., 1.0 and 0.6589± 0.0713i) showing that oscillations will, as before, be

triggered by the environmental shock.
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Figure 1: Expected evolution of the average phenotype E(z̄t), log mean fitness, plasticity and

the additive genetic component in the presence (dark grey, m = 0.45, light grey, m = 0.8) and

absence (black, m = 0) of fixed maternal inheritance via the maternal effect coefficient m. The

values of the model parameters follow [8]: A = 0, B = 2, δ = 10, ρτ = 0.25, σ2e = 0.5, σξ = 2.0,

Gaa = 0.5, Gbb = 0.045, ω2 = 50.0 and Wmax = 1.0.
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Figure 2: Fitness is maximised for negative maternal inheritance in stochastic environments: in

the reference environment (top) and in a stochastic environment with δ = 10 (bottom). The

optimal value of the maternal effect coefficient m depends upon the strength of environmental

autocorrelation, ρτ . Darker grey indicates larger ρτ ; values are (from light to dark) 1

10
, 1

4
, 1

3
, 1

2
,

for which fitness is maximised at m =-0.2, -0.2, 0 and 0 (top) and m =-0.4, -0.4, -0.3 and -0.3

(bottom) respectively. Parameters are as in figure 1. Circles represent the results of numerical

simulations at intervals of 0.1 in m.
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Figure 3: The expected equilibrium phenotypic variance (equation 19) is positive for a restricted

range of values of m, where m is the maternal effect coefficient. Outside this range, the system

cannot reach an equilibrium state. Gaa = 0.5, Gbb = 0.045 and δ = 10, for (a) x̃ = 0.1 and (b)

x̃ = 1.0. The case where x̃ > 1 looks very similar to (b), but with σ2z very small and negative

for m > 2(1 + x̃)/(x̃− 1).
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