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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND APPLIED SCIENCE 

MECHANICAL ENGINEERING 

Doctor of Philosophy 

NUMERICAL METHODS FOR STRESS ANALYSIS 

USING KNOWN ELASTICITY SOLUTIONS 

by Andrew Robert Carmichael 

Two methods for the determination of the stress concentration near holes 
in two dimensional elastic components are developed. One, which is based 
on the finite element method extends a superposition technique originally 
developed for crack problems; the other uses the boundary element method. 
Both methods involve using analytical solutions which satisfy conditions 
on the hole boundary exactly thereby reducing or, in the case of boundary 
elements avoiding entirely, the need for elements modelling the hole. 

The first method uses a modified complementary energy functional to 
determine the coefficients of the superimposed functions and the finite 
element nodal displacements, from which the estimates of stress are 
obtained. Tractions on the hole boundary are represented accurately 
using Fourier series, and the formulation is modified by the inclusion 
of a "loading function" which is the solution for an infinite region 
containing the hole under the specified loading. Representing the 
tractions on the hole in this avoids inaccuracies due to approximate 
modelling of the load, for example as point forces, close to the point 
where the stress concentration factor is required. The loading function 
is incorporated into the formulation without requiring numerical integration 
of the tractions over the curved boundary of the hole. Accuracy of the 
method for use on traction-free circular or elliptical holes and loaded 
circular holes is systematically examined. For quite coarse finite element 
meshes (typically 70 degrees of freedom with four-fold symmetry) 3% 

accuracy or better may be expected, an improvement by a factor of between 
5 and 10 over conventional elements. The effect on accuracy of such 
parameters as the mesh refinement, the size and shape of the hole and 
outer boundaries, the extent of the region of superposition and the type 
of loading is investigated. Fourier series are derived for different 
distributions of tractions occurring at a hole boundary due to a pin-load, 
and these are used to determine stress concentration factors for rectangular 
lugs of various dimensions. 

The formulation of the boundary element method for plane elastic 
problems is presented and is modified by introducing a kernel function 
which satisfies the traction-free conditions on a hole boundary. It is 
shown that with this formulation no elements are required to model the 
hole, thus stresses at or near the hole mẑ f be evaluated without being 
affected by the proximity of elements on this boundary. Results for 
externally pressurized annul! and square plates with circular holes are 
obtained with the method, which show a marked improvement in accuracy 
over the boundary element method with an unmodified kernel function. From 
these results it appears that the constant shape function of the elements 
is a limitation for the application of the method to more general con-
figurations and higher order elements are recommnded. 

IV . 
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NOTATION 

Notation for PART I (including Appendix A) 

The following symbols are used to represent vectors of the type shown: 

a stress 

e strain 

T tractions 

u displacements 

P nodal loads 

a nodal displacements 

The following superscripts specify the particular field: 

trial functions derived from exact elasticity solutions 

t an approximation to the trial function fields 
linear displacements between nodes 

having 

F finite element field 

— (bar) prescribed quantities on boundaries 

(tilde) displacement field defined on element boundaries 

I stress field defined in the interior of elements 

c additional stresses, constant within elements, 
from compatibility constraints 

, arising 

(1), (2)or (3) associated with a particular node 

a or b referring to an element denoted a or b 

The following subscripts may also be used: 

0,1, 2...i 

N 

, j 
associated with the particular trial function 
equal to zero, the loading function 

associated with the N'th element 

or, if 

Components of the above vectors are not underlined and may have the 

following additional subscripts: 

X,Y 

x,y 

r,8 

n, s 

Cartesian coordinates referred to global axes 

Cartesian coordinates referred to trial function axes 

Polar coordinates referred to trial function axes 

directions normal and tangential to boundary 

VI . 



Boundaries are denoted by S with the following subscripts: 

none complete boundary 

K kinematic boundary (displacements specified) 

T traction boundary 

R interface boundary between the external and special regions 

E inter-element boundary 

N complete boundary of N'th element 

The boundaries may be further specified by the following qualifiers: 

' (prime) denotes that part of the boundary adjacent to 
the special region 

N (subscript) denotes that part of the boundary adjacent 
to the N'th element 

e (superscript) denotes that part of the boundary adjacent 
to the external region only 

Other symbols: 

a radius of circular holes or semi-major axis length of 
elliptical hole 

a , a' arbitrary constants in Airy stress function 
n n 

A strain/stress compliance matrix 

A coefficients of Fourier series specifying the normal 
tractions on the hole 

b semi-minor axis length of elliptical hole 

b , b' arbitrary constants in Airy stress function 
n n 

-N 
element strain matrix for N'th element 

B, , submatrix of B,, where n = 1, 2 or 3 
-(n) 

c arbitrary constant 

c , c' arbitrary constants in Airy stress function n 
C. matrix defined by equation (2.21) 
—1 
D matrix of coefficients of a in equation (2.45) 

d. . element of the matrix D 
ij -

D' matrix of coefficients in equation (2.44) 

d!. element of the matrix D' 
i j — 

D matrix of coefficients arising from integral on S' 

d^. element of the matrix D 
ij -s 



D coefficients of Fourier series specifying the shear 
tractions on the hole 

d , d' arbitrary constants in Airy stress function 
n n 

e exponential constant 

E Young's modulus of elasticity 

F vector of right-hand sides in equation (2.45) 

f. element of the vector F 
1 — 

F' vector of coefficients in equation (2.44) 

fl element of the vector F' 
1 — 

G shear modulus 

1 

i integer specifying number of trial function 

j integer specifying number of trial function 

k total number of trial functions 

K, stress concentration factor 
t 

K stress concentration factor in infinite region 

K finite element stiffness matrix 

I half length of symmetrical plate 

distance from centre of hole to top of lug 

& distance from centre of hole to bottom of lug 

L traction/stress matrix 

constants defined by equations(3.23) and (3.26) 

m limit of Fourier series in $ (equal to k/2) 

m limit of Fourier series defining normal tractions on hole 
m limit of Fourier series defining tangential tractions on 

hole 

limit of Fourier series equal to the maximum of m and m 

n integer (or integer subscript) 

N element number 

N mesh size parameter 

0 origin of global coordinates 

0' origin of trial function coordinates 

p nodal loads (see above) 

P magnitude of resultant force on the hole 

P magnitude of resultant force due to shear tractions on 
the hole 

p internal pressure on a^nulus 

q nodal displacements (see above) 

Q parameter defined as K,/K 
t ^ 

Vlll . 



r radial polar coordinate 

R = for an elliptical hole 

R ratio of special region area to area of hole 

s distance along an element side measured from node (1) 

s length of element side 
o 

5 boundary of region (see above) 

t thickness of finite elements in the special region 

T tractions (see above) 

u displacements (see above) 

U strain energy function 

Ug Q strain energy function evaluated in the special region 

V complete region 

w half width of plate 

X,Y Cartesian coordinates referred to global axes 

x,y Cartesian coordinates referred to trial function axes 

z complex number = x + i y 

a. coefficient of trial function or, if i=0, of the loading 
function 

a vector of trial function coefficients a (i=l to k) 

a' vector of coefficients a. (i=0 to k) 
— 1 

6 half angle subtended by arc of pressure 

Y angle between OX and O'x axes 

Y shear strain component (see above for qualifiers) 

6^ typical linear dimension of elements near hole 

A area of triangular element 

£ strain vector (see above) 

E ^ percentage difference term for comparing two values of 

maximum stress see equation (5.1) for definition 

5 complex function of z 

6 angular polar coordinate 

8 arbitrary angle 

K = (for plane stress) 

^ Lagrange multiplier 
u = r for an elliptical hole 

a+b 

V Poisson's ratio 

C complex function of z 

n pi = 3.1415927 

n functional (complementary energy) 

n modified functional 
c 

o stress (see above) 

IX . 



0 o 
nominal applied stress 

0 max 
maximum tensile stress 

0 com 
maximum compressive stress 

^ref 
value of stress for comparison 

T shear stress component (see above for qualifiers) 

* angle between X axis and outward normal to boundary 

<t>. 
1 

complex stress function for trial function 

*A 
Airy stress function 

*i 
complex stress function for trial function 

<=° infinity 

Other notation: 

log natural logarithm 

Im denotes imaginary part of complex number 

Re denotes real part of complex number 

(bar) unless referred to above denotes complex conjugate 

(prime) 1 unless referred to above denotes 

" (double prime)/ differentiation 

5{ } denotes the variation of a functional 

^ denotes summation 

denotes proportional to 
T 

) denotes the transpose of a vector 

_ underlined symbols denote vectors or matrices 

Notation for PART II (including Appendix F) 

In Part II tensor notation is used whereby subscripts - for example 

i, j or k - denote the direction of components. The following tensor 

variables are used: 

kr body force 

cosine of the angle between the boundary normal and 
i coordinate axis 

T. traction 
1 

u displacement 

X position of the point force in kernel function 



E.. strain 
ij 

o. . stress 
ij 

C. position of the point at which the kernel function 
is evaluated 

Tensors referring to the kernel function are denoted by the superscript 

* and have an additional subscript (before other subscripts) which 

indicates the direction of the point force. 

A subscript preceded by a comma (e.g. u. .) means partial differentiation 
1 > J 

with respect to the coordinate component x . A repeated suffix implies 

summation. 

The following superscripts may also be used: 

K 

c 

m or n 

P 

corresponding to the Kelvin solution 

complementary part of the kernel function (added to 

Kelvin solution yields the kernel function) 

pertaining to the m'th or n'th node or element 

pertaining to an internal point 

Boundaries are denoted by S with the following qualifiers: 

none complete boundary of the problem 

n (subscript) n'th boundary element 

* (superscript) boundary included in the kernel function 

H (subscript) part of the boundary of the problem co-
inciding with S* 

' (prime) remainder of the boundary of the problem 

Other symbols: 

a radius of circular hole 

b (see above) 

A matrix of the coefficients of the unknown tractions 
or displacements 

c coefficient of displacement in Somigliana's identity 
(6.17). A superscript may denote the coefficient for 

a particular element. 

(italic) function defined by equation (6.32) 

E Young's modulus of elasticity 
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f arbitrary function 

F vector of right-hand sides in the simultaneous equations 

7, coefficient of the tractions defined by equation (6.24) 
k&mn 

G shear modulus 

G matrix of the traction coefficients 

h, coefficient of the displacements defined by equations 
(6.22) and (6.23) 

H matrix of the displacement coefficients 

1 / T 

integers defining coordinate directions 

K number of dimensions of the problem (2 or 3) 

K stress concentration factor 

L complex number = 

& (see above) 

m element (or node) number 

n node (or element) number 

N number of elements and nodes 

r radial polar coordinate 

S boundary (see above) 

(italic) function defined by equation (6.33) 

T (see above) 

V region of the problem 

u (see above) 

w radius of annulus or half width of square plate 

X (see above) 

z complex number defining position of point in plane 
(= + iCg) 

z complex number defining position of the point force 
° (= + iXg) 

Kronecker delta. See equation (6.5) 

6(x-() Dirac delta function. See equations (6.13)-(6.15) 

(see above) 

E percentage difference term for comparing two values of 

stress. See equation (5.1) for definition 

8 angular polar coordinate 

K = (for plane stress) 
1 + v 

= 3-4v (for plane strain) 

V Poisson's ratio 

X Lame constant given by equation (6.3) 

X' equivalent constant for plane stress applications 
see equation (6.8) 



C. (see above) 

m pi = 3.1415927 

o.. (see above) 
ij 

o externally applied stress 

o , Og radial and tangential components of stress 

complex number = 5^ + 
complex potential for the kernel function with the 

point for 

infinity 

k 
j point force in the k direction 

Other notation: 

&n natural logarithm 

Im denotes imaginary part of complex number 

Re denotes real part of complex number 

(bar) denotes complex conjugate 

' (prime) 1 , „ , , , 
\ unless referred to above denotes 

" (double prime j differentiation with respect to z 

I denotes summation 

.J 
(subscript) denotes partial differentiation with respect 
to X. 

J 
€ denotes "is included in..." 

{ }dV(C) denotes integration over V with respect to the variable 5 

underlined symbols denote matrices 
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 Background to the work 

The presence of holes or notches in structural components 

increases the nominal stress in these components by a factor, K^, 

known as the stress concentration factor [l.l]. The aim of this work 

has been the development of acc 

wide variety of configurations, 

has been the development of accurate methods for determining in a 

The need for accurate estimates of stress concentration factors 

has arisen in particular from studies in fracture mechanics. Fatigue 

damage may be caused by the initiation and growth of cracks near stress 

concentrations when the structure is subject to cyclic loading. Since 

these cracks may appear early in the rLfe of 1±e structure, or indeed 

may occur in manufacture, the fatigue life depends on the rate at which 

the crack grows, and to determine crack growth rates the stress 

factor for the crack must be known. Stress factors characterise 

the stress field near to a crack tip and values for most simple config-

urations have been collected in reference manuals [1.2-1.4], For short 

cracks - and for most of the life of a component the crack will be short-

simple methods of determining the stress factor [1.5,1.6] may 

be used even for complex geometries, provided that data is available for 

the stress concentration factor or, in the case of weight function 

methods, the stress distribution over the crack site in the absence of 

the crack. The recent compounding method for determining stress 

factors [1.7-1.9] also requires knowledge of the stress concentration 

factor at the site of the crack if there is significant interaction 

between the boundaries of the configuration [1.10], (e.g. when the hole 

is close to the edge of the component). Furthermore since the crack 

growth rate depends on the stress factor raised to a power 

(typically 4) the stress concentration factor must be known accurately 

(l%-3%) for these methods to be of use. In fact there are many classes 

of problem (e.g. finite plates with holes, pin-loaded lugs) for which 

stress concentration factors of the required accuracy are known for 

relatively few and only the simplest geometries. Even where they are 

known the stress distribution, which is required by some methods for 

evaluating the stress intensity factors of cracks, may not have been 



included. Hence there is a need for an accurate, versatile and 

convenient method for determining stress concentration factors and 

the stress distribution near to holes and notches. 

For methods to be applicable to a variety of complex structures 

with several interacting boundaries and varied loading conditions, a 

numerical method of stress analysis is required. Broadly these may be 

divided into three main types: finite difference methods, finite element 

methods and boundary element methods. The finite difference method is 

perhaps the most straight forward and historically was developed first 

[l.ll]. By dividing the region of the problem with equally spaced nodes 

throughout ,the governing differential equation may be solved in terms of 

values of stress or displacement at the nodal points. However the 

method is not suited to problems where there are high stress gradients, 

such as occur at holes or notches, since the nodes must be closely spaced 

to model the region of stress concentration, and consequently the total 

number required for an accurate representation of the solution becomes 

very large. For this reason finite difference methods have been largely 

superseded by finite elements [1.12-1.13] for all but specialized 

applications, and the two methods developed in the present work are 

based on the finite element and boundary element methods. 

The finite element method is widely used in all branches of continuum 

mechanics and since its inception for stress analysis [1.14] it has been 

developed to include many variants. The basis of the method is that the 

region of the problem is divided into small elements of simple shape (in 

two dimensions usually triangles or quadrilaterals) which are assumed 

to be interconnected only at a discrete number of nodes. A "shape 

function", for example a polynomial, is used to represent the stresses 

or displacements within the elements in terms of the nodal values of 

either displacements, stresses or both, depending on the particular 

formulation. An approximate solution for these nodal unknowns is 

obtained by applying a weighted residual technique or variational 

principle (for example minimizing energy) to give a set of symmetric 

banded simultaneous equations [1.15, 1.16]. The technique is extremely 

powerful and has been applied successfully to many different problems 

including three-dimensional, anisotropic and non-linear cases. 
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Some of the considerable amount of work done with finite elements 

for two dimensional elastic problems with high stress gradients is 

reviewed, along with other methods, in section 1.2. In developing a 

new method for stress concentrations near holes, as described in Part 

I of this work, certain drawbacks of the finite element method are 

avoided. Firstly in areas of steep stress gradient, such as found at 

stress concentrations, the finite element method usually requires a 

very fine mesh to obtain acceptable accuracy. This is expensive in both 

data preparation time and run time on the computer. Furthermore the 

simplest finite element methods used constant strain triangular elements 

with nodal displacements as unknowns. This means that to estimate the 

stress at any boundary {the edge of a hole for example) the value must 

be extrapolated from the average stress in the elements near to the 

boundary, introducing a further source of error. By incorporating into 

the finite element scheme known elasticity solutions, such as that for 

an infinite sheet with a hole, the new method proposed and developed in 

this thesis increases the effectiveness of finite elements for stress 

concentration problems. 

In recent years boundary element techniques have gained considerable 

acceptance as a preferred alternative to finite elements [1.17, 1.18]. 

As the name suggests these methods require elements on the boundary of 

the region only and thus the dimensionality of the elements is reduced 

by one. The simultaneous equations, which must be solved to give the 

unknowns on the boundary, are derived from integral equations (hence the 

alternative name, "boundary integral equation" methods), and although the 

matrix formed is not banded as in finite element methods, it is much 

smaller than would arise with finite elements for most problems. Once 

the equations are solved the values of stress or displacement at any 

interior points may be calculated. However a disadvantage of the method 

for stress concentrations, where stresses must be evaluated at boundaries, 

is that this is usually more difficult and less accurate than for interior 

points. In Part II of this work a boundary element method is formulated 

incorporating modified "fundamental solutions" (elasticity solutions for 

a point force in a given region). These fundamental solutions become the 

"kernel functions" in the integral equations. The boundary conditions 

on the part of the boundary where the stress concentration factor is 

required are satisfied exactly in these new fundamental solutions and 



this enables this part of the boundary to be included without using 

boundary elements. Thus the required stresses may be determined as 

accurately as at interior points and the number of elements needed is 

reduced. 

1.2 Review of theoretical methods and solutions 

The existence of high stress near geometrical discontinuities has 

been appreciated for many years and investigations of stress concen-

trations, both experimental and theoretical, were begun during the last 

century [1.19-1.21]. Since that time an immense volume of work has been 

published on the subject and this review is aimed at highlighting 

some of the more important work. Reviews of general methods of obtaining 

stress concentrations [1.22] and of analytical methods in particular, 

[1.23, 1.24] have appeared in the literature and several collections of 

the solutions obtained have been made [l.l, 1.25-1.31] . The aim of the 

present survey is to consider the various theoretical methods available 

for obtaining stress concentration factors and to compare them with the 

finite element superposition method (FESM) and the modified boundary 

element method (BEM) which are developed in Parts I and II respectively. 

The review is limited to methods applied to two d'trngMStOMoI configurations 

of elastic, isotropic and homogeneous materials with in-plane loadings. 

An assessment is made of the relative merits of the methods, the accuracy 

(where known), whether the methods may be extended to more complex 

geometries or materials (e.g. three-dimensional configurations, anisotropic 

materials, etc.) and, in general terms, their theoretical basis. 

1.2.1 Exact Analytical Methods 

The solution by Lame [1.19] to the case of a hollow cylinder 

subjected to uniform pressure on the inner and outer surfaces, was the 

precursor of many of the analytical solutions to stress concentration 

problems. It was based on the mathematical theory of elasticity which 

was formulated, in a systematic way, during the first part of the last 

century by Navier [1.32], Cauchy [1.33] and others. The introduction by 

Airy [1.34] of a formulation using stress functions led to important 

solutions, including those for an infinite sheet in tension containing 

a traction-free circular hole [1.20], a traction-free elliptical hole 

[1.35] and a loaded circular hole [1.36]. The configuration of an 

elliptical hole in an infinite sheet in tension was first solved by 

Kolosov [1.37] who introduced two most important concepts, complex 
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potentials and conformal mapping. This led to the development of a 

most powerful analytical method for elasticity problems and much more 

work was done using this approach by the Russian school, notably 

Muskhelishvili [l.38-1.40] and co-workers. The technique remained 

unknown outside Russia for many years and was later used independently 

by Stevenson [l.41, 1.42] and others [1.43, 1.44] for stress concentration 

problems. Examples of other solutions obtained using Muskhelishvili's 

method are: infinite or semi-infinite plates in tension containing deep 

hyperbolic or shallow semi-elliptical notches [l.3l], and point forces 

acting in an infinite plate containing a circular [1.45] or elliptical 

[1.46] cut-out. In spite of the powerful nature of the method and the 

usefulness of the solutions so obtained, only a ^2w configurations have 

been solved in closed form, and general solutions not in closed form 

(e.g. [1.47]) require much analysis to obtain a particular solution, 

even assuming that the series involved converge. For this reason 

approximate methods for calculating the stresses have been developed 

and applied to a much wider range of problems than is possible using 

an exact analytical technique. However the exact methods are most 

important in the development of approximate techniques and in the present 

work exact analytical solutions based on the methods of Airy [1.34] or 

Muskhelishvili [1.38] are incorporated into numerical methods to improve 

their efficiency. 

1.2.2 Approximate Analytical Methods 

Approximate methods such as the "alternating technique" have been 

used to determine Airy stress functions from a series representation, 

and hence to obtain the stress in, for example, an infinite strip with 

a central circular hole [1.48]. The basis of this method was that 

separate parts of the boundary (e.g. the hole and the straight edges of 

the strip) were considered alternatively. At each iteration of the method 

residual stresses occurred on the other part of the boundary, which were 

then cancelled by the next iteration, leaving smaller residuals on the 

first part of the boundary. This was continued until an acceptable 

accuracy was obtained. Approximate solutions for plates and strips 

with circular holes [1.49-1.52 land for loaded holes in strips [1.53-

1.55] have been produced by Howland and others in a similar manner. The 

method was extended for a strip with an asymmetrical hole by Ling [1.56] 

who also obtained the solution for an infinite sheet loaded in tension, 

perforated by two equal holes [1.57, 1.58]. 

-5-



Isida [1.59-1.65] solved several strip configurations using a 

"perturbation" method based on the alternating technique used by 

Howland. the solutions included those for strips containing an 

eccentric circular hole [1.59,1.61], elliptical hole [1.62, 1.63] 

and symmetrical notches [l.60]. The solution by Shibuya et al [1.66] 

for a plate with a conical hole is based on a similar principle but 

extended to 3 dimensions by using a least-squares approximation to 

satisfy the boundary conditions. 

Approximate solutions for plates with different shaped holes have 

also been obtained based on Muskhelishvili's complex variable approach 

with conformal mapping. Many variants of the method exist, but generally 

the hole or notch is mapped on to a unit circle, the complex potentials 

are determined from the boundary conditions, usually in a series form, 

and truncation of the series yields an approximate solution. Savin 

[1.26, 1.27] and many other authors have obtained solutions for plates 

perforated by circular holes [1.67-1.69], square, rectangular or 

triangular holes [1.70-1.74], reinforced holes [1.75-1.77] and multiple 

holes [1.78-1.80], and many of these solutions are collected in the two 

monographs [1.26, 1.27] where many anisotropic and elastic/plastic 

problems are also treated. The same approach has also been used for 

some edge notch problems [1.81-1.83]. 

Results from these approximate analytical methods are generally 

accurate to within 2% but each problem must be formulated individually 

and particular mapping functions must be found for each configuration. 

This may not be possible especially if there are discontinuities in the 

curvature of the notch. Often there are problems of convergence also, 

such that an appreciable improvement of accuracy can only be achieved 

by including a great many more terms in the series representation of 

the potentials, and this is particularly true when the configurations 

are of finite size, rather than infinite planes or strips. The 

importance of the methods to the present work therefore, is not that 

they offer an alternative to more general numerical techniques, but 

that several accurate solutions have already been obtained that may be 

used for comparisons in confirming the accuracy of any new method. In 

particular solutions by Howland [1.48], Hengst [1.52], Knight [1.54] and 

Isida [1.62] have been used in the present work for this purpose. 
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1.2.3 Numerical Methods 

The advent of powerful digital computers meant that the emphasis 

in stress analysis moved from analytical methods to numerical methods. 

Of these, mention has already been made of the finite difference, 

finite element and boundary element methods. The "collocation method" 

however is another important technique. 

The collocation method [1.84] consists of using stress functions 

or complex potentials in series form, the coefficients of the series 

being unknown. The series are truncated and the coefficients determined 

by matching the boundary conditions at a finite number of points on the 

boundary. Hooke [1.85, 1.86] used this method for two-dimensional and 

a^isymmetric three-dimensional notch problems under tension and bending 

loads. 

The collocation method has been combined with conformal mapping 

by Bowie and others [1.87, 1.88] and further improved by partitioning 

the region of the problem into separate sub-regions [1.89]. Solutions 

for various shapes of edge notches in semi-infinite plates and holes in 

infinite plates have been obtained using this method [1.90]. The 

collocation method may also be combined with other numerical techniques, 

such as the finite element method [l.9l], which gives added flexibility 

in its use. Typical accuracy for the method is generally in the region 

of 1% [1.92] but problems with convergence, ill-conditioning or 

sensitivity to the number and distribution of the boundary points may 

increase the error. Consequently the collocation method is not as 

versatile as some other numerical methods and it has received relatively 

little attention compared to finite or boundary elements. Some work is 

continuing on the collocation method for the evaluation of stress intensity 

factors, at the University of Southampton [1.93|. 

A drawback of the analytical methods, and to an extent the 

collocation and finite difference methods, is a lack of versatility in 

analysing a wide variety of different geometries. It is in this respect 

particularly that the finite element method and boundary element method 

are so effective and this explains the large amount of work which has been 

done in the last twenty years, especially on the finite element method. 
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General reviews of work in finite elements have been presented, for 

example, in several of the standard texts [1.12, 1.13, 1.94]. Here, 

however, having mentioned some of the problems of conventional finite 

elements, particular attention is paid to the development of methods 

combining both finite element and continuum concepts, of which the 

finite element superposition method formulated in the present work is 

an example. 

In applying conventional finite element methods to configurations 

with steep stress gradients, several difficulties occur. Many elements 

are required to model the stress field accurately and consequently it 

is expensive for data preparation, computer processing and post-processing 

of the results. In addition to obtain a value of stress at the boundary 

some sort of interpolation from interior points may be required. Even 

higher order elements are not always an advantage since although the 

number of elements would be reduced (or the accuracy increased) more 

nodes are introduced per element and this may lead to a similar number 

of unknowns in the problem. Much work has been done in proposing 

modifications to the finite element scheme to overcome these problems, 

particularly for crack problems [1.95]. Isoparametric elements [1.96], 

different variational principles [1.97], and hybrid methods [1.98] 

have all been used to improve the method for cracked configurations. 

The forerunners of the present work, also using methods formulated for 

crack problems, superimposed analytical trial functions, corresponding 

to the singular stress field around a crack tip, over a region of the 

configuration. This region varied from a special crack-tip element 

[1.99-1.103] to the whole region of the problem [1.104-1.108] or, as 

in the present formulation, a "special region" including several elements 

around the notch or crack [1.109-1.111]. A superposition approach was 

proposed for stress concentrations at smooth cut-outs by Rao [1.103] 

using large "primary" elements in the region of the notch,and by Schnack 

[1.111] who combined the use of augmenting functions with six-node hybrid 

elements. The aim of these methods is to incorporate known solutions 

for the stress field near to a crack or notch in an region, into 

the finite element scheme. Thus the finite elements model only the 

difference between the infinite region solution, scaled by arbitrary 

coefficients, and the exact solution for the configuration being analysed. 



Since this difference will be relatively small in the region of 

interest if the trial functions are appropriate to the particular 

problem, the errors introduced by modelling the region with a coarse 

finite element mesh and interpolating values of stress on the boundary, 

will also be small. 

The finite element superposition method presented in Part I is 

a development of this work in that trial functions, derived from known 

elasticity solutions to appropriate configurations, are combined with 

constant strain triangular finite elements. Loading on a hole boundary 

is incorporated into the method using similar elasticity solutions, 

known as loading functions, which remove the need to represent loadings 

as a series of nodal forces - often a further source of error in 

conventional finite element analysis. The trial functions for config-

urations with circular holes are based on the general Airy stress 

functions, rather than solutions for infinite regions, which means that 

the effects of the other parts of the boundary may also be included in 

the trial functions to some extent. The accuracy and small number of 

degrees of freedom that result from well chosen trial and loading 

functions, and the versatility of the finite element method in general 

combine to make this a powerful method for the solution of stress 

concentration problems. 

The boundary element method was proposed not long after the finite 

element method, but the first practical applications of the method by 

Jaswon and Symm [1.112, 1.113] appeared in 1963 and initial development 

was much less rapid than finite elements. This may possibly be due to 

the slightly greater mathematical complexity of the formulation, and the 

fact that it is less easily understood intuitively. However the method 

has several advantages over finite elements, the most important being 

that since only the boundary of the region need be divided into elements 

the dimensions of the elements are reduced by one, e.g. from a three-

dimensional volume to a two dimensional surface. The method was first 

used for elastostatic problems by Cruse and Rizzo [1.114, 1.115] and 

in recent years an upsurge in interest in the method has taken place due 

to its claimed superiority over the finite element method for many 

applications [1.116, 1.117]. Broadly the method may be divided into two 

main types: direct formulations [1.118-1.121] where the unknown functions 



in the boundary integral equations are the physical variables of the 

problem (e.g. tractions and displacements), and indirect formulations 

[1.122-1.125] in which the integral equations are expressed in terms 

of a "density function", which in itself has no physical significance 

but from which the physical parameters may be derived at any point in 

the body. A form of indirect method, called the "body force method" 

developed by Nisitani [1.126] has been used for many notch and crack 

problems [1.46, 1.127-1.129] . These include an infinite sheet 

containing one or two rows of elliptical holes, a semi-infinite plate 

containing variously shaped notches, a row of elliptical holes or a 

row of notches, and an infinite strip containing two symmetrical semi-

elliptical notches. 

Much of the recent interest in boundary elements, as with finite 

elements, centred on improving the method for configurations with 

cracks. Cruse [1.130] proposed including the crack explicitly in the 

fundamental solution from which the integral equations are derived so 

that the crack need not be modelled by boundary elements, and this 

proved most successful. In the case of the body force method a similar 

approach was adopted by Murakami and Nisitani for elliptical holes 

[1.131, 1.132] and, using a direct boundary element method, Telles and 

Brebbia [1.133-1.134] used the approach for configurations containing 

a long straight boundary. The success of these methods suggested that 

a similar approach could be used for a direct boundary element 

formulation with a fundamental solution which satisfied the boundary 

conditions of a circular hole. This idea is the basis of the work 

presented in part II of this thesis. Not only does this approach reduce 

the number of elements required but also the stresses at the hole may 

be calculated directly and with greater accuracy than would be possible 

with standard boundary elements. 
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1. 3 Layout of the thesis 

The main body of the thesis is divided into two parts: Part I 

comprising Chapters 2 to 5 is concerned with the work on finite elements 

and Part II comprising Chapters 6 and 7 concerns the boundary element 

work. Chapters 1 and 8 are general to both aspects of the work. 

CHAPTER 2 presents the formulation of the finite element super-

position method. The concept of trial functions derived from known 

elasticity solutions is introduced for configurations with loaded or 

traction-free holes. In addition to the trial functions the new loading 

function is incorporated into the method which is the (known) solution 

for an infinite sheet with the specified loading on the hole. A 

variational principle is used to determine the arbitrary coefficients 

of the trial functions, the finite element unknowns (nodal displace-

ments) and certain correction stresses which arise in elements near 

boundaries. 

CHAPTER 3 deals with the analytical elasticity solutions which 

are required by the finite element superposition method, i.e. the trial 

functions and loading function. Two trial functions are given for 

elliptical holes based on an analytical solution using complex stress 

functions and a conformal mapping function. For circular holes the 

generalised solution for the Airy stress function in two dimensional 

polar coordinates is used to specify a general set of trial functions. 

The generalised solution is also used to give the loading function, 

with a distribution of tractions round the hole boundary specified using 

a Fourier expansion. 

In CHAPTER 4 the way in which the method is implemented on the 

computer is explained. The structure and the main processes occurring 

in the program are discussed and a brief resume is given of how the 

program and its peripheral facilities may be used in practice. 

The results obtained using the finite element superposition method 

are presented in CHAPTER 5. Confirmation of the accuracy of the method 

for traction-free holes is carried out by comparison with other estimates 

for stress concentration factors in rectangular plates with holes. The 
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effect on accuracy of such parameters as the finite element mesh size, 

number of trial functions and size of the hole is determined and new 

results for the stress concentration factors of elliptical traction-

free holes in square plates are given. Various distributions for the 

tractions on loaded holes are suggested and compared. Estimates for 

stress concentration factors for loaded holes determined by the finite 

element superposition method are compared with some known values and 

finally new results are obtained for rectangular lugs wilWh loaded holes. 

In CHAPTER 6 the formulation of the boundary element method is 

presented and the modification to the method, by using fundamental 

solutions which include the boundary near the stress concentration, is 

explained. The implementation of these modifications in the computer 

program is also discussed. 

The results given in CHAPTER 7 were obtained using the modified 

boundary element method. The advantages and limitations of the modified 

method are shown by comparing the results from the two methods for an 

externally pressurized annulus. The accuracy of the modified method 

for annuli and square plates with various sizes of circular hole is 

shown by comparing the estimates for stress concentration factors from 

the boundary element program with known values. 

CHAPTER 8, the final chapter, contains a summary of the conclusions 

from both the finite element and boundary element work. Comparison 

between the methods and their relative merits is made and some possible 

directions for future work are suggested. 
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PART I 

THE FINITE ELEMENT SUPERPOSITION METHOD 



CHAPTER 2 

FINITE ELEMENT FORMULATION 

2.1 Introduction 

The finite element superposition method (FESM) used in this work 

is based on a method originated by Morley [2.l] and extended by 

Bartholomew [2.2, 2.3]. basis of the method is that Wie piece-wise 

linear displacement field of constant strain finite elements may be 

augmented by the superposition of one or more known elasticity solutions, 

referred to as the "trial functions", which are weighted by arbitrary 

coefficients.* The trial functions are elasticity solutions which 

satisfy exactly conditions of equilibrium and compatibility but not all 

the boundary conditions of the problem. They are chosen such that they 

give rise to stresses and displacements closely matching those in the 

region of the stress concentration. For example the known solution for 

a uniformly stressed infinite sheet containing a circular hole may be 

used as a trial function for a finite plate loaded in some manner with 

a similar hole. 

Bartholomew has formulated this method for traction-free cracks. 

In the present work the method is extended to apply to configurations 

with circular or elliptical holes which may be traction-free or subjected 

to specified tractions. To deal with loaded holes another known 

elasticity solution referred to as the "loading function" has been 

introduced. The use of this function removes the need to represent the 

tractions at the hole in the piece-wise constant form usually employed 

by the finite element method, thus avoiding the introduction of 

inaccuracies at the very point where the stress concentration factor is 

to be determined. 

The loading function corresponds to the elasticity solution in 

which the hole is subjected to the tractions for which a solution is 

" The term "trial function" may be used of any function used to approx-
imate the exact solution. In this sense the piece-wise linear displace-
ment field is also a trial function, however here the term is used of 
the known elasticity solutions with which the constant strain finite 
element field is augmented. 
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required but the extent of the sheet is assumed to be infinite. The 

trial functions, on the other hand, are elasticity solutions for a 

plate with a stress-yreg hole under various different remote boundary 

conditions which need not necessarily correspond to an infinite region. 

The superposition of the loading function and these trial functions 

therefore, results in the traction boundary conditions on the hole 

being satisfied exactly and leaves residuals remote from the l̂ 3le which 

are corrected by the constant strain finite elements. 

It has been shown [2.3] that in the case of cracked configurations 

it is advantageous to limit the superposition to a "special region" 

which is larger than a single special element but smaller than the 

complete region of the problem. For this reason the present formulation 

continues the use of a special region over which the trial functions and 

loading function are superimposed, constant strain elements alone being 

used in the exterior region. 

The trial functions and loading function for specific classes of 

problem are determined in Chapter 3. The details of how the method is 

formulated are outlined in the remainder of this chapter, with additional 

material in Appendix A. 

2.2 Notation for the boundaries 

The configuration to be analysed by FESM may be represented 

diagramatically as in figure 2.1. The two dimensional body containing 

a hole is denoted V and the boundary, including the hole boundary, is 

denoted by S. The boundary S is made up of S , where traction boundary 

conditions are applied, and S , where kinematic boundary conditions are 

applied. Since a superposition principle is to be used in the represent-

ation of load on the hole boundary, it is assumed that the hole forms 

part of S . The geometry of the configuration is defined relative to 

Cartesian coordinates (X,Y) with an origin at 0. 

The variational principle, from which the finite element solution 

is derived, will be represented in terms of volume and boundary integrals 

various parts of the configuration. Since a special region is 

introduced, over which the trial functions are to be superimposed, 

further subdivision of the boundary S is required (see figure 2.2). 
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Boundaries adjacent to the special region are denoted with a prime ('), 

hence for example. The traction boundary adjacent to the special 

region is divided into two parts, the hole boundary and the 

remaining traction boundaries. This distinction is necessary in the 

present work due to the introduction of the loading function to represent 

the loading on the hole. The "interface boundary" between the special 

region and exterior region is denoted S^. The notation for the 

boundaries may be summarized therefore as follows: 

and 

S = 5% + S, 

S' 

^T = 

( 2 . 1 ) 

where S denotes that part of the traction boundary in the exterior 

region. The complete region V is divided into triangular elements. 

2.3 Displacement and stress fields 

The basis of FESM is that the displacements, u , and stresses, 
I 

a , of the approximate solution are a superposition of a constant strain 

finite element field and a set of known elasticity solutions with dis-
* * 

placements and stresses denoted u and j respectively. The integer 

i takes the values 1 to k for the trial functions, k being the number 

of trial functions, and i=0 for the loading function. (Underlined 

symbols are used throughout the text to define both vector fields and 

matrices). 

The assumed form of the displacement field u on the boundaries 

of the finite elements may therefore be expressed as follows: 

k 

I 
i=0 

u = u" + J a. (u. - u^; 
— — —1 —1 

within the special region, 

on and 

in the external region, 

on and 
> ( 2 . 2 ) 

on S 
K 
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where a. is the coefficient of the i'th trial function, 
1 

u 

and 
t 

are the prescribed displacements on S , 

u are constant strain finite element fields which take the 
* 

same values as u. at the finite element nodes and are linear between 
-1 t 

nodes. The reason for introducing these fields, u., is that (u. - u.) 
—1 —1 —1 

is zero at the nodes thus nodal displacements are given simply by 
p 

u in both the exterior and special regions and the displacement field, 

as defined by equation (2.2) is compatible across all element boundaries. 

As is usual in the development of finite element methods the piece-
F t 

wise linear displacement fields u and u. ;&re expressed in terms of 

F t - -1 

vectors, q and q. respectively, containing the components of displace-

ment at the nodes. The strain within an element is constant from these 

fields and thus may be expressed in terms of the nodal displacements as: 

and 

-N % 

1 
-N. 

1 

(2.3) 

F 
where q' and q_, contain displacement components for the N'th element 

—N — 
only, B is the "element strain matrix" and and are the 

cons tant strain vectors (three components in plane stress} for the 

respective fields. The matrix is obtained from the geometry of 

the element and is given ; as in reference [2.4], by: 

-^il)' ^^2)' -(3) 
(2.4) 

where a typical sub-matrix, say, is: 

:i) 2A ' V s ' 

(X3-X2) 

(X3-X^) (2.5) 

and A is the area of the element, X , Y are the coordinates of the 
n n 

n'th node and the nodes are numbered anti-clockwise round the element. 
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The stress field o may now be defined in the intertor of 

each element as follows: 

I F r + T4-k - 1 -
0 = a + ^ a. (o. - a. + o. J In the special region 

i=0 1 ^ 1 ^ 

I F 
a = a In the external region. 

( 2 . 6 ) 

F * t 
The stress fields a , 0. and a. correspond to exact solutions for 

^ F * ^ t c 
the displacement fields u , u. and u. respectively. The terms a. 

— —1 —1 —1 

constant within elements, must be included in the special region due to 

linear displacements being defined on the boundaries and to 

ensure compatibility. The terms therefore are non-zero only in 

special region elements adjacent to kinematic or interface boundaries. 

In spite of the many terms in equation (2.6a) it may be seen that it is 
F t 

simply the superposition of constant finite element fields, a , 0. 
c * " 

and a. , with the trial function fields 0. . 
—1 —1 

Again following standard finite element methods, the constant 

stress fields for an element may be expressed in terms of strain. Thus: 

and 

A 0 
N 

t 
-N. 
1 

A 0 
N. 
1 

-N. 
1 

-N. 
1 

(2.7) 

, F t c F t 
where 0^ , , contain the stress and 

strain components respectively for the^N'th element, and 

1 
E 

—v 0 

1 0 

0 2(l+v) ( 2 . 8 ) 

for plane stress. E is Young's modulus and v is Poisson's ratio. 
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In order to determine displacements and stresses from the 
F 

equations (2.2) and (2.6), the nodal displacements, q , the trial 

function coefficients, a., and the correction stress fields, o? , 
1 —1 

must be known. These are determined using a variational principle. 

2.4 The variational principle 

A variational principle uses a scalar quantity (a "functional") 

which may be defined in terms of integrals of the unknown parameters 

in a continuum problem - in this case displacement and stress. The 

functions of the parameters which make the functional stationary is 

the solution to the problem. By limiting the possible functions of 

displacement and stress to a set of trial functions (as above) with 

finite degrees of freedom the problem may be reduced to a set of 

simultaneous equations. 

The specification of both displacements and stresses by equations 

(2.2) and (2.6) means that the variational principle must allow for 

trial functions to be specified for both parameters. Such a variational 

principle derived from a modified principle of minimum complementary 

energy (see Appendix A) was given by Pian and Tong [2.5]: . 

n = I { (o^) + I c (u)^ dS - I (u)T f dS } (2.9) 
N N - J - - Js^ - -

where U (j^) is the strain energy of the specified field for the N'th 
T I 

element, a and T are respectively the interior stress and corresponding 

tractions for the element, u is the displacement on the complete element 

boundary, which is denoted by S , and T are the prescribed tractions 
' T 

on the element traction boundary S . The superscript ( ) denotes the 
N 

the transpose of a vector of matrix. The summation is carried out over 

all the elements. 

In general the function U(o ,02) is defined as the strain energy, 

in the region V bounded by the surface S, due to two stress fields G_ 
— 1 

and On . Thus: 
— 

1 [ , - T 
-1̂  ^2 

V 

^2 ' Og) = 2 J dV (2.10) 

where is the strain due to the stress field 
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If only one parameter is specified to the function the two fields in 

equation (2.10) are understood to be the same. Similarly the function 

may be written with displacement rather than stress fields as the 

variables. Provided that for one field, o say, the stresses are 

in equilibrium over V and for the other the strain field is compatible 

over V, the volume integral may be reduced to a surface integral using 

the divergence theorem: 

1 f sT 
" 2 

S 

U(o^,a^) = - j (T^) dS (2.11) 

where T_, and u„ are the tractions and displacements respectively of 
—1 —ri 

the two fields and there are no body forces. Using these properties of 

the strain energy function and substituting equations (2.2) and (2.6) 

into equation (2.9) the following form of the functional is obtained; 

F F T -
n = U(u ) - I (u ) T dS 
C - Jo ~ 

T 

k 

I 
i=0 ^ ^ '"T "H 
L I - Js>s. 'h*- I 

1 ^ ^ f * t T * 
- I I a. a. I (u. - 2uT) T. dS 
" lio jio ' J 's'.s' 

^ F T * '' * + T F 
I (u) T. dS + I (u ) T. dS - I (u.-LL^ T dS 

^ ^ I f * T * r * + T + 

+ f f a.o. [ - % I (u.) T. dS + I (u.-u.l T? dS 
1 = 0 j ' o ^ J ' 2 - 1 - J - 1 - 1 - J 

( u * - T": d S I ( 2 . 1 2 ) 

where with the appropriate subscripts and superscripts, denotes the 

tractions on a boundary due to the corresponding stress field and Ugp ^ 

is the strain energy function evaluated in the special region only. 
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The prescribed tractions on the hole boundary are applied 

explicitly using the loading function. This function is defined such 

that: 

= f (on the hole boundary S') (2.13) 
0 —0 — H 

Since a , the coefficient of the loading function, is constant it is 

not a trial function. It is included in the functional with the trial 

functions but the coefficient is determined by the magnitude of the 

loading on the hole and thus it does not appear as an unknown in the 

final system of equations. 

The trial functions are chosen to satisfy zero traction conditions 

on the hole boundary, i.e.: 

T. = 0 (on S', for i=l to k) (2.14) 
—1 H 

By substituting equation (2.13) in the functional, equation (2.12), the 

terms which relate to the traction boundaries may be rewritten as: 

r p T — f F T * f f T T - S -
- I (u ) T dS - On I (u ) T_ dS + a_ I (u ) T dS 

- - 0 Jc, - 0 0 Jc, - -0 

% a. [ (û )̂ ^ T* dS + % a. [I (u^)^ T* - f I dS] 

^ f k k ^ 

I Go*i I (Hi-Hi) lo dS + I I OiO. j (Hi-Hi) I. dS 
i=0 ^ i=0 j=0 1 J J 

^ ^ f * + T * -I r * T * 
f % a.a. [ I (u. - ul) T. dS - - I (u.) T. dS ] (2.15) 

i io j io ' J Js' ' -J 2 -J 

Further substituting equation (2.14) in the above expression eliminates 

all but the five underlined terms and thus the functional may be written: 
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"c ' " ° i % . H * J o j o •"sp.R'aI-^]'-%.H'2l'Hr 

f F T - ^ f F T * I" * t T -
- I (u ) T dS + I a. [I (u ) T. - | (u.-u.) T dS 

i=o 1 1 1 1 

^ ^ r * f T * 1 f * T * 
+ % X a.a. [I (u.-u.) T. dS - - I (u.) T. dS] 

i'o jlo ' : 's- -J : 's' -J 

+ 
^ r _ ' r * r f 
% a. [| (u) T. dS + (u ) T. dS - (u.-u.) T dS] 

.=0 ' i s - - Js." - -

y ^ r * + T r * + T r 
+ 2 X a.a. [ I (u.-u.) T. dS - I (u.-u.) T. dS 

i=0 j=0 1 J ^ ^ ^ ^ ^ J 

(2.16) 

2.5 Determination of the correction stress fields a? 

—1 

The correction stress fields are determined by variation of the 

functional equation (2.16), with respect to The terms which depend 
c 

on a. are: 
—1 

I I (,^o5) - I (h'-HI)' 1= dS I (2.17) 
- j-u 

Since the stresses 2^ are constant over each element, the expression 

(2.17) may be expressed: 

(Sp.R) ^ ^ 
1 , , C\T . c , c/r 

a a [ -
N i=0 j=0 
I { I I a.Oj [- ̂  t A(o^^l' A 2^^ - (o^])^ L C^] } (2.18) 

where the summation is carried out over all elements in the special 

region, t is the thickness of the elements in the special region and 

is the vector of components of the correction stress field in the 
—Ni 
X and Y coordinate directions for the N'th element. 
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Thus: 

-Ni 
o 

o, 

Xi 

c 
Yi 

c 

(2.19) 

T . being the shear component. L is the matrix which when pre-
XYi ^ ^ 

multiplied by the vector (o^) gives the tractions on the part of 

the boundary adjacent to the element, i.e. 

cos * 

0 

sin $ 

0 

sin 

cos :2.20) 

where $ is the angle between the X axis and the normal to the boundary. 

Finally is defined by: 

C. 
—1 Xi 

Yi 

Xi' 

- u 
Yi' 

dS 

dS (2.21) 

when the subscript N denotes the part of the boundary of the N'th 

element and the suffices X and Y denote the components in the X and Y 

coordinate directions respectively. At the stationary point the variation 
c 

of (2.18) with respect to the variables (i = 0 to k, N = 1 to the 

number of elements in the special region) is zero. Thus the components 

of 0-^ may be determined, in terms of integrals of the known fields 
* ^ - j -

u and , by differentiating equation (2.18). They are given by: 

-Ni tA 
L C. :2.22) 

where A IS; 

V 

0 

V 

1 

0 
2 

0 

0 

(1- (2.23) 

The integrals of equation (2.21) are carried out numerically using 6 

point Gauss quadrature. 
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F 
2.6 Determination of the nodal displacements q 

The constant strain finite element part of the displacement field, 
F F 
u , is defined by the vector q of its nodal components. The terms in 
" F 
equation (2.16) which depend on u are as follows: 

F C F T - r F T * 
U(u ) - I (u ) T dS + I a. { I (u ) T. dS 

r * t T F F t 
(u. - u.) T dS - 2 U_ a (u ,U.) } (2.24) 

c,,q, -1 -1 - Sp.R - -1 

F 
In terms of q this may be written; 

i (gF)T K qF _ (gF)T & + f o (qf)? p (2.25) 
i=0 

where K is the stiffness matrix for the constant strain finite element 

scheme and p and p. are vectors which may be considered as equivalent 
— —1 

nodal loads. K is assembled from the stiffness matrices of individual 

elements as for conventional finite element methods. Thus the first term 

of equation (2.24) may be written: 

I tA(c;)? A-l c? (2.26) 

N 

I t6(c|F)T [ ] gF (2.27) 

where the summation is over all elements. The element stiffness matrix 

therefore is given by tA [B^ A ^ B^] and by summing the contributions 

from each element the stiffness matrix K is obtained. 

The vector p is determined simply from the prescribed tractions 

T (excluding the tractions on the hole boundary A uniform load on 

an element traction boundary is distributed equally between the 2 nodes 

on the element side. 

Contributions to the vector p. however arise from the last three 
—1 

terms in expression (2.24). From the first of these terms the following 

equivalent nodal loads arise in an element with a part of the boundary 

or between two of its nodes, node (1) and node (2) say: 
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:2) 

f ( 2 ) 
t I (1 

^ ( 1 ) 

--) T. dS 
s — 1 
o 

-i T- dS 

:i) ^ 

> on or 

( 2 . 2 8 ) 

where s is the distance along the element side measured from node (1), 

is the length of the element side and the suffix to pj ^ denotes 

the node at which the equivalent load is considered to act. The integral 

is of a known function and may be carried out numerically. The remaining 

two terms of equation (2.24) may be written: 

Sp. R 
C. 
—1 

tA 
-Ni * 

(2.29) 

where the summation is carried out for elements in the special region and 
"t" t 

the vector contains the components of o. for the N'th element. 
-Ni -1 

The expression (2.29) may be rearranged, using equation (2.22) and the 

definition of the matrix (equations (2.3) to (2.5)), as: 

SP'R c t T F 
I t - tA (o^i + ENi) SN } (2.30) 

Thus the contributions to the nodal loads p. in the N'th element from 
—1 

these terms are given by: 

and (2.31) 

which may be evaluated when the stresses and are calculated 

for each element in the special region. 

Since the matrices 2 ^^d p in the expression (2.25) can be 

determined, the stationary point may be found by setting the variation 
F 

of the expression with respect to q as zero, thus: 

K q 
i =0 

Ei (2.32) 
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The variables q and q. are now defined such that: 
— —1 

q = p (2.33) 

and q. = K ^ p. (2.34) 

These simultaneous equations, subject to the kinematic constraints 

on 5%, 

and q. = 0 J (2.35) 
—1 

are solved on the computer using Choleski factorisation of the matrix 

in banded form, as implemented by Morley [2.6] and others [2.7, 2.8]. 

The displacements g, as defined by equations (2.33) are those which 

would arise from constant strain finite elements if no augmenting trial 

functions were used. This "basic" solution may be used for comparison 

in assessing the improvement in the final augmented solution. 

F 

The nodal displacements, q , written in terms of q and q follow 

from equations (2.32) to (2.34) and are given by: 

q^ = q - % a q. (2.36) 
i=0 ^ 

2.7 Determination of the trial function coefficients 

Equation (2.36) may be substituted back into equation (2.25) and 

hence into the functional, equation (2.16). Furthermore the following 

terms from equation (2.16) may also be combined: 

J o J o "i-j' "sp.n'Hl.Mjl - "sp.R'Hi, M]) 

f * + T t f * t T r 
+ I (u.-u.) T. dS - I (u.-u.) T. dS } (2.37) 

1" c 
Since the stresses o. and o' are constant over each element the final 

—1 —1 
two terms of the expression (2.37) may be written: 
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t T * t f T 
(T ) I (u -u ) dS = % (o ) L C 
J S^+S^ N J 

„ rp r * c T 
and -(T.) I (u.-u.) dS = - X (&» ) L C. (2.38) 

Since, from equation (2.22) 

L C. = - tA A (2.39) 
— — 1 NI 

and U(Ĝ ,c_ ^^f) = ^ tA (a^C)T ^ 

the expression (2.37) may be written: 

^ - 2 "sp.RlZi'zj) + Usp,R(2i,2j)' (2-41) 
i=0.^0 

or in terms of the stress fields: 

2 f *i«j "sp.R(^I-H;. sj-f;) (2.42) 
i=0:k0 

Thus the final form of the functional to be varied with respect 

to the remaining unknowns a (i=l to k) is as follows: 

i ^ a - & + I % q + (g.)^2 + (q)^ p.] 
i=0 

k k 

I I 
i=0 j=0 
6 6 "1"! L § (Qi)^ K - (q.)T Pj ] 

k 

I « [ 
i=o 's; ^ ^ 

f * + T _ f — T * 
I (u.-u^) T dS + I (u) T. ] 
J -1 -1 - J c , ~1 

k k 
+ 

f * + T * i f * T * 
Z I GiOj [ I (Hi-Hi) I. dS - - I (u ) T dS 

i=0 j=0 J J ^S' J 

"sp.R ] (2.43) 
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This is a quadratic expression in a which may be written in matrix 

form: 

^ (a'fo' a' - F' a' + c (2.44) 

where D' is a square matrix, Fy a vector and the vector of coefficients, 

all having (k+1) rows. The final term c does not vary with a'. Variation 

with respect to (i = 1 to k) to determine the stationary point yields 

a set of simultaneous equations: 

D a = F (2.45) 

where D, F and a in this case have only k rows (omitting the loading 

function coefficient a from a' ). D is a symmetric matrix where an element 
o _ _ 

dL , of the matrix may be given in terms of the elements, of D', as: 

d!. + d;. 

ij 
d.. = (i, j = 1 to k) (2.46) 

Equation (2.46) may be verified by expanding the expression (2.44) and 

differentiating. The coefficients of a in D' , d' . and d ( i = 1 to k) , 
^ o — Ol lO 

contribute to the right hand side of equation (2.45) since a is a 

constant, and thus an element of F, f., in terms of the corresponding 

element of F', fj, is given by: 

d! + d'. 
f^ = f^ - 2 — ( i = 1 to k) (2.47) 

The line integrals in equation (2.43) are carried out using Gauss 

quadrature over the boundaries S^, and in order to form the required 

matrices D and Fy A particular advantage of the present formulation of 

this method, however, is that no approximate integration need be carried 

out over the hole boundary S^, which since it is curved might have intro-

duced either greater complication or inaccuracy. The boundary appears 

in equation (2.43) as part of S', but explicit integration may be avoided 

as follows. Let the relevant terms, denoted d^ , be stored in the matrix 

D , where 
—s 

d®- = - i I (u'l^ T* dS (l,j = 0 to k) (2.48) 

Since from equation (2.14) 
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(u.)^ T. dS = 0 for fi = 0 to k 
s; -1 -J 

j = 1 to k (2.49) 

then: 

= - ^ I (uj" T. dS for f i = 0 to k 

j = 1 to k (2.50) 

1 f , *\T 
ij = ^ 5 Ij 

Thus only the terms d. do not give the integral required by equation 
* -X-

(2.43). Since u. and T. are exact elasticity solutions and S' is a 
-J 

closed contour 

I (u.) T. dS = I (u.) T. dS (i,j = 0 to k) (2.51) 
Jc, -1 -J Jc, "J "1 S 

Therefore the terms d^. may be substituted for the terms df to give 
oi lO 

the required integral in the matrix D^. The only term which may not 

be corrected in this way is d^ which is a coefficient of in the 
oo o 

functional. Since a does not vary this term is not required and thus 

the potentially complicated integration of the trial functions on the 

curved hole boundary is avoided. 

The simultaneous equations (2.4f) may now be solved to give the 

coefficients a.. 
1 

2.8 Determination of the stress at any point 

F F 
The nodal displacements q , and hence the displacement field u 

are determined from equations (2.36). Equation (2.2) gives the dis-

placements, u, should they be required at intermediate points, and the 

stresses may then be calculated from equation (2.6). The stress field 
F F 

o is determined for each element from the nodal displacements q , the 
* 

trial function stresses o. may be evaluated at any point from the known 

analytical expressions for the trial functions, and the term (o.-o.), 
—1 —1 

which is constant for each element in the special region would have 

been calculated previously for each element in order to evaluate the 

final term of the functional (2.43). All the terms in equation (2.6) 

therefore are known and are used in evaluating the stresses at the 

required points. 
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2.9 Summary 

In conclusion, the formulation of this method is based on a 

variational principle which requires the specification of displacements 

(on element boundaries) and stresses (within elements) in terms of 

trial functions which are known elasticity solutions. Tractions on 

part of the boundary (in this case the hole boundary) may be specified 

using another elasticity solution, the loading function. Variation of 

the functional with respect to the unknowns of the problem yields a 

system of simultaneous equations. Some line integrals of the trial 

functions and loading functions must be evaluated for the coefficients 

of these equations but no integrations on the hole boundary are 

necessary as a result of the loading function. The stress at any 

point in an element may be determined from the solution to the 

simultaneous equations, the trial and loading functions and the 

correction terms for the elements which will have been evaluated in 

constructing the equation. 
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CHAPTER 3 

TRIAL FUNCTIONS AND LOADING FUNCTION 

3.1 Introduction 

The trial functions for use with the finite element superposition 

method (FESM) are derived from two-dimensional elasticity solutions for 

configurations which identically satisfy zero-traction conditions at 

the hole or notch where the stress concentration is to be calculated. 

Boundary conditions remote from the hole are not specified for the trial 

functions. If the hole is loaded in some manner the tractions on the 

hole must be represented by a loading function which is the exact 

elasticity solution for an infinite sheet with the same hole and the 

same loading on the hole as the problem to be solved and zero stress 

remote from the hole. The superposition of trial functions and loading 

function therefore satisfies the boundary conditions on the hole 

exactly. For the method to work well the constant strain finite element 

field, which ensures that the remote boundary conditions are approximately 

satisfied, should introduce only small corrections to that part of the 

solution resulting from the loading and trial functions. Thus an 

important aspect of the method is the selection of suitable trial 

functions. 

In section 3.2 two trial functions are given for configurations 

with elliptical (or circular) holes. A more general set of trial functions 

for configurations with circular holes is given in section 3.3 and the 

loading function for circular holes is given in section 3.4. The trial 

functions and loading function are defined either in cartesian coordinates 

(x,y) or polar coordinates (r,8) relative to axes with the origin, 0', 

at the centre of the hole. The finite element geometry is defined in 

cartesian coordinates (X,Y) relative to the "global" axes wiUh a different 

origin 0 and different orientation. The position of the hole and the 

angle, y, between the OX and O'x axes must therefore be specified in 

each case. 

3.2 Trial functions for elliptical holes 

Two satisfactory trial functions may be obtained for configurations 

with elliptical or circular holes from the known solution for a uniformly 

stressed infinite sheet containing a traction-free hole [3.1]. 
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The infinite region bounded by the ellipse: 

= 1 (3.1) 

where a and b are the semi-major and semi-minor axes of the ellipse 

respectively, may be transformed to the unit circle, |cl<l , by the 

conformal mapping function 

z = R + p c) (3.2) 

where z = x + iy. The parameters R and p are given by: 

e = ^ 

and ; = (3.3) 

For a circular hole R is equal to the radius of the hole a, and p = 0. 

The transformation (3.2) is single valued and it is important that its 

inverse is also single valued. This is given by: 

C = t z - ( /z-2R/p) (%+2R/^) } (3.4) 

for p ^ 0, where denotes the complex square root with a positive 

real part (i.e. the argument of the square root, 8 say, lies in the 

range - n/2 < 8 < n/2). When p = 0 the inverse of the transformation 

is given by: 

C = R/z (3.5) 

The two trial functions are obtained from the solutions for the 

configuration with different remote loadings: 1) uniform tension at 

infinity parallel to the x axis, and 2) uniform tension at infinity 

parallel to the y axis. With coefficients a and a respectively the 

complex stress functions, $ and ^ , for the i'th trial function are 

given by: 

For trial function i = 1: 

O R 
(C) = [ Y + G (2 - P) ] 

°1* 1 c 
^2 ( ^ ~ 2 [ Y 2 (1 - n + p ̂  - C ̂ ) ] (3.6) 
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For trial function i = 2: 

a R 1 
Ogfc) = [ Y - G(2 + M) ] 

"zf 1 c 
Vgfc) = - -§- [ - ^ + p + pz + ;=) ] (3.7) 

where the subscript i (i = 1 or 2) denotes the number of the trial 
* * 

function. The components of the trial function stresses (a a . 
•» * * ri 01 

and T ) and displacements (u , and u .), in polar coordinates (r,e), 
01 1 01 

are obtained from the following general formulae: 

"ri * ^ "ei " - z Ojfz) - 4^(z) ] 

o . + o . = 4 Re r o!(z) 1 
ri 81 L 1 ^ 

* 

0^- - o . + 2i T n- = 2 e^^^ [z oV(z) + ^^(z)] (3.8) ei ri rei L ?! J 

where the bar ( ) here denotes the complex conjugate, prime (') denotes 

differentiation with respect to z and Re denotes the real part. Also 

K = (for plane stress) 
1 + v 

and G = (3.9) 

where v is Poisson's ratio, E is Young's modulus and G is the shear 

modulus. 

3.3 Trial functions for circular holes 

In section 3.2 a set of two trial functions are given for 

configurations with traction-free elliptical or circular holes. A more 

general set of functions may be obtained for circular holes by using the 

generalised solution for the Airy stress function, for the two-

dimensional problem in polar coordinates [3.2]. This is in series form: 
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D = a log r + b + c r* log r + d r*8 + a'8 
A o o o o o 

^1 - 1 
+ — r 8 sin 8+ (b + a^ r + b^r log r) cos 

- 1 

- - r 8 cos 8+ (d + c^ r + d^r log r) sin 

+ L 

- n , n+2 , -n -n+2, 
(a r + b r + a'r + b'r ) cos n _ n n n n 

n=2 

r / n n+2 —n —n+2, . , ̂  n\ 
) (c r + d r + c r + d' r ) sin n 8 (3.10) 

n n n n 
n=2 

where a , b , c , d , a', b', c', d' (n = 0 to ™) are constants 
n n n n n n n n 

determined by the boundary conditions of the problem. By limiting 

the problems to be solved to those with at least one axis of symmetry 

(about 9 = 0 say), the following constants may be eliminated: 

d = a' = c = d = c' = d' = 0 (n = 1 to ™) (3.11) 
o o n n n n 

since these coefficients would give rise to o&ymmetric stresses and 

displacements. Furthermore for the displacements to be single-valued 

it is found that: 

c = 0 
o 

a (1-v) 
and b^ = - (3.12) 

The summation may be truncated to a finite number of terms, m, and thus 

the stress function is reduced to: 

aj a (1-v) 
= a^ log r + b r^ + — r e sin e + (b^r' + — - r log r) cos 

r / n n+2 —n , , —n+2, ,̂  1^\ 
+ ) (a r + b r + a'r + b'r ) cos n 8 (3.13) 

n n n n 
n=2 

* * * 

The stresses (o , o and T ) are given by: 
r 8 r@ ^ ^ 
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* _ 1 2 ^ 1 ^ 
°r ' r ar * r* 98= 

* ^ 
°8 = 3r= 

V e = - & ' ; i T ) '3-^4' 

which yield: 

-K- _2 1 r -1 -3 
o = a r + 2b + - [a.(3+v)r + 8b_r - 8a'r J cos 
r o o 4 1 1 1 

- / {n(n-l)a r +(n+l)(n-2)b r +n(n+l)a'r +(n-l)(n+2)b r } cos nE 
n n n n 

n=2 

Og = -a r ^ + 2b + ^ [-a (l-v)r 24b^r + 8a^r cos 

m _ _ 
+ y {n(n-l)a r" +(n+l)(n+2)b r"+n(n+l)a'r " +(n-l)(n-2)b'r "} cos nE 

n n n n 
n=:2 

T = ^ [ -a.(l-v)r ^ + 8b.r - Ba'r ^ ] sin 
r0 4 1 1 1 

m 
+ y {n(n-l)a r" ^+n(n+l)b r"-n(n+l)a'r ^-n(n-l)b'r sin n0 (3.15) 

n n n n 
n=2 

By substituting into the equations (3.15) Uhezero traction boundary 

conditions on the hole, but not the remote boundary conditions, half 

of the unknown coefficients may be determined. The remaining coefficients, 

scaled to a convenient level, may then be used as the trial function 

coefficients, denoted a , which are determined from the variational 

principle (see section 2^^. The stress function given by equation (3.13) 

therefore yields a set of 2m trial functions. 

The expressions for displacements are obtained from the stresses 
* * * 

using the formula for the strain components E^, ' 
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* 1 * *, 
E = — ( O - V O ] 

* 1 * * 
= 8 = E ) 

= & "re (3-16) 

and the strain - displacement relations: 

* 

* 
9u 
r 

E 
'r 9r 

* * 

E = + 
8 r r38 

* * * 

au^ 3Ug Ug 

^re rae * ar r (3.17) 

For an unloaded circular hole, of radius a, the boundary conditions 

on the hole are: 

a (r = a) = 0 
r 

(r = a) = 0 (3.18) 

These may be substituted into (3.15) to give the following expressions * * * * * 

for o o^-' t u . and u . where i denotes the variable associated 
ri 01 r8i ri ei 

with the i'th trial function. 

For trial function i = 1: 

"l az. 
°rl = 2 (1 -

°81 = 2 (1 + F') 

rei 

"rl = "1% [ (1-"^ a + ; 

Ugi = 0 (3.19) 
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For trial function i = 2: 

* r 

* °2 .3r a^. 
°62 ' 1 * ?•' 

* .r a^. . 
'res = 3 'S - r-' 

* GpS 2 2 
"r2 = 8E" [(l-3v) + (1+v) + 2(3+v)] cos 8 

u 
82 " 8E a 

[(5+v) + (1+v) - 2(3+v)] sin 8 (3.20) 

For trial function i = [2n-l], n)2: 

°ri2n_l] = ^^-2 (""1) " ^n+2 " ^n ("-2)] cos n8 
a r a 

* ^\2n~l 1 . r " ^ r " - , 

°6[2„-l! = - 4 l-n-2 '"-1' - -n*2 " "n cos ne 
a r a 

Orn n-2 n+2 n 
[2n-lJ rr , .. a nr . 

're[2n-l]= - 4 [-n-2 '""1' + "n^a " " n 1 " " "" 
a r a 

3°[2n-ll r"-l a"+l r"+l 
'rl2„-l] = 4E n+1) ' 1 < ("n-l ' " n t l 1 - |n-2+v(n+2)] cos n0 

a r a 

- 4 L cos e } 
n 

aor _ n-1 n+1 n+1 

,[2n_l]= - 4E n+I) ("+!) " ^n+l^ " ["+4+"^] ̂ n+l] 
a r a 

- 4 L sin 9 } 
n 

(3.21) 
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For trial function i = [2n], n)2: 

a 
u r 1 n-2 n+2 n 

- 7 ^ [- o + - o (n+1) - - (n+2)] cos nf 
r[2nj 4 n-2 n+2 n 

a r r 

Br 1 n-2 n+2 n 

°9[2„] ' ! -n_2 + - -n "® 
a r r 

ar_ 1 n-2 n+2 n 
[2nj r r a , na i 

're[2„l = - T - [ -n-2 " -„t2 ^ 
a r r 

^ aor 1 n-1 n+1 n-1 

"r[2n] = - " "n+lf"-!)] + [n+2+v(n-2)]:^_^] cos nE 
a r r 

+ 4 L cos 6 } 
n 

* BOrp T n-l n+1 n-1 

"8[2n] = + ^n+l("-l)] - [n-4+nv] sin n8 
a r r 

+ 4 L sin 6 } 
n 

(3.22) 

where L = 0 when n is even 
n 

£il 13-23) 

L = (-1) 2 when n is odd 

In the above expressions the trial function coefficients have 

been scaled such that when a. is unity the maximum hoop stress at the 

hole Og^ is also unity. This is useful in assessing the relative 

importance of the various trial functions in particular solutions. 

The displacements given by the trial functions are defined such that * * 

u^. is zero when 8 = 0 or n and u . is zero on the hole boundary 
Gi 81 

when 8 = ± n/2. 

Physically these trial functions may be understood to be solutions 

for a sheet or annular region containing a traction-free hole with 

various boundary conditions remote from the hole. For example the 

solution for an infinite sheet with a hole, stressed at infinity in 

two directions, as was used in section 3.2, may be obtained for a 
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circular hole from a linear combination of the trial functions 1 and 

4 of this section. It may be seen from equations (3.19) to (3.22) 

that these are the only trial functions that do not give large stresses 

as r tends to infinity. For this reason it is found that these functions 

have the greater contribution to the solution of configurations with 

special regions which are large relative to the size of the hole. 

3.4 Loading function for circular holes 

For configurations with loaded holes, a loading function, must be 

specified which satisfies the traction boundary conditions on the hole 

exactly (see equation (2.13), section 2.4). The constant coefficient of 

the loading function, a , is here assumed to be U B i t y and the tractions 

on the hole are represented as Fourier series. Thus the boundary 

conditions of the loading function are: 

/ A cos n8 at r = a 
n=0 ro n n 

T 
"̂ 2 
V D sin n8 at r = a (3.24) 

r8o 2 n 
n=l 

where m. and are the finite limits of the Fourier series and A and 
1 2 n 

D are the known coefficients, determined from the specified tractions 

on the hole. A further requirement of the loading function is that the 

stresses approach zero remote from the hole, i.e.: 

* * 
G = T n = 0 as r + ™ (3.25) 
ro r8o 

With the boundary conditions (3.24) and (3.25) all the arbitrary 

constants of equation (3.15) may be determined and the loading 

function is given by: 
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! —2 A + {—(A -D )(3+v) + — 3 [A (l-v)+D (3+v) ] } cose 
ro r* o 4r 1 1 % i 

n+2 n 
+ y {- %inA -(n+2)D + %<n+2)(A -D )(-) } cos ne 

^ 2''n n-'r 2 n n r 
n=2 

0 = - —^ A + {- (A -D ][A (l-v)+D (3+v)]} cosG 
8o r? o 4r 1 1 1 1 ^ 

1 1 a " 

+ 2 { ̂ [nA^-(n+2)D^](^l - ^ ̂ os ne 
n=2 

T = { - 'z— (A -D )(l-v) +. 3 [A (1—v)+D (3+v)] } sine 
r8o 4r 1 1 ^ ^ 

^3 n+2 n 
+ f {- |^nA^-(n+2)D^J(2^ + - n(A^_D^)(2^ } sin ne 

n=2 

u* = {- A (1+v) + [2(A -D )(3-v)log(;0- ^^(A (l-v)+D (3+v)) 
ro 2E r o 4 i 1 1 a 1 1 

- A (3+v)-D (1-v)] cos 

n=2 
2K 

1 ^ ) c°s» 1 ( 

u" = I f { - I Z(A -D , )(3-v)log(E) + (-' -1)(A ( 3 + v ) ) l sine 
60 2E 4 I 1 1 a r2 1 1 ^ 

+ 

n=:2 

3 /1 \ n+1 n~l 

I. [I fcrfy <nA„-(n-2)D„)[f] - ' V n l l f l ™ 

2K 
+, N sin e ]} (3.26) 
(nz-l) 

where K = 0 where n is even 

" D±1 
2 

K = (-1) [A (n+2-nv) - D (2n+l+v)] when n is odd, 
n n n ' 
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and m , the limit of Fourier series in this case, is equal to the 

greater of m and (A^ = 0 for n > = 0 for n > m^). 

The Fourier coefficients A and D must be specified to give the 
n n 

magnitude and distribution of the loading on the hole and this is 

discussed in section 5.4.1. For several standard cases (e.g. cosine 

pressure distribution, constant pressure over an arc, combined cosine 

pressure and sine shear distributions) calculation of the required 

Fourier coefficients has been programmed on the computer so that only 

the magnitude of resultant force need be specified. 
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CHAPTER 4 

IMPLEMENTATION OF FINITE ELEMENT METHOD 

4.1 Introduction 

The computer program developed from the formulation of the 

method described in chapter 2, is based on a program developed at 

the Royal Aircraft Establishment, Farnborough (R.A.E.) [4.1, 4.2], 

for the determination of stress intensity factors at cracks, which 

was made available for the present work. The program was implemented 

on the ICL 2970 computer at Southampton University and has been sub-

stantially extended, incorporating the new trial functions and loading 

function of chapter 3, and the revisions necessary for their use in 

determining stress concentration factors at traction-free or loaded 

holes. The modifications include chantges in calculating the areas of 

elements, to allow for the curvature of the hole, and modifications 

to the contour integrals, as discussed in chapter 2, due to the inclusion 

of the loading function. Up to 8 trial functions may be used with this 

version of the program and up to a total of 54 Fourier coefficients 

may be specified for the loading function. Further extensions to the 

program enable various additional means of data input and output to be 

used, including graphical techniques. 

Section 4.2 gives an outline of how the method is carried out in 

the program. Specific reference is made to seven segments of the program 

which are listed in Appendix B. These are: NOTCH, AREAS, TRLFNSl, TRLFNS2, 

LOADFN, BCONDS and ALPHAS. A table of the other subroutines used by the 

program and a summary of their function will also be found in this 

appendix (table B2). A summary of the method for using the program on 

the ICL 2970 computer is given in section 4.3 and further details are 

given in the appendices C and D. Appendix C gives the requirements for 

the input of data and appendix D explains the use of various commands 

for running the program and manipulating the data. 

4.2 Structure of the program 

The block diagram, figure 4.1, shows the manner in which FESM is 

implemented by the program. These steps are also noted by comments in 

the listing of the program segment "NOTCH" (see Appendix B). The numbers 

in each block of diagram 4.1 refer to the paragraphs below. 
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4.2.3 Reform 
stiffness 

matrix fKl. 

4.2.1 Read and check data 
for elements and nodes. 

4.2.2 Calculate 
elements. 

areas of 

! 

4.2.3 Form banded stiffness 
matrix [K] from element 
geometries and material 
properties. 

•f" 
4.2.5 Determine fields for 

each element in special 
region from the trial 
function nodal displace-
ments . 
Determine the correspond-
ing part of the nodal 
loads p. . 

—1 

4.2.7 Evaluate the strain energy 

ter'' t c t c, 

4.2.8 Correct non-symmetric terms 
in the matrix [D 1 

4.2.9 Solve the equations 
[K] [gj = [P] (2. 33) 

[K] [Ri] = [Ei] (2. i4.) 

for q and q.. 
—1 

4.2.4 Trial functions 
subroutine. 

4.2.4 Load: 
subrc 

Lng function 
Dutine. 

4.2.6 Apply the boundary 
conditions and evaluate 
the required boundary 
integrals and nodal 
loads. 

4.2.10 Determine the trial function 
coefficients a. 

4.2.11 Determine and output the dis-
placements and stresses 
required. 

Figure 4.1 Structure of the FESM program. 
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4.2.1 Data input 

The data may be input either from sequential data files (on 

cards or magnetic tape) or from a direct access file. When the data 

is read from sequential files it is stored on a direct access file 

together with the results. The direct access file may then be used to 

input the results to the graphical facilities or may be modified and 

re-input to the main program. The data is checked for correct 

dimensioning, and parameters such as the bandwidth and number of 

equations are determined. The coordinates of the nodes are trans-

formed to i&xes which are rotated through an angle Y - i.e. parallel 

to the ones used by the trial functions. If required the data is 

printed. 

4.2.2 Areas of Elements 

The calculation of the areas of the elements is carried out in 

the subroutine "AREAS" (see appendix B) and is straightforward for the 

normal triangular elements. On the boundary of elliptical or circular 

holes however the area of the element will be reduced by the segment 

of the hole within the triangle of the element (see figure 4.2). The 

reduction in the area of the element is given by the following formula: 

Reduction in area = ^ {ab|cos-l(^l)- cos-l(^f)|-X2yi + x^y^} (4.1) 

where (x^,y^) and (x^.y^) are the coordinates of the nodes on the hole 

boundary (numbered anti-clockwise round the element) relative to an 

origin at the centre of the hole. 

Elliptical/circular hole 
boundary 

/ 
(Xi.Yz) 

Finite Element 

Segment reducing 
area of element 

Figure 4.2 Area of element on hole boundary 
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The effect of reducing the area of these elements in this way 

is to slightly increase the estimate for the stress. Since no 

integration is carried out explicitly along the curved part of the 

boundary no further complications are introduced from having a curved 

side to the element. 

4.2.3 Stiffness matrix 

The stiffness matrix K is formed from the element geometries 

and material properties in the normal way for constant strain finite 

elements (see chapter 2, section 2.6). The subroutines used in this 

section were developed at R.A.E. [4.3] and have remained unchanged. 

When the equations are solved (section 4.2.9) K is changed and must 

therefore be re-formed (or it could have been stored) as it is needed 

to determine the coefficients (section 4.2.10). 

4.2.4 Trial and loading functions 

The trial functions subroutine gives the stresses and displace-

ments at a point due to a number of trial functions and, where appropriate, 

the loading function. The subroutine is used at several points in the 

program. There are three alternative trial function subroutines 

currently implemented in the program. "TRLFNS0" is the original 

routine, used for configurations with a crack. "TRLFNSl" is used for 

configurations with a circular hole and is based on equations (3.19) to 

(3.22) with i = 1 to 8. Up to eight trial functions plus the loading 

function may be used from t±ds subroutine. VWien Uie loading function is 

used a further subroutine "LOADFN" is called, which uses the equations 

(3.26). "TRLFNS2", based on equation (3.8) with i = 1 and 2, is for 

configurations with elliptical holes and yields two trial functions. 

As yet no loading function has been developed for elliptical holes. 

The subroutines "TRLFNSl", "LOADFN" and "TRLFNS2" are listed in 

appendix B. 

4.2.5 Stress fields 
—1 

i* 
The stress fields a are constant over each element and may 

therefore be calculated using equations (2.3 ) and (2.7 ) from the 
t * 

displacements q. . These displacements equal u. at the element 
"~i —1 

nodes and may be obtained from the trial functions subroutine. The 
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t 
values of o. for each element in the special region are stored. The 

—1 

corresponding contribution to the nodal loads vector p. follows from 

the determination of as shown by equation (2.31b). 

4.2.6 Boundary conditions 

The boundary condition data is read and the required integrals 

calculated in the subroutine "BCONDS" (see Appendix B for listing). 

Figure 4.3 shows the method by which this is carried out. 

The boundary conditions are input one by one. On boundaries of 

the external region or of the hole, no integrations are performed but 

details of the constraints, for kinematic boundaries, or loads, for 

traction boundaries, are stored. On the boundaries or integrals 

are evaluated by six point Gauss quadrature to determine the equivalent 

loads p., the correction stress field , and the integrals of 
—1 —1 

equation 2.43 which are stored in the arrays, DCTR, DCKR, DCT and DS. 

When all the boundary conditions have been read and processed, 

the integrations must be carried out for the interface boundary . 

This completes the computation carried out on the boundaries. 

4.2.7 Strain energy term 

"f C 
The stresses (a.-o.) have been evaluated for each element in the 

— 1 — 1 

previous two sections of the program, thus the strain energy term, 
•f Q 1" C 

U ^(o.-G., o.-a.) may be determined using the relationship 
bp.K —1 — 1 —J -J 

•J l£^i-£Sl' = 2 " ^ '4-2) 

where the subscript N implies the N'th element. The strain energy term 

is stored in the array element DC0NT(1,J). 

4.2.8 Correction to matrix D 

—s 

Some elements of the matrix D (in the program, the array DS) 

must be replaced due to the fact that no integration of the loading 

function was carried out around the contour of the hole (see section 

2.7). The array is corrected at this point in the program. 
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( BOUNDARY CONDITIONS SUBROUTINE ) 

Y/C 
Read number of 

boundary conditi 

of dam 

/Read next boundary condit ioy 

ype 
condition 

7 
Traction prescribed Kinematic constraint 

Store equivalent 
nodal loads P 

Store constraint dota 

for so lut ion of f e 

matrix equation 

oondory 
of hole 

Process interfoce 
boundory S'R 

Special region 
boundary Sj^orSi-

i 
Access integrals using 6 point 

Goussion integrotion Next element side 

DCTR{I)=Js' DCKRdl̂ Jŝ ylidS Evaluate contribution to 

equivalent loads Pĵ ^See 

equation (2 281 

Evaluate ffi*- See 
equation (2.22) 
Store I a,'*- giC) 

I , 
Evaluate contribution 

to equivalent loads p^ 

see equation ( 2,31a) 

Evaluate contribution to 

equivalent loads Pî  See 

equotion (2 26) 

DCT(IJ)=Pg,*-y|t):5'dS 

< ' 
DSdJI-l/zL r. r. Wi'lfdS 

Sk+SI+SR 

ntenoce Interface 
boundory? bouidary 

^RETURN^ 

Figure 4.3 Boundary Conditions subroutine 
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4.2.9 Solution of the equations 

The simultaneous equations (2.33) and (2.34), subject to the 

specified kinematic constraints, (2.35), are nwv solved using standard 

finite element subroutines which were developed at R.A.E. [4.3] and 

have remained unchanged. 

4.2.10 Trial function coefficients 

The trial function coefficients ot (i = 1 to k) are determined 

in the subroutine "ALPHAS" (see appendix B for listing), following the 

method formulated in section 2.7. Firstly the matrices D' and F' of 

equation (2.44) are formed fr^n arrays, OCT, DS, DCONT, the 

vectors, DCTR, DCKR, and the loads and displacements, 2' Ei' R' 

q. . The stiffness matrix K is also required. The final set of 
—1 — 

equations (2.45) is formed using the relations (2.46) and (2.47) to 

form the matrices D and F, which correspond to the arrays D and 

DRHS respectively in the subroutine "ALPHAS". 

4.2.11 Displacement and stresses 

The displacements and stresses are determined from equations(2.2) 

and (2.6) as explained in section 2.8. The output required is printed 

and in addition the coefficients, a. , and the stresses, 
F ^ f c 
a - li a. (o. - a.), for each element are stored on the direct 

i=0 1 -1 -1 

access file. The data on this file may then be used to determine the 

stress at any point for graphical display or further computation, using 

the trial functions and loading function subroutines. 

4.3 Using the program 

This brief section is included in the report to acquaint the 

readers with the method of using the program on the ICL 2970 computer. 

Actual users are referred to appendices C and D for further details. 

The input data files may be set up as specified in appendix C or 

by using the automatic mesh generator (see appendix D) which requires 

fewer parameters for a simple mesh. The "macro" or command "NOTCH" 

prepares the input and output channels and runs the program with the 

specified data. If required the graphical output of the stresses on 
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the boundaries of elements may be obtained, either at a graphics 

terminal or a hard-copy plotter. When the program has finished 

running the direct access file will contain all the initial data 

and the results for the stresses. Further graphs of the stresses 

may therefore be obtained using the macro "VUSTRESS" or the data 

may be modified for another run using the macro "MESH". 

A convenient way to define the loading on the hole is via the 

macro "LOADLOAD". If the loading is of the form of those detailed in 

section 5.4.1 only the magnitude and type of load need be specified 

and the correct Fourier coefficients will be input to the direct 

access file. 

In conclusion the input and output facilities of the package 

have been designed to enable the user to run the program quickly and 

easily, with the minimum of data preparation, and to obtain graphs 

of the stresses if they are required which facilitate the interpretation 

of the results. 
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CHAPTER 5 

FINITE ELEMENT RESULTS 

5.1 Introduction 

Initially the aim in running the new program was to determine 

the accuracy of the finite element superposition method (FESM) for 

traction-free holes and the effect on the accuracy of such factors as 

hole size, mesh refinement and special region size. The configuration 

chosen for this study was a rectangular plate in uniaxial tension with 

a central circular or elliptical hole, since alternative estimates of 

stress for comparison are available in this case. The stress concentration 

factors obtained were compared with those given by Howland [5.1] and 

Isida [5.2, 5.3] for similar holes in long strips. This work is described 

in section 5.2. 

In order to compare the accuracy of the stresses at a hole with two 

other finite element methods, a square plate in tension with a central 

circular hole was analysed in section 5.3.1. The stress concentration 

factors are compared with estimates by Allman [5.4] who produced results 

for this configuration using higher order finite elements. An accurate 

value for the stress concentration factor for this case was obtained by 

Hengst [5.5], using an alternating method, and this value was compared 

with the finite element solutions. New results for the stress concentration 

elliptical holes in square plates were also obtained. These stress 

concentrations for various sizes and aspect ratios of elliptical holes 

in square plates are presented in section 5.3.2. 

The results of sections 5.2 and 5.3 demonstrate the use of FESM for 

traction-free holes. The method however, as formulated in chapter 2, was 

specifically developed for the important case of configurations in which 

tractions exist on the hole, and for these problems FESM has several 

distinct advantages over other methods of analysis. Firstly, as with 

traction-free holes, the trial functions can model the boundary of the 

hole so that only relatively few finite elements are required to represent 

the geometry of the configuration. Secondly the Fourier representation 

of load distribution on the hole means that the loading is modelled 

accurately and, since the stress concentrations required generally occur 

at or near the application of the load on the hole, this near exact 
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representation of loading can be expected to give significantly better 

results than by representing the load in a piece-wise linear form or 

as nodal forces. The accuracy of the Fourier representation depends 

on the number of terms included and this can be varied to suit the 

application. There are relatively few solutions available in the 

literature for configurations with loaded holes [5.6-5.12] and the 

available photoelastic results [5.13] are of limited accuracy and 

applicable only to the particular geometry and loading for which they 

were prepared. Thus this is an important area of application for the 

FESM program. 

The aim of the work reported in section 5.4 is to confirm the 

accuracy of the method for configurations with loaded holes by comparison 

with solutions from other methods. These results are then extended by 

producing new results for rectangular lugs. In order to carry out the 

analysis it is necessary to simulate the distributions of the tractions 

on a loaded hole near a pin. Several such distributions are discussed 

and their Fourier representations given (section 5.4.1). The hoop stress 

(i.e. o at r = a) arising at the hole in an infinite sheet with these 

loadings is calculated from the loading functions and for some cases 

compared with the values given by Bickley [5.14]. The stress concentrations 

for a pressurized hole in an annulus or large plate (section 5.4.2) and 

those for a symmetrical rectangular lug (section 5.4.3) are compared with 

known solutions to assess the accuracy of FESM for loaded holes. Finally 

the new results for stress concentration factors in loaded rectangular 

lugs are presented (section 5.4.4). 

5.2 Rectangular plate with central traction-free hole 

The configuration analysed in this section is shown in figure 5.1. 

A rectangular plate of length 2& and width 2^, with a central elliptical 

or circular hole, semi-major axis length a and semi-minor axis length b, 

is stressed in uni-axial tension by a uniform stress on its ends. The 

major axis of the hole is parallel to the shorter sides of the rectangle; 

the hole boundary is traction-free. When a = b the hole is taken to be 

a circle of radius a. The ratio of length to width of the rectangle, 

A/w, is 2.0 for all configurations analysed in this section. This was 

considered to be the minimum ratio for which good agreement with infinite 

strips could be expected for hole sizes up to a/w = 0.5. 
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Figure 5.1 Rectangular plate with a central elliptical (or circular) 

hole. 

The maximum stress on the minimum section of the plate calculated 

by the present method is denoted . A corresponding value of stress 

determined in previous studies, denoted o is used to determine a 
ref 

percentage difference term, defined as 

'ref 

a - a „ 
max ref 

ref 
X 100% (5.1) 

which is used for comparison of results. The reference values a „ used 
ref 

throughout section 5.2 were taken from Isida's results for the stress 

concentration in an infinite strip in tension with a circular or elliptical 
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hole [5.2, 5.3], which agree with Howland's results for circular 

holes [5.1] to within 0.7%. 

In order for comparison to be made between the FESM results for 

circular and elliptical holes the trial functions used in sections 

5.21 to 5.23 are those given by equations (3.8) where i = 1 and 2, with 

the special regions covering the complete mesh in all cases. Identical 

results are obtained for circular holes by using the trial functions of 

equations (3.19) to (3.22) with i = 1 and 4. 

5.2.1 Effect of mesh refinement 

The effect of mesh refinement on the accuracy of solution was 

shown by analysing the configuration with a circular hole of size a/w = 

0.5. Because of symmetry only a quarter of the plate need be divided 

into elements, and this is done in four regular meshes of varying size 

which are shown in Appendix E, figures El to E4. The mesh size is 

quantified by the parameter N , given by: 

= a/g^ (5.2) 

where 6 is a linear dimension of a typical element near to the edge of 

the hole. 

The values of stress concentration calculated firstly by FESM 

and secondly by the basic constant strain finite element method are 

shown in Table 5.1. Both solutions are obtained from the program, the 

basic solution arising from equation (2.33) of the formulation. Comparing 

the two solutions shows how much improvement is given by the trial 

functions. The percentage difference between the calculated stress 

concentration factor, a /a , and the value K. = 4.348, given by 
max o t ^ ^ 

Isida [5.3] is plotted in figure 5.2 against the mesh size parameter N . 
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Mesh Size 

Parameter 

^0 

FESM Constant Strain Elements Mesh Size 

Parameter 

^0 

a 
max 
°o 

E 
ref 

c.f. Ref [5.3] 

a 
max 
^o 

^ref 
c.f. Ref [5.3] 

1 3.923 - 9.8% 2.123 - 51% 

2 4.059 - 6.6% 3.145 - 28% 

5 4.231 - 2.7% 4.004 - 7.9% 

10 4.329 - 0.4% 4.361 + 0.3% 

Table 5.1 The stress concentration factor for rectangular plate in 

tension (a/w = 0.5) for different meshes. 

Figure 5.2 clearly shows the advantage of FESM over constant strain 

elements for relatively coarse meshes. Both solutions improve in 

accuracy as the mesh is refined but for the finest mesh, N 10, no 

advantage is apparent for the superposition method, both methods giving 

a within 0.5% of that given by Isida. However it was for coarse and 

medium meshes, which require relatively little data preparation and post-

processing, that the superposition method was formulated. Considering 

that the accuracy will be improved if the additional trial functions are 

used or if the hole is elliptical or smaller in size, the 3% error 

obtained with a mesh size of N = 5 is satisfactory. 

5.2.2 Effect of hole size 

A number of rectangular plates with different sizes of circular 

hole, between a/w = 0.1 and 0.5, were analysed using the FESM program. 

The same two trial functions were used as in the previous section, 

derived from equations (3.8) with i = 1 and 2. Typical meshes used for 

this analysis are shown in Appendix E, figures E5 and E6. The average 

mesh size parameter N for these meshes is approximately 2. 
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finite elements) 
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Figure 5 ^ Effect of mesh refinement on the accuracy of the stress 

concentration factor. 

-55-



Table 5.2 shows the values of stress concentration factor 

calculated for four sizes of hole using FESM and constant strain 

finite elements. They are compared with the results given by 

reference [5.3] and the percentage difference between them is plotted 

in figure 5.3. Again these results show the superiority of the FESM 

solutions. Errors in the constant strain finite element solutions of 

between 20% and 30% are improved by the use of the superimposed trial 

functions to less than 8% - considerably better for small holes. The 

accuracy of FESM improves as the hole size is reduced, thus for holes 

smaller than a third of the plate wid#ithe results differ by less than 

3% from those of Isida. 

Stress Concentration Factor °max 
Go 

Hole Size 
a/w 

FESM 
Constant 

Strain Elements 
Ref. [5.3] 

0.1 3.033 2.476 3.036 

0.15 3.076 2.106 3.084 

0.3 3.322 2.527 3.374 

0.5 4.018 3.034 4.348 

Table 5.2 The stress concentration factor for rectangular plate in 

tension with various sizes of circular hole. 

The reason for the greater accuracy with smaller holes is that 

the trial functions used in these cases, derived from solutions to an 

infinite region, model the configuration more closely. The influence 

of the straight boundaries of the plate on the stress near the hole is 

less significant with smaller holes and thus there is less correction 

required from the constant strain finite element field. 

5.2.3 Effect of the hole aspect ratio 

Stress concentration factors were obtained for the configuration 

in figure 5.1 (&/w = 2.0) for elliptical holes with aspect ratios, a/b, 

in the range 1.0 to 100. Two sizes of hole were analysed, a/w = 0.25 

and 0.50. The mesh size parameter, N was between 1 and 2 for the meshes 

used, typical examples of which are shown in appendix E, figures E7 to 
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ElO. The same two trial functions of equation (3.8) were used with 

the special region covering the complete mesh. 

The values of stress concentration factors from the FESM and 

constant strain finite element solutions are shown in tables 5.3 and 

5.4 together with Isida's results with which they are compared. The 

constant strain finite element solutions become progressively less 

accurate for sharper elliptical holes, as the meshes used Ew^every 

coarse, and only a few of these results are entered in the tables. The 

percentage difference between the FESM and Isida's results are plotted 

in Figure 5.4. 

Stress Concentration Factor 0 / 
max 

a 
o 

Hole 
Ratio 

Aspect 
a/b 

FESM 
Constant 

Strain Elements 
Ref. [5.3] 

1 .00 3 .199 2.15 3 .248 

1 .43 4 082 1.76 4 .118 

2 .00 5 261 - 5 .288 

3 .33 8 018 - 8 .044 

10 .00 21 837 - 21 .885 

100 .00 208 526 - 208 .927 

Table 5.3 The stress concentration factor for rectangular plate in 

tension with elliptical hole of varying aspect ratio 

(a/w = 0.25) 

Stress Concentration Factor o A? 
max o 

Hole 
Ratio 

Aspect 
a/b 

FESM 
Constant 

Strain Elements 
Ref. [5.3] 

1 .00 3.895 4.28 4 348 

1 .43 4.886 3.12 4 225 

2 .00 6.215 2.60 6. 480 

3 .33 9.314 - 9. 545 

10 .00 24.892 - 25. 265 

100 .00 235.838 - 238. 748 

Table 5.4 The stress concentration factor for rectangular plate in 

tension with elliptical hole of varying aspect ratio 

(a/w = 0.5). 
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It will be seen from figure 5.4 that, in contrast to constant 

strain element results, the accuracy of the FESM solutions increases 

for sharper elliptical holes. This effect occurs for both hole sizes. 

Even for these coarse meshes, agreement with Isida to within about 3% 

is achieved for elliptical holes with a/b > 3 extending up to half the 

plate width (a/w = 0.5). For the smaller hole size (a/w = 0.25) this 

accuracy is maintained over the entire ra^ge of aspect ratio down to 

a/b = 1 and for most of the range it is within 1%. 

The reason for the increased accuracy with elliptical rather than 

circular holes may be related to the magnitude of the stress gradient at 

the edge of the hole. Since with a sharp elliptical hole there is a 

high stress gradient, the stress reduces rapidly towards the remotely 

applied stress level and the straight boundaries of the plate affect 

the solution near the hole less than for holes with larger radii of 

curvature. Since the trial functions do not model the straight 

boundaries the less these affect the solution the more accurate FESM 

will be. FESM is most effective therefore for small holes with small 

radii of curvature at the tip, or, more generally, where the trial 

functions chosen closely match the exact solution in the region of the 

stress concentration. 

5.2.4 Effect of special region size and additional trial functions 

The two trial functions of equation (3.8) used in the previous 

sections are sufficient to give accurate results for elliptical holes 

with quite coarse finite element meshes. In order to achieve similar 

accuracy for large circular holes (a/w = 0.5), without refining the 

meshes excessively, the effect of using the additional trial functions 

given by equation (3.19) to (3.22) with i = 1 to 8 was investigated. 

Since the configuration analysed has two axes of symmetry only five of 

these trial functions are appropriate: those with i = 1, 3, 4, 7 and 

8. In addition the size of the special region over which the trial 

functions are superimposed, which in previous examples has covered the 

entire finite element mesh, was varied restricting it to a smaller area 

around the hole. 

Two new finite element meshes were used for this investigation, 

denoted A and B, and these are shown in appendix E, figures Ell and E12, 
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the mesh size parameter N being 2 and 3 respectively for the two 

The values of K estimated from constant strain finite meshes. 

elements alone using meshes A and B differed from the reference 

value [5.3] by approximately 30% and 15% respectively. The maximum 

compressive stress, denoted a , was included in the comparisons 
com 

for this study the reference values being given in table 5.5. 

Reference 
Maximum Stress 

a /a 
max o 

Maximum Compressive 
Stress: a /a 

com o 

Isida [5.3] 4.35 — 

Howland [ 5. l] 4.32 - 1.58 

Table 5.5 Reference values of stress at the edge of a circular 

hole in an infinite strip in tension (a/w = 0.5). 

The results for o /o and 
max o 

o /a obtained by FESM are given 
com o 

in table 5.6 for mesh A and table 5.7 for mesh B. The special regions 

used in each case are shown on the inset figures in the tables. The 

ratio of the area of the special region to the area taken up by the 

hole is given by R , thus 

A 
Area of special region 

Area of hole (5.3) 

In this case, since only a quarter of the plate is divided into elements, 

the denominator in equation (5.3) is a quarter of the total area of 

the hole. 

Three sets of trial functions are used, with each special region, 

derived from equations (3.19) and (3.22), in order to show the effect 

of additional functions. These are: 

Set i) 2 trial functions (i = 1 and 4) 

Set ii) 3 trial functions (i = 1, 3 and 4) 

Set iii) 5 trial functions (i = 1, 3, 4, 7 and 8) 
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The two trial functions of set (i) give identical results to the two 

functions from equation (3.8) and correspond to exact solutions for 

an infinite region with a circular hole under certain remote loading 

conditions. With the other three functions used in sets (ii) and (iii) 

the stresses do not die away at infinity and therefore they correspond 

to exact solutions for plates of finite size. This important fact means 

that the additional trial functions may introduce some modelling of the 

finite boundaries of the configuration which was not present in the 

original two trial functions. 

Figures 5.5 and 5.6 show the percentage difference in maximum 

stress, E (compared to the results of reference [5.3]) plotted 

against the special region size for the meshes A and B respectively. 

The accuracy of the method depends on the shape of the special region 

as well as its size, which in part accounts for the scatter in the results. 

Nevertheless a clear trend can be seen in both cases which is indicated 

by the lines drawn through the points. When only the 2 trial functions 

of set (i) are used, the most reliable results are given when the special 

region covers the entire region of the problem, smaller special regions 

with both meshes giving less accurate results. Adding the third trial 

function - set (ii) - does not significantly improve the accuracy when 

the special region extends over the whole plate. This is because the 

large values of stress given by this function (equation (3.21), i = 3) 

remote from the hole do not correspond closely to the stresses in the 

rectangular plate and consequently a small value for its coefficient ctg 

is found. For smaller special regions the results for the 3 trial 

functions are slightly better than for the 2 trial functions with the 

same special region, however these results are still less accurate than 

for the 2 functions with a complete special region. 

When the 5 trial functions are used in set (iii) the accuracy of 

the results is improved by up to 3% in each case but it is also found 

that for special regions sizes from about = 2 to = 6 an improve-

ment in accuracy is made compared to larger special regions. The value 

of the maximum compressive stress is also found to be closest to the 

reference value (see table 5.5) for these special regions. The reason 

the improved accuracy with limited special region sizes again relates 

to the fact that the extra three trial functions in set (iii) (equations 
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(3.21)-(3.22) with i = 3, 7 and 8) are not applicable to an infinite 

region and are therefore more effective with smaller special regions. 

Very small special regions, for example the smallest regions in tables 

5.6 and 5.7, may apparently give quite accurate stress concentration 

factors. However it is not recommended to use special regions which 

are so small that significant stress gradients arising from the hole 

are having to be modelled by the constant strain finite elements of 

the exterior region. This may lead to inconsistent results and 

unpredictable errors. The optimum special region size in this case 

seems to be around R = 4, and with 5 trial functions this gives an 

improvement in accuracy of about 2%-3% compared with the results from 

the 2 trial functions used previously with a complete special region. 

5.2.5 Effect of local mesh refinement 

Another simple method for improving the accuracy of results is to 

refine the mesh in the region of the stress concentration. Such a 

procedure is commonly used in standard finite element solutions, and 

with FESM it has been found that adding even two or three small elements 

near the point of interest may improve the accuracy of solution 

significantly while hardly affecting solution time or data preparation. 

Several elements were added to the meshes A and B to give the 

locally refined meshes A(i), A(ii), B(i) and B(ii) which are shown in 

appendix E, figures E13-16. These meshes were used to given the results 

shown in table 5.8 for the rectangular plate in tension with a circular 

hole (a/w = 0.5). The 5 trial functions (equations (3.19)-(3.22) i =1, 

3, 4, 7 and 8) were used in each case and two special regions were used 

with each mesh: firstly a special region covering the entire mesh 

(corresponding to the cases AO and BO in tables 5.6 and 5.7) and 

secondly a limited special region (corresponding to the cases A4 and 

B3 in tables 5.5 and 5.6). The maximum stress concentration is again 

compared with Isida's results [5.3] and the difference term E ^ is 
ref 

shown in the table 5.8. 

These results show that the local refinement of the mesh near to 

the point of interest does improve the accuracy of the stress concen-

tration factor. The improvement from restricting the special region 

however, which was observed in section 5.2.4, is not as marked with the 
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refined meshes. The estimates for from constant strain finite 

elements alone are also improved by the mesh refinement but unfortu-

nately not consistently. Indeed for the mesh B(ii) the basic finite 

element solution is much less accurate than for the mesh B which does 

not have the additional elements. 

To summarize the results from sections 5.2.4 and 5.2.5 therefore 

it may be concluded that the accuracy of solutions is improved by the 

inclusion of 5 rather than 2 trial functions, particularly if either 

the special region is of limited size or extra elements are included 

near to the point of stress concentration. 

Mesh 
Special 

o 
max 

a 
com ^ref 

Mesh 
Region* a 

o 
a 

o 
c.f. Ref.[5.3] 

A AO 4.062 -1.748 -6.6% 

A4 4.177 -1.406 -4.0% 

A(i) AO 4.188 -1.745 -3.7% 

A4 4.198 -1.405 -3.5% 

A(ii) AO 4.247 -1.744 -2.4% 

A4 4.207 -1.405 -3.3% 

B BO 4.158 -1.750 -4.4% 

B4 4.206 -1.554 -2.6% 

B(i) BO 4.272 -1.747 -1.8% 

B4 4.292 -1.621 -1.3% 

B(ii) BO 4.366 -1.747 +0.4% 

B4 4.342 -1.621 -0.2% 

(* For shape of special region see tables 5.6 and 5.7). 

Table 5.8 Stress concentration factors for plate with circular hole 

(a/w = 0.5) using different finite element meshes. 
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5.3 Square plate with central traction-free hole 

FESM is used to analyse a square plate in tension with a central 

circular hole of size a/w = 0.5 (section 5.3.1) and with a central 

elliptical hole of varying size and aspect ratio (section 5.3.2). In 

the first case the aim is to compare the results of the new method with 

those from other finite element methods, more sophisticated than constant 

strain finite elements. Allman [5.4] gives results from two such methods 

for the above configuration and Hengst's results [5.5], from an alternating 

method, give an accurate estimate of stress with which all the finite 

element results may be compared. 

Stress concentration factors for an elliptical hole in a square 

plate, in common with many configurations with plates of finite size, do 

not appear in the literature thus such data must be approximated from ir^ 

jOmite solutions (^obtained from detailed finite element or boundary 

element analysis. The aim in this case therefore was to obtain new 

results showing the effect of the finite plate size. 

5.3.1 Circular hole 

The configuration solved by the FESM program is shown in figure 5.7. 

The size of the circular hole is a/w = 0.5 and the constant stress on 

two sides of the square plate is o , the other two sides being traction-

free. Hengst's results for this configuration [5.5] are given in table 

5.9 showing the maximum tensile stress, o /o , and the maximum 
^ max o 

compressive stress, a /o , which occur at the boundary of the hole. 
com o 

The values for a/w =0.5 are compared with the finite element results of 

this section. 

i_l 

y 
w 

I r r i f 
o 

Figure 5.7 Square plate with circular hole. 
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a/w 
Max. Tensile 
Stress o /o 

max o 

Max. Compressive 
Stress o /o 

com o 

0.5 6.328 - 3.912 

0.375 4.494 - 2.258 

0.25 3.580 - 1.472 

0.125 3.135 - 1.107 

Table 5.9 Stress concentration factors given by reference [5.5] for 

square plate in tension with circular hole. 

Table 5.10 gives the values of stress at the edge of the hole 

obtained by the FESM program using two finite element meshes, mesh C 

and mesh D, which are shown on the table and in appendix E, figures E17 

and E18. The mesh size parameter for mesh C is approximately N = 4. 

The only difference between the two meshes is that in mesh D the nodes 

near to the points of maximum tensile and maximum compressive stress 

are moved closer together to give two smaller elements at the corners 

of the mesh near the hole. Since the rest of the mesh is unchanged it 

appears somewhat distorted. However this was done to see if improved 

results would be obtained by this local mesh refinement which does not 

affect the solution time at all. The same sets of trial functions (from 

equation (3.19)-(3.22), i = 1, 3, 4, 7 and 8) were used as in section 5.2.4, 

with 2, 3 or 5 functions being used with each mesh. The special region 

covered the entire mesh since this corresponds to the optimum special 

region size (R = 4) for the rectangular plate used in section 5.2.4. 

The percentage difference between the FESM solution and Hengst's 

results [5.5], shown in table 5.10, indicates close agreement between 

them. It is interesting to note that mesh D does give better estimates 

of stress due to the local mesh refinement and that using 3 or 5 trial 

functions improves the solutions considerably compared to those obtained 

using only 2 trial functions. 

The results from the finite element methods used by Allman [5.4] 

for the same configuration and using the same mesh (mesh C) are given 

in table 5.11. The first method was based on a compatible finite element 
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MESH 
No. of 
trial 
fns. 

max 

o 

% Diff. 
^ref 

of. [5.^ 
com 

o 

% Diff. 
°com 

cf.[5.3 

Unconstr 
d.o.f.* 

2 

3 

5 

6.007 

6.191 

6.179 

-5.1% 

-2.2% 

-2.4% 

-3.538 

-3.720 

-3.732 

9.6% 

4.9% 

4.6% 

64 

65 

67 

2 

3 

5 

6.079 

6 . 2 2 6 

6.231 

-3.9% 

-1 .6% 

-1.5% 

-3.662 

-3.809 

-3.804 

6.4% 

2.6% 

2.8% 

64 

65 

67 

(* d.o.f. = degrees of freedom) 

Table 5.10 Stress concentration factors for square plate with circular 

hole (a/w = 0.5) by FESM. 

model using 6-noded triangular elements with a quadratic displacement 

field. The second method, developed to avoid the discontinuities of 

stress that occur across inter-element boundaries in compatible finite 

element methods, was based on an equilibrium finite element model. The 

triangular elements were divided into three subregions of equal area 

with a linear distribution of stress over each subregion and conditions 

of equilibrium being satisfied between subregions and between elements. 

Type of finite element 
method (Ref. [5.4]) 

a 
max 
a 

o 

% Diff. 
^ref 

of. [5.g 

a 
com 
a 
o 

% Diff. 
°^om 

cf.^^^ 

Unconstr. 
d.o.f.* 

Compatible F.E. method 
(Quadratic displacement 

field) 
6.55 3.5% -4.03 -3.0% 220 

Equilibrium F.E. method 
(Linear stress field) 6.06 -4.2% -3.52 10.0% 116 

(* d.o.f. = degrees of freedom) 

Table 5.11 Stress concentration factors for square plate with circular 

hole (a/w = 0.5) by other finite element methods. 
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A comparison between the FESM results in table 5.10 and those 

from the other finite element methods in table 5.11 shows that better 

accuracy is obtained for the same mesh using FESM provided that at 

least 3 trial functions are used. The marked advantage of the FESM 

solution however is shown by the very much smaller number of degrees 

of freedom (i.e. the number of unknowns in the final set of equations). 

It gives an indication that the FESM program would require less storage 

and less solution time than the other methods and possibly less data 

preparation and post-processing. 

5.3.2 Elliptical hole 

Stress concentration factors for a square plate in uniaxial tension 

with a central elliptical hole were obtained using the FESM program for 

various sizes of hole a/w and various aspect ratios of the hole a/b. 

The two trial functions for an elliptical hole given by equations (3.8) 

with i = 1 and 2, were used with several different finite element meshes. 

For the circular holes analysed (a/b = 1.0) the five trial functions of 

equations (3.19)-(3.22), i = 1, 3, 4, 7 c%id 8, vwsre used. Three examples 

of the meshes are shown in appendix E, figures E19 to E21. The special 

regions covered the total area of the mesh. 

A parameter Q is defined as the ratio between the stress concen-

tration factor in the square plate, K , and the stress concentration 

factor for a similar hole in an infinite plate under similar loading, 

which is denoted K . Thus 

Q = K,/K (5.4) 
t O" 

K may be determined analytically [5.15], for example from equations 

(3.8), and it is given by the formula: 

K = 1 + — (5.5) 
00 b 

The parameter Q is given together with the stress concentration factor 

in table 5.12 for three sizes of elliptical hole, a/w = 0.25, 0.375 and 

0.5, and for various aspect ratios. The ratio Q is also given for the 

limit as a/b + which is obtained from the stress intensity factor of 

a crack of length 2a in a square plate. The values shown in table 5.12 
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a/w = 0.25 a/w = 0.375 a/w = 0.5 

a/b Q Q 
*̂ t 

Q 

1.0 2 3.530 1.177 4.284 1.428 6.079 2.026 

1.0 5 3.566 1.189 4.433 1.487 6.231 2.077 

2.0 2 5.621 1.124 6.442 1.288 7.833 1.567 

5.0 2 12.08 1.098 13.39 1.218 15.51 1.410 

10.0 2 22.90 1.090 25.17 1.199 28.78 1.370 

]00.0 2 217.9 1.084 237.8 1.183 269.3 1.340 

Crack 
[5.16] 

— 1.08 - 1.18 1.33 

(* No. 

Table 

of trial functions). 

5.12 Stress concentration factors for square plate in tension 

with elliptical hole. 

were determined by Isida [5.16] and show good agreement with the FESM 

results for a narrow elliptical hole with an aspect ratio a/b = 100. 

The stress concentration factors for circular holes (a/b = 1.0) agree 

well with the results of Hengst [5.5] (cf. table 5.6), the maximum 

discrepancy when 5 trial functions are used being 1.5% for the largest 

hole size, a/w = 0.5. It is difficult to give a reliable estimate of 

accuracy for the elliptical hole results but by comparison with the 

results for rectangular plates, errors of less than 3% would be expected 

in all cases and most of the results should be within 1.5% of the true 

value. 

The ratio of the stress concentration factors for the square plate 

and infinite plate, Q, has been plotted in figure 5.8 against the hole 

aspect ratio a/b and, in figure 5.9, against the hole size a/w. Figure 

5.8 shows that the variation of Q with aspect ratio is similar for the 

three sizes of hole, Q reducing as the ratio a/b increases. The 

insensitivity of the K to plate width for larger values of a/b is due 

to the fact that the higher stresses that occur at the edge of the hole 

die away rapidly further from the hole, and consequently there is less 

interaction with the boundary of the finite plate than in the case of 

circular or near circular holes. The variation of Q with the size of 

hole, plotted in figure 5.9 shows that Q increases with increasing hole 
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size. This also is to be expected from considering the influence of 

the plate boundary on the stress at the hole, as the distance between 

the hole and plate boundary is reduced for larger a/w ratios. The 

results for cracks, determined by Isida, are shown on figure 5.9 as 

they give the limit for elliptical holes as the aspect ratio a/b tends 

to infinity. As was seen from table 5.8 these results lie very close 

to the FESM results for elliptical holes with a/b = 100. 

5.4 Configurations with loaded circular holes 

Having confirmed that the finite element superposition method 

yields accurate results (typically within 3%) for stress concentration 

factors in configurations with traction-free holes, and having used the 

method for the determination of unknown stress concentrations factors in 

such cases, the application of the method is extended to configurations 

with loaded holes using a loading function. The loading function was 

introduced in the formulation of the method in section 2.4 and derived 

in terms of arbitrary Fourier coefficients A and D in section 3.4. 
n n 

Thus the boundary conditions on the hole are given by: 

m_ 
1 

o (r = a) = y A cos n 
r n 

n=0 
(5.6) 

T y D sin n 
1=1 " 

where r and 8 are polar coordinates relative to the trial function axes 

(origin at the centre c 

Fourier approximations. 

re nil " 

[origin at the centre of the hole) and and m^ are the limits of the 

The trial function axes may be rotated by an angle y relative to 

the global axes, which define the finite element geometry. In the lugs 

discussed in sections 5.4.3 and 5.4.4 , y = n/2 . Before the 

method can be used to analyse simple lug joints for example, the 

coefficients A and D must be determined for typical loadings on the 

hole. This is done in section 5.4.1 and for each loading considered 

stresses that would occur around the hole in zm infinite sheet are 

given. 

In order to determine the accuracy of the method for loaded holes 

the values of stress obtained by FESM for an internally pressurized 
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annulus and a large plate with a pressurized hole are compared with 

the exact solutions for these geometries in section 5.4.2. Stress 

concentration factors are also obtained for a rectangular plate with 

a central circular hole loaded with uniform tension on one end and 

different "pin-load" distributions on the hole (section 5.4.3). These 

results are compared with those of Knight [5.6], Theocaris [5.7], 

Cartwright [5.8], Newman [5.10] and Whitehead [5.9]. 

Finally some new results are obtained in section 5.4.4 for loaded 

rectangular lugs showing the effect of varying the amount of material 

above the hole for different load distributions. These results supplement 

those given by Whitehead [5.9] for lugs with rounded ends. 

5.4.1 Various loadings on a circular hole 

The exact distribution of load transferred by a rivet or bolt to 

a lug is in general unknown and will depend on many factors including 

the geometry of the lug, the clearance between the bolt and the hole, 

the magnitude of the force and the joint lubrication. Several simple 

approximate loadings have been used by other workers to represent the 

radial pressure at the hole (r = a) and these include: 

a) Pressure proportional to [cos 8 + 1] ( - 1 1 < 6 < i t ) 

b ) Pressure proportional to cos 8 ( —n/2 < 8 < n/2) 

c) Pressure proportional to cos^6 (-n/2 < 8 < n/2) 

d ) Constant pressure over an arc (-B < 8 < 6) 

where the radial pressure is zero over the remainder of the hole, if 

not specified, and where Zg is the magnitude of the arc in loading (d), 

These load distributions, together with some shear loadings 

considered later in this section, are used in the present work to 

represent the load on the hole due to a pin or bolt. Other feasible 

distributions might have been used and indeed some work has been done 

on more accurate estimates of the load on a pin joint [5.17-5.20] which 

could have been represented as Fourier series in a similar way. However 

these load distributions have the advantages of simplicity and the fact 

that, having been used by other workers, comparisons may be made with 

other methods. 
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If loadings d) and c) are applied to both halves of the hole 

two other load distributions arise which are very simply represented 

in Fourier form: 

e) Constant pressure over the hole 

f) Pressure proportional to cos^6 

( - I T < 9 < I T ) 

( - 7 T < 0 < T T ) 

However these loadings are in equilibrium without other loads on the lug, 

i.e. there is no resultant load on the hole, and thus in order to use 

them to obtain the stress concentrations at the mid-section of pin-loaded 

symmetrical lugs, a superposition principle must be used as explained 

below. If it is required to find the stress at the point A in figure 

5.10 (ii) for example, the configuration in figure 5.10(i) may be 

analysed instead using the equilibriated loading on the hole, since 

from symmetry it is clear that the stress at A in figure 5.10(i) is 

twice that in either 5.10(ii) or 5.10(iii). It should be noted however 

that only points on the mid-section of a symmetrical component may be 

dealt with in this wc^ since at other points the stresses in figures 

5.10(ii) and 5.10(iii) are not equal. The two load distributions e) and 

f) have been used in this way for the analysis of symmetrical lugs by 

FESM and the results compared with those from loadings.c) and d) which 

require more Fourier coefficients to be represented closely (see section 

5.4.3). 

Symmetrical 
loading 

distribution 

U 

Q 

M M n 

+ 

LiU 

( i ) (M) (i u ) 

Figure 5.10 Use of a superposition principle to derive the stress 
concentration factor for the loaded lug (ii) from the 
configuration (i). 
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In table 5.13 the following information is given for each of 

the loadings a) to f). 

i) The applied tractions are specified in terms of P which is the 

resultant force per unit thickness on the hole. In the cases of loadings 

e) and f) P is the resultant over half the hole (-w/2 < 6 < n/2) only. 

ii) The Fourier coefficients, A (n = 0 to m,), are specified. This 

enables the loading function stresses and displacements to be determined 

explicitly from equation (3.26). 

iii) The figure number for each case shows the Fourier representation 

of the stresses and at the hole (r = a), in an plate, 

loaded with the particular loading distribution. 

1 11 
o 

d 

b 
o 

U] 
(A 
(U 

(U 
(A 

a 
o 

—1 

tm 

hoop stress = 0.8E a -
2a 

' 

a -
2a 

oe/oo 

///orVOo 

Max. pressure = 1.27_IL 
2a 

« 
- n / 2 0 

Angle 0 (radians) 

r/2 

Figure 5.11 Stresses around boundary of hole in infinite sheet 

Loading a) Pressure = [cos 6 + l] (-n < 8 < n). 
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_P_ 
na 

Fig 5.11 

Other coefficients 

= 0 

cos 8 Loading 

- n / 2 < 8 < n / 2 

a = - — cos 6 
r Tra 

A 
3% ,An tr a 

_P_ 
T T B 

Fig 5.12 

( - n / 2 <6<tt/2) 

( T r / 2 < I 6 I < T T ) 

T = 0 
r8 

where 2<n<m & even 
other coeff. = 0 

c) 

cos*8 

Loading 

- n / 2 < 8 < n / 2 

o = 
3P 

cos • 
4a 
(-Tr/2<e<Tr/2) 
) 

(m/2<|8|<n) 

Ao= ^2 
3P 
16a 

Fig 5.13 

n-1 3P 
nan(n*-4) 

r8 
0 

An-(-

where l<n<m and odd 
other coeff. = 0 

d) 

Constant 
pressure 
over an arc 

-B<8<B 

a = -
P6 

2a sing 
(-8<8<6) 
) 

(e<|8|<n) 

re 
= 0 

A = — 
o 2na sing 

P sin nf 
n Iran sin £ 

where l<n<m. 

6 = 7r/2 

Fig 5.14 

8 = TT / 6 

Fig 5.15 

e) 

Constant 
pressure 

-7r<0<iT 

2a 
A 
o 2a 

"r8= 0 Other coefficients 

= 0 

Fig 5.16 

f) 

Cos^e 

Loading 

-TT<e<TT 

4a 
cos 8 A = 

o i - 8a 

T = 0 
re 

other coefficients 

= 0 

Fig 5.17 

Table 5.13 Tractions and Fourier coefficients for various 
distributions of radial load. 
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Figure 5.11 shows the distribution of the stresses o andOg 

(normalized with respect to o = P/2a) around the hole boundary for 

loading a). Only two Fourier coefficients are required to represent 

this loading exactly which may be considered to model approximately the 

tractions on a hole due to a sideways force on an interference fit pin. 

It is a special case in that radial pressure at 8 = tr is zero. 

Figure 5.12 shows the stresses around the hole boundary for the 

more usual representation of a pin load, loading b), where the radial 

pressure is proportional to cos 8. In common with loadings c) and d) 

an infinite Fourier series is truncated to a finite number of terms (in 

this case 30 terms) and consequently the load represented is not exactly 

a cosine distribution. The exact solution is given by Bickley [5.14] 

and the difference in the maximum hoop stress (o^ at r = a) for m = 29 

was found to be less than 2%. When used for the analysis of lugs this 

error is a smaller fraction of the total stress, its effect occurring 

in the region of the discontinuity in the stress gradient at 8 = n/2. 

FW ctJ 
|CN) 

II 
O 
D 

D 
d 

(A 
(A 
O 
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=0.81 
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Max. pressure = 1.27 
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-IT -n/2 0 TT/2 TT 
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Figure 5.12 Stress around boundary of hole in infinite sheet 

Loading b) Pressure =cos 6 (-n/2 < 8 < n/2). 
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As an alternative to this loading the cos* 8 loading (c) has 

some advantages (see figure 5.13). There is no discontinuity in the 

stress gradient at 8 = n/2 and consequently the Fourier approximation 

converges more rapidly and is more accurate for the same number of terms. 

More of the load is concentrated near to 8 = 0 and thus the loading 

(c) may be considered to model the tractions due to a pin with clearance 

between the pin and hole. The maximum hoop stress in an infinite sheet 

with a hole loaded in this way is higher than for loading b) and occurs 

at an angle 6 less than n/2. The maximum radial pressure is also higher. 

Ph 0 
ICNJ 

o 
d 

CO 
m 
QJ 

T3 
01 
m 

I 1 

I 
S - J 

o g 

ress 

Max. pressure 

Figure 5.13 

- n / 2 0 

Angle 8 (radians) 

Stresses around boundary of hole in infinite sheet 

Loading c) Pressure = cos* 8(-n/2 < 8 < n/2). 

The Fourier representation of the constant loading over an arc 

subtending an angle 28, loading (d), is the slowest to converge (see 

figures 5.1^ (g = n/2) and 5.1J (g = n/6)). This is due to the step 

change in the magnitude of the radial pressure, which in actual practice 

is not a feasible distribution of load. For finite element analysis the 

oscillations in the Fourier representation make exact determination of 

the stresses more uncertain. However good agreement was found between 

results from this loading and from loading (e) for symmetrical lugs, 

which suggests that the inaccuracies in the representation may not be 
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important. Bickley [5.14] gives the exact solution for the two cases 

6= n/2 and 8 = n/6, and satisfactory agreement is found. Comparing 

figures 5.1& and 5.IS it may be seen that reducing the size of the arc 

of contact increases the maximum radial pressure and the maximum hoop 

stress for a constant resultant force. 

Loadings e) and f) are simply represented using 1 and 2 Fourier 

coefficients respectively. figure 5.16 shows that constant pressure 

over the complete hole causes a constant hoop stress of equal magnitude 

in an infinite sheet. Loading e) may be used to analyse a symmetrical 

lug with constant pressure over half the hole (using superposition), or 

to represent a pressurized hole, or added to other distributions to 

simulate an interference fit pin (e.g. loading a)). Loading f) is shown 

in figure 5.17 and also has no resultant load on the hole. It is used 

for the analysis of symmetrical lugs and gives an estimate for the same 

stress concentration factor as that obtained from loading c). 
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Figure 5.16 Stresses around boundary of hole in infinite sheet 

Loading e) Constant pressure (-n < 8 < n). 
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Figure 5.17 Stresses around boundary of hole in infinite sheet. 

Loading f) Pressure =cos* 8 (-ir < 9 < IT) 

Friction at a bolt or rivet will result in shear tractions thus 

possible distributions for the shear are now considered. The effect 

of these is added to the radial pressure such that the resultant force 

on the hole remains constant. Three possible distributions were used 

g) Shear proportional to sin 8 (- w/2 < 8 < n/2) 

h) Shear proportional to sin 28 (-w/2 < 8 < n/2) 

j) Shear proportional to sin^G cos8 (-n/2 < 8 < m/2) 

The expressions for the tractions and the Fourier coefficients are 

given in table 5.14. P is the resultant force (per unit thickness) 

on the hole due to the shear tractions and the limit of the Fourier 

series is m . 
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Tractions (at r = a) Fourier Coefficients 

P 
Sin 8 Shear a = 0 

r 

2Pc 
r9 Tta 

= 0 (w/2<|8|<n) 

s 
Tra 

sin 8(-m/2<8<n/2) I — 
(-1^ 2 

4nP 

n*a(n*-l) 

for 2<n<m^ and even 

Other coefficients = 0 

h) Sin 28 Shear a = 0 
r 

T = 
r8 4a 

= 0 (w/2<^|< n) 

sin 3^-n/2<8<n/2) 

D -
2 8a 

n+1 

°n nsln'-4, 
3P 

for l<n<m and odd 

Other coefficients = 0 

j) Sin^8 cos 

Shear 

r8 

0 

15/3 P; 
32a 

sin" cos °4 = 

-n/2<8<n/3 

^ s 
32a 
n+1 

D =(-l1 
n 

= 0 (7r/&<|e I <iT) 

5P (n^-lO) 

na(n*-4)(n*-16) 

for l<n<m and odd 

Other coefficients = 0 

Table 5.14 Tractions and Fourier coefficients for various 

distributions of shear. 

A combination of the shear distribution (g) and Wie radial pressure 

distribution (b) was proposed by Knight [5.6] who suggested that the 

tractions on the loaded half of a hole which is pulled in the direction 

3 = 0 by a bolt or rivet would be similar to the tractions on a circular 

contour around a point force in an infinite medium, the other half of the 

hole being traction free. These tractions are given by: 

a) 

're <'• 

P (3-2v) 
2ma 2(l-v) 

P 
2na 

(l-2v) 
2(l-v) 

cos 8 

] sin 0 

(5.7) 
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Equation (5.7) gives the ratio of the shear resultant to the radial 

pressure resultant as: 

(1—2 V) 
( 3 - 2 V ) 

If V is taken as 0.25 the ratio of shear to radial pressure resultants 

is 0.2 which is the value used for the combination of shear and radial 

loadings in the present work. 

The distribution of stresses around the hole in an infinite sheet 

for this loading (i), which is a combination of loadings b) and g),is 

shown in figure 5.18. The limits of the Fourier series m and m^ were 

chosen to be 29 and 24 respectively. The maximum radial pressure, 

o Imax; 
r 
to be: 

shear stress, T^^(ma3^, and hoop stress, Og(maa^,are found 

a (max) = 
r 
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Figure 5.18 Stresses around boundary of hole in infinite sheet. 

(i) Loading b) + g) cos 8 normal pressure & sin 6 shear. 
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The difficulty with this loading combination is the discontinuity 

in the shear at |8| = v/2. Not only does this cause some inaccuracy 

in the Fourier representation, but in fact the shear distribution is 

physically impossible, having the maximum friction occurring where the 

normal pressure is zero. 

A simple alternative is to use the shear distribution h) which is 

zero at both 9 = 0 and ti/2. Used in combination with radial distribution 

b) the loading is denoted (ii). For an infinite sheet the maximum hoop 

stress is found to be approximately 15% lower than loading (i). The 

stresses from the loading (ii) are plotted in figure 5.19 and the 

maximum values are given below: 

0 (max) 
r 

T nlmaxj 
r8 

0^ imaxj 
8 

1.06 %-

0.25 

0.97 

P_ 
2a 

_P_ 
2a 

_P_ 
2a 

at 8 

at 8 

at 8 

Tr/4 

it/2 

The shear loading j), suggested by Bickley [5.14] is another 

possibility. The shear is zero at 8 = 0 and n/2 but the maximum value 

is closer to n/2 than for the shear loading h). This results in a 

higher maximum hoop stress in most cases. Figure 5.20 shows the stresses 

round the hole in an infinite sheet for the loading (iii), a combination 

of j) + b). The maximum values of stress are: 

o (max) 
r 

T (max) 
re 

o_(max) 

1.06 

0.27 

1.05 

_P_ 
2a 

P 
2a 

2a 

at 8 = 0 

at 8 = tt/3 

at 8 =w/2 

The shear loadings g), h) and j) may of course be combined with 

any of the radial pressure distributions a) to d). Figures 5.21 to 5.23 

show the stresses resulting from combining them with the loading c) -

loadings (iv) to (vi) - and the slightly higher maximum hoop stresses 

that result. 
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In conclusion, several Fourier representations for the loading 

on a hole due to a pin or bolt have been derived and examined in this 

section. The tractions and Fourier coefficients have been given in 

each case and the stresses determined from equation (3.26) (the loading 

function) for the loading applied to a hole in an infinite sheet. 

These loadings and combinations of loadings will now be applied to 

several configurations using FESM. 
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Figure 5.23 Stresses around boundary of hole in infinite sheet. 

(vi) Loading c) + j) cos^9 normal pressure and 

sin^e cos9 shear. 
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5.4.2 Pressurized hole in an annulus or large plate 

The hoop stress, for an annulus with a constant internal pressure 

equal to (see figure 5.24) is known analytically to be: 

(r = a) 
1 + (a/w) 
1 - (a/w) 

(5.9) 

where w in this case denotes the external radius of the annulus. This 

formula will also be approximately correct for a square plate with a 

circular hole where w denotes half the plate width, provided that the 

hole is small relative to w. 

Figure 5.24 Pressurized annulus. 

An annulus with hole size a/w = 0.5, loaded with a constant 

internal pressure [loading (e)] and a square plate with a central 

hole of size a/w = 0.1 with the same loading were analysed using the 

FESM program. Five trial functions and the loading function were used 

in each case with the finite element meshes shown in appendix E, figures 

E22 and E23. The special region covered the entire mesh in both cases. 

The values for the maximum hoop stress obtained are given in table 5.15 

together with the analytic solution from equation (5.9). 
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MAXIMUM HOOP STRESS Og/p 

FESM 

Solution 
Equation (5.9) 

ANNULUS 

a/w = 0.5 
1.677 1.667 

SQUARE PLATE 

a/w = 0.1 
1.018 1.020 

Table 5.15 Results for pressurized hole. 

The results in both cases are accurate to within 1%. While this 

accuracy confirms the validity of the new method for loaded holes it 

should be expected since the exact solution of equation (5.9) may be 

obtained from a combination of the loading function and trial function 

1. In fact an almost identical estimate for K is obtained for the 

annulus, when only this one trial function is used rather than all five 

functions. The errors arise in both cases from finite element represent-

ation of the outer boundary and, in the second case, from the fact that 

equation (5.9) is strictly valid for an annulus not a square plate. 

5.4.3 Symmetrical rectangular lug 

The pin-loaded rectangular lug shown in figure 5.25, with two 

geometrical axes of symmetry, was analysed using the FESM program. The 

size of the hole is given by a/w = 0.5, and the stress on one end of 

the lug by = P/2w, where P is the resultant load on the hole per unit 

thickness. The distance from the hole centre to the stress-free end of 

the lug, & , is equal to the distance from the hole centre to the other 

end and & /w = 2.0. The angle 6 is measured from the axis shown vertical 

in figure 5.25. 

The loading on the hole was represented using the various distrib-

utions of radial and tangential tractions discussed in section 5.4.1. 
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M : M 

Figure 5.25: Symmetrical lug (pin-loaded) 

Half of the lug was modelled with the finite element mesh shown in 

appendix E, figure E.24, which has a similar element size to meshes 

which were satisfactory for traction free holes. Since the loading 

causes agymmetry about the horizontal axis through the hole centre, 

overall there is only one axis of symmetry in the configuration. The 

special region used, also shown in the figure E.24, is of similar size 

to the special regions found to be most effective for configurations 

with traction-free holes in section 5.2.4. All of the 8 trial functions 

of equations (3.19) to (3.22), i = 1 to 8, were used in this study in 

addition to the loading function of equation (3.26) with the Fourier 

coefficients as specified in section 5.4.1 for each loading. 

The results for the stress concentration factors, K , which occur 

with the different load distributions are shown in table 5.16. The 

maximum stress occurs in each case at the edges of the hole on the line 

-94-



Loading on hole ^t = 

a 
max 
a 

o 

Value of K 
for comparison 

% Differ-
ence E _ 

ref 

a) to f) radial tractions 
only 

a) [cos 8+1] loading 3 .551 - -

b) cos 9 loading 
(_n/2<8<n/2) 

4 .500 [5.10 ] 4.621 -2.6% 

c) c o s*8 loading 
(_n/2<8<n/2) 

4 .639 c.f. case b) +3.1% 

d) Pressure over arc 
(_w/2<8<n/2) 

3 .245 c.f. case e) 0% 

e) Constant pressure 
(by superposition) 

3 .245 c.f. case d) 0% 

f) c o s*8 loading 
(by superposition) 

4 .638 c.f. case c) -0% 

i )- vi) radial & tangential 
tractions 

i) (b&g) cos8/sin8 shear 5 264 [5.6] 

[5.7] 

[5.8] 

[5.9] 

5.03 

5.06 

5.21 

5.13 

+4.7% 

+4.0% 

+1.0% 

+2.6% 

ii) (b&h) cos8/sin28 shear 4. 889 c.f. case i) -7.1% 

ill (b&j) cos8/sin'8cos8 
shear 

4. 983 c.f. case i) -5.3% 

iv) (e&g) cos*8 /sin8 shear 5. 379 c.f. case i) +2.2% 

v) (e&h) cos^8/sin28 shear 5. 004 c.f. 

c.f. 

case ii) 

case iv) 

+2.4% 

-7.0% 

vi) (e&j) cos*8/sin^8 cos8 5. 098 c.f. case iii) +2.3% 
shear 

c.f. case iv) -5.2% 

Details of lug: a/w = 0.5, % ̂/w = 2, = V = 0.3 

Table 5.16 Stress concentrations for symmetrical lug with different 

distributions of load. 
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of minimum section. The values are compared with those obtained by 

other workers for certain loadings (references in square brackets^md aJso 

with FESM results for other loadings, the percentage difference between 

the values, being shown in the table 5.16. 

The first noticeable feature of these results is the large 

difference that the distribution of the load may make to the stress 

concentration factor. From the lowest of these values (d) to the highest 

(iv) is a change of over 60% and this emphasises the importance of 

accurate representation of the tractions on the hole. The accuracy of 

the results by comparison with results from other methods is good, less 

than 5% difference in all cases. 

The loadings a) to f) give only radial tractions on the hole and 

therefore model the loading due to a frictionless pin. For loading b) 

the radial tractions are proportional to cos 6 over half the hole (-n/2 

< 6 < •rr/2) and this loading was used by Newman [S.IO] to analyse the 

configuration with radial cracks growing at the hole. A comparison is 

made with these results in the limit as the crack length tends to zero 

a^d agreement is found to be within 3%. The cos*8 loading, (c), which 

models a bolt with greater clearance between the bolt and the hole, results 

in a higher stress concentration whereas loading a), which models an 

interference fit pin gives a lower maximum stress. Lower than any of 

these is the stress concentration due to a constant pressure over half 

the hole, loading (d), which is some 30% below that for loading b). These 

results show that if there is no friction the stress concentration will 

be lower for a close fitting pin. Unfortunately this may not be so if 

friction is included since when the load is partially transmitted by the 

shear tractions, which is more likely for a close fitting pin, the stress 

concentration is increased. 

The results from loadings e) and f) are equivalent to those from 

loadings d) and c) respectively but were obtained using the superposition 

principle explained in section 5.4.1. Only one quarter of the plate need 

be analysed in these cases since the configuration for which a solution 

is sought has two axes of symmetry rather than the one axis of symmetry 

in the equivalent problem. The close agreement between the results is 

shown in table 5.16. 
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Loadings i) to vi) in table 5.16 have both radial and tangential 

tractions on the hole. Loading i) has been used by several other 

workers in analysing this configuration and the FESM result agrees to 

within 5% with all these values. The configuration analysed by Knight 

[5.6] and Theocaris [5.7] using an alternating method, was an infinite 

strip (& /w = Go) rather than the finite plate, for which a slightly 

higher stress concentration factor might be expected. Cartwright [5.8] 

and Whitehead [5.9] both used a finite element method for their analysis 

and represented the tractions on the hole by point forces at the nodes. 

The length of the plate used was the same as in the present case (&^/w 

= 2.0) and the agreement with these methods is within 3%. 

The effect of introducing shear loading on the hole is to increase 

the stress concentration factor, in this case by up to 17%. Comparing 

the three different distributions of shear, g), h) and j), it may be 

seen t±̂ it g) (shear tractions proportional to sin e) results in the 

highest maximum stress, with cases h) and j) resulting in stress concen-

tration factors approximately 7% and 5% lower respectively. \Mhen Whe 

loading o) is used for the radial pressure in cases iv) to vi),(i.e. 

tractions proportional to cos* 0), the stress concentration factor is 

approximately 2% higher than when the loading b) is used (tractions 

proportional to cos 8). Thus the case with loading iv) has the highest 

stress concentration factor with a value of K = 5.38 . 

These results show that the FESM program is effective in giving 

accurate stress concentration factors for configurations with loaded 

holes. Furthermore the importance of knowing the form of the loading 

on the hole and closely representing it in the model is shown by the 

wide variation in stress concentration factors for different loadings 

that may occur. When no friction is assumed on the hole the analysis 

shows that the stress concentration factors are lower for distributions 

of load which model a tightly fitting pin (e.g. loading a)) than for a 

loose fitting pin. However in practice the effect of friction must be 

considered particularly when there are smaller clearances between the 

hole and pin. When this is done, by including shear tractions in the 

analysis, the stress concentration factors are significantly increased. 

-97-



5.4.4 Rectangular lugs 

Fig. 5.26 Rectangular lug (pin-loaded) 

A number of rectangular pin-loaded lugs, were analysed where the 

amount of material above the hole, expressed by & /w (see figure 5.26), 

was varied. The hole size was held constant for all the lugs studied 

at a/w = 0.5 and the stress on one end of the lug is again given by 

o = P/2w where P is the resultant load on the hole per unit thickness. 

Three different distributions of load on the hole were investigated which 

were considered to be the most appropriate for the pin loaded joint: 

loading b) where the radial tractions are proportional to cos 8 with 

zero shear loading; loading c) where the radial tractions are proportional 

to cos*8 with zero shear loading; and loading i) where the radial 

tractions are proportional to cos 8 and the tangential tractions to sin 8. 

The angle 8 is measured from the vertical axis and the lower portion of 

the hole (n/2 < 8 < 3n/2 )is not loaded. The proportion of resultant 
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load carried by the tangential tractions over the radial tractions 

in the loading i) was, as previously, 0.2. For most of the lugs the 

distance from the hole centre to the external load was given by tg/w 

= 2.5, slightly longer than for the lug used in section 5.4.3. However 

three lugs with two geometrical axes of symmetry = & ) were also 

analysed using loading f), which is the cos*8 distribution (-n<8<n), 

by applying the superposition principle explained in section 5.4.1. 

Typical finite element meshes for the lugs analysed in this section are 

shown in appendix E, figures E.25-E.28, which also show the special 

regions used with each mesh. The 8 trial functions of equations (3.19) 

to (3.22), i = 1 to 8, were used with the loading function, equation 

(3.26). 

The values obtained for the stress concentration factors at the 

edge of the hole on the line of minimum section are given in table 5.17 

for the different distributions of load and different values of & /w. 

These values are plotted in figures 5.27 and 5.28 which show the variation 

in the stress concentration factor on the line of minimum section with 

the amount of material over the hole (& /w) for the different loadings 

and geometries. 

STRESS CONCENTRATION FACTORS, K 

cos 8 cos^e cos e/sin 8 cos^e 
A^/w loading (b) loading (c) loading (i) loading (f) 

&g/w = 2.5 Ag/w = 2.5 Ag/w = 2.5 (&2 -

0.75 7.428 8.303 7.899 10.575 

0.80 7.817 

0.85 6.557 7.374 7.231 

0.90 6.983 

0.95 6.613 

1.00 5.704 6.282 6.453 7.685 

1.25 5.164 

1.50 4.604 4.769 5.369 

1.75 4.611 

2.00 4.426 4.553 5.179 4.638 

a/w = 0.5 , \i = 0.3 

Table 5.17 Stress concentration factors for rectangular pin-loaded lugs, 
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In figure 5.27 the for the rectangular lugs with G^/w = 2.5 

is compared with that for the symmetrical lugs (&^ = Ag), as & /w is 

varied. The lugs are both loaded by normal tractions proportional to 

cos^e over the top half of the hole. For long lugs, & /w = 2.0, the 

geometry in both cases is very similar and the stress concentration 

factors differ by less than 2%. As is shortened the stress concen-

tration increases, the rise being particularly rapid as & /w falls below 

1.0. In this region the symmetrical lug has a significantly higher 

than the other lug due to the proximity of both the upper and lower 

;es of the lug. 

x: 
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\ Loading (f) using superposition. 

9.0 -

8 . 0 _ 

7.0 

6 . 0 

5.0 

= 2.5 

Loading (c) 

O 

4.0 

0.5 1 . 0 1.5 2 . 0 

Fig. 5.27 Stress concentration factors for symmetrical/assymmetrical 

loaded lugs. 
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Figure 5.28 shows the stress concentration factors for lugs 

with Ag/w = 2.5, having different distributions of tractions on the 

hole boundary. The results for the cos*8 distribution c) are again 

shown in the figure together with results from the loading cases b) and 

i). It is found that loading b), the cos 8 distribution without shear 

tractions gives the lowest stress concentrations for all values of & /w. 

9.0 

8 . 0 

7.0 

6 . 0 

5.0 

4.0 

-O-

Loading i) 

Loading c) 

Loading b) 

l^/w= 2.5 

3.0 

0.5 1 . 0 1.5 3.0 

Fig. 5.28 Stress concentration factors for loaded lugs, 
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For long lugs (&^/w = 2.0) loading c), the cos^8 distribution, and 

loading i) the cos 9 radial and sin 6 tangential distribution, give 

stress concentration factors 3% and 17% higher respectively. However, 

with only a small amount of material above the lug the values for the 

loadings c) and i) cross over and for & /w = 0.75, the stress concentration 

factors of loadings c) and i) are 12% and 6% higher respectively than 

loading b). This could mean that a slack-fitting pin with little or no 

friction would be of advantage with the long lug whereas a tighter 

fitting pin, which therefore had friction, would be of advantage with 

the shorter lug. However greater knowledge of the actual distribution 

of loads would be required before any firm conclusions of this kind could 

be made. 

Whitehead [5.9] has analysed a number of lugs with rounded ends 

as shown in figure 5.29. A set of three stress concentration factors 

for different values of & /w, a hole size of a/w =0.5 and a cosine load 

distribution, are shown in table 5.18. The results were taken from 

figure 30 in reference [5.9] and have been plotted in figure 5.&0 

together with the FESM results for a rectangular lug. The figure 5.30 

shows that the stress concentration factors for these lugs are very 

similar, with the maximum difference between the two cases being approx-

imately 7%. Since this is close to the combined error that might be 

expected from the finite element analyses and also since A^/w is not 

specified exactly for the rounded lug in reference [5.9] more detailed 

conclusions would not be justified. It is sufficient to note that the 

stress concentration factors are of similar magnitude and slightly 

higher for the rounded lug. This is to be expected as adding material 

to the corners of the rounded lug is likely to lower the stress. 

&^/w 
Stress concentration 

factor K 

0.8 6.97 

1.0 6.12 

1 . 2 5.33 

Table 5.18 Stress concentration factors for a lug with rounded end 

from reference [5.9]. 
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To conclude this section it may be noted that the stress concen-

tration factor in loaded lugs varies considerably according to the 

distribution of load on the hole. The effect of changing the load 

distribution also depends on the particular geometry of the lug, however 

in general higher stresses occur near the hole when more of the resultant 

force is carried by the shear tractions and/or when the radial tractions 

are concentrated more towards the point 8 = 0. 
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PART II 

THE MODIFIED BOUNDARY ELEMENT METHOD 



CHAPTER 6 

BOUNDARY ELEMENT FORMULATION 

6.1 Introduction 

As an alternative to the finite element method the boundary 

element method (BEM) has been growing in importance in recent years. 

Complicated geometries may be tackled with this method and, unlike 

finite elements which require the whole region of the problem to be 

discretised into elements, only the boundary of the configuration need 

be discretised unless body forces or non-linearities exist which cannot 

be reduced to boundary conditions. This effectively reduces the 

dimensionality of the problem by one and so greatly reduces the amount 

of data required and the number of degrees of freedom for most config-

urations. On the other hand slightly more numerical analysis is 

necessary to form the matrix of simultaneous equations associated with 

these freedoms and the matrix is full rather than banded as in finite 

element methods. Nevertheless the effectiveness of the boundary element 

method and its superiority over finite elements for some classes of 

problem in continuum analysis has been clearly shown [6.1-6.3]. 

The approach adopted in boundary element methods is to transform 

the governing differential equations into equivalent sets of integral 

equations involving values on the boundaries of the region only. This 

approach involves the use of a "fundamental solution" as the kernel 

function of the integral equations. A fundamental solution is an exact 

elasticity solution for a region containing a point force. Usually the 

function is the solution for a point force in an infinite volume, due to 

Kelvin [6.4], or its equivalent in two-dimensions. However fundamental 

solutions for regions which contain a traction-free hole or other 

boundaries coinciding with part of the boundary of the region under 

analysis could also be used and it is this modification to the standard 

BEM which has been developed here for configurations with circular holes. 

A difficulty encountered using standard BEM for stress concentration 

problems is that of determining the stress at or near to a boundary with 

similar accuracy to internal points, since only values of displacements 

and tractions are calculated directly, and the method used to calculate 

the stress at internal points breaks down at the boundary due to the 

singularity in the kernel functions. An approach used in some commercially 
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available boundary element programs [6.5] and elsewhere [6.6] is to 

estimate the tangential strain at the point on the boundary from the 

displacements. Using Hooke's law to obtain the tangential component 

of stress, together with the known tractions, the jHull stress tensor 

may be estimated. However this method involves the differentiation of 

approximate values of displacement and inevitably accuracy is lost, 

thus attempts to deal explicitly with the singularity by using more 

complex integration techniques have been made [6.7]. The method of the 

present work however, in using a kernel function for which boundary 

conditions on a circular hole are exactly satisfied, overcomes the 

problem of determining the stress on this boundary since boundary 

elements are not required to model the hole, and thus points on the 

hole may be treated in the same way as internal points. Furthermore 

the number of boundaries to be modelled and thus the number of degrees 

of freedom is reduced and the boundary conditions on the hole are 

precisely represented. Stresses and displacements at points on or near 

the hole may be determined with similar accuracy to internal points 

remote from boundaries. 

The approach is similar to that used by Nisitani and Murakami 

[6.8] for their "body force method", also Cruse [6.9, 6.10] in the 

case of cracks, and Telles and Brebbia [6.11] in the case of a long 

straight boundary for the boundary element method. The method could 

also be extended to configurations with elliptical holes, since the 

required fundamental solution is known [6.12] or to other geometries. 

Indeed the BEM program could be structured such that it contains a 

library of different fundamental solutions (e.g. circular hole or disc, 

elliptical hole, long straight boundary) so that a wide range of problems 

can be solved more easily and accurately by including the most important 

boundary conditions in the fundamental solution. 

An important area of application for the finite element super-

position method discussed in part I of this thesis, is to loaded holes. 

As yet the modified BEM has been applied only to configurations with 

traction-free circular holes. However by using a superposition principle, 

problems involving loading on the hole can be reduced to ones with no 

loading on the hole boundary and with modified tractions on other 

boundaries. This would avoid the necessity for boundary elements on the 
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hole boundary to model the loading and would retain the advantages of 

the modified method. The loading function of chapter 3 could be used 

to supply the required exact elasticity solution for the loaded hole 

in an infinite region. 

In chapters 6 and 7, the modification to the standard BEM form-

ulation is considered and initial results presented. The work has 

comprised a smaller fraction of the total than the finite element work 

and is consequently less complete, but the new analysis for the method 

has been completed and incorporated into a boundary element program. 

Tt^ results show both iWie potential for #ie method and the areas where 

improvement should be made. In this chapter the formulation of the 

direct boundary element method [6.2, 6.13] is presented, together with 

the modifications required to implement the new kernel function. The 

computer program was developed from a simple BEM program produced by 

Brebbia [6.2]. 

6.2 Notation 

In the following analysis cartesian tensor notation is used 

throughout since this enables the equations to be written more briefly 

and follows the presentation commonly used. This means that the 

notation of part II is quite separate from the notation of part I. In 

particular it should be noted that the subscripts in part II define the 

coordinate directions. 

In tensor notation the equations of equilibrium for a point x 

iinates x , 

be expressed as: 

coordinates x , x^ and x ) in an elastic three dimensional medium may 

o.. . + b. = 0 i = 1,2,3 
iJ,J 1 

j = 1,2,3 (6.1) 

where is the stress field, b^ is the body force per unit volume 

and the suffix means partial differentiation with respect to the 

coordinate component x . The repeated suffix in this notation implies 

summation. 

Equation (6.1) is also valid in two dimensions with the range of 

the suffices reduced: i,j = 1,2. 
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The stress, o^j, zuid strain, e^j, in zm elastic isotropic 

material are related by Hooke's law which in three dimensions may be 

expressed as: 

0.. = X 6. . E + 2G E.. (i,j,k =1,2,3) (6.2) 
IJ I J K K IJ 

where G, the shear modulus, and X are Lame^s constants and related to 

Young's modulus E, and Poisson's ratio v as follows: 

^ = (l+v)(l-2v) (G.3) 

G = — . (6.4) 
2(l+v) 

Lj is the Kronecker delta which has the properties that: 

= 0 when i ^ j 

6^ = 1 when i = j 

E v 
1 — V ^ 

:6.5) 

The strain may be expressed in terms of the displacements u as: 

( u . . + u . . ) (6.6] 
ij 2 i,j j,i 

Substituting this expression in equation (6.2) gives the stress-

displacement relationship as: 

o. . = X 6. . u + G(u. . + u. .) (i,j,k= 1,2,3) (6.7) 
ij ij k,k i,j j,i 

This equation is also valid for two dimensional plane strain problems 

since then u^ = 0 and thus u^ ^ = 0. For plane stress problem 

equation (6.7) may be used only if the Lame constant X is replaced by 

A' where: 

[6.8) 
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6.3 Basis of the boundary element method 

The boundary element method determines the unknown stress field 

and displacement field in a region in terms of their values at the 

boundary of the region. To do this the fundamental or kernel function 

is used. In the present work the stresses, displacements, body forces, 

etc. resulting from this exact elasticity solution are represented by 

the superscript *, i.e oLj, u?, b^, etc. The properties of the 

fundamental solution will be considered in more detail later, however it 

is required that the function is a known elasticity solution for a point 

force in a given region which includes the region of the problem. 

The reciprocal work theorem [6.14] states that if two distinct 

elastic equilibrium states exist in a region V bounded by the surface S, 

then the work done by the boundary tractions and body forces of the first 

system (T\, in this case) on the displacements of the second (u|, in this 

case) is equal to the work done by the tractions and body forces of the 

second system (Tf and bt) on the displacements of the first (u ). The 

theorem may be proved using the divergence theorem and for this case 

may be stated as: 

r r 

I 
J 

u.of.&. dS + I u.bf dV = I u?o..&. dS + I ufb. dV (6.9) 
i i J J J i i j i i J J j i i 

S V S V 

where is the cosine of the angle between the boundary normal and the 

j coordinate direction, and the tractions on the boundary, T , are 

defined as: 

^i ' °ij (6.10) 

Thus equation (6.9) may be written as: 

r r 
{u.bf - u*b.} dV = I {u*T. - u.T? i dS (6.11) 

1 1 1 1 I 1 1 1 1 ^ J V 

The displacements and tractions of the fundamental solution are 

functions of two points, x and and are defined as u*^ (x, g) and 

T* ^(x,G) respectively, representing the displacements and tractions at 

the point C in the & direction, due to a unit point force acting at the 

point X i] 

given by: 

point X in the k direction. The corresponding body force b^^ (x,g) is 

(X'S) = 6^% a(x-S) (6.12) 
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(6.13) 

(6.14) 

where 6^^ is the Kronecker delta and 6(x-E) is the Dirac delta 

function which has the following properties: 

6 ( x — = 0 if X ^ g 

and 6(x-() = = if x = % 

r 
such that I 6(x-^) dV(^) = 1 when x £ V 

'v 

and ] 6(x-g) dV(G) = 0 when x ̂  V 

V 

r 

where J^{ }dV(^) denotes integration over V with respect to the 

variable g. Thus for any function of g, f: 

' f(5) 6(x-s) dV(s) = f(x) if x e V (6.15) 

V 

Substituting equation (6.12) for b? in equation (6.11) and 

specifying g as the variable of integration gives, for the unit force 

acting in the k direction: 

f {u^(c)5k%G(x-C) - " 
'v 

[ {Uk%(x,() T^(c) - u^(E) T^2(x,()} dS(() (6.16) 

•'s 

From the properties of the Dirac delta function [equations (6.13) to 

(6.15)] equation (6.16) may be re-written as: 

=k» "t'*' + J dS(() = 
s 

j Uk*(x,c) T^(c) dS(() + j u^*(x,() bg^() dV(c) (6.17) 

where c, = 6, when x is inside S and would be zero if x were outside 
k& k& 

S. If the point x is on the boundary S the singular point is included 

in the contour integrals which must now be interpreted in a Cauchy 

princip& value sense. For a smooth boundary the coefficients c^ are 

then found to be % [6.2] and they may also be evaluated for non-smooth 

boundaries. In practice it is generally unnecessary to evaluate c^ 

explicitly as the terms to which c^^ contributes can be obtained from 

consideration of rigid body motions (see page ll2). 
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Equation (6.17), for an internal point x, is referred to as 

Somigliana's identity [6.4, 6.15] and it is the basis of direct 

boundary element formulations in elasticity. Using this expression 

the displacement at a point x, u(x), can be determined from the dis-

placements and tractions on the boundary only and a volume integral 

of known functions. The volume integral may be dealt with numerically 

by dividing the region into elements or, for certain types of body 

forces (e.g. gravity, rotational inertia, steady-state thermal loads), 

the volume integral may be reduced to a surface integral by further 

application of the divergence theorem [6.16, 6.17] . However for many 

classes of problem body forces may be ignored and in this case equation 

(6.17) for an interior point reduces to: 

U^fx) + ^ u^(() T^,*(x,C) dS(c) = j dS(S) (6.18] 

For a general point x the equation is: 

Tkl(X'G) dS(c) = j dS(c) (6.19) 

where c^ = 6^ for an interior point and depends on the form of the 

boundary when x lies on the boundary. 

6.4 Discretization of the equations 

In order to approximate the unknown functions u^ and T the 

boundary S is divided into a number of elements containing one or more 

nodes. A shape function is chosen which describes the assumed form of 

u^ and T over the boundary element in terms of the nodal values in a 

similar manner to the shape function for finite elements. The simplest 

case, that of constant tractions and displacements over the element with 

a single node at the centroid of each element, is used in the present 

work. Applying this to equation (6.19) and letting the point x be at 

each node in turn, gives the following for a configuration with N boundary 

elements. 

For element m (m = 1 to N) 

N ^ M r 
+ % u (x") I T* (x*,C)dS(C) = f uf.(x^\G)dS(C) (6.20) 
n=l * n=l & 

n n 
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where and refer to the coordinates of nodes m and n respectively, 

S is the n'th boundary element and c^. is the value of c for the 
n k £ , KX, 

m'th element. The equations (6.20) may be written: 

hkwm ".""I = 2k%mn k . « > l t o K (6.2i: 

m,n = 1 to N 

where K is 2 or 3, the number of dimensions of the problem, and: 

r 
h, , = I dS(c) m ^ n (6.22) 
K&mn j g k& 

n 

dS(() m = n (6.23) 

m 
r m 

gk«mn = Js "m'" 'C dS,(, (6.24) 
n 

These integrals may be evaluated numerically on the computer using Gauss 

quadrature, except that particular care must be taken when m = n. In 

this case the path of integration includes the singular point and for 

h, and additional term, c^ , is included. In fact the evaluation of 
k&mn k& 

c and the integral to which it is added may be avoided by considering 

a rigid body displacement in the & direction. No boundary tractions must 

result from such a displacement and thus it follows from (6.21) that: 

N 

'^&mn 
I = 0 (6.25) 

n=l 

Hence the term for m = n may be obtained from the other coefficients. 

The term g, when m = n must be evaluated however, and since 
k&mn 

a logarithmic singularity occurs in the kernel of the integral, 

u* (x^^G), a logarithmically weighted integration formula [6.13, 6.18] 

may be used. Alternatively the integration may be carried out analytically 

[6.2] as is usually done for the case when the kernel is the solution for 

a point force in an infinite region (the Kelvin solution). The more 

complicated kernels, such as the one used in the present work for con-

figurations with a circular hole, may be written as the sum of the Kelvin 

solution, u^^(x^,C), and a complementary part, u^ (x^\c). This opens 

a third possible way to evaluate the integral of equation (6.24) when 
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m = n which is the method used in the present work. Equation (6.24) 

may be written: 

f K, m f c , m 
Sk&mn = jg "k%(* 'S) dS(S) + u^^fx ,5) dS(C) (6.26) 

n n 

Thus when m = n the non-singular part, resulting from u^^(x",C), is 

evaluated numerically using the same procedure as for m ^ n and then 

added to the singular part from u ^(x^,G) which is evaluated analytically 

as in reference [6.2]. 

6.5 Solution of the equations 

The simultaneous equations (6.21) may be assembled in matrix form 

as: 

H u = G T (6.27) 

where u and T zwre vectors containing the components at the nodes of 

displacement and traction respectively. H and G are square matrices of 

order 2N for two-dimensional analysis or 3N for three dimensions. 

In a well posed problem either the displacements, the tractions or 

sufficient components of both will be specified on each element of the 

boundary. The matrix equation (6.27) may be rearranged therefore so that 

all the unknown components are contained in a vector X and the known 

components multiplied by their coefficients are contained in a vector Fy 

Thus: 

A X = F (6.28) 

where A is a matrix containing the appropriate coefficients from H and 

Gy Having solved the simultaneous equations (6.28) the displacements 

u and tractions T will be known for the complete boundary and may be 

used to calculate the displacements and stresses at interior points. 

6.6 Interior points 

p 

The displacement at an interior point, denoted x , follows from 

equation (6.18) and may be given by: 

"k'"'' = «k4pn - hklpn 
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p 
The stress at the point x may be obtained using equation (6.7), 

remembering that this is valid for three-dimensions or plane strain 
P 

but must be modified for plane stress. Substituting for u (x ) from 

equation (6.18) into equation (6.7) gives 

= j' '"ij ^ ^ [uJ^lx^E)])) 
o k J 1 

T^(E)dS (S) 

- igt'aij [T;^(x!\)]+ G(^|- [T?^(xfc)]+ [T*,(xfc)])} Ua(C)dS(C) 

(6.30) 

This equation may be summarized as: 

o..(x^) = f 0 ..(x^C) T (C) dS(c) -| g ..(x!\) u (C) dS(s) (6.31) 
IJ ,g - . - ,g 

where 

. IS.. .(x^C)] (6.32) 

and 

^(x,;) + G[T*^^j(x,E) + T]%_i(x,G)] (6.33) 

The discretized form of equation (6.31) for constant elements is: 

= I I dS(s) - u (x")l 2 (xf()dS(s)} 
n~ 1 S S 

" " (6.34) 

P P 
The coefficients D ..,(x,E) and # ..(x.r) are obtained from the 

& 1 J & 1 J 

kernel functions differentiated with respect to x (coordinates of the 

point at which the force is applied). The integration is then carried 

out numerically using Gaussian quadrature. 
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This completes the general formulation of the boundary element 

method which is valid for two or three dimensions provided the correct 

fundamental solution is used. In the present work the two dimensional 

fundamental solution satisfies the boundary conditions on a traction-

free circular hole exactly. The effect of this is considered in the 

next section. 

6.7 Modified kernel function 

Generally in the boundary element method the kernel function 

corresponds to Kelvin's solution for a point force in an infinite region 

or its equivalent in two dimensions. However the formulation is valid 

for fundamental solutions for a point force in any region which includes 

the region of the problem. Consider now the case where the kernel 

corresponds to the solution for a point force in a region with a traction 

free boundary S*. The boundary of the problem S may coincide with all 

or part of S* (see figure 6.1). The part of the boundary of the problem 

o 
Point force 

Known fundamental solution 

11 
S' 

i W i 

m 
ITT 

Examples of typical problems 

Figure 6.1 Boundaries with the modified kernel function 

to be solved which coincides with S* is denoted S and ^3e remainder of 

the boundary S'. The tractions are zero on S* unless the singular 

point X coincides with this part of the boundary. Even in this case 

analytic integration along the boundary will show that: 

u^(G)T* (x,%)dS(s) = 0 when x g (6.35) 

The integral on the left-hand side of equation (6.19) therefore need only 

be carried out numerically for the boundary S'. 
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:6.36) 

If all or part of S is loaded in the configuration being analysed, 

the integral on the right-hand side of equation (6.19) will have a 

contribution on the boundary and either that part of the boundary 

must be divided into elements or a superposition principle must be used 

as was mentioned in section 6.1. If S is traction-free the integrals 

of equation (6.19) may be evaluated on the boundary 8' only and therefore 

no elements will be required on the boundary S^. Points on S where 

stresses or displacements are required may then be treated as internal 

points. 

The modified fundamental solution must provide values for the 

following: 

"ki'X'C)' 

and j ( x , c ) 

For the Kelvin solution in two dimensions the tractions and dis-

placements may be readily obtained in terms of the spatial components 

(x,G). However for more complicated kernels in two dimensions which 

include other boundaries, explicit expressions are more difficult to 

obtain. These solutions are generally expressed in terms of complex 

potential functions $ (z,z ) and 4^(z,z ) where k refers to the 

direction of the unit point force at z , and z is a general position in 

the region. In terms of x and g, z and z may be expressed as: 

z = + iCg 

z = x. + ix_ 
o 1 2 

Differentiation with respect to z is denoted by ' (hence 

etc) and differentiation with respect to x^ by the subscript , 

hence A, . , etc). The displacement components u* and u* . are 
k,j ^ ^ k& k&,j 

then given by 

"kl + i "kZ = ("Ok - : *k - 4^) (6.38) 

(6.37) 

"kl.j + ' "•k2,j = A - "'kj -
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where c = (3 - 4v) for plane strain 

(6.40) 

or for plane stress 
1 +V 

Bar denotes the complex conjugate of a function. 

The tractions depend on the direction cosines of & of the normal 

to the boundary. Defining the complex number L as: 

+ i&2 (6.41) 

the tractions are given by: 

= " k + L _ (.J|; + L (6.42; 

and the terms T*^ are given by: 

^kl.j ' If'kz.j • '•k.j ^ •k.a' ^ ^ '6.43) 

The required components are therefore given by equations (6.38), 

(6.iM), (6.42) and (6.43) in terms of the complex potentials $ and 

^ and their derivatives. These are given, together with the expression 

for in Appendix F for a point force near a circular hole, which 

is the kernel function used to obtain the results of the next chapter. 

The expressions for the complex potentials were obtained by Murakami and 

Nisitani [6.19]. 

6.8 Implementation 

The modified boundary element method was implemented on an ICL 2970 

computer. The existing simple boundary element program [6.2] employing 

a constant shape function over each element, was modified in the following 

manner; 

* A new subroutine was written corresponding to the modified 

kernel function for a region with a circular hole given in Appendix F. 

The subroutine yields the values of the parameters specified in equation 

(6.36) using 'complex' arithmetic facilities. 
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* A subroutine was also written to replace references to the 

standard Kelvin kernel function so that having chosen which sub-

routine to use for either the standard or modified method, the 

remainder of the program would remain unchanged. The modifications 

also allow other kernel functions to be implemented simply. 

* Reference to the kernel function is made at several points in 

the program which therefore required modification. These are: a) the 

evaluation of coefficients h, _ and g, ̂  (m ^ n) using equations 
k&mn ^k&mn 

(6.22) and (6.24). b) the evaluation of g (m = n) using equation 
p Kiornn p 

(6.26). c) the evaluation of and using equation 

(6.32) and (6.33). 

* Options for additional Gauss points (4 points are used for the 

results quoted in Chapter 7), plane stress rather than plane strain [see 

equation (6.8)], automatic grid generation and other facilities were 

also added to the software. 

Initial tests with the modified program showed that a considerable 

increase in run time resulted when the modified kernel function was used 

instead of the standard kernel function (up to a factor of 10 for the 

same number of elements). This is due to the additional computation 

required in evaluating the displacements, tractions, etc. [equation 

(6.36)] from several general 'complex' expressions rather than one 

explicit algebraic expression. (The increase in run time occurs even 

if the standard kernel function is evaluated from the general complex 

expressions). To improve the efficiency of the program to a comparable 

speed to the original would require these explicit expressions to be 

obtained. However as the program stands its run time is acceptable and 

it has the advantage that new kernel functions may be implemented 

relatively easily given the knowledge of * and ^ . 

The method for preparing the data and using the modified BEM 

program on the ICL 2970 computer is explained in appendix G. 
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CHAPTER 7 

BOUNDARY ELEMENT RESULTS 

7.1 Configurations analysed 

The modified BEM program has been used to analyse two simple 

configurations in order to assess the accuracy and effectiveness of 

the method. The configurations are shown in figures 7.1 and 7.2: 

Figure 7.1 Externally loaded annulus. 

am externally loaded annulus with a traction free hole and a square 

plate in biaxial tension with a central traction free hole. The radius 

of the hole is denoted a, half the width of the disc or plate is denoted 

w and the distanceof a general point from the centre of the hole is 

denoted r. The radial and tangential stresses are given by o and o 

respectively and the external normal stress on the outer boundary in 

both cases is c . The stresses in the annulus are known analytically 

[7.1] and for the square plate were determined by Hengst [7.2], thus 

comparisons may be made with these results to show the accuracy of the 

method. 
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Figure 7.2 Square plate with central circular hole in biaxial tension. 

7.2 Comparison between the modified and standard kernel functions 

An annulus with a medium sized hole, a/w = 0.3, was analysed 

using the BEM program with the modified kernel function for configurations 

with circular holes. The outer boundary of the annulus was modelled 

using 8, 12 or 24 boundary elements. The values obtained for the radial 

and tangential stresses across the section of the annulus were compared 

with: 

i) the known analytic solution given by the formulae: 

(1 - af/rZ) 
(1 - af/wf ) 

(7.1) 

(1 + af/r') 
(1 - a*/w*) 

(7.2) 
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ii) the stress calculated using the BEM program with the 

standard Kelvin kernel function, using a total of 16 or 24 boundary 

elements to model both the outer and inner boundaries of the armulus. 

Figure 7.3 shows these results for the normalised tangential 

stress, Og/O , across the section of the annulus. The maximum stress 

occurs at the edge of the hole thus the stress concentration factor, 

"t' is 8' o 
at r = a. 

(A 
CC 
(b 
5-J 

0 
O 
oo 
c 
H 
13 
0) 
U] 

Iw O g 

2 . 2 

2 . 0 _ 

Hole size a/w = 0.3 O 
t 

l . ( 

1.4 

1 . 2 

1 . 0 -

0 . 8 

Analytical solution 

' — o 
+• 

Modified kernel 
Standard kernel 
Modified kernel 
Standard kernel 
Modified kernel 

24 elements 
24 elements 
12 elements 
16 elements 
8 elements 

_L _L J. 

0.3 0.4 0.5 0.6 0-7 O'B 

Relative distance from centre of annulus r/w. 

0.9 1 . 0 

Figure 7.3 Comparison of results for o in externally loaded annulus. 
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Near the outer boundary (r/w = 1) all the BEM results become inaccurate 

due to the proximity of the outer boundary. This is because the 

numerical integration techniques are inaccurate close to the singularity 

in the kernel function. The fall off in accuracy occurs with these 

results at a distance from the outer boundary equivalent to between 1 

and 2 times the lengths of the elements on this boundary. Thus the 

results for 16 elements with the standard kernel function are similar 

to those for 8 elements with the modified kernel function in this region 

since both have the same number of elements on the outer boundary. 

Similarly 24 elements with the standard kernel and 12 elements with the 

modified kernel have approximately equal errors approaching the outer 

boundary. However the real advantage of the modified kernel functions 

is seen as the inner boundary is approached. Using the standard kernel 

function with elements round the hole a similar deterioration in the 

accuracy of the boundary element solution occurs as with the outer 

boundary. Thus no value for the stress concentration factor may be 

obtained with this method except by extrapolating the interior values 

to the boundary in some way. With the modified kernel functions no 

elements are required round the hole and therefore there is no 

deterioration of the results right up to the hole boundary. Accurate 

values of the stress concentration factor may therefore be obtained 

without the need for extrapolation. The errors are approximately 4.5%, 

2% and 1% with 8, 12 and 24 elements respectively. 

The same pattern emerges when looking at the radial stress in the 

annulus (Figure 7.4). The radial stress dies away to zero as the hole 

is approached and the BEM results with the modified kernel function 

closely follows the analytic solution over this region. The values of 

radial stress obtained from the method with the standard kernel function 

are considerably less accurate over the entire range but in particular 

close to the hole. 

These results show the effectiveness of the modified kernel function 

in obtaining accurate values of stress, and in particular the stress 

concentration factor, near the edge of a circular hole. Further results 

have been obtained to show the variation in accuracy obtained using the 

modified kernel for different sizes of hole. 
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Figure 7.4 Comparison of results for o in externally loaded annulus. 

7.3 Annuli with various sizes of hole 

The maximum stress in annuli with holes varying in size from 

a/w = 0.5 to zero (no hole) was calculated using the modified kernel 

function with 8, 12, 24 and 48 elements on the outer boundary of the 

annulus. The values obtained were compared with the known values from 

equation (7.2) with r = a and the percentage error, given by was 

plotted against the hole size, a/w, in figure 7.5 where E ^ is defined 
ref 

by equation (5.1). 
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Figure 7.5 Accuracy of the modified BEM solution for annuli with 

various sizes of hole. 

The values of stress concentration given by the modified boundary 

element method were all below the theoretical value and, as expected, 

the error decreases as the number of elements is increased. With no 

hole, a/w = 0, the modified kernel functions are equivalent to the 

standard Kelvin functions and the configuration is simply a disc in 

constant biaxial tension. The error in the BEM solution in this case 

is approximately 4%, 2%, 1% and 0.3% with 8, 12, 24 and 48 elements 

respectively. No improvement on this level of accuracy could be expected 

when the hole is introduced in to the configuration and the kernel function. 

However it is interesting that the same accuracy is maintained up to hole 

sizes of about a/w = 0.3. For larger holes the error increases quite 

rapidly when only 8 elements are used on the outer boundary and less 
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severely the more elements are used. This effect is related to the 

size of the elements on the outer boundary in a similar way to the 

deterioration of accuracy close to the boundary observed in Figure 7.3. 

The inaccuracy is caused, at least in part, by the approximate numerical 

integration in the proximity of a singularity in the kernel function. 

To summarize, the accuracy of the BEM solution with the new 

kernel functions improves as more (or smaller) elements are used round 

the boundary. For a given number of boundary elements the accuracy is 

better for smaller holes, but if the hole is below a certain size (e.g. 

a/w = 0.3 for 8 elements) the accuracy is approximately the same as 

would be achieved using the standard kernel function on the configuration 

without the hole. 

7.4 Square plates with various sizes of hole 

The other configuration analysed was a square plate with circular 

hole in biaxial tension. In this case the numbers of elements on the 

outer boundary were 4, 12, 20, 28 and 44 which, having an odd number of 

nodes on each side, enabled the rigid body motion to be constrained 

while preserving two axes of symmetry. A graph of the percentage error 

^ was again plotted against the hole size a/w and this is shown in 

figure 7.6. The smaller scale on the vertical axis compared to figure 

7.5 should be noted. 

The general features of these results resemble those for annuli, 

i.e. greater accuracy for smaller holes and for a larger number of 

smaller elements on the outer boundary. However the deterioration in 

the accuracy as the hole size increases is very much more marked in 

the case of the square plate. The BEM results for no hole (a/w = 0) 

are in fact more accurate than in the case of the annulus and for a hole 

size of a/w = 0.1 the errors in the two cases are approximately equal. 

For larger holes however the errors are considerably greater in the 

square plate case and the rate of the decline in accuracy is also 

greater. Nevertheless errors of less than 10% are achieved using 12 

elements for hole sizes up to a/w = 0.3, and using 44 elements 10% 

accuracy is maintained up to a/w = 0.5. 
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Figure 7.6 Accuracy of the modified BEM solution for square plates 

with various sizes of hole. 

A possible reason for the appreciable decline in the accuracy of 

results for square plates compared with annuli may be understood by 

considering the modelling of the displacements, u (C), by the boundary 

elements (see section 6.4 of the formulation). A constant shape function 

for tractions and displacements was assumed over each boundary element 

- this being the simplest form of the boundary element method. Constant 

displacement over elements can only model exactty a zero strain/zero 

stress condition, and whereas linear elements would yield the exact 

solution (save rounding errors) for a constant stress state such as the 
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square plate with no hole in biaxial tension, the constant elements 

give only an approximation to this case. In spite of this drawback 

quite accurate values for stress may be obtained using constant 

elements in the BEM, particularly if the displacements are approximately 

constant over each element. They are approximately constant over the 

elements in the square plate only while the hole is very small, but 

in the case of the annulus the presence of the hole affects the magnitude 

of the displacements but not the fact that they are constant in the 

radial direction and thus approximately constant over the elements. 

These results therefore, clearly show the need to extend the method 

to at least linear elements before attempting more complex geometries 

and loadings and consequently no further results are presented in this 

thesis. 
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CHAPTER 8 

GENERAL CONCLUSIONS 

8.1 The finite element superposition method 

The finite element superposition method (FESM) described in Part I 

was formulated and applied to the analysis of stress concentrations in 

configurations with traction-free or loaded holes. Important modific-

ations were made to the superposition method which had previously been 

used to determine stress factors in configurations with cracks, 

including introducing the loading function which accurately represents 

the tractions on a hole. It was found to be possible to modify the 

form of the functional in the formulation such that no explicit inte-

gration was required on the hole boundary, which meant that the increase 

in the computation required to analyse loaded configurations was kept to 

a minimum. The analytical trial functions and loading function used for 

determining the stress near holes were derived from the known solutions 

for elliptical or circular holes in stressed sheets. Two trial functions 

for elliptical holes and up to eight trial functions plus the loading 

function for circular holes were implemented in the computer program and 

results were obtained for configurations with both traction-free and 

loaded holes. Initial results for traction-free holes confirmed the 

validity of the method and showed the effect on accuracy of various 

parameters. The conclusions from this work may be summarized as follows. 

1. FESM improves the accuracy of basic constant strain finite 

elements while adding very few degrees of freedom (equal to the number 

of trial functions) to the system of equations. Comparison with more 

sophisticated finite element methods (i.e. with linear stress fields 

within elements) shows that FESM is able to achieve similar or improved 

accuracy with very many fewer degrees of freedom. 

2. Refining the finite element mesh improves the accuracy of the 

method, but solution time and the quantity of data is increased. 

Furthermore the improvement of FESM over conventional finite elements 

is less marked for fine meshes. A compromise between accuracy and 

efficiency must be sought and in practice, a ratio of the hole radius 

to a typical element dimension of about 2 to 3 was found to be suitable 

for the applications discussed. 
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3. The accuracy of the method is greater for small ratios of 

the hole size to plate width; narrow elliptical holes also show 

greater accuracy. In general the FESM solutions are more accurate 

where the trial functions chosen closely match the exact solutions in 

the region of stress concentration, as occurs, with the particular 

trial functions used in this study, for small or sharp holes. 

4. Additional trial functions, provided that they are applicable 

to the particular geometry, will in general improve the accuracy of 

solution. A total of 8 trial functions for circular holes were imple-

mented in the computer program, 5 of which were applicable to config-

urations with two axes of symmetry. Quite accurate results were 

generally achieved with just 2 trial functions (equations (3.19) and 

(3.22), i = 1 and 4) but using the full set of trial functions was 

found to improve the accuracy by up to 3%, particularly if either the 

special region was of limited size or extra elements were included just 

near to the point of stress concentration. The optimum area for the 

special region was found to be approximately 4 times the area of the 

hole when 5 trial functions were used. 

5. The accuracy of the stress concentration factors, for circular 

holes of less than half the plate width in diameter, could be expected 

to be within approximately 3% of the true value when using 5 trial 

functions. 

New results for the stress concentration factors at traction-free 

elliptical holes in square plates were obtained using the method. The 

stress concentration increases rapidly as the aspect ratio a/b rises, as 

also occurs for an elliptical hole in the infinite sheet. Comparing the 

square plate results with those for the infinite sheet, K is higher in 

all cases for the square plate, but the proportional difference is less 

for small holes and higher aspect ratios. Thus the effect of the finite 

size of plate was shown to be more significant for large holes of 

circular or near-circular shape. 

In applying FESM to configurations with loaded holes, suitable 

representations for the radial and tangential tractions round a pin-

loaded hole were discussed. Several configurations were analysed in 

order to compare the K obtained with, firstly arialytical values and 
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secondly, values obtained by other numerical methods. The close 

agreement between the FESM and analytical results was to be expected 

since the trial functions and loading function themselves contained 

the analytical solution. However close agreement (5% or better) was 

also obtained with the results from more complex configurations which 

w%re compared with the estimates of K from other numerical methods. 

New values of stress concentration factor were produced for con-

figurations with loaded holes to show the effect of different distributions 

of load on the hole and to give values of for rectangular lugs of 

varying dimensions. The stress concentration varied significantly with 

the different loadings applied (an increase of 60% being noted for one 

configuration between constant pressure over half the hole and a cosfe 

distribution of load with friction). For configurations without friction 

the load distributions modelling close-fitting pins gave the lower stress 

concentrations. However when friction was introduced the stress concen-

tration was markedly increased - by up to 17% when the proportion of 

the resultant load carried by the shear tractions was 0.2. 

The stress concentration factors for rectangular lugs with loaded 

circular holes of diameter half the plate width, were determined using 

FESM. The K for the lugs increased as the distance between the hole 

and the top of the lug was reduced, especially when this distance became 

less than the hole diameter. A comparison between these results and 

independent estimates for the K in rounded lugs, showed a close 

correlation, with the K for rounded lugs being higher by approximately 

7%. 

The finite element superposition method has been shown to be 

effective in the analysis of stress concentrations near loaded or un-

loaded holes. Compared to other finite element methods it is efficient 

in terms of the number of degrees of freedom in the problem, and hence 

requires only limited data preparation, computer storage and post-

processing. The accuracy of the method for the applications discussed 

was shown to be adequate for engineering purposes, in most cases being 

accurate to within 3%. Its limitations are that it is applicable only 

to two-dimensional configurations, and ones for which suitable trial 

functions exist. Thus, for example, changes in section near to the 

hole would be very difficult to model with simple trial functions. The 
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most likely potential for further development of the method is to 

incorporate FESM as a substructure within larger finite element 

schemes (see reference [8.l] for example). This is discussed briefly 

in the future work section 8.4. 

8.2 The modified boundary element method 

The simple boundary element program, using a constant shape 

function for the displacements and tractions on the elements, was 

modified by using a new fundamental solution for a region containing 

a circular hole. This change to the method was shown to have the effect 

that for configurations with traction-free holes the boundary conditions 

on the hole could be satisfied exactly and no discretisation of this 

part of the boundary was required. Since the fundamental solution was 

more complicated and required the use of complex algebra, additional 

computation was introduced, but this was offset by the fact that stress 

concentration factors at the hole could be calculated directly and with 

similar accuracy to other internal points, and by the fact that fewer 

elements were required to model the configuration. Furthermore the 

increase in run time would be substantially reduced if explicit 

expressions for the modified kernel function were obtained and this 

is recommended as a priority for future work. 

The program was tested by solving for the stresses in an externally 

pressurized annulus and a square plate with a central circular hole in 

biaxial tension. The following conclusions were reached from the results 

of the computation. 

1. For an externally pressurized annulus accurate values of stress 

concentration (less than 5% error) were obtained from the modified 

method using only a few elements on the outer boundary (8 elements with 

a hole size of a/w = 0.3). For larger numbers of elements on the outer 

boundary or for smaller holes the accuracy of the method improved. 

2. The standard boundary element method was much less effective 

for the analysis of this configuration since both the inner and outer 

boundaries of the annulus had to be modelled, and since when using constant 

elements the stress can only be calculated accurately some distance 

away from boundary elements (typically the length of the element), no 

direct estimate of could be obtained. 

- 1 3 1 -



3. For a square plate with a circular hole in biaxial tension 

the modified BEM estimate for K was less accurate than for the annulus 

and the accuracy decreased for larger holes more rapidly than for the 

case of the annulus. With a hole size of a/w = 0.3 an error of approx-

imately 10% occurred with 12 elements modelling the outer boundary. 

4. The larger errors occurring in the square plate case suggested 

that the constant shape function over the boundary elements was 

insufficient for this configuration. The superiority of the modified 

kernel functions however has been shown and it is suggested for future 

work that the modified kernels are incorporated in a boundary element 

formulation with higher order elements. 

In spite of the fact that the boundary element work has not yet 

produced a program for general application in the determination of stress 

near holes, the present work has demonstrated the potential of the method 

when using modified fundamental solutions. The next stage in the 

development of this work will be the incorporation of explicit ex-

pressions for the modified kernel function in a BEM program with either 

a linear or quadratic shape function over the elements. 

8.3 Comparison of the methods 

The two methods described in this thesis, the finite element 

superposition method and the modified boundary element method, were 

developed for analysing the stress concentrations near holes or other 

cut-outs in two dimensional configurations. Both methods are extensions 

to established numerical techniques, modifications to which have been 

made by incorporating known analytical solutions to problems in elasticity 

which are related to the actual problems to be solved. Thus FESM uses 

as trial functions solutions for an infinite plate with a circular hole, 

to solve configurations of finite size containing such a hole. For 

modified BEM the relevant fundamental solution for this problem, the 

solution for a point force near the circular hole in an infinite region, 

is incorporated as the kernel function. The methods are therefore 

related and ultimately have similar limitations in that they may be 

LKsed cmly for configurations for which suitable analytical solutions, 

for the trial functions or kernel function, can be found or are already 

known. In practice this may not be a severe limitation since commonly 

occurring causes of stress concentration are holes for which analytical 

solutions exist. 
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A feature of both methods is that they require less modelling 

(i.e. fewer elements) in the region of the stress concentration. This 

is an important asset, particularly as the trend in computing continues 

toward fast but small machines which may not have the large core storage 

required by traditional finite element programs, but which could adequately 

deal with the relatively modest requirements of these formulations of 

the methods. 

The two methods are presently at different stages of development; 

FESM being ready for application to the real configurations for which 

concentration factors are required, but the modified BEM still needs 

further work in developing the method. 

8.4 Future work 

The FESM computer program has been shown to be effective for con-

figurations with loaded or traction-free holes, particularly for deter-

mining the stress near to a hole with a specified loading. Future work 

on this program therefore should initially be concerned with its 

application to important engineering components such as lugs of varying 

dimensions. Optimum geometries of lugs could be determined for particular 

loadings. Additional trial functions may be found to be advantageous 

for some configurations and the program could easily be modified to 

accommodate more than the 8 functions at present available. 

The distribution of tractions on the hole boundary will be of 

particular importance in studies such as that of lug geometries, and it 

may become necessary to make the loading an unknown in the problem and 

incorporate modelling of the pin into the finite element scheme. 

Providing contact between the hole and pin was maintained a loading 

function for the pin could be incorporated into the method, being the 

solution to a circular disc with arbitrary tractions on the boundary. 

The Fourier coefficients for the loading functions of the hole and 

disc would be unknowns in the system of equations to be determined from 

the variational principle. 
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The immediate priority for the BEM work is to incorporate the 

modified kernels for circular holes into a BEM program with a linear 

or quadratic variation of displacements and tractions over the elements 

rather than constant shape function used at present. Not only would 

this enable a wider range of configurations to be analysed accurately 

but it would also allow the validity of the method to be checked more 

readily. 

Another area of immediate interest would be in the production of 

explicit algebraic expressions for the modified kernel functions. This 

would reduce considerably the amount of computation required to form 

the simultaneous equations, but due to the complexity of the functions 

concerned (see appendix F) would involve a significant amount of analysis, 

When analysing configurations with one or two axes of symmetry it 

is convenient to deal with only one half or quarter of the complete 

region. This may be done by specifying kinematic boundary conditions 

on the axes of symmetry, as was done for the finite element method, or 

by symmetrical assembly of the boundary element matrices which avoids 

the need for elements on the axes of symmetry. This assembly of the 

matrices was proposed by Telles [8.2] and could usefully be incorporated 

as an option for symmetrical configurations in the present method. 

One area of potential application for both FESM and the modified 

BEM is as small sub-structures in much larger analyses. Thus large 

structures or components containing several holes, cracks, stiffeners 

etc. could be sub-divided into a region to be analysed with conventional 

finite elements and sub-regions round stress concentrations which would 

require more accurate analysis from the new methods. Compatibility 

between these regions could be readily specified if shape functions of 

the same order were used (e.g. constant strain elements). 

Types of stress concentrations other than the ones so far con-

sidered might be solved with FESM or modified BEM. New trial functions 

would be required for FESM for such configurations as loaded elliptical 

holes or rows or arrays of holes. For BEM the fundamental solutions for 

an ellipse, a crack, a long straight boundary or a disc could be 

incorporated into the existing program. The boundary element work 
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could be extended to three dimensional analysis if the fundamental 

solution for a point force near an ellipsoidal cavity were derived. 

This would enable 3-D configurations containing cylindrical or spherical 

holes, for example, to be solved. 
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APPENDIX A 

Derivation of the Variational Principle 

The principle of minimum complementary energy states that the 

complementary energy is a minimum when the system considered is 

equilibrium. A functional [2.5] based on this principle may therefore 

be expressed: 

U(o^l + J (T^)^ u dS (A.l) 

K 

n 
I 

U(o^) 

.K 

where n = the complementary energy functional 

the stress field over the region considered 

the strain energy 

boundaries having kinematic constraints 

the tractions on the boundary arising from 

the prescribed displacements on S 

denotes the transpose of a vector or matrix. 

When the complementary energy is a minimum, the variation of the 

functional is zero, thus: 

T 

6 n = 0 (A.2) 

To use this variational principle in a finite element scheme the 
I 

equilibrium of the stress field a is required across element boundaries. 

This may be introduced using Lagrange multipliers rather than as a 

constraint on the choice of possible functions for . Thus at any 

point on a boundary between two elements, element 'a' and element 'b' 

say, the equilibrium conditions may be expressed as follows: 

T^ 
—a 

(A.3] 

where T^ and T,̂  are the tractions due to the stress field 
—a —b — 

elements ' 

in 

and 'b' respectively along the inter-element boundary, 

S . Introducing the Lagrange multiplier, X , this constraint may be 

expressed as: 

6 {f + T^) dS } 
J - -t 
ab 

(A.4) 
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where 6{ } denotes the variation of the expression and S , is the 
ab 

boundary between elements 'a' and 'b'. The term within the curly 

brackets in equation (A.4), summed over all elements, may therefore 

be added to the functional, equation (A.l). The new functional, n , 

may then be written: 

% = Z {- U..(o*) + I (X)^ dS + [ dS } (A.5) 

where the summation is carried out over all the elements, the subscript 

N refers to the N'th element and in particular denotes the inter-

element boundaries of the N'th element. The complete element boundary, 

denoted , is made up of inter element boundaries S , and/or kinematic 

boundaries S and/or traction boundaries S . Thus:^ 

N N 

+ S + S (A.6) 
N N N 

The Lagrange multiplier \ in equation (A.5) may be identified by 

the 

following: 

taking the variation of n with respect to and This yields the 

6: = 2 (uj^GT^ dS + [ dS + f dS + 
° " % " " ' 

' u dS } (A.7) 

= 0 

where u are the displacements defined on the element boundary and 
I 

are equal to u on S . Since 6T must be zero on the traction boundaries, 
— K — 

equation (A.7) may be written; 

I { [ dS + f dS } = 0 (A.8) 

from which it is clear that X is equal to the displacement field u. 

Substituting for \ in equation (A.5) gives: 
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: C = % dS + I ( u j T dS } ( A . 9 ) 

% " " 
or more conveniently: 

n C = f ( - ^ N + I dS - I (u^T T dg } ( A . 1 0 ) 
N Js 

N 

where T denotes the prescribed tractions on the traction boundary 
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APPENDIX B 

Listings of selected finite element program segments 

This appendix contains listings of the following program 

segments from the FESM program 

Segment Name Function Page No. 

NOTCH 

AREAS 

TRLFNSl 

TRLFNS2 

LOADFN 

BCONDS 

ALPHAS 

Program master segment 

Calculates element areas 

Trial functions for circular hole 

Trial functions for elliptical hole 

Loading function 

Applies boundary conditions 

Calculates the coefficients a 

159 

163 

163 

165 

166 

167 

172 

Table B.l Program segments listed in this appendix. 

The program segments shown in table B.2 are also used by the FESM 

program but are not listed in this thesis since they are not primarily 

concerned with the theoretical changes to the method which have been 

discussed in chapters 2 to 4. 
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Segment Name Function 

ADJUST Adjusts the direct access file data if too 
many nodes defined. 

BCDATA Inputs boundary condition data. 

COMP Compares two character strings. 

DETAILS Prints details of options selected. 

ELEMDATA Inputs element data 

ELEMPRINT Prints element data 

KASSEM Assembles element stiffness matrix in global matrix. 

KCNSTR Solves constrained banded matrix equation. 

KMAT Forms global stiffness matrix. 

KSOLVE Solves simultaneous equations. Called by KCNSTR. 

KVECT Post-multiplies banded matrix by vector. 

MINAX Determines minimum and maximum value in array. 

MINV Inverts matrix. 

NODEDATA Inputs node data. 

PARAMS Calculates and checks various parameters. 

PRINT Prints displacements and stresses. 

SIGSTAR Evaluates stresses. 

SPRBND Assembles list of nodes on special region boundary. 

SPRINT Calculates strain energy term for elements in special 
region. 

SPRLDS 
•f* 

Evaluates a. and corresponding nodal loads for 
elements in special region. 

SRDATA Inputs data for special region. 

TRANSAX Converts stresses and displacements to new 
coordinate axes. 

TRAX Rotates coordinate axes. 

TRLFNSO Trial functions for cracked configurations. 

Table B.2. Other program segments used by FESM program. 
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CJl 

CODE 

C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

FOR NOTCH 
PROGR 4m NOTCH 

C IPR =-1 MlNiyilf OUTPUT, (CHANNEL 7) 

!I$SS$S$SS$$S$SS$$$SSS$S$SSS$$SSSSSS$ 

= 0 HEADING & MINIMUM OUTPUT. (CHANNEL 7) 
1 STRESSES OUTPUT. 

»= 2 DISPLACEMENTS OUTPUT. 
= 4 DATA OLTPUT. 

(CHANNEL 7) 
(CHANNEL 7) 
(CHANNEL 7) 

c s s %%s% s s s s s s s s s s s ss c = 8 

c s s % s s s ss ss s ss c = 1 6 

c i%% % s s s ss ss s ss c = 32 ADDITIONAL OUTPUT. (CHANNEL 7 ) 
c %i Si s s s ss ss s s s s s s c = 6 4 EXTRA CE-BUG O U T P U T . (CHANNEL 7 ) 
c s s s s s ss s s s s s ss c 

S$$SSSSS$IS$SSSSSSSS$SSSSS$SSS$$$$SS 

THE F I N I T E ELEMENT SUPERPOSIT ION METHOD 

A F I N I T E ELEMENT PROGRAM FOR THE DETERMINATION OF 

STRESS CONCENTRATION AND STRESS I N T E N S I T Y FACTORS 

USING A METHOD DEVELOPED AT RAE BY P BARTHOLOMEW 

M O D I F I E D AND EXTENDED 

AT SOUTHAMPTON UNIVERSITY BY A R CARMICHAEL 

THE METHOD EMPLOYS A SUPERPOSITION OF CONSTANT STRAIN TRIANGULAR 
ELEMENTS AND T R I A L FUNCTIONS WITH A S P E C I A L R E G I O N . BAR ( F L A ) 
ELEMENTS ARE ALSO A V A I L A B L E FOR USE OUTSIDE THE SPECIAL R E G I O N . 
L O A D I N G ON HOLE A P P L I E D USING FOURIER SERIES OF TR A C T I O N S . 

W 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c • 
c 
c 
c 
c 
c * * * 

DIMENSIONS 

I D I M . G E . N U M B E R OF 
INAM.GT.NUMBER OF 
I D E .GE.NUMBER OF 

EQUATIONS = NEFI 
NODES = NNODE 
ELEMENTS = NEL 

M IN IMUM DIMENSIONS 

STIF(NEQ,ISEMI) RHS(NEQ,5) BC(NEB,5) RHSl(NEa) 
CT(NEU,2) 0T(NEti,5) C0NS3W(NE(J) 
X ( N N O C F ) Y(NNODE) lOENT(NNODE) NB A(NN0DE) 
L STF A (KNnDE,5 ) LS ThL( NNDO E , 5) 
FLNO(KEL,i) LSTSRN(NEL) T(NEL) 

IDIM MUST HE 
INAM I'liST BE 
IDE MUST BE 

FIRST DIMENSION OF 
FIRST DIMENSION Of 
FIRST DIMENSION OF 

ST IF , RHS, BC, 01, CT 
LSTBA, LSTBL 
ELNO 

I N 
IN 

SUBKCUTINE 
SUBROUTINE 

KCNSTR 
KVE CT 

CHECK THAT 
CHECK THAT 

THE 
THE 

D IMENSION OF SPARE 
DIMENSION OF SPARE 

I S G E . I D I M 
I ? GE . I D I M 

C ADD NUMBERS 1-64 TOGETHER FOR COMBINATION OF OPTIONS. 
C C ERROR AND WARNING MESSAGES ALSO OUTPUT ON CHANNEL 6 ] 
C 

INTEGER I S Y M D C ) 
INTEGER CONROW(45C),LSTSRN(400),IDENT(25Q),ELNO(AOO,5) 
INTEGER NBA(25C),LSTBA{25 0,3),LSTBL(2 50,J) 
INTEGER ITITLEM<2C),ITITLEC(20),0PTI0NS(16) 

C 
L O G I C A L CONVERT,OK,MOAF,COAF 

C 
REAL STIF(4 50,SC),RHS(45G,10),RHS1(45 0),BC(45 0,10),CT(4 50,2) 
REAL DT( 450,10,SIGMA (2 7, 400) ,T(400 ), A R EA (400 ) , X { 25 D) , Y (25 0) 
REAL NU,DCT(9,9),DCTR(9),DS(9,9),DCKR(9),OCONT(9,9),AUPHA(9) 
REAL*4 AN(3Q)/30*C./,DN(3C)/30*D./ 

C 
CHARACTER*4 IDATA(20) 
CHARACTER*1 DATE(IS) 

C 
COMMON STIF,RHS,RHS1,BC,CT,DT,SIGMA,T,AREA,X,Y 
COMMON /BNOTCH/ISYM 
COMMON /TRL/C0NVERT,SSS(9,6),AN,DN,SIC0(5 8) 
COMMON /SIZE/ID,MTF,MRHS,MTF3,MA 
COMMON /TRX/XC,YC 

C*** *** *** *•* *** *** *** ** 
c 
C I N I T I A L I Z E PARAMETERS 

CALL I C L 9 H E M A S I C ( 6 4 , I R E S P ) 
0K=.TRUE. 
MDAF= .FALSE . 
CDAf=.FALSE . 
C O N V E R T : . F A L S E . 
IDIM=450 
IDE=4CC 
INAM=250 
MRH S= 10 
MTF = o 
MTF3=27 
Â=g1 
N RH 5= fPH 5 
1M=20 
I C=2 3 
N U= 0 . } 
E=1 .0 
DO 2C 1=1,IDE 

20 LSTSRN(I)=0 



O) 
0 
1 

C READ AND CHECK DfTA fOR ELEMENTS AND NODES 
C== = = = = == = = == = = = = = = = = = = = = = = = = = == ==== = = = = = = = = = 
C FIND BEGINNING Of MESH DATA 
AO READ(5,620,ENC=60)IDATA 

N=2 
CALL COMP(N,IDATA(2),3,"IN',1 ) 
IF(N.EQ.2)GCTC IOC 
OK=.F ALSE. 
GOTO 40 

150 CONTINUE 
DO 160 1R = 12 , 1 5 
READ (9,RE C= IR ) (DN( I>,I=IK *6-7G,IR'>6-65 ) 
CONTINUE 
READ<9,REC = 21 )E,NU 
IC=4 

READ "MESH" DATA 

160 
170 

C 
C 
180 

C 
c 
6U 

60 

100 

c 
c 

READ MESH DATA FROM D.A.F. 
IF( .NOT.OK) GOTO fct, 
MDAF=.TRUE. 
READ(9,REC=1)NEL,NNODE,NBC 
RE ADC 9,REC=2)X CRACK,YCRACK 
REA0(9,REC=3)A,e,THETA 
READ<9,REC=17)(ITITLEM(I),1=1,4) 
IM=4 
GOTO 100 
WRITE(6,134C) 
WRITE (7,1340) 
STOP •*FA1L*' 
CALL ICL9LGGDATE(DATE<1)) 
CALL ICL9LGGTIME(CATE<9)) 

READ "CONTROL" DATA 
REA0(4,64 0,ENI: = 14L)(0PTI0NS(I),I = 1,6) 
REAO(4,620)1TITLEC 
READ(4,640)ITF,ISYM 
lSYM(l«RMS) = n F 
IF( ISYM(MRHS-1 ) .NE .DGOTO 110 
READ<4,*)AN 
READ(4,*)(DN(1),I=2,25) 

110 DO 120 IR=7,11 
W RITE (9,REC = IR) (AN (I),1=1R*6-41,IR*6-36) 

120 CONTINUE 
DO 130 IR=12,15 
WRITE(9,REC = IR) (DN(I),1 = 1ft«6-70,IR*6-6 5) 

130 CONTINUE 
WRITE(9,REC=1e)(OPTIONS(I),I=1,6) 
WRITE(9,REC = 1';){ISYM(I),I = 1,6) 
WRITE(9,REC=20)(ISYM(I),I=7,MRHS) 
WRITE(9,REC=21)E,NU 
GOTO 180 

C 
C 
1 4 J 

Cri 

READ CONTROL DATf FROM D.A.F. 
CDA F = .TRUE. 
READ(9,REC=16)(0PT10Nb(l),I=1,6) 
KEAl/(9,REC=1P)(ITITLEC(I),I = 1,4) 
READ(9,REC=19)(ISYM(I),I=1,6) 
REAP(9,REC=20)(ISYM(I),I=7,MRHS) 
ITF=ISYM(MRHS) 
IF( ISVM(MRHS-l) .NE .DGOTO 170 
DO ISC IR%7,11 
PeAD('7,REC=IR ) (AN(I),I = IR*6-^1,IR*6-56) 

IF(MDAF)G0T0 2CC 
READ(5,620)ITITLEM 
READ(5,66 0)XCRACK,YCRACK,A,THETA,B 
REAO(5,640)NEL 
WRITE(9,REC=2)XCRACK,YCRACK 
WRITE(9,REC=3)A,b,THETA 

200 WRITE(9,REC=17)(ITITLEMd),1=1,4),(DATE(II),II=9,16) 
WRITE(9,REC=1S)(ITITLEC(I),I=1,4),(0ATE(II),II=1,^) 
IPR = 0PTI0NS(1 ) 
IM0=0PTI0NS(2) 
IF( ( B.LT.1.E-20) .AND.dTF .NE.O))B = A 
IF(IPR.LT.O)GOTO 220 
WRITE (7,680) 
WRITE(7,700) 

220 WRITE(7,720)(ITITLEM(I),I=1,IM) 
IF(MDAF)WRITE(7,1220) 
WRITE(7,720)(ITITLEC(I),I=1,IC) 
1F(CDAF)WRITE(7,1240) 
WRITE(7,1200)(DATE(II),1I=1,16) 
IF( IPR.LT.0)GCTC 240 
WRITE(7,740)XCRACK,YCRACK,A,B,THET»,t,NU 
WRITE(7,760 ) ITF 
CALL DETAILS(ISYM,IPR,IMD,AN,0N) 

240 THETA=3.1 41 5926l336*THETA/1fc0.0 
DO 260 1=1,MTF 
IF(ISYMCI).GE .1)10 = 1 
CONTINUE 

READ ELEMENT DATA 
CALL ELEt«DATA(ELNO,T,LSTSRN,I OE,NEL,NELSP ,MDAF) 

DETERMINE PARAMETERS FROM ELEMENT DATA 
MNODE=NNODE 
CALL P ARAMS ( N E L ,£ L NO, I D E , 3 , ID E NT , I N AM , 2 ,0 ,N EO , NAM , NNO D E , IS t M I ) 

CHECK WHETHER DIMENSIONING IS O.K. 
IF(NEQ.GT.IOIC)WRITE(7,12 60)IOI«I 
IF(NtL.GT.IDE)WRITE(7,128C)IDE 
I F( NNCDE .GT .1 NAM) WRITE ( 7, 1 30u) INAM 
IF( lEEMl .GT .8C)WR nE< 7,13 cC) 
IF( NE(,.GT .1 DIf) WR 1 TE( 6,12 601 DIM 
IF(NEL.GT.IDE)WRITE(6,128 0)1DE 
1F(NNCDE.GT.INAM)WRITE{6,1300)1NAM 
IF(ISEMI.GT.8C)WRITE(6,132C) 
IF(.NCT.MDAF.0R.fN0DE.EO.NN0DE)60T0 280 
W RITE(7,1 360)SNODE,MNODE 
WRITE(6,136 0)NNODE,MNOOE 
WRITE(9,REC=1)NEL,NN0DE,NeC 

260 
C 



I 
M 
CJ> 

w 

C ALL ADJUST(NtL,NNODE,WNO 0E,NBC,9) 
C 
C PRINT DATA IF RESIIlRLD 
? "J I F( IPh .LT .G ) tc; TO 300 

WHlTE(7,7i<0)N*'l",NEU,NtL,NNODE 
I. RI TE (7,80Q ) I SEM 
IF ( I PR-IPK/8*f-.LT .A)GUTO 5Q'J 
WRITE (7,f21) 
CALL ELEMPRINT(ELNO,T,NEL , IDE) 
WRITE(7,840) 

300 CONTINUE 
SA=SIN(THETA) 
CA=CCS(THETA) 

C 
C HEAD NODE AMD COORDINATE DATA 

CALL NODE DA TA(*,y,NAM,INAM,NEL,NMODE,MOAF) 
C 
C TRANSFORM AXES (XCRACK,YCRACK,THETA) 

CALL TRAX(XCRACK,YCRACK,SA,CA) 
DO 32C I=1,NN0DE 
J=IDENT(I) 
IF(J.Ea.O)GOTC 32C 
CALL TRAX(X(l),y(I),SA,CA) 
I F( IPR-IPR / 8*?-.GE .4)WRITE (7,860)I,XC,YC,I,X (I ) ,Y(I) 

320 CONTINUE 

C CALCULATE AREAS OF ELEMENTS 

CALL Af<EAS( AREA,X ,Y,ELNO, INAM,IDE,NeL,A,8,XCRACK,YCR»CK,IPR) 
IAJSEf = IDIW«ISE!*I 

C STIFFNESS MATRIX FORMED 

CALL KI"!AT(STIF,IDIM,IAJSEM,NEL,ELN0,IDE,X,V,INAM,E,T,NU,IDENT, 
2 AREA) 

C 
C READ SPECIAL REGION DATA IF REQUIRED 

IF( .NOT,CDAF)CALL SRDAT A<LSTSRN,NELSP,ELNO,T,IDE) 
C 
C DEFINE BOUNDARY CF SPECIAL REGION 

C AL L SPRBND(LSTSRN,ELNO,LSTBA,LSTeL,NBA,NNODE,NEL,IDE,I NAM) 
0 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

C EVALUATE DAGGER FIELD STRESSES AND EaUIV. NODAL LOADS IN SP.R. 
C== = = = == = = = === === = = = = == = ============= = = = = == = = ====== === = = = = = = = === = 

CALL SPRLDS(RHS,ELN0,X,Y,XD1M,1DE,A,3,E,T,NU,INAM,XCRACK,YCRACK, 
2 LSTSRN,NELSP,SIGMA,NEL,IDENT,ITF,AREA) 

C==== = = == = = = = = = = = = = = = = = = === = = == = === === = = = == = = == = = == = = = = == = = = 
C APPLY BOUNDARY CONDITIONS AND EVALUATE BOUNDARY INTEGRALS 
C=== = = = == = = = == = == = = = = = = = = = = = = = = = ====== = = = = = = = ====== = = = = = = = = = 

IF(IPP-IPR/e*e.GE.4)WRITE(7,880) 
CALL rrCONDS(X,Y,KHS,fc,NU,IDIM,XCRACK,YCRACK,T,LSTSRN,A,B,CT, DT, 

2 CONROW,I^AM ,ELNO,IDE,DCT,DCTR,DCKR,DS,SIGMA,NtLSP,L3TBA, 
5 LSTBL,NBA,NNODE,NEL,IPR,lDENT,ITF,AREA,«IDAF) 

C 
C COPY RMS INTO BC 

DO 34C J=1,MRHS 

DO 34C I=1,IDIM 
BC< I,J> = RHS( I ,J ) 

3 40 CONTINUE 
C = = ==== = = = = = = = = == = =; = = = = == = = = i==r = = = = - = == = == = = ===== = 
C FORM "DCONT" hATPlX (SP. R. STRAIN 6MERG* TERM) 
C = = = = = = = = = = = = = = ==: = = = = = = = = = = i = = = = = = = = = = = = = = = = = = = = = = = 

CALL SPRINT(SIGMA,NELSP,DCUNT,T,E,NU,IOE,NEL,LSTSRN,AREA) 
C 
C PRINT ADDITIONAL OUTPUT IF REOD. 

IF(IPfi-IPR/64*64.LT.32)GOTU 460 
WRITE(7,900) 
0 0 36G 1=1,10 
WR1TE(7,9 2D)(CCT(I,J),J=1,ID) 
WRITE(7,940)DCTR(I) 

360 CONTINUE 
WRITE{7,98u) 
DO 400 1=1,ID 
WRI TE (7,1 02 0) (DS< I,J) ,J=1 ,10) 
WRITE(7,940)DCKR(I) 

400 CONTINUE 
WRITE(7,1040) 
DO 42C 1 = 1,ID 
WRITE(7,102Q) (DC0NT(I,J),J=1,I0) 

420 CONTINUE 
WR1TE(7,1060) 
00 44C 1=1,NEW 
WRITE (7,920)(RHS(I,J),J=1 ,10) 

440 CONTINUE 
460 IF(IPR-IPR/128*12(3.LT.64)G0T0 520 

yRITE(7,10SQ) 
DO 480 1=1,NEO 
WRITE(7,11CQ)(STIF(I,J),J =1,1SE1I) 

480 CONTINUE 
WRITE(7,112D) (IDENT(I),I=1,NN0DE) 
WRITE (7,114 0) ((CT(I,J),J=1,2),1 = 1 ,NEa) 
WRITE(7,1160) 
DO 500 1=1,NEa 
WRITE(7,920)(0T(I,J),J=1,1C) 

500 CONTINUE 
WRITE(7,1180)(CONROW(I),I=1,NEQ) 

C SOLVE CONSTRAINED BANDED MATRIX 

520 CALL KCNSTR(STIF,RHS,CT,DT,IDIM,ISEMI,C0NR0W,IDENT,NEQ,NN0DE. 
2 NHHS) 

C 
C PRINT NEW "RHS" IF RE8D. 

IF(IPR-IPR/64*64.LT.32)G0T0 560 
WRITE(7,1060) 
DO 54C 1=1,NEB 
WRITE(7,920)(RHS(I,J),J=1,10) 

540 CONTINUE 

C STIFFNESS MATRIX PE-FORM ED 

560 CALL KMAT(STIF,IDIM,lAjSeM,NEL,ELNO,IOE,X,Y,INAM,E,T,NU,IDENr, 
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1 AREA) 
C = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 
C CORRECT NON-SYfHtTRIC TERMS IN OS 

1 F( I SYM(9) .NE .1 )GOTO 600 
IF(IPR-IP(i/64«6A.&E.ii;)WRlTE(7,10GQ) 
DO 580 1 = 1,ID 
DS(I,9)=0S(9,I) 
IF(IPR-IPR/64<6A.GE.3i;)WRITE(7,10^0)(DS(I,J),J=1,ID) 

580 CONTINUE 

C CALCUL ATE ALPHA S 

600 CALL ALPHAS(STIF,IDIM,1SEHI,BC,RHS,RHS1,NEU,DCT,DCTR,DCKR,DS, 
Z OCONT,ALPHA,ISYM,IPR) 

C== = = = = == = = === = = = = = = === = ==== === = = 
C PRINT DISPLACEMENTS & STRESSES 

CALL PRINT(RHS,IDIM,NRHS,NEL,ELM3,I0E,IDENT,X,Y,INAB,E,NU,LSTSRN, 
2 NELSP,SIGNA,ALPHA,XCRACK,YCRACK,A,8,NN0DE,IPR,ITF,ARE A) 

C 
STOP 

C 
CFORMATS= = = == = = = = = = = = = = = = = = = === = === === = = = == = = === === = = = = == = = = = = = == = = = = = = = 
620 F0RMAT(20A4) 
640 F0RK.AT(16I5) 
660 F0RKAT(5F10,c) 
680 F0Rf"AT(1X ,36 ( •$•) ,16X , 

2 "A FINITE ELEMENT PROGRAM FOR THE DETERMINATION OF'// 
3 • i $ $$}.» $$$s$s SJSS % IJ',16X, 
4 •STRESS CONCENTRATION AND STRESS INTENSITY FACTORS'/ 
5 ' $$ S s s $ ss s$ S SS '/ 
6 • $SJ $ $$ $ $$ ss S ss •,8X,'****',4X, 
7 •USING A METHOD DEVELOPED AT RAE BY P BARTHOLOMEW 
8 • $$ $$ SS S $s SS SSSSSS'/ 
9 " $$ $ $ $ J $ s s SSSS S SS',16X,4X, 

W 

700 

7 20 
7 40 

7 6 J 

780 

800 
820 
840 

860 

1 • MODIFIED AND EXTENDED'//1X,36()19X, 
2 'AT SOUTHAMPTON UNIVERSITY BY A R CARMICHAEL') 
F0RMAT(/1*,28HPLANE STRESS,ISOTROPIC,PL ATE/ 

2 54H LINEAR VARIATION OF u,V DISPLACEMENTS IN EACH ELE c ENT) 
F0RKAT</1X,2CA4) 
FORMATC/IX,•COORDINATES OF CENTRE OF HOLE ARE XCRACK =',F10.6,3X, 

2 'YCRACK=•,F1C .6/• HOLE: SEKIMAJ3R AXIS LENGTH IS A =',F1U.6, 
3 • SEMI MI NOR AXIS LENGTH IS B =',F10.6/ 
4 • ANGLE BETWEEN "X" AXIS OF HOLE (OR LOADING) ANu OX C OOft I> t N A T E ' , 
5 • AXIS IS' ,F11 .7,<vh DEGREES,//' E = ' , El 2 . 5 , 1 OX , ' N U = ' ,F̂  .1) 
FORMATC// ' AUGMENTING TRIAL FUNCTIONS: SUBROUTINE T H L F S ' , 11 / 

F0RMAT(/1X,7HNAK =,I5/8H NES = , I 5 / g H NEL =,15/8H NNODE =, 
2 15) 
F0RMAT(/1X,14HSEi^IBANDWIDTH = , 15) 
F0RWAT(/1X,' ELEMENTS',/) 
F0RMAT</1X,2CH0R1GINAL COORDINATES,7QX, 

2 23HTkANSFORMED CuURDINATES/6H NODE,6X,1HX,8X,1HY,65X,6K NODE, 
3 6X,1HX,8X,1HY) 
FORfATdH ,I5,2F1U.6,60X,I5,2E12.4> 

680 

900 
920 
940 
980 
1003 
1 0 2 0 
1040 
1060 
1080 
1100 
1 1 2 0 
1140 
1163 
1 1 8 0 
1200 

1 2 2 0 
1240 
1260 
1280 
1300 
1320 
1340 
1363 

F O R M A T C / ' BOUNDARY C O N D I T I O N S ' / , ' 
2 • DESCRIPTION'/) 
F0RMAT(//,4X,'DCT',114X,'DCTR',/) 
FOR»AT(1D(1X,E12.5)) 
FORMAT(1H+,116X,E12.5) 
F0RMAT(//,4X,'CS'.114X,'DCKR',/) 
F0RMAT(//,4X,'CORRECTED DS',/) 
F0RMAT(9(1X,E12.5)) 
F0RWAT(/1X,4X,'DC0NT') 
F0RKAT(/1X,' RHS',/) 
FORMATCISTIF '/) 
F0RMAT((12(E1C.3,1X))) 
FORWATC//' IDENT'//(20I5)) 
FORMAT<//' CT'//(5<2(E10.3,1X),5X))) 
FORMAT(//' DT'/) 
FORMAT(//' CONROW•//(20I5)) 
F0RMAT{/' DATE: ' ,4A1,'/',2A1,'/',2A1/' TIME: 
•:',4A1) 

' / / 

',2A1, ' :',2A1. 

FORMATC 
FORMAT(' 
FORMAT(//' 
FORMATC//' 
FORMATC//' 
F0RMAT(/ / ' 
FORMATC//' 
FORMATC//' 

2 14,' NOT',14,' 
END 

MESH DATA READ FROM DIRECT ACCESS FILE.') 
CONTROL DATA READ FROM DIRECT ACCESS FILE,') 

ERROR **** NEa EXCEEDS ',14/) 
ERROR **** NEL EXCEEDS ',14/) 
ERROR **** NNODE EXCEEDS ',14/) 
ERROR **** SEMI BANDWIDTH EXCEEDS 80') 
ERROR **** INITIAL DATA CARD MISSING.') 

WARNING *** D.A.F. DATA ERROR.'/' NNODE = ' 
- D.A.F. ADJUSTED JOB CONTINUING.') 

* * * * 

**** 

**** 
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SUBROUTINE AREAS(AREA,XX,YY,E LNO, IN AH,IUE,N£L,A,B,*C,YC,lPh) 

SUBROUTINE TO CALCULATE THE AREAS OF THE ELEMENTS. 
IF MID-POINT OF ELEMENT SIDE IS INSIDE HOLE ASSUME CURVED SIDE. 

REAL AREA{NEL>,XX(INAM),YY(lNAH),XCi),Y(3) 
INTEGER E L N 0 { I 0 E , 3 ) 
LOGICAL LPR,NEWAREA 
LPR=,TRUE. 
NEWAREA=.TRUE'. 
IF(IPR-IPR/8*&.LT.4) LPR= .FALSE. 
DO 4 IL=1,NEL 
eo 1 1=1,3 
N=ELNO(IL,I ) 
X (I) = XX(N) 
*(I)=YY(N) 

1 CONTINUE 
AREA<IL)=0.5*((X(2)-X(1))*(Y(3)-Y(1))-(X(1)-X(3))*(Y(1)-YC?))) 
1 F ( A * B . L T . 1 . E - 1 0 . 0 R . . N O T . N E W A H E A ) 6 0 TO 4 
DO 2 IS=1,3 
IZ=IS+1-lS/3*3 
XM=0.5*IX(IS)+X<I2))-XC 
YH=0.5*(Y(IS)+Y(Id))-YC 
IF(XM*XKI/(A* A)+YM*YM/(B*B ) .LT .1 .) GO TO 3 

2 CONTINUE 
60 TO 4 

3 AT=0.5*((X(I2)-XC)*(Y(IS)-YC)-{XC-X(IS))*<YC-Y(12))) 
SE6=0.5*A»B*AeS<ACOS<(X(I2)-XC)/A)-ACOS<<X(IS)-XC)/A))-AT 
AREA(IL)=AREA(IL)-SEG 
I F< IPR-IPR/fc* & .LT .4)G0T0 4 
IF (LPR) WRITE(7,tCQ) 
WRITE(7,801) Il,AKEA(IL),SEG 
LPR = .FALSE. 
I F { A R E A ( I L ) . L E . C . ) 1 = 1 / 0 

4 CONTINUE 
RETURN 

800 FORMAT(//* AREA CHANGED OF FOLLOWING ELEMENTS ON HOLE BOUNDARY: 
* • ELEMENT NEW AREA DIFFERENCE") 

801 F0RMAT(I6,Z(4X,E12 .5)> 
END 

SUBROUTINE TRLFNS1(A,Bl,Xl,Y1,S1,Cl,E,NU,U,V,SX,SY,TXr,UN,US, 
^ SN,TNS,ID) 

TRIAL FUNCTIONS FOR LUAOED CIRCULAR HOLE BASED ON GENERAL SOL UT1 
UP TO TERMS IN M*THETA. 

REAL NU 
REAL L(1D),V(1D),S*(ID),SY(ID),TXY(I0),UN(ID),US(ID),SN(ID), 

2 TNS(ID>,LR<9) ,UT(9),SR(9),ST(9),TRT(9),SSS(9),AN<15), 
3 DN<1 5),SI(29),C0(29) 
LOGICAL CONVERT 

COMMON /BNOTCH/ ISYM(IC) 
COMMON /TRL/ CONVERT,SSS,TRT,ST,SR,UT,UR,AN,DN,SI,C0 

M=4 
ML=Z9 
X = X 1 
Y=Y1 
S = S 1 
C = Cl 
00 3 1=1,ID 
U(l)=C. 
V(I)=C. 
sx( n = o . 
SY(I)=0. 
TXY(I)=0. 
UN(I)=0. 
US(I)=0. 
SN( I)=C. 
TNS(I)=0. 
UR(I)=C. 
UT(I)=0. 
SR(I)=0. 
ST(I)=0. 
TRT(I)=D. 
CONTINUE 

R=SQRT(X*X+Y*Y) 
IF(R .GE.A*1 .CCC1) GO TO 5 
X =A*X /R 
R=A 
1 F(X1 *X1 .GT.1 .E-8) GO TO 4 
X =0 • 
Y=SI6N(A,Y1) 
GO TO 5 
Y=X*Y1/X1 
A R = a / r 

AR2=AR*AR 
S1(1)=V/R 
C0(1)=X/R 
DO 8 1=2,ML 
S1(1>=S1(I-1)*C0(1)+C0(1-1)*S1(1) 
C0(I)=C0(I-1)*C0(1)-SI(I-1)*SI(1) 
CONTINUE 
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C1605 FORMAT(/' A:',F5.2,| H:',F5.Z,' S:% SUBROUTINE LOACFN(A,R,E,NU) 
* tlO.J,' C : ' , E 1 C . i , ' fc:',E1D.3,' N U : ' , E 1 0 . 5 / c C A L C U L A T E S S T R E 5SFS A N D D I S P L A C E M E N T S DUE fU L O A D T R I A L F I ' V C T I O N , 

C * ( ' DIS: • ,2(E12 .5 ,JX) ,'STH : ' , 2 (E 1 2 .5 , 3X ) , • T : ',E12.5/ c 
C * 6X,2(El2.5,3*),5X,f12.5,21*,E12.5)) r E A L N U , K N 

REAL*4 AN,DN 
LOGICAL CONVERT 
C O M M O N / T R L / C O N V E R T , S S S ( ) ,T R T ( 9 ) , S T ( 9 ) , S R ( 9 ) , U T ( 9 ) , U R < 9 ) , 

1 AN(30),DN(3C) ,SI(29),C0 (29) 
C 

AR= A / R 
AR2=AR*AR 
AR4=AR2*AR2 
F1- AN (1 ) *AR 2 
F2=AR*(AN(2)-CN(2))/4. 
F3=AR*AR2*<AN(2)*(1.-NU)+DN(2)*{5.+NU))/4. 
F4=F2*(3.-NU)*AL0G(R/A) 
F5=(AN(3)-DN(3))/2. 
F6=(AN{3)+DN(3))*AR4/2. 

C 
SR(9)=F1+(F2*(J.+NU)+F3)*C0(1) 
ST(9)=-F1-(F2*(1.-NU)+F3)*C0(1) 
TRT(9) = {-F2*(1 .-NU) + F3)*SI(1) 
UR(9)=(-F1 + (F4-(AN(2)«(3.+NU)+0N{2)*(1.-NU))* AR/8 F3/2 .)* CO(1) 

1 )*(1.+NU) 
I UT<9)=-((F4-AR*((AN(2)*(1.-NU)+DS(2)*(3.+NU))*(1.-AR2))/8.)*SI(1) 
^ 1 )*(1.+NU) 
c d c 

I DO 1C N=2,29 
1F(AfcSCAN(N + 1 ) )+ABS(DN(N+1)).LT.O-OuDJCI) GOTO 10 
EN=FLCAT(K) 
F5=(EN«AN{N+1)-(EN+2.)*0N(K+1))*AR**<N+2)/2. 
F6=(AN(N+1)-DN(N+1))*AR**N/2. 
SR(9)=SR(9)-{F5-(EN+2.)*F6)*C0(N) 
ST(9)=ST(9)+(F5-(EN-2.)*F6)*C0(N) 
TRT(9)=TRT(9)-(F5-EN*F6)*S1(N) 
UR(9)=UR(9)+(F5*(1.+NU)/(EN+1.)-F6*(EN+2.+(EN-2)*NU)/(EN-1,))* 

1 C0(N) 
UT(9)=UT(9)+(F5*(1.+NU)/(EN+1.)-F6*(EN-4.+EN*NU)/(EN-1.))»SI(N) 

C 
IF(N-N/2*2.LE.C)GOTO 10 
KN=FLOAT((-1)**((N+1)/2))*AR*(AN(N+1)*(EN+2.-EN*NU)-DN(N+1)* 

1 <2 .*EN + 1.+NL ) )/(EN*EN-1 .) 
UR(9)=UR(9)-KN*CO(1) 
UT(9)=UT(9)+KN*S1(1) 

1C CONTINUE 
C 

UR(9)=UR(9) *P/ F 
UT( v) =bT ( 9) / t 

C 
R E T U R N 

E N D 

W 



cn 
<1 
I 

w 

SUPROLTINE bCCNDS(X,Y,PHS,t,NU,10IK,XCRACK,vCRACK,T,LSTSRN,A,e, 
2 CT,C'T,CONROI«,INAr,ELHO,IDb,DCT,OCTR,OCKR,[)S,bIGN(A,NELjP, 
3 LSTBA,LSTBL,NHA,fjNODE,NEL,lPR,lDENT,ISYM,AREA,KDAF) 

C 
C SUBROUTINE TO ENFORCE BOUNDARY CONDITIONS AND TO EVALUATE ALL 
C BOUNDARY INTEGRALS 
C 
C INTF INTERFACE fcETWEEN SPECIAL ORDINARY REGION TYPE 0 
C TRCT SN AND TNS PRESCRIBED TYPE 1 
C ASY M SN,USJ1 AND USJ2 PRESCRIBED TYPE 2 
C SYMM TNS,UN J 1 AND UNJ2 PRESCRIBED TYPE 3 
C CLMP USJ1,USJ2,UNJ1 AND UNJ2 PRESCRIBED TYPE 4 
C UDSP U PRESCRIHED AT SINGLE NODE TYPE 5 
C VDSP V PRESCR1(-ED AT SINGLE NODE T^PE 6 
C X-LD X LOAD PRESCRIBED AT SINGLE NODE TYPE 7 
C Y-LD Y LOAD PRESCRIBED AT SINGLE NODE TYPE S 
C HOLE TRACTIONS ON HOLE BOUNDARY TYPE 9 
C 

INTEGER LSTBA(INAI»,3),LSTBL(INA«,J)<,NBA(INAM) 
INTEGER LSTSRN(IOE),FLAG,BCTYPE,CONROW(IDIf»),ELNO(IDE,3) 
INTEGER IDENT(INAM) 

C 
LOGICAL LPR .INTEGK ,CONWERT,»OAF 

C 
REAL XdNAM ) ,Y( INAW),RHS( IDIM,MRHS) ,CT ( IDIM,2 ) ,DT(IOIM,«RHS) 
REAL NU,D CT {f'TF,WTF),DCTR(plTF),DCKR(MTF),DS(^TF,MTF) 
REAL AU(9),AV<>;),A&X(9),ASY(9),ATXY(9),AUN(9),AUS(9),ASN(9) 
REAL AUNJl ( '-!) ,AUNJ2(9),AUNJJ(9),AUS J1 (9 ), AUSJ2 (9) ,AUSJ J (9) 
REAL LNCMPC 9) ,LSCMP (9) ,SN Cf«P( 9),TNS C»P (9) ,L 1 , L2,ATNS< 9 ) 
REAL SXCWPC 9) ,SYC.''P(9) ,TX Y CMP (9) ,SND( y ) ,TNSC( y ) 
R EAL SIGMA(MTF3,NELSP),T(IDE),AREA( IDE) 

C 
CHARACTER*4 IDATA(20),ICODE(10) 

C 
COMMON /SIZE/ID,MTF,MRHS,MTF3 
COMMON /TRL/CONVEKT 

C 
DATA ICODE/ 'INTF','TRCT',"ASYM','SYMM','CLMP%'UDSP%'VDSP', 

2 "X-LO','Y-LD','H0LE«/ 
C 

CONVERT=.FALSE . 
INTEGR=.FALSE-. 

C 
C FLAG=1 FOR EXTERNAL REGION 
C FLAG=0 FOR BOUNDARY OF SPECIAL REGIONS 
C 
C INIZIALISE ARRAYS 

00 2 0 1=1,1rif 
CT(1,1)=0.0 
CT( I,2) = 0.3 

20 C0NROW(I)=0 
DO 40 J = 1,MRM S 
DO 4C I=1,IDIf 
DT(I,J)=0.0 

40 CONTINUE 
DO oO 1=1,ID 

D C T R < I ) = 0 . 0 
OCKR{I) = O.C 
00 6 0 J = 1 , I D 
O C T ( I , J ) = O . C 

0 S < I , J ) = 0 . 0 

6 0 CONTINUE 
c*** 
C * * » READ I N NUCFER A TYPES OF BOUNDARY CONDITIONS 
C * » * 

K TR = C 
I F ( M D A F ) 6 0 T 0 TC 
R E A D ( 5 , 1 4 4 0 ) N T C T Y P E 
W R I T E ( 9 , R E C = 1 ) N E L , N N 0 D E , N B C T Y P E 
GOTO 100 

8 0 R E A D ( 9 , R E C = 1 ) I , J , N B C T Y P E 
100 KTR=KTR+1 

LPR = . T R U E . 
I F < B C T Y P E . N E .C)LASTBC=BCTYPT 
C A L L B C D A T A < M C A F , K T R , N B C T Y P E , N E L , N N 0 D E , B C T Y P E , I 8 C , J 1 , J 2 , S N , T N S , 

2 U S J 1 , U S J 2 , U N J 1 , U N J 2 , X X ) 
C E N D O F D A T A ? 

I F < K T R . L T . 0 ) G C T 0 1520 
FLAG=C 
I F( BCTYPE .G T . C ) FLAG = 1 
I F C E C T Y P E . E A .LASTB C .OR . IP R - I P R / 8» 8 . LT . 4 ) L PR = . F ALS E . 

C S INGLE NODE B-. CONDITION? 
I F ( B C T Y P E . G E . 5 ) G 0 T 0 500 
S I D E = S O R T ( < X ( J 1 ) - X ( J 2 ) ) * * 2 + C Y ( J 1 ) - Y < J 2 ) ) * « 2 ) 

C S INE AND COSINE ( B E T A ) 
S = ( X ( J 1 ) - X ( J 2 ) ) / S I D E 
C = ( Y ( J 2 ) - Y ( J 1 ) ) / S I D E 

C 
C NA = NUMBER OF S . R . BOUNDARY ARCS LEAVING NODE 

N A = N B A ( J 1 ) 
I F( NA ,EQ . 0 ) GOTO 1 AC 
DO 1 2 0 I A = 1 ,NA 
J T = L S T B A ( J 1 , I A ) 
I F ( J T . E 6 | . J 2 ) 6 C T 0 160 

120 CONTINUE 
C 
c EXTERNAL BOUNDARY 
140 I F ( F L A G . E U . 1 ) C C T O 360 

WRI TE ( 6 , 1 72 C) J1 , J 2 
WRI TE ( 7 , 1 72 C) J1 , J 2 
I F( B CTYPE,E G.C)GO TO 100 
FLAG=1 
GOTO 360 

C 
C S P E C I A L REGION BOUNDARY 
160 I F(HCTYPE .ES . O G O T U 1'"•U 

FLAG=C 
C MARK BOUNDARY AS NOT INTERFACE 

LNU»» = L S T B L ( J 1 , I A ) 
L S T B L ( J 1 , I A ) = - L N U T « 

C 
C EVALUATE TR IAL FNS ON BOUNDARY 



CT> 
00 
I 

20 j 
C 

220 

w 

180 TH=T (LNtiM) 
ISRN = LSTSk,\ (LhL») 
JLl=ELNO(LUUf,1) 
JL2 = ELNO(LNUt«,2) 
JL3::ELN0 (LNUM,3) 
DO 200 1=1,5 
IF<J1.EQ.JL1.AND.J2.EQ,JL2)GOTO 220 
J L4 = JL1 
JLl=JL2 
JL2=JL3 
JL3=JLA 
CONTINUE 
NODES NOT IN SAME ELEMENT 
WRITE(6,1780)J1,J2 ' 
WRITE(7,17gC)J1,J2 
STOP 
J3=JL3 
I3=IDE»4T<J3) 
L1 = S* (X (J 3) - X( J2) ) +C* (Y (J 2)-Y (J3) ) 
L2=S* (X (J 1) - * (J3) ) +C* (Y (J 3)-Y (J1) ) 
PERP=C*(X(J 2)-X(J3)) + S*(Y (J2)-Y(J3)) 
DO 24C 1=1,ID 
UNCWP(I)=0.0 
USCf«P(I) = 0.0 
sNCMP(i)=o.r 
TNSCMP(I)=C.0 
SXCMp{I)=C.J 
SYCf.P(I) = L.O 
TXY cmp(I)=C .0 
CONTINUE 

G 0T0(260,28u,3CC,32G)ISYK 
CALL TRLFNSt <A,B,(X(J1)-XCRACK),<Y<J1)-

2 ASX,ASY,ATXY,AUNJ1,AUSJ1,ASN,AT'^S,ID) 
CALL TRLFNS0(A,B,(X(J2)-XCRACK>,(Y(J2)-

2 AS X ,ASY , ATX V , AliNJ 2,AUS J2 ,ASN ,ATNS, ID ) 
GOTO 340 

260 CALL TRL FNS 1 ( A ,P, ( X (J 1 )-X CRACK) ,( Y ( J1 )-
2 ASX,ASY,ATXY,AUNJ1,AUSJ1,ASN,ATNS,ID) 
CALL TRLFNSl(A,R,(X(J2)-X CRACK),(Y(J2)-

2 ASX ,ASY, ATXY ,AUNJ2,AUSJ2 ,ASN,AT'<S, 10 ) 
GOTO 340 

280 CALL TRLFNS2(A,B,<X(J 1)-XCRACK), ( Y(J1 )-
2 AS X ,ASY , AT* Y ,AUN J 1 ,AUS J1 ,ASN ,AT'̂ 5, 10 ) 
CALL TRLFNS2(A,H,(X(J2)-XCRACK),<Y(J2)-

2 ASX,A5Y,ATXy,AUNJ2,AUSj2,ASN,ATNS,ID) 
GOTO 340 

.VJ" CALL TFLFNS 3 ( ̂  ,h, ( * (J 1 )-X CRACK) ,( Y ( J1 ) • 
2 ASX,ASY,ATXY,AUNJ1,AUSJ1,ASN,ATMS,ID) 
CALL TRLFt\S3(A,t',(X(j2)-XCPACK),(Y(j2)' 

2 ASX,ASY,ATXY,AUNJ2,AUSJ2,ASN,ATNS,ID) 
GOTO 340 

320 CALL TRLFNS4<A,b,<X(J1)-XCRACK),(Y(J1)' 
2 ASX,ASY,ATXY,AUNJ1,AUSJ1,ASN,ATNS,ID) 
CnLL THLFNS4(A,e,CX(j2)-XCPACK),(Y(j2)' 

•2 ('SX,ASY,ATXY,AljNj2,AU5j2,ASN,ATNS,ID) 

2 40 
C 

YCRACK),S,C,E,NU,AU,AV, 

YCRACK),S,C,E,NU,AU,AV, 

YCRACO,S,C,E,NU,AU,AV, 

YCRACK),5,C,t,NU,AU,AV, 

YCRACK),S,C,fc,NU,AU,AV, 

YCRACK) ,S,C,e,NU,AU,AV, 

YCR"CK),S,C,E,NU,AU,AV, 

•YCRACK),S,C.t,NLi,AU,AV, 

•YCRACK),S,C,E,NU,AU,AV, 

•YCRACK),S,C,E,NU,AJ,AV, 

( T R C T ) 
(HOLE) 

C 
3 40 I F(GCTYPE .to .OGOTO 5cO 
360 60T0( <&0,44 0,46e,4&0) ,t»CT Yt-E 
C 
C BOUNDARY CONDITION TYPE 1 & 9 
C 
38C IF(LPft)WRITE(7,1480) 

IF<IPR-IPR/8*8.GE.4)URITE(7,1460)J1,J2,SN,TNS 
C 
C SKIP INTEGRATION ON HOLE BOUNDARY? 

IF( INTEGR.OR . FLAG.Efl.1)60T0 420 
IF(A*E.LT.1 .E-1C)G0T0 400 
CR=(XCRACK-(X(J1)+X<J2))/2)**2/(A*A)+(YCRACK-(Y(J1)+Y(J2))/2)**2/ 

2 (B*B) 
If{CR.GT.0.999999)GOTO 40u 
IF(IPR-IPR/2*2 .GE .1)WRITE(7,1 70C) 
GOTO 100 

IF(IBC.E6 .10) WRITE <6,1760) 
IF(IBC.EQ,10)WRITE(7,1760) 
I1=IDENT(J1) 
I2=IDENT(J2) 
NODAL LOADS DUE TO TRACTIONS 
RHS(I1,1)=RHS(I1,1)+0.5*SltE*(SN*C-TNS*S) 
RHS<I1+1,1)=RHS(I1+1,1)+0.5*SIDE»(SN*S+TNS*C) 
RHS(I2,1)=RHS(12,1)+0.5*SIDE*{SN*C-TNi*S) 
RHS(12 + 1,1)=RHS(12 + 1,1)+0 .5*SIDE* (SN*S + TNS*C) 
GOTO 580 

C 

400 

420 

C 
C BOUNDARY CONDITION TYPE 2 
C 
440 IF(LPR)WRITE(7,15CC) 

I F( IPR-IPR/8*e .GE .4)WRITE (7,1 460) J1 ,J2,SN,USJ 1 ,US J2 
I 1=IDENT(J1 ) 
12= lOENK J2 ) 

C NODAL LOADS DUE TO TRACTIONS 
RHS(11,1)=RHS(11,1)+0.5*SIDE«SN*C 
RHS ( 11 + 1 ,1) = RHS ( n + 1,1 )+0 .f*S10E* SN*S 
RHS(I2,1)=R)JS(I2,1)+0.5*SIDE*SN«C 
RHS(12 + 1 ,1)=RHS(I2 + 1,1)+0 .5*SIDE* SN*S 

C DISPLACEMENT CONSTRAINTS 
IF(C0NR0W(I1)',FQ.2)11=11+1 
CONROwdl ) = 2 
C T(11,1)=USJ1 
CT(II,1)=-S 
CT( II ,2) = C 
IF ( CONROW (Id)' 
C0NR0w(I2)=2 
DT(I2,1)=USJ2 
CT(I2,1)=-S 
CT( 12 ,2) = C 
GOTO 580 

C 
C BOUNDARY CONDITION TYPE 3 
C 
460 IF<LPR)yRITE(?,152C) 

(A SY") 

E(. .c ) li =I 2+ 1 

(SYHC) 



1 F ( . C k . 4 ) k P I T E ( 7 , 1 4 6 0 ) J 1 , T N 5 , U \ J l , U N J 2 
1 1= I U tM ( J1 ) 
I 2=I DENT{J2) 

C NODAL LOAUS DUE TG TkACTIONS 
RHS(I1,1)=RHS(n,1)-0.5*SlDE»TNS*S 
RHS(I1+1,1)=RHS(n + 1,1)+0.5*SIDE«TNS»C 
RHS(12,1)=RHS(12,1 )-0 .5*S XDE*TNS'S 
RHS ( 12 + 1 , 1 ) = Rhf. (I 2 <-1 , 1) +0 .5*S IDE * TNS* C 

C DISPLACEMENT CONSTRAINTS 
1F(CONROW(I1)-.EQ,2)11=11+1 
CONROWdl ) = 2 
DT(11 ,1 ) = U NJ1 
CT( I1,1) = C 
CT(11 ,2) = S 
IF(CONROW(I 2) .EQ.2)12 = 12+1 
C0NR0W(I2)=^2 
DT{ I2,1)=UNJ2 
CT( I2,1) = C 
CT<I2,2)=S 
GOTO 580 

C 
C BOUNDARY CONDITION TYPE 4 
C 
480 

( C L M P ) 

cn 
to 
I 

IF(LPR)WRITE(7,154C) 
IF(IPR-lPf)/8*e.GE.4)WRITE(7,1 460) J 1 ,J 2 , US J 1 ,U S J 2 , UN J1 , UN J 2 
I1=IDENT(J1) 
DISPLACEMENT CONSTRAINTS 
CONROWdl ) = 2 
DT(II,1)=USJ1 
CT(I1,1)=-S 
CT(II,2)=C 
CONROWdl +1 ) =2 
0T(11+1,1)=UNJ1 
CT(II+1,1)=C 
CT( 11+1,2) = S 
I2=IDEKT(J2) 
C0NR0W(12)=2 
DT( I2,1) = USJ2 
CT( I2,1)=-S 
CT( I2,2) = C 
C0NR0W(I2+1 )=2 
DT( 12 + 1,1) = UNJ2 
CT( 12+1,1) = C 
CT( 12+1,2) = S 
GOTO 580 

C 
SCO 
c 
c 
c 
c 

w 

1 F( riCTVPE .6 t .7 )GOTO 54 j 

BOUNDARY CONDI TIC. rS TYPE 5 OK 6 

DISPLACEMENT CONSTRAINT 
I1=IDENT(J1 ) 
IF(CONROW(I1).E0.2)I1=I1+1 
CONROWdl ) = 2 
IF(PCTYPE.NE.5)GOTO 520 

( U D S P O R V D S P ) 

C aOUNDARY CONDI TICK TYPE 5 
C 

IF(LPR)UPIT E( ?,156U) 
I F( IPR-IPR / P*!- .GE .4)WK I TE ( 7,1 640) J 1 ,UN J 1 
DT( 11,1)=U 
CT(II,1) = 1 .0 
CT(n ,2)=o.c 
GOTO 100 

C 
C BOUNDARY CONDITION TYPE 6 
C 
5 2'J V = Uf.J1 

IF(LPR)WRITE(7,15bG> 
I F( IPR-IPR/ .Gfc .A)WR1TE (7,1 640) J1 ,V 
DT(II,1)=V 
CT(II,1)=0.C 
CT(11 ,2) = 1.D 
GOTO 100 

C 
C BOUNDARY CONDITION TYPE 7 OR 8 
C 
5 40 

( UDSP ) 

< V D S P ) 

I1=IDENT(J1) 
IF(BCTYPE.E«.8)G0T0 560 

BOUNDARY CONDITION TYPE 7 

(X-LD OR Y-LD) 

(X-LD) 

I F( LPR)WRITE ( 7,1600 
, IF( IPfi-lPR/b*t.Gt.4)WRITE (7,1640)Jl ,XX 

C NODAL LOAD 
RHS(n,1)=kMSd1,1 )+XX 
GOTO 100 

C 
C BOUNDARY CONDITION TYPE 8 
C 
5 60 YY=XX 

IF(LPR)WRITE(?,162C) 
IF(lPR-IPR/8*f.GE.4)WRITE(7,1640) J 1 ,YY 
1 1 = 1 1 + 1 

C NODAL LOAD 
RHS(11,1)=PHS(11,1 )+YY 
GOTO IOC 

( Y - L D ) 

C 
5 8 0 
C 

IF(FLAG.EQ,1)60T0 ICC 

C —-
C 

C S 

C*** 

* * * * * * * * * * * * * * * 

. R . INTEGRALS * * * * * * * * * * * * * * * 

II = IDtNT(Jl ) 
12=1DENT(J2 ) 

C •** 
c * * » 
c * * * 

SIX POINT CAUSSIAN OUADRATORE 

AA=-0.932469514203 
H = D.171324452379«TH*SI0E*0.5 
ASSIGN 600 TO LABEL 
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<1 
M 
I 

w 

RHS{I2 + 1,i + 1)=hHS(li; + 1,I + 1)+TNSC«1P(I)*0.5*TH*(L2*C + PERP*S) 
RHS(I'.,I + 1)=i;MS(Ii,I + 1)+TKSCMPCl)»0.5*Tri*(SlDE«S) 
RHS ( 13+1 , 1 + 1 > = KHS( 15 + 1 , 1 + 1 )+TNSC**P( I) »0 .5*TH» (-SI I<E*C ) 

114] CONTINUE 
0 0 1160 I=1,IC 
SXCI'-P(1) = 2.«C*S*TNSCMP(1) 
SYCMP(I ) = - < 2.)*C*S * T N S C M P(I) 
TxyCHP(I)=-(C*C-S*S)*TNSCMP(l) 
SIGMA(I*3-2,ISRN) = SIGI»A(I*3-2,ISRH)+SXCI'P(I) 
SIGt>!AfI*3-1,ISPN> = SIGWA(I*3-1,ISRN)+SyCMP(I) 
SIGMA(I*3,ISRN)=SIGMA<I*3,ISRN)+TXYCHP<I) 

1163 CONTINUE 
GOTO 130C 

C 
C BCTYPE 3 
C 
1180 DO 1200 1=1,IC 

SNCWP(I)=-E*UhCHP(I)/(TH* AREA(LNUM)*(1 .-NU*NU)) 
RHS(I1,I+1)=RHS(I1,I+1)+SNCMP(I)*0.5*TH*(L1*C+PERP*NU*S) 
RHS(I1 + 1,I + 1)=RhS(I1 + 1,I + 1)+SNC»!P(I)*0.5*TH*(L1*S-PERP*NU*C) 
RHS(I2,I+1)=RHS(I2,I+1)+SNCMP(I)*0.5*TH*(L2*C-PERP*SU*S) 
RHS(I2+1,I+1)=RHS(I2+1,l+1)+SNCi*P(n*0.5*TH*(L2*S+PERP *NU* C) 
RHS(I3,I+1)=RHS(I5,I+1)+SNCMP(I)*0.5*TH*{-SIDE*C) 
RHS(13 + 1,1+1)=RHS( 13+1,1+1)+SNCWP(I)*Q.5*TH«(-SIDE*S) 

1200 CONTINUE 
DO 1220 1=1,IC 
S*Ct«.P(I) = -(C*C+NU*S*5)*SNCHP(i) 
SYCMP(I)=-(NU*C*C+S*S)*SNCMP(I) 
TXYCMP(I)=-{C*S*(1.-NU))*SNCMP(I) 
SIGMA(l*3-?,IShN) = SIG^,A(I*3-2,ISRN)+SXCfP(I) 
SIGf'A(I*3-1,ISRN) = SIGMA(I*3-1,lSRN)+SYC«P(I) 
S IGM A (1*3 ,I SRN) = S I GMA (I *3 , ISRN> + TXY C»*P ( 1) 

1223 CONTINUE 
GOTO 1300 

C 
C BCTYPE « OR IhTERF ACE 
C 
1243 DO 1260 1=1 ,It 

SNC'«P(I) = -E*UNCfP{I)/{TH* AREA (LNUH) *( 1 .-NU*NU) ) 
TNS CMP(I)=-E*L5CMP(I)/(2.C*TH *AREA(LNUM)*(1 . + NU)) 
»HS(I1,I+1)=PMS(I1,I+1)+TNSCMP(I)*.5*TH*(-L1*S-PERF*C)+SNC^P(I) 

2 *0.5*TH*(L1 *C+PERP*NU*S) 
RH5 ( 11+1,1 + 1 ) =RHS( 11 + 1,1+1)+TNSC>(P( I) *G.5*TH*( LI *C-PERP*S) 

2 +SMCfP(I)*0,5*TH* (L1*S-PERP*NU*C) 
RHS(I2,I + 1)=RhS(I<;,I + 1)+TmC''P(I)*.5*TM*(-L2*S+PERP*C)+SNC''PCl) 

2 '0.S*TH*(Li•C-PFRF*NU*S) 
RHS(I2 + 1,I + 1)=CHS(I2+1,I+1)+Tr<SC'^P(I)*0.5*TH*(L2*C + PERP*S) 
2 +sNCMP(I)*r .';''TH*(L.?*s+PEKP»'-.u*c) 
KH5(I^,I + 1)=fhS(15,I+1)+TNi.CI'P(I)*0.i.*TH*(SlDE*S)+SNC*li-(l) 

2 *C,5»TH*(-SILF*C) 
HHS(r! + 1,l + 1)=RHS(I3 + 1,I+1) + TNSC1P(I)*0.5*TH*(-SIDE*C) + SNC''P(l) 

2 *0 .5*TH*(-SICE*S) 
1263 CONTINUE 

D O 1 2 ^ 0 1 = 1 , 1 1 

SXCMP(I> = -(C*C + NU»S*S)*SNC''P(1) + 2.*C*S*TNSCMP(I) 
SYCMP(I) = -(NU*C*CtS*S)*SNCi"P(I)-2.*C*S*TNSChP(I) 

1̂ 60 
1300 
c 

T%YChP(l)=-(C*C-S*S)*TNSCfP(I)-C*S*(1.-NU)*^NCrP(I) 
SIGt; A(l*3-2 ,I SRS) = SIG^A (I *3-/ ,1SR,I) +S XCKP (1 ) 
S L & H A ( 1 * 3 - 1 , I SL- N ) = S I 6 I " A ( I * < - 1 , I S R I M ) + 3 Y C V P ( I ) 

S I 6 T " A ( I * 3 , I S R F - ) = S I G ^ A ( I * I , L S R H ) + T X Y C > ^ P ( I ) 

C O N T I N U E 

C O N T I N U E 

I F ( B C T Y P E . E Q . C ) G O T O 1 4 2 C 

G O T O I O C 

C 
c 
c 
c ALL 
1320 

C H E C H U T R T H E N D O S P . R E G I O N I N T E R F A C E . 

C*** 
C *** 
c * * * 
c * * * 

1340 

1360 

C 
1380 
1400 

c 
142 0 

B. CONDS COMPLETE D 
KTR=-KTR-1 
IF(KTR.NE.NBCTYPE)yRITE(6,1740)KTR,NBC TYPE 
IF(KTR.NE.NBCTYPE)WRITE(7,174 0)KTR,N3CTYPE 
If(KTR.NE.NBCTYPE)WRIT£(9,REC = 1)'<EL,NN0DE,KTR 

OUTLINE SPECIAL REGION AND 
APPLY CONDITIONS AT INTERFACE 

L 00 P = C 
FLAG=C 
BCTYPE=0 
L00P=L00P+1 
DO 1360 J1 = 1 ,NNODE 
NA=NbA(Jl> 
IF(NA,NE.C)G0T0 1jPC 
CONTINUE 
K ET U R N 

IF(IPH-IPR/8*f,GE.4)WRnE(7,1 660) LOOP 
J2 = LSTBA(J1 ,NA) 
NBA(J1)=NA-1 
I FC IPR-IPR/ 8*? .GE .4)W RITE (7,1 680) J 1 ,J 2 
LNUr=LSTPL(J1,NA) 
IF(LNUW.LE.C)GOTO 142 0 
S10E=SSRT((X(J1)-X{J2))**2+(Y(J1)-Y{J2))**2) 
S=(X(J1)-X(J2))/SIDE 
C=(Y(J2)-Y(J1))/SIDE 
GOTO 160 

J1 = J2 
NA=NBF(J1) 
I F( NA .ECl .r.) GOTO 134C 
GOTO 1400 

C 
C 
1 440 
1 460 
1483 
1500 

1520 

1540 

F0R"AT(I5) 
FORCATdSX,I 4,' -',I4,4(F1C.4)) 
fORMAT(/1X,' TRACTION ',1Cx,'SIDE',8%,'SN •,bX,'TNS ') 
F0RMAT(/1 X, ' ( ASYMMETRY) ' , 1 C'X, 'SIDE ' ,8 X , 'SN ' ,6X, "USJ 1 ' ,6X , 

2 •USJ2') 
F0RMAT(/1X,'(SYMME TRY) ',1 OX,'SIDE',ax, 'TNS ' ,6X,'UNJ1 • ,6X , 

2 'UNJ2') 
F0RMAT(/1X, ' KINEMATIC ' , 1 OX, ' SI D E ' ,3 X , "U S J 1 ' , 6X , • U S J i; ' ,6* , 



1 5 6 3 

1 5 8 0 

1 6 0 3 

1 6 2 3 

164. 
1 6 6 3 

1680 
1 7 0 3 

1 7 2 0 

1 7 4 3 

1 7 6 3 

1 7 8 3 

-J 
ro 

Z • U N J 1 ' , ' I X , 

F O R R ' A T ( / 1 X , 

fO»t AT(/1 X, 
FUR̂ AT(/1X, 
F O R M A T ( / 1 X , 
FOR̂ AT(2kX, 
F O W M A T C / ' S P E C I A L 

F O R !• A T ( 1 X , I 4, • -

m i n j ? ' ) 

• L , - M S P F I X E D • , 7 X , ' \ 0 0 F , S X , - F A G M I T U L T • ) 

• V - D I B P F I X E D ' , ? X N J D E ' , 8 X , • M A G M T U J E • ) 

• P T L C A D X - D I R • , 7 X , • M O D T ' , B X , ' H A 5 M T U D T • ) 

• P T L O A D * - D I K • , 7 X , ' - I O D E ' , A X , • W A G N I T U U E • ) 

1 4 , ^ X , F F, . 2 ) 

R E G I O N B O U N D A R Y ' / ' L O O P ' , 1 2 / ) 

,14) 
F O R M A T ( 1 P + , 5 ? X , " E L L I P T I C A L / C I R C U L A R H O L E B O U N D A H Y ' ) 

F O P I « A T ( ' * * * W A R N I N G » * » ' / ' A R C , 1 4 , ' - ' , 1 4 , ' D O E S 

! ' L I E O N P E R I M E T E R O F S P . R E G I O N ' / ) 

F O R R A T ( ' * * * W A R N I N G * * * ' / U , ' B . C 0 N D S . DE F I N E D ' / 1 4 , 

: • P . C O N D S . E X P E C T E D ' / ) 

N O T ' / 

F O R M A T ( ' * * 

F O R K A T D H 

ENt» 

W A R N I N G * * * 

, 2 1 6 , ' * * * * E R R O R 

B O U N D A R Y N O T O N 

I N D A T A . P R O G R A M 

H O L E PkRI METE R' 
T E R M I N A T I N G ' ) 

S U P R O U T I N E A L P H A S ( K S T I F , I D I M , I S E ' I I , . 

' D C K R , D S , D C O N T , A L P H A , I S Y I ^ , I P R ) 

C , R H S , R H S 1 , N T U , D C T , L V.L 

C 

C 

20 

4 0 

6C 
C 

8C 

c 
c 

ICO 

120 

1 4 0 

C 

C 

S U B R O U T L T I E T O C A L C U L A T E C O E F F I C I E N T S A L P H A O F A T ' G Y E ' . I 1 1 , 0 TKl'l 
F U N C T I O N S ( S T R E S S F I E L D S ) G I V E N B O U N D A R Y I N T E G R A L S A N D 

F I N I T E E L E F . E T , T S O L U T I O N S . 

I N T E G E R L W ( > ) , F W ( Q ) 

I N T E G E R I S Y M ( M R M S ) 

R E A L K S T L F ( I D I F ' , L S E M ) , P C ( L D I M , > « S H S ) , R H S ( I D I M , F « R H S ) , P H S 1 ( I D I ' ) 

R E A L D C T ( F T F , F T F ) , D C T R ( R T F ) , D C K R ( M T F ) , D ( 9 , 9 ) , D P H S ( 9 ) 

R E A L D S ( M T F , K T F ) , D C U N T ( M T F , M T F ) , A L P H A ( H , T F ) 

C O M M O N / S I / E / I L ' , M T F , M R ( H S 

S U M = 0 . 0 

L A J S E M = I S E M 1 * I D I M 

F O R M V E C T O R " D R H S " 

D O 2 0 M = 1 , N E Q 

R H S 1 ( M ) = R H S ( M , 1 ) 

C A L L K V E C T ( < S T I F , 1 A J S E M , 1 D I M , R H S 1 , N E Q ) 

D O 6 C J = 1 , I D 

D I J = - D C T R ( J ) - D C K R ( J ) 

D O 4 C M = 1 , N E Q 

D I J = 0 I J + ( - B C ( I ' , 1 ) + R H S 1 < M ) ) * R H S ( M , J + 1 ) - B C ( M , J + 1 ) * R H S ( M , 1 ) 

D R H S ( J ) = D I J 

C O N T I N U E 

D I J = 0 

D O S O M = 1 , N E 0 

D I J = D I J + ( 2 * B C ( F , 1 ) - R H S 1 ( M ) ) * R H S ( " L , 1 ) 

C O N T I N U E 

P I = D I J 

F O R M M A T R I X " D " 

D O U C 1 = 1 , I D 

D O 1 U G M = 1 , N E T . 

R H S 1 ( , Y ) = R H 5 , I + 1 ) 

C A L L H V E C T ( < S T 1 F , 1 A J S E M , I D I M , R H S 1 , N E Q ) 

0 0 1 4 0 J = 1 , I E 

D I J = D C T ( J , I ) + D S ( J , I ) + D C O N T ( J , I ) 

D O 1 2 0 M = 1 , N F C 

D I J = D U + ( - B C ( L ' , I + 1 ) + R H S 1 ( M ) ) * R H S ( M , J F 1 ) - B C ( R , J + 1 ) * R H S ( ' ' , I + 1 ) 

U ( I , J ) = D 1 J 

C O N T I N U E 

160 

Cd 180 
C 

C A N C E L U ' . U S F L R O W S K C O L U M N S O F " D " 

J 0 I S : ' , I = 1 ' , I C 

1 F ( 1 S Y I - ( I ) . E 4 . 1 ) 6 0 T U I S O 

0 0 1 6 , " J = 1 , I D 

0(1,J)=0.G 
D(J,I)-u.,/ 
D ( I , I ) = 1 . 0 

D R H S ( 1 ) = ^ ^ . . ; 

CONTINUE 



C FORM Nfk, SYMMETRIC MATRIX "l>" 
r;0 fUU 1 = 1,IC 
1)0 zee J = 1,I0 
D(I,J)=(D(I,J)+D(J,I))*0.5 
D ( J , I ) = 0 ( 1 , J ) 

2 00 COMTINUE 
WRITE(7,48]) 
IF< IPR.LT.1 )GCTC ^ 4C 
ki RI TE <7,5CJ > 
DO ZZr 1=1,ID 
WRJ TE(7,520)(C(I,J),J=1,ID) 
URI TE (7,5'»0 ) ORHS( I ) 

220 CONTINUE 
C 
C LOADED HOLE CASE tALPHA(9)=1.C3 

4 00 
C 
c 

420 

A4=tLPHA(3)-ALFHA(^) 
A1=A1»P 
A2= A ? *P 
A3=A3«P 
A4= A 4 *P 

PRINT ALPHAS 
WRITE(7,6/0)ALFHA(1),A1,ALPHA(2),A2,ALPHA(3),A3,ALPHA(4), 
RETURN 
WRITE(7,6 40)(I,ALPHA(1),I=1,ID) 

RE-ADJUST ID (LOADED HOLE CASE) 
I F( 1S'M(9) .NE-.1 )fcOTO 460 
ID=I0+1 
IF(ID,EQ.9)GOTO 44C 
ALPHA(1D)=0.0 

<1 
CO 
I 

2 40 I F ( I SYM(9 ) .NE- .1 )GOTO 3 0 0 GOTO 420 
DO 26C 1 = 1 , 8 440 W R I T E ( 7 , 6 4 0 ) I O , A L P H A { I D ) 
I F ( I S Y M D ) . E C - . 1 ) I D = I 460 WRITE ( 7 , 6 6 0 ) S L C 

2 60 CONTINUE RETURN 
A L P H A ( 9 ) = 1 . 0 C 
I F ( I P R . G E . 1 ) W R I T E ( 7 , 5 0 0 ) 480 F 0 R M A T ( / / / , 3 C X , ' R E S U L T S ' / 3 U X , ' - ' ) 
DO 2 8 0 1 = 1 , I D 5 00 F 0 K M A T ( / / ' D M A T " , 1 1 6 X , ' D R H S ' , / ) 
URH S ( I ) = DRH S ( I ) - D ( I , 9 ) * A L P H A ( 9 ) 520 F 0 R M A T ( 1 X , 9 ( E 1 2 . 5 , 1 X ) ) 
I F ( I P R . L T . 1 ) G C T O 2 6C 5 40 F 0 R M A T ( 1 H + , 1 1 ? X , E 1 2 . 5 ) 
W R I T E ( 7 , 5 2 0 ) ( C { 1 , J ) , J = 1 , I D ) 560 F O R » A T ( 1 H O , ' D E T E R M I N A N T OF MATRIX = ' , E 1 0 . 3 , / ) 
WRITE ( 7 , 5 4 0 ) D R H S ( I ) sao F O R ^ A T C INVERSE OF M A T R I X ' / / 1 X , 9 ( E 1 2 . 5 , 2 X ) ) 

2 80 CONTINUE 600 FORMAT(/ ' PIO = ',E15.S,10x, 'P I = ' , E L 5.8) 
C 620 F C R M A T ( / ' ALPHA1 = ' , F 1 0 . 6 , 2 C X , ' 0 P E M I N 6 S T R E S S FACTOK 
C INVERT MATRIX " D " 2 F 1:.6/' ALPHA2 = ' , F I O . 6 , C 0 X , ' O P E S I N G STRE SS FACTOR 
C 3 F I C . ^ / ' ALPHA:i=', F10 , 6 , 2 C X , ' SHEAR S T R E S S FACTOR 
3U.J CALL M N V (D , 1 C ,TE-T ,LW ,MW) 4 FI:.fc/' ALPHA 4 = ' , F L U . 6 , 2 I X , ' SHEAR S T R E S S F ACTOFI 

WRITE (7,5tC)DET 5 F 1 C . c) 
I F ( I P R - I P R / 6 4 » 6 4 . L T . 3 2 ) G 0 T 0 3 4 0 6 4C F OR M A T ( / ( ' ALPHA' , I 1 , ' = ' , F 1 0 . 6 ) ) 
vO 32C 1 = 1 , I D 660 F O R M A K / ' SUM CF ALPHAS = ' , F1 0 . 6 ) 
W R I T E ( 7 , 5 C . 0 ) ( C ( I , J ) , J = 1 , I D ) E NO 

32C CONTINUE 

C D E T E R M N E V A L U E C F A L P H A S & f B N C T 1 A L 5 ( P I K P I O ) 
3 40 P I 0 = P I * 0 . 5 

AT 
AT X 
AT X 
AT X 

X = + A I S ' , 
=-A IS', 

= + A 
= -A 

I S ' , 

I S ' , 

36G 

) r 0 

BO 3 6; I = 1 , 11> 
ALPHA(I)=O.U 
DO 36: J=1,ID 
ALPHA(I) = ALPHA(I) + 1;(I,J)*DRHS(J) 
t o 3>:U J = 1 , I D 
P I=P I +DRH 3 ( J ) • ALPH A (J ) 
S S I M + A L P H A ( J ) 

CON 1 I HUE 
f.I = r I »n,c, 
Wfil TE (7,6C:') P U ,Pi 

EVALUATE STRESS IhTFI: SITY FACTOHS (CRACKS ONLY) 
I F( I SYM(MKHS) .(:T .L )COTO 4vC 
P=2 .5C662fe 
A l = A L P H A ( 1 ) + A L P H A ( i ) 

A 2 = A L P H A ( 1 ) - A L P H A ( 2 ) 
'3=ALPHA(3)+ALFHA(4) 



APPENDIX C 

Preparation of data for the finite element program 

Three files are involved in the input of data to the FESM program: 

a direct access file, the mesh data file and the control data file. 

The latter two files are optional and if either or both of these files 

are "empty" the relevant data is taken from the direct access file. 

Data taken from the mesh or control data files is stored in the direct 

access file. 

C.1 Mesh data file 

The mesh data file (if required) may be input sequentially on 

cards or from the filestore. It must contain the following records: 

VV 

1. Initial card with the legend "MESH IN" in the first 8 characters, 

Any data before this record is ignored. 

2. Title• (Format A16) This title is printed in the heading on 

output. 

3. Coordinates and dimensions of hole. (Format 5 FIO.O) The five 

parameters required are: 

i) "x" coordinate of centre of hole or crack, 

ii) "y" coordinate of centre of hole or crack. 

iii) a, radius or semi-major axis length of hole/crack, 

iv) Y, angle between trial function axis and corresponding 

global coordinate axis. 

v) b, semi-minor axis of hole. (Default for Wris parameter 

is zero if the crack trial functions are specified, or a 

if the hole trial functions are specified). 

4. Number of elements. (Format 15) 

5. Element data This section must contain a record for each element 

and may contain the following element descriptors which define 

the type of elements after that record: 
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"FLA" - Flange elements (permitted only outside the 

special region). 

"TRM" - Triangular membrane elements. 

"TRMSP" - As TRM but within the special region. 

The element data records are as follows: 

FLA (Format 315, FIO.O). The parameters required are: 

i) element number 

ii) and iii) end nodes 

iv) cross-sectional area. 

TRM (Format 415, FIO.O). The parameters required are: 

i) element number 

ii) iii) and iv) nodes, numbered counter-clockwise round 

the element. 

v) thickness of element. 

TRMSP as TRM but the thickness of all elements in the special 

region must be constant. 

This section must be terminated with the following record : 

////. 

6. Number of nodes. (Format 15) 

7. Nodal coordinate data. This section must contain one record 

for each node. 

(Format 15, 2F10.0). The parameters required are: 

i) node number 

ii) "x" coordinate of node 

iii) "y" coordinate of node 

This section must be terminated with the following record : 

////. 

8. Number of boundary conditions. (Format 15) 

9. Boundary condition data. This section must contain one record 

each boundary condition specified. 
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The boundary condition types and their parameters are as follows: 

Traction: TRCT n Rg 

(Format A4, 215, 2F10.0) 

Asymmetry: ASYM n n 

(Format A4, 215, 3F10.0) 

Symmetry: SYMM 

(Format A4, 215, 3F10.0) 

2 

t t 
n s 

^n ^sl ^s2 

t u . u „ 
s nl n2 

Clamped: CLMP n^ n^ 

(Format A4, 215, 4F10.0) 
"si "s2 "nl "n2 

u-displacement: UDSP n^ u^ 

(Format A4, 15, FIO.O) 

v-displacement: VDSP n v 

(Format A4, 15, FIO.O) 

)^^oad: X-LD n 1 Px 

(Format A4, 15, FIO.O) 

Y-load: Y-LD 

(Format A4, 15, FIO.O) 

where: n 
1 

nl 

-"02 

ŝl 

's2 

in counter-clockwise order 
1st node number 

2nd node number 

prescribed normal displacement at n 

tangential " 

ii II 

— normal traction on n^ 
2 
n. 

Y 

tangential traction on n - n 

displacement in "X" direction at n 

displacement in "Y" direction at n 

load in "X" direction at n^ 

load in "Y" direction at n„ 

This section must be terminated with the following record: 

//// . 
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C.2 Control data file 

The control data file (if required) may be input on cards or 

from the filestore. It must contain the following records: 

1. Options integer (Format 15). This integer is used to specify 

the amount of output required as follows: 

= -1 Minimum output. 

= 0 Heading and minimum output. 

= 1 Stresses output. 

2 Displacements output. 

= 4 Initial data output. 

= 32 Additional output. 

= 64 Extra "de-bug" output. 

The numbers 1-64 may be added together for a combination of options. 

2. Control title (Format A16). This is printed in the heading on 

output. 

3. Trial function parameters (Format 1015). These parameters 

specify which trial function subroutine is to be used and which 

functions from the subroutine are to be selected. The parameters 

are: 

i) to specify the subroutine: 

= 0 TRLFNS0 subroutine for cracks. 

= 1 TRLFNSl subroutine for loaded or traction-free 

circular holes. 

= 2 TRLFNS2 subroutine for traction-free circular or 

elliptical holes. 

11j - IX, to specify if the particular trial function 1 to 

is to be used. 

= 0 function not used. 

= 1 function included. 

to specify if the loading function (for use only with 

subroutine TRLFNSl) is to be used: 

= 0 loading function not used. 

= 1 loading function included. 
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4. Fourier coefficients for hole loading (Free Format). 

This section is included only if the loading function is used. 

The coefficients A (n = 0 to 29) and (n = 1 to 24) must be 

input sequentially in free format. 

5. Special region data. This section is optional but if it is 

included it supersedes the special region data which may be 

contained in the mesh data file or direct access file. The 

first record of this section should contain the number of 

elements in the special region (Format 15) followed by the 

characters "^SP" (Format A3). The element numbers are then 

input, one per record (Format 15). 

section must be terminated wiUi lUie following record: 

//// . 

C.3 The direct access file 

The direct access file must have a record size of 24 bytes and 

a total size of between 6 and 28 kilobytes depending on the number of 

elements in the mesh. Generally the data is put into the file by 

running the program having prepared mesh and control data files, or 

by using the automatic mesh generator (see appendix D). However, when 

a number of cases are to be run with identical or similar meshes it is 

most convenient to make the minor changes to the direct access file 

using the macro "MESH" (see appendix D) and dispense with the other 

input files. 

The information stored in the direct access file is shown in 

table C.l. This data is written on the direct access file by the 

machine, not the user. 
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Record Number Details 

1 NEL NNODE NBC 

2 XC YC 

3 A B Y 

4 a a a 
1 2 3 

5 a a a 
4 5 6 

6 a a a 
7 8 0 

7 to 11 A (n = 0 to 29) six items per record. 

12 to 15 D (n = 1 to 24) six items per record, 
n 

16 OPTIONS 

17 Mesh title (16 characters) TIME (8 characters) 

18 Control title (16 characters) DATE (8 charact) 

19 ISYM (1-6) 

20 ISYM (7-9), ITF 

21 E, NU 

22 to 30 (not used) 

31 to (30 + NEL) Element data: N1, N2, N3, T, SPREG 

(31+NEL)to (30+NEL Node data: X, Y 
+NN0DE) 

(31+NEL+NNODE) to Stress data: SXA, SYA, TXYA 
(30+2*NEL+NN0DE) 

(31+2*NEL+NN0DE) to Boundary data: ITYPE, J1, J2, Z1, Z2, Z3, Z4 
(30+2*NEL+NN0DE+NBC) 

Table C.l Information stored in the direct access file. 

The variables referred to in table C.l are defined in the table 

C.2 overleaf. 
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Variable Meaning Type 

NEL Number of elements INTEGER 

NNODE Number of nodes INTEGER 

NBC Number of boundary conditions INTEGER 

XC "X" coordinate of hole centre REAL 

YC "Y" coordinate of hole centre REAL 

A semi-major axis length of hole, a REAL 

B semi-minor axis length of hole, b REAL 

Y Angle between major axis of hole ZMid 

"X" coordinate axis 

REAL 

a, 
1 

Trial function coefficient REAL 

A 
n 

Fourier coefficient of normal loading REAL * 4 

D 
n 

Fourier coefficient of tangential " REAL * 4 

OPTIONS Options integer INTEGER 

ISYM(l-8) Specifies if trial function is used 

(1 or 0) 

INTEGER 

ISYM(9) Specifies if loading function is used 

(1 or 0) 

INTEGER 

ITF Specifies which trial function sub-

routine is used (0, 1 or 2) 

INTEGER 

E Young's modulus REAL 

NU Poisson's ratio REAL 

Nl, N2, N3 Node numbers of element INTEGER 

T Thickness of element REAL 

SPREG Specifies if element is within 

special region (true or false) 

LOGICAL 

X, Y "X" and "Y" coordinates of node REAL 

SXA Stress components of REAL 

SYA F ^ t c 
a - J (a. -a.) for element 

REAL 

TXYA i=0 1 REAL 

ITYPE Type of boundary condition INTEGER 

Jl, J2 Node numbers INTEGER*2 

Z1-Z4 Boundary condition parameters REAL*4 

Table C.2 Variables in the direct access file. 
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APPENDIX D 

Running the finite element program 

This appendix is included primarily for the benefit of those who 

may wish to use the FESM program on the ICL 2970 computer at Southampton 

University. Table D.l shows the "macros" which may be used for running 

the program and for preparing and interpreting the data. Macros are 

commands which may be input to the computer to control a particular 

process, and general instructions for using and modifying macros are 

found in the system reference manuals. The appendix sets out instructions 

for using these macros for the purposes shown in table D.l. 

Section Macro Name Purpose 

D.l NOTCH: To run the finite element program. 

D.2 MESH: To generate or modify finite element 

mesh or other input data. 

D.3 DRAWMESHES: To produce plot of finite element mesh. 

D.4 LOADLOAD: To input Fourier coefficients to direct 

access file for standard loadings. 

D. 5 HOLE: To produce graph of loading on hole. 

D.6 VUSTRESS: To produce graph of stresses around 

boundary of specified elements. 

Table D.l Macros used with the FESM program 

For each macro a description of its use and a full specification 

of its parameters is given. Some indication of how the macro might be 

used is shown by the examples at the end of the specifications. Full 

details of all the options and facilities of the software and how data 

files are prepared for graphics and data modification are not given in 

this appendix, however users will find that when used interactively 

the programs will request the data required which may be input, 

generally in "free-format", at the terminal. 
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D.l The Macro "NOTCH' 

This macro is used to run the FESM program. The data files are 

assigned to input/output channels and, if graphical output is required, 

parameters for plotting are specified. 

Parameter List: 

NOTCH (@ literal @ DIRECTACCESSFILE = @ see below 

@ literal @ MESH = @ see below @, 

@ literal @ CONTROL = @ see below @, 

@ literal @ GRAPHDATA = @ see below 

@ literal @ PLOTFILE = @ see below 

@ literal @ ACTION = @ see below 

@ literal @ DEVICE = CALCOMP, 

@ literal @ SCALE = 1.0, 

@ literal @ IMMEDIATE = YES, 

@ literal @ JOBNAME = @ see below @, 

@ integer @ TIME = 50, 

@ response @ RESPONSE = RESULT) 

Keyword description 

Keyword: DIRECTACCESSFILE 

Use: Specifies the name of direct access data file (see 

appendix C). 

Values taken; Filename of existing direct access file. 

Default: Temporary direct access file will be created. 

Keyword: MESH 

Use: Specifies the name of the mesh data file (see 

appendix C). 

Values taken: Filename. Data input from file. 

Default: Data taken from direct access file. 

Keyword: CONTROL 

Use: Specifies the name of control data file (see 

appendix C). 

Values taken: Filename. Data input from file. 

Default: Data taken from direct access file. 
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Keyword: GRAPHDATA 

Use: Specifies the source of the plotting instructions 

(if required). Not applicable if "ACTION" does 

not include "VU". 

Values taken: = Filename. Instructions input from file. 

= *STDAD. Instructions input from alien data. 

(e.g. from terminal). 

Default: No instructions are given and default values for 

the graph plot are assumed if required. 

Keyword: PLOTFILE 

Use: Specifies the name of file to contain output plot 

data. Not applicable if ACTION does not include "VU". 

Values taken: Name. 

Default: A new temporary file will be created if required. 

Keyword: ACTION 

Use: Specifies actions to be taken. If several actions are 

required the values below should be concatenated 

(e.g. ACTION = NEWDAF_yU_DRAW). 

Values taken: 

NEWDAF - A new direct access file is created. Input 

data is taken from file specified by the keyword 

DIRECTACCESSFILE and with the output data is put on 

the new file. Data on original direct access file 

is unchanged. 

VU - A graph of the stresses on the boundary of the 

finite element is produced. The file specified by 

GRAPHDATA may contain instructions to the contrary 

but by default the output will be to the file specified 

by PLOTFILE and will be in "SAVE-DRAWING"pseudo code 

which may be interpreted by the macro "SOLOOKPLOT" or 

by including the value DRAW (see below). The remaining 

values for ACTION are only applicable if "VU" is also 

included. 

DRAW - The plotfile is sent to the specified DEVICE 

for plotting. 
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PLOT - If the file specified by GRAPHDATA instructs 

a CALCOMP code to be produced (not default) and if 

the job is in a "batch" environment, the plot is 

carried out. 

SAVE - The plotfile is saved. 

Default: No further action. 

Keyword: DEVICE 

Use: Specifies the plotting device on which graph is to 

be produced. Not applicable unless ACTION includes 

"VU" and "DRAW". 

Values taken: 

= CALCOMP (Calcomp pen plotter). 

= TEKTRONIX (Tektronix 4010 graphics terminal). 

= IMLAC (Imlac graphics terminal). 

Default: CALCOMP. 

Keyword: SCALE 

Use: Specifies required scaling factor for plotter. 

Not applicable unless ACTION includes "VU" and 

"DRAW". 

Values taken; 

= Positive number up to four characters long including 

mandatory decimal point. The size of the graph will 

be scaled by this factor. 

= Any negative number. The size of the graph will 

be adjusted to fit the output device requested. 

Default: 1.0 (No scaling is performed). 

Keyword: IMMEDIATE 

Use: Specifies if program is to be run immediately or 

entered into batch job queue. 

Values taken: 

= YES. Program is run immediately. 

= NO. Job entered into batch queue to be run later. 

Default: YES. 
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Keyword: JOBNAME 

Use: Specifies name for batch job if IMMEDIATE 

Values taken: Name. 

Default: Name specified by macro. 

NO. 

Keyword: TIME 

Use: If IMMEDIATE = NO then TIME is an estimate of the 

time (in seconds) required for the job. 

Values taken: Integer between 10 and 2000. 

Default: 50. 

Keyword: RESPONSE 

Use: Specifies the result code variable. 

Values taken: Response variable. 

Default: RESULT 

Example 

To run the FESM program with data from the direct access file 

called DAFl and the control data file called CONl the following job 

could be run. A graph of the stresses is also to be produced (default 

plot instructions). 

JOB(JOBNAME=:MER004.KT1,TIME=1OO) 

N0TCH(DAF1,C0NTR0L=C0N1,ACTI0N=VUDRAW) 

ENDJOB 

D.2 The Macro "MESH" 

This macro is used to generate or modify the finite element mesh 

stored on a direct access file, and/or modify other data required by 

the program. The macro is generally used interactively when instructions 

are given to the user on how to input the data. A plot of the finite 

element mesh may be produced if required. 
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Parameter list: 

MESH (@ literal @ DIRECTACCESSFILE = @ mandatory 

@ superliteral @ NEWDAFS = @ see below 

@ literal @ PLOTFILE = @ see below 

@ literal @ DATA = *STDAD, 

@ response @ RESPONSE = RESULT) 

Keyword description 

Keyword: DIRECTACCESSFILE 

Use: Specifies the name of direct access file containing 

existing data or to contain new data. 

Values taken: Filename of existing direct access file. 

Default: None. The parameter is mandatory. 

Keyword: NEWDAFS 

Use: Specifies the name of one or more direct access files. 

After modifications have been completed on the original 

direct access file the data is transferred in turn to 

the NEWDAFS and other modifications may be carried out. 

Values taken: Names of existing direct access files 

connected by ampersands (&). 

E.g. = DAF1&DAF2&DAF3 

or = DAFO 

Default: Data may be generated and modifications carried out 

on the file specifies by DIRECTACCESSFILE only. 

Keyword: PLOTFILE 

Use: Specifies the name of file to contain output plot data 

if required and if not directed to a graphics terminal 

for immediate display. 

Values taken: Name 

Default: A new temporary file is created. 

Keyword: DATA 

Use: Specifies the name of file containing instructions for 

data modification. Generally (and by default) 

instructions are input from the alien data stream -

i.e. from the terminal when used interactively. 
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Values taken: = Filename. Instructions input from file. 

Default: Alien data (*STDAD). 

Keyword: RESPONSE (as for macro NOTCH above). 

Example 

To carry out modifications on data contained in the direct access 

file DAFl or to generate a new mesh and store the data in this file, 

the following should be input to an interactive graphics terminal: 

- MESH(DAFl) 

Questions or instructions are given by the program to guide the user 

in entering the required data. The following functions may be carried 

out using the macro MESH: 

* To generate a new mesh by specifying blocks of regular elements. 

To plot the existing finite element data to show the mesh. 

* To add additional nodes and/or elements. 

* To delete elements. 

* To move the position of nodes. 

To stretch a portion of the finite element mesh to change the 

overall dimensions. 

* To change boundary conditions. 

To modify the special region. 

* To change the loading on the hole. 

* To change the trial functions. 

* To change other parameters such as elastic constants, titles, 

hole size and position, print option. 
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D.3 The Macro "DRAWMESHES" 

This macro is used to produce a plot of the finite element mesh 

from one or more direct access files. The device on which the plot 

is produced and a scaling factor may be specified. 

Parameter list: 

DRAWMESHES 

(@ superliteral @ DIRECTACCESSFILES = @ mandatory 

@ literal @ DATA = @ see below 

@ literal @ PLOTFILE = @ see below @, 

@ literal @ ACTION = @ see below 

@ literal @ DEVICE = CALCOMP, 

@ literal @ SCALE = 1.0, 

@ integer @ TIME = 5.0, 

@ response @ RESPONSE = RESULT) 

Keyword description 

Keyword: DIRECTACCESSFILES 

Use; Specifies names of files containing the finite 

element data. 

Values taken: One or more direct access file names 

connected by ampersands. 

Default: None. The parameter is mandatory. 

Keyword: DATA 

Use: Specifies source of plotting instructions. 

Values taken: 

= Filename. Instructions input from file. 

= *STDAD. Instructions input from alien data stream 

in response to questions from program. 

Default: No instructions are given and default values are 

assumed. 

Keyword: PLOTFILE (as for macro MESH above). 

Keyword: ACTION 

Use: Specifies actions to be taken (the two words may be 

concatenated). 
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Values taken: 

SAVE - The plotfile is saved. 

DRAW - The plotfile is sent to the specified device 

for plotting. Only valid if "SAVE_DRAWING" option 

is specified by DATA (this is the default). 

Default: The plotfile is produced but no further action 

taken. 

Keyword: DEVICE (as for macro NOTCH above) 

Not applicable unless action includes "DRAW". 

Keyword: SCALE (as for macro NOTCH above). 

Not applicable unless ACTION includes "DRAW". 

Keyword: TIME 

Use: Gives an estimate of time required by job to "draw" 

plot (in seconds). Not applicable unless ACTION 

includes "DRAW". 

Values taken: Integer between 10 and 600. 

Default: 50. 

Keyword: RESPONSE (as for macro NOTCH above). 

Example 

The following job could be entered to produce plots of the meshes 

from the files DAFl, DAF2 and DAF3 on the Calcomp pen plotter. 

JOB(JOBNAME=:MER004.MESHES,TIME=50) 

DRAWMESHES(DAF1&DAF2&DAF3,ACTI0N=DRAW) 

ENDJOB 
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D.4 The Macro LOADLOAD 

This macro is used to enter the Fourier coefficients of the 

loading function (see Chapter 3) for a number of standard loadings. 

(This function may also be carried out using the macro "MESH"). 

Parameter list: 

LOADLOAD 

(@ literal @ DIRECTACCESSFILE = @ mandatory 

@ literal @ DATA = *STDAD, 

@ literal @ OUTPUT = *STDAD, 

@ response @ RESPONSE = RESULT) 

Keyword description 

Keyword: DIRECTACCESSFILE 

Use: Specifies the name of the direct access file to 

which the Fourier coefficients are output. 

Values taken: Filename of existing direct access file. 

Default: None. This parameter is mandatory. 

Keyword: DATA 

Use: Specifies the source of program instructions. 

By default this is from alien data (at the terminal) 

and data is input in response to requests from the 

program. 

Values taken: 

= Filename. Instructions input from file. 

Default: Alien data (*STDAD). 

Keyword: OUTPUT 

Use: Specifies filename to contain details of Fourier 

coefficients, etc. 

Values taken: Filename or *STDAD. 

Default: Output to terminal or job journal (*STDAD). 

Keyword: RESPONSE (as for the macro NOTCH above). 
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Example 

To enter the Fourier coefficients for a particular loading to 

the direct access file DAFl the following could be input at a terminal: 

- LOADLOAD(DAFl) 

The following parameters may be specified: 

* the type of loading (Default: cos 0 loading). 

* number of coefficients m and m^ (Defaults: 30 and 25). 

* magnitude of the resultant P (Default: n). 

* radius of the hole a (Default: 1.0). 

* the ratio of resultant load transmitted by the shear tractions 

to that transmitted by the radial tractions (Default: 0.2). 

The following distributions of radial load may be specified (see 

section 5.4.1): 

b) radial tractions proportional to cos 6 (-m/2<8<?/2) 

c) radial tractions proportional to cos^6 (-m/2<8<n/2) 

d) constant pressure over an arc. 

The following distributions of tangential load may be specified: 

g) shear tractions proportional to sin 9 (-w/2<8<n/2) 

h) shear tractions proportional to sin 29 (-n/2<8<w/2) 

j) shear tractions proportional to sin^9 cos 9 (-w/2<9<w/2) 

Alternatively specific values for the Fourier coefficients may be given. 

-191-



D.5 The Macro HOLE 

This macro is used to produce graphs of the tractions on the 

hole. The type of loading on the hole may be specified by the direct 

access file or by the data input at the terminal (or from DATA file) 

by the user. 

Parameter list: 

HOLE (@ literal @ DIRECTACCESSFILE = @ mandatory 

@ literal @ DATA = *STDAD, 

@ literal @ ACTION = @ see below 

@ literal @ DEVICE = CALCOMP, 

@ literal @ SCALE = 1.0, 

@ integer @ TIME = 50 

@ response @ RESPONSE = RESULT) 

Keyword description 

Keyword: DIRECTACCESSFILE 

Use: Specifies direct access file from which initial 

data about hole loading is taken. 

Values taken: Name of existing direct access file. 

Default: None. This parameter is mandatory. 

Keyword: DATA 

Use: Specifies source of plotting instructions. 

Values taken: 

= Filename. Instructions input from file. 

= *STDAD. Instructions input from alien data stream 

as directed by program. 

Default: No instructions are given and default values are 

assumed. 

Keyword: ACTION 

Use: Specifies whether "SAVE_DRAWING" code (if generated) 

is plotted. 

Values taken: 

DRAW - The plot file is sent to the specified device 

for plotting. 

Default: No further action. 
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Keyword: DEVICE (as for macro NOTCH above). 

Not applicable unless action includes "DRAW". 

Keyword: SCALE (as for macro NOTCH above). 

Not applicable unless action includes "DRAW". 

Keyword: TIME (as for macro DRAWMESHES above). 

Not applicable unless action includes "DRAW". 

Keyword: RESPONSE (as for macro NOTCH above). 

Example 

To produce a plot of the tractions round the hole specified by 

Fourier coefficients stored in the file DAFl the following job could 

be run. The plot is to be produced on the Imlac interactive terminal: 

- H0LE(DAF1,DATA=*STDAD) 

Data must be input to the terminal in reply to the requests from the 

program. In reply to the first question for example the Imlac terminal 

must be specified. 

The following job however could be input to produce the plot on 

the Calcomp pen plotter at half scale with default plotting instructions, 

JOB(JOBNAME=:MER004.HOLEPLOT,TIME=50) 

HOLE(DAFl,ACTION=draw,scale=0,5) 

ENDJOB 

D.6 The Macro VUSTRESS 

This macro is used to produce a graph of stress along specified 

element boundaries (by default the outer boundary of the mesh). Data 

produced by the FESM program and stored on the direct access file is 

retrieved and plotted. The data from more than one direct access file 

may be plotted in this way with one call of the macro. 

Synonym: VU. 
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Parameter list 

VUSTRESS 

(@ superliteral @ DIRECTACCESSFILES = @ mandatory 

@ literal @ DATA = @ see below 

@ literal @ PLOTFILE = @ see below 

@ literal @ ACTION = @ see below 

@ literal @ DEVICE = CALCOMP, 

@ literal @ SCALE = 1.0, 

@ integer @ TIME = 50, 

@ response @ RESPONSE = RESULT) 

Keyword description 

Keyword: DIRECTACCESSFILES 

Use: Specifies the direct access files containing data 

to be plotted. 

Values taken: One or more direct access file names 

connected by ampersands. 

Default: None. This parameter is mandatory. 

Keyword: DATA 

Use: Specifies source of plotting instructions. 

Values taken: 

= Filename. Instructions input from file. 

= *STDAD. Instructions input from alien data stream 

in response to requests from program. 

Default: No instructions are given and default values 

are assumed. 

Keyword: PLOTFILE (as for macro MESH above). 

Keyword: ACTION 

Use: Specifies further actions to be taken. 

Values taken: The following words may be included in the 

value for this parameter with identical meaning as 

for the macro NOTCH: 

DRAW "I 

PLOT / (see macro NOTCH above) 

SAVE J 

Default; No further action. 
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Keyword: DEVICE (as for macro NOTCH above). 

Keyword: SCALE (as for macro NOTCH above). 

Keyword: TIME (as for macro DRAWMESHES above). 

Keyword: RESPONSE (as for macro NOTCH above). 

Example 

To produce graphs of the stresses on the boundary of the finite 

element meshes from the data files DAFl and DAF2, the following job 

could be run. Default plotting instructions are used and the graph 

will be plotted on the Calcomp pen plotter. 

JOB(JOBNAME=MER004.VUGRAPH,TIME=1OO) 

VUSTRESS(DAF1&DAF2,ACTI0N=DRAW) 

ENDJOB 
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APPENDIX E 

Finite Element Meshes 
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APPENDIX F 

Kernel function for region with a circular hole 

The solution is required for the tractions and displacements in 

an infinite region with a circular hole of radius a, at a point z in 

the complex plane due to a unit point force in the k direction acting 

at the point z . These may be expressed (see chapter 6) in terms of 

the complex potentials 4^(z,z ) and ^^(z,z ) and their derivatives, 

and are given by Murakami and Nisitani [6.19] as; 
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APPENDIX G 

Using the modified boundary element program. 

This appendix deals with preparing the data file for the boundary 

element program and using the three "macros" (system control commands) 

which were prepared for modifying the data and running the program. 

One data file is required for each run of the program and the information 

it should contain and its format is given below. It follows closely the 

format of the original program [6.2]. 

G.l BEM data file 

1. Title record. (Format 18A4) This title is printed in the 

heading on output. 

2. Basic parameters. (Format 815, 3F10.4, 215) These parameters 

are in order: i) the number of boundary elements, ii) the 

number of internal points where the stress is calculated, 

iii) the number of different surfaces, iv) to viii) the 

last node of each different surface, ix) Young's modulus 

(n.b. not shear modulus as in previous versions), x) Poisson's 

ratio, xi) the radius of the circular hole, xii) number 

of Gauss points (for integration: equal to 4 or 8), xiii) 

ICODE which takes the values ±1 or ±2. |ICODE|=2 for plane 

strain (default). If ICODE<0 then additional "de-bug" data 

is printed. 

3. Internal point coordinates.(Format 2F10.4) As many records 

as internal points with the x , x coordinates on each record. 

4. Coordinates of extreme points of the boundary elements. 

(Format 2F10.4) Each record defines the coordinates ofthe 

extreme point of an element, read in the counterclockwise 

direction for external surfaces and clockwise for internal 

ones. 

5. Boundary condition records. (Format 15, F10.4, 15, F10.4) 

As many records as boundary nodes giving the values of the 

known variable in x and x directions. The integer preceding 

each value, KODE, defines whether the value is a displacement 

(K0DE=0) or a traction (K0DE=1). Boundary conditions may be 

specified in normal and tangential directions rather than x^, 
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X directions if required. In this case the first 

integer = 2 and the second integer = 0 or 1 to specify 

displacements or tractions respectively. 

G.2 The Macro DRAWBEL 

As an alternative to inputting the above data file the macro 

DRAWBEL may be used to generate the boundary grid (ACTION = AUTO, see 

below). The configuration is input as a series of arcs or straight 

lines with constant spacing between each node or (for straight lines) 

a constant ratio of lengths of adjacent elements. The basic parameters 

and boundary conditions are then input in free format as prompted by 

the program. The macro may also be used to plot the boundary grid from 

an existing data file. 

Parameter list: 

DRAWBEL 

(@ literal @ DATA = *STDAD, 

@ literal @ ACTION = @ see below 

@ literal @ OUTPUTFILE = @ see below 

@ literal @ DEVICE = CALCOMP, 

@ literal @ SCALE = 1.0, 

@ integer @ TIME = 50, 

@ response @ RESPONSE = RESULT) 

Keyword description 

Keyword: DATA 

Use: Specifies file from which data is read. 

Values taken: Filename. Data is read from existing data file. 

Default: Data read from alien data. This should be used 

if generating new boundary grid. 

Keyword: ACTION 

Use: Specifies action to be taken. If two actions are to 

be taken the values below should be concatenated 

(e.g. ACTION=AUTO_SAVE) 

Values taken; 

AUTO - A new boundary grid is to be generated. The 

data is output to the file specified by OUTPUTFILE 

(see below). 
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SAVE - The file specified by OUTPUTFILE is to be 

saved. 

DRAW - This action may only be specified if AUTO is 

not specified. The OUTPUTFILE may then contain a 

"SAVE_DRAWING" pseudo plot file and if ACTION includes 

"DRAW" this file is plotted. 

Default: A DATA file, formatted as specified in section G.l 

above, is input and plot data for the boundary grid 

is output. 

Keyword: OUTPUTFILE 

Use: Specifies the name of the output file. If ACTION 

includes "AUTO" the output file will be a boundary 

element data file. Else the output file is a plotfile. 

Values taken: Name. 

Default; A new temporary file is created. 

Keyword: DEVICE 

Use: Specifies the plotting device on which plot is to be 

produced. Not applicable unless ACTION includes "DRAW" 

Values taken: 

= CALCOMP (Calcomp pen plotter). 

= TEKTRONIX (Tektronix 4010 graphics terminal). 

= IMLAC (Imlac graphics terminal). 

Default: CALCOMP. 

Keyword: SCALE 

Use: Specifies required scaling factor for plotter. Not 

applicable unless ACTION includes "DRAW". 

Values taken: 

= Positive number up to four characters long including 

mandatory decimal point. The size of the plot will 

be scaled by this factor. 

= Any negative number. The size of the plot will be 

adjusted to fit the output device requested. 

Default: 1.0 (No scaling is performed). 
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Keyword: TIME 

Use: Gives an estimate of the time required to "draw" 

plot (in seconds). Not applicable unless ACTION 

includes "DRAW". 

Values taken: Integer between 10 and 600. 

Default: 50 

Keyword: RESPONSE 

Use: Specifies the result code variable. 

Values taken: Response variable. 

Default: RESULT. 

Example 

The following job could be entered to plot the boundary grid from 

a boundary element data file BEMDATA. The plot would be produced on 

Calcomp pen plotter. 

JOB(:MER004.BEMPLOT,TIME=5O) 

DRAWBEL(BEMDATA,ACTION=DRAW) 

EJ 

Alternatively if the macro is to be used to generate a boundary 

grid the following could be entered from the Imlac graphics terminal. 

- DRAWBEL(ACTION=AUTOSAVE) 

/ - 0, 2, 0, 2 

/ - 4 

/ - 2, 0 

/ - 2 , 6 , 0 , 0 , - 9 0 

/ - 1 , 4 , 0 , 1 , 0 . 8 

/ - 2 , 6 , 0 , 0 , 9 0 

/ - 1 , 4 , 2 , 0 , 1 . 2 5 

/ - 0/ 

/ - ANNULUS 

/ - 2 , 1 . 0 , 0 . 3 , 0 . 0 , 0 

/ - 1.5, 0.5 

/ - 0.5, 1.5 

- 2 0 8 -



/ - 2, 0, 1, 

/ - / 

/ — / 

/ - / 

/ - / 

/ - / 

/ — 0, 0, 1, 

/ - / 

/ — / 

/ - / 

/ - 2, 1, 1, 

/ - / 

/ - / 

/ - / 

/ — / 

/ — / 

/ — 1 : 

/ - / 

/ - / 

/ - / 

0 , 0 , 0 

The data following the DRAWBEL command specifies the parameters 

requested by the program (e.g. dimensions, boundary conditions, etc.). 

The above data produces the boundary grid shown in Figure Gl. 

Key 

Nodes 0 

Internal Points 0 

0' 0 ' 0 '—Q" 

Figure Gl Boundary grid specified using the macro DRAWBEL. 
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G.3 The Macro BEM 

This macro is used to run the modified boundary element method 

program. The modified (NEW) or standard (OLD) kernel functions maybe 

used and the program may be run immediately or entered into the batch 

queue. 

Parameter list: 

BEM (@ literal @ DATA = *STDAD, 

@ literal @ OUTPUT = @ see below @, 

@ literal @ KERNEL = NEW, 

@ literal @ IMMEDIATE = YES, 

@ integer @ TIME = 50, 

@ response @ RESPONSE = RESULT) 

Keyword description 

Keyword; DATA 

Use: Specifies file from which data is read. 

Values taken: Filename data is read from existing data file. 

Default: Alien data. 

Keyword: OUTPUT 

Use: Specifies the name for the output file if required. 

Values taken: Name. If a file of this name exists output 

is sent to this file. Else file is created. The 

file is listed after the program has run. 

Default: A temporary file is created. 

Keyword: KERNEL 

Use: Specifies which kernel function is used for the boundary 

element method. 

Values taken: 

= NEW. The modified kernel function for a plane 

containing a circular hole is used. 

= OLD. The standard Kelvin kernel function is used. 

Default: NEW. 
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Keyword: IMMEDIATE 

Use: Specifies if program is to be run immediately or 

entered into the batch queue. 

Values taken: 

= YES. Program is run immediately. 

= NO. Job entered into the batch queue to be run later. 

Default: YES. 

Keyword: TIME 

Use: If IMMEDIATE = NO then TIME is an estimate of the time 

(in seconds) required for the job. 

Values taken: Integer between 10 and 2000. 

Default: 50. 

Keyword: RESPONSE 

Use: Specifies the result code variable. 

Values taken: Response variable. 

Default: RESULT. 

Example 

The following job could be entered to run the boundary element 

program with data from the file BEMDATA, using the modified kernel function. 

JOB(:MER004.BEMRUN,TIME=50) 

BEM(DATA=BEMDATA) 

EJ 
**** 

G.4 The Macro RUNNER 

It is sometimes convenient when a number of runs of the boundary 

element program are required to use the macro RUNNER. In this case the 

data file is edited before the program is run (see example below). 
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Parameter list: 

RUNNER (@ literal @ FILE = @ mandatory 

@ literal @ EDITFILE = *STDAD, 

@ literal @ KERNEL = NEW, 

@ literal @ IMMEDIATE = YES, 

@ integer @ TIME = 50, 

@ response @ RESPONSE = RESULT) 

Keyword description 

Keyword: FILE 

Use: Specifies the data file which is edited and then 

input to the boundary element program. 

Values taken: Filename of existing data file. 

Default: None. This parameter is mandatory. 

Keyword: EDITFILE 

Use: Specifies the file from which the edit instructions 

are read. 

Values taken: Filename. 

Default; Alien data. 

Keywords: KERNEL 

IMMEDIATE 

TIME 

RESPONSE 

These keywords have the same meaning 

as for the macro BEM above. 

Example 

The following job could be entered to run the boundary element 

program with the datafile BEMDATA, which has a hole size specified as 

5.0, followed by runs with the same data except for the hole sizes which 

are 3.0 and 1.0. 

JOB(:MER004.BRUNS,TIME=6OO) 

BEM(BEMDATA) 

RUNNER(BEMDATA) 

T2, T.60,R/5.0/3.0/,E 

RUNNER(BEMDATA) 

T2, T.60,R/5.0/1.0/,E 
++++ 

EJ 
**** -212- G 


