The University of Southampton
University of Southampton Institutional Repository

Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria

Record type: Article

We have reported previously that copper I and II ionic species, and superoxide but not Fenton reaction generated hydroxyl radicals, are important in the killing mechanism of pathogenic enterococci on copper surfaces. In this new work we determined if the mechanism was the same in non-pathogenic ancestral (K12) and laboratory (DH5?) strains, and a pathogenic strain (O157), of Escherichia coli. The pathogenic strain exhibited prolonged survival on stainless steel surfaces compared with the other E. coli strains but all died within 10 min on copper surfaces using a ‘dry’ inoculum protocol (with approximately 107 cfu cm?2) to mimic dry touch contamination. We observed immediate cytoplasmic membrane depolarization, not seen with enterococci or methicillin resistant Staphylococcus aureus, and loss of outer membrane integrity, inhibition of respiration and in situ generation of reactive oxygen species on copper and copper alloy surfaces that did not occur on stainless steel. Chelation of copper (I) and (II) ionic species still had the most significant impact on bacterial survival but protection by d-mannitol suggests hydroxyl radicals are involved in the killing mechanism. We also observed a much slower rate of DNA destruction on copper surfaces compared with previous results for enterococci. This may be due to protection of the nucleic acid by the periplasm and the extensive cell aggregation that we observed on copper surfaces. Similar results were obtained for Salmonella species but partial quenching by d-mannitol suggests radicals other than hydroxyl may be involved. The results indicate that copper biocidal surfaces are effective for Gram-positive and Gram-negative bacteria but bacterial morphology affects the mechanism of toxicity. These surfaces could not only help to prevent infection spread but also prevent horizontal gene transmission which is responsible for the evolution of virulent toxin producing and antibiotic resistant bacteria.

Full text not available from this repository.

Citation

Warnes, S.L., Caves, V. and Keevil, C.W. (2012) Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria Environmental Microbiology, 14, (7), pp. 1730-1743. (doi:10.1111/j.1462-2920.2011.02677.x). (PMID:22176893).

More information

e-pub ahead of print date: 19 December 2011
Published date: July 2012
Organisations: Centre for Biological Sciences

Identifiers

Local EPrints ID: 344786
URI: http://eprints.soton.ac.uk/id/eprint/344786
ISSN: 1462-2920
PURE UUID: 72b0e0b9-70a3-45f2-a424-b2e0601538f6
ORCID for C.W. Keevil: ORCID iD orcid.org/0000-0003-1917-7706

Catalogue record

Date deposited: 31 Oct 2012 14:22
Last modified: 18 Jul 2017 05:13

Export record

Altmetrics

Contributors

Author: S.L. Warnes
Author: V. Caves
Author: C.W. Keevil ORCID iD

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×