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Abstract

Large-scale protein-protein interaction datasets have been generated for several species including yeast
and human and have enabled the identification, quantification and prediction of cellular molecular
networks. Affinity purification-mass spectrometry (AP-MS) is the preeminent methodology for large-
scale analysis of protein complexes, performed by immunopurifying a specific 'bait' protein and its
associated 'prey' proteins. The analysis and interpretation of AP-MS datasets is however, not
straightforward. In addition, although yeast AP-MS datasets are relatively comprehensive, current
human AP-MS datasets only sparsely cover the human interactome. Here we develop a framework for
analysis of AP-MS datasets that addresses the issues of noise, missing data and sparsity of coverage in
the context of a current, real world human AP-MS dataset. Our goal is to extend and increase the

density of the known human interactome by integrating bait-prey and co-complexed preys (prey-prey
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associations) into networks. Our framework incorporates a score for each identified protein, as well as
elements of signal processing to improve the confidence of identified protein-protein interactions. We
identify many protein networks enriched in known biological processes and functions. In addition, we
show that integrated bait-prey and prey-prey interactions can be used to refine network topology and

extend known protein networks.
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protein-protein interaction network; affinity purification mass-spectrometry; interactome

Introduction

Interactions between proteins and the protein complexes and networks that these interactions form, are
fundamental units of biological organization that mediate most cellular processes. Understanding the
topology of protein interaction networks is therefore a primary goal of systems biology. The principal
techniques for large-scale analyses of protein interactions are yeast two-hybrid and affinity-purification
mass-spectrometry (AP-MS). These two approaches provide complementary views of the protein
interactome'; the yeast-two-hybrid assay identifies binary interactions between pairs of proteins, whilst
affinity-purification mass-spectrometry (AP-MS) identifies protein complexes associated with a given
“bait” protein. AP-MS experiments have been conducted by purifying protein complexes using native
antibodies or on a larger-scale by epitope tagging bait proteins and recovering associated protein
complexes with antibodies directed against the epitope tag. Despite the power of AP-MS to map protein
complexes, however, several technical hurdles exist, including the presence of non-specific interacting
proteins in these large-scale datasets as well as lack of reproducibility and sparse coverage of the
underlying networks.

The yeast protein interactome is by far the most well covered eukaryotic interactome with multiple
studies and techniques contributing large-scale datasets>”. With its larger size and greater complexity,
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the human protein interactome has been mapped more selectively, with studies focusing on specific
complexes or classes of protein®”. Diverse computational methods have been developed for analysis of
large-scale interaction proteomics datasets. For AP-MS datasets, the focus of these analysis methods
has been the assignment of confidence scores to observed interactions and to distinguish specific from
non-specific interactions ®7'%!*. In yeast, the socio-affinity index was developed to score a large-scale
yeast interactome dataset with high coverage, and reciprocal AP-MS experiments'®.

In human datasets, with less dense coverage of the underlying networks, computational methods and
scores have focused on distinguishing specific from non-specific interactions. For example, the
normalized spectral abundance factor (NSAF) was used as a measure of abundance for each protein
and the ratio of the vectors of counts for each protein between “control” and “bait™ experiments used to
distinguish specific from non-specific interactors®. The D-score, a metric combining total spectral
count, reproducibility and overall frequency of prey proteins in AP-MS experiments into a single
confidence score for bait-prey associations was developed for the analysis of human AP-MS data’. The
D-score was applied to a large-scale study of human deubiquitinating enzymes and shown to out-
perform the socio-affinity index, the NSAF method and Z-score on the data in hand’. An alternative
approach, using mixture modeling and Bayesian statistics named SAINT (Significance Analysis of
Interactome) was developed'® and applied to the analysis of phosphatase interaction networks'>. The
Decontaminator uses a Bayesian approach to model false-positive protein-protein interactions (PPIs) by
comparing the score of a putative prey protein in induced vs control experiments'*.

Two broad models for interpreting AP-MS data in a network context have been proposed. The “spoke”
model holds that the bait protein interacts with each of the identified “prey” proteins (the bait
representing the center of a wheel with spokes connecting to each of the prey proteins) whereas the
“matrix” model assumes that each of the identified proteins (bait and prey) interacts with each of the

others in a given AP-MS experiment'®. Although the matrix model will capture a higher proportion of
3
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the underlying protein associations, this comes with the price of increased false positives. Therefore,
although both models have merits, it is likely that a combination of spoke and matrix models represent
underlying biological reality in most cases. Several scoring metrics for AP-MS data explicitly
implement these concepts. The socio-affinity index is a summary score including spoke and matrix
terms, as well as accounting for reciprocal bait-prey AP-MS experiments and computes the log ratio of
protein co-occurrence given their observed frequencies'’. The hypergeometric distribution has been
used to calculate expected frequencies of co-occurrence for proteins using the matrix model in the
large-scale yeast AP-MS datasets and found to be an effective means of identifying protein-protein
interactions'’. Other schemes that make use of co-occurrence frequencies have been proposed for
resolving protein complexes using large-scale yeast AP-MS datasets'®!” but with added refinements
such as consideration of the variation in bait affinity when computing the results'®.

Probabilistic approaches using small to medium scale human AP-MS datasets have also been
developed®®’. These studies analyze datasets in which the coverage of given protein complexes by bait
proteins is relatively high. Notably, these studies®*® make use of the quantitative features of mass-
spectrometry data, rather than using binary co-occurrence frequencies. Measures of abundance such as
spectral counts and other mass-spectrometry based confidence measures are very informative features
of AP-MS data, since protein-protein affinities are likely to vary considerably. An emerging consensus
of these diverse computational methods is that both bait-prey and prey-prey associations in AP-MS
datasets can be used to identify protein-protein interactions. Utilization of prey-prey associations is
most obvious in AP-MS datasets with dense bait coverage, so that co-occurrence profiles are well
defined. However, it is less clear whether this concept may be applied to less dense AP-MS datasets
such as larger-scale human AP-MS datasets”'?. Our goal in this work is to test the utility of mining
prey-prey associations from large-scale, but less dense human AP-MS data.

We previously generated a large-scale human interaction proteomics dataset focused on 338 human bait
4
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proteins, many of which are linked to human diseases'?. This dataset is the largest human AP-MS
dataset to date and mass-spectrometry experiments were performed in a uniform manner, making it a
useful resource for development of data analysis techniques. In contrast to other human AP-MS
datasets that focus on individual complexes or processes, our dataset represents a broad survey of
human proteins and their interactions. In addition, the dataset represents several complexes with
relatively high coverage (in terms of number of baits), such as the proteasome, and Eukaryotic
Initiation Factors, and many other human protein complexes that are sparsely covered. Thus our
motivation is to develop a method that can identify probable protein complexes from a heterogeneous
(in terms of coverage or sampling of protein complexes) dataset. In our initial analysis of the dataset we
focused on bait-prey interactions (spoke model) by using partial least squares to predict the
reproducibility of each prey protein observation based upon a training set of highly-reproduced AP-MS
experiments'?. In the current work, we mine the dataset more comprehensively by identifying prey-
prey associations based upon co-occurrence profiles. We show that these prey-prey interactions are a
valuable source of protein interactions and that integration of bait-prey and prey-prey associations
yields improved network models of protein complexes. Importantly, we show that prey-prey
associations may be identified from less well covered interactomes, such as the current human
interactome. Since comprehensive efforts to map the human protein interactome are still in their early
states, methods to mine protein-protein interactions from incomplete AP-MS datasets will be important
tools for the foreseeable future.

Our framework exploits the quantitative features of AP-MS data to assign confidence scores to each
bait-prey observation. To improve signal-to-noise ratio, the sparse matrix of scores are then
transformed to eigenvalues using singular value decomposition. A similarity measure between the
profiles of each pair of prey proteins is then to detect potential prey-prey associations, which are the

starting point for the clustering and reconstruction of protein complexes, which we validate by
5
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reference to known complexes and annotations. Finally, we integrate bait-prey and prey-prey
associations and show that these integrated networks have improved biological coherence. Importantly,
we are able to directly compare bait-prey and prey-prey interactions in terms of their biological
coherence and show that prey-prey interactions are a rich source of protein-protein associations. We
illustrate our approach using selected specific protein networks and show how novel interactions can be
identified.

The principal contribution of our work is to show how large-scale AP-MS datasets may be data-mined
for identification of protein-protein associations. Our analysis pipeline is generically applicable to
large-scale AP-MS datasets and we anticipate that as increasing volumes of AP-MS data are available,
it can be applied and used to discover novel protein interactions and elucidate the topology of protein

interaction networks.
Methods

Data set

Data used to develop our approach is principally derived from a previously described human AP-MS
dataset, in which 832 single-step anti-FLAG immunoprecipitation experiments representing 384 human
bait proteins (~50% of baits were replicated) identified 5269 distinct prey proteins'2. The human bait
proteins were selected based on association with diseases such as cancer and obesity. The data were
generated as previously described'?, except that all spectra were re-searched against an IPI human
protein sequence database (version 3.31) (92012 sequences) using the Mascot mass-spectrometry
search engine (version 2.1, Matrix Science; fixed modification: Carbamidomethyl (C), variable
modification: Oxidation (M); peptide mass tolerance 2Da; fragment mass tolerance 0.4Da; missed
cleavages:2). Peptide and protein identifications were processed through Peptide and Protein Prophet*’

and imported to LabKey server** (version 10.3) for data management. For subsequent steps of the
6
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analysis, corresponding gene symbols, where available, were used to represent baits and preys.

Protein Identification False Discovery Rates

To assess the protein identification false discovery rate, we used decoy database searches. Using the
same Mascot search parameters as above, we searched all data against a concatenated decoy human IPI
protein sequence database (version 3.31) and computed the mean false discovery rate across all
searches (3.63%). We also searched the complete datasets using another search-engine, MassMatrix*?
(version 2.4.2, http://www.massmatrix.net) that provides the false discovery rate in terms of the %
decoy hits when searched against concatenated decoy databases. The database and search parameters
were the same as for the Mascot analysis, except for the following additional options: peptide length: 6-
40 amino acid residues and score thresholds of 5.3 and 1.3 for the pp and ppy,, scores respectively.
Proteins identified using MassMatrix were cross-referenced to those identified using Mascot. Of the set
of 34383 bait-prey associations from the original Mascot searches, and for which a D-score was
computed (see below), 82% were also identified with MassMatrix. The mean false discovery rate

across this set is 4.52%.

Bait-prey confidence score

The D-score (Equation 1) is a previously described confidence score for AP-MS data that combines
measures of abundance (spectral counts), specificity and reproducibility into a single score for each

bait-prey observation’.

D = | - k X, foralli,j (Eq. 1)

ij i~k

Z fu’

i=1
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Where, k= total number of unique bait proteins; X;= total spectral counts for prey i from bait j;
f;i={1,0}; p= number of replicates runs in which the prey protein is present. This generated a complete

bait-prey D-score matrix (D) of dimensions (5269 proteins x 384 baits).

Contaminant identification

False-positive proteins may occur in AP-MS experiments for different reasons. First, there are many
proteins that occur frequently in AP-MS experiments as a result of non-specific affinity. In the AP-MS
dataset used in this study, a set of 200 control AP-MS experiments (using HEK293 cells with vector
alone, i.e. no bait) provide a dataset for identifying 'control' proteins. Since the D-score accounts for
protein frequency of occurrence, these proteins typically have low D-scores. D-scores for the top 100
highly frequent control proteins in this study have median value equal to 3 (Supplementary Figure S1).
These were removed along with any protein with D-score <3 from the initial dataset (13688 bait-prey
interactions with D-score <=3 were removed). A second type of contaminant results from cross-
contamination at the experimental level between samples. Since the experimental protocol used to
generate data used here'” used gel-based separation of proteins prior to mass-spectrometry, we
identified proteins with D-score > 10 co-occurring on the same gels or samples that were processed on
the same date with different bait proteins as potential cross-contaminants and removed them from the

dataset (1550 bait-prey interactions were removed using this criterion).

Latent Semantic Analysis (LSA)

The D-score matrix (D) is necessarily sparse (1.25% non-zero values), since the frequency of most
proteins is low (identified with few or unique baits). To identify relationships between proteins in this
matrix, we made use of the principles of latent semantic analysis (LSA) which uses Singular Value

Decomposition (SVD) to reduce matrix sparseness’'. SVD was applied to the rectangular bait-prey
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matrix (Equation 2), and a dimensional reduction of the singular values was performed after identifying

the optimum k-value which determines the degree of reduction.

D=UXV'=D,=UZX,V, (Eq. 2)

D denotes the D-score bait-prey matrix (m x n). U (m x m matrix) and V (n x n matrix) are orthogonal
matrices with unit-length columns (i.e., UU' =T and V'V =T) and X is a diagonal matrix containing
the ordered singular values of rank » = min(m,n). D; denotes the approximated latent semantic
representation of the bait-prey matrix D where k£ denotes the selected number of singular values used in
the approximation. This generated a final bait-prey D-score matrix (D) of dimensions (2242 proteins x

384 baits). LSA computations were performed using the Perl Data Language (PDL, http://pdl.perl.org).

Prey-prey similarity score

For each bait protein, the bait vector is the vector of D-scores for all preys. Similarly, for each prey
protein, the prey vector is the vector of all D-scores for all baits. LSA projects the vectors of original
bait and prey vectors into lower dimensional semantic space. Transformed bait and prey vectors are the
vectors of bait or prey eigenvalues. Cosine similarity (Equation 3) was used to compute pairwise
similarities between prey-prey vectors from the bait-prey matrix. The similarity score for a pair of prey
proteins a, and b is then the cosine similarity of their associated D-score vectors (0 indicates minimal
similarity, 1 indicates maximal similarity). Hereafter the cosine similarity is referred to as the prey-prey

score (PPS).
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Analysis of known interactions

Bait-prey and prey-prey interactions were compared to CORUM version 2.0** and BioGRID version
3.1.78% datasets. The complete set of CORUM mammalian protein complexes was used (2577 protein
complexes; 4304 distinct gene Ids). Human protein interactions were extracted from BioGRID (402127
total interactions; 37910 human interactions). Data originating from our previous publication'? was
carefully removed from BioGRID prior to the current analysis. For each human protein interaction in
BioGRID, a 2-hop neighborhood network was computed. Thus, for two pairs of interacting proteins A-
B and B-C, the 2-hop network for protein A would include C. Bait-prey and prey-prey interactions in
the current study were compared to the 2-hop network for corresponding proteins in BioGRID and the

protein complexes in CORUM.

Protein-protein interaction false discovery rates

The mean False Discovery Rate (FDR) estimate was computed by generating a null distribution of
prey-prey cosine similarities from a reshuffled bait-prey D-score matrix (random permutation of rows
and columns independently). This was repeated 100 times to estimate the standard error of the mean
FDR. The number of prey-prey cosine similarity values greater than a given Prey-Prey Similarity (PPS)
threshold was used to estimate the number of false prey-prey interactions. The FDR estimate is then the
ratio of the number of false prey-prey interactions to the number of prey-prey interactions discovered.
This strategy is similar to the ones used to estimate the FDR of peptide identifications from Peptide

Spectrum Match with the help of decoy databases (reviewed in'’), or to the re-sampling based methods
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used by Lavallee-Adam et al*® and Dazard et al.*’ to assess the FDR of Protein-Protein Interactions
(PPI) from Affinity Purification Mass Spectrometry data with the help of a control set of experiments.
A controlled FDR of 7.58% +/-0.02% was achieved for the chosen PPS threshold of PPS > 0.75 (see
Results section). Comparison plots of distributions of prey-prey cosine similarities in the original
matrix and in the null matrix under the re-sampling scheme are shown in Supplementary Figure S5. We
also looked at the FDR profile within a range of PPS, and found that the FDR was quite stable around

6-8% within the PPS range [0.5,0.75] and decreasing (as expected) within the PPS range [0.75,0.99].

Semantic Similarity

The semantic similarity is a metric for computing the similarity of Gene Ontology (GO) terms, their
ancestors, or the descendants for two genes?*. Semantic similarity uses information content (IC) as a

measure of the specificity of a term and is quantified as the negative log likelihood,

IC =—log p(c) (Eq. 4)

where p(c) is the probability of occurrence of ¢ in the GO structure. We used Resnik's max measure of

similarity between two terms as the IC of their most informative common ancestor (MICA):

simges(c1,¢2) = IC(emrca) (Eq. 5)

This measure is effective in determining the information shared by the two terms®’. Analysis was
performed using the GOSim R package®.
Protein clustering and visualization

Assembly of protein clusters from the prey-prey similarity matrix was performed using Pearson

11



249  correlation and hierarchical clustering (using TIBCO Spotfire software). Enrichment analyses of
250  clustered sets of proteins were perfomed using FuncAssociate 2*’. FuncAssociate performs a Fisher’s
251  Exact Test analysis to identify GO terms and the results are corrected for multiple hypotheses via
252  empirical re-sampling, and adjusted p-values computed for significance.Cytoscape (version 2.8) was

253 used for biological network visualization®®.
254  Results and Discussion

255  Initial data processing and analysis

256  Anoverview of the data analysis workflow is shown in Figure 1. The workflow incorporates steps to
257  address key issues in AP-MS datasets including the occurrence of non-specific prey proteins and

258  missing data due to under-sampling of protein complexes. Scores for both bait-prey and prey-prey
259  protein associations are computed and used to construct protein networks.

260  Abundance and specificity of prey protein peptides in AP-MS experiments are important features that
261  allow the confidence of prey proteins to be assessed. The D-score’ was used as the primary metric for
262  each bait-prey observation, since it combines measures of abundance and specificity into a single score
263  and gives weight to well-replicated and less frequent prey proteins.

264  Aprincipal challenge in interpreting AP-MS data is the presence of non-specific prey proteins.

265  Typically, these are identified by their frequency across the dataset or as proteins present in control
266  experiments. Our previous study'? analyzed ~200 empty vector control AP-MS experiments that were
267  then used to define non-specific prey proteins. We set a defined frequency threshold and used this
268  threshold to filter out frequently occurring prey proteins'?. In this analysis, we first observed that D-
269  score values are typically very low for highly frequent proteins (since the D-score negatively weights
270  frequency). Highly frequent proteins in the initial dataset such as PRMTS5 (present in 94% of the 995

271  AP-MS experiments in the dataset) have low median D-scores (the median D-score for PRMTS is 1.8
12
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and 95% of baits for which PRMTS is identified have D-score < 10).The top 100 most frequent prey
proteins in the dataset have a median D-score of ~3.0 (Supplementary Figure S1). We used this value as
a threshold to remove any bait-prey interaction with D-score < 3). Thus, 13688 bait-prey interactions
with D-score < 3 were removed from the dataset. The final matrix of D-scores used for subsequent
analyses has dimensions of 384 baits x 5269 prey proteins, with ~1.25% (25344) non-zero values
(Supplementary Table S1).

To better identify relations between associated proteins in the sparse bait-prey matrix (Figure 1A), we
used singular value decomposition (SVD), to project the bait-prey matrix into a lower dimensional
space, and assign eigenvalues to bait-prey pairs (Figure 1B). Application of SVD to the bait-prey
matrix increases the overall similarity of prey protein vectors within the matrix as shown in
Supplementary Figure S2. SVD in the form of latent semantic analysis was previously applied to detect
analytical trends in the HUPO Plasma Proteome Project (HUPO PPP)®. Our goal in applying SVD to
the bait-prey matrix is to increase the probability of detecting biologically relevant associations
between proteins in the matrix. The extent to which the matrix dimension is reduced is determined by
the k-value in SVD (Figure 1B). A high k-value corresponds to a small reduction of matrix dimensions
with possible retention of too much noise, whereas a small k-value may retain too little information
from the original matrix. We estimated an appropriate k-value by plotting the singular value at the A"
rank vs k-value (Supplementary Figure S3). A k-value of 150 was selected at the plateau in the graph so
that the majority of significant information in the matrix is retained (singular values with rank < k). To
identify relationships between prey proteins in the bait-prey matrix we then generated a prey-prey
similarity matrix (Figure 1C) by computing the similarity between each pair of preys in the matrix
(cosine similarity). Although a similar methodology could also be applied to the bait-bait matrix, we
focused on the prey-prey matrix (5269 x 5269 proteins), because it is much larger than the bait-bait

matrix (384 x 384 proteins), and we reasoned that it would represent a richer resource for discovery of
13
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novel interactions and complexes. To identify similarities between prey proteins, we computed the
cosine distance between each pair of prey proteins for all prey proteins occurring with 2 or more baits

(2242 preys) (Figure 1C).

Benchmarking bait-prey and prey-prey interactions

To gauge the biological relevance of the bait-prey and prey-prey interactions and their associated
scores, we compared protein-protein pairs in our dataset to known datasets and measured the degree to
which protein pairs shared functional annotations. Since the bait-prey and prey-prey interactions
identified using our framework represent putative physical associations between proteins, we used two
complementary sources of protein interaction data as our benchmark sources. CORUM? is a map of
mammalian protein complexes curated from individual studies, whereas BioGRID? is a repository of
physical protein interactions including data from high-throughput interaction studies. CORUM groups
proteins according to protein complexes, whereas BioGRID represents protein interactions as protein-
protein pairs. To benchmark versus BioGRID, we first computed the 2-hop neighborhood of each
protein-protein pair in BioGRID. Since our data is derived from AP-MS experiments, representing
complexes of physically associated proteins that may or may not directly interact, we compared our
data to these neighborhoods of associated proteins rather than binary protein-protein pairs in BioGRID
to ensure a representative comparison. For each bait-prey or prey-prey protein pair, we determined
whether they co-occurred in a CORUM complex or within a BioGRID 2-hop network.

To compare bait-prey and prey-prey interactions to known interactions, we calculated log likelihood
scores for the relative enrichment of BioGRID and CORUM known interactions in our data, as
previously formulated®. Figure 2 shows the log likelihood of known interactions for bait-prey D-scores
(Figure 2A) and prey-prey scores (Figure 2B). Although the absolute numbers of interactions
overlapping between our data and BioGRID are higher than the overlap between our data and
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CORUM, CORUM interactions represented in our bait-prey or prey-prey datasets have significantly
higher D-score or prey-prey scores respectively. Ranked by prey-prey score, the 25™ percentile
CORUM prey-prey score is 0.44 whereas the 25™ percentile BioGRID prey-prey score is 0.24. This is
not unexpected, since CORUM is derived from manually curated protein complexes whereas BioGRID
includes high-throughput protein interaction studies. This also demonstrates the value of comparisons
of protein interaction data to multiple sources; CORUM provides higher specificity with low sensitivity
whereas BioGRID improves the sensitivity at the cost of lower specificity. Figure 2 also shows that the
relative enrichment of BioGRID or CORUM interactions decreases as bait-prey D-score or prey-prey
score decrease, showing that both scores provide some discrimination of true positive interactions from
false. In the case of the bait-prey interactions, BioGRID and CORUM interactions decrease very
sharply below D-score ~ 20 (corresponding to ~ 95" percentile of all of the D-scores, as determined by
Sowa et al.”). In the case of the prey-prey interactions, BioGRID and CORUM interactions decrease
more evenly across the range of prey-prey scores. The large predicted size of the human protein

interactome’®-3!

, the incompleteness of 'known' human protein interactions, as well as noise and
context-sensitivity mean that intersections between experimental protein interaction datasets and
known interactions tend to be small. For example, although BioGRID is a comprehensive source of
available protein interaction data (~400,000 total interactions; ~38,000 human interactions)23 , 35% of
the bait proteins used in our original AP-MS study'? have 1 or fewer interacting protein in BioGRID
(27% have no interactions at all). The overlap between bait-prey or prey-prey interactions and known

interactions in the BioGRID set or in CORUM was 26.9% of bait-prey interactions (D-score>20) and

4.6% of prey-prey interactions (prey-prey score>0.75).

Biological coherence of bait-prey and prey-prey associations

To ascertain whether bait-prey and prey-prey protein pairs represent associations between proteins with
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related functions, and to benchmark the bait-prey and prey-prey scores, we analyzed functional
annotations of associated proteins using the Gene Ontology (GO)*?. We first observed that computing
co-annotation of GO terms for protein-protein pairs has low sensitivity, since many proteins, although
biologically related may not be assigned the same term. We therefore used semantic similarity (SS) of
GO terms which has proven to be robust measures of biological similarity for pairs or sets of genes**.
Although there are multiple implementations of semantic similarity, here we use the Resnik max
method?, since it was previously shown to perform best in a comparative analysis of semantic
similarity metrics using large-scale protein-protein interactions®. Semantic similarity vastly increases
the sensitivity of analyzing co-annotations over simple analysis of co-annotated proteins pairs
(Supplementary Tables S2 and S3).

For both bait-prey and prey-prey associations, we reasoned that gene-ontology semantic similarity
scores should be higher for bait-prey or prey-prey pairs with higher D-scores and prey-prey scores
respectively. GO semantic similarity scores were computed for each bait-prey or prey-prey protein pair
(Supplementary Tables S2 and S3) and analyzed as follows. Bait-prey protein pairs were binned
according to D-score: high (D-score>100), medium (100.00<D-score>20.00), low(20.0<D-
Score>5.00), very low(D-score<5.00) and a randomly selected set (n=1000) of protein-protein pairs.
Distributions of semantic similarity scores for bait-prey pairs are shown in Figure 3A for the molecular
function GO ontology. The high and medium bins were found to be significantly higher than the
random set (Wilcoxon test p-values : 1.5E-08, 3.3E-06, 0.59 for high, medium and low respectively).
Similar trends were observed with the biological process and cellular compartment GO ontologies
(Supplementary Figure S4). We used these analyses, along with the data shown in Figure 2A to
calibrate the D-score threshold and therefore focused subsequent analyses on bait-prey pairs with D-

score >=20.

Semantic similarity scores for all prey-prey associations were also computed and binned according to
16



366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

prey-prey scores (Supplementary Table S3). Although not strictly monotonic, the log likelihood of
known interaction enrichment with respect to prey-prey score broadly increases as prey-prey score
increases (Figure 2B). We therefore grouped the prey-preys into four bins spanning the prey-prey
score(PPS) range high (PPS >=0.75), medium (0.75<PPS>0.50), low (0.50<PSS>(.25) and very low
(PSS<0.24) and compared with semantic similarity of GO molecular function as shown in Figure 3B.
A random set of 10000 prey-prey scores were generated to compute the significance test. Notably, the
high scoring bin (prey-prey score >=0.75) enriches for interactions with higher semantic similarity in
all 3 GO ontologies (Figure S3), and the difference between the high bin and the random set was
statistically significant (Wilcoxon Test p-values: 2.1E-12, 0.54 for high and medium respectively).
These results show that both the D-score and prey-prey scores can be used to define sets of bait-prey or
prey-prey pairs that are enriched for interactions with higher biological coherence, based upon their GO
annotations. These analyses also provide a guide for selected subsets of interactions for further
analysis, and as such we used bait-preys with D-score>=20 and prey-preys with score >=0.75 for
building network models of protein complexes. Approximately 5.6% (1900) of bait-prey interactions

and 7.7% (23,000) of prey-prey interactions meet these criteria, and were used in subsequent analyses.

Identification of protein complexes

Since AP-MS experiments identify co-complexed proteins, rather than binary pairs of interacting
proteins, we organized the data into more meaningful biological groupings by clustering sets of
proteins with significant prey-prey scores. In addition, since the sets of high-scoring bait-prey and prey-
prey interactions are large, and likely contain significant numbers of false positives, clustering provides
a means of focusing on higher-likelihood associations of proteins. The prey-prey similarity matrix was
hierarchically clustered as shown in Figure 4. We identified 107 clusters comprised of a total of 754
proteins (each cluster was required to have at least 3 proteins and all prey-prey associations >0.9) as
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shown on the diagonal of the prey-prey matrix in Figure 4. For each of the 107 protein clusters, we
identified significantly enriched GO categories, and for 43 of the 107 protein clusters, one or more

significant (p<0.05) GO annotation terms were identified (Supplementary Table S4).

Network models incorporating bait-prey and prey-prey interactions

As demonstrated in the previous sections, the global biological coherence of prey-prey interactions is
similar to that of bait-prey interactions. Since matrix models of AP-MS data, in which all pairwise
interactions are assumed to occur, are prone to false positives'® we sought to selectively combine high-
scoring bait-prey and prey-prey interactions into integrated network models. Protein clusters identified
in Figure 4 were used as network seeds and extended by addition of selected high scoring bait-prey (D-
score>20) and prey-prey (PPS>0.75) interactions. Four constructed network models, corresponding to
Eukaryotic Initiation Factor (EIF) complexes, G-protein signaling and regulation, chromatin assembly
factor complex and nucleosome regulation, and the proteasome are shown in Figure 5 (A-D
respectively) and were selected to illustrate the potential of combining bait-prey and prey-prey
interactions for delineation of network topology, and identification of new protein complex components
and interactions.

Figure 5A shows a network model constructed by integrating bait-prey and prey-prey interactions
corresponding to Eukaryotic Initiation Factor (EIF) complexes. Six bait proteins: EIF1B (also known as
GC20), EIF2B1, EIF3S10, EIF4A2, EIF4A1, EIF4AEBP1 and their associated prey proteins were
integrated. Of particular interest is the separation of the cliques corresponding to EIF1/2/3 components
(red shaded nodes) and EIF4 components (green nodes). A large number of prey proteins (D-score>20)
were found for EIF1B and EIF2B1 baits, including many ribosomal proteins, in line with known
associations between these components and ribosomes®*. In contrast, EIF4A2 and EIF4A1 baits had
relatively few high-scoring prey proteins as shown in Figure SA. Of particular note, the LSM14A
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protein was identified uniquely with EIF4A2 bait and with high prey-prey interactions with EIF4G1
and PDCD4. LSM14A is a component of P-bodies, cytoplasmic foci that govern mRNA storage and
degradation®. In line with previous findings, EIF4 components are present in P-bodies whilst other EIF
components are conspicuously absent®. PDCD4 is uniquely associated with EIF4A2 and EIF4A1 baits
in our data, and is known to interact directly with EIF4A2, EIF4A1 and EIF4G1%.

Whilst EIF complexes are well represented in our dataset, we also analyzed protein complexes with
sparser coverage such as the networks in Figure 5B and Figure 5C. Figure 5B shows a network of
proteins involved in G-protein signaling. Members of the Rho family of GTPases (RHOB, RHOC) and
the Ras super-family of small GTP-binding proteins (RAC1, RAC2) are associated through their
common bait, ARHGDIA. All of these proteins function in vesicular transport and endosomal
signaling. An additional high-scoring interaction was observed with LYST, the lysosomal trafficking
regulator. Endosomes may ultimately fuse with lysosomes for degradation of constituent molecules. In
addition, LYST is associated with a rare lysosomal disorder, Chediak-Higashi syndrome, and thus the
association with endosome signaling may potentially shed additional light on the disease mechanisms.
We also observed a cluster of prey-prey interactions corresponding to the Chromatin Assembly Factor
(CAF-1) complex, and expanded this cluster of proteins into the network shown in Figure 5C. Several
protein complexes with known functions were identified. The CAF-1 complex and Polycomb
Recessive Complex 2 (PRC2) have related functions in chromatin metabolism and share components
such as RBBP4. The recently identified MMS22L-TONSL complex’’ that mediates recombination
mediated repair of replication forks and is comprised of MMS22L and TONSL (a.k.a NFKBIL2)
proteins was also identified. Other significant interactions between these proteins and the Tousled-like
kinases (TLK1, TLK2) were also observed. TLK1 and TLK2 heterodimerize and are also involved in
chromatin assembly®®. Within this rich, overlapping network of complexes with related functions, we

searched for other high-scoring prey-prey interactions that might be novel components. Two other
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proteins with significant prey-prey interactions with proteins in the chromatin modification network
were observed. SMG6, a protein functioning in telomere regulation and nonsense-mediated mRNA
decay was observed with high-scoring prey-prey interactions with several proteins (TLK1, 0.98;
JARID2, 0.99). SMG®6 is conserved (across eukaryotes) and has been found to physically interact with
telomerase™. A second protein, UBN2, was recently identified as an ortholog of a yeast protein
involved found in senescence associated chromatin foci*’. The yeast ortholog of UBN2 interacts with
the yeast ortholog of ASF1A, and both proteins function to create transcriptionally silent
heterochromatin®'. Thus, integration of bait-prey and prey-prey interactions serves to identify proteins
linked to known complexes and functions.

Finally, we constructed a network based on coverage of the proteasome complex in our data (Figure
5D) . This network was constructed from four bait proteins and 16 prey proteins, highly enriched for
components of the eukaryotic proteasome. Three of the baits used (PSMD6, PSMD10 AND PSMD13)
function as 26S proteasome non-ATPase regulatory subunits of the proteasome and whereas one bait
(PSMC4) is a 26S protease regulatory subunit. Although the structure of the eukaryotic proteasome is
comparatively well understood, we note that the network model delineates sub components of the
proteasome. For example, PSMC1, PSMC2 and PSMCS5 cluster whilst PSMD subunits (PSMDS,
PSMD12 and PSMD14) cluster separately. Although the coverage of protein-protein interactions is
relatively sparse, we note that the alpha-type proteasome subunits, PSMAS and PSMAG6 cluster
exclusively with PSMD subunits and not PSMC subunits, possibly indicating intermediate forms of the
proteasome comprised of specific sets of components. In summary, integrated network models as
shown by these examples have the potential to yield novel components of protein complexes as well as
further delineating the topology and sub-structure of networks.

We next compared the biological coherence of integrated (bait-prey and prey-prey) and matrix models

of equivalent complexes. Matrix models for selected baits consisted of all pairwise protein interactions
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(bait-prey and prey-prey), whereas integrated models consisted of all bait-prey interactions with D-
score >20 and all prey-prey interactions with score>0.75. Semantic similarity distributions were used to
compare the integrated and matrix models of several protein complexes as shown in Figure 6. In
addition to the Eukaryotic Initiation Factor (EIF) and Proteasomal complexes, we also analyzed data
corresponding to four single baits (CTNNBIP1, VHL, REA and WDRS), the four most well replicated
baits in the original study. For all four single baits and in the EIF complex, semantic similarity scores
were significantly higher for integrated network models than for the matrix models. In only 1 case, the
proteasome, the integrated and matrix model showed no significant difference between the semantic
similarity distributions, suggesting that the biological coherence of integrated and matrix models of our
proteasomal data is similar. This may be explained by the fact that most of the prey proteins identified
by proteasome baits in our study are already known components of the proteasome, and so selection of
prey-prey interactions with high PPS score for incorporation in the network model does not improve
biological coherence over assuming that all preys interact with all other preys. In summary, these data
show that selective integration of high-scoring bait-prey and prey-prey interactions can be used to
generate protein network models with high biological coherence that can reveal new connections

between proteins as well as new components of protein complexes.

Conclusions

We present a data-driven framework for analysis of large-scale interaction proteomics data that uses
integrated computational techniques to derive additional value from these datasets in terms of novel
protein-protein interactions. We used this framework to analyze a unique, systematically generated
human AP-MS dataset, in which complexes were determined for 384 disease-relevant bait proteins'2.
Specifically, our analysis integrates associations between the baits and their identified proteins (bait-
prey), and associations that we detect amongst prey proteins (prey-prey), by analysis of the complete
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data matrix. Analyzed globally, high-scoring bait-prey and prey-prey are enriched for known
interactions and interactions between proteins with related biological function. In addition, by
integrating prey-prey and bait-prey interactions into network models, we increase the biological
coherence of those networks. We also show that integrated networks of bait-prey and prey-prey
interactions provide a basis for delineation of network topology and identification of new protein
complex members.

A major motivation for our work is to develop methods that enable novel protein-protein associations
to be derived from large-scale datasets. Since mapping the complete human protein interactome
experimentally is such an enormous undertaking, approaches that can be used to identify novel
interactions from existing data, will continue to play a role in extending and refining the known human
protein interactome. In addition, as previously observed®?, despite the rapid accumulation of large
volumes of proteomics data, there has been surprisingly little re-analysis and evaluation of most
proteomics datasets. The exceptions to this include unique datasets such as the yeast interaction
proteomics datasets® that have fueled much of the development of scoring algorithms as well as
analysis of interaction networks.

Other studies with similar intention to the current work have primarily focused on the relatively
complete yeast AP-MS datasets, or on AP-MS datasets that although not complete, are focused on
specific complexes or sets of complexes®?’. In addition, most methods that have been proposed for AP-
MS data analysis are not appropriate to all datasets, for reasons of data size or completeness. The
heterogeneity of current AP-MS datasets in terms of biological and analytical methodology (epitope
tag, expression construct, organism, cell-type etc) along with the challenges associated with the data
itself (missing data, noise, contaminant proteins) have hindered the development of widely applicable
analysis tools. Exceptions to this include the SAINT algorithm where the explicit goal is to develop a

widely applicable AP-MS analysis method"’.
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With these challenges in mind, we have constructed a computational framework for analysis of large-
scale human AP-MS data. Noteworthy features of our framework include representation of protein
observations using the D-score that takes into account spectral counts, overall frequency, and
replication for each protein observation. Although other studies with similar intent have made use of
present/absent calls, particularly in analysis of the yeast AP-MS datasets, quantitative values derived
via label-free analysis provide an additional dimension for ranking and discrimination of true positive
interactions®’. In the latter study, Choi ef al used nested bi-clustering to group sets of baits or preys with
similar quantitative spectral count levels. In our study, the dataset is more heterogeneous both in terms
of the actual baits used as well as the number of replicate AP-MS experiments per bait. For this reason,
rather than use the spectral counts directly for each protein, we used the D-score as the starting point
for the analysis, so that frequency and number of replicates as well as spectral counts are taken into
account. Second, we address the issue of sparseness of the primary bait-prey matrix by first
transforming the matrix of bait-prey scores through singular value decomposition. Singular value
decomposition in the form of latent semantic analysis has previously been used to large-scale
expression proteomics albeit with a different goal®. In the latter study, SVD was used to analyze
heterogeneous plasma proteomics datasets acquired using different technologies in different
laboratories. The method used by Klie et al represented protein observations as binary measures,
presumably so that data from different instruments and different laboratories could be appropriately
integrated. Regardless of whether quantitative values are used however, tools such as SVD, that address
the sparseness and missing data challenges of proteomics datasets are essential. SVD was also
previously applied to the assembly of protein interaction networks from more focused human AP-MS
data, although in this case, SVD was applied to the problem of identifying clusters of proteins®.

To mitigate the problems of false positives in studying the large volume of prey-prey associations, we

use semantic similarity measures of annotation to first calibrate our protein-protein scores (bait-prey
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and prey-prey) and then to select small high-scoring subsets of protein-protein interactions to study. A
principal challenge of data-driven inference of human protein-protein interactions remains the lack of
'gold-standard' protein interactions and complexes. Although curated annotations of mammalian protein
complexes exist*?, these represent only a fraction of the total interactome. In the absence of gold-
standard datasets, the semantic similarity measures provide a means of benchmarking protein-protein
scores as shown here. Our method increases the amount of information in terms of protein-protein
associations that may be gleaned from large-scale AP-MS studies. However, increasing the density of
coverage (in terms of bait proteins used) will be the method of choice for truly defining protein
complexes in the cell. Studies that iterate through a network, testing all proteins as baits in AP-MS
experiments may provide the most detailed representations of protein complexes®. The complexity of
mapping the protein interactome, in terms of distinguishing complexes that share components was
highlighted in an AP-MS study of chromatin remodeling complexes®. This study reiterates the point
that although computational and statistical analyses may allow for the prediction of protein-protein
interactions and network topology, a detailed map of overlapping protein complexes may ultimately
only be achieved through high density experimental analyses.

Integration of other data may further help refine of protein network topology. Although protein
quantifications are only loosely correlated with protein-protein interactions, integration of protein
abundance values may be used to refine prediction of protein interaction. The recently developed
PaxDb"* is a cross-species database of protein quantifications, thus providing an independent source
ofproteome-wide abundance. In PaxDb, protein-protein interactions are used as a metric of consistency
for quantitative proteomics studies, with the rationale that interacting proteins tend to have more
similar levels of expression that randomly selected or non-interacting proteins®. Proteome-wide protein
abundance values may also prove useful for normalizing the abundance values of proteins identified in

AP-MS experiments. For example, a recent study used PaxDb values to account for the differing
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cellular abundance of proteins identified in AP-MS analysis of chromatin remodeling complexes*®.
Future work might therefore utilize the approach that we have described in conjunction with other
proteome-wide information for further refinement of protein networks and protein interaction

discovery.

Supplementary Material

Supplementary Figure S1 The density plot of top 100 frequent control proteins D-scores in the bait-
prey dataset. The top 100 frequent control proteins were selected from the 200 control experiments
(without bait), and the median D-scores of these 100 frequent control proteins in this study was close to
3.

Supplementary Figure S2 The two-dimensional plot of prey-prey similarities scores using SVD in the
bait-prey matrix versus without using SVD. The application of SVD to the bait-prey matrix increases

the overall similarity of prey protein vectors within the matrix.

Supplementary Figure S3 Selection of K-value for singular value decomposition of bait prey score
matrix.Singular values vs.K values was used to identify optimum K value=150. The value of K
determines the degree of reduction, a high K value corresponds to small reduction (minimal filtering of

noise), while a small K value correspond to strong reduction (too little information retained)

Supplementary Figure S4 GO molecular function (MF), biological process (BP) and cellular
compartment (CC) semantic similarities comparison with bait-prey D-scores and prey-prey similarity
scores. A. Box plots represent distributions of semantic similarity scores for bait-prey protein pairs
binned according to D-scores (4 bins) for gene ontologies. Bin 1 (D-score>100) and bin 2 (100<D-

score>20) have statistically significantly higher semantic similarity than random set (R) of D-scores in
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MEF, BP and CC (Wilcoxon Test P values are 1.5E-8, 7.9E-6 and 1.7E-7 respectively in bin 1). B. Box
plots represent distributions of semantic similarity scores for prey-prey protein pairs binned according
to prey-prey scores (4 bins) for gene ontologies. Bin 1 prey-prey scores (>0.75) bin has significantly
higher semantic similarity than random set (R) of prey-prey similarity scores in MF, BP and CC (
Wilcoxon Test P values are 2.1E-12, 7.2E-12 and 5.0E-4 respectively) . Median of each distribution is

represented by horizontal bar in each box plot.

Supplementary Figure S5 Exploratory Data Analysis plot of the distributions of prey-prey cosine
similarity values. Histograms represent the distribution of prey-prey cosine similarity values in the
original matrix (left) and in the null matrix under the resampling scheme (middle). The quantile-
quantile plot of prey-prey cosine similarities (right) shows the strong deviation of the two distributions
in the two situations.

Supplementary Table S1 Bait-prey D-score table.Bait protein purifications name, prey protein
identified, and D-score.

Supplementary Table S2 Comparison Bait-Prey (4 and B) D-score with Molecular Function (MF),
Biological Process(BP) and Cellular Compartment(CC) GO terms semantic similarity. The column
names of this table are:Gene symbol 4, Entrez gene ID 4, Gene symbol B, Entrez gene ID B, Bait 4-
Prey B D-score, Rank (based on Bait-Prey D-score, where 1=High (D-score>100); 2=medium (100<D-
score>20); 3=Low (20<D-score>5); 4=very Low (D-score<5)), Bait 4- Prey B MF semantic similarity
score, Bait 4- Prey B BP semantic similarity score, Bait 4- Prey B CC semantic similarity score.
Supplementary Table S3 Comparison Prey-Prey (4 and B) similarity score with Molecular Function
(MF), Biological Process(BP) and Cellular Compartment(CC) GO semantic similarity. The column
names of this table are:Gene symbol 4, Entrez gene ID 4, Gene symbol B, Entrez gene ID B, Prey 4-

Prey B similarity score, Rank (based on Prey-Prey similarity score(PPSS), where 1=High(PPSS>0.75);
26



603  2=medium(0.75<PPSS>0.5); 3=Low (0.5<PPSS>0.25); 4=very low (PPSS<0.25)), MF semantic
604  similarity score, BP semantic similarity score, CC semantic similarity score.
605  Supplementary Table S4 Protein complexes identified.Modules name describing its components along

606  with common bait proteins purification names, enriched GO terms, GO IDs, significant P-values.
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757  Figure 1. Data analysis work-flow. A. D-score’ matrix with score for each pair of bait-prey proteins.
758  B. D-score matrix approximation using singular value decomposition. C. Pairwise cosine similarity
759  computed for each vector of prey scores. D. Topological overlap matrix created using hierarchical

760  clustering to group prey proteins with similar prey-prey profiles. E. Spoke, matrix and integrated

761  models for a hypothetical bait (B1) and 4 prey proteins (P1-P4). Integrated model incorporates selected
762  edges from spoke and matrix models (solid lines lines represent bait-prey interactions, dotted lines

763  represent prey-prey interactions). Figure 1B adapted with permission from (Klie et al, Journal of

764  Proteome Research 7, 182-19). Copyright (2008) American Chemical Society.
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769  Figure 2. Comparison with known interactions. A. Bait-prey interactions compared to known
770  interactions. Bait-prey protein pairs within shared 2-hop BioGRID network or present in same

771  CORUM complex counted as 'known'. Log likelihood of relative enrichment of known vs. unknown
772  interactions computed for each D-score threshold. B. As A, with log likelihood computed for each
773  prey-prey protein pair and corresponding prey-prey interaction score threshold.
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779  Figure 3. GO semantic similarity distributions and protein interaction scores. A. Box plots

780  represent distributions of semantic similarity scores for bait-prey protein pairs binned according to D-
781  scores (4 bins) for molecular function gene ontologies. Bins 1-4 represent D-score bins of D-score >
782 100, 100>D-score>20, 20>D-score>5 and D-score<5 respectively. Bins 1 and 2 have statistically

783  significantly (*) higher semantic similarity than random set (R) (Wilcoxon Test P-values are 1.5E-08
784  and 3.3E-06). B. Box plots represent distributions of semantic similarity scores for prey-prey protein
785  pairs binned according to prey-prey scores (4 bins) for molecular function (MF) gene ontologies. Bins
786  1-4 represent Prey-prey scores of >0.75, 0.75>PPS>0.5, 0.5>PPS>0.25 and PPS<0.25 respectively. Bin
787 1 has significantly (*) higher semantic similarity than random set (R) of prey-prey similarity scores

788  (Wilcoxon Test P value is 2.1E-12). Median of each distribution is represented by horizontal bar in each

789  box plot.
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794  Figure 4. Topological overlap matrix of prey-prey interactions. The prey-prey similarity matrix
795 (2242 X 2242) was used to create a topological overlap matrix using hierarchical clustering to group
796  preys with similar prey-prey vectors. Red areas indicate prey-prey vector similarity and diagonal shows

797 107 protein modules. Selected modules are labeled with significant GO terms.
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Figure 5. Selected network models integrating high-scoring bait-prey and prey-prey edges. A.
Eukaryotic Initiation Factor (EIF) bait proteins (EIF1B, EIF3S10, EIF2B1, EIF4EBP1, EIF4A1 and
EIF4A2) and their associated prey proteins (D-score>20) were combined with associated high-scoring
prey-prey interactions. EIF1/2/3, EIF4 and EIF2 components are represented in red, green and gray
nodes respectively. B. G-protein signaling complex. ARHGDIA bait and associated GTP binding

proteins, RAC1 and RAC2; GTPase, RHOB and RHOC are identified preys with extensive inter-
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connectivity (high prey-prey scores). C. Chromatin metabolism/ CAF1 complex, PRC2 complex and
MMS22L-TONSL complex are shown in green, red and pink color respectively. D. Proteasome
complex, four bait proteins corresponding to proteasome, PSMD6, PSMD10, PSMD13 and PSMC4
and 16 prey proteins forming highly enriched eukaryotic proteasome complex. The gray nodes
correspond to proteasome core complex subunit (PSMAS/6); green nodes to 26S proteasome non-
ATPase regulatory subunit (PSMD*); red nodes represents 26S protease regulatory subunits (PSMC*).
Solid edges indicate bait-prey interactions and dashed edges indicate prey-prey interactions, edge

thickness indicates bait-prey or prey-prey scores appropriately (thicker edge/higher score).
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Figure 6. Biological coherence of integrated and matrix network models of protein complexes.
Semantic similarity (GO biological process) distributions of protein-protein interactions in Integrated
(I) and Matrix (M) models. Networks were constructed for data from 4 single baits (CTNNBIP1, VHL,
REA and WDR8) and two models incorporating multiple baits, Proteasome complex (P) and
Eukaryotic Initiation Factor (E) complexes. In 5 cases (CTNNBIP1, VHL, REA, WDRS, E), the
Integrated model shows higher median semantic similarity than the Matrix model, and in 4 of these
cases (CTNNBIP1,VHL,WDRS, E) the difference between Integrated and Matrix models is significant

(Wilcoxon Test P-values<0.1).
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