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UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF ENGINEERING AND APPLIED SCIENCE
MECHANICAL ENGINEERING

Doctor of Philosophy

NUMERICAL METHODS FOR STRESS ANALYSIS
USING KNOWN ELASTICITY SOLUTIONS

by Andrew Robert Carmichael

Two methods for the determination of the stress concentration near holes

in two dimensional elastic components are developed. One, which is based
on the finite element method extends a superposition technique originally
developed for crack problems; the other uses the boundary element method.
Both methods involve using analytical solutions which satisfy conditions

on the hole boundary exactly thereby reducing or, in the case of boundary
elements avoiding entirely, the need for elements modelling the hole.

The first method uses a modified complementary energy functional to
determine the coefficients of the superimposed functions and the finite
element nodal displacements, from which the estimates of stress are
obtained. Tractions on the hole boundary are represented accurately
using Fourier series, and the formulation is modified by the inclusion
of a "loading function" which is the solution for an infinite region
containing the hole under the specified loading. Representing the
tractions on the hole in this way avoids inaccuracies due to approximate
modelling of the load, for example as point forces, close to the point
where the stress concentration factor is required. The loading function
is incorporated into the formulation without requiring numerical integration
of the tractions over the curved boundary of the hole. Accuracy of the
method for use on traction-free circular or elliptical holes and loaded
circular holes is systematically examined. For quite coarse finite element
meshes (typically 70 degrees of freedom with four-fold symmetry) 3%
accuracy or better may be expected, an improvement by a factor of between
5 and 10 over conventional elements. The effect on accuracy of such
parameters as the mesh refinement, the size and shape of the hole and
outer boundaries, the extent of the region of superposition and the type
of loading is investigated. Fourier series are derived for different
distributions of tractions occurring at a hole boundary due to a pin-load,
and these are used to determine stress concentration factors for rectangular
lugs of various dimensions.

The formulation of the boundary element method for plane elastic
problems is presented and is modified by introducing a kernel function
which satisfies the traction-free conditions on a hole boundary. It is
shown that with this formulation no elements are required to model the
hole, thus stresses at or near the hole may be evaluated without being
affected by the proximity of elements on this boundary. Results for
externally pressurized annuli and square plates with circular holes are
obtained with the method, which show a marked improvement in accuracy
over the boundary element method with an unmodified kernel function. From
these results it appears that the constant shape function of the elements
is a limitation for the application of the method to more general con-
figurations and higher order elements are recommnded.
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NOTATION

Notation for PART I (including Appendix A)

The following symbols are used to represent vectors of the type shown:

K o e 139 1o la

stress

strain
tractions
displacements
nodal loads

nodal displacements

The following superscripts specify the particular field:

(1),(2)or(3)

a or b

trial functions derived from exact elasticity solutions

an approximation to the trial function fields having
linear displacements between nodes

finite element field

{(bar) prescribed quantities on boundaries

{tilde) displacement field defined on element boundaries
stress field defined in the interior of elements

additional stresses, constant within elements, arising
from compatibility constraints

associated with a particular node

referring to an element denoted a or b

The following subscripts may also be used:

associated with the particular trial function or, if
equal to zero, the loading function

associated with the N'th element

Components of the above vectors are not underlined and may have the

following additional subscripts:

Cartesian coordinates referred to global axes
Cartesian coordinates referred to trial function axes
Polar coordinates referred to trial function axes

directions normal and tangential to boundary

vi.



Boundaries are

none

2 = W]

The boundaries

Other symbols:

1o o |»

QO o

denoted by S with the following subscripts:

complete boundary

kinematic boundary (displacements specified)

traction boundary

interface boundary between the external and special regions
inter-element boundary

complete boundary of N'th element
may be further specified by the following qualifiers:

(prime) denotes that part of the boundary adjacent to
the special region

(subscript) denotes that part of the boundary adjacent
to the N'th element

(superscript) denotes that part of the boundary adjacent
to the external region only

radius of circular holes or semi-major axis length of
elliptical hole

arbitrary constants in Airy stress function
strain/stress compliance matrix

coefficients of Fourier series specifying the normal
tractions on the hole

semi-minor axis length of elliptical hole
arbitrary constants in Airy stress function
element strain matrix for N'th element
submatrix of EN where n = 1, 2 or 3

arbitrary constant

arbitrary constants in Airy stress function
matrix defined by equation (2.21)

matrix of coefficients of a in equation (2.45)
element of the matrix D

matrix of coefficients in equation (2.44)
element of the matrix D'

matrix of coefficients arising from integral on S'

element of the matrix QS

vii.
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coefficients of Fourier series specifying the shear

tractions on the hole

arbitrary constants in Airy stress function
exponential constant

Young's modulus of elasticity

vector of right-hand sides in equation (2.45)
element of the vector I

vector of coefficients in equation (2.44)
element of the vector F'

shear modulus

1

integer specifying number of trial function
integer specifying number of trial function
total number of trial functions

stress concentration factor

stress concentration factor in infinite region
finite element stiffness matrix

half length of symmetrical plate

distance from centre of hole to top of lug
distance from centre of hole to bottom of lug
traction/stress matrix

constantg defined by equations(3.23) and (3.26)

limit of Fourier series in QA (equal to k/2)

limit of Fourier series defining normal tractions on hole

limit of Fourier series defining tangential tractions on
hole

limit of Fourier series equal to the maximum of m, and m,
integer (or integer subscript)

element number

mesh size parameter

origin of global coordinates

origin of trial function coordinates

nodal loads (see above)

magnitude of resultant force on the hole

magnitude of resultant force due to shear tractions on
the hole

internal pressure on annulus

nodal displacements (see above)

parameter defined as Kt/K00

viii.



radial polar coordinate

r

R = 259 for an elliptical hole

RA ratio of special region area to area of hole

s distance along an element side measured from node (1)

s, length of element side

S boundary of region (see above)

t thickness of finite elements in the special region

T tractions (see above)

u displacements (see above)

U strain energy function

USp.R strain energy function evaluated in the special region

Y% complete region

w half width of plate

X,Y Cartesian coordinates referred to global axes

X,y Cartesian coordinates referred to trial function axes

z complex number = X + 1 ¥y

a, coefficient of trial function or, if i=0, of the loading
function

a vector of trial function coefficientsai (i=1 to k)

a! vector of coefficients a (i=0 to k)

8 half angle subtended by arc of pressure

Y angle between O0X and 0'x axes

Y shear strain component (see above for qualifiers)

60 typical linear dimension of elements near hole

A area of triangular element

€ strain vector (see above)

€ ef per;entage difference tefm for comparing §w9 Yalues of
maximum stress see equation (5.1) for definition

C complex function of =z

0 angular polar coordinate

0 arbitrary angle

K = i:i (for plane stress)

A Lagrange multiplier

u = zi% for an elliptical hole

v Poisson's ratio

£ complex function of z

n pi = 3.1415927

I functional (complementary energy)

HC modified functional

stress (see above)

|a

ix.



Other notation:

log
Im
Re

nominal applied stress

maximum tensile stress

maximum compressive stress

value of stress for comparison

shear stress component (see above for qualifiers)
angle between X axis and outward normal to boundary
complex stress function for trial function

Airy stress function

complex stress function for trial function

infinity

natural logarithm
denotes imaginary part of complex number

denotes real part of complex number

(bar) unless referred to above denotes complex conjugate

(prime) } unless referred to above denotes
(double prime) J differentiation

denotes the variation of a functional
denotes summation

denotes proportional to

denotes the transpose of a vector

underlined symbols denote vectors or matrices

Notation for PART II (including Appendix F)

In Part IT tensor notation is used whereby subscripts - for example

i, J or k — denote the direction of components.

variables are used:

body force

cosine of the angle between the boundary normal and
1 coordinate axis

traction
displacement

position of the point force in kernel function

The following tensor



strain

€., .

1J

g. . stress

1J

£ position of the point at which the kernel function

is evaluated

Tensors referring to the kernel function are denoted by the superscript
* and have an additional subscript (before other subscripts) which

indicates the direction of the point force.

A subscript preceded by a comma (e.g. u, J.) means partial differentiation
’

with respect to the coordinate component Xj . A repeated suffix implies

summation.

The following superscripts may also be used:

K corresponding to the Kelvin solution
© complementary part of the kernel function (added to
Kelvin solution yields the kernel function)
mor n pertaining to the m'th or n'th node or element
P

pertaining to an internal point

Boundaries are denoted by S with the following qualifiers:

none complete boundary of the problem

n (subscript) n'th boundary element

* (superscript) boundary included in the kernel function
H {(subscript) part of the boundary of the problem co-

inciding with S*

! (prime) remainder of the boundary of the problem

Other symbols:

radius of circular hole

a
bi {see above)
A matrix of the coefficients of the unknown tractions
or displacements
Ly coefficient of displacement in Somigliana's identity
(6.17). A superscript may denote the coefficient for
a particular element.
Dlij (italic) function defined by equation (6.32)
E Young's modulus of elasticity

Xi.



f arbitrary function

F vector of right-hand sides in the simultaneous equations
& omn coefficient of the tractions defined by equation (6.24)
G shear modulus
G matrix of the traction coefficients
hklmn coefficient of the displacements defined by equations
(6.22) and (6.23)
H matrix of the displacement coefficients
i /1
i,J,k,2 integers defining coordinate directions
K number of dimensions of the problem (2 or 3)
¢ stress concentration factor
L complex number = %l + ilz
2y (see above)
m element (or node) number
n node (or element) number
N number of elements and nodes
r radial polar coordinate
S boundary (see above)
Siij (italic) function defined by equation (6.33)
T, (see above)
\ region of the problem
s (see above)
w radius of annulus or half width of square plate
X5 (see above)
Z complex number defining position of point in plane
(= El + iEZ)
2, complex number defining position of the point force
(= X+ ix2)
61j Kronecker delta. See equation (6.5)
§(x=£) Dirac delta function. See equations (6.13)-(6.15)
€53 (see above)
€ref percentage difference term for comparing two values of
stress. See equation (5.1) for definition
] angular polar coordinate
K = %f% (for plane stress)
= 3-4v (for plane strain)
v Poisson's ratio
A Lamé constant given by equation (6.3)
A equivalent constant for plane stress applications

see equation (6.8)

xXii.



£ (see above)

m pi = 3.1415927
o.. (see above)
1J
Oo externally applied stress
or, 04 radial and tangential components of stress
=6 i 6§
Xk complex number 1K + 1 ok
¢k complex potential for the kernel function with the
wk point force in the k direction
e infinity

Other notation:

n natural logarithm
Im denotes imaginary part of complex number
Re denotes real part of complex number

- {bar) denotes complex conjugate

. .
(prime) } unless referred to above denotes
" (double prime differentiation with respect to z
) denotes summation
. (subscript) denotes partial differentiation with respect
»J to x.,
J
€ denotes "is included in..."
r
é { rav(g) denotes integration over V with respect to the variable &

underlined symbols denote matrices

xiii.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 Background to the work

The presence of holes or notches in structural components
increases the nominal stress in these components by a factor, Kt’
known as the stress concentration factor [1.1]. The aim of this work

has been the development of accurate methods for determining Kt in a

wide variety of configurations.

The need for accurate estimates of stress concentration factors
has arisen in particular from studies in fracture mechanics. Fatigue
damage may be caused by the initiation and growth of cracks near stress
concentrations when the structure is subject to cyclic loading. Since
these cracks may appear early in the life of the structure, or indeed
may occur in manufacture, the fatigue life depends on the rate at which
the crack grows, and to determine crack growth rates the stress intensity
factor for the crack must be known. Stress <ntensity factors characterise
the stress field near to a crack tip and values for most simple config-
urations have been collected in reference manuals [1.2-1.4]. For short
cracks - and for most of the life of a component the crack will be short-
simple methods of determining the stress intensity factor [1.5,1.6] may
be used even for complex geometries, provided that data is available for
the stress concentration factor or, in the case of weight function
methods, the stress distribution over the crack site in the absence of
the crack. The recent compounding method for determining stress intensity
factors [1.7-1.9] also requires knowledge of the stress concentration
factor at the site of the crack if there is significant interaction
between the boundaries of the configuration [1.10], (e.g. when the hole
is close to the edge of the component). Furthermore since the crack
growth rate depends on the stress intewnsity factor raised to a power
(typically 4) the stress concentration factor must be known accurately
(1%-3%) for these methods to be of use. In fact there are many classes
of problem (e.g. finite plates with holes, pin-loaded lugs) for which
stress concentration factors of the required accuracy are known for
relatively few and only the simplest geometries. Even where they are
known the stress distribution, which is required by some methods for

evaluating the stress intensity factors of cracks, may not have been



included. Hence there is a need for an accurate, versatile and
convenient method for determining stress concentration factors and

the stress distribution near to holes and notches.

For methods to be applicable to a variety of complex structures
with several interacting boundaries and varied lcading conditions, a
numerical method of stress analysis is required. Broadly these may be
divided into three main types: finite difference methods, finite element
methods and boundary element methods. The finite difference method is
perhaps the most straight forward and historically was developed first
[1.11]. By dividing the region of the problem with equally spaced nodes
throughout ,the governing differential equation may be solved in terms of
values of stress or displacement at the nodal points. However the
method is not suited to problems where there are high stress gradients,
such as occur at holes or notches, since the nodes must be closely spaced
to model the region of stress concentration, and consequently the total
number required for an accurate representation of the solution becomes
very large. For this reason finite difference methods have been largely
superseded by finite elements [1.12-1.13] for all but specialized
applications, and the two methods developed in the present work are

based on the finite element and boundary element methods.

The finite element method is widely used in all branches of continuum
mechanics and since its inception for stress analysis [1.14] it has been
developed to include many variants. The basis of the method is that the
region of the problem is divided into small elements of simple shape (in
two dimensions usually triangles or quadrilaterals) which are assumed
to be interconnected only at a discrete number of nodes. A '"shape
function'", for example a polynomial, is used to represent the stresses
or displacements within the elements in terms of the nodal values of
either displacements, stresses or both, depending on the particular
formulation. An approximate solution for these nodal unknowns is
obtained by applying a weighted residual technique or variational
principle (for example minimizing energy) to give a set of symmetric
banded simultaneous equations [1.15, 1.16]. The technique is extremely
powerful and has been applied successfully to many different problems

including three-dimensional, anisotropic and non-linear cases.

o



Some of the considerable amount of work done with finite elements
for two dimensional elastic problems with high stress gradients is
reviewed, along with other methods, in section 1.2. In developing a
new method for stress concentrations near holes, as described in Part
I of this work, certain drawbacks of the finite element method are
avoided. Firstly in areas of steep stress gradient, such as found at
stress concentrations, the finite element method usually requires a
very fine mesh to obtain acceptable accuracy. This is expensive in both
data preparation time and run time on the computer. Furthermore the
simplest finite element methods used constant strain triangular elements
with nodal displacements as unknowns. This means that to estimate the
stress at any boundary (the edge of a hole for example) the value must
be extrapolated from the average stress in the elements near to the
boundary, introducing a further source of error. By incorporating into
the finite element scheme known elasticity solutions, such as that for
an infinite sheet with a hole, the new method proposed and developed in
this thesis increases the effectiveness of finite elements for stress

concentration problems.

In recent years boundary element techniques have gained considerable
acceptance as a preferred alternative to finite elements [1.17, 1.18].
As the name suggests these methods require elements on the boundary of
the region only and thus the dimensionality of the elements is reduced
by one. The simultaneous equations, which must be solved to give the
unknowns on the boundary, are derived from integral equations (hence the
alternative name, '"boundary integral equation" methods), and although the
matrix formed is not banded as in finite element methods, it is much
smaller than would arise with finite elements for most problems. Once
the equations are solved the values of stress or displacement at any
interior points may be calculated. However a disadvantage of the method
for stress concentrations, where stresses must be evaluated at boundaries,
is that this is usually more difficult and less accurate than for interior
points. In Part II of this work a boundary element method is formulated
incorporating modified 'fundamental solutions'" (elasticity solutions for
a point force in a given region). These fundamental solutions become the
"kernel functions'" in the integral equations. The boundary conditions
on the part of the boundary where the stress concentration factor is

required are satisfied exactly in these new fundamental solutions and



this enables this part of the boundary to be included without using
boundary elements. Thus the required stresses may be determined as

accurately as at interior points and the number of elements needed is

reduced.

1.2 Review of theoretical methods and solutions

The existence of high stress near geometrical discontinuities has
been appreciated for many years and investigations of stress concen-
trations, both experimental and theoretical, were begun during the last
century [1.19-1.21]. Since that time an immense volume of work has been
published on the subject and this review is aimed at highlighting
some of the more important work. Reviews of general methods of obtaining
stress concentrations [1.22] and of analytical methods in particular,
[1.23, 1.24] have appeared in the literature and several collections of
the solutions obtained have been made [1.1, 1.25-1.31] . The aim of the
present survey is to consider the various theoretical methods available
for obtaining stress concentration factors and to compare them with the
finite element superposition method (FESM) and the modified boundary
element method (BEM) which are developed in Parts I and II respectively.
The review is limited to methods applied to two dimensional configurations
of elastic, isotropic and homogeneous materials with in-plane loadings.

An assessment is made of the relative merits of the methods, the accuracy
(where known), whether the methods may be extended to more complex
geometries or materials (e.g. three-dimensional configurations, anisotropic

materials, etc.) and, in general terms, their theoretical basis.

1.2.1 Exact Analytical Methods

The solution by Lamé [1.19] to the case of a hollow cylinder
subjected to uniform pressure on the inner and outer surfaces, was the
precursor of many of the analytical solutions to stress concentration
problems. It was based on the mathematical theory of elasticity which
was formulated, in a systematic way, during the first part of the last
century by Navier [1.32], Cauchy [1.33] and others. The introduction by
Airy [1.34] of a formulation using stress functions led to important
solutions, including those for an infinite sheet in tension containing
a traction-free circular hole [1.20], a traction-free elliptical hole
[1.35] and a loaded circular hole [1.36]. The configuration of an
elliptical hole in an infinite sheet in tension was first solved by

Kolosov [1.37] who introduced two most important concepts, complex
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potentials and conformal mapping. This led to the development of a

most powerful analytical method for elasticity problems and much more
work was done using this approach by the Russian school, notably
Muskhelishvili [1.38—1.40} and co-workers. The technique remained
unknown outside Russia for many years and was later used independently

by Stevenson [1.41, 1.42] and others [1.43, 1.44] for stress concentration
problems. Examples of other solutions obtained using Muskhelishvili's
method are: infinite or semi-infinite plates in tension containing deep
hyperbolic or shallow semi-elliptical notches [1.31], and point forces
acting in an infinite plate containing a circular [1.45] or elliptical
[1.46] cut-cut. In spite of the powerful nature of the method and the
usefulness of the solutions so obtained, only a few configurations have
been solved in closed form, and general solutions not in closed form
(e.g. [1.47]) require much analysis to obtain a particular solution,

even assuming that the series involved converge. For this reason
approximate methods for calculating the stresses have been developed

and applied to a much wider range of problems than is possible using

an exact analytical technique. However the exact methods are most
important in the development of approximate techniques and in the present
work exact analytical solutions based on the methods of Airy [1.34] or

Muskhelishvili [1.38] are incorporated into numerical methods to improve

their efficiency.

1.2.2 Approximate Analytical Methods

Approximate methods such as the "alternating technique" have been
used to determine Airy stress functions from a series representation,
and hence to obtain the stress in, for example, an infinite strip with
a central circular hole [1.48]. The basis of this method was that
separate parts of the boundary (e.g. the hole and the straight edges of
the strip) were considered alternatively. At each iteration of the method
residual stresses occurred on the other part of the boundary, which were
then cancelled by the next iteration, leaving smaller residuals on the
first part of the boundary. This was continued until an acceptable
accuracy was obtained. Approximate solutions for plates and strips
with circular holes [1.49-1.52 ] and for loaded holes in strips [1.53-
1.55] have been produced by Howland and others in a similar manner. The
method was extended for a strip with an asymmetrical hole by Ling [1.56]
who also obtained the solution for an infinite sheet loaded in tension,

perforated by two equal holes [1.57, 1.58].



Isida [1.59-1.65] solved several strip configurations using a
"perturbation' method based on the alternating technique used by
Howland. the solutions included those for strips containing an
eccentric circular hole [1.59,1.61], elliptical hole [1.62, 1.63]
and symmetrical notches [1.60]. The solution by Shibuya et al [1.66]
for a plate with a conical hole is based on a similar principle but
extended to 3 dimensions by using a least-squares approximation to

satisfy the boundary conditions.

Approximate solutions for plates with different shaped holes have
also been obtained based on Muskhelishvili's complex variable approach
with conformal mapping. Many variants of the method exist, but generally
the hole or notch is mapped on to a unit circle, the complex potentials
are determined from the boundary conditions, usually in a series form,
and truncation of the series yields an approximate solution. Savin
[1.26, 1.27] and many other authors have obtained solutions for plates
perforated by circular holes [1.67-1.69], square, rectangular or
triangular holes [1.70-1.74], reinforced holes [1.75-1.77] and multiple
holes [1.78-1.80], and many of these solutions are collected in the two
monographs [1.26, 1.27] where many anisotropic and elastic/plastic
problems are also treated. The same approach has also been used for

some edge notch problems [1.81-1.83].

Results from these approximate analytical methods are generally
accurate to within 2% but each problem must be formulated individually
and particular mapping functions must be found for each configuration.
This may not be possible especially if there are discontinuities in the
curvature of the notch. Often there are problems of convergence also,
such that an appreciable improvement of accuracy can only be achieved
by including a great many more terms in the series representation of
the potentials, and this is particularly true when the configurations
are of finite size, rather than infinite planes or strips. The
importance of the methods to the present work therefore, is not that
they offer an alternative to more general numerical techniques, but
that several accurate solutions have already been obtained that may be
used for comparisons in confirming the accuracy of any new method. In
particular solutions by Howland [1.48], Hengst [1.52], Knight [1.54] and

Isida [1.62] have been used in the present work for this purpose.



1.2.3 Numerical Methods

The advent of powerful digital computers meant that the emphasis
in stress analysis moved from analytical methods to numerical methods.
Of these, mention has already been made of the finite difference,
finite element and boundary element methods. The '"collocation method"

however is another important technique.

The collocation method [1.84] consists of using stress functions
or complex potentials in series form, the coefficients of the series
being unknown. The series are truncated and the coefficients determined
by matching the boundary conditions at a finite number of points on the
boundary. Hooke [1.85, 1.86] used this method for two-dimensional and

axisymmetric three-dimensional notch problems under tension and bending

loads.

The collocation method has been combined with conformal mapping
by Bowie and others [1.87, 1.88] and further improved by partitioning
the region of the problem into separate sub-regions [1.89]. Solutions
for various shapes of edge notches in semi-infinite plates and holes in
infinite plates have been obtained using this method [1.90]. The
collocation method may also be combined with other numerical techniques,
such as the finite element method [1.91], which gives added flexibility
in its use. Typical accuracy for the method is generally in the region
of 1% [1.92] but problems with convergence, ill-conditioning or
sensitivity to the number and distribution of the boundary points may
increase the error. Consequently the collocation method is not as
versatile as some other numerical methods and it has received relatively
little attention compared to finite or boundary elements. Some work is
continuing on the collocation method for the evaluation of stress intensity

factors, at the University of Southampton [1.93].

A drawback of the analytical methods, and to an extent the
collocation and finite difference methods, is a lack of versatility in
analysing a wide variety of different geometries. It is in this respect
particularly that the finite element method and boundary element method
are so effective and this explains the large amount of work which has been

done in the last twenty years, especially on the finite element method.



General reviews of work in finite elements have been presented, for
example, in several of the standard texts [1.12, 1.13, 1.94]. Here,
however, having mentioned some of the problems of conventional finite
elements, particular attention is paid to the development of methods
combining both finite element and continuum concepts, of which the

finite element superposition method formulated in the present work is

an example.

In applying conventional finite element methods to configurations
with steep stress gradients, several difficulties occur. Many elements
are required to model the stress field accurately and consequently it
is expensive for data preparation, computer processing and post-processing
of the results. In addition to obtain a value of stress at the boundary
some sort of interpolation from interior points may be required. Even
higher order elements are not always an advantage since although the
number of elements would be reduced (or the accuracy increased) more
nodes are introduced per element and this may lead to a similar number
of unknowns in the problem. Much work has been done in proposing
modifications to the finite element scheme to overcome these problems,
particularly for crack problems [1.95]. Isoparametric elements [1.96],
different variational principles [1.97], and hybrid methods [1.98]
have all been used to improve the method for cracked configurations.

The forerunners of the present work, also using methods formulated for
crack problems, superimposed analytical trial functions, corresponding

to the singular stress field around a crack tip, over a region of the
configuration. This region varied from a special crack-tip element
[1.99-1.103] to the whole region of the problem [1.104-1.108] or, as

in the present formulation, a '"special region' including several elements
around the notch or crack [1.109-1.111]. A superposition approach was
proposed for stress concentrations at smooth cut-outs by Rao [1.103]
using large '"primary" elements in the region of the notch,and by Schnack
[1.111] who combined the use of augmenting functions with six-node hybrid
elements. The aim of these methods is to incorporate known solutions

for the stress field near to a crack or notch in an infinite region, into
the finite element scheme. Thus the finite elements model only the
difference between the infinite region solution, scaled by arbitrary

coefficients, and the exact solution for the configuration being analysed.



Since this difference will be relatively small in the region of
interest if the trial functions are appropriate to the particular
problem, the errors introduced by modelling the region with a coarse

finite element mesh and interpolating values of stress on the boundary,

will also be small.

The finite element superposition method presented in Part I is
a development of this work in that trial functions, derived from known
elasticity solutions to appropriate configurations, are combined with
constant strain triangular finite elements. Loading on a hole boundary
is incorporated into the method using similar elasticity solutions,
known as loading functions, which remove the need to represent loadings
as a series of nodal forces - often a further source of error in
conventional finite element analysis. The trial functions for config-
urations with circular holes are based on the general Airy stress
functions, rather than solutions for infinite regions, which means that
the effects of the other parts of the boundary may also be included in
the trial functions to some extent. The accuracy and small number of
degrees of freedom that result from well chosen trial and loading
functions, and the versatility of the finite element method in general

combine to make this a powerful method for the solution of stress

concentration problems.

The boundary element method was proposed not long after the finite
element method, but the first practical applications of the method by
Jaswon and Symm [1.112, 1.113] appeared in 1963 and initial development
was much less rapid than finite elements. This may possibly be due to
the slightly greater mathematical complexity of the formulation, and the
fact that it is less easily understood intuitively. However the method
has several advantages over finite elements, the most important being
that since only the boundary of the region need be divided into elements
the dimensions of the elements are reduced by one, e.g. from a three-
dimensional volume to a two dimensional surface. The method was first
used for elastostatic problems by Cruse and Rizzo [1.114, 1.115] and
in recent years an upsurge in interest in the method has taken place due
to its claimed superiority over the finite element method for many
applications [1.116, 1.117]. Broadly the method may be divided into two

main types: direct formulations {1.118-1.121] where the unknown functions
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in the boundary integral equations are the physical variables of the
problem (e.g. tractions and displacements), and indirect formulations
[1.122-1.125] in which the integral equations are expressed in terms
of a "density function', which in itself has no physical significance
but from which the physical parameters may be derived at any'point in
the body. A form of indirect method, called the 'body force method"
developed by Nisitani [1.126] has been used for many notch and crack
problems [1.46, 1.127-1.129] . These include an infinite sheet
containing one or two rows of elliptical holes, a semi-infinite plate
containing variously shaped notches, a row of elliptical holes or a
row of notches, and an infinite strip containing two symmetrical semi-

elliptical notches.

Much of the recent interest in boundary elements, as with finite
elements, centred on improving the method for configurations with
cracks. Cruse [1.130] proposed including the crack explicitly in the
fundamental solution from which the integral equations are derived so
that the crack need not be modelled by boundary elements, and this
proved most successful. In the case of the body force method a similar
approach was adopted by Murakami and Nisitani for elliptical holes
[1.131, 1.132] and, using a direct boundary element method, Telles and
Brebbia [1.133-1.134] used the approach for configurations containing
a long straight boundary. The success of these methods suggested that
a similar approach could be used for a direct boundary element
formulation with a fundamental solution which satisfied the boundary
conditions of a circular hole. This idea is the basis of the work
presented in part II of this thesis. Not only does this approach reduce
the number of elements required but also the stresses at the hole may
be calculated directly and with greater accuracy than would be possible

with standard boundary elements.
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1.3 Layout of the thesis

The main body of the thesis is divided into two parts: Part I
comprising Chapters 2 to 5 is concerned with the work on finite elements
and Part II comprising Chapters 6 and 7 concerns the boundary element

work. Chapters 1 and 8 are general to both aspects of the work.

CHAPTER 2 presents the formulation of the finite element super-
position method. The concept of trial functions derived from known
elasticity solutions is introduced for configurations with loaded or
traction—free holes. In addition to the trial functions the new loading
function is incorporated into the method which is the (known) solution
for an infinite sheet with the specified loading on the hole. A
variational principle is used to determine the arbitrary coefficients
of the trial functions, the finite element unknowns (nodal displace-

ments) and certain correction stresses which arise in elements near

boundaries.

CHAPTER 3 deals with the analytical elasticity solutions which
are required by the finite element superposition method, i.e. the trial
functions and loading function. Two trial functions are given for
elliptical holes based on an analytical solution using complex stress
functions and a conformal mapping function. For circular holes the
generalised solution for the Airy stress function in two dimensional
polar coordinates is used to specify a general set of trial functions.
The generalised solution is also used to give the loading function,

with a distribution of tractions round the hole boundary specified using

a Fourier expansion.

In CHAPTER 4 the way in which the method is implemented on the
computer is explained. The structure and the main processes occurring
in the program are discussed and a brief resume is given of how the

program and itz peripheral facilities may be used in practice.

The results obtained using the finite element superposition method
are presented in CHAPTER 5. Confirmation of the accuracy of the method
for traction-free holes is carried out by comparison with other estimates

for stress concentration factors in rectangular plates with holes. The
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effect on accuracy of such parameters as the finite element mesh size,
number of trial functions and size of the hole is determined and new
results for the stress concentration factors of elliptical traction-
free holes in square plates are given. Various distributions for the
tractions on loaded holes are suggested and compared. Estimates for
stress concentration factors for loaded holes determined by the finite
element superposition method are compared with some known values and

finally new results are obtained for rectangular lugs with loaded holes.

In CHAPTER 6 the formulation of the boundary element method is
presented and the modification to the method, by using fundamental
solutions which include the boundary near the stress concentration, is
explained. The implementation of these modifications in the computer

program 1s also discussed.

The results given in CHAPTER 7 were obtained using the modified
boundary element method. The advantages and limitations of the modified
method are shown by comparing the results from the two methods for an
externally pressurized annulus. The accuracy of the modified method
for annuli and square plates with various sizes of circular hole is
shown by comparing the estimates for stress concentration factors from

the boundary element program with known values.

CHAPTER 8, the final chapter, contains a summary of the conclusions
from both the finite element and boundary element work. Comparison
between the methods and their relative merits is made and some possible

directions for future work are suggested.
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PART I

THE FINITE ELEMENT SUPERPOSITION METHOD



_CHAPTER 2

FINITE ELEMENT FORMULATION

2.1 Introduction

The finite element superposition method (FESM) used in this work
is based on a method originated by Morley [2.1] and extended by
Bartholomew [2.2, 2.3]. The basis of the method is that the piece-wise
linear displacement field of constant strain finite elements may be
augmented by the superposition of one or more known elasticity solutions,
referred to as the '"trial functions', which are weighted by arbitrary
coefficients.* The trial functions are elasticity solutions which
satisfy exactly conditions of equilibrium and compatibility but not all
the boundary conditions of the problem. They are chosen such that they
give rise to stresses and displacements closely matching those in the
region of the stress concentration. For example the known solution for
a uniformly stressed infinite sheet containing a circular hole may be

used as a trial function for a finite plate loaded in some manner with

a similar hole.

Bartholomew has formulated this method for traction-free cracks.
In the present work the method is extended to apply to configurations
with circular or elliptical holes which may be traction-free or subjected
to specified tractions. To deal with loaded holes another known
elasticity solution referred to as the "loading function' has been
introduced. The use of this function removes the need to represent the
tractions at the hole in the piece-wise constant form usually employed
by the finite element method, thus avoiding the introduction of
inaccuracies at the very point where the stress concentration factor is

to be determined.

The loading function corresponds to the elasticity solution in

which the hole is subjected to the tractions for which a solution is

* The term "trial function" may be used of any function used to approx-
imate the exact solution. In this sense the piece-wise linear displace-
ment field is also a trial function, however here the term is used of
the known elasticity solutions with which the constant strain finite
element field is augmented.
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required but the extent of the sheet is assumed to be infinite. The
trial functions, on the other hand, are elasticity solutions for a
plate with a stress-free hole under various different remote boundary
conditions which need not necessarily correspond to an infinite region.
The superposition of the loading function and these trial functions
therefore, results in the traction boundary conditions on the hole
being satisfied exactly and leaves residuals remote from the hole which

are corrected by the constant strain finite elements.

It has been shown [2.3] that in the case of cracked configurations
it is advantageous to limit the superposition to a "special region"
which is larger than a single special element but smaller than the
complete region of the problem. For this reason the present formulation
continues the use of a special region over which the trial functions and

loading function are superimposed, constant strain elements alone being

used in the exterior region.

The trial functions and loading function for specific classes of
problem are determined in Chapter 3. The details of how the method is

formulated are outlined in the remainder of this chapter, with additional

material in Appendix A.

2.2 Notation for the boundaries

The configuration to be analysed by FESM may be represented

diagramatically as in figure 2.1. The two dimensional body containing

a hole is denoted V and the boundary, including the hole boundary, is
denoted by S. The boundary S is made up of ST’ where traction boundary
conditions are applied, and SK’ where kinematic boundary conditions are
applied. Since a superposition principle is to be used in the represent-—
ation of load on the hole boundary, it is assumed that the hole forms
part of ST. The geometry of the configuration is defined relative to

Cartesian coordinates (X,Y) with an origin at O.

The variational principle, from which the finite element solution
is derived, will be represented in terms of volume and boundary integrals
over various parts of the configuration. Since a special region is
introduced, over which the trial functions are to be superimposed,

further subdivision of the boundary S is required (see figure 2.2).
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Boundaries adjacent to the special region are denoted with a prime ('),

hence Sk for example

The traction boundary adjacent to the special

region is divided into two parts, Sé the hole boundary and S% the

remaining traction boundaries.

This distinction is necessary in the

present work due to the introduction of the loading function to represent

the loading on the hole.

region and exterior region is denoted S

The notation for the

boundaries may be summarized therefore as follows:

and S, =

where S? denotes that part of the traction boundary in the exterior

SK +
Sé +
S? +

ST
S% +
S+

region. The complete region V is divided into triangular elements.

2.3 Displacement and stress fields

The basis of FESM is that the displacements,

I
g

d , and stresses,

The "interface boundary'" between the special

(2.1)

of the approximate solution are a superposition of a constant strain

finite element field and a set of known elasticity solutions with dis-

*
placements and stresses denoted u,

and

*

9 respectively. The integer

i takes the values 1 to k for the trial functions, k being the number

of trial functions, and i=0 for the loading function. (Underlined

symbols are used throughout the text to define both vector fields and

matrices).

The assumed form of the displacement field U on the boundaries

of the finite elements may therefore be expressed as follows:

~ F

i = u
i

~ F

u = u

~ F -

i = u = u
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within the special region,

1 L]
on ST and SH

in the external region,

1 1
on SR and SK

on S
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where ai is the coefficient of the i'th trial function,

u are the prescribed displacements on SK’

and ET are constant strain finite element fields which take the
same values as Ej at the finite element nodes and are linear bitween
nodes. The reason for introducing these fields, EI, is that <Ei - Ei)
is zero at the nodes thus nodal displacements are given simply by

HF in both the exterior and special regions and the displacement field,

as defined by equation (2.2) is compatible across all element boundaries.

As is usual in the development of finite element methods the piece-
wise linear displacement fields EF and H; are expressed in terms of
vectors, QF and gz respectively, containing the components of displace-
ment at the nodes. The strain within an element is constant from these

fields and thus may be expressed in terms of the nodal displacements as:

'\
F F
—B-N Q_N = EN
) (2.3)
- .}.
and By Oy, - &,
1 1

where gg and gﬁ contain displacement components for the N'th element
only, EN is thé "element strain matrix" and N and 5& are the
constant strain vectors (three components in plane stress} for the

respective fields. The matrix B is obtained from the geometry of

—N
the element and is given ; as in reference [2.4], by:
B B,.\, B,,\, B 2.4
By = By Broyr Brg)l (2.4)
where a typical sub-matrix, E(l) say, is:
= 1
(1) — 2a (Yp-¥3) 0
0 -
(X3 X2) (2.5)
(X4-%5) (Y ~Y,)

and A is the area of the element, Xn’ Yn are the coordinates of the

n'th node and the nodes are numbered anti-clockwise round the element.
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The stress field gI may now be defined in the interior of

each element as follows:

[Ke)
i

ja
+

k *
1 F Jooa, (0. - o+ %) In the special region
=0
(2.6)
I F .
= 0 In the external region
. F * + .
The stress fields ¢ , 91 and 91 correspond to exact solutions for
F * .
the displacement fields u , u, and EI respectively. The terms gi
constant within elements, must be included in the special region due to
linear displacements being defined on the boundaries Sk and Sé to
ensure compatibility. The terms 9; therefore are non-zero only in
special region elements adjacent to kinematic or interface boundaries.
In spite of the many terms in equation (2.6a) it may be seen that it is

.{.

simply the superposition of constant finite element fields, g, 9

3t
and g; , with the trial function fields o

Again following standard finite element methods, the constant

stress fields for an element may be expressed in terms of strain. Thus:

-~
F F
Aoy = &y
+ +
Aoy = ey f
i i
c c
and A 9y T En J (2.7)
i i
F t c F t c .
where oy 9y ' 2y and EN ' &y 0 En contain the stress and

strain componen%s respéctively tor thelN'th eiement, and

1
A = I 1 -V 0
-V 1 0
0 0 2(1+v) (2.8)

for plane stress. E is Young's modulus and v is Poisson's ratio.
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In order to determine displacements and stresses from the
F
equations (2.2) and (2.6), the nodal displacements, g , the trial
function coefficients, ai, and the correction stress fields, gi ,

must be known. These are determined using a variational principle.

2.4 The variational principle

A variational principle vses a scalar quantity (a "functional'')
which may be defined in terms of integrals of the unknown parameters
in a continuum problem - in this case displacement and stress. The
functions of the parameters which make the functional stationary is
the solution to the problem. By limiting the possible functions of
displacement and stress to a set of trial functions (as above) with
finite degrees of freedom the problem may be reduced to a set of

simultaneous equations.

The specification of both displacements and stresses by equations
(2.2) and (2.6) means that the variational principle must allow for
trial functions to be specified for both parameters. Such a variational
principle derived from a modified principle of minimum complementary

energy (see Appendix A) was given by Pian and Tong [2.5]:

T ds } (2.9)

Aﬂ
|
o
la
+
|
]
e
wn
|
|
jce
-3}

where UN(QI) is the strain energy of the specified field for the N'th
element, QI and II are respectively the interior stress and corresponding
tractions for the element, g is the displacement on the complete element
boundary, which is denoted by SN’ and ?_ are the prescribed tractions

on the element traction boundary ST . The superscript ( )T denctes the

. N . . .
the transpose of a vector or matrix. The summation is carried out over

all the elements.

In general the function U( )} is defined as the strain energy,

0,90
—1=2
in the region V bounded by the surface S, due to two stress fields 9

and gy - Thus:

Ulgyr g,) = % J ()" g, v (2.10)

where igs the strain due to the stress field Ope

£o
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If only one parameter is specified to the function the two fields in
equation (2.10) are understood to be the same. Similarly the function
may be written with displacement rather than stress fields as the
variables. Provided that for one field, El say, the stresses are

in equilibrium over V and for the other the strain field is compatible

over V, the volume integral may be reduced to a surface integral using
the divergence theorem:

,
VG900 = 5 | (1) u, ds (2.11)

1 and u, are the tractions and displacements respectively of

the two fields and there are no body forces. Using these properties of

where T

the strain energy function and substituting equations (2.2) and (2.6)

into equation (2.9) the following form of the functional is obtained:

F f F.T =
i = U(u) - J (u )" T ds
e - S =
K ' F K K E c cC
- 2 ] .U (W,u, )+, Jao, [U (u, u,)-U (u,u.)]
P20 1 Sp.R 120 j=0 1] Sp R i,—]J Sp.R i —]
k r
F.T _* f ¥ 4T
+ 1 i [ JS'+S’ (u) Ii ds JS' S! (—1_ El) T as]
i=0 T "H T "H
k k f * *
+ = 7 7 oo J (u, - ZQZ)T T, ds
i=0 j=0 - Y S1+S),
k f T % f F.T % ! * 4+ T F
L oay | ) (u)  T. ds + J (u) T, ds - J (u,-u T ds]
=0 s/ X SRV
k K
1 f ¥ T * f *
+ ) o0y [ - > J (gi) T, dS + J (Ei~u.5T 7t as
i=0 j=0 S§+Sk S§+S‘
r * T
-] (u. —uh)’ 1 as (2.12)
Styst Tt -t —J
R K

where T, with the appropriate subscripts and superscripts, denotes the
tractions on a boundary due to the corresponding stress field and USp R

is the strain energy function evaluated in the special region only.
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The prescribed tractions on the hole boundary Sé are applied
explicitly using the loading function. This function is defined such
that:

a,. T = i (on the hole boundary Sé) (2.13)

Since GO’ the coefficient of the loading function, is constant it is
not a trial function. It is included in the functional with the trial
functions but the coefficient is determined by the magnitude of the

loading on the hole and thus it does not appear as an unknown in the

final system of equations.

The trial functions are chosen to satisfy gzero traction conditions

on the hole boundary, i.e.:

T, = O (on Sé, for i=1 to k) (2.14)

By substituting equation (2.13) in the functional, equation (2.12), the

terms which relate to the traction boundaries may be rewritten as:

r _ f * f %
_ WHT T ds - o | WHT " as + | WHT ot as
’sehs, - 0 Jg ~ OJgi = 70
75T
k , k
F.T _* f F.T ¥ f *
+ o J ()" T, ds + ¥ o [J () T, - | (gi—gT)T T ds]
i=1 S! i=0 5, 'sy *
k kK k
f * +.T * r 3* 3*
- 7 &0 J (Ei—gl) T, ds + ) ) a.a J (gl—g+)T T. ds
i=0 S/ i=0 j=0 * 9 Jgi o
kK k
r * +. T * 1 r ® T *
+ 7 o a [ J (El -u,) T,ds -3 J (Bi) T. ds ] (2.15)
i=0 j=0 *J g J S1+8), ’

Further substituting equation (2.14) in the above expression eliminates

all but the five underlined terms and thus the functional may be written:
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a. U u ,u
0 1 Sp.R 1 i=0 J:O

f % r * +
F\T ( T oF g

(2.16)

2.5 Determination of the correction stress fields g?

The correction stress fields are determined by variation of the

functional equation (2.16), with respect to gi. The terms which depend

C
on Oi are.

K K T ¢
bl a.o. [ -U (67,0 (u;-u;)" T ds | (2.17)

L
i=0 j=0 ' 1S}

. C .
Since the stresses 91 are constant over each element, the expression

(2.17) may be expressed:

( Sp.R) K

K c,T c c,T
bl L esa [ talog) Aoyt - (o) LC]} (2.18)
N i-0 j=0 * 4 —Ni - T

where the summation is carried out over all elements in the special
region, t is the thickness of the elements in the special region and
o © i{s the vector of components of the correction stress field in the

=N1i
X and Y coordinate directions for the N'th element.

oo



Thus:

—Ni X1

T .
My (2.19)

TXYE being the shear component. L is the matrix which when pre-

multiplied by the vector (GNE)T gives the tractions on the part of

the boundary S§+S' adjacent to the element. 1i.e.

K
L = I cos ¢ 0
0 sin ¢
sin ¢ cos ¢ (2.20)

where ¢ is the angle between the X axis and the normal to the boundary.

Finally Qi is defined by:

. 3* +
g = o L (g 7~ uyy) 98
SR +SK
N N
f * +
J (u,. — u,.) ds (2.21)
Yi Yi
Sé +Sk
N N -

when the subscript N denotes the part of the boundary of the N'th
element and the suffices X and Y denote the components in the X and Y
coordinate directions respectively. At the stationary point the variation

of (2.18) with respect to the variables g ¢ (i =0 tok, N=1 to the

Ni
number of elements in the special region) is zero. Thus the components
of QNE may be determined, in terms of integrals of the known fields

E; and 51, by differentiating equation (2.18). They are given by:

C 1 -1
B c @ A LG (2.22)
where é-l is:
-1 E
A =
A o2 1 v 0
v 1 0
1
0 0 5(1—v) (2.23)

The integrals of equation (2.21) are carried out numerically using 6

'point Gauss quadrature.
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2.6 Determination of the nodal displacements g

The constant strain finite element part of the displacement field,

F .
uF, is defined by the vector g of its nodal components. The terms in

F
equation (2.16) which depend on u are as follows:

Kk
f T f F.T *
) - | WH' Tas + [ o (] ()" 1] as
€.s) i=0 S!4S!
T T T "R
f 3 +
— J (u, - EI)T IF das - 2 USp R (BF’Ei) } (2.24)
SR-«»SK

In terms of qF this may be written:

(2.25)

N

k
F.T F F.T F.T
(g ) Kg -(g) p+ )
where K is the stiffness matrix for the constant strain finite element
scheme and p and p, are vectors which may be considered as equivalent
nodal loads. K is assembled from the stiffness matrices of individual

elements as for conventional finite element metheds. Thus the first term

of equation (2.24) may be written:

-
) en ()T a7t (2.26)
a =N’ = =N
N
F.T T -1 F
or g ta(q)” [ By A~ By ] gy (2.27)

where the summation is over all elements. The element stiffness matrix
T -1
n A Byl
from each element the stiffness matrix K 1is obtained.

therefore is given by tA [E and by summing the contributions

The vector p 1is determined simply from the prescribed tractions
i {excluding the tractions on the hole boundary Sé). A uniform load on
an element traction boundary is distributed equally between the 2 nodes

on the element side.

Contributions to the vector b, however arise from the last three
terms in expression (2.24). From the first of these terms the following
equivalent nodal loads arise in an element with a part of the boundary

S% or Sé between two of its nodes, node (1) and node (2) say:
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(1) S ~
D. = t (1L - —) T. ds
o } (1) o *
on S% or Sé
(2)
o2 _ ¢ f = 1. ds J (2.28)
1 (l) SO 1

where s is the distance along the element side measured from node (1),

s, is the length of the element side and the suffix to Qi ) denotes

the node at which the equivalent load is considered to act. The integral
is of a known function and may be carried out numerically. The remaining

two terms of equation (2.24) may be written:

Sp.R
F.T
D T O R

. e } (2.29)

Z o~
[
=2

where the summation is carried out for elements in the special region and

the vector ENI contains the components of gz for the N'th element.

The expression (2.29) may be rearranged, using equation (2.22) and the

definition of the matrix QN (equations (2.3) to (2.5)), as:

Sp.R

C
¥ -
Lot (oni * 2y

£\ T F
) By 9y ! (2.30)

Thus the contributions to the nodal loads p. in the N'th element from

these terms are given by:

c, T
- tA (gNi) By
+.T
and - A (gNi) By J (2.31)

which may be evaluated when the stresses ENE and ENI are calculated

for each element in the special region.

Since the matrices K, p and p. in the expression (2.25) can be

determined, the stationary point may be found by setting the variation

of the expression with respect to gF as zero, thus:

a p (2.32)

=

o]
I

o
I
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The variables g and g. are now defined such that:

g = K'p (2.33)
and _q_i = ISWl Ei (2.34)

These simultaneous equations, subject to the kinematic constraints

e}
i
Ic

on S
and q, = O (2.35)

are solved on the computer using Choleski factorisation of the matrix
in banded form, as implemented by Morley [2.6] and others [2.7, 2.8].
The displacements g, as defined by equations (2.33) are those which
would arise from constant strain finite elements if no augmenting trial
functions were used. This "basic" solution may be used for comparison

in assessing the improvement in the final augmented solution.

F . .
The nodal displacements, g , written in terms of g and gi follow

from equations (2.32) to (2.34) and are given by:

. k
qg = g9- ] &, q. (2.36)

2.7 Determination of the trial function coefficients

Equation (2.36) may be substituted back into equation (2.25) and
hence into the functional, equation (2.16). Furthermore the following

terms from equation (2.16) may also be combined:

L c c
%50 Ugp pluyoty) = Ugy plug, uy)

(u,-u.)” T, dS } (2.37)
hat} =3

Since the stresses gz and gz are constant over each element the final

two terms of the expression (2.37) may be written:
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T * T
()" (u,-u.) ds = ! (og.) L C.
) S!+S! * N .
R K
r » + Sp.R T
and (17T | (u-u)ds = - T (.9 L¢
B styst 1T oo T
R K
Since, from equation (2.22)
C
= - tA
Lc; A gys
c + 1 c,T +
and (oyiv ong) 2 (ong)" 2 9yy o
the expression (2.37) may be written:
k k
t ot c ¥ c ¢
y v U - U U
ooty plug,ug) =2 Ug plofos) + Ugy plog,0.0d
i=0 0

or in terms of the stress fields:

k k

+ c t  c
oL oogey g plog-gys 05-04)
i=0 30

Thus the final form of the functional to be varied with respect

to the remaining unknowns oy (i=1 to k) is as follows:

k
1 T T T T T
— = _ v —
o= (@ Ka-(a) p+ L [-(g;)" Ka+ (g;) p+ (2 p;]
k k
1 T T
v v £
+ 7 yoaLa, | (a.)" Kg, - (g.) p. ]
120 j=0 ii 2 1 J i J
k f * +.T f - T * g8
) o, [ - J Bl~gi) T dS + J (w) ™ T, ]
i=0 S S
k k
f 3 T * * *
+ 77 asa. | (u,-u)" T.ds -3 J (w1 as
i=0 j=0 g g ) st Tt
t c e
U -
sp.r (23725 25795) ]

07

(2.38)

(2.42)

(2.43)



This is a quadratic expression in ai which may be written in matrix

form:

% (a"YD' o' = F' a' + ¢ (2.44)

where Q' is a square matrix, E' a vector and 9' the vector of coefficients,
all having (k+1) rows. The final term ¢ does not vary with o'. Variation

with respect to oy (i =1 to k) to determine the stationary point yields

a set of simultaneous equations:

Da = F (2.45)

where D, T and ¢ in this case have only k rows (omitting the loading
function coefficient o from g). D is a symmetric matrix where an element

di" of the matrix may be given in terms of the elements, dij’ of D', as:

dij + dji
dij = T (i, j =1 to k) (2.46)
Equation (2.46) may be verified by expanding the expression (2.44) and
differentiating. The coefficients of a in D', déi and dio (i = 1 to k),
contribute to the right hand side of equation (2.45) since ag is a

constant, and thus an element of F, fi, in terms of the corresponding

element of F', fi, is given by:

=1 to k) (2.47)

The line integrals in equation (2.43) are carried out using Gauss
quadrature over the boundaries S%, Sk and Sé in order to form the required
matrices D and F. A particular advantage of the present formulation of
this method, however, is that no approximate integration need be carried
out over the hole boundary Sé, which since it is curved might have intro-
duced either greater complication or inaccuracy. The boundary Sé appears
in equation (2.43) as part of S', but explicit integration may be avoided

as follows. Let the relevant terms, denoted dfj, be stored in the matrix

D , where

r #* T *
(u.) Ij ds (i,j = 0 to k) (2.48)

0,
Il
|
N

J 1 ' '
ST+SR+SK

Since from equation (2.14)
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J (Ei) T.ds = O for i =0 tok
1
S j=1 tok (2.49)
then:
t x
d?.:-—}—J Wt " as for‘{1:0tok
1] 2 g1 -
j =1 tok (2.50)

Thus only the terms d?o do not give the integral required by equation

* *
(2.43). Since Ei and I, are exact elasticity solutions and S' is a
closed contour

r * T * f * T 3*
J (u,)” T.ds = J (u.)” T. ds (i,j = 0 to k) (2.51)
st T st T

Therefore the terms dii may be substituted for the terms djo to give
the required integral in the matrix QS. The only term which may not
be corrected in this way is dio which is a coefficient of aé in the
functional. Since e does not vary this term is not required and thus
the potentially complicated integration of the trial functions on the

curved hole boundary is avoided.

The simultaneous equations (2.45) may now be solved to give the

coefficients ai.

2.8 Determination of the stress at any point

The nodal displacements gF, and hence the displacement field EF
are determined from equations (2.36). Equation (2.2) gives the dis-
placements, g, should they be required at intermediate points, and the
stresses may then be calculated from equation (2.6). The stress field
QF is determined for each element from the nodal displacements QF , the
trial function stresses 9; may be evaluated at any point from the known
analytical expressions for the trial functions, and the term (QI_QE)’
which is constant for each element in the special region would have
been calculated previously for each element in order to evaluate the
final term of the functional (2.43). All the terms in equation (2.6)

therefore are known and are used in evaluating the stresses at the

required points.
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2.9 Summary

In conclusion, the formulation of this method is based on a
variational principle which requires the specification of displacements
(on element boundaries) and stresses (within elements) in terms of
trial functions which are known elasticity solutions. Tractions on
part of the boundary (in this case the hole boundary) may be specified
using another elasticity solution, the loading function. Variation of
the functional with respect to the unknowns of the problem yields a
system of simultaneous equations. Some line integrals of the trial
functions and loading functions must be evaluated for the coefficients
of these equations but no integrations on the hole boundary are
necessary as a result of the loading function. The stress at any
point in an element may be determined from the solution to the
gimultaneous equations, the trial and loading functions and the
correction terms for the elements which will have been evaluated in

constructing the equation.
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CHAPTER 3

TRIAL FUNCTIONS AND LOADING FUNCTION

3.1 Introduction

The trial functions for use with the finite element superposition
method (FESM) are derived from two-dimensional elasticity solutions for
configurations which identically satisfy zero-traction conditions at
the hole or notch where the stress concentration is to be calculated.
Boundary conditions remote from the hole are not specified for the trial
functions. If the hole is loaded in some manner the tractions on the
hole must be represented by a loading function which is the exact
elasticity solution for an imnfinite sheet with the same hole and the
same loading on the hole as the problem to be solved and zero stress
remote from the hole. The superposition of trial functions and loading
function therefore satisfies the boundary conditions on the hole
exactly. For the method to work well the constant strain finite element
field, which ensures that the remote boundary conditions are approximately
satisfied, should introduce only small corrections to that part of the
solution resulting from the loading and trial functions. Thus an

important aspect of the method is the selection of suitable trial

functions.

In section 3.2 two trial functions are given for configurations
with elliptical (or circular) holes. A more general set of trial functions
for configurations with circular holes is given in section 3.3 and the
loading function for circular holes is given in section 3.4. The trial
functions and loading function are defined either in cartesian coordinates
(x,y) or polar coordinates (r,8) relative to axes with the origin, 0',
at the centre of the hole. The finite element geometry is defined in
cartesian coordinates (X,Y) relative to the "global" axes with a different
origin O and different orientation. The position of the hole and the

angle, vy, between the 0X and O0'x axes must therefore be specified in

each case.

3.2 Trial functions for elliptical holes

Two satisfactory trial functions may be obtained for configurations
with elliptical or circular holes from the known solution for a uniformly

stressed infinite sheet containing a traction-free hole [3.1].

-31-



The infinite region bounded by the ellipse:

XZ y2
= = 1 .
=z P (-1
where a and b are the semi-major and semi-minor axes of the ellipse
respectively, may be transformed to the unit circle, |g£]<1 , by the
conformal mapping function
1
z = R(g+uc) (3.2)
where z = x + 1y. The parameters R and p are given by:
a+b
R = >
a-b
and I (3.3)
For a circular hole R is equal to the radius of the hole a, and py = O.
The transformation (3.2) is single valued and it is important that its
inverse is also single valued. This is given by:
l -
¢ = IRy {z - ( »/z—ZR/u) (/z+2Rfu) } (3.4)
for u # 0, where /~ denotes the complex square root with a positive
real part (i.e. the argument of the square root, © say, lies in the
range - n/2 <0 < n/2). When p = O the inverse of the transformation
ig given by:
r = R/z (3.5)
The two trial functions are obtained from the solutions for the
configuration with different remote loadings: 1) uniform tension at
infinity parallel to the x axis, and 2) uniform tension at infinity
parallel to the y axis. With coefficients oy and o, respectively the
complex stress functions, ¢i and wi’ for the i'th trial function are
given by:
For trial function i = 1:
alR
o, (&) = = [T+ (-]
a. R
o 1 g 2 2
by o) =-m Lo U -wew? -2 ] (3.6)
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For trial function i = 2:

P

o (c) = —— [ -2+ ]

2 _1 g 2 2
¢2(C) = > [ .t 1_“CZ(l + oy o+ op? o+ g?) ] (3.7)

where the subscript i (i = 1 or 2) denotes the number of the trial

* +*
function. The components of the trial function stresses (Ori’ Uei
* 3 3t
and 1 _.) and displacements (u ., and u _.), in polar coordinates (r,s),
roi ri 61
are obtained from the following general formulae:
N ip
Cohiu = S xke.(z) -z 9(2) - 32D ]
Ui oi - 20 L X%y ¢ vy
3 * 4 |( )
= R !
O * 944 e | o (z ]
3* 3* . 3#* B 216 — " ,
Opi —Opg +2E T = 26 [z o(z) + ¢.(2)] (3.8)
where the bar ( ) here denotes the complex conjugate, prime (') denotes

differentiation with respect to z and Re denotes the real part. Also

K o= Shat (for plane stress)
1+v
E
and G = CIETY (3.9)

where v is Poisson's ratio, E is Young's modulus and G is the shear

modulus.

3.3 Trial functions for circular holes

In section 3.2 a set of two trial functions are given for
configurations with traction-free elliptical or circular holes. A more
general set of functions may be obtained for circular holes by using the

generalised solution for the Airy stress function, ¢ for the two-

A’
dimensional problem in polar coordinates [3.2]. This is in series form:
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¢ = agalogr+br?+cr?logr+dr? +a'e
o o o o o

a
! . . . -1 ,
+ 5 r 8 sin 8 + (blr +agr o+ blr log r) cos 6
‘1 1
— — 3 ' - ' .
5 T & cos 0+ (dlr teypr + dlr log r) sin 8
. 2 - ~n+2
sV tarm s rar T s by ) cosn oo
n n n n
n=2
- 2 - -n+2
7 et sdar™ iy My a ) sinn oo (3.10)
hep D n n n

where a , b, c,d, a',b', c',d (n=0 to =) are constants
n n n n n n n n

determined by the boundary conditions of the problem. By limiting

the problems to be solved to those with at least one axis of symmetry

(about 6 = 0 say), the following constants may be eliminated:

since these coefficients would give rise to aswmnetric stresses and
displacements. Furthermore for the displacements to be single-valued

it is found that:

and bi = e e ———— (3.12)

The summation may be truncated to a finite number of terms, m, and thus

the stress function is reduced to:

a, a; a1(1~v)
— l 2 — 3 3 —_ — —_—
® a  logr + bor +5 r o sine + (blr + 7 r log r) cos g
n n n+2 2
+ 7 (ar +br +atr g br’]r‘_n+ ) cos n @ (3.13)
n=2
* * *
The stresses (Or’ o, and Tre ) are given by:
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o - L _A 1 A
r 3r t e 262
2
% B(I)A
% T r?
2o
* 1
_ _ 3 1 _A 3.14

ro ar ( r or ) ( )
which yield:
o = 2 Lo 4= [a (3+v)r_l + 8b.r - 8a'r‘3] cos 8
r T %0 T T2y 1 1

m

- ) -
— {n(n—l)anrn 2+(n+1)(n—2)bnrn+n(n+l)ar‘lrn +(n~l)(n+2)bgr n} cos né

- -3
[-al(l—v)r 1+ 24b1r + 8air ] cos o

Q
I

I
o
"
+
N
o
+

B

m
_ _n-2 -

+ ] {n(nal)anrn 2+(n+1)(n+2)bnr‘n+n(n+l)ar'lr n +(n-1)(n—2)bér "} cos ne
n=2

* 1 -1 , -3 .

I [ —al(l—v)r + 8blr - Balr ] sin ®
g n-2 n -n—-2 -n

+ J An(n-1)a_r “+n(n+l)b_r -n(n+l)a'r -n(n-1)b'r '} sin ne (3.15)
n=2 " " " :

By substituting into the equations (3.15) the zero traction boundary
conditions on the hole, but not the remote boundary conditions, half
of the unknown coefficients may be determined. The remaining coefficients,
scaled to a convenient level, may then be used as the trial function
coefficients, denoted ai, which are determined from the variational
principle (see section 2.7). The stress function given by equation (3.13)

therefore yields a set of 2m trial functions.

The expressions for displacements are obtained from the stresses
* #* 3+

using the formula for the strain components (er, se, Yre)
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#* l ( 3 ¥* )

e. = g (o, - vog

+# l 3

e, = E‘(Ge - vo_ )

* 1

Yro = G Tre (5.16)

k3 aur\
v T Or
3* *
Ju
R
8 ~ r raf
* k3 +*
)
ur au6 ue
'Y% = — 4 ————
ro rod ar r (3.17)

For an unloaded circular hole, of radius a, the boundary conditions

on the hole are:

(3.18)

H
il
Q
il
@]

These may be substituted into (3.15) to give the following expressions

3* E3 3* 3* 3*
for o ., o.., 1t ., u . and u_. where i denotes the variable associated
ri 01 re1 01

with the i'th trial function.

For trial function i = 1:

3 l aZ
°%«1 T 2 (1 - rz)
* oy a2
o1 = 3 (1 + ;2)
% -
Trel
* OLla r a
U, T Top [ (1-v) o7 (1+v) = ]
N 0
Y91 7 (3.19)
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For trial function 1

For trial function

%

Or[2n—1}

il
S}

37—

a
* 2 r a’
= =T (=== 0
9 5 2 (a ra) cos
a
* 2 ,3r a’
S 6
S 7 (a + ra) cos
a
* 2 ,r a’ .
= = - - = 9
T 6o 2 (a ra) sin
a.a , .
3* 2 r a
W T BE [(1-3v) 22 (1+v) T2t 2(3+v) ] cos 8
a,.a 2 .
Upo = Fp [(5+V) T2t (1+v) T2 - 2(3+v)]| sin 8 (3.20)
i = [2n-1], n32:
a[ n-2 n+2 n
2n*l} r T
4 [ =, (1) == - (n-2)] cos ne
a r a
[ -2 2
- HELSE [En (n-1) - —n+ - En (n+2)] cos ne
4 n- n+2 n
a r a
“l2n-1] {En_Z (n-1) + én+2 - Eﬁn ] sin ne
4 -2 n+2 n
a r a
aa 21’1—1] n-1 an+1 rn+1
2E(nsl) {[(1+v) [— 1 (n+l) = +1] [n-2+v(n+2) ] ;n+1] cos no
- 4L cos 8 }
n
ac 2n-1] -l n+1l LN+l
2E(nil) {[(1+v)[;n_ (n+1) —n+l] [n+d+nv] _n+l] sin ne
-4 1L sin 8 }
n
(3.21)



For trial function i = [2n], n32:

% Q[ZH] rn—2 an+2 n
- - - - = 0
“rlon] 4 [ oot Thep (n4D) n (n+2)] cos n
a r r
% a[Zn] n-2 an+2 N
- - - - - -2
%[ on] 4 [ n-2 " Tns2 (n+l) n (n-2)] cos ne
a r r
3% a n-2 n+e n
. = L2n] [ = -2 (n+1) + 22 ] sin ne
r‘e[Zn] - 4 n-—2 n+2 n
a r r
% aa[Zn] l/‘l’l—l an+1 an_l
Ylon] T T ZE(n-1) {[(1+V)[“n_l - "h+l(n~l)] + [n+2+v(n—2)]—n_1] cos né
a r r
+ 41, cos 6 1}
n
* aaan} r‘1’1—1 an+l an_l
= il = _ _ —4 a .
Yg[2n] 2E (n-1) { [(1+v)[an_1 + rn+l(n 1)] [n-4+nv] rn~1} sin ne

+ 4L sin 6 }
n

(3.22)
where Ln =0 when n is even
nel (3.23)
L = (-1) 2 when n is odd

In the above expressions the trial function coefficients ai have
been scaled such that when o, is unity the maximum hoop stress at the
hole o % is also unity. This is useful in assessing the relative
importance of the various trial functions in particular solutions.

The displacements given by the trial functions are defined such that
uei is zero when 6 = 0 or 7 and uej is zero on the hole boundary
when 6 = % /2.

Physically these trial functions may be understood to be solutions
for a sheet or annular region containing a traction-free hole with
various boundary conditions remote from the hole. For example the
solution for an infinite sheet with a hole, stressed at infinity in

two directions, as was used in section 3.2, may be obtained for a
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circular hole from a linear combination of the trial functions 1 and

4 of this section. It may be seen from equations (3.19) to (3.22)

that these are the only trial functions that do not give large stresses
as r tends to infinity. For this reason it is found that these functions
have the greater contribution to the solution of configuratibns with

special regions which are large relative to the size of the hole.

3.4 Loading function for circular holes

For configurations with loaded holes, a loading function, must be
specified which satisfies the traction boundary conditions on the hole
exactly (see equation (2.13), section 2.4). The constant coefficient of
the loading function, ao, ié here assumed to be unity and the tractions
on the hole are represented as Fourier series. Thus the boundary

conditions of the loading function are:

3 ml
o = } A cos no at r = a

ro n
n=0

#* m2

= 1 e prove) .
T oo ) Dn sin n at r a (3.24)

n=1

where m1 and m2 are the finite limits of the Fourier series and An and

Dn are the known coefficients, determined from the specified tractions
on the hole. A further requirement of the loading function is that the

stresses approach zero remote from the hole, i.e.:

o —_— = 0 as r > o« (3.25)
With the boundary conditions (3.24) and (3.25) all the arbitrary

constants of equation (3.15) may be determined and thus the loading

function is given by:
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and m3 , the limit of Fourier series in this case, 1s equal to the

= > =0 > .
greater of m, and m,, (An O for n m Dn for n m2)

The Fourier coefficients An and Dn must be specified to give the
magnitude and distribution of the loading on the hole and this is
discussed in section 5.4.1. For several standard cases (e.g. cosine
pressure distribution, constant pressure over an arc, combined cosine
pressure and sine shear distributions) calculation of the required
Fourier coefficients has been programmed on the computer so that only

the magnitude of resultant force need be specified.
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CHAPTER 4

IMPLEMENTATION OF FINITE ELEMENT METHOD

4.1 Introduction

The computer program developed from the formulation of the
method described in chapter 2, is based on a program developed at
the Royal Aircraft Establishment, Farnborough (R.A.E.) [4.1, 4.2],
for the determination of stress intensity factors at cracks, which
was made available for the present work. The program was implemented
on the ICL 2970 computer at Southampton University and has been sub-
stantially extended, incorporating the new trial functions and loading
function of chapter 3, and the revisions necessary for their use in
determining stress concentration factors at traction-free or loaded
holes. The modifications include changes in calculating the areas of
elements, to allow for the curvature of the hole, and modifications
to the contour integrals, as discussed in chapter 2, due to the inclusion
of the loading function. Up to 8 trial functions may be used with this
version of the program and up to a total of 54 Fourier coefficients
may be specified for the loading function. Further extensions to the
program enable various additional means of data input and output to be

used, including graphical techniques.

Section 4.2 gives an outline of how the method is carried out in
the program. Specific reference is made to seven segments of the program
which are listed in Appendix B. These are: NOTCH, AREAS, TRLFNS1, TRLFNSZ2,
LOADFN, BCONDS and ALPHAS. A table of the other subroutines used by the
program and a summary of their function will also be found in this
appendix (table B2). A summary of the method for using the program on
the ICL 2970 computer is given in section 4.3 and further details are
given in the appendices C and D. Appendix C gives the requirements for
the input of data and appendix D explains the use of various commands

for running the program and manipulating the data.

4.2 Structure of the program

The block diagram, figure 4.1, shows the manner in which FESM is
implemented by the program. These steps are also noted by comments in
the listing of the program segment "NOTCH" (see Appendix B). The numbers

in each block of diagram 4.1 refer to the paragraphs below.
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Read and check data
for elements and nodes.

4.2.3 Reform
stiffness
matrix [K].

!

Calculate areas of
elements.

V

Form banded stiffness
matrix [K] from element
geometries and material
properties.

T

Determine OI fields for

2.

Trial functions
subroutine.

each element in special
region from the trial

2.

Loading function
subroutine.

function nodal displace-
ments.

Determine the correspond-
ing part of the nodal
loads b,

i

Apply the boundary
conditions and evaluate

the required boundary
integrals and nodal
loads.

Y

Evaluate the strain energy
term
+ ¢ T ¢

Usp.r(2379;525725)

v

Correct non-symmetric terms
in the matrix [QS]

Y

Solve the equations
(K] [a] = [p] (2.33)

(K] [a.] = [p.] (2.34)

Figure 4.1

.10

Determine the trial function
coefficients oy

!

11

Determine and output the dis-

placements and stresses
required.

]

Structure of the FESM program.
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4.2.1 Data input

The data may be input either from sequential data files (on
cards or magnetic tape) or from a direct access file. When the data
is read from sequential files it is stored on a direct access file
together with the results. The direct access file may then be used to
input the results to the graphical facilities or may be modified and
re—input to the main program. The data is checked for correct
dimensioning, and parameters such as the bandwidth and number of
equations are determined. The coordinates of the nodes are trans-
formed to axes which are rotated through an angle vy - i.e. parallel

to the ones used by the trial functions. If required the data is

printed.

4,2.2 Areas of Elements

The calculation of the areas of the elements is carried out in
the subroutine "AREAS" (see appendix B) and is straightforward for the
normal triangular elements. On the boundary of elliptical or circular
holes however the area of the element will be reduced by the segment
of the hole within the triangle of the element (see figure 4.2). The

reduction in the area of the element is given by the following formula:

X X
-1 - 2
Reduction in area = 1 {ab|cos (gl)— cos 1(5 )[—X + x2y2} (4.1)

> Y1

where (Xl’yl) and (x2,y2) are the coordinates of the nodes on the hole

boundary (numbered anti-clockwise round the element) relative to an

origin at the centre of the hole.

Elliptical/circular hole
boundary

Finite Element

Segment reducing
area of element

Figure 4.2 Area of element on hole boundary
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The effect of reducing the area of these elements in this way
is to slightly increase the estimate for the stress. Since no
integration is carried out explicitly along the curved part of the
boundary no further complications are introduced from having a curved

side to the element.

4.2.3 Stiffness matrix

The stiffness matrix K is formed from the element geometries
and material properties in the normal way for constant strain finite
elements {(see chapter 2, section 2.6). The subroutines used in this
section were developed at R.A.E. [4.3] and have remained unchanged.
When the equations are solved (section 4.2.9) K 1is changed and must
therefore be re~formed (or it could have been stored) as it is needed

to determine the coefficients o, (section 4.2.10).

4.2.4 Trial and loading functions

The trial functions subroutine gives the stresses and displace-
ments at a point due to a number of trial functions and, where appropriate,
the loading function. The subroutine is used at several points in the
program. There are three alternative trial function subroutines
currently implemented in the program. Y“TRLFNS@'" is the original
routine, used for configurations with a crack. "TRLFNS1" is used for
configurations with a circular hole and is based on equations (3.19) to
(3.22) with 1 = 1 to 8. Up to eight trial functions plus the loading
function may be used from this subroutine. When the loading function is
used a further subroutine "LOADFN" is called, which uses the equations
(3.26). "TRLFNS2", based on equation (3.8) with i = 1 and 2, is for
configurations with elliptical holes and yields two trial functions.

As yet no loading function has been developed for elliptical holes.

The subroutines "TRLFNS1'", "LOADFN" and "TRLFNS2'" are listed in

appendix B.

4,2.5 Stress fields 91

The stress fields QI are constant over each element and may
therefore be calculated using equations (2.3 ) and (2.7 ) from the
H*
displacements gz .  These displacements equal u; at the element

nodes and may be obtained from the trial functions subroutine. The

—45-



T . .
values of gi for each element in the special region are stored. The
corresponding contribution to the nodal loads vector <N follows from

+ :
the determination of gi as shown by equation (2.31b).

4.2.6 Boundary conditions

The boundary condition data is read and the required integrals
calculated in the subroutine '"BCONDS'" (see Appendix B for listing).

Figure 4.3 shows the method by which this is carried out.

The boundary conditions are input one by one. On boundaries of
the external region or of the hole, no integrations are performed but
details of the constraints, for kinematic boundaries, or loads, for
traction boundaries, are stored. On the boundaries Sk or S% integrals
are evaluated by six point Gauss quadrature to determine the equivalent
loads Ei’ the correction stress field g; , and the integrals of

equation 2.43 which are stored in the arrays, DCTR, DCKR, DCT and DS.

When all the boundary conditions have been read and processed,
the integrations must be carried out for the interface boundary Sé

This completes the computation carried out on the boundaries.

4.2.7 Strain energy term

.f.
The stresses (gi—gi) have been evaluated for each element in the

previous two sections of the program, thus the strain energy term,

t T ¢ ) ) . .
USp.R(gi_Ei’ Ej—gj) may be determined using the relationship
* c t c 1 + c T + c
U - -~ - = +A _ _
(—O—Ni 9—Ni’ ENJ ENJ) B t (_C_J_Ni g‘Ni) A (Q‘NJ g‘NJ) (4.2)

where the subscript N implies the N'th element. The strain energy term

is stored in the array element DCONT(I,J).

4.2.8 Correction to matrix Qs

Some elements of the matrix D_ (in the program, the array DS)
must be replaced due to the fact that no integration of the loading
function was carried out around the contour of the hole (see section

2.7). The array is corrected at this point in the program.
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Figure 4.3 Boundary Conditions subroutine
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4.2.9 Solution of the equations

The simultaneous equations (2.33) and (2.34), subject to the
specified kinematic constraints, (2.35), are now solved using standard

finite element subroutines which were developed at R.A.E. [4.3] and

have remained unchanged.

4.2,10 Trial function coefficients

The trial function coefficients a, (i = 1 to k) are determined
in the subroutine "ALPHAS" (see appendix B for listing), following the

method formulated in section 2.7. Firstly the matrices D' and F' of

equation (2.44) are formed from the arrays, DCT, DS, DCONT, the
vectors, DCTR, DCKR, and the loads and displacements, p, Bi’ g,
q; - The stiffness matrix K 1s also required. The final set of

equations (2.45) is formed using the relations (2.46) and (2.47) to
form the matrices D and F, which correspond to the arrays D and

DRHS respectively in the subroutine "ALPHAS".

4.2.11 Displacement and stresses

The displacements and stresses are determined from equatiors (2.2)
and (2.6) as explained in section 2.8. The output required is printed
and in1addition the coefficients, ai , and the stresses,
gF - .g oy (gz - gi), for each element are stored on the direct
acces;:?ile. The data on this file may then be used to determine the
stress at any point for graphical display or further computation, using

the trial functions and loading function subroutines.

4.3 Using the program

This brief section is included in the report to acquaint the
readers with the method of using the program on the ICL 2970 computer.

Actual users are referred to appendices C and D for further details.

The input data files may be set up as specified in appendix C or
by using the automatic mesh generator (see appendix D) which requires
fewer parameters for a simple mesh. The '"macro'" or command "NOTCH"
prepares the input and output channels and runs the program with the

specified data. If required the graphical output of the stresses on
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the boundaries of elements may be obtained, either at a graphics
terminal or a hard-copy plotter. When the program has finished

running the direct access file will contain all the initial data
and the results for the stresses. Further graphs of the stresses
may therefore be obtained using the macro "VUSTRESS" or the data

may be modified for another run using the macro '"MESH".

A convenient way to define the loading on the hole is via the
macro "LOADLOAD". If the loading is of the form of those detailed in
section 5.4.1 only the magnitude and type of load need be specified

and the correct Fourier coefficients will be input to the direct

access file.

In conclusion the input and output facilities of the package
have been designed to enable the user to run the program quickly and
easily, with the minimum of data preparation, and to obtain graphs

of the stresses if they are required which facilitate the interpretation

of the results.
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CHAPTER 5

FINITE ELEMENT RESULTS

5.1 Introduction

Initially the aim in running the new program was to determine
the accuracy of the finite element superposition method (FESM) for
traction~-free holes and the effect on the accuracy of such factors as
hole size, mesh refinement and special region size. The configuration
chosen for this study was a rectangular plate in uniaxial tension with
a central circular or elliptical hole, since alternative estimates of
stress for comparison are available in this case. The stress concentration
factors obtained were compared with those given by Howland [5.1] and

Isida [5.2, 5.3] for similar holes in long strips. This work is described

in section 5.2.

In order to compare the accuracy of the stresses at a hole with two
other finite element methods, a square plate in tension with a central
circular hole was analysed in section 5.3.1. The stress concentration
factors are compared with estimates by Allman [5.4] who produced results
for this configuration using higher order finite elements. An accurate
value for the stress concentration factor for this case was obtained by
Hengst [5.5], using an alternating method, and this value was compared
with the finite element solutions. New results for the stress concentration
near elliptical holes in square plates were also obtained. These stress
concentrations for various sizes and aspect ratios of elliptical holes

in square plates are presented in section 5.3.2.

The results of sections 5.2 and 5.3 demonstrate the use of FESM for
traction-free holes. The method however, as formulated in chapter 2, was
specifically developed for the important case of configurations in which
tractions exist on the hole, and for these problems FESM has several
distinct advantages over other methods of analysis. Firstly, as with
traction-free holes, the trial functions can model the boundary of the
hole so that only relatively few finite elements are required to represent
the geometry of the configuration. Secondly the Fourier representation
of load distribution on the hole means that the loading is modelled
accurately and, since the stress concentrations required generally occur

at or near the application of the load on the hole, this near exact

~50~



representation of loading can be expected to give significantly better
results than by representing the load in a piece-wise linear form or
aé nodal forces. The accuracy of the Fourier representation depends
on the number of terms included and this can be varied to suit the
application. There are relatively few solutions available in the
literature for configurations with loaded holes [5.6-5.12 ] and the
available photoelastic results [65.13] are of limited accuracy and
applicable only to the particular geometry and loading for which they

were prepared, Thus this is an important area of application for the

FESM program.

The aim of the work reported in section 5.4 is to confirm the
accuracy of the method for configurations with loaded holes by comparison
with solutions from other methods. These results are then extended by
producing new results for rectangular lugs. In order to carry out the
analysis it is necessary to simulate the distributions of the tractions
on a loaded hole near a pin. Several such distributions are discussed
and their Fourier representations given (section 5.4.1). The hoop stress
(i.e. 94 at r = a) arising at the hole in an infinite sheet with these
loadings is calculated from the loading functions and for some cases
compared with the values given by Bickley [5.14]. The stress concentrations
for a pressurized hole in an annulus or large plate (section 5.4.2) and
those for a symmetrical rectangular lug (section 5.4.3) are compared with
known solutions to assess the accuracy of FESM for loaded holes. Finally

the new results for stress concentration factors in loaded rectangular

lugs are presented (section 5.4.4).

5.2 Rectangular plate with central traction-free hole

The configuration analysed in this section is shown in figure 5.1.
A rectangular plate of length 2g and width 2y, with a central elliptical
or circular hole, semi-major axis length a and semi-minor axis length b,
is stressed in uni-axial tension by a uniform stress 9 on its ends. The
major axis of the hole is parallel to the shorter sides of the rectangle;
the hole boundary is traction-free. When a = b the hole is taken to be
a circle of radius a. The ratio of length to width of the rectangle,
9/w, is 2.0 for all configurations analysed in this section. This was
considered to be the minimum ratio for which good agreement with infinite

strips could be expected for hole sizes up to a/w = 0.5.
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o

Figure 5.1 Rectangular plate with a central elliptical (or circular)

hole.

The maximum stress on the minimum section of the plate calculated

by the present method is denoted O nax" A corresponding value of stress

determined in previous studies, denoted Gref’ is used to determine a
percentage difference term, €ref’ defined as
Omax B Oref
€ = —— X 100% (5.1)
ref o}
ref

which is used for comparison of results. The reference values oref used
throughout section 5.2 were taken from Isida's results for the stress

concentration in an infinite strip in tension with a circular or elliptical
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hole [5.2, 5.3], which agree with Howland's results for circular

holes [5.1] to within 0.7%.

In order for comparison to be made between the FESM results for
circular and elliptical holes the trial functions used in sections
5.21 to 5.23 are those given by equations (3.8) where i = 1 and 2, with
the special regions covering the complete mesh in all cases. Identical
results are obtained for circular holes by using the trial functions of

equations (3.19) to (3.22) with i = 1 and 4.

5.2.1 Effect of mesh refinement

The effect of mesh refinement on the accuracy of sclution was
shown by analysing the configuration with a circular hole of size a/w =
0.5. Because of symmetry only a quarter of the plate need be divided
into elements, and this is done in four regular meshes of varying size
which are shown in Appendix E, figures E1 to E4. The mesh size is

quantified by the parameter No’ given by:
N = a/do (5.2)

where 60 is a linear dimension of a typical element near to the edge of

the hole.

The values of stress concentration calculated firstly by FESM
and secondly by the basic constant strain finite element method are
shown in Table 5.1. Both solutions are obtained from the program, the
basic solution arising from equation (2.33) of the formulation. Comparing
the two solutions shows how much improvement is given by the trial
functions. The percentage difference between the calculated stress
concentration factor, Gmax/oo’ and the value Kt = 4,348, given by

Isida [5.3] is plotted in figure 5.2 against the mesh size parameter N
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Mesh Size FESM Constant Strain Elements
Parameter o . 5 c
N max ref max ref
o e c.f. Ref [5.3] 90 c.f. Ref [5.3]
1 3.923 - 9.8% 2.123 - 51%
2 4,059 - 6.6% 3.145 - 28%
5 4.231 - 2.7% 4,004 - 7.9%
10 4,329 - 0.4% 4,361 + 0.3%

Table 5.1 The stress concentration factor for rectangular plate in

tension (a/w = 0.5) for different meshes.

‘Figure 5.2 clearly shows the advantage of FESM over constant strain
elements for relatively coarse meshes. Both solutions improve in
accuracy as the mesh is refined but for the finest mesh, NO = 10, no
advantage is apparent for the superposition method, both methods giving
a Kt within 0.5% of that given by Isida. However it was for coarse and
medium meshes, which require relatively little data preparation and post-
processing, that the superpcsition method was formulated. Considering
that the accuracy will be improved if the additional trial functions are
used or if the hole is elliptical or smaller in size, the 3% error

obtained with a mesh size of NO = b is satisfactory.

5.2.2 Effect of hole size

A number of rectangular plates with different sizes of circular
hole, between a/w = 0.1 and 0.5, were analysed using the FESM program.
The same two trial functions were used as in the previous section,
derived from equations (3.8) with i = 1 and 2. Typical meshes used for
this analysis are shown in Appendix E, figures E5 and E6. The average

mesh size parameter NO for these meshes is approximately 2.
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Table 5.2 shows the values of stress concentration factor
calculated for four sizes of hole using FESM and constant strain
finite elements. They are compared with the results given by
reference [5.3] and the percentage difference between them is plotted
in figure 5.3. Again these results show the superiority of the FESM
solutions. Errors in the constant strain finite element solutions of
between 20% and 30% are improved by the use of the superimposed trial
functions to less than 8% - considerably better for small holes. The
accuracy of FESM improves as the hole size 1is reduced, thus for holes

smaller than a third of the plate width the results differ by less than

3% from those of Isida.

Stress Concentration Factor Umax
0o
Hole Size Constant

a/w FESM Strain Elements Ref. [5.3]

0.1 3.033 2.476 3.036

0.15 3.076 2.106 3.084

0.3 3.322 2.527 3.374

0.5 4.018 3.034 4.348

Table 5.2 The stress concentration factor for rectangular plate in

tension with various sizes of circular hole.

The reason for the greater accuracy with smaller holes is that
the trial functions used in these cases, derived from solutions to an
infinite region, model the configuration more closely. The influence
of the straight boundaries of the plate on the stress near the hole is
less significant with smaller holes and thus there is less correction

required from the constant strain finite element field.

5.2.3 Effect of the hole aspect ratio

Stress concentration factors were obtained for the configuration
in figure 5.1 (g/w = 2.0) for elliptical holes with aspect ratios, a/b,
in the range 1.0 to 100. Two sizes of hole were analysed, a/w = 0.25
and 0.50. The mesh size parameter, NO was between 1 and 2 for the meshes

used, typical examples of which are shown in appendix E, figures E7 to
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E10. The same two trial functions of equation (3.8) were used with

the special region covering the complete mesh.

The values of stress concentration factors from the FESM and
constant strain finite element solutions are shown in tables 5.3 and
5.4 together with Isida's results with which they are compared. The
constant strain finite element solutions become progressively less
accurate for sharper elliptical holes, as the meshes used are very
coarse, and only a few of these results are entered in the tables. The

percentage difference between the FESM and Isida's results are plotted

in Figure 5.4.

Stress Concentration Factor o /o
max’ o
Hole Aspect Constant
M . .
Ratio a/b FES Strain Elements Ref. [5.3]
1.00 3.199 2.15 3.248
1.43 4,082 1.76 4,118
2.00 5.261 - 5.288
3.33 8.018 - 8.044
10.00 21.837 - 21.885b
100.00 208.526 - 208.927

Table 5.3 The stress concentration factor for rectangular plate in

tension with elliptical hole of varying aspect ratio

(a/w = 0.25)
Stress Concentration Factor o /o
max’ - o
Hole Aspect Constant

M . 5.

Ratio a/b FES Strain Elements Ref. [5.3]
1.00 3.895 4,28 4.348
1.43 4,886 3.12 4,225
2.00 6.215 2.60 6.480
3.33 9.314 - 9.545
10.00 24.892 - 25.265
100.00 235.838 - 238.748

Table 5.4 The stress concentration factor for rectangular plate in
tension with elliptical hole of varying aspect ratio

(a/w = 0.5). _58-
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It will be seen from figure 5.4 that, in contrast to constant
strain element results, the accuracy of the FESM solutions increases
for sharper elliptical holes. This effect occurs for both hole sizes.
Even for these coarse meshes, agreement with Isida to within about 3%
is achieved for elliptical holes with a/b > 3 extending up to half the
plate width (a/w = 0.5). For the smaller hole size (a/w = 0.25) this
accuracy 1is maintained over the entire range of aspect ratio down to

a/b = 1 and for most of the range it is within 1%.

The reason for the increased accuracy with elliptical rather than
circular holes may be related to the magnitude of the stress gradient at
the edge of the hole. Since with a sharp elliptical hole there is a
high stress gradient, the stress reduces rapidly towards the remotely
applied stress level and the straight boundaries of the plate affect
the solution near the hole less than for holes with larger radii of
curvature. Since the trial functions do not model the straight
boundaries the less these affect the solution the more accurate FESM
will be. FESM is most effective therefore for small holes with small
radii of curvature at the tip, or, more generally, where the trial
functions chosen closely match the exact solution in the region of the

stress concentration.

5.2.4 Effect of special region size and additional trial functions

The two trial functions of equation (3.8) used in the previous
sections are sufficient to give accurate results for elliptical holes
with quite coarse finite element meshes. In order to achieve similar
accuracy for large circular holes (a/w = 0.5), without refining the
meshes excessively, the effect of using the additional trial functions
given by equation (3.19) to (3.22) with i = 1 to 8 was investigated.
Since the configuration analysed has two axes of symmetry only five of
these trial functions are appropriate: those with i =1, 3, 4, 7 and
8. In addition the size of the special region over which the trial
functions are superimposed, which in previous examples has covered the
entire finite element mesh, was varied restricting it to a smaller area

around the hole.

Two new finite element meshes were used for this investigation,

denoted A and B, and these are shown in appendix E, figures Ell and E12,
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the mesh size parameter NO being 2 and 3 respectively for the two
meshes. The values of Kt estimated from constant strain finite
elements alone using meshes A and B differed from the reference
value [5.3] by approximately 30% and 15% respectively. The maximum
compressive stress, denoted 9 com’ was included in the comparisons

for this study the reference values being given in table 5.5.

Maximum Stress Maximum Compressive
Reference
o /o Stress: o /o
max com ©
Isida [5.3] 4.35 -
Howland [5.1] 4,32 ~ 1.58
Table 5.5 Reference values of stress at the edge of a circular

hole in an infinite strip in tension (a/w = 0.5).

The results for o /o and o /o obtained by FESM are given
max’ o com "o
in table 5.6 for mesh A and table 5.7 for mesh B. The special regions
used in each case are shown on the inset figures in the tables. The

ratio of the area of the special region to the area taken up by the

hole is given by RA’ thus

R _ Area of special region
AT Area of hole (5.3)

In this case, since only a quarter of the plate is divided into elements,

the denominator in equation (5.3) is a quarter of the total area of

the hole.

Three sets of trial functions are used, with each special region,
derived from eqguations (3.19) and (3.22), in order to show the effect

of additional functions. These are:

Set 1) 2 trial functions (i = 1 and 4)
Set 1i) 3 trial functions (i =1, 3 and 4)
Set iii) 5 trial functions (i =1, 3, 4, 7 and 8)
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The two trial functions of set (i) give identical results to the two
functions from equation (3.8) and correspond to exact solutions for

an infinite region with a circular hole under certain remote loading
conditions. With the other three functions used in sets (ii) and (iii)
the stresses do not die away at infinity and therefore they correspond
to exact solutions for plates of finite size. This important fact means
that the additional trial functions may introduce some modelling of the
finite boundaries of the configuration which was not present in the

original two trial functions.

Figures 5.5 and 5.6 show the percentage difference in maximum
stress, Eref’ (compared to the results of reference [5.3]) plotted
against the special region size RA for the meshes A and B respectively.
The accuracy of the method depends on the shape of the special region
as well as its size, which in part accounts for the scatter inthe results,
Nevertheless a clear trend can be seen in both cases which is indicated
by the lines drawn through the points. When only the 2 trial functions
of set (i) are used, the most reliable results are given when the special
region covers the entire region of the problem, smaller special regions
with both meshes giving less accurate results. Adding the third trial
function - set (ii) - does not significantly improve the accuracy when
the special region extends over the whole plate. This is because the
large values of stress given by this function (equation (3.21), i = 3)
remote from the hole do not correspond closely to the stresses in the
rectangular plate and consequently a small value for its coefficient ag
is found. For smaller special regions the results for the 3 trial
functions are slightly better than for the 2 trial functions with the

same special region, however these results are still less accurate than

for the 2 functions with a complete special region.

When the 5 trial functions are used in set (iii) the accuracy of
the results is improved by up to 3% in each case but it is also found
that for special regions sizes from about RA =2 to RA = 6 an improve-
ment in accuracy is made compared to larger special regions. The value
of the maximum compressive stress is also found to be closest to the
reference value (see table 5.5) for these special regions. The reason
for the improved accuracy with limited special region sizes again relates

to the fact that the extra three trial functions in set (iii) (equations
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set (1) Iy
set (i1) <+
set (iii) ©

FESM results, 2 trial fns.

FESM results, 3 trial fns.|

FESM results, 5 trial fns.
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set (1) A& FESM results, 2 trial fns.
set (ii) + FESM results, 3 trial fns.
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~ 9™
— l
2 |
o2
Y]
“
< Ll
-6 |-
¥
£
;
= -8f
e
-10p '
-12 ] 1 ] i l
0 2 4 6 8 10

Special Region Size Ry

Figure 5.6 Effect of special region size on accuracy for Mesh B.
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(3.21)-(3.22) with i = 3, 7 and 8) are not applicable to an infinite
region and are therefore more effective with smaller special regions.
Very small special regions, for example the smallest regions in tables
5.6 and 5.7, may apparently give quite accurate stress concentration
factors, However it is not recommended to use special regions which
are so small that significant stress gradients arising from the hole
are having to be modelled by the constant strain finite elements of
the exterior region. This may lead to inconsistent results and
unpredictable errors. The optimum special region size in this case

seems to be around R, = 4, and with 5 trial functions this gives an

A
improvement in accuracy of about 2%-3% compared with the results from

the 2 trial functions used previously with a complete special region.

5.2.5 Effect of local mesh refinement

Another simple method for improving the accuracy of results is to
refine the mesh in the region of the stress concentration. Such a
procedure is commonly used in standard finite element solutions, and
with FESM it has been found that adding even two or three small elements
near the point of interest may improve the accuracy of solution

significantly while hardly affecting solution time or data preparation.

Several elements were added to the meshes A and B to give the
locally refined meshes A(i), A(ii), B(i) and B(ii) which are shown in
appendix E, figures E13-16. These meshes were used to given the results
shown in table 5.8 for the rectangular plate in tension with a circular
hole (a/w = 0.5). The 5 trial functions (equations (3.19)-(3.22) i =1,
3, 4, 7 and 8) were used in each case and two special regions were used
with each mesh: firstly a special region covering the entire mesh
(corresponding to the cases AOand BO in tables 5.6 and 5.7) and
secondly a limited special region (corresponding to the cases A4 and
B3 in tables 5.5 and 5.6). The maximum stress concentration is again
compared with Isida's results [5.3] and the difference term € of is

shown in the table 5.8.

These results show that the local refinement of the mesh near to
the point of interest does improve the accuracy of the stress concen-
tration factor. The improvement from restricting the special region

however, which was observed in section 5.2.4, is not as marked with the
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refined meshes. The estimates for Kt from constant strain finite

elements alone are also improved by the mesh refinement but unfortu-
nately not consistently. Indeed for the mesh B(ii) the basic finite
element solution is much less accurate than for the mesh B which does

not have the additional elements.

To summarize the results from sections 5.2.4 and 5.2.5 therefore
it may be concluded that the accuracy of solutions is improved by the
inclusion of 5 rather than 2 trial functions, particularly if either
the special region is of limited size or extra elements are included

near to the point of stress concentration.

Mesh Special Omax 0com E:ref
Region* o, S c.f. Ref.[5.3]
A AQ 4,082 -1.748 -6.6%
A4 4.177 -1.406 -4.0%
Ald) AO 4,188 -1.745 -3.7%
A4 4,198 -1.405 -3.5%
A(ii) AQ 4.247 -1.744 -2.4%
A4 4,207 -1.405 -3.3%
B BO 4,158 -1.750 -4.4%
B4 4,206 -1.554 -2.6%
B(i) BO 4,272 ~1.747 -1.8%
B4 4,292 -1.621 -1.3%
B(ii) BO 4,366 -1.747 +0.4%
B4 4,342 ~-1.621 -0.2%

(* For shape of special region see tables 5.6 and 5.7).

Table 5.8 Stress concentration factors for plate with circular hole

(a/w = 0.5) using different finite element meshes.
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5.3 Square plate with central traction-free hole

FESM is used to analyse a square plate in tension with a central
circular hole of size a/w = 0.5 (section 5.3.1) and with a central
elliptical hole of varying size and aspect ratio (section 5.3.2). In
the first case the aim is to compare the results of the new method with
those from other finite element methods, more sophisticated than constant
strain finite elements. Allman [5.4] gives results from two such methods
for the above configuration and Hengst's results [5.5], from an alternating

method, give an accurate estimate of stress with which all the finite

element results may be compared.

Stress concentration factors for an elliptical hole in a square
plate, in common with many configurations with plates of finite size, do
not appear in the literature thus such data must be approximated from in-
finite solutions or obtained from detailed finite element or boundary
element analysis. The aim in this case therefore was to obtain new

results showing the effect of the finite plate size.

5.3.1 Circular hole

The configuration solved by the FESM program 1is shown in figure 5.7.
The size of the circular hole is a/w = 0.5 and the constant stress on
two sides of the square plate is Oo’ the other two sides being traction-
free. Hengst's results for this configuration [5.5] are given in table
5.9 showing the maximum tensile stress, Omax/oo’ and the maximum

compressive stress, o which occur at the boundary of the hole.

/0,
com’ o
The values for a/w = 0.5 are compared with the finite element results of

this section.

2W

Figure 5.7 Square plate with circular hole.
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/ Max. Tensile Max. Compressive
arw Stress a /o Stress o© /o
max’ o com’ ©
0.5 6.328 - 3.912
0.375 4.494 - 2.258
0.25 3.580 - 1.472
0.125 3.135 - 1.107

Table 5.9 Stress concentration factors given by reference [5.5] for

square plate in tension with circular hole.

Table 5.10 gives the values of stress at the edge of the hole
obtained by the FESM program using two finite element meshes, mesh C
and mesh D, which are shown on the table and in appendix E, figures E17
and E18. The mesh size parameter for mesh C is approximately NO = 4.
The only difference between the two meshes is that in mesh D the nodes
near to the points of maximum tensile and maximum compressive stress
are moved closer together to give two smaller elements at the corners
of the mesh near the hole. Since the rest of the mesh is unchanged it
appears somewhat distorted, However this was done to see if improved
results would be obtained by this local mesh refinement which does not
affect the solution time at all. The same sets of trial functions (from
equation (3.19)-(3.22), i =1, 3, 4, 7 and 8) were used as in section 5.2.4,
with 2, 3 or 5 functions being used with each mesh. The special region
covered the entire mesh since this corresponds to the optimum special
region size (RA = 4) for the rectangular plate used in section 5.2.4.

The percentage difference between the FESM solution and Hengst's
results [5.5], shown in table 5.10, indicates close agreement between
them. It is interesting to note that mesh D does give better estimates
of stress due to the local mesh refinement and that using 3 or 5 trial

functions improves the solutions considerably compared to those obtained

using only 2 trial functions.

The results from the finite element methods used by Allman [5.4]
for the same configuration and using the same mesh (mesh C) are given

in table 5.11. The first method was based on a compatible finite element
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No. of % Diff. % Diff.
; g e o g Unconstr.
MESH trial max ref com com d.o.f. %
fns. o cf.[5.9 o cf.[5.9 R
o o}
2 6.007 -5.1% -3.538 9.6% 64
3 6.191 -2.2% -3.720 4,9% 65
5 6.179 -2.4% -3.732 4.6% 67
C
2 6.079 -3.9% -3.662 6.4% 64
3 6.226 -1.6% -3.809 2.6% 65
5 6.231 -1.5% -3.804 2.8% 67
D
(* d.o.f. = degrees of freedom)

Table 5.10 Stress concentration factors for square plate with circular

hole (a/w = 0.5) by FESM.

model using 6-noded triangular elements with a quadratic displacement
field. The second method, developed to avoid the discontinuities of
stress that occur across inter—element boundaries in compatible finite
element methods, was based on an equilibrium finite element model. The
triangular elements were divided into three subregions of equal area
with a linear distribution of stress over each subregion and conditions

of equilibrium being satisfied between subregions and between elements.

Type of finite element O ox Agiggf. %o Acgéif' Unconstr.
hod (Ref. [5.4 0.1 %
method (Ref. [5.4]) 5 cf. [5.9 o cf.[5.5 d.o.f
o o
Compatible F.E. method
(Quadratic displacement 6.55 3.5% -4.03 | -3.0% 220
field)
Equilibrium F.E. method
(Linear stress field) 6.06 -4.,2% -3.52 | 10.0% 116
(* d.o.f. = degrees of freedom)

Table 5.11 Stress concentration factors for square plate with circular

hole (a/w = 0.5) by other finite element methods.
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A comparison between the FESM results in table 5.10 and those
from the other finite element methods in table 5.11 shows that better
accuracy is obtained for the same mesh using FESM provided that at
least 3 trial functions are used. The marked advantage of the FESM
solution however is shown by the very much smaller number of degrees
of freedom (i.e. the number of unknowns in the final set of equations).
It gives an indication that the FESM program would require less storage
and less solution time than the other methods and possibly less data

preparation and post-processing.

5.3.2 Elliptical hole

Stress concentration factors for a square plate in uniaxial tension
with a central elliptical hole were obtained using the FESM program for
various sizes of hole a/w and various aspect ratios of the hole a/b.

The two trial functions for an elliptical hole given by equations (3.8)
with 1 = 1 and 2, were used with several different finite element meshes.
For the circular holes analysed (a/b = 1.0) the five trial functions of
eguations (3.19)-(3.22), 1 =1, 3, 4, 7 and 8, were used. Three examples
of the meshes are shown in appendix E, figures E19 to E21. The special

regions covered the total area of the mesh.

A parameter Q is defined as the ratio between the stress concen-
tration factor in the square plate, Kt’ and the stress concentration
factor for a similar hole in an infinite plate under similar loading,

which is denoted Kw. Thus
Q = KK, (5.4)

Koo may be determined analytically [5.15], for example from equations

(3.8), and it is given by the formula:

K = 14 228 ’ (5.5)

The parameter Q 1is given together with the stress concentration factor
in table 5.12 for three sizes of elliptical hole, a/w = 0.25, 0.375 and
0.5, and for various aspect ratios. The ratio Q is also given for the
limit as a/b » «» which is obtained from the stress intensity factor of

a crack of length 2a in a square plate. The values shown in table 5.12
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a/w = 0.25 a/w = 0.375 a/w = 0.5

a/b |TF st Ky Q Kt Q K, Q
1.0 2 3.530 1.177 4.284 1.428 6.079 2.026
1.0 5 3.566 1.189 4,433 1.487 6.231 2.077
2.0 2 5.621 1.124 6.442 1.288 7.833 1.567
5.0 2 12.08 1.098 13.39 1.218 15.51 1.410
10.0 2 22.90 1.080 25.17 1.199 28.78 1.370
100.0 2 217.9 1.084 237.8 1.183 269.3 1.340

Crack

- - .08 - 1.18 - .

5.16] 1 1 1.33

{(* No. of trial functions).

Table 5.12 Stress concentration factors for square plate in tension

with elliptical hole.

were determined by Isida [5.16] and show good agreement with the FESM
results for a narrow elliptical hole with an aspect ratio a/b = 100.

The stress concentration factors for circular holes (a/b = 1.0) agree
well with the results of Hengst [5.5] (cf. table 5.6), the maximum
discrepancy when 5 trial functions are used being 1.5% for the largest
hole size, a/w = 0.5. It is difficult to give a reliable estimate of
accuracy for the elliptical hole results but by comparison with the
results for rectangular plates, errors of less than 3% would be expected

in all cases and most of the results should be within 1.5% of the true

value.

The ratio of the stress concentration factors for the square plate
and infinite plate, Q, has been plotted in figure 5.8 against the hole
aspect ratio a/b and, in figure 5.9, against the hole size a/w. Figure
5.8 shows that the variation of Q with aspect ratio is similar for the
three sizes of hole, Q reducing as the ratio a/b increases. The

insensitivity of the K, to plate width for larger values of a/b is due

to the fact that the higher stresses that occur at the edge of the hole
die away rapidly further from the hole, and consequently there is less
interaction with the boundary of the finite plate than in the case of
circular or near circular holes. The variation of Q with the size of

hole, plotted in figure 5.9 shows that § increases with increasing hole
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Figure 5.8 Stress concentration results for square plate with
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size. This also is to be expected from considering the influence of
the plate boundary on the stress at the hole, as the distance between
the hole and plate boundary is reduced for larger a/w ratios. The
results for cracks, determined by Isida, are shown on figure 5.9 as
they give the limit for elliptical holes as the aspect ratio a/b tends
to infinity. As was seen from table 5.8 these results lie very close

to the FESM results for elliptical holes with a/b = 100.

5.4 Configurations with loaded circular holes

Having confirmed that the finite element superposition method
yields accurate results (typically within 3%) for stress concentration
factors in configurations with traction-free holes, and having used the
method for the determination of unknown stress concentrations factors in
such cases, the application of the method is extended to configurations
with loaded holes using a loading function. The loading function was
introduced in the formulation of the method in section 2.4 and derived
in terms of arbitrary Fourier coefficients An and Dn in section 3.4,

Thus the boundary conditions on the hole are given by:

1 N
g {(r = a) = ) A cos n 8
r neo n
(5.6)
M
Trg (r = a) = ) Dn sin n @
n=1 J

where r and ¢ are polar coordinates relative to the trial function axes
{origin at the centre of the hole) and my and m, are the limits of the

Fourier approximations.

The trial function axes may be rotated by an angle y relative to
the global axes, which define the finite element geometry. In the lugs
discussed in sections 5.4.3 and 5.4.4 , Yy = u/2 . Before the
method can be used to analyse simple lug joints for example, the
coefficients An and Dn must be determined for typical loadings on the
hole. This is done in section 5.4.1 and for each loading considered
the stresses that would occur around the hole in an infinite sheet are

given.

In order to determine the accuracy of the method for loaded holes

the values of stress obtained by FESM for an internally pressurized
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annulys and a large plate with a pressurized hole are compared with
the exact solutions for these geometries in section 5.4.2. Stress
concentration factors are also obtained for a rectangular plate with

a central circular hole loaded with uniform tension on one end and
different ''pin-load" distributions on the hole (section 5.4.3). These
results are compared with those of Knight [5.6], Theocaris [5.7],
Cartwright [5.8], Newman [5.10] and Whitehead [5.9].

Finally some new results are obtained in section 5.4.4 for loaded
rectangular lugs showing the effect of varying the amount of material
above the hole for different load distributions. These results supplement

those given by Whitehead [5.9] for lugs with rounded ends.

5.4.1 Various loadings on a circular hole

The exact distribution of load transferred by a rivet or bolt to
a lug is in general unknown and will depend on many factors including
the geometry of the lug, the clearance between the bolt and the hole,
the magnitude of the force and the joint lubrication. Several simple
approximate loadings have been used by other workers to represent the

radial pressure at the hole (r = a) and these include:

a) Pressure proportional to [cos 6 + 1] (-m <06 < =)
b) Pressure proportional to cos @ (-n/2 < 6 < n/2)
¢) Pressure proportional to cos?® (-n/2 € 86 < n/2)
d) Constant pressure over an arc (-B < 6 < B)

where the radial pressure is zero over the remainder of the hole, if

not specified, and where 2pg is the magnitude of the arc in loading (d).

These load distributions, together with some shear loadings
considered later in this section, are used in the present work to
represent the load on the hole due to a pin or bolt. Other feasible
distributions might have been used and indeed some work has been done
on more accurate estimates of the load on a pin joint [5.17-5.20] which
could have been represented as Fourier series in a similar way. However
these load distributions have the advantages of simplicity and the fact

that, having been used by other workers, comparisons may be made with

other methods.
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If loadings d) and c¢) are applied to both halves of the hole
two other load distributions arise which are very simply represented

in Fourier form:

e) Constant pressure over the hole (-m <6 <7 )

£) Pressure proportional to cos?6 (-m <68 < m)

However these loadings are in equilibrium without other loads on the lug,
i.e. there is no resultant load on the hole, and thus in order to use
them to obtain the stress concentrations at the mid-section of pin-loaded
symmetrical lugs, a superposition principle must be used as explained
below. If it is required to find the stress at the point A in figure
5.10 (ii) for example, the configuration in figure 5.10(1) may be
analysed instead using the equilibriated loading on the hole, since

from symmetry it is clear that the stress at A in figure 5.10(1i) is
twice that in either 5.10(ii) or 5.10(iii). It should be noted however
that only points on the mid-section of a symmetrical component may be
dealt with in this way since at other points the stresses in figures
5.10(ii) and 5.10(iii) are not equal. The two load distributions e) and
f) have been used in this way for the analysis of symmetrical lugs by
FESM and the results compared with those from loadings c¢) and d) which

require more Fourier coefficients to be represented closely (see section

5.4.3).

REE REER

Symmetrical ]
loading ——
distribution

x>
I
>
+
>

IR IR
(i (i) (i)

Figure 5.10 Use of a superposition principle to derive the stress
concentration factor for the loaded lug (ii) from the
configuration (i).
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In table 5.13 the following information is given for each of

the loadings a) to f).

i) The applied tractions are specified in terms of P which is the
resultant force per unit thickness on the hole. In the cases of loadings

e) and f) P is the resultant over half the hole (-7/2 < 6 < w/2) only.

ii) The Fourier coefficients, An (n = 0 to m,), are specified. This
enables the loading function stresses and displacements to be determined

explicitly from equation (3.26).

iii) The figure number for each case shows the Fourier representation

of the stresses o, and g at the hole (r = a), in an infinite plate,

loaded with the particular loading distribution.
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Figure 5.11 Stresses around boundary of hole in infinite sheet

Loading a) Pressure <« [cos 8 + 1] (-n < 6 < 7).
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Tractions (at r = a)| Fourier coeffs. Figure
P P P
= = - == == — Fig 5.
a) o, TTa{cose+1] A — A — ig 5.11
[coso+1]
Loading Tre 0 Other coefficients
=0
—n<8<n/2
b)
2P 2P p Fig 5.12
cos 6 Loading}| ¢ = - — cos © A=—- =5 A=~ — &
r Ta o Ta 1 a
(=n/2 <8<7w/2)
/2 4P
- 2 = =(- e
n/2<ogn/ (ny2<lolcn) | Aa=C1 lirstry )
Te 0 where 2inim_ & even
other coeff. = O
c)
3P 3p
2 e 2 = = i .
cos ‘9 o, = 25 ©OS 0 AO A2 16a Fig 5.13
Loading (—n/2<08<n/2) n-1 3p
fond ={ — 2 e et
-n/2<6<1/2 O(n/2<'e'<ﬂ) An (-1) [ﬁan(nz—d)}
-0 where 1<n<m, and odd
Tre” other coeff, = O
O S N N o = /o
c tant r 2a sinB e} 2ma sinB
onstan (—B<6<8) . Fig 5.14
pressure -0 A - P sin nB
over an arc B (8<|o|<n) n man sin B B =u/6
—-RB<HLR The” 0 where 1<n<ml Fig 5.15
° . __F WP
Constant r  2a o 2a Fig 5.16
pressure
_p<om e 0 Other coefficients
=0
)
3p B 3P 3P .
= - A = - = o e .
Cos?8 I da 9% o o 8a ’A2 8a Fig 5.17
Loading e 0
_<BT Other coefficients
=0
Table 5.13 Tractions and Fourier coefficients for various

distributions of radial load.
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Figure 5.11 shows the distribution of the stresses 9. and o

0
{(normalized with respect to 9y = P/2a) around the hole boundary for
loading a). Only two Fourier coefficients are required to represent

this loading exactly which may be considered to model approximately the
tractions on a hole due to a sideways force on an interference fit pin.

It is a special case in that radial pressure at 0 = wis zero.

Figure 5.12 shows the stresses around the hole boundary for the
more usual representation of a pin load, loading b), where the radial
pressure 1is proportional to cos 6. In common with loadings c¢) and d)
an infinite Fourier series is truncated to a finite number of terms (in
this case 30 terms) and consequently the load represented is not exactly
a cosine distribution. The exact solution is given by Bickley [5.14]
and the difference in the maximum hoop stress (o9 at r = a) for ml: 29
was found to be less than 2%. When used for the analysis of lugs this

error is a smaller fraction of the total stress, its effect occurring

in the region of the discontinuity in the stress gradient at 6 = =n/2.
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Figure 5.12 Stress around boundary of hole in infinite sheet

Loading b) Pressure «cos 6 (~1/2 € 6 < 7/2).



As an alternative to this loading the cos? 6 loading (c) has
some advantages (see figure 5.13). There is no discontinuity in the
stress gradient at 8 = w/2 and consequently the Fourier approximation
converges more rapidly and is more accurate for the same number of terms.
More of the load is concentrated near to 6 = O and thus the loading
(c) may be considered to model the tractions due to a pin with clearance
between the pin and hole. The maximum hoop stress in an infinite sheet
with a hole loaded in this way is higher than for loading b) and occurs

at an angle 6 less than n/2. The maximum radial pressure is also higher.
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Figure 5.13 Stresses around boundary of hole in infinite sheet

Loading c) Pressure « cos? 0 (-1/2 < 6 < 7/2).

The Fourier representation of the constant loading over an arc
subtending an angle 28, loading (d), is the slowest to converge (see
figures 5.14% (3 = 7/2) and 5.15 (g = w/6)). This is due to the step
change in the magnitude of the radial pressure, which in actual practice
is not a feasible distribution of load. For finite element analysis the
oscillations in the Fourier representation make exact determination of
the stresses more uncertain, However good agreement was found between
results from this loading and from loading (e) for symmetrical lugs,

which suggests that the inaccuracies in the representation may not be
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Figure 5.14 Stresses around boundary of hole in infinite sheet
Loading d) Constant pressure over % of the boundary
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Figure 5.15 Stresses around boundary of hole in infinite sheet
Loading d) Constant pressure over 1/6 of the boundary

(-=/6 < 8 < 1/6).
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important. Bickley [5.14] gives the exact solution for the two cases
B= 7w/2 and B = Comparing

figures 5.1% and 5.1% it may be seen that reducing the size of the arc

n/6, and satisfactory agreement is found.

of contact increases the maximum radial pressure and the maximum hoop

stress for a constant resultant force.

Loadings e) and f) are simply represented using 1 and 2 Fourier

coefficients respectively. Figure 5.16 shows that constant pressure

over the complete hole causes a constant hoop stress of equal magnitude

in an infinite sheet. Loading e) may be used to analyse a symmetrical

lug with constant pressure over half the hole (using superposition), or

to represent a pressurized hole, or added to other distributions to

simulate an interference fit pin (e.g. loading a)). Loading f) is shown

in figure 5.17 and also has no resultant load on the hole. It is used
for the analysis of symmetrical lugs and gives an estimate for the same

stress concentration factor as that obtained from loading c).
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Figure 5.16 Stresses around boundary of hole in infinite sheet

Loading e) Constant pressure (-m < 6 < w),
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Figure 5.17

possible distributions for the shear are now considered.

Stresses around boundary of hole in infinite sheet.

Loading f) Pressure «=cos? 6 (-m < 8 < 1)

Friction at a bolt or rivet will result in shear tractions thus

of these is

on the hole
g) Shear
h) Shear
) Shear

The effect
added to the radial pressure such that the resultant force
remains constant. Three possible distributions were used

proportional to sin 6 (- n/2 < 8 < n/2)

proportional to sin 26 (-=n/2 < 8 < 1/2)

proportional to sin®® cos?d (-n/2 < 8 < 7/2)

The expressions for the tractions and the Fourier coefficients are

given in table 5.14. PS

is the resultant force (per unit thickness)

on the hole due to the shear tractions and the limit of the Fourier

series is m,.
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Tractions (at r = a) Fourier Coefficients

Pg
g) Sin & Shear o= 0 D, = =
op n+2 AnPS
- s o _ (1Y 5
o= o2° sin o (-n/2<e<n/2) | D =(-1) e
=0 (m/2<|8]<m) for 2<n<m2 and even
Other coefficients = 0
3P
in 2 - _ 2fs
h) Sin 26 Shear o = 0 D2 oa
n+1
3P . 3P
= — 26( — <w/2 ={= 2 — e
To= za° Sin 28(-m/2<e<n/2) | D =( 1) i
=0 (mn/248]< w) for 1<n<m, and odd
Other coefficients = 0
5P
. L3 _ . =S
j) Sin’9 cos 6 o = 0 D2 = Too
snear T = 151@;23 sin® 6 cos 6 D = - Ps
ré - 32a 4 = 32a
(~w/2<8gn/2 n+1 5P (n®-10)
D =(-1) =
n ra(n®-4)(n?-16)
=0 (npde| <nm)

for 1<n<m2 and odd

Other coefficients = 0O

Table 5.14 Tractions and Fourier coefficients for various

distributions of shear.

A combination of the shear distribution (g) and the radial pressure
distribution (b) was proposed by Knight [5.6] who suggested that the
tractions on the loaded half of a hole which is pulled in the direction

8 = 0O by a bolt or rivet would be similar to the tractions on a circular

contour around a point force in an infinite medium, the other half of the

hole being traction free. These tractions are given by:

P (3-2v)
o (r = a) = | 27a 2(1-v) ] cos 8
(5.7)
(r:a):-[P i—l-_—g—\i]sine

2ra  2(1-v)
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Equation (5.7) gives the ratio of the shear resultant to the radial

pressure resultant as:

(1-2v)

(3-2v)

If v is taken as 0.25 the ratio of shear to radial pressure resultants

is 0.2 which is the value used for the combination of shear and radial

loadings in the present work.

The distribution of stresses around the hole in an infinite sheet

for this loading (i), which is a combination of loadings b) and g), is

shown in figure 5.18. The limits of the Fourier series m

chosen to be 29 and 24 respectively.

The maximum radial pressure,

1

and m

2

were

or(max), shear stress, Tre(max), and hoop stress, oe(max),are found
to be: -
g (max) = - 1.06 £ at 6 =0
r 2a
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Figure 5.18 Stresses around boundary of hole in infinite sheet.

(i) Loading b) + g) cos 8 normal pressure & sin ® shear.
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Figure 5.19 Stresses around boundary of hole in infinite sheet
{(ii) Loading b) + h) cosé

normal pressure and sin6 shear.
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Figure 5.20 Stresses around boundary of hole in infinite sheet

(iii) Loading b) + j) cosé normal pressure and sin’6 cos® shear.
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The difficulty with this loading combination is the discontinuity
in the shear at |6] = n/2. Not only does this cause some inaccuracy
in the Fourier representation, but in fact the shear distribution is
physically impossible, having the maximum friction occurring where the

normal pressure is zero.

A simple alternative is to use the shear distribution h) which is
zero at both 8 = O and n/2. Used in combination with radial distribution
b) the loading is denoted (ii). For an infinite sheet the maximum hoop
stress is found to be approximately 15% lower than loading (i). The
stresses from the loading (ii) are plotted in figure 5.19 and the

maximum values are given below:

P
o {max) = - 1.06 — at 8 =0
r 2a
(max) = 0.25 —— at 6 = n/4
Tre )= ) 2a = ?
(max) = 0.97 — -
o, (max) = . 5a a o )

The shear loading j), suggested by Bickley [5.14] is another
possibility. The shear is zero at 6 = 0 and #/2 but the maximum value
is cleser to w#/2 than for the shear loading h). This results in a
higher maximum hoop stress in most cases. Figure 5.20 shows the stresses

round the hole in an infinite sheet for the loading (iii), a combination

of j) + b). The maximum values of stress are:
P N
c (max) = - 1.06 -— at 8 =0
r 2a
(max) = 0.27 — t o = u/3
T g (Mmax) = . o at 6 = )
(max) = 1.05 £ at o /2
% h ) 2a o

The shear loadings g), h) and j) may of course be combined with
any of the radial pressure distributions a) to d). Figures 5.21 to 5.23
show the stresses resulting from combining them with the loading c) -
loadings (iv) to (vi) - and the slightly higher maximum hoop stresses

that result.
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Figure 5.21 Stresses around boundary of hole in infinite sheet
(iv) Loading c) + g) cos?® normal pressure and sin® shear.
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In conclusion, several Fourier representations for the loading
on a hole due to a pin or bolt have been derived and examined in this
section. The tractions and Fourier coefficients have been given in
each case and the stresses determined from equation (3.26) (the loading
function) for the loading applied to a hole in an infinite sheet.
These loadings and combinations of loadings will now be applied to

several configurations using FESM.
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Figure 5.23 Stresses around boundary of hole in infinite sheet.
(vi) Loading c) + j) cos? normal pressure and
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5.4.2 Pressurized hole in an annulus or large plate

The hoop stress, for an annulus with a constant internal pressure

equal to Fb (see figure 5.24) is known analytically to be:

o 1 + (a/w)?
(r=2) = TGz % (5-9)

where w in this case denotes the external radius of the annulus. This
formula will also be approximately correct for a square plate with a

circular hole where w denotes half the plate width, provided that the

hole is small relative to w.

Figure 5.24 Pressurized annulus.

An annulus with hole size a/w = 0.5, loaded with a constant
internal pressure [loading (e)] and a square plate with a central
hole of size a/w = 0.1 with the same loading were analysed using the
FESM program. Five trial functions and the loading function were used
in each case with the finite element meshes shown in appendix E, figures
E22 and E23. The special region covered the entire mesh in both cases.
The values for the maximum hoop stress obtained are given in table 5.15

together with the analytic solution from equation (5.9).
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MAXIMUM HOOP STRESS Oe/po
FESM Equation (5.9)

Solution

ANNULUS 1.677 1.667

a/w = 0.5

SQUARE PLATE 1.018 1.020

a/w = 0.1

Table 5.15 Results for pressurized hole.

The results in both cases are accurate to within 1%. While this
accuracy confirms the validity of the new method for loaded holes it
should be expected since the exact solution of equation (5.9) may be
obtained from a combination of the loading function and trial function
1. In fact an almost identical estimate for Kt is obtained for the
annulus, when only this one trial function is used rather than all five
functions. The errors arise in both cases from finite element represent-
ation of the outer boundary and, in the second case, from the fact that

equation (5.9) is strictly valid for an annulus not a square plate.

5.4.3 Symmetrical rectangular lug

The pin-loaded rectangular lug shown in figure 5.25, with two
geometrical axes of symmetry, was analysed using the FESM program. The
size of the hole is given by a/w = 0.5, and the stress on one end of
the lug by 0, = P/2w, where P is the resultant load on the hole per unit
thickness. The distance from the hole centre to the stress-free end of
the lug, Ql , is equal to the distance from the hole centre to the other

end and Ql/w = 2.0. The angle 6 is measured from the axis shown vertical

in figure 5.25.

The loading on the hole was represented using the various distrib-

utions of radial and tangential tractions discussed in section 5.4.1.
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Figure 5.25: Symmetrical lug (pin-loaded)

Half of the lug was modelled with the finite element mesh shown in
appendix E, figure E.24, which has a similar element size to meshes
which were satisfactory for traction free holes. Since the loading
causes asymmetry about the horizontal axis through the hole centre,
overall there is only one axis of symmetry in the configuration. The
special region used, also shown in the figure E.24, is of similar size
to the special regions found to be most effective for configurations
with traction-free holes in section 5.2.4. All of the 8 trial functions
of equations (3.19) to (3.22), i =1 to 8, were used in this study in
addition to the loading function of equation (3.26) with the Fourier

coefficients as specified in section 5.4.1 for each loading.
The results for the stress concentration factors, Kt’ which occur
with the different load distributions are shown in table 5.16. The

maximum stress occurs in each case at the edges of the hole on the line
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o o
Loading on hole K . _max Value of Kt % Differ—
t o] for comparison ence ¢
0 ref
a) to f) radial tractions
only
a) lcos®+1] loading 3.551 - _
b) cos € loading 4.500 [5.10] 4.621 -2.6%
(—m/2<6<m/2)
c) cos’® loading 4.639 c.f. case b) +3.1%
(—m/2<8K1/2)
d) Pressure over arc 3.245 c.f. case e) 0%
(—m/2<0<n/2)
e) Constant pressure 3.245 c.f. case d) 0%
{(by superposition)
f) cos?® loading 4,638 c.f. case c) -0%
(by superposition)
i)~ vi) radial & tangential
tractions
i) (b&g) cos8/sind shear 5.264 [5.6] 5.03 +4.7%
[5.7] 5.06 +4.0%
[5.8] 5.21 +1.0%
[5.9] 5.13 +2.6%
ii) (b&h) cos6/sin26 shear 4.889 c.f. case i) ~7.1%
iii) (b&j) cos8/sin’ 8cosb 4.983 c.f. case i) -5.3%
shear
iv) (e&g) cos’® /sin® shear 5.379 c.f. case i) +2.2%
v) (e&h) cos’8/sin26 shear 5.004 c.f. case ii) +2.4%
c.f. case iv) ~7.0%
vi) (e&j) cos®6/sin’® cos® 5.098 c.f. case iii) +2.3%
shear c.f. case 1iv) ~5.2%
Details of lug: a/w = 0.5, Ql/w = 2, %2 = 21, = 0.3

Table 5.16

distributions of load.

—95-

Stress concentrations for symmetrical lug with different




of minimum section. The values are compared with those obtained by
other workers for certain loadings (references in square brackets)and also
with FESM results for other loadings, the percentage difference between

the values, ¢ being shown in the table 5.16.

ref’

The first noticeable feature of these results is the large
difference that the distribution of the load may make to the stress
concentration factor. From the lowest of these values (d) to the highest
(iv) is a change of over 60% and this emphasises the importance of
accurate representation of the tractions on the hole. The accuracy of

the results by comparison with results from other methods is good, less

than 5% difference in all cases.

The loadings a) to f) give only radial tractions on the hole and
therefore model the loading due to a frictionless pin. For loading b)
the radial tractions are proportional to cos 8 over half the hole (-n/2
< 8 < 7/2) and this loading was used by Newman [5.10] to analyse the
configuration with radial cracks growing at the hole. A comparison is
made with these results in the limit as the crack length tends to zero
and agreement is found to be within 3%. The cos?’® loading, (c), which
models a bolt with greater clearance between the bolt and the hole, results
in a higher stress concentration whereas loading a), which models an
interference fit pin gives a lower maximum stress. Lower than any of
these is the stress concentration due to a constant pressure over half
the hole, loading (d), which is some 30% below that for loading b). These
results show that if there is no friction the stress concentration will
be lower for a close fitting pin. Unfortunately this may not be so if
friction is included since when the load is partially transmitted by the
shear tractions, which is more likely for a close fitting pin, the stress

concentration is increased.

The results from loadings e) and f) are equivalent to those from
loadings d) and c¢) respectively but were obtained using the superposition
principle explained in section 5.4.1. Only one qguarter of the plate need
be analysed in these cases since the configuration for which a solution
is sought has two axes of symmetry rather than the one axis of symmetry
in the equivalent problem. The close agreement between the results is

shown in table 5.16.
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Loadings i) to vi) in table 5.16 have both radial and tangential
‘tractions on the hole. Loading i) has been used by several other
workers in analysing this configuration and the FESM result agrees to
within 5% with all these values. The configuration analysed by Knight

[5.6] and Theocaris [5.7] using an alternating method, was an infinite
strip (Zl/w = =) rather than the finite plate, for which a slightly
higher stress concentration factor might be expected. Cartwright [5.8]
and Whitehead [5.9] both used a finite element method for their analysis
and represented the tractions on the hole by point forces at the nodes.
The length of the plate used was the same as in the present case (zl/w

= 2.0) and the agreement with these methods is within 3%.

The effect of introducing shear loading on the hole is to increase
the stress concentration factor, in this case by up to 17%. Comparing
the three different distributions of shear, g), h) and j), it may be
seen that g) (shear tractions proportional to sin 6) results in the
highest maximum stress, with cases h) and j) resulting in stress concen-
tration factors approximately 7% and 5% lower respectively. When the
loading ¢ ) is used for the radial pressure in cases iv) to vi),(i.e.
tractions proportional to cos? 6), the stress concentration factor is
approximately 2% higher than when the loading b) is used (tractions
proportional to cos 8). Thus the case with loading iv) has the highest

stress concentration factor with a value of Kt = 5.38

These results show that the FESM program is effective in giving
accurate stress concentration factors for configurations with loaded
holes. Furthermore the importance of knowing the form of the loading
on the hole and closely representing it in the model is shown by the
wide variation in stress concentration factors for different loadings
that may occur. When no friction is assumed on the hole the analysis
shows that the stress concentration factors are lower for distributions
of load which model a tightly fitting pin (e.g. loading a)) than for a
loose fitting pin. However in practice the effect of friction must be
considered particularly when there are smaller clearances between the
hole and pin. When this is done, by including shear tractions in the

analysis, the stress concentration factors are significantly increased.

-97—



5.4.4 Rectangular lugs

N

%= Do

Fig. 5.26 Rectangular lug {(pin-loaded)

A number of rectangular pin-loaded lugs, were analysed where the
amount of material above the hole, expressed by Ql/w (see Tigure 5.26),
was varied. The hole size was held constant for all the lugs studied
at a/w = 0.5 and the stress on one end of the lug is again given by
Oo = P/2w where P is the resultant load on the hole per unit thickness.
Three different distributions of load on the hole were investigated which
were considered to be the most appropriate for the pin loaded joint:
loading b) where the radial tractions are proportional to cos 6 with
zero shear loading; loading c) where the radial tractions are proportional
to cos?s with zero shear loading; and loading i) where the radial
tractions are proportional to cos 6 and the tangential tractions to sin 6.
The angle 6 1s measured from the vertical axis and the lower portion of

the hole (/2 < 8 < 37/2 )is not loaded. The proportion of resultant
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load carried by the tangential tractions over the radial tractions

in the loading i) was, as previously, 0.2. For most of the lugs the
distance from the hole centre to the external load was given by %2/w

= 2.5, slightly longer than for the lug used in section 5.4.3. However
three lugs with two geometrical axes of symmetry (12 = Ql) were also
analysed using loading f), which is the cos?®  distribution (-u<é<m),
by applying the superposition principle explained in section 5.4.1.
Typical finite element meshes for the lugs analysed in this section are
shown in appendix E, figures E.25-E.28, which also show the special
regions used with each mesh. The 8 trial functions of equations (3.19)

to (3.22), i = 1 to 8, were used with the loading function, equation

(3.26).

The values obtained for the stress concentration factors at the
edge of the hole on the line of minimum section are given in table 5.17
for the different distributions of load and different values of ll/w.
These values are plotted in figures 5.27 and 5.28 which show the variation
in the stress concentration factor on the line of minimum section with

the amount of material over the hole (%l/w) for the different loadings

and geometries.

STRESS CONCENTRATION FACTORS, Kt

cos 8 cos?g cos 9/sin ¢ cos?p
gl/w loading (b) loading (c¢) loading (i) loading (1)

gz/w = 2.5 QZ/W = 2.5 Qg/w = 2.5 (QZ = gl)
0.75 7.428 8.303 7.899 10.575
0.80 7.817
0.85 6.557 7.374 7.231
0.90 6.983
0.95 6.613
1.00 5.704 6.282 6.453 7.685
1.25 5.164
1.50 4.604 4.769 5.369
1.75 4.611
2.00 4,426 4.553 5.179 4,638

a/w = 0.5 , v = 0.3

Table 5.17 Stress concentration factors for rectangular pin-loaded lugs.
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t

Stress concentration factor K

In figure 5.27 the K_ for the rectangular lugs with Qg/w = 2.5

is compared with that for Ehe symmetrical lugs (ll = lz), as %1/w is
varied. The lugs are both loaded by normal tractions proportional to
cos?® over the top half of the hole. For long lugs, Ql/w = 2.0, the
geometry in both cases is very similar and the stress concentration
factors differ by less than 2%. As ll is shortened the stress concen-—
tration increases, the rise being particularly rapid as Ql/w falls below
1.0. In this region the symmetrical lug has a Kt significantly higher
than the other lug due to the proximity of both the upper and lower

edges of the lug.

11.0

=8
10.0 \ O

Loading (f)
\\Jsing superposition.

i Q,Q/W = 2.5
Loading (c)

7.0 ] O

0.5 1.0 1.5
L. /w

Fig. 5.27 Stress concentration factors for symmetrical/assymmetrical

loaded lugs.
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Stress concentration factor K

.0 | \ ————Q——— Loading c)

Figure 5.28 shows the stress concentration factors for lugs
with 22/w = 2.5, having different distributions of tractions on the
hole boundary. The results for the cos?6 distribution c) are again
shown in the figure together with results from the loading cases b) and
i). It is found that loading b), the cos 8 distribution without shear

tractions gives the lowest stress concentrations for all values of %l/w.

&

Loading i)

A

Loading b)

Qz/w=

2. /w

Fig. 5.28 Stress concentration factors for loaded lugs.
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For long lugs (ll/w = 2.0) loading c), the cos?® distribution, and

loading i) the cos 6 radial and sin & tangential distribution, give

stress concentration factors 3% and 17% higher respectively. However,

with only a small amount of material above the lug the values for the
loadings c¢) and i} cross over and for %1/w = 0.75, the stress concentration
factors of loadings c) and i) are 12% and 6% higher respectively than
loading b). This could mean that a slack-fitting pin with little or no
friction would be of advantage with the long lug whereas a tighter

fitting pin, which therefore had friction, would be of advantage with

the shorter lug. However greater knowledge of the actual distribution

of loads would be required before any firm conclusions of this kind could

be made.

Whitehead [5.9] has analysed a number of lugs with rounded ends
as shown in figure 5.29. A set of three stress concentration factors
for different values of %1/w, a hole size of a/w = 0.5 and a cosine load
distribution, are shown in table 5.18. The results were taken from
figure 30 in reference [5.9] and have been plotted in figure 5.30
together with the FESM results for a rectangular lug. The figure 5.30
shows that the stress concentration factors for these lugs are very
similar, with the maximum difference between the two cases being approx-
imately 7%. Since this is close to the combined error that might be
expected from the finite element analyses and also since zz/w is not
specified exactly for the rounded lug in reference [5.9] more detailed
conclusions would not be justified. It is sufficient to note that the
stress concentration factors are of similar magnitude and slightly
higher for the rounded lug. This is to be expected as adding material

to the corners of the rounded lug is likely to lower the stress.

Stress concentration
L. /w
1 factor K
t
0.8 6.97
1.0 6.12
1.2 5.33

Table 5.18 Stress concentration factors for a lug with rounded end

from reference [5.9].
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1

Lug with rounded end.

Figure 5.29
80 -
70 4
6-0 4 Whitehead [ 59]
Ky (FESM)
50 - O /
40+ 3.
0 2-05
12
_\—V— >2
3-0 T T T 1
06 08 1-0 12 14
L
/o
Figure 5.30 Comparison of stress concentration factors for

rectangular lugs (FESM) with rounded lugs
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To conclude this section it may be noted that the stress concen-
tration factor in loaded lugs varies considerably according to the
distribution of load on the hole. The effect of changing the load
distribution also depends on the particular geometry of the lug, however
in general higher stresses occur near the hole when more of the resultant
force is carried by the shear tractions and/or when the radial tractions

are concentrated more towards the point 6 = O.
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PART II

THE MODIFIED BOUNDARY ELEMENT METHOD



CHAPTER 6

BOUNDARY ELEMENT FORMULATION

6.1 Introduction

As an alternative to the finite element method the boundary
element method (BEM) has been growing in importance in recent years.
Complicated geometries may be tackled with this method and, unlike
finite elements which require the whole region of the problem to be
discretised into elements, only the boundary of the configuration need
be discretised unless body forces or non-linearities exist which cannot
be reduced to boundary conditions. This effectively reduces the
dimensionality of the problem by one and so greatly reduces the amount
of data required and the number of degrees of freedom for most config-
urations. On the other hand slightly more numerical analysis is
necessary to form the matrix of simultaneous equations associated with
these freedoms and the matrix is full rather than banded as in finite
element methods. Nevertheless the effectiveness of the boundary element
method and its superiority over finite elements for some classes of

problem in continuum analysis has been clearly shown [6.1-6.3].

The approach adopted in boundary element methods is to transform
the governing differential equations into equivalent sets of integral
equations involving values on the boundaries of the region only. This
approach involves the use of a '"fundamental solution'" as the kernel
function of the integral equations. A fundamental solution is an exact
elasticity solution for a region containing a point force. Usually the
function is the solution for a point force in an infinite volume, due to
Kelvin [6.4], or its equivalent in two-dimensions. However fundamental
solutions for regions which contain a traction-free hole or other
boundaries coinciding with part of the boundary of the region under
analysis could also be used and it is this modification to the standard

BEM which has been developed here for configurations with circular holes.

A difficulty encountered using standard BEM for stress concentration
problems is that of determining the stress at or near to a boundary with
similar accuracy to internal points, since only values of displacements
and tractions are calculated directly, and the method used to calculate
the stress at internal points breaks down at the boundary due to the

singularity in the kernel functions. An approach used in some commercially
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available boundary element programs [6.5] and elsewhere [6.6] is to
estimate the tangential strain at the point on the boundary from the
displacements. Using Hooke's law to obtain the tangential component

of stress, together with the known tractions, the full stress tensor
may be estimated. However this method involves the differentiation of
approximate values of displacement and inevitably accuracy is lost,
thus attempts to deal explicitly with the singularity by using more
complex integration techniques have been made [6.7]. The method of the
present work however, in using a kernel function for which boundary
conditions on a circular hole are exactly satisfied, overcomes the
problem of determining the stress on this boundary since boundary
elements are not required to model the hole, and thus points on the
hole may be treated in the same way as internal points. Furthermore
the number of boundaries to be modelled and thus the number of degrees
of freedom is reduced and the boundary conditions on the hole are
precisely represented. Stresses and displacements at points on or near
the hole may be determined with similar accuracy to internal points

remote from boundaries.

The approach is similar to that used by Nisitani and Murakami
[6.8] for their "body force method", also by Cruse [6.9, 6.10] in the
case of cracks, and Telles and Brebbia [6.11] in the case of a long
straight boundary for the boundary element method. The method could
also be extended to configurations with elliptical holes, since the
required fundamental solution is known [6.12] or to other geometries.
Indeed the BEM program could be structured such that it contains a
library of different fundamental solutions (e.g. circular hole or disc,
elliptical hole, long straight boundary) so that a wide range of problems
can be solved more easily and accurately by including the most important

boundary conditions in the fundamental solution.

An important area of application for the finite element super-
position method discussed in part I of this thesis, is to loaded holes.
As yet the modified BEM has been applied only to configurations with
traction-free circular holes, However by using a superposition principle,
problems involving loading on the hole can be reduced to ones with no
loading on the hole boundary and with modified tractions on other

boundaries. This would avoid the necessity for boundary elements on the
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hole boundary to model the loading and would retain the advantages of
the modified method. The loading function of chapter 3 could be used

to supply the required exact elasticity solution for the loaded hole

in an infinite region.

In chapters 6 and 7, the modification to the standard BEM form-
ulation is considered and initial results presented. The work has
comprised a smaller fraction of the total than the finite element work
and is consequently less complete, but the new analysis for the method
has been completed and incorporated into a boundary element program.
The results show both the potential for the method and the areas where
improvement should be made. In this chapter the formulation of the
direct boundary element method [6.2, 6.13] is presented, together with
the modifications required to implement the new kernel function. The

computer program was developed from a simple BEM program produced by

Brebbia [6.2].

6.2 Notation

In the following analysis cartesian tensor notation is used
throughout since this enables the equations to be written more briefly
and follows the presentation commonly used. This means that the
notation of part II is quite separate from the notation of part I. 1In
particular it should be noted that the subscripts in part II define the

coordinate directions.

In tensor notation the equations of equilibrium for a point x

(coordinates X1 X,

be expressed as:

and x3) in an elastic three dimensional medium may

.. . +b, = 0 i=1,2,3
j=1,2,3

where o, is the stress field, bi is the body force per unit volume
and the suffix . means partial differentiation with respect to the

coordinate component Xj' The repeated suffix in this notation implies

summation.

Equation (6.1) is also valid in two dimensions with the range of

the suffices reduced: 1i,j = 1,2.
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The stress, o.., and strain, Eij’ in an elastic isotropic

material are related by Hooke's law which in three dimensions may be

expressed as:

= 2 i j =
oij A Gij I G Eij (i,3,k =1,2,3)

where G, the shear modulus, and ) are Lamé's constants and related to

Young's modulus E, and Poisson's ratio v as follows:

\ Ev
(1+v){(1-2v)

s . _E
2(1+v)

gij ig the Kronecker delta which has the properties that:

éij = 0 when 1 £ j

1 when i = j

i

5. .
i]

The strain may be expressed in terms of the displacements ui as:

N =
[N
G
C
=

€. .
1]

Substituting this expression in equation (6.2) gives the stress—

displacement relationship as:
o.. = A 6., u + Glu, ., +u. .) (i,j.k=1,2,3)

This equation is also valid for two dimensional plane strain problems

since then u, = 0 and thus = 0. For plane stress problem

3 Y3,3
equation (6.7) may be used only if the Lamé& constant A is replaced by

A where:
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6.3 Basis of the boundary element method

The boundary element method determines the unknown stress field
Gij and displacement field uy in a region in terms of their values at the
boundary of the region. To do this the fundamental or kernel function
is used. In the present work the stresses, displacements, body forces,
etc. resulting from this exact elasticity solution are represented by
the superscript *, i.e Oi?’ u;, b?, etc. The properties of the
fundamental solution will be considered in more detail later, however it
is required that the function is a known elasticity solution for a point

force in a given region which includes the region of the problem.

The reciprocal work theorem [6.14] states that if two distinct
elastic equilibrium states exist in a region V bounded by the surface S,
then the work done by the boundary tractions and body forces of the first
system (Ti’ in this case) on the displacements of the second (ui, in this
case) is equal to the work done by the tractions and body forces of the
second system (T; and bi) on the displacements of the first (ui). The
theorem may be proved using the divergence theorem and for thisg case

may be stated as:

r r f r
| u,0%.&. ds + J u.b* dv. = |  u*o..g. dS + | u¥b, dv (6.9)
J i 1] ii | 1i71i37] J i'i
S Y S \Y
where & . is the cosine of the angle between the boundary normal and the
j coordinate direction, and the tractions on the boundary, Ti’ are
defined as:
T. = o.. 4. (6.10)

Thus equation (6.9) may be written as:

r r
oo — * _ T
J {uibi uibi} dav } {uiTi w, TY ds (6.11)
v 3
The displacements and tractions of the fundamental solution are
functions of two points, x and ¢, and are defined as uﬁm (x, g) and
Ti Q(X,E) respectively, representing the displacements and tractions at
the point £ in the 2 direction, due to a unit point force acting at the
point x in the k direction. The corresponding body force big (x,g) is
given by:
* — -
br, (x,8) = &, 6(x=<) (6.12)
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where 6kl is the Kronecker delta and §(x-£) is the Dirac delta

function which has the following properties:

§(x-£) = O if x £ ¢
(6.13)
and §(x-g) = = if x = ¢
f
such that | 8(x-g) dv(g) = 1 when x € V
J
v (6.14)
'
and J §(x-£) dv(g) = 0O when x ¢ v
Vv
¢
where JV{ 1dv(g) denotes integration over V with respect to the
variable §¢. Thus for any function of ¢, f:
r .
J fg) s(x-g) av(g) = f(x) if x e V (6.15)
\)
Substituting equation (6.12) for bi in equation (6.11) and
gpecifying £ as the variable of integration gives, for the unit force
acting in the k direction:
! 3#
} {UQ(E)SRQS(X—E) -~ ukl(x,g) b%(x)} dv(g) =
Vv
[ fu T (g) - u (g) T, *(x,£)
J {ukz<x,g) Q(g - u (g kz(x,g } ds(g) (6.16)

From the properties of the Dirac delta function [equations (6.13) to

(6.15)] equation (6.16) may be re-written as:

,
c UQ(X) + J ui(g) Tk; (x,£) ds{g) =

kg
S
[ w T (£) as(e) + | u * 7
J ueo X,E) Z(g S(g) + J ukz(x,g) b%(g) av(g) (6.17)
S \'
where Ckg = Gkg when x is inside S and would be zero if x were outside

S. If the point x is on the boundary S the singular point is included
in the contour integrals which must now be interpreted in a Cauchy

principad value sense. For a smooth boundary the coefficients Ckg are

then found to be % § [6.2] and they may alsoc be evaluated for non-smooth

kg
boundaries. In practice it is generally unnecessary to evaluate Ckpv
explicitly as the terms to which Ckl contributes can be obtained from
consideration of rigid body motions (see page 112).
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Equation (6.17), for an internal point x, is referred to as
Somigliana's identity [6.4, 6.15] and it is the basis of direct
boundary element formulations in elasticity. Using this expression
the displacement at a point x, u(x), can be determined from the dis-
placements and tractions on the boundary only and a volume integral
of known functions. The volume integral may be dealt with numerically
by dividing the region into elements or, for certain types of body
forces (e.g. gravity, rotational inertia, steady-state thermal loads),
the volume integral may be reduced to a surface integral by further
application of the divergence theorem [6.16, 6.17] . However for many
classes of problem body forces may be ignored and in this case equation

(6.17) for an interior point reduces to:

u (x) + } ug(é) Tkz(x,g) ds(g) = J uﬁl(x,é) TQ(E) ds(g) (6.18)
S S

For a general point x the equation is:

It

r r
c u (x) + Js u, (g) T »(x,€) ds(¢g) Jsuig(x,E) T, (e) ds(e) (6.19)

where CkQ = ékz for an interior point and depends on the form of the

boundary when x lies on the boundary.

6.4 Discretization of the equations

In order to approximate the unknown functions uQ and Tl the
boundary S is divided into a number of elements containing one or more
nodes. A shape function is chosen which describes the assumed form of
u, and T% over the boundary element in terms of the nodal values in a
similar manner to the shape function for finite elements. The simplest
case, that of constant tractions and displacements over the element with
a single node at the centroid of each element, is used in the present
work. Applying this to equation (6.19) and letting the point x be at

each node in turn, gives the following for a configuration with N boundary

elements.

For element m (m = 1 to N)

.
T <x“)J ux (x",£)ds(g)  (6.20)

i

k
e g ke noy & < kg,
n n

=

=
==
It~ 2

,
u (x) | T (x™,£)ds(g)
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where xm and x| refer to the coordinates of nodes m and n respectively,
S is the n'th boundary element and Ci% is the value of Ckz for the
n

m'th element. The equations (6.20) may be written:

n

hkﬁmn ul(x ) = gksLmn

il

n
T2<X ) k, %

m,n 1 to N

1l

where K is 2 or 3, the number of dimensions of the problem, and:

Mamn = TEQ(Xm,E) as(&) m £ n (6.22)
Sn
h = mo e (0 ) ds(g) - (6.23)
kamn = Skg T ) TRy (X 08 ) om=n .
Sm
r N m
Eegn = an ukz(x ,E) ds(g) (6.24)

These integrals may be evaluated numerically on the computer using Gauss
quadrature, except that particular care must be taken when m = n. 1In
this case the path of integration includes the singular point and for
h and additional term, cm , 18 included. In fact the evaluation of

kemn kg
CZQ and the integral to which it is added may be avoided by considering
a rigid body displacement in the ¢ direction. No boundary tractions must

result from such a displacement and thus it follows from (6.21) that:

hklmn

Il o~ 22

n=1

Hence the term for m = n may be obtained from the other coefficients.

The term &) omn when m = n must be evaluated however, and since
a logarithmic singularity occurs in the kernel of the integral,
ui (xm;g), a logarithmically weighted integration formula [6.13, 6.18]
may be used. Alternatively the integration may be carried out analytically
[6.2] as is usually done for the case when the kernel is the solution for
a point force in an infinite region (the Kelvin solution). The more
complicated kernels, such as the one used in the present work for con-
figurations with a circular hole, may be written as the sum of the Kelvin

solution, Jiz(xm,g), and a complementary part, uig(xm,g). This opens

a third possible way to evaluate the integral of equation (6.24) when
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m = n which is the method used in the present work. Equation (6.24)

may be written:

r ! c

g = J K
kamn S kg g
n n

(x",£) ds(g) (6.26)

Thus when m = n the non-singular part, resulting from uk;(xn,g), is
evaluated numerically using the same procedure as for m # n and then

added to the singular part from uki(xn,g) which is evaluated analytically
as in reference [6.2].

6.5 Solution of the equations

The simultaneous equations (6.21) may be assembled in matrix form

as:
Hu = GT (6.27)

where u and T are vectors containing the components at the nodes of

displacement and traction respectively. H and G are square matrices of

order 2N for two-dimensional analysis or 3N for three dimensions.

In a well posed problem either the displacements, the tractions or
sufficient components of both will be specified on each element of the
boundary. The matrix equation (6.27) may be rearranged therefore so that -
all the unknown components are contained in a vector 5 and the known
components multiplied by their coefficients are contained in a vector F,

Thus:
AX = F (6.28)

where A is a matrix containing the appropriate coefficients from H and
G. Having solved the simultaneous equations (6.28) the displacements
u and tractions T will be known for the complete boundary and may be

used to calculate the displacements and stresses at interior points.

6.6 Interior points

. . . . P
The displacement at an interior point, denoted x , follows from

equation (6.18) and may be given by:

P
ulx) = g T (% ) (6.29)

k kipn & - hk%pn uylx
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P
The stress at the point x may be obtained using equation (6.7),
remembering that this is valid for three-dimensions or plane strain
P
but must be modified for plane stress. Substituting for uk(x ) from

equation (6.18) into equation (6.7) gives

p ! 3 P 3 P 3 P
oij(x ) = JS{NiJ_ 5’{; [u;l(x,i)] + G(—a-; [u*i*%(x,i)h o, [UER(X’E)])}
TQ(E)dS (¢)
f 3 P 3 P 3 P
- Oy [TE GG s Gl [T3 o) v 5= [T, (x, 8010} vy (€)ds(e)
S k J i
(6.30)
This equation may be summarized as:
Py - b e T () aste) =] s . (he) u (e) as(e)  (6.31)
where
P P . P p
D%ij(x,é) = Mij ul’i%,k(x,é) + G[u;%j(x,g) + u;fl,i(x,&)] (6.32)
and
P P P P
ogij(x,g) = A8y Tiz’k(x,E) + G[T?Q’j(x,g) + T?l’i(x,g)] (6.33)

The discretized form of equation (6.31) for constant elements is:

N
f
(x) = 7§ T (x) J Z7gij(X?€) ds(g) - ul(x“)f ‘S%ij(x?g)ds(g)}

1 S S
n n (6.34)

P P
The coefficients [71..,(x,g) and .SQA X,£) are obtained from the

ij 1j(
kernel functions differentiated with respect to Xk (coordinates of the
point at which the force is applied). The integration is then carried

out numerically using Gausslan quadrature.
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This completes the general formulation of the boundary element
method which is valid for two or three dimensions provided the correct
fundamental solution is used. In the present work the two dimensional
fundamental solution satisfies the boundary conditions on a traction-

free circular hole exactly. The effect of this is considered in the

next section.

6.7 Modified kernel function

Generally in the boundary element method the kernel function
corresponds to Kelvin's solution for a point force in an infinite region
or its equivalent in two dimensions. However the formulation is valid
for fundamental solutions for a point force in any region which includes
the region of the problem. Consider now the case where the kernel
corresponds to the solution for a point force in a region with a traction -

free boundary S*. The boundary of the problem S may coincide with all

or part of S* (see figure 6.1). The part of the boundary of the problem

{hogd
’ &

Point force f f 1

Known fundamental solution Examples of typical problems

Figure 6.1 Boundaries with the modified kernel function

to be solved which coincides with S* is denoted SH and the remainder of
the boundary S'. The tractions Tig(x,g) are zero on S* unless the singular
point x coincides with this part of the boundary. Even in this case

analytic integration along the boundary will show that:

,
J uz(g)Til(x,g)dS(g) = 0 when x € SH (6.35)

S

The integral on the left-hand side of equation (6.19) therefore need only

be carried out numerically for the boundary S'.
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If all or part of SH is loaded in the configuration being analysed,
the integral on the right-hand side of equation {(6.19) will have a
contribution on the boundary SH and either that part of the boundary
must be divided into elements or a superposition principle must be used
as was mentioned in section 6.1. If SH is traction-free the integrals
of equation (6.19) may be evaluated on the boundary S' only and therefore
no elements will be required on the boundary SH. Points on SH where

stresses or displacements are required may then be treated as internal

points.

The modified fundamental solution must provide values for the

following:

C
uﬁl(x,i), ukl(x,i), uﬁl,j(x,i)

(6.36)

T*kl(x,g) and Til’j(x,g)

For the Kelvin solution in two dimensions the tractions and dis-
placements may be readily obtained in terms of the spatial components
(x,£). However for more complicated kernels in two dimensions which
include other boundaries, explicit expressions are more difficult to
obtain. These solutions are generally expressed in terms of complex
potential functions ¢k(z,zo) and wk(z,zo) where k refers to the
direction of the unit point force at Z and z is a general position in

the region. In terms of x and £, z and z may be expressed as:

Z = gl + ng
(6.37)
and z, = x, + ix,
Differentiation with respect to z is denoted by ' (hence ¢'k,
@”k, etc) and differentiation with respect to Xj by the subscript o
. ispl * * o
(hence ¢k,j , etc) The displacement components ukg and qu,J are
then given by
u*. o+ i u* = =3 Ko, -z ¢ - ) (6.38)
k1 k2 2G k k k
and u¥* . o+ i u¥ .= L ko, . - z6' . — 1 .) (6.39)
kl,] k2, 2G LN k,J k,J
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where Kk = (3 ~ 4v) for plane strain

(6.40)
or I for plane stress
1+v
Bar denotes the complex conjugate of a function.
The tractions depend on the direction cosines of'Qj of the normal
to the boundary. Defining the complex number L as:
L= g + 1, (6.41)
the tractions are given by:
* s TS _ ' Tt _ o T
Tkl + lTkZ = (¢k + ¢k) L (zq)k + wk) L (6.42)
and the terms Ti%,j are given by:
3 ) i T . — U Pl ) _ N ) T ) T .
Tkl,J s AT ($k,3 + ¢k,3) L <Z¢k,3 + wk,g) L (6.43)

The required components are therefore given by equations (6.38),
(6.39), (6.42) and (6.43) in terms of the complex potentials ¢k and
v and their derivatives. These are given, together with the expression

K
for uiﬁ, in Appendix F for a point force near a circular hole, which
is the kernel function used to obtain the results of the next chapter.

The expressions for the complex potentials were obtained by Murakami and

Nisitani [6.19].

6.8 Implementation

The modified boundary element method was implemented on an ICL 2970
computer. The existing simple boundary element program [6.2] employing
a constant shape function over each element, was modified in the following

manner.

* A new subroutine was written corresponding to the modified
kernel function for a region with a circular hole given in Appendix F.
The subroutine yields the values of the parameters specified in equation

(6.36) using 'complex' arithmetic facilities.
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* A subroutine was also written to replace references to the
standard Kelvin kernel function so that having chosen which sub-
routine to use for either the standard or modified method, the
remainder of the program would remain unchanged. The modifications

also allow other kernel functions to be implemented simply.

* Reference to the kernel function is made at several points in
the program which therefore required modification. These are: a) the

evaluation of coefficients h and & omn (m £ n) using equations

kamn
(6.22) and (6.24). b) the evaluation of &, amn {m = n) using equation
P P
(6.26). c) the evaluation of E&ij(x,i) and E&ij(x,i) using equation

(6.32) and (6.33).

%* QOptions for additional Gauss points (4 points are used for the
results quoted in Chapter 7), plane stress rather than plane strain [see
equation (6.8)], automatic grid generation and other facilities were

also added to the software.

Initial tests with the modified program showed that a considerable
increase in run time resulted when the modified kernel function was used
instead of the standard kernel function (up to a factor of 10 for the
same number of elements). This is due to the additional computation
required in evaluating the displacements, tractions, etc. [equation
(6.36)] from several general 'complex' expressions rather than one
explicit algebraic expression. (The increase in run time occurs even
if the standard kernel function is evaluated from the general complex
expressions). To improve the efficiency of the program to a comparable
speed to the original would require these explicit expressions to be
obtained. However as the program stands its run time is acceptable and
it has the advantage that new kernel functions may be implemented

relatively easily given the knowledge of ¢k and wk.

The method for preparing the data and using the modified BEM

program on the ICL 2970 computer is explained in appendix G.
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CHAPTER 7

BOUNDARY ELEMENT RESULTS

7.1 Configurations analysed

The modified BEM program has been used to analyse two simple
configurations in order to assess the accuracy and effectiveness of

the method. The configurations are shown in figures 7.1 and 7.2:

Figure 7.1 Externally loaded annulus.

an externally loaded annulus with a traction free hole and a square
plate in biaxial tension with a central traction free hole. The radius
of the hole is denoted a, half the width of the disc or plate is denoted
w and the distanceof a general point from the centre of the hole is
denoted r. The radial and tangential stresses are given by o and 9
respectively and the external normal stress on the outer boundary in
both cases is - The stresses in the annulus are known analytically
[7.1] and for the square plate were determined by Hengst [7.2], thus
comparisons may be made with these results to show the accuracy of the

method.
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Figure 7.2 Square plate with central circular hole in biaxial tension.

7.2 Comparison between the modified and standard kernel functions

An annulus with a medium sized hole, a/w = 0.3, was analysed
using the BEM program with the modified kernel function for configurations
with circular holes. The outer boundary of the annulus was modelled
using 8, 12 or 24 boundary elements. The values obtained for the radial

and tangential stresses across the section of the annulus were compared

with:
i) the known analytic solution given by the formulae:
_ (1L - a/r?)
o, = (I a7 o (7.1)
(1 + & /r?)
Oy = (T ) o (7.2)
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ii) the stress calculated using the BEM program with the

standard Kelvin kernel function, using a total of 16 or 24 boundary

elements to model both the outer and inner boundaries of the annulus.

Figure 7.3 shows these results for the normalised tangential

stress, Ge/oo, across the section of the annulus. The maximum

stress

occurs at the edge of the hole thus the stress concentration factor,

Kt, is oe/oO at r = a.

Hole size a/w = 0.3
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Figure 7.3 Comparison of results for O in externally loaded annulus.
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Near the outer boundary (r/w = 1) all the BEM results become inaccurate
due to the proximity of the outer boundary. This is because the
numerical integration techniques are inaccurate close to the singularity
in the kernel function. The fall off in accuracy occurs with these
results at a distance from the outer boundary equivalent to between 1
and 2 times the lengths of the elements on this boundary. Thus the
results for 16 elements with the standard kernel function are similar
to those for 8 elements with the modified kernel function in this region
since both have the same number of elements on the outer boundary.
Similarly 24 elements with the standard kernel and 12 elements with the
modified kernel have approximately equal errors approaching the outer
boundary. However the real advantage of the modified kernel functions
is seen as the inner boundary 1is approached. Using the standard kernel
function with elements round the hole a similar deterioration in the
accuracy of the boundary element solution occurs as with the outer
boundary. Thus no value for the stress concentration factor may be
obtained with this method except by extrapolating the interior values
to the boundary in some way. With the modified kernel functions no
elements are required round the hole and therefore there is no
deterioration of the results right up to the hole boundary. Accurate
values of the stress concentration factor may therefore be obtained
without the need for extrapolation. The errors are approximately 4.5%,

2% and 1% with 8, 12 and 24 elements respectively.

The same pattern emerges when looking at the radial stress in the
annulus (Figure 7.4). The radial stress dies away to zero as the hole
is approached and the BEM results with the modified kernel function
closely follows the analytic solution over this region. The values of
radial stress obtained from the method with the standard kernel function
are considerably less accurate over the entire range but in particular

close to the hole.

These results show the effectiveness of the modified kernel function
in obtaining accurate values of stress, and in particular the stress
concentration factor, near the edge of a circular hole. Further results
have been obtained to show the variation in accuracy obtained using the

modified kernel for different sizes of hole.
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Figure 7.4 Comparison of results for o in externally loaded annulus.

7.3 Annuli with various sizes of hole

The maximum stress in annuli with holes varying in size from
a/w = 0.5 to zero (no hole) was calculated using the modified kernel
function with 8, 12, 24 and 48 elements on the outer boundary of the
annulus. The values obtained were compared with the known values from
equation (7.2) with r = a and the percentage error, given by €rep WaS
plotted against the hole size, a/w, in figure 7.5 where Eref is defined

by equation (5.1).
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Figure 7.5 Accuracy of the modified BEM solution for annuli with

various sizes of hole.

The values of stress concentration given by the modified boundary
element method were all below the theoretical value and, as expected,
the error decreases as the number of elements is increased. With no
hole, a/w = 0, the modified kernel functions are equivalent to the
standard Kelvin functions and the configuration is simply a disc in
constant biaxial tension. The error in the BEM solution in this case
is approximately 4%, 2%, 1% and 0.3% with 8, 12, 24 and 48 elements
respectively. No improvement on this level of accuracy could be expected
when the hole is introduced in to the configuration and the kernel function,
However it is interesting that the same accuracy is maintained up to hole
sizes of about a/w = 0.3. For larger holes the error increases quite

rapidly when only 8 elements are used on the outer boundary and less
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severely the more elements are used. This effect is related to the
size of the elements on the outer boundary in a similar way to the
deterioration of accuracy close to the boundary observed in Figure 7.3.
The inaccuracy is caused, at least in part, by the approximate numerical

integration in the proximity of a singularity in the kernel function.

To summarize, the accuracy of the BEM solution with the new
kernel functions improves as more (or smaller) elements are used round
the boundary. For a given number of boundary elements the accuracy is
better for smaller holes, but if the hole is below a certain size (e.g.
a/w = 0.3 for 8 elements) the accuracy is approximately the same as

would be achieved using the standard kernel function on the configuration

without the hole.

7.4 Square plates with various sizes of hole

The other configuration analysed was a sguare plate with circular
hole in biaxial tension. In this case the numbers of elements on the
outer boundary were 4, 12, 20, 28 and 44 which, having an odd number of
nodes on each side, enabled the rigid body motion to be constrained
while preserving two axes of symmetry. A graph of the percentage error

€ was again plotted against the hole size a/w and this is shown in

ref
figure 7.6. The smaller scale on the vertical axis compared to figure

7.5 should be noted.

The general features of these results resemble those for annuli,
i.e. greater accuracy for smaller holes and for a larger number of
smaller elements on the outer boundary. However the deterioration in
the accuracy as the hole size increases is very much more marked in
the case of the square plate. The BEM results for no hole (a/w = 0)
are in fact more accurate than in the case of the annulus and for a hole
size of a/w = 0.1 the errors in the two cases are approximately equal.
For larger holes however the errors are considerably greater in the
square plate case and the rate of the decline in accuracy is also
greater. Nevertheless errors of less than 10% are achieved using 12
elements for hole sizes up to a/w = 0.3, and using 44 elements 10%

accuracy is maintained up to a/w = 0.5.
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Figure 7.6 Accuracy of the modified BEM solution for square plates

with various sizes of hole.

A possible reason for the appreciable decline in the accuracy of

results for square plates compared with annuli may be understood by

considering the modelling of the displacements, ui(g), by the boundary

elements (see section 6.4 of the formulation).

A constant shape function

for tractions and displacements was assumed over each boundary element

— this being the simplest form of the boundary element method.

Constant

displacement over elements can only model exactly a zero strain/zero

stress condition,

and whereas linear elements would yield the exact

solution (save rounding errors) for a constant stress state such as the
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square plate with no hole in biaxial tension, the constant elements

give only an approximation to this case. 1In spite of this drawback
quite accurate values for stress may be obtained using constant

elements in the BEM, particularly if the displacements are approximately
constant over each element. They are approximately constant over the
elements in the square plate only while the hole is very small, but

in the case of the annulus the presence of the hole affects the magnitude
of the displacements but not the fact that they are constant in the
radial direction and thus approximately constant over the elements.
These results therefore, clearly show the need to extend the method

to at least linear elements before attempting more complex geometries

and loadings and consequently no further results are presented in this

thesis.
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CHAPTER 8

GENERAL CONCLUSIONS

8.1 The finite element superposition method

The finite element superposition method (FESM) described in Part I
was formulated and applied to the analysis of stress concentrations in
configurations with traction-free or loaded holes. Important modific-
ations were made to the superposition method which had previously been
used to determine stress intensity factors in configurations with cracks,
including introducing the loading function which accurately represents
the tractions on a hole. It was found to be possible to modify the
form of the functional in the formulation such that no explicit inte-
gration was required on the hole boundary, which meant that the increase
in the computation required to analyse loaded configurations was kept to
a minimum. The analytical trial functions and loading function used for
determining the stress near holes were derived from the known solutions
for elliptical or circular holes in stressed sheets. Two trial functions
for elliptical holes and up to eight trial functions plus the loading
function for circular holes were implemented in the computer program and
results were obtained for configurations with both traction-free and
loaded holes. 1Initial results for traction-free holes confirmed the
validity of the method and showed the effect on accuracy of various

parameters. The conclusions from this work may be summarized as follows.

1. FESM improves the accuracy of basic constant strain finite
elements while adding very few degrees of freedom (equal to the number
of trial functions) to the system of equations. Comparison with more
sophisticated finite element methods (i.e. with linear stress fields
within elements) shows that FESM is able to achieve similar or improved

accuracy with very many fewer degrees of freedom.

2. Refining the finite element mesh improves the accuracy of the
method, but solution time and the quantity of data is increased.
Furthermore the improvement of FESM over conventional finite elements
is less marked for fine meshes. A compromise between accuracy and
efficiency must be sought and in practice, a ratio of the hole radius
to a typical element dimension of about 2 to 3 was found to be suitable

for the applications discussed.

~128-



3. The accuracy of the method is greater for small ratios of
the hole size to plate width; narrow elliptical holes also show
greater accuracy. In general the FESM solutions are more accurate
where the trial functions chosen closely match the exact solutions in
the region of stress concentration, as occurs, with the particular

trial functions used in this study, for small or sharp holes.

4. Additional trial functions, provided that they are applicable
to the particular geometry, will in general improve the accuracy of
solution. A total of 8 trial functions for circular holes were imple-
mented in the computer program, 5 of which were applicable to config-
urations with two axes of symmetry. Quite accurate results were
generally achieved with just 2 trial functions (equations (3.19) and
(3.22), i = 1 and 4) but using the full set of trial functions was
found to improve the accuracy by up to 3%, particularly if either the
special region was of limited size or extra elements were included Jjust
near to the point of stress concentration. The optimum area for the

special region was found to be approximately 4 times the area of the

hole when 5 trial functions were used.

5. The accuracy of the stress concentration factors, for circular
holes of less than half the plate width in diameter, could be expected
to be within approximately 3% of the true value when using 5 trial

functions.

New results for the stress concentration factors at traction-free
elliptical holes in square plates were obtained using the method. The
stress concentration increases rapidly as the aspect ratio a/b rises, as
also occurs for an elliptical hole in the infinite sheet. Comparing the
square plate results with those for the infinite sheet, Kt is higher in
all cases for the square plate, but the proportional difference is less
for small holes and higher aspect ratios. Thus the effect of the finite
size of plate was shown to be more significant for large holes of

circular or near-circular shape.

In applying FESM to configurations with loaded holes, suitable
representations for the radial and tangential tractions round a pin-
loaded hole were discussed. Several configurations were analysed in

order to compare the Kt obtained with, firstly analytical values and
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secondly, values obtained by other numerical methods. The close
agreement between the FESM and analytical results was to be expected
since the trial functions and loading function themselves contained
the analytical solution. However close agreement (5% or better) was
also obtained with the results from more complex configurations which
were compared with the estimates of Kt from other numerical methods.

New values of stress concentration factor were produced for con-
figurations with loaded holes to show the effect of different distributions
of load on the hole and to give values of Kt for rectangular lugs of
varying dimensions. The stress concentration varied significantly with
the different loadings applied (an increase of 60% being noted for one
configuration between constant pressure over half the hole and a cos®®
distribution of load with friction). For configurations without friction
the load distributions modelling close-fitting pins gave the lower stress
concentrations. However when friction was introduced the stress concen-
tration was markedly increased - by up to 17% when the proportion of

the resultant load carried by the shear tractions was 0.2.

The stress concentration factors for rectangular lugs with loaded
circular holes of diameter half the plate width, were determined using
FESM. The Kt for the lugs increased as the distance between the hole
and the top of the lug was reduced, especially when this distance became
less than the hole diameter. A comparison between these results and
independent estimates for the Kt in rounded lugs, showed a close

correlation, with the Kt for rounded lugs being higher by approximately

7%«

The finite element superposition method has been shown to be
effective in the analysis of stress concentrations near loaded or un-
loaded holes. Compared to other finite element methods it is efficient
in terms of the number of degrees of freedom in the problem, and hence
requires only limited data preparation, computer storage and post-
processing. The accuracy of the method for the applications discussed
was shown to be adequate for engineering purposes, in most cases being
accurate to within 3%. Its limitations are that it is applicable only
to two-dimensional configurations, and ones for which suitable trial
functions exist. Thus, for example, changes in section near to the

hole would be very difficult to model with simple trial functions. The
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most likely potential for further development of the method is to
incorporate FESM as a substructure within larger finite element

schemes (see reference [8.1] for example). This is discussed briefly

in the future work section 8.4.

8.2 The modified boundary element method

The simple boundary element program, using a constant shape
function for the displacements and tractions on the elements, was
modified by using a new fundamental solution for a region containing
a circular hole. This change to the method was shown to have the effect
that for configurations with traction-free holes the boundary conditions
on the hole could be satisfied exactly and no discretisation of this
part of the boundary was required. Since the fundamental solution was
more complicated and required the use of complex algebra, additional
computation was introduced, but this was offset by the fact that stress
concentration factors at the hole could be calculated directly and with
similar accuracy to other internal points, and by the fact that fewer
elements were required to model the configuration. Furthermore the
increase in run time would be substantially reduced if explicit
expressions for the modified kernel function were obtained and this

is recommended as a priority for future work.

The program was tested by solving for the stresses in an externally
pressurized annulus and a square plate with a central circular hole in

biaxial tension. The following conclusions were reached from the results

of the computation.

1. For an externally pressurized annulus accurate values of stress
concentration (less than 5% error) were obtained from the modified
method using only a few elements on the outer boundary (8 elements with
a hole size of a/w = 0.3). For larger numbers of elements on the outer

boundary or for smaller holes the accuracy of the method improved.

2. The standard boundary element method was much less effective
for the analysis of this configuration since both the inner and outer
boundaries of the annulus had to be modelled, andsince when using constant
elements the stress can only be calculated accurately some distance
away from boundary elements (typically the length of the element), no
direct estimate of K, could be obtained.

t
-131-



3. For a square plate with a circular hole in biaxial tension
the modified BEM estimate for Kt was less accurate than for the annulus
and the accuracy decreased for larger holes more rapidly than for the
case of the annulus. With a hole size of a/w = 0.3 an error of approx-

imately 10% occurred with 12 elements modelling the outer boundary.

4, The larger errors occurring in the square plate case suggested
that the constant shape function over the boundary elements was
insufficient for this configuration. The superiority of the modified
kernel functions however has been shown and it is suggested for future
work that the modified kernels are incorporated in a boundary element

formulation with higher order elements.

In spite of the fact that the boundary element work has not yet
produced a program for general application in the determination of stress
near holes, the present work has demonstrated the potential of the method
when using modified fundamental solutions. The next stage in the
development of this work will be the incorporation of explicit ex-
pressions for the modified kernel function in a BEM program with either

a linear or quadratic shape function over the elements.

8.3 Comparison of the methods

The two methods described in this thesis, the finite element
superposition method and the modified boundary element method, were
developed for analysing the stress concentrations near holes or other
cut—outs in two dimensional configurations. Both methods are extensions
to established numerical techniques, modifications to which have been
made by incorporating known analytical solutions to problems in elasticity
which are related to the actual problems to be solved. Thus FESM uses
as trial functions solutions for an infinite plate with a circular hole,
to solve configurations of finite size containing such a hole. For
modified BEM the relevant fundamental solution for this problem, the
solution for a point force near the circular hole in an infinite region,
is incorporated as the kernel function. The methods are therefore
related and ultimately have similar limitations in that they may be
used only for configurations for which suitable analytical solutions,
for the trial functions or kernel function, can be found or are already
known. In practice this may not be a severe limitation since commonly
occurring causes of stress concentration are holes for which analytical

solutions exist.
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A feature of both methods is that they require less modelling
(i.e. fewer elements) in the region of the stress concentration. This
is an important asset, particularly as the trend in computing continues
toward fast but small machines which may not have the large core storage
required by traditional finite element programs, but which could adequately

deal with the relatively modest requirements of these formulations of

the methods.

The two methods are presently at different stages of development;
FESM being ready for application to the real configurations for which
concentration factors are required, but the modified BEM still needs

further work in developing the method.

8.4 Future work

The FESM computer program has been shown to be effective for con-
figurations with loaded or traction-free holes, particularly for deter-
mining the stress near to a hole with a specified loading. Future work
on this program therefore should initially be concerned with its
application to important engineering components such as lugs of varying
dimensions. Optimum geometries of lugs could be determined for particular
loadings. Additional trial functions may be found to be advantageous
for some configurations and the program could easily be modified to

accommodate more than the 8 functions at present available.

The distribution of tractions on the hole boundary will be of
particular importance in studies such as that of lug geometries, and it
may become necessary to make the loading an unknown in the problem and
incorporate modelling of the pin into the finite element scheme.
Providing contact between the hole and pin was maintained a loading
function for the pin could be incorporated into the method, being the
solution to a circular disc with arbitrary tractions on the boundary.
The Fourier coefficients for the loading functions of the hole and
disc would be unknowns in the system of equations to be determined from

the variational principle.
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The immediate priority for the BEM work is to incorporate the
modified kernels for circular holes into a BEM program with a linear
or quadratic variation of displacements and tractions over the elements
rather than constant shape function used at present. Not only would
this enable a wider range of configurations to be analysed accurately

but it would also allow the validity of the method to be checked more

readily.

Another area of immediate interest would be in the production of
explicit algebraic expressions for the modified kernel functions. This
would reduce considerably the amount of computation required to form
the simultaneous equations, but due to the complexity of the functions

concerned (see appendix F) would involve a significant amount of analysis.

When analysing configurations with one or two axes of symmetry it
is convenient to deal with only one half or quarter of the complete
region. This may be done by specifying kinematic boundary conditions
on the axes of symmetry, as was done for the finite element method, or
by symmetrical assembly of the boundary element matrices which avoids
the need for elements on the axes of symmetry. This assembly of the
matrices was proposed by Telles [8.2] and could usefully be incorporated

as an option for symmetrical configurations in the present method.

One area of potential application for both FESM and the modified
BEM is as small sub-structures in much larger analyses. Thus large
structures or components containing several holes, cracks, stiffeners
etc. could be sub-divided into a region to be analysed with conventional
finite elements and sub-regions round stress concentrations which would
require more accurate analysis from the new methods. Compatibility
between these regions could be readily specified if shape functions of

the same order were used (e.g. constant strain elements).

Types of stress concentrations other than the ones so far con-
sidered might be solved with FESM or modified BEM. New trial functions
would be required for FESM for such configurations as loaded elliptical
holes or rows or arrays of holes. For BEM the fundamental solutions for
an ellipse, a crack, a long straight boundary or a disc could be

incorporated into the existing program. The boundary element work
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could be extended to three dimensional analysis if the fundamental
solution for a point force near an ellipsoidal cavity were derived.

This would enable 3-D configurations containing cylindrical or spherical

holes, for example, to be solved.
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APPENDIX A

Derivation of the Variational Principle

The principle of minimum complementary energy states that the
complementary energy is a minimum when the system considered is

equilibrium. A functional [2.5] based on this principle may therefore

be expressed:

o= -u(oh) + J' (rH7T g as (A.1)
SK
where n = the complementary energy functional
EI = the stress field over the region considered
U(gl) = the strain energy
SK = boundaries having kinematic constraints
II = the tractions on the boundary arising from o
E = the prescribed displacements on SK
T

() = denotes the transpose of a vector or matrix.
When the complementary energy is a minimum, the variation of the

functional is zero, thus:

s§nm = O (A.2)

To use this variational principle in a finite element scheme the
equilibrium of the stress field gI is required across element boundaries.
This may be introduced using Lagrange multipliers rather than as a
constraint on the choice of possible functions for QI. Thus at any
point on a boundary between two elements, element 'a' and element 'b'

say, the equilibrium conditions may be expressed as follows:

I (A.3)
where Ei and zé are the tractions due to the stress field QI in
elements 'a' and 'b' respectively along the inter-element boundary,

Sab' Introducing the Lagrange multiplier, A, this constraint may be
expressed as:

r
5 (| W+ 1) ds ) = 0 (A.4)

Sab
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where §&{ } denotes the variation of the expression and Sab is the
boundary between elements 'a' and 'b'. The term within the curly
brackets in equation (A.4), summed over all elements, may therefore

be added to the functional, equation (A.1). The new functional, T,

may then be written:

r f
ne = Dl-ugeh s | i rhass | (rhEes) (A.5)

where the summation is carried out over all the elements, the subscript

N refers to the N'th element and in particular SE denotes the inter-

element boundaries of the N'th element. The compyete element boundary,

denoted SN’ is made up of inter element boundaries SE , and/or kinematic
boundaries SK and/or traction boundaries ST . Thus:
N N
S = S, +S, +58 (A.6)
N EN KN TN

The Lagrange multiplier A in equation (A.5) may be identified by

taking the variation of T with respect to gI and A. This yields the

following:
o f ~ T T f T.I f T
om, = ] {“J (u) 6T dS+J (62)°T dS+} (A) 78T ds +
N SN SE SE
N N
! I.T -
J (6T7)" u ds } (A.7)
5
KN
= 0

where g are the displacements defined on the element boundary and

- . I
are equal to u on S Since 8T must be zero on the traction boundaries,

K
equation (A.7) may be written:

r f
] (=) 7 st ds + ] T thas = o (A.8)
S

Z

EN EN

from which it is clear that X is equal to the displacement field g.

Substituting for A in equation (A.5) gives:
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T f ~ T T f
HC=Z{—‘{HE)+} (g)zdS+j (u)
N SE SK
N N
or more conveniently:
I o~ T I f ~ T =
I, = Ji-Uug @)+ ] @ 1 s - | (W T
N °S S
N TN

where i denotes the prescribed tractions on the traction boundary

5
TN
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APPENDIX B

Listings of selected finite element program segments

This appendix contains listings of the following program

segments from the FESM program

Segment Name Function Page No.
NOTCH Program master segment 159
AREAS Calculates element areas 163
TRLFNS1 Trial functions for circular hole 163
TRLFNS2 Trial functions for elliptical hole 165
LOADFN Loading function 166
BCONDS Applies boundary conditions 167
ALPHAS Calculates the coefficients @, 172

Table B.1 Program segments listed in this appendix.

The program segments shown in table B.2 are also used by the FESM
program but are not listed in this thesis since they are not primarily
concerned with the theoretical changes to the method which have been

discussed in chapters 2 to 4.
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Segment Name Function

ADJUST Adjusts the direct access file data if too
many nodes defined.

BCDATA Inputs boundary condition data.

COMP Compares two character strings.

DETAILS Prints details of options selected.

ELEMDATA Inputs element data

ELEMPRINT Prints element data

KASSEM Assembles element stiffness matrix in global matrix.

KCNSTR Solves constrained banded matrix equation.

KMAT Formg global stiffness matrix.

KSOLVE Solves simultaneous equations. Called by KCNSTR.

KVECT Post~multiplies banded matrix by vector.

MINAX Determines minimum and maximum value in array.

MINV Inverts matrix.

NODEDATA Inputs node data.

PARAMS Calculates and checks various parameters.

PRINT Prints displacements and stresses.

SIGSTAR Evaluates stresses.

SPRBND Asgsembles list of nodes on special region boundary.

SPRINT Calculates strain energy term for elements in special
region.

SPRLDS Evaluates EZ and corresponding nodal loads for
elements in special region.

SRDATA Inputs data for special region.

TRANSAX Converts stresses and displacements to new
coordinate axes.

TRAX Rotates coordinate axes.

TRLFNSO Trial functions for cracked configurations.

Table B.2. Other program segments used by FESM program.
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CODE FOR NOTCH

c
c
c
[
C
<
[
[
[
C
C
C
C
C
C
C
<
C
C
C
C
C
C
C
C
C
C
C
[
C
C
[
C
C
c
[
C
c
<
C
C
C
C
C
C
C
4
[
[
[
C
¢
C

PROGRAM NOTCH

333355333333 333538333S3S533533835338

S $ 33383

$33333 $33% S $3
$3 3 33 ] $3 L $1 ] 131
333 3 33 ] 33 $3 3 33
§3 33 s8 ] $$ 33 $3333%8
$% 3 $333% $s 3338 S 33

$$33T5333TTEITITTITSSITSTITSSSSSSSS

PRI ESCTEECSErrEEET SR ISESFSSsSSrSETESESSsoxsSssSssx
THE FINITE ELEMENT SUPERPOSITION METHOD
EESESZCCEITSECS RS SESCTEECCICIZTSSCSTISSSSISTSIS= RS

A FINITE ELEMENT PROGRAM FOR THE DETERMINATION OF

STRESS CONCENTRATION AND STRESS INTENSITY FACTORS

USING A METHOD DEVELOPED AT RAE BY P BARTHOLOMEW
MODIFIED AND EXTENDED

AT SOUTHAMPTON UNIVERSITY BY A R CARMICHAEL

THE METHOD EMPLOYS A SUPERPOSITION OF CONSTANT STRAIN TRIANGULAR
ELEMENTS AND TRIAL FUNCTIONS WITH A SPECIAL REGION. BAR (FLA)
ELEMENTS ARE ALSO AVAILABLE FOR USE OUTSIDE THE SPECIAL REGION.
LOADING ON HOLE APPLIED USING FOURIER SERIES OF TRACTIONS.

DIMENSIONS
IDIM.GE.NUMBER OF EQUATIONS = NEQ@
INAMGENUMBER OF NODES = NNODE
IDE .GE.NUMBER OF ELEMENTS = NEL

MINIMUM DIMENSICNS

STIF(NEQ,ISEMI) RHS(NEQ,5) BC(NEQ,5) RHS1(NERQ)
CT(NEW,2) DT(NEG,5) CONROW(NEW)

X(NNOCF)Y YUINNODE) IDENT(NNODE) NBAUINNODE)
LSTBERA(KNGDE,3) LSTHLINNIDE, )

ELNOCNEL,3) LSTSRAM(NEL) TU(NEL)

IDIM MuUST BE FIKSY ULIMENSION OF STIF, RHS, BC, DT, CT
INAM MUST BE FIRST DIMENSION OF LSTBA, LSTHL
IDE MUST BE FIWRST GIMENSION OF ELNO

IN SUBRGUTINE KCNSTHR CHECK THAT THE DIMENSION OF SPARE 1S5 GELIDIM
IM SUBROUTINE KVECT CHECK THAT THE DIMEMSION OF SPARE IS GE.IDIM

*whd LR B LA 24 LE R ERE L LR 2]

C

C IPR =-1 MINIMUM QUTPUT. (CHANNEL 7)

C =0 HEADING & MINIMUM CGUTPUT, (CHANNEL 7)

C =1 STRESSES OUTPUT, (CHANNEL 7)

C = 2 DISPLACEMENTS OUTPUT. CCHANNEL 7)

C = 4 DATA OLTPUT, (CHANNEL 7)

C = 8

C = 16

C = 32 ADDITIONAL OUTPUT. CCHANNEL 7)

g = 64 EXTRA [E-BUG OUTPUT. (CHANNEL 7)

C ADD NUMBERS 1-64 TOGETHER FOk COMBINATION OF OPTIONS.
C [ ERROR AND WARNING MESSAGES ALSO OUTPUT ON CHANNEL 6 3
¢

INTEGER
INTEGER
INTEGER

ISYM(1C)

CONROW(45C) LSTSRN(400),IDENT (250 ,ELNO(400,3)
NBA (25C),LSTBA(25C,3) ,LS5TBL(250,3)

Kk *

INTEGER ITITLEM(2C),ITITLEC(23),0PTIONS (16)
¢
LOGICAL CONVERT,OK,MDAF ,CDAF
¢
REAL STIF(450,8C),RHS(45GC,10) ,RHS1(450),8C(450,10),CT(450,2)
REAL DT(450,1C),SIGMA(27,400),T(400),AREA(400),%(250),Y(250)
REAL NU,DCT(9,9),DCTR(9),DS(9,9),DCKR(9),DCONT(9,9) ,ALPHALS)
REAL*4 AN(30)/30%C./,DN(3C)/3040./
¢
CHARACTER®4 ICDATAC20)
CHARACTEK*1 DATE(18)
c
COMMON STIF,RHS,RHS1,8C,CT,DT,SIGMA, T, AREA, X,V
COMMON /BNOTCH/ISYM
COMMON /TRL/CONVERT,SSS(9,6),AN,DN,SICO(58)
COMMON /SIZE/ID,MTF,MRHS,MTF3 MA
COMMON /TRX/XC,YC
ci** xhkk u ok * & & Xk k%
¢

C INITIALIZE PARAMETERS
CALL ICLOHEMASK(64,IRESP)
OK= ,TRUE,
MDAF= FALSE o
CDAF=.FALSE .
CONVERT= .FALSE .,
IDIM=450
IDE=4CC
Inam=7250
MRHS=1D
MTF=0
MTF3=27
MA= 21
NRHS=NPHS
Im=20
1¢=22
NU=T.3
£E=1.0
00 20 1=1,1DE
20 LSTSRN(1)=D
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(=== ST EsTCCTCCrCTRrTITESSTESTESSSSSTSIIBSTISETIE ' 150 CONTINUE

C READ AND CHECK DATA FOR ELEMENTS AND NODES b0 160 1R=12,15

(#==Cc T=S=S=TSCCX TS ST SESZPEIESSRSEETIRTTIRRIZRST READ(QIREC:[R)(DN(I),]'.:IR*(Z'?G,IR*O'éS)

C FIND BEGINNING OF MESH DATA 160 CONTINUE

40 READ(S5,620,ENC=60) IDATA 170 READ(S,REC=21)E,NU
N=2 IC=4
CALL COMP(N,ICATA(2),3,°IN',1) ¢ . .
IF(N.EQ.2)GCTC 10C C READ "MESH™ DATA
OK=.FALSE . ‘ 180 IF(MDAF)GOTO 2CC
60TO 40 READ(5,620) ITITLEM

¢ READ(5,660)XCRACK,YCRACK, A,THETA,B

C READ MESH DATA FROM D.ALF, REAL(5,640)NEL

46U IF(.NCT.OK)GQTO &L URITE(?,REC=2)XCRACK,VCRACK
MDAF= ., TRUE & HRITE(Q,RE(::S)‘,QJ,THETA
READ(S,REC=1)NEL,NNODE NE C 200 WRITE(9,REC=17)CITITLEM(I),I=1,4) ,(DATE(IL),11=9,16)
READ (9. REC=2) KCRACK,YCRACK WRITE(9,REC=18) CITITLEC(I),1=1,4) ,(DATE(II),11=1,8&)
READ(9,REC=3) 2,8, THETA IPR=0PTIONS (1)
READ(9,REC=17) (ITITLEM(I) ,1=1,4) IMD=0PTIONS (2)
READ IF((BLTo1aE=20) JAND.(ITF ,NEL0))B=A
GO0TO 100 IFCIPRLLTLOIGOTO 220

8y WRITE(6,1340) WRITE(7,680)
WRITE(7,1340) WRITE(7,700)
STOP “#FAIL*® 220 WRITE(7,720) CITITLERCI),I=1,IM)

100 CALL ICL9LGGDATE(DATE(1)) IFCMDAFIWRITE(7,1220)
CALL ICLILGGTIME(GATE(9)) WRITE(7,720) CITITLEC(I) , I=1,1C)

c IFCCDAFIWRITE(7,124D)

C READ "“CONTROL™ DATA WRITE(7,1200) (DATE(II),11I=1,16)
READ(4,640,ENL=140) COPTIONS(I) ,I=1,6) LFCIPRLLTL0IGCTO 240
READ (4,620 ITITLEC WRITE(7,740)XCRACK ,YCRACK ,A,B,THETA ,E,NU
READ(4,640) ITF,ISYM WRITE(7,760)1ITF
LSYM(MRHS)I=LITE CALL DETAILSCISYM,IPR,IMD,AN,DN)
IFCISYM(MRHS=1) .NE.1)GOTO 110 240 THETA=3.1415926536*THETA/ 1200
READ (4,%) AN DO 260 1=1,MTF
READC4,#) (DN(1),1=22,25) LFCISYM(I) .GEL1)ID=]

110  DpO 120 IR=7,11 260  CONTINUE
WRITE(9,REC=IR) (ANCI) , I=IR*6=41,IR*6~36) : ¢

120 CONTINUE C READ ELEMENT DATA
D0 130 IR=12,15 CALL ELEMDATACELNO,T,LSTSRN,IDE,NEL,NELSP , MDAF)
WRITE(9,REC=IR) (DNCI) ,I=1k#6~70,1R#*6=65) c

130 CONTINUE C DETERMINE PARAMETERS FROM ELENENT DATA
WRITE(9,REC=1¢)(OPTIONS(I) I=1,6) MNODE=NNODE
WRITE(9,REC=1S) (ISYM(I),1=7,6) i CALL PARAMS (NEL ,ELNO,IDE,3,IDENT,INAM,2,0,NEG,NAM NNODE,ISEMT)
WRITE(9,REC=20) (ISYM(I),I1=7,MRHS) :
WRITE(P,REC=21)E,NU . CHECK WHETHER DIMENSIONING IS O.K.
6010 186 TF(NEQ.GT IDIMIWRITE(7,1260)1D1"

] TFONEL.GT JIDEIWRITE(7,1280)1IDE

C READ CONTROL DATA FROM D _AF. TFCNNCDELGT JINAM)WRITE(T, 120U) INAM

T CDAF= . TRUE. TFCISEMT 6T JBUIWRITECT7,13¢0)
READ(9,REC=16)(OPTIONS(I) ,I=1,6) IF(NEG.GTIDIMIWKITECH, 126021 DIM
REAU(H,REC=18) CITITLEC(L) 1=1,4) IFCNELLGT JIDEIWRITE(H,T28U)IDE
READ(Y,REC=19) (ISYM(I),I=1,6) TFONNCDE ,GT JINAMIWRITE( 6, 1300)INAM
READ(Y,REC=20) (ISYM(I),I=7,MRHS) LFCISEMIL6T LBLIWRITE(6,1320)
ITF=ISYM(MRHS) . IFCJNCT.MUAF OR JMNUDE E@  ,NNODE)GOTO ¢80
IFCISYM(MRHS=1) NEL1)GOTO 170 WRITE(7,1360)NNODE ,MNODE
PO 15C IR=7,11 WRITE(6,1260)NNODE ,MNODE

READ(5,RECEIR) (ANCI), I=IR%6~41,IR*6-36) ’ WRITE(9,REC=TINEL,NNODE, NBC
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CALL ADJUST(NEL,NNODE ,MNODE,NBC,9) D0 34C I=1,1DIM
HCCT,JY=RHS (1,4
PRINT DATA IF RESUIRED 340 CONTINUE
“3 IFCLIPR.LTLGICOTO 300
WRITE(7,78¥5)NAM, NEG,NEL ,NNODE
WRITE(7,800)ISEM]

oo

IF(IPR=IPR/E*&.LT.AIG0TO 300 CALL SPRINT(SIGMA _ NELSP,DCONT,T,E, NU,ID0E,NEL,LSTSRN,ARER)
WRITE(7,£27) ¢
CALL ELEMPRINTC(ELNO,T,NEL ,IDE) C PRINT ADDITIONAL OQUTFUT IF REGD,
WRITE(7,840) IFCIPR=IPR/64%64.LT7.32)60T0 460
300 CONTINUE WRITE(7,900) .
SASSINCTHETA) D0 36C I=1,%0
CA=CCS(THETA) WRITE(7,920)(CCCT(I,4),d4=1,1D)
; WRITE(7,940)DCTRCI)
C READ NODE AND COORDINATE DATA 360 CONTINUE
CALL NODEDATA(X,Y,NAM,INAM,NEL ,NNODE,MDAF) WRITE(7,980)
b0 400 1=1,1D
C TRANSFORM AXES (XCRACK,YCRACK,THETA) wRITE(7,1020) (DS(I,4),4=1,1D)
CALL TRAX(XCRACK,YCRACK,SA,CA) WRITE(7,940)DCKR(I)
DO 32T I=1,NNODE 400 CONTINUE
J=IDENT(I) ) WRITE(7,1040)
IFCJ.EQ.0)GOTC 320 Lo 42T 1=1,10
CALL TRAX(X(1),Y(I),SA,CA) ) WRITE(7,1020)(DCONT(1,J),d=1,1D)
IFCIPR-IPR/8+8.GE J4)WRITE(7,86001,%XC,YC,I,X(1),Y(D) 4ed CONTINUE
320 CONTINUE WRITE(7,1060)
(::::::::::::::::::::::::::::: DO IOLC I=1'NEQ
€ CALCULATE AREAS OF ELEMENTS WRITE(?,920) (RHS(I,4),d=1,10)
C:::::::::::::::::::::2::::::: I.AD CONTINUE
CALL AREASCAREA,X,Y,ELNO,INAM,IDE, NEL,A,B, XCRACK,YCRACK,IPR) 460 IFCIPR-IPR/128%125,LT.64)GOTO 520
TAJSEM=IDIM*ISEM] WRITE(7,1080)
(=TT IR TSRS RITESRS == D0 ABQ I=1,NEQ
¢ STIFFNESS MATRIX FORMED WRITE(7,11CG) (STIF(I,Jd),d=1,1SE4])
(===c-zzcozsooom=oooosszasas 480 CONTINUE
CALL KMAT(STIF,IDIM, IAJSEM NEL,ELNO,IDE X, Y, INAM,E, T, NU,IDENT, WRITE(7,1120) CIDENT(I),I=1,NNODE)
2 AREA) WRITE(7,1140) (€CTC1,4),d=1,2),1=1,NEQ)
¢ WRITE(7,1160)
C READ SPECIAL REGION DATA IF REQUIRED D0 500 1=1,NEQ
IFC.NOT.CDAF)CALL SRDATACLSTSRN,NELSP,ELNO,T,IDE) WRITE(7,920)(DT(1,4),4=1,10)
c 500 CONTINUE
C DEFINE BOUNDARY CF SPECIAL REGION WRITE(7,1183) (CONROW(I) ,I1=1,NEQ)
CALL SPRBND (LSTSRN,ELNO,LSTBA,LSTBL NBA,NNODE,NEL,IDE, INAM) (ee==szzs=zzss=s==ssssssss=sz=zsa=
(T E S s ST S Srr s S TS s I TS S N S R RN S S R TSI R X SR T I IR S RITII ST I IESS c SOLVE CONSTRAINEt BANDED MATRIX
€ EVALUATE DAGGER FIELD STRESSES AND EQUIV. NODAL LOADS IN SP.R,. cC===sz=z===z=z===zcsosssscomsszzzzsseas
(®======C=-CCSCCTSrS=CSSSC oSS CSSZFSSZCSITICCXSSTCSEISTSTTISRTSISZI= =SS 520 CALL KCNSTR(STIF,RHS,CT,DT,IDIM,ISE”I,CONROU,IDENT,NEQ,NNODE,
CALL SPRLUS (RHS,ELNO,X,Y,I10IM, IDE,A ,3,E,T ,NU,INAM XCRACK, YCRACK, 2 NRHS)
2 LSTSRN,NELSP,SIGMANEL,IDENT,ITF,AREA) ¢

C PRINT NEW "RHS"™ IF REQD.

IFCIPR-IPR/64%64.LT.32)GOTO 560
WRITE(7,10G60)

IFCIPR=IPR/R*8 ,GE J4IWRITE(7,8580) 00 S4C I=1,NEQ
CALL FCONDS(X,Y,RHS,E_ NU,IDIM, XCRACK,YCRACK,T LSTSRN,A,8,CT,0T, WRITE(?7,920) (RHSCI,J),d=1,10)
2 CONRQOW,INAM,ELNO,IDE,DCT ,DCTR,DCKR,DS,SIGMA,NELSP,L3TRA, 540 CONTINUE
3 LSTSBL,NBA,NNODE,NEL,IPR, IDENT,ITF,AREA,MUAF) (=======c==s==srzzszz=s====zz
c C STIFFNESS MATRIX RE-FORMED
C COPY RHS INTO BEBC (== szeszoss=ssscx=cco=ns====
DO 34C J=1,MRHKS 560

CALL KMAT(STIF,IDIM, 1AJSEM, NEL,ELNO,IDE, X,Y,INAM E,T,NU,IDENT,
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¢ AREAR)
C CORRECT NON=-SYMMETRIC TERMS IN DS

IFCISYM(9) JNE ,1)GOTO 660
IFCIPR-IPR/ 64264 .GE 32)WRITECT,1000)
DO 580 1=1,1D
BSC1,9)=05(9,1)
TFCIPR-IPR/ 64%64 ,GE J3ZIMRITECT,1020)(DS(1,4),4=1,1D)
580  CONTINUE

600  CALL ALPHAS(STIF,IDIM,ISEMI,BC,RHS,RHS1,NEQ,DCT,DCTR,DCKK,DS,
2 DCONT,ALPHA,ISYM,IPR)

c::::::=======:=====:::==:==:=:==
€ PRINT DISPLACEMENTS & STRESSES
'C====‘_‘=:================ I TTm==T
CALL PRINT(RHS,IDIM,NRHS,NEL,ELND,IDE,IDENT,X,Y,INAM,E, NU,LSTSRN,
2 NELSP,SIGMA,ALPHA,XCRACK ,YCRACK,A,B,NNODE,IPR,ITF,AREA)
c
stop
¢
CFORMATS====s===zzs=s==s=sz=zzss==z=zs==s==ssssSs=s=sssssssssssssssssssssss

620 FORMAT(20A4)

640 FORMAT(1615)

660 FORMAT(5F10.0)

680 FORMAT(IX,36(%$%),16X,

2 *A FINITE ELEMENT PROGRAM FOR THE DETERMINATION OF°®//

3 vy 8 $85%  $3333S  $%SS 0§ $%', 16X,

4 "STRESS CONCENTRATION AND STRESS INTENSITY FACTORS'/

5 % 33 3§ s$3 § $$ 1% s $s5°'/

6 " 3538 $% § $s $s $  SS,8X,"amwx® 4X,

7 PUSING A METHCD DEVELOPED AT RAE BY P BARTHOLOMEW Il
8 " $3 33 S35 8 $s 35 $335588*/

9 * $$ $  $3%% ss $SSS S $S°',16X%,4X,

1 ¢ MODIFIED AND EXTENDED®//1X,36(°$*)19Xx,

2 °AT SOUTHAMPTON UNIVERSITY BY A R CARMICHAEL®)

700 FORMAT(/1Xx,2B8HPLANE STRESS,ISOTROPIC,PLATE/
2 S54M LINEAR VARIATION OF U,V DISPLACEMENTS IN EACH ELEMENT)

720 FORMAT(/1X,2CA4)

740 FORMAT(/1X, "CCORDINATES OF CENTRE OF HOLE ARE XCRACK
2 °YCRACK=',F1(0.6/" HOLE: SEMIMAJOR AXIS LENGTH IS A
3 " SEMIMINOR AXIS LENGTH IS B =',F10.6/

=*,F10.06,3x,
=',F10.6,

& * ANGLE DETWEEN *Xx" AXIS OF HOLE (OR LOADING) ANu OX COORDINATE®,

5 * AX1S IS',F11.7,9H DEGREES,//* E =',E12.5,10%,"NU =',f5.5)

765  FOKMAT(//® AUGMENTING TRIAL FUNCTIONS: SUBROUTINE TwLENS',I1/
2 B o e i e e m = - l)

780  FORMAT(/1X,7HAaM  =,15/8H NEG  =,I5/8H NEL  =,I5/8H NNODE =,
2 15)

800  FORMAT(/1X,14KSEMIBANDWIDTH=,15)

820  FORMAT(/1X,°® ELEMENTS® ,/)

840  FORMAT(/1X,2CHORIGINAL COORDINATES, 70X,
2 23HTHRANSFORMED CUORDINATES/6H NODE,6X,1HX,B8X,1HY,65X,6K NODE,
3 6X,THX,8X,1HY)

860  FORMAT(IH ,15,2F10.6,60x,15,2E12.4)

FORMAT(/®

BOUNDARY CONDITIONS®/,®

2 " DESCRLPTION'/)
FORMAT(// 4%, DCT* 114X, OCTR® , /)

FORMAT(IC(IX,E12.5))

FORMAT(TH®, 116X,E12,5)
FORMATC// 4%, 0S° 114X, *DCKR® ,/)
FORMAT(// 4%, CORRECTED DS',/)
FORMAT(O (1% ,E12,5))
FORMAT(/1X,4X, BDCONT®)
FORMAT(/1X, "
FORMAT(®1STIF* )
FORMAT((12(ET1C,.3,1%)))

FORMATC(//"®
FORMAT(/ /"

FORMAT(//® DT*/)

FORMAT(//®

FORMAT(/* DATE:
2 ":t,4A)

FORMAT(®

FORMAT(® CONTROL
FORMAT(//® #xwnxn

FORMAT(/ /" wwwx
FORMAT(//® nawex
FORMAT(//® *%xwx
FORMAT(//®* #enx
FORMAT(//"® nn2

2 14,°
END

NOT®,14,"

RHS®, /)

IDENT®//(2915))
CT°//(5(2(E10.35,1X),3%X)))

CONROW *//(2015))

YLRAY,C/ Y 2R ,M /0 L2R /0 TIME:  °L2At1,':*,2A1,

MESH DATA READ FRCOM DIRECT ACCESS FILE.')

DATA READ FROM DIRECT ACCESS FILE.")

ERROR #%ux NEQ EXCEEDS °,14/)

ERROR www#w NEL EXCEEDS *,14/)

ERROR xaa% NNODE EXCEEDS *,I4/)

ERROR twuwne SEMI BANDWIDTH EXCEEDS 80")

ERROR xaex INITIAL DATA CARD MISSING.")
WARNING  %#x D.AF. DATA ERROR.'/® NNODE

DoAaFo ADJUSTED

’

JOB CONTINUING.')

.
’
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[z R R uNal

SUBROUTINE AREARSCAREA ,XX,YY,ELND,INA® T0E NEL,A,B,XC,YC,IPR)

SUBROUTINE TQO CALCULATE THE AREAS OF THE ELEMENTS.
1f MID-POINT OF ELEMENT SIDE IS INSIDE HOLE ASSUME CURVED SICE.

REAL AREA(NEL),XXCINAM),YYCINAM),X(3),Y(3)
INTEGER ELNOCIDE,3)
LOGICAL LPR,NEWAREA
LPR=,TRUE.
NEWAREA=.TRUE.
IFCIPR-1IPR/ 8% & LT 4) LPR=,.FALSE.,
PO 4 IL=1,NEL
80 1 I=1,3
NZELNO(IL,I)
X (I)=XX(N)
YU =YY (W)
1 COMTINUE
AREACIL) =05+ CIX(2)=X (1)) 2 (Y (=Y (1) =(X(1)=X(3)I*(Y(1)=Y(2)))
IF(A*B.LT,1 .E~-10.0R..NOT.NEWAREA) 60 TO &
po 2 15=1,3
12=1S41-15/3%3
AM=0 54 (X (18I +X(12))-XC
YH=0 5 (Y (IS)+Y(12))-YC
IFCXMAXM/ (A*A)+YM&YM/ (B*B) LT .1.) 6O TO 3
2 CONTINUE
60 TO 4
3 OAT=0.5%((X(I12)=XC)I*(Y(IS) =YC) ~(XC=XC(IS)I*(YC-Y(I2)))
SEG=0.S*AH*AGSC(ACOS((X(I2)=XC)/A)=ACOSK(XCIS)=XCI/A)) AT
AREACIL)=AREA(IL)-SEG
IFCIPR=IPR/E*5.LT . 4)60TO 4
IF (LPR) WRITE(?7,8CQ)
WRITE(?7,801) IL,AREACIL),SEG
LPR= , FALSE,
IFCAREACIL) JLELCL) I=1/0
4 CONTINUE
RETURN

800 FORMAT(//® AREA CHANGED QF FOLLOWING ELEMENTS ON HOLE BOUNDARY: '/

» ° ELEMENT
801 FORMAT(1I6,2(4X,E12.5))
END

NEW AREA DIFFERENCE"®)

(e EaNal el

2

TRI
ure

é
3

SUBROUTINE TRLFNSICA,B1,X1,Y1,$%,C1,E,NU, U, V,SX,5Y, TXY,UN,US,
SN,TNS ,ID)

AL FUNCTIONS FOR LUADED CIRCULAR HOLE RASED OM GENERAL SOLUTIGM
TO TERMS IN M=*THETA,

REAL NU

REAL L(ID),V(ID),SXCID),SY(ID), TXYCID),UNCID),USCID),SN(ID),

INSCID),LR(9),UT(9),5R(9),ST(9),TRT(9),555(9),ANC15),
DNC15),S1(29),C0(29)
LOGICAL CONVERT

COMMON /BNOTCH/ ISYM(1C)
COMMON /TRL/ CONVERT,SSS,TRT,ST,SR,UT,UR,AN,DN,SI,CO

M=4

ML=29
X=x1

¥Y=v1

5=51

c=¢1

B0 3 1I=1,1D
u(1)=ag,
v(1)=C,
SXC1)=0,
sSY(1)=0,
TXY(1)=0,
UNCI) =0,
us(I)=0.
SN(I1)=(C,
TNS(1)=0.
URCI)=C,
uTCI)=0,
SR(1)=0,
ST(I1)=0.
TRT(1)=0.
CONTINUE

R=SART(X*X+YnY)
IF(R.GEA*T,0CC1) 60 TO S
X=A*X /R

R=A

ITF(X1%X1,6T,1,E=-8) GO TO 4

x=0.

Y=S16NC(A,YT)

GO TO 5

Y=X*Y1/X1

AR=A/R

AR2=AR*AR

SI(1)=Y/R

COC1)=x/R

DO 8 I=2,ML
SICI)=SICI-1)«C0C1)+CO(I=1)251(1)
COCI)=COCE=-1)+C0OC1)=-SI(I~-1)*51(1)
CONTINUE
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C1603 FORMAT(/® A:°®,F5.2,° H:',F5.2," X:",E10.1,°

END

£10.3,0 C:tLENC, 3,0 E:*L,E10.3,° NU:',EN1D.3/
(* DIS: °,2¢E12.5,3%),°STR: *,2(E12.5,3%x),"T:
6X,2CE12.5,3X),5% ,F1e.5,21X,E12.5))

Y:',E10 .3, S:*,

*LE12.5/

SUMROUTINE LOACFWCA,R,E,NU)
€ CALCULATES STRESSES AND DISPLACEMENTS OUE TO LGAD TRIAL FunCTION,
¢
REAL NU,KN
REAL*4 AN,DN
LOGICAL CONVERT
COMMON /TRL/ CONVERT,SSS5C(S%),TRT(9),ST(9),SR(9),UT(9),UR(9),
1 ANC30),ON(30),S5I(29),C0(29)

AR=A/R

ARZ2=AR*®AR

ARL=ARZ*AR2

FI=AN(1)*AR2

FE=AR*(AN(2)-CN(2)) /4,
FI=AR®ARZ*(AN(2)* (1, =NU)+DN(2)=(3 . +NU) /4,
FA=F22(3.=NU)*ALOG(R/RA)
F5=(AN(3)~DN(3))/2.
F6=(AN(3)+DN(3))%ARL/ 2,

SREI)=FI+(F2*(FZ.4NUI+F3I~C0Q1)

ST(9) ==F1=-(F22(1.~NU)+F3) *CO(T)

TRT(G)=(=F2* (1 ,~-NUI+F3)*SI (1)

URCI)S(=FI1+(F4-(ANC2) 2 (3, +NU) +DN(2) *#( 1, ~NU) I*AR/B ,~F3/2,)*»C0(1)
T )*(1,+4NU)

UTC9) ==((F4~AR*(CAN(2)* (1 .~NU)+DN(2)* (3. #NU))*(1.-AR2))/B.I*SI(1)
1 )+ C1.4NW)

0O 10 N=2,29

IFCAES(AN(N+1))+ABS(DN(N+1)) LT 0.0U33C1) GOTO 10

EN=FLCAT(N)

FS=(EN*AN(N+T1)=(EN+2,)*DN (N+1))*ARAX(N+2) /2

FO6= (ANIN+T) ~DNIN+T))*AR*xN/Z,

SR(9)=SR(O) ~(FS-CEN+2 ) *F6)*CO(N)

ST(9Y=ST(9) +(F5-(EN=2 ) *F6)*CO(N)

TRT(9)=TRT(9)-(FS~EN*F6)*SI(N)

URCO)=UR(I) +(FS52(1 #NU) F(EN+T [ )=FO* (EN+#2,+(EN=-2)*NU)/ (EN=-T1,.) )%
1 CO(N) :

UTES) =UTCO) +(FS* (1 4NU) JCEN+T ) ~FO* (EN-4.+ENXNU)/ (EN=T ) ) *xSI(N)

IF(N=N/Z2*2.LE . ()GOTO 10
KNS FLOAT((=1)%*((N+1)/2)) #AR* (AN(N+1) * (EN+2 .~EN2NU) =DN (N+1)
1 (2.%EN+T1.4NUDY)/ CEN*¥EN=T )
UR(S)=UR(9) =KN*CO (1)
UTC9)Y=UT()+KN*SI (1)
10 CONTINUE

UR(G) =UR(G) »P/F
UTCY) =UT(9)*R/E

RETURN
END
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SURROLTINE &CCNDSC(X,Y, RHS,E,NU,IDIM, XCRACK,YCRACK,T,LSTSRN,A,B,

2 CT,0T,CONROW,INAM ELNO ,IDE,DCT,0CT&K,DCKR,DS,SIGMA,NELSP,
3 LSTBA,LSTEL ,NHA,NNODE ,NEL,IPR,1DENT, ISYM, AREA ,MDAF)

SURROUTINE TO ENFORCE BOUNDARY CONDITIONS AND TO EVALUATE ALL
30UNDARY INTEGRALS

INTF
TRCT
ASYM
SYMM
CLMP
ubsP
VDSP
X~LD
Y-Lb
HOLE

INTERFACE EETWEEN SPECIAL ORULINARY REGION TYPE

O
SN AND TNS PRESCRIBED TYPE 1
SN,USJT AML USJ2 PRESCRIBED TYPE ¢
TNS,UNJT AND UNJ2 PRESCRIBED TYPE 2
USJT1,USJ2,UNJT AND UNJZ2 PRESCRIBED TYPE &
U PRESCRIKED AT SINGLE NODE TYPE S
V PRESCRIFEL AT SINGLE NODE TYPE 4
X LOAD PRESCRIBED AT SINGLE NODE TYPE 7
Y LOAD PRESCRIBED AT SINGLE NOODE TYPE &
TRACTIONS ON HOLE BOUNDARY TYPE 9

INTEGER LSTBACINAM,3) LSTBL(INAM,3) NBA(INAM)

INTEGER LSTSRNCIDE), FLAG,BCTYPE,CONROw (IDIM), ELNOCIDE, 3)
INTEGER IDENT(INAM)

LOGICAL LPR,INTEGR,CONVERT ,MDAF

REAL
REAL
REAL
REAL
REAL
REAL
REAL

XCINAM) ,YCINAM) ,RHSCIDIM MRHS) ,CTCIDIM,2) ,DTCIDIM, MRHS)
NU,DCT(MTF,MTF),BCTR(MTF) ,DCKR(MTF),DS(MTF,MTF)

AUCY) ,AV(S), ASX(9) ,ASY(9) ,ATXY (D), AUN(S) ,AUS(F), ASN(S)
AUNITCS) L RUNJZ(O) , AUNJIDC9), AUSIT (), AUSIZ (D) ,AUSI3(D)
LNCMP(S) ,USCHMP(9) ,SNCMP(9),TNSCMP(9) ,L1,L2,ATNS(9)
SXCMP(9) ,SYCHP (), TXYCMP (9),SNO(Y) ,TNSE(Y)
SIGMA(MTE3 ,NELSP), TCIDE) ,AREACIDE)

CHARACTER#4 ICATA(Z0) ,I1CODECT)

COMMON /SI2E/IL,MTF _ MRHS, MTF3
COMMON /TRL/CUNVERT

DATA ICODE/ *INTF', TRCT®,"ASYM® "SYmM® SCiMpT _oypsp®,*vDsp*,
2 "X=-LD®,°Y~-LD*, HOLE"/

CONVERT=,FALSE,
INTEGR=.FALSE,

FLAG=1 FOR EXTERN2L REGION
FLAG=0 FCR BOUNDAFY OF SPECIAL REGIONS

INIZIALISE ARRAYC

00 20
CTel,
cr(r,

1=1,101¥
N=0.0
2)1=30.2

CONROW(I) =N
O 40 J=1,MRKES
DO 4C I=1,1DIF

pYCL,

J¥=7.0

CONTINUE
PO 60 1=1,1D

DCTR(I)=0.,0
DLRRTUIN=0.L0
p0 60 J=1,1D
0CT(1,N=0.0
pSCI,=0.0

6y CONTINUE
c*ti
Cxen READ IN NUMFER & TYPES OF BOUNDARY C(ONDITIONS
Chkx
KTR=(

IF(MDAF)GOTO *¥C
REAL(S,1440)INSCTYPE
WRITE(9,REC=1T)NEL ,NNODE NBCTYPE

6070 100
80 READ(9,REC=1)1,J, NBCTYPE
100 KTR=KTIR+1

LPR=.TRUE.

IF(BCTYPE.NE.CILASTBC=RCTYPE
CALL BCDATA(MECAF,KTR,NBCTYPE,NEL,NNODE ,BCTYPE ,IBC,J1,42,5N,TNS,
2 USJ1,USJZ,UNJT,UNJ2,XX)
c END OF DATA?
IF(KTRLLT.0)GCTO 1320
FLAG=C
IF(ECTYPE J6T L CYFLAG=Y
1FCBCTYPE oEQ oLASTECLORJIPR-IPR/B%B . LT J4)LPR=LFALSE,
¢ SINGLE NODE &, CONDITION?
IF(BCTYPE .GE.S)GOTO 500
SIDE=SORT((X(JT1)=X(J2)) *x24(Y (JT1) =Y (J2))I*x2)
c SINE AND COSINE (BETA)
S={X(J1)=X{J2))/SIUE
C=CY(42)=Y(J1)I/SIDE

¢ NA = NUMBER OF S.R. BOUNDAFY ARCS LEAVING NODE
NA=NBA(JT)
1FO(NAEQ.,0)GOT0 14C
0O 120 IA=1,NA
JT=LSTBA(JT ,14)
IFCITLE@LJ2)EGCTO 160

120 CONTINUE

C

C EXTERNAL BOUNLCARY

142 IFCFLAGLEGLTI)ECTG 360
WRITE(6,1720)01,32
WRITE(7,172L)41,4¢8
IF(ECTYPELEG.CIGOTO 100
FLAG=1
6OTO 360

o

C SPECIAL REGION BCUNDARY

160 TFCHCTYPE LEQ.CXGOTO 10U
FLAG=L

o MARK ROUNDARY AS NOT INTERFACE
LNUM=LSTBLCYY,1R)
LSTHL{JT1,IA) ==LNUM

[

C EVALUATE TRIAL FAS ON bLOUNDARY
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1840 TH=T (LNUM)

o
ISRM=LSTSRN (LAUM) 347 1F(BCTYPE .£C .CYGOTO 5S¢0
JLY=ELNOCLIUY, 1) 360 60TO0(280,460,460,680) ,0CTYRE
JLZ=ELNO(LNUM,2) ¢
JLI=ELNO (LNUNM,3) C BOUNDARY COMDITICN TYPE 1 & 9 (TRKCT)
0o 200 1=1,3 ¢ (HOLD)
IFCITEQ LT aANDJ24EQLJL2)IGOTO 220 380 IFCLPRIWRITE(? ,1480)
JLA=ULT IFCIPR-IPR/B#& ,GE JLIWRITE (7,1460)41,42,5N,TNS
JLT=JL2 [+
JL2=JL3 ¢ SKIP INTEGRATION ON HOLE BOGUNGARY?
JL3=JL4 IFCINTEGR.ORLFLAG.EQ.1)GOTO 420
204 CONTINUE TFCAELLT LY LE~10)GOTO 40D
o NODES NOT IN SAME ELEMENT CRECXCRACK=(X(JTI+Xx(J2))/2) %2/ (AxA)+ (YCRACK=(Y(JNI+Y(J2))/2)»%2/
WRITE(6,1780) 41,42 ! : 2 (B*B)
MRITE(7,1780) 41,42 IFCCR.GTL0Ua999999)60TO 4UU
STOP IFCIPR=-IPR/2%246E «1IWRITE(7,1700
220 d3=4L3 60T0 100
13=IDENT(J3) o
L1=S* (X (J3) =X (21 +C+ (Y (J 2)=Y(J3)) 400 IFCIBC.EG.10)WRITE(6,1760)
L2=S* (X(J1) =X (J3))+Cx (Y (I 3)=Y (J1)) IFCIBCLEQL10)WRITE(7,1760)
PERP=Cx(X(J2)=X(I3DI+S» (Y (I =Y(J3)) 420 I1=IDENT(J1)
0O 24C I=1,10 I2=IDENT(J2)
UNCMP(I)=(.0 c NODAL LOADS DUE TO TRACTIONS
USCMPII)=0.0 RHS(I1,1)=RHSC(IT,1)+0,.5#SIDE* (SN*C=-TNS#S)
SNCMP(1)=0,0 RHS (11+3,1) =RHS(I1+1,1) 40 .S#SIDE* (SN*S+TNS*C)
TNSCHMF(1) =0 0 RHSC(I2,1)=RHS(12,1)+0 .S*SIDE* (SN*C=TN3*S)
SXCMP(I)=C, RHS CI2+1,1) =RHS(12+1,1)+40 .5*SIDEA (SN*S+TNS* ()
SYCME(I)=L.0 GOTO S8D
TXYCMP(I)=0,0 [
240 CONTINUE C BOUNWDARY CONDITICN TYPE 2 CASY™)
c ¢
60T0(260,280,30C,320)ISYNM 443 TFCLPRIMRITECT,15C0)

CALL TRLFNSC(A,B,(X(J1)=XCRACK),(Y(J1)-YCRACK) ,5,C,E,NU,AU AV, IFCIPR-IPR/8#*¢ .GE LIWRITE(?,1460)41,02,SN,USd1,US842
2 ASX,ASY,ATXY, AUNJ1,AUSJIT ,ASN,ATNS, ID) I1=1DENT(J1)
CALL TRLFNSO(A,B,(X(J2)=XCRACK),(Y(J2)~YCRACK),S,C,E,NU,AU,AV, [2=IDENT(J42)
2 ASX,ASY,ATXY,AUNJ2,AUSJI2 ,ASN,ATNS,ID) C NODAL LOADS DUE TO TRACTIONS
60T0 340 RHSCI1,1)=RHSC(IV,1)+0.5+S IDE#SN#C
260 CALL TRLFNST(A,R,(X(JT)=XCRACK),(Y(J1)-YCRACK) ,S,C,E,NU,AU,AV, RHS (1141, 1) =RHSCI141,1)+0 JS*S1DE# SNAS
2 ASX,ASY,ATXY,PUNJ1,AUSJIT ,ASN,ATNS, ID) RHS(I2,1)=RKS(12,1)40.5*SIDExSN=C
CALL TRLFNST(#,B,(X(J2)=XCRACK) , (Y (J2)~YCRACK) ,S,C,E,NU,AU,AV, RHS (T12+1,1) =RFS(12z+1,1)+0 S*SIDE*SN*S
2 ASX,ASY,ATXY _ AUNJZ,AUSJI2 ,ASN,ATNS, ID) C DISPLACEMENT CONSTRAINTS
GOTC 340 IFCCONROW (I 1) €EQ,2)11=11+1
280 CALL TRLFNS2(A,B,(X(J1)=XCRACK),(Y(J1)-YCRACK),S,C,E,NU,AU,AV, CONROW(I1)=2
2 ASX ,ASY,ATXY ,AUNJT,AUSJT ASN,ATNS, ID) ETC14,1)=usJ
CALL TRLFNSZ2(A,B,(X{J2)=XCRACK), (Y (J2)=YCRACK) ,S,C,E,NU,AU,AV, CTC11,M)=-5
2 ASX,ASY,ATXY ,AUNJZ ,AUSJIZ ,ASN ,ATNS, ID) CTC11,2)=C
GQT0 %40 IFCCONKOW (1 ¢) B ) le=12+1
s CALL TRLFANSZ2(/A, b, (XCJ1) =X CRACK) (Y (JTV)-YCRACLK) ,S,C,E,NU, AU, AV, COMROW(IZ)=2
2 ASX ,ASY,ATXY,AUNJ1,AUSJT ,ASN,ATNS, ID) PT(12,1)=054d2
CALL TRLFNSS (A, b, (X(IJ2) =X CRACK), (Y (J2)~YCRACK) ,5,C,E,NU, AL, AV, cT(12,1)=-5%
2 ASX,ASY,ATXY ,AUNJZ,AUSJ2 ,ASN ,ATNS, ID) cTC12,2)=¢
GOTO 340 :

GOYO 580
320 CALL TRLFNSACE, b, (XxCJ1)=XCRACK) , (Y (JT1)=YCRALKR)Y,S,C,E,NU,AU,AV,
2 ASX ,ASY , ATXY,AUNJT,AUSHT , ASN,ATNS,ID) BOUNDARY CONDITIOM TYPE 3 (SYMF)
CALL TRLFNSAL(R, B, (X(J2)-XCRACK), (Y (J2)~YCRACK) ,S,C,E,NU,AU,AV,

2 ASX,ASY,ATXY,AUNJZ,AUSJI2 ,ASN,ATNS, 1D) 60 IFCLPRIWRITE(7,1520)

’
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XX Xsl

80

[z}

(e NaNalalt Nal

BOUNDARY CONDITICRS TYPE 5

IFCIPR=TIPR/E4e JCE obIWRITE(7,1460)41,4¢,TNS, UNST, UNJZ
115 ILERTCIT)

I2=IBENT(J2)

WODAL LOALS DLE TG TRACTIONS
RHSC(I1,1)=RHS(11,1)~0,54S IDE*TNS*S

RHS (T1+1,1) =RHS(I141, 1) +0 .S*SIDE*TNS*C
RHS(I12,1)=RHS(12,1)=0.5%5 [DEXTNS*S

RHS (12+1,1) =RhS(12+1,1)+0 JS*SIDE*TNS*C
DISPLACEMENT (ONSTRAINTS
IFCCONROW (I 1) EQ,¢)I1=1141
CONROW(I1)=2

PDTCI1,1)=UNJ1

CTC(I1,1)=¢

£T(11,2)=5

IFCCONROW(IZ2) . EQ.2)I2=12+1
CONROW(I2)=2

DT(I2,1)=UNJ2

CYCI2,1)=¢

CT(12,2)=$

60TO 580

BOUNDARY CONDITICN TYPE 4

IFCLPRIWRITE(? ,1540)

IFCIPR-IPR/ 88 GELIWRITE (7,1460)31,32,US31,USJ2,UNIT, UNIZ

IT=IDENT(J1)
DISPLACEMENT CONSTKAINTS
CONROW(IT)=2
DY(I1,1)=UsS i1
€T(11,1)=-58
CT011,2)=¢C
CONROW(IT+1)=2
DTCIT+1,1)=uNJ1
CTCIT+1,1)=¢
CT(I1+1,2)=%
I2=IDENT(J2)
CONROW(12)=2
DT(I2,1)=USJ2
€T(12 ,1)==-8
CT(1e,2)=¢
CONROW(IZ2#+1)=2
DYCI2+1,1)=UNJ?
CT¢I2+t,1)=¢
CT(12+1,2)=5
GOTO 580

IF(oCTYPE.GE.7)60TO 542

DISPLACEMENT CONSTRAINT

IT=IDENT(JT) .
IFCCONROW (I1).EQ.2)I1=11+1

CONROW(IT)=2

IF(RCTYPE.NE.E)GUTO 520

GR 6 (ULSP OR VDSP)

C SO0UNDARY CONDITICN TYPE 5

IFCLPRIWRITE(7,154U)
IFCIPR=TIPR/2#8 JGE J4)WrITE (7,1640)01,UNJ1
PTCIT,1)=U

€7(11,1)=1,0

CT(11,2)=0.0

60TU 100

BOUNDARY CONDLITIGN TYPE 6

[*. NN e Nl

ZJ v=un gl
IFCLPRIWRITE(7,1500)
IFCIPR=-IPR/3+& .Gk JAIWRITE (7,164 4%,V
pTCI1, )=V
€11 ,1)=0.0
CYe11,2)=1.0

6070 100

c

C BOUNDARY CONDITICN TYPE 7 OR 2

C

540 IT=IDENT(JT)
IF(BCTYPE.EQ.E)GQTO 560

[

C BOUNDARY CONDITICM TYPE 7

C

ITFCLPRIWRITE(7,16C0)
VIFCIPR=1IPR/ 6% JGE J4IWRITE (7,1640) 41 XX
< NOD AL LOAD
RHSC(IT1,1)=kHS(11,1)+xX
6070 100

BOUNDARY CONDITICN TYPE 8

ey o0

63 YY=XX
IFCLPRIWRITE(7,1620)
IFCIPR-IPR/ &% & .GE JAIWRITE (7,1640)J1 ,YY

11=11+1
C NODAL LOAD
RHSC(11,1)=RHS(I1,1)+YY
6OTO 100
C
580 IFCFLAGLEQ,.T)ICGOTO 1CC
o
c ................................................

[ IE RS RSS2 RS RN
C SR, INTEGHALS
Curd kR akh ddrkh ko k 42
IT=1DeNT(JT)
I2=1DENT(J2)
Cran

Cree SIX POINT CAUSSIAN QUADRATYURE
Chnn
AA==0.932469514203
H=0 1713244522 79 TH2SIDEXD .S
ASSIGN 600 TO LABEL

(unseP)

(VDSP)

(X=LD> OR Y=-LD)

(X~-LD)

(Y-LD)
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f

114)

1163

180

1200

1223

iakzEsel

240

1269

c
C BCTYPE 3
c
1

BCTYPE 4 OR

RHS(IZ+1,1+1)=kHS(1Z+1, T+ 1)4TNSCHP (1) *0 S5¢THe (L2*(+PERP *S)
RHS (I3, T+1) =RHS(I5,I+1)4TNSCMP (1) *0 5+ TH* (SIDE®S)
RHSCI341 , 1+1)=RHSCIZ+T, I+ 1)+TNSCUP (L)« . 5*TH* (=ST1DE*C)
CONTINUE

D0 1160 I=1,1¢

SXCMP(I)=2,2C*S*TNSCMP(])

SYCMP(I)==(Z2  )*C*S*TNSCMP (1)

TXYCMP (1) == (CHC=5S*SIETNSCMP(L)

SIGMA(I#*#3=2 ,ISRN)=SIGMA(LI *3=2  ISRN) +SXCMP (1)
SIGMA(I*3-1 ISPNY=SIGMAC(I *#3=1,IS5RN)+SYCMP(I)

SIGMACI#*#3 ,ISRN)=SIGMACI*3 , ISRN)+TXYCMP (L)

CONTINUE

GOTO 130¢C

D0 1200 1=1,1t ‘
SNCMP(I)=-E*UNCMP (1)/ (TH* AREACLNUM) 2(1 .~NU*NU))

RAS(IT1,I+1) =RESCIT,I+1) +SNCMP (I)*D S TH=(L1*C+PERPANU*S)
RHSCIT+1 ,1+41)=RKSCIT+T, I+ 1)4SNCMP (I)*(J S*TH*(L1*S-PERP *NU* ()
RAS(IZ2,I+1)=RHS(I2,I+1)+SNCMP (1) *# Q. 5« TH*(L2*C~PERP*NU*S)
RHSCIZ2#T,I+1)=RHSC(IZ2+1, I+ 1)+SNCMP(I)# 0 S*THA(L2*S+PERP *NU*C)
RHS(13,X41)=RHS(I3, I+1)+SNCMP(I) %0 S«TH#(-SIDE%C)

RHS (1241, 1+ 1) =RHSCI3Z+1, I+ 1)+SNCMP (1)#0 ,S*TH2(-SIDE*S)
CONTINUE .

b0 1220 1=1,1¢

SHCHP(I)==(C*C+NURS*SI*SNCMP(1)
SYCMP(I)==-(NUX(*(C+S*S)I*SNLMP(1)
TXYCMP(I)==(C*S* (1 .=NU)IASNCMP(I)

SIGMA(LI#*#3-2 ,ISkN)=SIGMA(LI %x3-2 ,ISRN)+SXCMP (1)
SIGMA(I*3-1,ISRN)=SIGMA(I#3=1,ISRN)+SYCMP (1)

SIGMA(I*3 ,ISRMI=SIGMACI*3 ,ISRN)+TXY(MP (1)

CONTINUE

GOTO0 1300

INTERFACE

DO 1260 1=1,1t
SNCMP(I)=-E*UNCFP(I)/(THx AREA(LNUM) (1 ,=NUxKNU))
TNSCMP(I)==E*LSCMP(I) /(2. C*TH*AREACLNUM)I* (1 .+NU))
RHSCIT, I+1)=PHS(IT, I+ 1)+4TNSCMP (1) % 54 TH#(=L1*S-PERF#C)I+SNCMP(I)
¢ %0 5*TH* (L T2 C+PERP*NU®S)
RHSCIT+1,I+1)=kHSCIT+1, I+ 1)+TNSCAP (1) # ] 5#TH* (L1%(-PERP*S)
2 #SNCMP(I)# L ,5#TH* (L1 #S=PERP*NU*()
RHSCIZ2, I+ 1) =RMSCIC,I+1)+THECMP(I) # (SATHX(=L2*S+PERP*C ) +SNC VP (1)
2 20 L S*THX(L¢» (~PERFENUSS)
RASCIZ+1,I+41)=FHS(I2+41, I+ 1)+4TRSCHP(I) %0, SATHA(L2*+PERP *S)
2 #SNCMPOI)®( ,SwTHx (LZ*S+PERPaNU*C)
RHS (TR, I+1) 2R ESCI3, I+ 1) 4TASCMP(I) #0542 THX(SIDE®S)Y+SNCHME (1)
2 #0 S#TH*(~STILF*()
RHSCIZ41, 1+#1)=kHSCIZ+T , I+ 124TNSCAP (I 2N S5*THe (~SIDE*L)+SNCMP (1)
2 %0 5*%TH&(~SICE*S)
CONTINUE
DO 12%C I=1,1L
SXCMP(1)==(C#C+NU*S*S)I*SNCRP(I)+2,2CeS2TNSCMP(])
SYCMP(I)=-(NURCAC +S*S)I*SNCMP(I)=2 xCxS+TNSCMP ()

€ A
1320

Crax
Chen
Coanrx
Cawx

1340

1360

1380
1400

TXYCHMP LY== (CaC=SaS)2TNSCHP(TI)=CaSa (1 =NU)*LNCMPOTD)
SIGN ACI*3=2 ,1SRAI=SIGNMACI 2= 1SR 45X CNP(])
SIGMA(I#3=1,ISKFN) =SIGNA(T #4=1,ISRn) +3YCMP (1)
SIGMACI*3, ISREI=SIGMACT#*3 , 1SRN)+T XY C*F (1)

CONTINUE

CONTINUE

IF(HCTYPE ,EQ.TXCOTO 142C
6070 120

LL B, CONDS COMPLETED - CHECK RKTR THEN DU SP. REGION INTERFACE.
KTR==kTR-1
IF(KTR.NE .NBCTYPE)IWRITE(SH,1740)KTR, NBCTYPE
IFCKTRGNE JNBCTYPEIWRITE(? ,1740)KTR, N3CTYPE
IF(KTR.NE NBCTYPE)WRITE(Y ,REC=T1)NEL ,NNODE KTR

OUTLINE SPECIAL KEGION AND
APPLY CONDITIONS AT INTERFACE

LOOP=(

FLAG=(

HCTYPE=D

LOOF=LOOP +1

DO 1360 J1=1,NNODE
NA=NBA(JT)
TFCNALNELC)GOTE 1358C
CONTINUE

RETURN

IFCIPR-IPRFB*E ,6E ,AIWRITE(7,1660)LOCP
JRSLSTBACJT NR)

NBA(J1)=NA-1
IF(IPR=IPR/B2& ,GE JLIWRITE (7,1680)41,42
LNUM=LSTEL(JT, NR)

IFCUNUMLLE . G)GOTO 1420
SIDE=SERTUIX(IN=X(J2))*xxc+(Y(JN) =¥ (J2))%%2)
S=(X(J1)=-X(J2))/SIDE

C=(Y(J2)-Y(J1))/SIDE

60TO 1&(C

Ji=J¢

NA=NBF(JT)
TFONALEQ,CYGOTO 1340
GOTU 1400

FORMAT(IS)
FORMAT(I8X, 14, =*,14,4CF10.4))
FORMATC/1%," TRACTION °,10X,*SIDE®,BX,'SH
FORMAT(/1X, " (ASYMMETRY)®, 10X, *SIDE® 8%, *SN

2 *usJ2")
FORMAT(I1X,'(SYNMETRV)

2 "UNJZ")
FORMATC/1X,"®

LE%, TNS %)
*L6X,0USdT",6X,
*,10X,"SIDE® 8%, "TNS °,6X,"UNJ1"*,6X,

KINEMATIC *,10X,°SIDE"®,8X,°USd41®,6X,*usSde"*,6X,
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1563
1580
16
1629
1645
1663
1680
1703
1720

1740

1760
1783

2 CUNJT® Ax, *hiNg2Y)
FORMAT(/IX, " L=DISP FIXED °*,7X,"N0ODE", %X, ' MAGNITULE")
FORAT(/1X,* V=DISF FIXEL *,7X,"NODE",8X, "MAGNITUVE®)
FORMAT(/TX,* FT LCAD X~DIR",7X,"VUDE", %X, "MAGNITULE ")
FORMAT(/1X," FT LOAD Y=DIR®,7X,°NODE"',aX, "MAGNITULE®)
FORMAT(Z2eX, 16 ,LX,FE8.2)

FORMAT(/* SPECIAL REGION LOUNDARY®/' LOOP®,I12/)

FORMAT(IX ,14," =*,14)

FORMAT(1r+,52X ,"ELLIPTICAL/CIRCULAR HOLE HBOUNDAKY")
FORNMAT(® 2% wARNING a2x* /" AK(C',14," DOES NOT'/

2 ® LIE ON PERIMETER OF SP, REGION"/)
FORMAT(® wxx WARNING *%w® /]J4,' B,CONDS.DEFINED'/14,

2 " B.CONDSLEXFECTED®/)

FORMAT(® *+x LWAKNING *%%

FORMAT(IH ,21¢,"+#2++ ERROR IN DATA.
END

- oo
S14,

PROGRAM TERMINATING')

BOUNDARY NOT ON HOLE PERIMETEK®)

IaNaEsEaRal

20

40

6C

&c¢

C
C

1C2

120

140
C
C

160

180
C

SUKRGUTINE ALFHAS(KSTIF,ICIM, ISEVMI,nC,KHS ,KRHST  NESG, LLT, 0viTk,

2 CCKR,DS,BCONT, ALPHA,ISYM,IPK)

SUBROUTINE TO CALCULATE COEFFICIENTS ALPHA

FUNCTIONS (STRESS FIELDS) CGIVEN JOUNDARY INTEGRALS AND
FINITE ELEMENT SOLUTIONS,.

INTEGER Lw(5) MW(9)
INTEGER ISYM(MKHS)

GF AUGMENTING

TRIAL

REAL KSTIF(IDINM,ISEMI),RC CIDIM, MRHS),RHSCIDIM, MRHY) ,PUSTCILI™)

REAL DCT(MTF,PTF),DCTR(MTF),DCKR(MTF),D(9,9),0RHS(9)
KEAL BSCMTE,KTF),DCONT(MTFE, MTF),ALPHACNTE)
COMMON /SIZE/IU,MTF,MRHS

SuM=0.0
IAJSEM=ISEMI#IDIM

FOR® VECTCOR “DRHS"™
DO 20 M=1,NEQ
RHST(M)=RHS(M,1)
CALL KVECT(KSTIF,IAJSEM, IDIM,kHST NER)
DO 6C J=1,1D
DIJ==-DCTR(JI)I=-DCKR(J)
b0 4C M=1,NEG
DIJ=DIJ+(~BC(rF , 1) +RHST(M)I2RAS (M, J+1)=-BC(M, J+T)*RHS(M 1)
DRHS(J)=01J
CONTINUE

DII=D

bO &3 M=1,NEQ
DIJ=DIJ#(22xbC (N, 1)=-RHST(M)I*RHS(Y,1)
CONTINUE

PI=D1J

FORM MATRIX "p"
DO 147 1=1,10
DO 1LC M=1,NEG
RHST(M)I=RHS (¥ ,141)
CALL KVECT(KSTIF,1AJSEM,IDIN,RHST, NEG)
30 140 J4=1,1¢ ,
DIJ=CCTCI, 12405, I0+DCONT (I, D
DO 120 M=1,NEG

DIJ=DIJ+ (=B C (¥, I+1)+RHST(MIIARHS (M, I+ 1) =BC(M, J+1) #RHS (™, I+1)

v(I, J4)=D1J
CONTINUE

CANCEL UWUSFL KGWS & CULUNMNS OF "p"
b0 157 1=7,1¢
IFCISYr (1) E6.1)60TU 180
00 167 J=1,10
D(1,d)=0.0
0Cd,1=C0,0
D(I,I)=1,0
DRHS(I)=" ..

CONTINUE



—eLT-

C FORM NFw SYMMETRIC MATHIX "p"
t0 «UU I=1,1I0
D0 203 Jd=1,10
DCI,J)=(D(1,d)+D(J,1))*0.5
p{J,13=0C1,3)

200 CONTINUE
WRITE(7,482)
IFCIPRLMTLIIGCTO (4C
WRITE(7,5C0)
0o <20 1=1,10
WRITE(?,520)(L(1,d),d=1,1D)
WRITE(7,540)DRHSC(I)

220 CONTINUE

C

C LOADED HOLE CASE [ALPHA(®)=1.C]

240 IFCISYM(9) NEL1)G0OTO 300
DO 26C I1=1,8
IFCISYM(L) EQ . 1)ID=1]

260 CONTINUE
ALPHA(9)=1,0
IFCIPRLGE . VIWRITE(7,500)
b0 <80 1=1,1ID
CRHSCI)=DRHS(ID=D(I1,9)%ALPHA(D)
IFCIPRLTLIIGETO ¢el
WRITE(?7,520)(eC1,4),J=1,1D)
WRITE(7,540)DRHS(T)

282 CONTINUE

C INVERT MATRIX "pD“

30 CALL MINV(D,IC,0ET, LW, MW)
WRITE(7,56C)DET
IFCIPR=IPR/GLE264,LTL32YG0TO 34C
L0 320 1=1,1¢
WRITE(7,580)(C(1,4),4=1,1D)

320 CONTINUE

C

C DETERMINE VALUE CF ALPHAS & FUNCTIONALS (PI xPID)

340 PIC=PI*x0,5
o 362 1=1,10
ALPHAC(I)=C.U
po0 362 J=1,1D

560 ALPHACI)IZALPHACI) +0 (I, J)*bRKHS (L)
L0 3%0 J=1,10
PI=PI+DRHS(JIwALPHA(J)
SUM=SUMFALPHE (J)

sed CONTINUE
PI=C1en 5
WRITE(7,600)P1L, P

C EVALUATE STRESS INTERSITY FACTOKRS (CRACKS ONLY)

TFCISYM(MERRS) 6T ,L)C0TO 400
P=2 .506626

AI=ALPHACT) +ALPRAC(Z)

A2 ALPHA(I) ~ALPRA(Z)
L3=ALPHA(3) +ALFHA (L)

i
§

¢

400
C
[

420

440
460

C

480
502
520
540
560
580
600
6219

640
6¢0

Ad=hLPHA(I) ~ALFHACL)
Al=pA1+P
A2= A WP
A3= AT %P
AG= AL 2P

PRINT ALPHAS
WRITE(7,6¢G)ALFHACY), A1, ALPHA (2), A2 ,ALPHA(3) ,AZ, ALPHA (L) 2 u

KETURN
WRITE(7,640) CI,ALPHACL) ,I=1,10)

RE~ADJUST 1D (LOALED KHOLE CASE)

TFCISYM(9) UNEL1)GCCTO 460
ID=1D+1

IFCIDLER.9IGOTU &4 L
ALPHA(LID)=0,.0

60T0 42C

WRITE(7,640)10 ,ALPHACID)
WRITE(7,660)SLN

RETURN

FORMAT(///,3Cx,"% E S U L T S"/30X, mememmenmme~

FORMAT(//® DMAT®,116X,"'DRHS", /)

FORMAT(IX ,9(ET1Z2.5,1X))

FORMAT(IH4,116X,E12.5)

FORMAT(IH0O, "DETERMINANT OF MATRIX = *,E10.3,/)
FORMAT(® INVERSE GF MATRIX'//1X,9(E12,5,2X))
FORMAT(/® PID = *,E15.8,10x,'P1 = *,E15.3)

FORMATC(/® ALPHAT=" F10.6,20X, 'OPENING STRESS FACTGH

2 F13.6/" ALPHA2=',F10.6,c0%,"0OPENING STRESS FACTOR AT x==p IS’,
% P10 LAY ALPHEI=",F10.6,20X," SHEAR STRESS FACTOR AT
4 F12.6/° ALPHAL=' ,F10.6,201%," SHAEARK STRESS FACTUK AT x==-a 1S5°,

S F1d.c)
FORMATC/C(® ALFRA® ,I11,°'=",F10.6))
FORMATC(/® SUM GF ALPHAS =',F10.6)
END



APPENDIX C

Preparation of data for the finite element program

Three files are involved in the input of data to the FESM program:
a direct access file, the mesh data file and the control data file.
The latter two files are optional and if either or both of these files
are "empty'" the relevant data is taken from the direct access file.

Data taken from the mesh or control data files is stored in the direct

access file.

C.1 Mesh data file

The mesh data file (if required) may be input sequentially on

cards or from the filestore. It must contain the following records:

1. Tnitial card with the legend "MESH' 'IN" in the first 8 characters.

Any data before this record is ignored.

2. Title. (Format A16) This title is printed in the heading on
output.
3. Coordinates and dimensions of hole. (Format 5 F10.0) The five

parameters required are:

i "x" coordinate of centre of hole or crack.

11 "y" coordinate of centre of hole or crack.

)

)
)

iii) a, radius or semi-major axis length of hole/crack.
)

v, angle between trial function axis and corresponding

iv
global coordinate axis.
v) b, semi~minor axis of hole. (Default for this parameter
is zero if the crack trial functions are specified, or a
if the hole trial functions are specified).
4, Number of elements. (Format I5)
5. Element data This section must contain a record for each element

and may contain the following element descriptors which define

the type of elements after that record:
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"FLA" — Flange elements (permitted only outside the
special region).
"TRM" ~ Triangular membrane elements.

"TRMSP" - As TRM but within the special region.

The element data records are as follows:
FLA (Format 3I5, F10.0). The parameters required are:

i) element number
ii) and iii) end nodes

iv) cross-sectional area.
TRM (Format 415, F10.0). The parameters required are:
i) element number
ii) iii) and iv) nodes, numbered counter-clockwise round
the element.
v} thickness of element.

TRMSP as TRM but the thickness of all elements in the special

region must be constant.

This section must be terminated with the following record :

/177

Number of nodes. (Format I5)

Nodal coordinate data. This section must contain one record

for each node.

{(Format I5, 2F10.0). The parameters required are:

i) node number
ii) "x" coordinate of node
iii) "y" coordinate of node

This section must be terminated with the following record :

/1177

Number of boundary conditions. (Format I5)

Boundary condition data. This section must contain one record

for each boundary condition specified.
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The boundary condition types and their parameters are as follows:

Traction: TRCT n n t t
1 2 n S

(Format A4, 2I5, 2F10.0)

Asymmetry: ASYM nl n, tn usl us2
(Format A4, 2I5, 3F10.0)

Symmetry: SYMM nl n2 ts unl un2
(Format A4, 2I5, 3F10.0)

Clamped: CLMP nl n2 uSl u82 unl un2

(Format A4, 2I5, 4F10.0)

u-displacement: UDSP n1 u1

(Format A4, I5, F10.0)

v-displacement: VDSP nl v1

(Format A4, 15, F10.0)

X-load: X-LD nl p

(Format A4, IS, F10.0)

Y-load: Y-LD n1 P
(Format A4, I5, F10.0)

where: nl = 1st node number
in counter-clockwise order

n, = 2nd node number
unl = prescribed normal displacement at nl

— —— M L L L IO 1
Yo T "o

—_ [SODI | DU 1 "o 1"
uSl = tangential n,

— — M __ . P £ N th
s2 o
t = oo e normal traction on n. - n
n 1 2

_— [ S 3 3 —
tS = tangential traction on n, n,
ul = ——— M displacement in'"X" direction at nl
v1 = e M displacement in'"Y" direction at nl
pX = e load in "X" direction at nl
Py = R load in"Y" direction at nl

This section must be terminated with the following record :

/117
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c.2 Control data file

The

control data file (if required) may be input on cards or

from the filestore. It must contain the following records:

the

1. Options integer (Format I5). This integer is used to specify
amount of output required as follows:
= -1 Minimum output.
= 0] Heading and minimum output.
= 1 Stresses output.
= 2 Displacements output.
= 4 Initial data output.

= 32 Additional output.
= 64 Extra "de-bug'" output.

The numbers 1-64 may be added together for a combination of options.
2. Control title (Format Al6). This is printed in the heading on
output.
3. Trial function parameters (Format 10I5). These parameters

specify which trial function subroutine is to be used and which

functions from the subroutine are to be selected. The parameters

are:

i) to specify the subroutine:
=0 TRLFNS® subroutine for cracks.
=1 TRLFNS1 subroutine for loaded or traction-free
circular holes.
=2 TRLFNS2 subroutine for traction-~free circular or

elliptical holes.

(ii) - ix) to specify if the particular trial function 1 to 8

is to be used.
=0 function not used.

= 1 function included.

x) to specify if the loading function (for use only with
subroutine TRLFNS1) is to be used:

0] loading function not used.

I

= 1 loading function included.

=177~ C



4, Fourier coefficients for hole loading (Free Format).

This section is included only if the lcading function is used.
The coefficients A (n = 0 to 29) and D (n = 1 to 24) must be

input sequentially in free format.

S. Special region data. This section is optional but if it is

included it supersedes the special region data which may be
contained in the mesh data file or direct access file. The
first record of this section should contain the number of
elements in the special region (Format I5) followed by the
characters ”VSP” (Format A3). The element numbers are then
input, one per record (Format I5).

The section must be terminated with the following record :

/177

C.3 The direct access file

The direct access file must have a record size of 24 bytes and
a total size of between 6 and 28 kilobytes depending on the number of
elements in the mesh. Generally the data is put into the file by
running the program having prepared mesh and control data files, or
by using the automatic mesh generator (see appendix D). However, when
a number of cases are to be run with identical or similar meshes it is
most convenient to make the minor changes to the direct access file

using the macro "MESH" (see appendix D) and dispense with the other

input files.

The information stored in the direct access file is shown in
table C.1. This data is written on the direct access file by the

machine, not the user.
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Record Number

Details

g W N

6
7 to 11

12 to 15

16

17

18

19

20

21

22 to 30

31 to (30 + NEL)

{31+NEL)to (30+NEL
+NNODE )

31+NEL+NNODE) to
30+2*NEL+NNODE )

(
(
(31+2*NEL+NNODE) to
{30+2*NEL+NNODE+NBC)

NEL NNODE NBC

XC YC
A B Y
a a a
1 2 3
a a o
4 5 6
a a a
7 8 0
An {n = 0 to 29) six items per record.
D (n =1 to 24) six items per record.
OPTIONS

Mesh title (16 characters) TIME (8 characters)
Control title (16 characters) DATE (8 charact)

ISYM (1-6)
IsYyMm (7-9), ITF
E, NuU

(not used)

Element data: N1, N2, N3, T, SPREG
Node data: X, Y

Stress data: SXA, SYA, TXYA

Boundary data: ITYPE, J1, J2, 21, Z2, Z3, Z4

Table C.1 Information stored in the direct access file.

The variables referred to in table C.1 are defined in the table

C.2 overleaf.
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Variable Meaning Type

NEL Number of elements INTEGER

NNODE Number of nodes INTEGER

NBC Number of boundary conditions INTEGER

XC "X" coordinate of hole centre REAL

YC "Y" coordinate of hole centre REAL

A semi-major axis length of hole, a REAL

B semi-minor axis length of hole, b REAL

Y Angle between major axis of hole and REAL
"X" coordinate axis

o, Trial function coefficient REAL

An Fourier coefficient of normal loading REAL * 4

Dn Fourier coefficient of tangential " REAL * 4

OPTIONS Options integer INTEGER

ISYM(1-8) Specifies if trial function is used INTEGER
(1 or 0)

ISYM(9) Specifies if loading function is used INTEGER
(1 or 0O)

ITF Specifies which trial function sub- INTEGER
routine is used (0, 1 or 2)

E Young's modulus REAL

NU Poisson's ratio REAL

N1, N2, N3 Node numbers of element INTEGER

T Thickness of element REAL

SPREG Specifies if element is within LOGICAL
special region (true or false)

X, Y "X'" and "Y" coordinates of node REAL

SXA Stress components of REAL

SYA g?— ? (gz - gi) for element REAL

TXYA i=0 REAL

ITYPE Type of boundary condition INTEGER

J1, J2 Noae numbers INTEGER*2

21-724 Boundary condition parameters REAL*4

Table C.2 Variables in the direct access file.
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APPENDIX D

Running the finite element program

This appendix is included primarily for the benefit of those who
may wish to use the FESM program on the ICL 2970 computer at Southampton

University.

the program and for preparing and interpreting the data.

Table D.1 shows the '"macros'" which may be used for running

Macros are

commands which may be input to the computer to control a particular

process, and general instructions for using and modifying macros are

found in the system reference manuals.

for using these macros for the purposes shown in table D.1.

Section Macro Name Purpose

D.1 NOTCH: To run the finite element program.

D.2 MESH: To generate or modify finite element
mesh or other input data.

D.3 DRAWMESHES : To produce plot of finite element mesh.

D.4 LOADLOAD: To input Fourier coefficients to direct
access file for standard loadings.

D.5 HOLE: To produce graph of loading on hole.

D.6 VUSTRESS: To produce graph of stresses around
boundary of specified elements.

Table D.1 Macros used with the FESM program

For each macro a description of its use and a full specification
of 1ts parameters is given.
used 1s shown by the examples at the end of the specifications.
details of all the options and facilities of the software and how data

files are prepared for graphics and data modification are not given in

Some indication of how the macro might be

this appendix, however users will find that when used interactively

the programs will request the data required which may be input,

generally in "free~format'", at the terminal.
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D.1 The Macro "NOTCH"

This macro is used to run the FESM program. The data files are
assigned to input/output channels and, if graphical output is required,

parameters for plotting are specified.

Parameter List:

NOTCH (@ literal @ DIRECTACCESSFILE = @ see below @,
@ literal @ MESH = @ see below @,
@ literal @ CONTROL = @ see below @,
@ literal @ GRAPHDATA = @ see below @,
@ literal @ PLOTFILE = @ see below @,
@ literal @ ACTION = @ see below @,
@ literal @ DEVICE = CALCOMP,
@ literal @ SCALE = 1.0,
@ literal @ IMMEDIATE = YES,
@ literal @ JOBNAME = @ see below @,
@ integer @ TIME = G50,
@ response @ RESPONSE = RESULT)

Keyword description

Keyword: DIRECTACCESSFILE
Use: Specifies the name of direct access data file (see
appendix C).
Values taken: Filename of existing direct access file.

Default: Temporary direct access file will be created.

Keyword: MESH
Use: Specifies the name of the mesh data file (see
appendix C).
Values taken: Filename. Data input from file.

Default: Data taken from direct access file.

Keyword: CONTROL

Use: Specifies the name of control data file (see
appendix C).
Values taken: Filename. Data input from file.

Default: Data taken from direct access file.

-182~ D



Keyword:

Keyword:

Keyword:

GRAPHDATA
Use: Specifies the source of the plotting instructions

(if required). Not applicable if "ACTION" does

not include "VU".
Values taken: = Filename. Instructions input from file.

= *STDAD. Instructions input from alien data.
{(e.g. from terminal).

Default: No instructions are given and default values for

the graph plot are assumed if required.

PLOTFILE
Use: Specifies the name of file to contain output plot
data. Not applicable if ACTION does not include "VU'".

Values taken: Name.

Default: A new temporary file will be created if required.

ACTION

Use: Specifies actions to be taken. If several actions are
required the values below should be concatenated
(e.g. ACTION = NEWDAF_VU DRAW).

Values taken:
NEWDAF - A new direct access file is created. Input
data is taken from file specified by the keyword
DIRECTACCESSFILE and with the output data is put on

the new file. Data on original direct access file

is unchanged.

VU - A graph of the stresses on the boundary of the
finite element is produced. The file specified by
GRAPHDATA may contain instructions to the contrary

but by default the output will be to the file specified
by PLOTFILE and will be in '"SAVE-DRAWING'pseudo code
which may be interpreted by the macro '"SOLOOKPLOT" or
by including the value DRAW (see below). The remaining
values for ACTION are only applicable if "VU" is also

included.

DRAW -~ The plotfile is sent to the specified DEVICE

for plotting.
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PLOT - If the file specified by GRAPHDATA instructs
a CALCOMP code to be produced (not default) and if
the job is in a '"batch'" environment, the plot is

carried out.
SAVE - The plotfile is saved.

Default: No further action.

Keyword: DEVICE
Use: Specifies the plotting device on which graph is to
be produced. Not applicable unless ACTION includes
"VU" and "DRAW'".

Values taken:

= CALCOMP (Calcomp pen plotter).

il

TEKTRONIX (Tektronix 4010 graphics terminal).
IMLAC (Imlac graphics terminal).

I

Default: CALCOMP.

Keyword: SCALE

Use: Specifies required scaling factor for plotter.
Not applicable unless ACTION includes "VU" and
"DRAW" .

Values taken:

= Positive number up to four characters long including
mandatory decimal point. The size of the graph will
be scaled by this factor.
= Any negative number. The size of the graph will
be adjusted to fit the output device requested.
Default: 1.0 (No scaling is performed).

Keyword: IMMEDIATE

Use: Specifies if program is to be run immediately or
entered into the batch job queue.

Values taken:
= YES. Program is run immediately.

= NO. Job entered into batch queue to be run later.

Default: YES.
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Keyword: JOBNAME
Use: Specifies name for batch job if IMMEDIATE = NO.

Values taken: Name.

Default: Name specified by macro.

Keyword: TIME
Use: If IMMEDIATE = NO then TIME is an estimate of the

time (in seconds) required for the job.
Values taken: Integer between 10 and 2000.
Default: 50.

Keyword: RESPONSE

Use: Specifies the result code variable.
Values taken: Response variable.

Default: RESULT

Example

To run the FESM program with data from the direct access file
called DAF1 and the control data file called CON1l the following job

could be run. A graph of the stresses is also to be produced (default

plot instructions).

JOB(JOBNAME=:MER@@4 .KT1,TIME=100)
NOTCH(DAF1,CONTROL=CON1,ACTION=VUDRAW)
ENDJOB

ER

D.2 The Macro "MESH"

This macro is used to generate or modify the finite element mesh
stored on a direct access file, and/or modify other data required by
the program. The macro is generally used interactively when instructions
are given to the user on how to input the data. A plot of the finite

element mesh may be produced if required.
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Parameter list:

MESH (

literal @ DIRECTACCESSFILE = @ mandatory @,
superliteral @ NEWDAFS = @ see below @,

literal @ DATA = *STDAD,

@
@
@ literal @ PLOTFILE = @ see below @,
@
@® response @ RESPONSE = RESULT)

Keyword description

Keyword:

Keyword:

Keyword:

Keyword:

DIRECTACCESSFILE

Use: Specifies the name of direct access file containing
existing data or to contain new data.
Values taken: Filename of existing direct access file.

Default: None. The parameter is mandatory.

NEWDAFS

Use: Specifies the name of one or more direct access files.
After modifications have been completed on the original
direct access file the data is transferred in turn to
the NEWDAFS and other modifications may be carried out.

Values taken: Names of existing direct access files
connected by ampersands (&) .

DAF1&DAF2&DAF3

DAFO

11

E.g.

or

Default: Data may be generated and modifications carried out

on the file specifies by DIRECTACCESSFILE only.

PLOTFILE

Use: Specifies the name of file to contain output plot data
if required and if not directed to a graphics terminal
for immediate display.

Values taken: Name

Default: A new temporary file is created.

DATA

Use: Specifies the name of file containing instructions for
data modification. Generally (and by default)
instructions are input from the alien data stream -

i.e. from the terminal when used interactively.
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Values taken: = Filename. Instructions input from file.

Default: Alien data (*STDAD).
Keyword: RESPONSE (as for macro NOTCH above).

Example

To carry out modifications on data contained in the direct access
file DAFl or to generate a new mesh and store the data in this file,
the following should be input to an interactive graphics terminal:

- MESH(DAF1)
Questions or instructions are given by the program to guide the user

in entering the required data. The following functions may be carried

out using the macro MESH:

* To generate a new mesh by specifying blocks of regular elements.

* To plot the existing finite element data to show the mesh.

* To add additional nodes and/or elements.

* To delete elements.

* To move the position of nodes.

* To stretch a portion of the finite element mesh to change the
overall dimensions.

* To change boundary conditions.

* To modify the special region.

* To change the loading on the hole.

* To change the trial functions.

* To change other parameters such as elastic constants, titles,

hole size and position, print option.
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D.3 The Macro "DRAWMESHES"

This macro is used to produce a plot of the finite element mesh

from one or more direct access files. The device on which the plot

is produced and a scaling factor may be specified.

Parameter list:

DRAWMESHES

(@ superliteral @ DIRECTACCESSFILES = @ mandatory @,
@ literal @ DATA = @ see below @,

literal @ PLOTFILE = @ see below @,

literal @ ACTION
literal @ DEVICE
literal @ SCALE = 1.0,
integer @ TIME = 5.0,
response @ RESPONSE = RESULT)

@ see below @,

CALCOMP,

® ® ® ® ® ®

Keyword description

Keyword:

Keyword:

Keyword:

Keyword:

DIRECTACCESSFILES

Use: Specifies names of files containing the finite
element data.

Values taken: One or more direct access file names
connected by ampersands.

Default: None. The parameter is mandatory.

DATA

Use: Specifies source of plotting instructions.

Values taken:

Filename. Instructions input from file.

I

*STDAD. Instructions input from alien data stream

I

in response to questions from program.
Default: No instructions are given and default values are

assumed.

PLOTFILE (as for macro MESH above).

ACTION

Use: Specifies actions to be taken (the two words may be

concatenated).
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Values taken:
SAVE -~ The plotfile is saved.
DRAW - The plotfile is sent to the specified device
for plotting. Only valid if "SAVE DRAWING" option
is specified by DATA (this is the default).
Default: The plotfile is produced but no further action

taken.

Keyword: DEVICE (as for macro NOTCH above)

Not applicable unless action includes "DRAW".

Keyword: SCALE (as for macro NOTCH above).
Not applicable unless ACTION includegs "DRAW".

Keyword: TIME

Use: Gives an estimate of time required by job to 'draw"
plot (in seconds). Not applicable unless ACTION
includes "DRAW".

Values taken: Integer between 10 and 600.

Default: 50.

Keyword: RESPONSE (as for macro NOTCH above).

Example

The following job could be entered to produce plots of the meshes

from the files DAF1, DAF2 and DAF3 on the Calcomp pen plotter.

JOB(JOBNAME=:MER@@4 .MESHES, TIME=50)
DRAWMESHES (DAF1&DAF2&DAF3, ACTION=DRAW)
ENDJOB

KRN

-189- D



D.4 The Macro LOADLOAD

This macro is used to enter the Fourier coefficients of the
loading function (see Chapter 3) for a number of standard loadings.

(This function may also be carried out using the macro "MESH").

Parameter list:

LOADLOAD
(@ literal @ DIRECTACCESSFILE = @ mandatory @,

@ literal @ DATA = *STDAD,
@ literal @ OQUTPUT = *STDAD,
@ response @ RESPONSE = RESULT)

Keyword description

Keyword: DIRECTACCESSFILE

Use: Specifies the name of the direct access file to
which the Fourier coefficients are output.
Values taken: Filename of existing direct access file.

Default: None. This parameter is mandatory.

Keyword: DATA
Use: Specifies the source of program instructions.
By default this is from alien data (at the terminal)
and data is input in response to requests from the
program.
Values taken:
= Filename. Instructions input from file.

Default: Alien data (*STDAD).

Keyword: OUTPUT

Use: Specifies filename to contain details of Fourier
coefficients, etc.
Values taken: Filename or *STDAD.

Default: Output to terminal or job journal (*STDAD).

Keyword: RESPONSE (as for the macro NOTCH above).
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Example

To enter the Fourier coefficients for a particular loading to
the direct access file DAF1l the following could be input at a terminal:

~ LOADLOAD (DAF1)

The following parameters may be specified:

* the type of loading (Default: cos 8 loading).

* number of coefficients m, and m, (Defaults: 30 and 25).

* magnitude of the resultant P (Default: 7).

* radius of the hole a (Default: 1.0).

* the ratio of resultant load transmitted by the shear tractions

to that transmitted by the radial tractions (Default: 0.2).

The following distributions of radial load may be specified (see

section 5.4.1):

b) radial tractions proportional to cos 6 (-n/2<8<w/2)
c) radial tractions proportional to cos?8 (-n/2<8<n/2)
d) constant pressure over an arc.

The following distributions of tangential load may be specified:

g) shear tractions proportional to sin 6 (-w/2<6<n/2)
h) shear tractions proportional to sin 28 (-n/2<8<n/2)
J) shear tractions proportional to sin®6 cos 6 (-n/2<6<7/2)

Alternatively specific values for the Fourier coefficients may be given.
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D.5 The Macro HOLE

This macro is used to produce graphs of the tractions on the

hole. The type of loading on the hole may be specified by the direct

access file or by the data input at the terminal (or from DATA file)

by the user.

Parameter list:

HOLE (@ literal @ DIRECTACCESSFILE = @ mandatory @,

@ literal @ DATA = *STDAD,
ACTION
DEVICE = CALCOMP,

literal @ see below @,

@

literal @

literal @ SCALE = 1.0,
integer @ TIME = 50
response @ RESPONSE = RESULT)

® ® ® ® ®

Keyword description

Keyword:

Keyword:

Keyword:

DIRECTACCESSFILE

Use: Specifies direct access file from which initial
data about hole loading is taken.
Values taken: Name of existing direct access file.

Default: None. This parameter is mandatory.

DATA

Use: Specifies source of plotting instructions.

Values taken:

Filename. Instructions input from file.

1l

*¥STDAD. Instructions input from alien data stream

as directed by program.

Default: No instructions are given and default values are

assumed.

ACTION
Use: Specifies whether '"SAVE DRAWING" code (if generated)

is plotted.

Values taken:

DRAW - The plot file is sent to the specified device
for plotting.

Default: No further action.
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Keyword: DEVICE (as for macro NOTCH above).

Not applicable unless action includes '"DRAW'.

Keyword: SCALE (as for macro NOTCH above).

Not applicable unless action includes '"DRAW'".

Keyword: TIME (as for macro DRAWMESHES above).

Not applicable unless action includes "DRAW".
Keyword: RESPONSE (as for macro NOTCH above).

Example

To produce a plot of the tractions round the hole specified by
Fourier coefficients stored in the file DAF1l the following job could
be run. The plot is to be produced on the Imlac interactive terminal:

— HOLE(DAF1,DATA=*STDAD)

Data must be input to the terminal in reply to the requests from the

program. In reply to the first question for example the Imlac terminal

must be specified.

The following job however could be input to produce the plot on

the Calcomp pen plotter at half scale with default plotting instructions.

JOB(JOBNAME=:MER@®4 . HOLEPLOT, TIME=50)
HOLE (DAF1,ACTION=draw,scale=0.5)
ENDJOB

36333

D.6 The Macro VUSTRESS

This macro is used to produce a graph of stress along specified
element boundaries (by default the outer boundary of the mesh). Data
produced by the FESM program and stored on the direct access file is
retrieved and plotted. The data from more than one direct access file

may be plotted in this way with one call of the macro.

Synonym: vu.
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Parameter list

VUSTRESS

(@ superliteral @ DIRECTACCESSFILES = @ mandatory @,

@ literal @ DATA = @ see below @,
literal @ PLOTFILE = @ see below @,
literal @ ACTION
literal @ DEVICE = CALCOMP,
literal @ SCALE = 1.0,
integer @ TIME = 50,

response @ RESPONSE = RESULT)

@ see below @,

® ® ® ® ® ®

Keyword description

Keyword:

Keyword:

Keyword:

Keyword:

DIRECTACCESSFILES

Use: Specifies the direct access files containing data
to be plotted.

Values taken: One or more direct access file names
connected by ampersands.

Default: None. This parameter is mandatory.

DATA

Use: Specifies source of plotting instructions.

Values taken:

Filename. Instructions input from file.

*STDAD. Instructions input from alien data stream

in response to requests from program.
Default: No instructions are given and default values

are assumed.

PLOTFILE (as for macro MESH above).

ACTION

Use: Specifies further actions to be taken.

Values taken: The following words may be included in the
value for this parameter with identical meaning as
for the macro NOTCH:

DRAW
PLOT {see macro NOTCH above)
SAVE

Default: No further action.
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Keyword: DEVICE (as for macro NOTCH above).

Keyword: SCALE (as for macro NOTCH above).
Keyword: TIME (as for macro DRAWMESHES above).
Keyword: RESPONSE (as for macro NOTCH above).
Example

To produce graphs of the stresses on the boundary of the finite
element meshes from the data files DAF1 and DAF2, the following job
could be run. Default plotting instructions are used and the graph

will be plotted on the Calcomp pen plotter.

JOB(JOBNAME=MER{@4 . VUGRAPH, TIME=100)
VUSTRESS(DAF1&DAF2,ACTION=DRAW)
ENDJOB

3363 3¢
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APPENDIX E

Finite Element Meshes
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(In the figures below the special region is shown shaded).

Figure E24: Symmetrical Figure E25: % = 0.5, Figure E26: % - 0.5,

a
lug, == 0.5, Ql/w = 2.0 %l/w = 0.75, 12/w = 2.5 Ql/w = 0.8, lg/w = 2.5
22=Q,l

Figure E29: Symmetrical
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= - = Ql
ll/w 1.0, 22 1

Figure E27: a/w = 0.5 Figure E28: d/w = 0.5

zl/w = 1.25, zl/w = 2.5 gl/w = 1.5, gz/w = 2.5
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APPENDIX F

Kernel function for region with a circular hole

The solution is required for the tractions and displacements in
an infinite region with a circular hole of radius a, at a point z in
the complex plane due to a unit point force in the k direction acting
at the point z, These may be expressed (see chapter 6) in terms of

the complex potentials ¢k(z,zo)

¢ and ¥_are given by Murakami and Nisitani [6.19] as:

X, 2(z z —a?)

1 = k o o
= - 2 - - [} a2 'k oo " °
¢k 2m(1+x) { Xk n(z Zo) KXk n(l-a®/z zo) + - ~ : 1
z “(z z —-a?)
(€] o
——— e X z 2
L X v - k"o X
= 2 - 2 _
wk 21(1+k) {x X n(z zo)+ Xkln(l a?/z zo) o =
o) o
Y - " - ,
KX, a X, a (z z -a?®)
+ — + - = !
z2%(zz -a?) 7 Z (2 Z —a?)?

where X, is given, in terms of the Kronecker delta, by:

Defining z . as:
0,J

z .o= &, ., + 1i6_.
0,] 1 2]

the derivatives cof ¢k and wk are given by equations (F.5)-(F.12).

and Wk(z,zo) and their derivatives.

(F.2)

(F.3)
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APPENDIX G

Using the modified boundary element program.

This appendix deals with preparing the data file for the boundary

element program and using the three '"macros'" (system control commands)

which were prepared for modifying the data and running the program.

One data file is required for each run of the program and the information

it should contain and its format is given below., It follows closely the

format of the original program [6.2].

G.1 BEM data file

1.

Title record. (Format 18A4) This title is printed in the

heading on output.r

Basic parameters. (Format 8I5, 3F10.4, 2I5) These parameters

are in order: i) the number of boundary elements, ii) the
number of internal points where the stress is calculated,

iii) the number of different surfaces, iv) to viii) the

last node of each different surface, ix) Young's modulus

(n.b. not shear modulus as in previous versions), x) Poisson's
ratio, xi) the radius of the circular hole, xii) number

of Gauss points (for integration: equal to 4 or 8), xiii)
ICODE which takes the values *1 or 2. |ICODE|=2 for plane
strain (default). If ICODE<O then additional '"de-bug" data

is printed.

Internal point coordinates.(Format 2F10.4) As many records

X, coordinates on each record.

as internal points with the Xl’ 5

Coordinates of extreme points of the boundary elements.

(Format 2F10.4) Each record defines the coordinates ofthe
extreme point of an element, read in the counterclockwise
direction for external surfaces and clockwise for internal

ones.

Boundary condition records. (Format I5, F10.4, I5, F10.4)

As many records as boundary nodes giving the values of the
known variable in X, and X5 directions. The integer preceding
each value, KODE, defines whether the value is a displacement
(KODE=0} or a traction {KODE=1). Boundary conditions may be

specified in normal and tangential directions rather than Xy
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x2 directions if required. In this case the first
integer = 2 and the second integer = 0 or 1 to specify

displacements or tractions respectively.

G.2 The Macro DRAWBEL

As an alternative to inputting the above data file the macro
DRAWBEL may be used to generate the boundary grid (ACTION = AUTO, see
below). The configuration is input as a series of arcs or straight
lines with constant spacing between each node or (for straight lines)

a constant ratio of lengths of adjacent elements. The basic parameters
and boundary conditions are then input in free format as prompted by

the program. The macro may also be used to plot the boundary grid from

an existing data file.

Parameter list:

DRAWBEL
(@ literal @ DATA = *STDAD,
literal @ ACTION = @ see below @,
literal @ QUTPUTFILE = @ see below @,
literal @ DEVICE = CALCOMP,
literal @ SCALE = 1.0,
integer @ TIME = 50,
response @ RESPONSE = RESULT)

® ® ® ® ® ®

Keyword description

Keyword: DATA

Use: Specifies file from which data is read.
Values taken: Filename. Data is read from existing data file.
Default: Data read from alien data. This should be used

if generating new boundary grid.

Keyword: ACTION
Use: BSpecifies action to be taken. If two actions are to
be taken the values below should be concatenated
(e.g. ACTION=AUTO_SAVE)
Values taken:
AUTO - A new boundary grid is to be generated. The
data is output to the file specified by OUTPUTFILE

(see below).
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SAVE - The file specified by OUTPUTFILE is to be
saved.
DRAW - This action may only be specified if AUTO is
not specified. The OUTPUTFILE may then contain a
"SAVE_DRAWING" pseudo plot file and if ACTION includes
"DRAW" this file is plotted.

Default: A DATA file, formatted as specified in section G.1
above, is input and plot data for the boundary grid

is output.

Keyword: OUTPUTFILE
Use: Specifies the name of the output file. If ACTION

includes "AUTO" the output file will be a boundary
element data file. Else the output file is a plotfile.
Values taken: Name.

Default: A new temporary file is created.

Keyword: DEVICE
Use: Specifies the plotting device on which plot is to be
produced. Not applicable unless ACTION includes 'DRAW".

Values taken:

CALCOMP (Calcomp pen plotter).
TEKTRONIX (Tektronix 4010 graphics terminal).

IMLAC (Imlac graphics terminal).
Default: CALCOMP.

Keyword: SCALE

Use: Specifies required scaling factor for plotter. Not
applicable unless ACTION includes '"DRAW'".

Values taken:
= Positive number up to four characters long including
mandatory decimal point. The size of the plot will
be scaled by this factor.
= Any negative number. The size of the plot will be
adjusted to fit the output device requested.

Default: 1.0 (No scaling is performed).
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Keyword: TIME
Use: Gives an estimate of the time required to "draw"

plot (in seconds). Not applicable unless ACTION
includes "DRAW'".
Values taken: Integer between 10 and 600.

Default: 50

Keyword: RESPONSE

Use: Specifies the result code variable.
Values taken: Response variable.

Default: RESULT.

Example
The following job could be entered to plot the boundary grid from

a boundary element data file BEMDATA. The plot would be produced on

Calcomp pen plotter.

JOB{( :MER@@4 . BEMPLOT, TIME=50)
DRAWBEL ( BEMDATA , ACTION=DRAW)
EJ

ER

Alternatively if the macro is to be used to generate a boundary
grid the following could be entered from the Imlac graphics terminal.
~ DRAWBEL (ACTION=AUTOSAVE)
-0, 2, 0, 2
- 4

, 1.25
— ANNULUS

-2, 1.0, 0.3, 0.0, O

/
/
/
/
/
/ -
/
/
/
/
/ - 1.5, 0.5
/

- 0.5, 1.5
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/ -2,0,1, 0
/ -/
/ -/
/ =/
/ -/
/ =/
/ -0,0,1, 0
/ =/
/ -/
/ -/
/ -2,1,1, 0
/ =/
/ -/
/ =/
/ -/
/ -/
/ -1, 0, 0,0
/ =/
/ =/
/ =/

The data following the DRAWBEL command specifies the parameters
requested by the program (e.g. dimensions, boundary conditions, etc.).

The above data produces the boundary grid shown in Figure G1.

Key
Nodes @

Internal Points ¢

-6

Figure G1 Boundary grid specified using the macro DRAWBEL.
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G.3 The Macro BEM

This macro is used to run the modified boundary element method
program. The modified (NEW) or standard (OLD) kernel functions may be
used and the program may be run immediately or entered into the batch
gueue.

Parameter list:

BEM (@ literal @ DATA = *STDAD,
@ literal @ OUTPUT = @ see below @,

@ literal @ KERNEL = NEW,

@ literal @ IMMEDIATE = YES,

@ integer @ TIME = 50,

@® response @ RESPONSE = RESULT)

Keyword description

Keyword: DATA
Use: Specifies file from which data is read.
Values taken: Filename data is read from existing data file.

Default: Alien data.

Keyword: OUTPUT
Use: Specifies the name for the output file if required.
Values taken: Name. If a file of this name exists output
is sent to this file. Else file is created. The
file is listed after the program has run.

Default: A temporary file is created.

Keyword: KERNEL
Use: Specifies which kernel function is used for the boundary
element method.
Values taken:
= NEW. The modified kernel function for a plane
containing a circular hole is used.
= OLD. The standard Kelvin kernel function is used.

Default: NEW.
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Keyword: IMMEDIATE

Use: Specifies if program is to be run immediately or
entered into the batch queue.

Values taken:

YES. Program is run immediately.

NO. Job entered into the batch queue to be run later.

1

Default: YES.

Keyword: TIME
Use: If IMMEDIATE = NO then TIME is an estimate of the time

(in seconds) required for the job.
Values taken: Integer between 10 and 2000.
Default: 50.

Keyword: RESPONSE

Use: Specifies the result code variable.
Values taken: Response variable.

Default: RESULT.

Example

The following job could be entered to run the boundary element

program with data from the file BEMDATA, using the modified kernel function.

JOB( : MER@@4.BEMRUN, TIME=50)
BEM(DATA=BEMDATA)
EJ

¥# %

G.4 The Macro RUNNER

It is sometimes convenient when a number of runs of the boundary
element program are required to use the macro RUNNER. In this case the

data file is edited before the program is run (see example below).
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Parameter list:

RUNNER (

literal @ FILE = @ mandatory @,
literal @ EDITFILE = *STDAD,
literal @ KERNEL = NEW,

literal @ IMMEDIATE = YES,
integer @ TIME = 50,

response @ RESPONSE = RESULT)

® ® ® ® ® ®

Keyword description

Keyword:

Keyword:

Keywords:

Example

FILE
Use: Specifies the data file which is edited and then

input to the boundary element program.
Values taken: Filename of existing data file.

Default: None. This parameter is mandatory.

EDITFILE

Use: Specifies the file from which the edit instructions
are read.

Values taken: Filename.

Default: Alien data.

KERNEL

IMMEDIATE These keywords have the same meaning
TIME as for the macro BEM above.

RESPONSE

The following job could be entered to run the boundary element

program with the datafile BEMDATA, which has a hole size specified as

5.0, followed by runs with the same data except for the hole sizes which

are 3.0 and 1.0.

JOB( :MER@@4.BRUNS, TIME=600)
BEM(BEMDATA)
RUNNER (BEMDATA)

T2, T.60,R/5.0/3.0/,E
+4++

RUNNER ( BEMDATA )

T2, T.60,R/5.0/1.0/,E
+4++

EJ
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