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Abstract: The aim of this study is to quantify the impacts of air pollution and meteorological parameters on human morbidity 

and to test whether different model specifications and approaches yield different results. Generalised additive and linear models 

along with monthly time series data for CO, NO, NO2, SO2, O3, average/maximum/minimum air temperature, relative humidity 

and atmospheric pressure are employed in order to investigate their association with three indicators of morbidity (circulatory 

diseases, respiratory diseases and skin diseases) in the city of Athens, Greece, for the period January 1987 - December 1999. 

Our results indicate that an exacerbation in pollution levels of SO2 significantly increase the number of circulatory diseases. 

Similarly, increases in NO and O3 are found to augment the number of respiratory diseases, while the number of skin diseases 

is shown to be risen by an increase in CO concentrations only. Moreover, we find both air pollution and air temperature to be 

significantly associated with all human health indicators. This work highlights the need for lower air pollution standards for the 

city of Athens and a wider climate change policy.  

 

Keywords: air pollution, air temperature, generalised additive models (GAM), circulatory diseases, respiratory diseases, skin 

diseases.  

 

Reference to this paper should be made as follows: Mentzakis, E. and Delfino, D., 2010. Effects of Air pollution and 

Metrological Parameters on Human Health in the city of Athens, Greece. International Journal of Environment and Pollution, 

40(1-2), 210-225. 

 

 

1     Introduction 

 

1.1     Health and air pollution 

The adverse effects of air pollution on human health have become widely acknowledged over the last 

decades. The London Episode in December of 1952 constituted one of the first realisations of the short-

term effects of air pollution on human health. In that instance, high concentrations of smog and air 

pollutants along with ‘stagnant weather conditions’ (Brunekreef and Holgate, 2002) caused 3500-4000 

deaths in the first 3 weeks of the episode alone (Bell and Lee Davies, 2001). A number of 

epidemiological studies have quantified these effects using a variety of analytic/econometric tools, 

where the causal relationship of mortality/morbidity with air pollution has been found significant for a 

range of concentration levels (Schwartz and Marcus, 1990; Dockery et al., 1993; Schwartz and Morris, 

1995; Katsouyanni et al., 1997; Le Tertre et al., 2002). Furthermore, as some others claim, this 
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relationship is not only present for the extreme and the current concentration levels but could hold even 

for levels lower than the ones generally observed (Katsouyianni et al., 2001; Brunekreef and Holgate, 

2002).  

 

1.2     Health and meteorological parameters  

Moreover, it has been argued that meteorological factors are important determinants of human 

health. Mortality and morbidity are affected by extreme and moderate weather phenomena, including 

heat waves and cold spells (Kalkstein, 1991; Braga et al., 2002). Thermal stresses lead not only to 

direct deaths and illnesses but also to aggravation of cardiovascular and respiratory diseases which, in 

extreme cases, can even cause death by these causes (Martens, 1996; Haines et al., 2000; Curriero et al., 

2002). Additionally, The International Panel on Climate Change (1996) warns about potential adverse 

effects of climate change, including occurrence of skin cancer and glaucoma, and deaths caused by 

natural disasters. Evidence suggests that topographic and climate characteristics jointly affect the 

numbers of deaths and hospital admissions (Smith and Tripak, 1989; Curriero et al., 2002; Patz and 

Kovats, 2002; Pattenden et al., 2003) making some areas more susceptible to particular weather 

patterns than others. Although the effects of extreme weather conditions are usually thought to be 

caused by air temperature and humidity, it is argued that also pressure, precipitation, wind velocity and 

direction can affect morbidity, especially through interactions with pollutants (Kalkstein, 1993; 

Jamason et al., 1997; Laschewski and Jendritzky, 2002). 

 

1.3     Present study 

Using a variety of econometric specifications, the purpose of this study is to quantify the effects of 

air pollution and meteorological factors on human health and additionally to look for significant 

differences across the different modelling strategies. To this effect, we employ a generalized additive 

models framework allowing for non-linearities. In addition, contrary to other studies where daily time-

series are used, we utilize monthly data to display aggregated effects over the period of a month or of 

adjacent months revealed neither by short nor by long-term studies.   

 

2     Data 

Athens has a typical Mediterranean climate with mild and rainy winters, relatively long, warm and 

dry summers and, generally, extended periods of sunshine throughout most of the year. “The 

topography favours atmospheric inversions and the concentrations of pollutants measured are high even 

in the presence of relatively limited emissions” (Touloumi et al., 1996). 

The Department of Air Quality, operated by the Ministry for the Environment, Physical Planning 

and Public Works, is the source of the pollution data. The values of the pollutants measured on an 

hourly basis include carbon monoxide (CO), nitric monoxide (NO), nitric dioxide (NO2), sulfur dioxide 

(SO2) and ozone (O3); all measured in μg/m
3
 apart from CO, which is measured in mg/m

3
. All the 

hourly values are initially collapsed to daily average values and then further collapsed to average 

monthly values. The meteorological measurements are provided by the National Meteorological Service 

and include average daily figures for average/maximum/minimum air temperature, relative humidity 



 

and atmospheric pressure. As previously, these daily values are collapsed to average monthly values. 

Finally, human health data, recorded on a monthly basis, are obtained from hospital records for the area 

of greater Athens. In particular, morbidity data are proxied by “Patients discharged by main categories 

of diseases and place of permanent residence”. We use three indicators
1
: “diseases of the circulatory 

system”
2
, “diseases of the respiratory system”

3
 and “diseases of the skin and subcutaneous tissue”

4
. 

This study covers the period 01/01/1987 - 31/12/1999. Time series plots and a correlation matrix of the 

health indicators with the pollution and meteorological variables are presented in Figures 1 to 3 and 

Table 1.  

 

2.1     Missing Values 

Despite the density of the data, the imputation of the few missing values is carried out using an 

imputation by the best-subset regression technique, which creates auxiliary regressions and estimates 

the values of the missing values. This technique, using linear interpolation or mean of nearby points, is 

employed and preferred to others as it does not depend strongly on the previous and subsequent patterns 

of the values. For the variables in question (NO, NOx and NO2) the percentage of the imputed values is 

around 5%. Hence, we identify two datasets, one with filled in missing values and one without. 

Preliminary analysis is performed comparing the two datasets. Similar results in terms of identification 

of relationships (positive or negative) with slight variations in quantification are obtained. We, 

therefore, feel comfortable in using the dataset with imputed values. Both data management and 

econometric analysis are carried out using Stata/SE 8.2 econometric software. 

 

3     Methods 

We evaluate the effects of air pollution and weather patterns on human health and test the 

sensitivity of the results under different model specifications. Three kinds of models are used: 

Generalised Linear Models (GLM) assuming Gaussian (normal) distribution; GLM assuming Poisson 

distribution; Generalised Additive Models (GAM) assuming Poisson distribution. As Schwartz et al. 

(1996) argue, the difference in the results between modelling count data as Poisson or Gaussian is not 

significant. 

A major issue in the literature of epidemiology is the method to deal and control for serial 

correlation, seasonality and other cyclical patterns. As argued in the APHEA project (Schwartz et al., 

1996), there are several ways to address these problems. Parametric approaches with sine and cosine 

terms (Katsouyianni et al., 1996) and different wavelengths can be used to capture distinct shapes and 

patterns. As described in the APHEA protocol, the specification would take the following 

form,    3652cos3652sin tt   , where t=1,…,T is the day of the study (Katsouyianni et al., 

1996). However, as in our case the formulation fits the monthly interval series, a slight modification is 

necessary i.e. the number of days per year is substituted with the number of months per year. We 

employ terms up to 6th order and select the order that minimises the Akaike’s Information Criterion, 

AIC (Akaike, 1973). Moreover, in order to account for seasonal phenomena we use a dummy variable 

approach (Wooldridge, 2003) where, instead of using the sinusoidal terms, we fit in each regression a 
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series of monthly dummies. This approach is not used to reveal a causal relationship between them but 

to detect whether during certain months the levels of the diseases are systematically higher or lower. 

This gives a good approximation of the seasonal and monthly variations and accounts for other seasonal 

factors excluded from the list of our regressors (e.g. diseases or allergies that escalate during certain 

months and have a complimentary effect on health). Additionally, a linear and quadratic time trend are 

introduced in all the models and kept upon their statistical significance and the improvement of the 

AIC. Subsequently, we test for serial correlation in the residuals. When necessary, autoregressive terms 

are included in the generalised linear models, as proposed by Schwartz et al. (1996); specifically, the 

logarithm of weighted moving average terms of the health outcome, ))(ln( YWMA . The employment of 

all of these techniques corrects all the serial correlation and obtains white noise for all the models’ 

residuals, using correlograms as observation tools, and formal tests such as the Portmanteau (Q) 

statistic for white noise (Box and Pierce, 1970). It is argued that sometimes this test is not valid for the 

examination of residuals from linear and non-linear models (Davidson and MacKinnon, 1993). 

However, plotting the residuals of each model indicates that the normal distribution is followed in 

every case and, therefore, the outcome of the test is valid. 

Furthermore, first and second order lags for of all the explanatory variables are included in all the 

models apart from the GAM, where only first order lags are fitted. The use of first and/or second order 

lags provide an extended window of 1 or 2 months, which is more than sufficient since the short and 

possibly the medium term effects of air pollution and meteorology last usually between 2 to 23 days 

(Katsouyianni et al., 1997; Laschewski and Jendritzky, 2002; Pattenden et al., 2003).  

 

3.1     Gaussian Linear Model 

For the Gaussian linear model with a log link function, the expectation of the random variable tY  

is 













))(ln(exp)|( ,
1

0 YWMAXXYE tii

n

i
tt                                       (1) 

Here tY  denotes the monthly interval values of the circulatory, respiratory and skin diseases. 

Here ),...,( ,,1 titt XXX  , where i=1,…,n, denotes all the explanatory variables and ))(ln( YWMA is 

the logarithm of the weighted moving average of Y.  

 

3.2     Generalised Linear Model 

For the GLM we use exactly the same specification and procedure as in the Gaussian Linear 

Model with the difference that here a Poisson distribution is assumed (McCullagh and Nelder, 1989). 

All the regressors (i.e. air pollutants and meteorological factors) are included and their linear 

relationship with human health is examined. 

 



 

3.3     Generalised Additive Model 

A GAM is a nonparametric alternative to the GLM. GAMs allow non-linear relationships between 

the response variable and the control variables (Hastie and Tibshirani, 1990). In a generalised additive 

Poisson model with a log link function the specified expectation of the tY  is 
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GAM fits a generalized or proportional hazards additive model for the dependent variable as a function 

of the independent variable by maximising a penalised log likelihood function. Each component of the 

resulting estimated function of the independent variable is a cubic smoothing spline. The smoothness of 

each component function is determined by the degrees of freedom (df) of the respective regressor. 

Therefore, in our specification every cubic smooth spline used to estimate the non-parametric functions 

is denoted by gi (Dominici et al., 2002). However, a GAM can be turned into a semi-parametric model 

including some variables as smooth functions and some others as linear by adjusting the degrees of 

freedom of the linear independent variables to one. This gives a different specification  
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where all the Xr,t, for r=1,..,p, are introduced as linear into the model so that we can interpret their effect 

on the dependent variable. The Xi,t, where i=1,..,n, remain cubic smooth functions. The appropriate 

amount of degrees of freedom is decided using two approaches: the AIC and the difference in 

deviances. The AIC penalises the amount of degrees of freedom used. The use of too many degrees of 

freedom can lead to over-specification of the model, resulting in capturing spurious features in the data 

that are not really a product of the analysed relationship. However, this problem can be detected by 

looking at the fitted curves and the partial residuals. In the semi-parametric framework we create 

models where one pollutant, minimum and maximum temperature, and relative humidity are each time 

introduced as linear, while the remaining variables are included as smooth functions. 

The final models and the inclusion of any variable are solely dependent on statistical significance 

and no relationship is presupposed and held constant. All presented and discussed variables are 

significant at 5% confidence level or higher and have passed the necessary formal tests. 

 

4     Results 

As discussed in the Section 3, graphical examination of the residuals (Figures 4 to 6) reveals no 

apparent problems with our specified models. Although Figures 4 to 6 are obtained from the GAM for 

circulatory diseases, the results derived for the rest of diseases and specifications are parallel.   

 

4.1     Circulatory diseases 

Our results for circulatory diseases (Tables 2 and 3) using the three models are very consistent. In 

GLM and GAM we find that a 10μg/m3 increase in SO2 significantly increase circulatory conditions by 

0.71% and 1.27%, respectively. We should note that a positive sign in the coefficient indicates a 

positive statistical relation between the regressor and the dependent variable, but is translated into a 
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negative effect in health terms, since a higher number of diseases indicates worse health. Also NO has a 

statistically significant impact on circulatory diseases (0.33% and 0.53%, respectively) as its first order 

lagged values (0.52%) in the GAM. Furthermore, O3 is shown to be significant in the additive models 

with an increase of 0.6% in circulatory conditions for every 10μg/m3 increase in O3. The results for 

meteorological factors are also very consistent amongst the models used. A unit (1oC) increase in 

minimum temperature significantly reduces the number of circulatory diseases (-1.79% and -6.91%), 

while for every unit (1oC) increase in maximum and average temperatures the number of circulatory 

conditions increases by 1.5% and 2.15%. Similar results are obtained from the GLM models for the 

second lags of the meteorological parameters. Finally, in the models that used the month dummy 

variable approach the most harmful months appear to be March and May, while August and September 

exhibit lower diseases values. 

 

4.2     Respiratory diseases 

Interesting are also the results for the respiratory diseases (Tables 2 and 3). Nitrogen oxides are 

generally significant both in the current month as well as their lags. In the GLM models we find that a 

10μg/m
3
 increase in NO and the second lag of NO2 significantly increase the number of respiratory 

diseases (0.51% and 0.6% 1.44% and 1.77%, respectively). For GAM the results reveal that NO2, 

lagNO2 and lagNO are damaging, with a 10μg/m
3
 increase leading to a 0.7%, 1.75% and 0.8% increase 

in the numbers of the respiratory diseases, respectively. Similarly, in both specifications a 10μg/m
3
 

increase in O3 is found to significantly increase respiratory diseases by 0.64% (GAM) and by 1.88% 

(GLM). As expected, the additive models indicate that a unit (1
o
C) increase in minimum and maximum 

temperatures significantly reduces the number of respiratory diseases (-3.72% and -6.26%, 2.13% and 

4.28%, respectively). However, the effects of average temperature and its lags are insignificant for the 

GLM models, while minimum temperature, although in just three of the specifications, is shown to 

have a positive and significant effect (-0.78% to -0.87%) on respiratory diseases, confirming the 

consistent influence of minimum temperature on diseases. As in the case of cardiovascular diseases, 

warmer months (i.e. April, June, July, August, and September) are shown to bear a lower number of 

respiratory disease occurrences.                        

                                                               

4.3     Skin and subcutaneous tissue diseases 

Finally, skin diseases are weakly affected by air pollution (Tables 2 and 3). For the additive 

models a significant effect is observed for CO, where a 1mgr/m
3
 increase in the pollutant concentration 

would lead to a 1.98% increase in the health variable. Similar effect is found for lagNO2 (1.09%) in the 

GAM, while in the GLM models all the pollution variables are insignificant apart from the second lag 

of NO2, which appears to be strongly related to skin diseases with a quantified effect of 2.89% to 3.5% 

for every 10μg/m
3
 increase. However, in all models the results confirm a strong and very consistent 

influence of temperature. Minimum and maximum temperatures are found (GLM models) to cause a 

change in the health values -0.34% to -4.92% and 2.57% to 4.43%, respectively, for every 1
o
C increase. 

The same values for all additive models are -4.92% to -5.51% and 3.33% to 3.8%, respectively. Again, 



 

the months that reveal a strong negative influence are April and August, while the ones with a positive 

one are February, March and December.  

In addition, relative humidity, when added to the models as linear, is significant for almost all 

cases, revealing always a 0.28% to 0.73% rise in the health values for every percentage increase.  

 

5     Discussion 

Our results confirm some of the outcomes stated in the literature and the use of monthly intervals 

does not affect the quality of these results. Furthermore, the employment of different model 

specifications and the different methods to account for seasonality do not have any explicit significant 

effect on our conclusions leading to quite comparable results among the various methods. Hence, the 

recommendation to use one approach rather than the other is not appropriate and the choice should be 

based mainly on the type of data and the problems that are analysed, like seasonality and other cyclical 

events.  

In a previous study in Athens (Touloumi et al., 1996), SO2 is positively correlated with health 

showing a 3% to 8% increase in total number of daily deaths for every additional 100 μg/m
3
 of SO2, 

which is very close to our estimates of 0.71% to 1.27% for every 10μg/m
3
. Parallel results are presented 

for cities in Southern Europe by Katsouyianni (1995), who finds associations between SO2 and cardiac 

complications/mortality. Similarly, amongst the studies that use hospital admission records, Schwartz 

and Morris (1995) report a relative risk of 1.018 in heart diseases for every 18ppb (parts per billion) 

increase in SO2, while the increase that Burnet et al. (1995) report is 2.8% for every 13 μg/m
3
. 

Significant are also the effects of pollutants such as NO2 and NO. In a study in metropolitan Los 

Angeles (Linn et al., 2000) an increase of 14% in hospital admissions for cardiovascular diseases is 

reported for every 10pphm (parts per hundred millions) increase in NO2 levels. An increase in mortality 

of 3.1% is also concluded for each interquartile range increase in NO2, in a study in Korea (Hong et al., 

2002), while the cardiovascular deaths related to air pollution rise by 1% for every 10μg/m
3
 increase in 

NO2 levels, for seven cities of Spain (Saez et al., 2002). In another study, Cho et al. (2000) conclude 

that, for respiratory admissions, the relative risk in relation to NO2 is 1.47 (95% C.I.: 1.03-2.10). 

Similarly, Schwartz (2004) argues that NO effects on respiratory problems are quite apparent, 

especially on children, while Braat et al. (2002) link NO to the aggravation of respiratory diseases and 

allergies, although the significance level of the pollutant could not allow for generalisations. These 

results are very close to the ones obtained from our models where NO2 and its lags are highly 

significant with effects ranging from 0.7% to 1.77% for every 10 unit increase. Overall, although 

deterioration in human health by NO is not very common, the harmful effects of nitric oxides are 

widely acknowledged by the literature.  

In our study O3 results to be irrelevant for circulatory diseases, a conclusion reached also by 

Anderson et al. (1996). The impact of O3 in respiratory diseases is similar to that obtained by other 

studies (Brunekreef and Holgate, 2002; Desqueyroux et al., 2002; Sunyer et al., 2002). However, deaths 

from respiratory diseases attributed to exposure to O3 are found to be also significant (Anderson et al., 

1996; Goldberg et al., 2001; Hong et al., 2002). Desqueyroux et al. (2002) report that a 10μgr/m
3
 

increase is associated with an increase in the relative risk (OR= 1.20, 95% CI) of asthma attack, while a 
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study in Barcelona (Sunyer et al., 2002) concludes that O3 increases the risk of dying in asthmatic 

patients (OR= 1.90, 95% CI). Similarly, Katsouyianni (2003) reports results from one study where a 

20μgr/m
3
 increase in O3 is associated with 0.5% increase in respiratory mortality and from another 

study where a 2.9% increase is the result of raising the concentration of O3 by 50μg/m
3
. After taking 

into account the scale that each study uses, we can observe that our results do not differ from what is 

previously reported, since our estimates predict a 0.64% to 1.88% rise for every 10μg/m
3
. 

The relation of air pollution and skin diseases is rarely a subject of study in the literature (Mar and 

Marks, 1999; Polosa, 1999; Forster and Kuehr, 2000). As we observed, the most consistent effects for 

skin diseases come from temperature. Yet, temperature is inseparably connected to sun and sunlight, as 

is ground-level ozone. Likewise, Brunekreef and Holgate (2002) confirm “high ozone concentrations 

during warm and sunny weather” (p.1233). Thus, it is possible that the harmful effects on skin diseases, 

revealed through O3 and temperatures, are a complementary effect. It is well know that sunlight and 

radiation are amongst the main causal factors for skin diseases. Unfortunately “sunshine duration” was 

not available in our dataset. We could argue, however, that the relationship of skin diseases with the 

harmful side of sunlight is revealed through the significance of temperature.   

Finally, our results for air temperature also confirm previous findings, with increases in average 

and maximum air temperatures leading to increased number of the health indicators, which given their 

very high positive correlation (Table 4) is to be expected. On the contrary, the negative sign of 

minimum temperature indicates that increase in minimum temperature would result in better health 

outcomes, confirming that alleviation of extreme temperatures is beneficial to the human organism 

especially in the high-risk populations. As in Patz and Kovats (2002) and Curriero et al. (2002), 

populations in warmer/temperate climates tend to be more sensitive to low temperatures, while 

population of colder climates are more vulnerable to heat.  

Similarly, Smith and Tirpak (1989) argue that heat affects mortality to a greater extent in cities 

with temperate climate, while cities with warmer climates, and therefore smaller variance in their 

summer temperatures, tend to be more protected, irrelevantly of the extent to which the temperature 

might rise. In another study comparing London and Sofia (Pattenden et al, 2003), the impact of heat is 

greater for Sofia while cold is for London; a possible explanation for this could be the acclimatisation 

of the population and their distinct habits and behaviours. Similarly, McGeehin and Mirabelli (2001) 

find that north-eastern and mid-western U.S. cities are likely to experience higher number of 

admissions in response to changes in the summer temperatures.  

In a very comparable framework we support the dummy variable approach to correct for 

seasonality. Generally, higher temperatures and better weather conditions are observed during warm 

months leading to less illness incidents. Similarly, the effect of better lifestyle during summer months 

involves less stress, more exercise (probably swimming) and a more relaxed pace. In the future this 

association should be tested rigorously in order to make sure that the use of weather variables is not 

capturing spurious effects through differences in lifestyles or possible correlations with diseases 

outbreaks, rather than the true harmful consequences of meteorological events.  

 



 

6     Conclusion 

By sequence of testing, our results indicate that an exacerbation in pollution levels of SO2 

significantly increase the number of circulatory diseases. Similarly, increases in NO and O3 are found 

to augment the number of respiratory diseases, while the number of skin diseases is shown to be risen 

by an increase in CO concentrations only. We could argue that further lowering of the pollution levels 

would be beneficiary for the population health in the city of Athens.  

It is, also, apparent that air temperature is an important determinant of health. We find statistically 

significant evidence for a causal relationship of air pollution and air temperature with all human health 

indicators. As a corollary, the fast growing effects of climate change and its effect on temperature could 

prove to be one of the main influences on health in the future.  

Data limitations (monthly data for health indicators) do not allow testing whether in-month 

variation of pollution and temperature has any influences on health, while the combined effects of 

pollution and temperature on health were also ignored. Future research should concentrate in testing the 

existence of multiplicative effects or of cancelling out. Finally, we do not test the sensitivity of our 

results to the hourly/daily to monthly averages transformation method and whether the use of 

accumulated during the month quantities with or without threshold is be more informative than the 

averaged ones. This should be explored in the future. 
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Notes 
1 Categorised according to the International Classification of Diseases, 9th revision (ICD-9). 

2 ICD-9: 390-398, 401-405, 410-417, 420-438, 440-448 and 451-459. 

3 ICD-9: 460-466, 470-478, 480-487, 490-496, 500-508 and 510-519. 

4ICD-9: 680-686, 690-698 and 700-709. 
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Table 1. Correlation of health indicators with the rest of the regressor
a
. 

 
Circulatory 

Diseases 
Respiratory Diseases Skin Diseases 

CO -0.3387 0.1034 -0.1184 

NO -0.1565 0.2638 -0.1437 

NO2 -0.4984 0.0011 -0.1174 

SO2 -0.2461 0.1914 -0.2223 

O3 -0.0641 -0.4360 0.0294 

Average Temperature -0.3948 -0.6420 0.0075 

Minimum Temperature -0.4227 -0.6785 -0.0099 

Maximum Temperature -0.3961 -0.6289 0.0152 

Humidity 0.3706 0.5364 0.0367 

Pressure 0.2162 0.3650 -0.0610 

a The correlation coefficient does not depend on the units of measurement and a coefficient of 0.10 
indicates a 10% positive correlation between the two variables. 

 



 

 

 

Table 2. Results from the Gaussian and the Poisson distributed GLMs* 

 Circulatory diseases Respiratory diseases Skin diseases 

NO 0.33% to 0.53% 0.51% to 0.6%  

SO2 
1% to 1.27% (GLM 

AR) 
  

O3  1.88% (GLM sin AR)  

Average Temperature 1.5% to 4.03%   

Minimum 
Temperature 

-1.79% to -4.9% -0.78% to 0.87% -3.34% to -4.92% 

Maximum 
Temperature 

  2.57% to 4.43% 

Humidity 0.28% to 0.36%  0.5% to 0.73% 

lagNO   0.51% (REG sin) 

lagNO2 0.42% to 1.6% (AR)   

lag Average 
Temperature 

-0.52% to -2.56% 
(AR) 

  

lag2NO2  1.44% to 1.77% 2.89% to 3.5% 

lag2Average 
Temperature 

5.51% to 7.12% -0.79% to -4.6%  

lag2Minimum 
Temperature 

-2.36% to 3.24%   

lag2Maximum 
Temperature 

-2.95% to -4.18% 3% to 4.83%  

Positive Relation 
months 

May/March Oct/Mar/Feb Feb/Mar/Dec 

Negative Relation 
months 

August/ September Jun/Jul/Aug/Sep August 

* The acronyms indicate particular results originating in specific models which have the following connotation: 
a) GLM AR denotes an autoregressive GLM model, b) GLM sin AR denotes an autoregressive model with 
sinusoidal terms and c) REG sin denotes a normally distributed GLM with sinusoidal terms.  
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Table 3. Results from the Poisson distributed GAMs. 

 Circulatory diseases Respiratory diseases Skin diseases 

CO`   1.98% 

NO2  0.7%  

SO2 0.71%   

O3  0.64%  

Minimum 
Temperature 

-5.05% to -6.91% -3.72% to -6.26% -4.29% to 5.51% 

Maximum 
Temperature 

-1% to 2.15% 2.13% to 4.28% 3.33% to 3.8% 

Humidity 0.36% to 0.61% 0.2% to 0.71% 0.38% to 0.59% 

lagNO 0.52% 0.8%  

lagNO2  1.75% 1.09% 

lagO3 0.6%   

lag Minimum 
Temperature 

 1.55% to 4.61% 2.31% to 3.54% 

lag Maximum 
Temperature 

-1.2% to 4.95% 1.04% to 3.21% 5.9% ** 

Positive Relation 
months 

All months   

Negative Relation 
months 

 Apr /Aug Apr/Aug 

** This result was observed in the GAM model, where CO and its lagged form where the linear pollution 
variables of the model. 

 

 

 

Table 4. Statistics of Average and Maximum Temperature (measured in 
o
C) 

Variable  Mean Min Max Pairwise Correlation 

Average Temperature 17.83 6.04 30.52 
0.9978 

Maximum Temperature 22.70 9.28 36.16 
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Figure 1   Monthly time series of health indicators, January 1987-December 1999 
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Figure 2   Monthly time series of air pollutants, January 1987-December 1999 
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Figure 3   Monthly time series of meteorological parameters, January 1987-December 1999 
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Figure 4     Autocorrelations for Circulatory Diseases Residuals. 
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Figure 5     Partial Autocorrelations for Circulatory Diseases Residuals. 
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Figure 6     Distribution of Circulatory Residuals against the normal distribution. 
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