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Preface

The Volterra series representation appeared in systems engineering just after the Second World
War and has since been widely used for system modelling The number of papers using it has
grown correspondingly although there are still few books devoted to its theory. The present
publication is intended as an initial version of a book treating the subject from a mathematical
perspective giving importance to clear derivation of results and their mathematical justification.
Particular attention is given to convergence of Volterra series arising from solution of forced
nonlinear differential equations.

For Gaussian inputs there is, alongside the system representation by Volterra series, also the
representation by Hermite functional series. The book derives the Hermite representation for
general Gaussian inputs including white noise input as a special case. The white noise case
coincides with the Wiener G-functional expansion. The Hermite functional view consequently
gives more generality than treatments using the Wiener theory and the emphasis on using the
properties of Hermite polynomials conforms more to the mathematical literature. The approach
also has a certain priority over Wiener's G-functional expansion and is related to the equivalent
expansion of Itd6 which also preceded it.

This book originates from an undergraduate course on nonlinear systems given many years ago
at Eindhoven Technical High School, now Eindhoven University of Technology. It has been
completed in the present form while the writer has been a visitor in the signal processing group
in the Institute of Sound and Vibration Research, University of Southampton.

J F Barrett
21/10/2012
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Chapter 1

VOLTERRA SERIES

1.1 Analytic functionals

It is a common idea in mathematical analysis to regard a function as being approximated by a
histogram of its values as shown below for a function x(t) of time t.
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Fig. Discrete approximation to a function by a vector

The approximation is represented by the vector
X = [Xi, ..., XN]

taken to be the values x,, ..., Xy of the function at N values equally spaced within a time interval
to <t <t; where t is initial time and tr final time (denoted by [to, tf] ). A real valued function

f(x) = (x4, ..., XN)

may be consequently be regarded as approximating a function depending on another function
x(t) defined over [to, tf] . It may be written more directly as

f(x) = f(x(t), t € [to, te])

Such a function depending on another function is called a functional. The idea of creating a
theory of functionals on the lines of the normal theory of functions originated with the Italian
mathematician Vito Volterra (1864 — 1940)

Volterra considered the analytic case, i.e. when the functional relation has a power series
representation. In the discrete approximation this would take the form

N

y = {0 +Z O xi, +1
i1=1 2

N

N
Z Z i Xip Xi, + 1 Z Z Z & ijigdy Xi, Xip Xis +

iZ= 3'1] 1 121 l3



0 N N
= {0 4 Z 14 Z Z %, ia iy Xiy §
n=1 n! i=1 ip=1

Here the coefficient arrays f(n)il...,in correspond in the MacLaurin expansion to multidimensional
partial derivatives of f evaluated at zero:

= _8f (0,..,0) i,..in=1,.,n
OXiy...0Xi,

The coefficient arrays f™;,..i, are completely symmetrical in the suffices i, i.e. they are the same
for all permutations of i,,...,i,.

When interpreted in continuous time, the power series expansion leads naturally to the standard
form for the Volterra series of the type originally proposed by Volterra*

tr tr tf
y = {0 +Jf‘”(t) x(t) + 1 f I fO(ty, to) x(t) x(t;) dt; dt, +
to 2' to to
tr tr tr
+1 f J f (11, to, t3) X(t)) x(t2) x(t3) dt; dt dts + ...

31t to 1o

00 e te
= fO + Z 1 I _[ f(n)(tl, e tn) X(t1) ... X(t) dt ... dt,

n=1 n! t to

The functions f™(ty, ... t,) are completely symmetrical in the variables ty, ..., t,.

The theory of analytic functionals is more complex than that of ordinary analytic functions and
Volterra's expansion is not the only possible type. There is for example Lévy's functional

2§ T T xw) o xmty) a®, . ty) dt; ... dt,

r+ +resn
There can also be an analytic function ¢ () of derivatives:

o (x(0), X)), x(V), )

The Volterra functional though is of basic importance and in the modified form in which it is
used in system analysis finds many applications, particularly to the solution of forced differential
equations.

* See e.g Volterra's well known and much quoted book 'The Theory of Functionals' (Dover reprint 1955).
Note that this original form is not the same as what is nowadays called Volterra series which Volterra did
once describe though it was not his main interest. Lévy also wrote on nonlinear functional analysis and
was the first to use the term 'functional'. Other early writers were Gateaux and Fréchet.



1.2 Analytic functional operators:

Closely related to the analytical functional is the analytic functional operator. Consider a
function relation between two sets of variables xj, ..., Xy and yy, ..., yn having the form

yn = (X1 s XN)
which can equivalently be written as a function relation
= f(x)
between vectors
X = [X1y 0, XN, Y = [Y15 ves YN]
If the variables x;, y;, 1 =1, ... , N are regarded as giving a discrete representation of functions

x(t), y(t) on an interval ty <t <ty the function f may be regarded as giving a transformation
between these functions (see diagram)

X\ xq ¥3 " yq_YB h FYI

1/ N // //:/u
m

to te §

Fig. A function between vectors regardéd as
a transformation between functions.

When the functions are analytic there will be a multidimensional power series representation

N N N
Yk = f(O)k + Z f(l)k;iIXil + 1 Z Z 2 kiijip X i) Xip

i1=1 2! i1=1 iz=1

N N N

Z Z Z f(3) k;ijisi; Xi; Xip Xis +
=1 =l il

ZI{Z Zf()kll in Xij.. Xln}

n=0 n! =1 i=1

The value n = 0 corresponds to the initial constant term . By adjustment of the y scale, this
constant term can be assumed zero which is common practice.



In the limiting case, as the number of values on the fixed interval tends to infinity, the function
relation becomes

y = fx)
where now x and y are themselves functions:

x = (x(D, t & [to, ts]), y = (y(®, te[to, ta])

these being thought of as infinite dimensional vectors (see the following diagram)

x (&) Y

5
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Fig. A function (operator) relating two time functions

Such a function relating two other functions will be called a (functional) operator. If the relation

between x and y had been written
Yk = fk(Xl, ey Xn), k= 1, R 1 |
the corresponding continuous-time relation should be written as

y(®) = f(t, x®); telto, te])

defining y(t) as a functional of x at time t, t now taking the place of the indices. The expansion
corresponding to that of Volterra is

tr tr tf
v = 0+ 0@ ) x dt + 1] | 9 1, 1) x(0) x(t) dts dts +
to 21t 1o
tr tr tr

+lf f f fO(t; 1y, t, t3) x(t1) x(t2) x(t3) dty dt, diz + ...

31ty to to
te tr

= O+ Y 1 [ £t t, .. ta) X(t) ... X(t) dt; ... dty

n=1 n! to to



1.3 Volterra series in systems analysis

The main theme of this book is the analysis of physical systems described in the manner of the
well known 'block diagram' of the figure below.

— input — system | — output —

Fig The block diagram

The block diagram describes a completely general system (often referred to as a 'black box'), in
terms of its response (output) caused by a stimulus or disturbance (input). This description is the
basis of the discipline of systems analysis which has developed out of engineering practice in the
last 60 years. It originated from network analysis in electrical engineering. The input and output
variables x and y could be any variables but most frequently they are scalar or finite dimensional
vector quantities If they are both scalar then the system is commonly referred to as single-input,
single-output. This will be assumed to be so for the present.

The principal assumption implicit in the block diagram description is that the input/output
relation between x and y is causal - which may be stated:

The causality condition: The value of the output at any time t is dependent only on previous and
present values of the input.

There are two aspects here. Firstly it is affirmed that the output can be uniquely determined by
the input and secondly that there is no dependence on future values. If this is so then the output
y(t) at any time is a functional of the input at previous times i.e. of x(t'), t' < t where t is time t
now. A Volterra system is one for which this functional relation can be represented in the form

t t t

o0
y) = 2 1 [ [ o I bttty oy ) X(t1) <. x(ty) dty ... dt,
n=0 n! ty to tp

where tg represents an initial start-up time which may be minus infinity.
The realizability condition: The kernels h, must satisfy the
hu(t; t1, t2, .., ). = 0 unless t>ty, t, ..., t,
In view of this we may write
e 0} o0 o0 o0
yt) = 2 1 T T o T ha(tte, oy ooy t) X(0) oo () dify ... it
n=0 n! t4 to to



Time-invariant systems: In the most important and common case, the input-output relationship is
unchanging with time. In this case, a delay (or advance) in the time of occurrence of the input
produces the corresponding delay (or advance) in the time of occurrence of the output, the form
of the output remaining the same. This can only be so if the kernels h,, depend on time
differences, the expansion then taking the form

0 t t
yO) = 2 1 o ] Bt -t t- 1) x(t) ... X(tg) dt; ... dt,
n=1 n! tg to

Most frequently such systems are considered to be in steady-state operation with start-up time at
minus infinity the expansion then taking the form

00 t t
yO) = 2 1 [ o That-tie, t-t) x(t) ... x(t) dt; ... dt,

n=1 n! -0 -0
The realizability condition for time invariant systems becomes:
hp(t - tp,..., t-t,) = O unless t>1t), t, ..., ty
This may also be written
hn(ty,...,Tn) = 0 unless t; > 0,..., T, > 0.

so the input/output relation can also be written

(e 8] (¢ 0] o0
y(t) = )y 1 ,[ ...... J hn(ty,...,T) X(t - T1) ... X(t - T,) d1; ... d1p
n=1 n! 0 0

Taking into account the realizability condition all the integrals can also for convenience be
written over the doubly infinite range:

0.0] o0 o0
y®) = 2 1 o | hat) X(E - 1) oo x(E - ) d1y .. diy
n=1 n! -0 -0

0 o0

= 21 [ T halt-thye, t- ) X(61) .. X(t) dty ...

n=1 n! -0 -0
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1.4 Examples of Volterra systems :
Cascading: the LNL system: One way in which Volterra systems arise is through the combination
of linear filters with amplitude-distorting nonlinearities. Consider the cascade combination of

two time-invariant linear filters with transfer functions H(s), K(s) with an amplitude distortion
described by the analytic function f(.) arranged as shown*

. H(p) . > f) #l K(p) ‘.L>

Fig: The LNL cascade described by a Volterra series.

The indicated system variables satisfy the equations
0

u(t) = [h(t-t') x(t) dt
-00
v (O = f(u(t))
o0
yt) = | k(t-t') v(t dt
-00
where the impulse response functions k(.), h(.) correspond to K(.), H(.) Suppose that f{(.) has

power series representation
o0

v =2 1 fWyn

n=1 n!

Then, on writing

u®"= {Jh(t-t)x@®)dt}" =[ ... Jht—t) .. hit - ) X(t) ... X(t) dt; .. dt,

it is seen, by substitution, that the input-output relation of the cascade is the Volterra series

o0 o0

y) = 22 1§ o gt -t t- ) x(t) ... x(ty) dt; .. dt,

n=1 n! -0 -00
with nth kernel

o0
gt —ty, s t-t) = £V J k(t—t) h(t —t;) ... h(t' - t,) dt
00

* A distinction will be made between the complex variable s of the Laplace transform and the Heaviside
operator p (=d/dt). In the literature this distinction is not usual, the two being confused.
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Solution of a forced nonlinear differential equation: The solution of many forced nonlinear
differential equations can be expressed as Volterra series. As a simple example, consider:

dy+ay -ey = x(t)
dt

where x(t) is a forcing function (input) and y(t) the response (output). o and ¢ are constants €
being assumed small and o positive. When & = 0 the equation is linear

dy+ay = x(t)
dt

On the infinite time interval this has steady-state solution
(0 0]

y@®) = | ht— 1) x() dt
-00
where h(), the impulse response which is zero for negative values and for positive values

h(t)y = e™ 1>0,

When ¢ has a small nonzero value the solution may be found by successive approximation the
linear solution being taken as a first approximation. To do this the equation is written as

dy+ay = x(t) + ey’
dt

It is then converted to an integral equation over the infinite time interval

o0 o0
y(t) = j h(t—t) x(t) dt' + ¢ j h(t — t) yA(t") dt
-0 ~00

The linear term on the right is the first approximation. Substituting it into the quadratic term on
the right side gives the second approximation as the first two terms of a Volterra series

y® = Jhe-t)x@) de + ¢ Ine—1) £ [ hee - 1) @) de? de
= Ihet-tyx@)yde + e na—1) { [ ... [het = ) h(t = t) x(t)) x(t) dts dip}dt
— InO¢—tyx@ydr + 1 | [h@0 -1, t— ) x(t) x(t) dt; dty
-00 2! w00 -00
where
O —t)=hOt-t), h@t—t,t—t) = 2 | h(t —t') h(t' — t;) h(t' — t,) dt',

Higher order approximations may be found in the same way. The method here is a simple
example of what will be called the reversion method of solving forced nonlinear differential
equations which will be developed more fully later.
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1.5 Symmetrization of kernels

In the Volterra expansion the kernels may, without loss of generality, be considered to be
symmetric functions of their variables, i.e. to satisfy the condition

hn(Tl, Tl, ooy Tn) = hn(Tcl, TGZ) .es Tcn)
where 6,, 6, .., Oy is any permutation of the integers 1, 2, .., n. The reason for this is that any

kernel which initially is unsymmetrical may be replaced by an equivalent symmetrical kernel.
without changing the value E.g. forn =2,

| T ha(t, w) x(t - 1) x(t- ) du dvy = [ 1@, 1) x(t - ) x(t - &) dr, dry
where h®(t;, 1,) is the symmetrical kernel corresponding to hy(t1, 12).

h(t1, 1) = ¥ {ha(t1, 1) + (12, 1)}
In the case of 3 variables, the symmetric kernel will be

hO(ty, 1, 13) = 1/3! {hs(t1, T2, T3) + h(T3, 71, T2) + ha(a, T3, T1) +
hs(t3, T2, T1) + h3(t1, T3, ) + h3(T2, 11, 13) }

In general for nth order kernels, the symmetrized kernel h®(t, ..., T,) for hp(ty, ..., Tp) 1S:
WOy, ..oy T) = 1/n! 22 ha(Tns s Ton)
perms Gy, ..., Op

the sum on the right-hand side being over all n! permutations ¢,,0,,..,c,0f 1,2, ... n.
Then

oo T ha(may oy 1) (- 10) o X(E - ) dy .. dy =

J o D@, o 1) X -T1) o x(t - T) dry .. dr,

It will be shown later that symmetrical kernels uniquely determine the Volterra series So it is
possible to equate corresponding kernels in two identically equal Volterra series having
symmetrical kernels.

Often it is convenient to use unsymmetrical forms of kernels to abbreviate formulae. Then from
equality of two Volterra expansions can only be deduced equivalence of the corresponding
kernels, two kernels being defined equivalent if they have the same symmetrized form.
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1.6 Triangular form:

When the kernels hy(), n =1, 2, ... of a Volterra series are symmetrical it is possible to write the
expansion in the form

yoy= 2 [ [ .. [ Ba(ta, ooy ) X(E= 1) o X(E - T0) dy .. dty

n=1 0<7,<1,<.51,<t
This is called the triangular form of the Volterra expansion since the variables are restricted to a

generalized triangular region. Note that the n! no longer appears in this representation. The
triangular form may alternatively be written as

y) = 2 | I ] Bt t-t) x(t) ... x(t,) dty dip ... dt,

n=1 ;< < LSt <t
As an example consider the second order kernel occuring in the previous solution of a
differential equation
o0
| h(t—t") h(t' —t;) h(t' — t,) dt’

-00

This is zero if either t; > t or t; > t since h vanishes for negative values. So either t; <t, < tor
t; <t; <t must be assumed. The resulting value is

(a) (Vo) ™[] -] (<t <t)
(b) (/o) 2 [1-e* W] (<t <1)

These two values define a symmetrical kernel h(z)(’cl, T,) and the quadratic Volterra term written

[T 01, t- 1) x() x(t) du dg
t1 S t2 S t
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Chapter 2

CONVERGENCE AND STABILITY

2.1 Application of majorants to convergence of Volterra series.
The uniform norm of a function x(t) over a time interval t € [to, t¢] is defined* as

[x[[= max [x(D)|
t € [to, tf]

Normally the time interval will be the infinite range (- oo, 0 ). Correspondingly, uniform norm
for a Volterra series with kernels h(n)(..) will be defined as

o0 o0 e 0]
Ihol| = T .. T 18t do ... dey
0 0 0

The definition of norms makes it possible to discuss convergence of Volterra series by setting
bounds on the terms of the series, use being made of the inequality

o0

a0 o0
T T ™) KT (T dy e d < | X |
00 0

Using this inequality the convergence of Volterra series can then be discussed using the method
of majorant series. A majorant series is defined as any power series relating positive scalar
variables X, Y of the form

0

Y=21HX

n=1 n!

where the coefficients H, satisfy the |hy|| <Hp, n=1, 2, ... If|x(t) | < X each term of the
Volterra series is bounded by the corresponding term of the majorant series. So the convergence
of the majorant series for a given value of X implies the convergence of the Volterra series
(uniformly and absolutely) when max || x(t) || < X.**

Note that in the case of time-varying systems over any range [to, t¢], the norm can be defined as
te te
o= max | .. ] W%t t, .. t)] dty ... dt,
tefto,te] to o

* The logical distinction between max and sup (and between min and inf) may be safely ignored because
in applications all functions will certainly be piecewise continuous

** The functions x(t) should belong to a space of functions satisfying the condition of completeness i.e. a
Banach space.
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2.2 Use of majorant series to determine truncation error
Suppose that the Volterra series

e 0} o0

yt) = 20 1 [ oo Tha(t-tiyes t- ) x(4) ... X(t,) dt; ... dt,

n=1 n! -0 -0
is truncated to its first N terms giving an approximation

0 o0

N
y©) = 2 1 [ o ] halt-tiyes t- 1) X(t) ... x(t,) dt; ... dt,

n=1 n! -0 -0

If x(t)] < X, t € (-0 ,00) the truncation error is clearly bounded by the inequality

00 N
@O - Ol <2 1 HoX' = HX) - & 1 H, X"
n=N+1 n! n=1 n!

In many cases the right-hand side may be computed numerically and so an upper bound to the
truncation error obtained. If H(X) is known graphically, a bound on the truncation error is
shown as the deviation between H(X) and its approximating Nth order polynomial. e.g. with N=1
an upper bound for the error committed by assuming the system linear is shown by the deviation
of the graph of H(X) from its tangent as shown below.

Fig: Showing maximum error for linearity assumption
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2.3 Majorant series and bounded-input, bounded-output stability.

Suppose input and output are related by a Volterra series
o0 oo e}

y© = 2 1 T o ] ety t- 1) x(80) .. x(ty) dty ... dit,

n=1 n!-w-00 -0

and suppose there is a majorant series defining a function H(X):
o0

HX)= 2 1 Hy X"
n=1 n!

The power series for H(X) will be convergent for values X below a radius of convergence, X*
say, which may be finite or infinite. If for all t

| x(O)]| <X <X*
then, as illustrated in the diagram below, the output will satisfy for all t

ly®OI=Y = H(X)

Y*
X*
Y
X y
0. (\L/N ; > system > ' 0
X ' ‘
Xk

Fig. Bounded-input, bounded-output (BIBO)
system stability in a limited region.

The system is then remaining stable under all input disturbances within this bound. Stability in
this sense is called bounded-input bounded- output stability (BIBO stability) Although X* may
be infinite commonly it is finite when there is only stability over a range of sufficiently bounded
inputs as in the diagram. Such is usually the case with the so'utions of forced differential
equations.

The relation between input and output is conveniently shown by constructing the graph of the
function H(X). The graph must curve upward: and if X* is finite the value Y* being either finite
or infinite. The graph goes to a vertical tangent there.
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2.4 The reversion method for solving forced nonlinear differential equations
The method applies typically to differential equations having the form
Lp)y+eg®) = x(@®
where L(p) is a stable linear polynomial operator in p = d/dt:
L(p) = app™ +a;p™' +... +an

and the function g(y) is assumed analytic and to contain the nonlinear terms it having been
assumed that any linear term has been absorbed into L(p).

o0
) = ey +uay . = ) gy
o1 31 n= nl

Since the operator L(p) is stable, the linearized form of the equation i.e.
L)y = x (1)
will have a solution on the infinite time interval of
©

y(® = Th(t-t) x(tr) dt;

-0
where h(.) is the impulse response function which corresponds to the operator L(p)™.

In the nonlinear case, the left side of the differential equation has the form of a power series in y
with L(p) as initial linear term. Following the method of reversion of series (appendix 1) we are
led to write the equation as

y(© =Lp)" x(©® - L(p)" {g y2('t)2 + g3 y3<p3 + o)

and solve for y(t) by successive approximation. This in the steady state can be reinterpreted as
an equivalent nonlinear integral equation of Volterra type (see footnote)

o0

y(t) = [hit—t) x(t)) dt; - [h(t—1t)) g(tr) dt;

-00 =00

Note: The integral equation is of a type considered by Lalesco in 1912 who called it a Volterra integral
equation. See Lalesco: Introduction & la théorie des équations intégrales, Paris 1912 and also Volterra:
Legons sur les équations intégrales, Paris 1913 p.90.
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For brevity it will be convenient to omit integration limits which are for convenience always
taken over the doubly infinite range. The integral equation may be solved by the method of
successive approximations starting with the linear approximation given above. Substitution of
this into the quadratic term on the right hand side of the equation results in the second order
approximation

y® = [ht—t) x(t) dtr - g J h(t—t) { ] ht' - t;) x(tr)dt;}* dt

2!
= [ht—t) xt) dty - g ht—t){] [ ht —t) ht — 1) x(t:) x(t2) dt; dtz }dt'
2!
= Int-t)xt) dty + 1 | [ hott—ti, t— &) x(t) x(t2) dt; dt
2!

where
ho(t —t1, t— ) = - g2 ] h(t—t') h(t' — t;) h(t' — ) dt’

Then the third order approximaton results from resubstitution of these terms into the right hand
side of the integral equation. The third order kernel is found as

h3(t —t,t—t,t—1t3) =- 3¢ I h(t - t) h(t' —t) h(t' —t, t'— t3) dt'
~ g3 | h(t—t) h(t' — t)) h(t —t,) h(t' — t;) dt

=3g*] [ h(t—t) h(t — ;) h(t' — ") h(t" — 1) h(t" — t5) dt' dt"
- 23 | h(t —t") h(t' — t;) h(t' — t) h(t' — t3) dt’
This process may be continued to find further terms of the Volterra series. The higher order
kernels soon become very complicated and can better be represented using either
multidimensional transforms or by the multilinear representation described in the following two

chapters.

In the case when the function g(y) is of odd order so that

) =LY By +...
31 51

the quadratic kernel is zero and the third order kernel simplifies to
hs(t—ti, t—to, t—ts) = -gs [ h(t—t) h(t —t;) h(t — ) h(t' - t:) dt
The fifth order kernel is found recursively as

hs(t—t), t—to, t—t3, t—tg, t— ts) = -3 g3 | h(t — ") h(t' — t;) h(t' - tp) hs(t' — t5) dt
- gs [ ht—t) h(t' — t;) h(t' —t) h(t' — t3) h(t' — ts) h(t' — t5) dt'
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2.5 Use of a comparison equation to prove convergence of the Volterra series solution

To discuss convergence there is set up an algebraic comparison equation relating positive
auxiliary variables X, Y having the same form as the nonlinear integral equation :

Y = HX + HG(Y)

H is assumed to exceed the integral of [h()| which will be finite because of the stability of L(p)
o0

H > [ |h(®) do

G(Y) is assurged a majorant to g(y) having a series expansion
e 8]
GY) =G Y +G: Y’ + .. = Y GoY" Gu>lgl, n=2,3, ...
2! 3! n=2 nl!

The comparison equation may be solved by successive approximation in the same way as the
integral equation and at each stage the solution of the comparison equation majorizes the
Volterra approximation to the solution of the differential equation. The convergence of the
Volterra solution consequently follows from convergence of the series solution of the
comparison equation. This series solution is however just that found for reversion of a power
series (see appendix 1) and a region of convergence may be easily determined from the graph of
the comparison equation which takes the form shown below.

Y
-,‘-.—_----»_]ecxf,“m

/

B I T R Uy~

Fig. Graph of the comparison equation
The gradient is positive and steadily increasing becoming infinite at the point (X", Y") satisfying
Y'=HX"+HG(Y"), HG(Y)H=1

This point will be called the turning value. Up to the turning value the contraction condition
holds i.e. H G'(Y) < 1 that when X < X" the iterative solution by successive approximation will
converge and so the Volterra series solution of the original equation will converge when max
Ix(t)] < X" with max |y(t)] < Y". Best estimates come from the minimum value of H.

Until the turning value, the lower branch of the graph is represents the majorant series solution of
the comparison equation and can be used to find the accuracy of an approximation to the solution
by a truncated sum of the Volterra solution.
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2.6 Example
Let us reconsider the steady-state solution of the forced differential equation

dy(t) + a y(t) — € yX(0) = x(0), @,£>0, -oo<t<oo
dt

found from the equivalent integral equation
e8] o0
y(©) = [h(v) x(t-0) dt' + & [ h(r) yX(t-1) do
0 0
h(t) =exp(-at) >0
The comparison equation for the integral equation is
Y =HX + ¢ HY?
X, Y being auxiliary positive variables and H is a positive constant chosen so that:
o0 [e 0}
H > ,[ |h(t)| dt = I exp(-ot) dt =™
0 0

The comparison equation can be solved by successive approximation in the same way as the
integral equation resulting in a majorant series

Y=HX+e B’ X+28° X+ ..

The comparison equation graph is a sideways parabola with vertex (1/4eH?, 1/2¢H). The
majorant series represents it from the origin up to the vertex, the turning value.

Y

Yk, )
| (4'&(—%2 ZeH

A
Fig. Graph of the comparison equation

By the preceding theory the Volterra series solution of the differential equation converges when
max [x(t)| < 1/4eH? and then max ly(t)| < 1/2¢H.
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In this particular case the conclusion also follows since the solution for Y of the comparison
equation can be written as the solution of a quadratic equation

Y=1-V(1-4H*X)
2¢H
The series expansion of the square root here will converge if 4eH> X < 1 so giving 1/4¢H” as
radius of convergence of the majorant series. So the Volterra series solution of the original
equation is convergent if max [x(t)| < 1/4¢H?> Also, since algebraically

Y= 2HX . < 2HX< 1.
1+ V(1 - 4eH> X) 2eH

the limit on y is max |y(t)| < 1/2eH. Choosing H =a™ now gives the best estimates
max [x(t)| < o*/4e, max ly(t)| < a/2e

Local stability and convergence: The validity of a Volterra series solution in only a limited
region may be understood by the stability properties of the undisturbed equation

dy®) +ayt)—ey*®)=0 a>0,e>0, t>0
dt

This equation has two points of equilibrium at y =0 and y = a/e obtained by setting dy/dt = 0.
The differential equation trajectories converge and diverge from these two equilibria as in the
diagram below showing the equilibrium at y = 0 is stable and the equilibrium at y = a/e is
unstable. '

7////%% )
o

. Fig. Trajectory pattern illustrating local stability near equilibrium aty =0

If a small disturbance acts on the system when it is close to the equilibrium at y = 0 it will
continue to remain in this neighbourhood. But a large disturbance might transfer the system into

the region of instability. The above limits for the Volterra series solution restrict motion to the
region PQRS.
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2.7 Example: The forced damped Duffing equation
The forced under-damped Duffing equation for a hard spring is
L(p)y +&y° = x(t) &>0
where L(p) is the operator for the transfer function
L) =p” + 200 p+ @o* 00> 0,0<{<1
The corresponding impulse response function h() is for t > 0
h(t) = exp(-LwoT) sin m1t/@;, ©] = 0o V(1 - Cz)
The integral equation for the differential equation over the infinite interval is:
o0 o0}
y©) = [ht—t) x(t) dt' - ] ht—t) y() dt, -o<t<oo
-0 -0

The Volterra series solution comes from solving by successive approximation starting with the
linear first approximation:

y(® = [ h(t—t) x(t) dt

-00
Substitution gives the third order approximation
(e 0] 0
y(t) = f h(t—t) x(t) dt' - € f h(t—t) y(t)’ dt'
-00 -0

where the cubic term is written using the first approximation as

[ het— )¢ J bt — 7y x(t™) dey? at

=nt-t)] [ Jht—t)ht —t) hit - t5) x(t) x(t2) x(tz) dt; dt, dt;}dt
=] ] | hatt—t, t—to, t— t5) x(tr) X(&) x(ts) dt; dtz dts

the third order kernel here hs(.) being

0

ha(t—t, t—to, t—t3)= | h(t—t)h(t —t;) h(t' - t2) h(t' — t3) dt

=00
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The third order approximation is then the cubic approximation to a Volterra series
o0 00 0
y(t) = I ht—t)x@)dt -e | | [ ha(t—t, t—ta, t—t3) x(t) X(t2) x(t3) dt;dtodts
-00 -00 =00 =00
Higher order approximations may be found found similarly.
Comparison equation: To find a region of convergence the comparison equation is:

Y=HX+[g|[HY

Here H is greater or equal to the norm of the integral operation. The best convergence estimate is
found by choosing equality:

H = I!h(r)ldt—coth(n ¢ )
2\/(1—C)

The comparison equation has the graph shown below

Y

Fig: Graph of the comparison equation

The turning value is easily found as (X', Y") where:
X =2/1e]"* GHY?, Y =1/3le[H)"

The contraction condition is 3|e]| H Y? < 1 which is satisfied if 0 < Y < Y*. Both the comparison
equation and the Volterra series will convergence within these limits In this case the comparison
equation is a cubic equation which may be solved explicitly and the convergence range found
from that (see the 1965 paper quoted below) The convergence limits agree in the two methods.

Ref: See the writer's paper in Intern. J. Control 1965, vol 1(3), 209-216. This was the first time the method
of the comparison equation was used.
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2.8 Example: The forced damped pendulum

The equation representing the angle response 6 to an applied force f(t) near a stable equilibrium
at angle 6 =0 is.

0(t) + 2L 6(t) +sin 0(t) = £1), 0<C<1

It is clear physically that if the forcing f(t) remains small the pendulum will perform small
amplitude motions in the neighbourhood of the equilibrium position at 6 = 0 so the system has
local BIBO stability. It is also clear that it remains BIBO stable only when the maximum
forcing amplitude remains below a critical value and when this critical value is exceeded, the
pendulum may perform complete rotations and so no longer be BIBO stable.

The Volterra stability theory for this problem uses the steady-state solution from the nonlinear
Volterra integral equation
o0 o0

o) = ,[ h(t-t") f(t") dt' + j h(t - t") g(6(th)) dt' t e (-00, )
where - _

h(t) = e sin (u1), >0 p=01-0)

g0)=0 - sinf=0>-0"+06"-..
31 51 7

The comparison equation for the integral equation is

® = HF + HG(®)
where

H> [ |h(7)| dt = coth (at/p)

G(®) = sh® - 0=0+0°+0' - ...
3151 7

The series solution of the comparison equation is found as

O=HF+1HFP+1H (H+0.1)F+ ...
6 12

By the general theory this series will be convergent when 0< F< F*_ the coordinates (@*, F*) of
the turning point on the comparison equation graph being determined by

®* =HF+HG(®*), 1=HG'(0*)

Reference: Math.Balkanica 1974



From these conditions are found
©* = cosht™(1/H)

F* = (1+H) cosh (1 +H) - V(1 +2H + H)
H H H

The diagram below illustrates the case {=0.6. The graph of the comparison
equation is compared with the graph of the exact solution which is found by -
numerically integrating the equation for the special forcing

f(t) = F sgn (d0(t)/dt)

it being clear physically that maximum response amplitude occurs when forcing is
always in the direction of the motion.

e 4
ﬁr'—.——---b—-—~‘-——-~~-,—-°"°“

Vsl
Tx“/z :

-2 g

Conparisén equation

-

s M em mm amom ma e

f
Exact relation for
input— and output~
bounds

o M oep s o owm N

/

Fig. Tllustrating input-output stability
of a férced damped pendulum.

el mn e S e D e

o
)

M e manmoan & A

&
o



26

2.9 Example: An FM detector (phase-locked loop)

A signal cos (ot + 0) is received and it is required to detect 6. The phase-locked loop does this
by locking on to a locally generated signal cos (®t + 6¢) using a feedback system. A signal
proportional to sin (0 - 8y) is generated by correlation of the received signal with the quadrature
component sin (wt + 6g) of the locally generated signal. In the absence of noise, output phase 6
is driven towards 0 according to the equation

dBy/dt = K sin (0 - 6¢)
This has an operational solution giving the first form of the feedback system shown below

0o = K sin (9 - 90)
P

If the maximum value of d6y/dt remains small the error € = 6 - 0¢ will remain small and the
system will remain in the neighbourhood of the stable equilibrium at e = 0. The nonlinearity can
then be neglected and the system behaves like a first order lag.

If the deviation between 6 and 6 increases, nonlinearity causes loss of performance. This may be
analysed by rewriting the equation as

de/dt + K sin e = d0/dt
and then further transforming it to a form suitable for successive approximation
de/dt + K e = d6/dt + g(e)
g(e) containing nonlinear terms e - sin e =~ ¢°/6. This gives the second feedback scheme below.

If the maximum value of d6/dt increases the bounds of e increase but initially the system will
remain BIBO stable. Finally, when d0/dt exceeds a critical value, ¢ may leave completely the
neighbourhood of the equilibrium e = 0 and move near to another equilibrium e.g. at e = 2.
This is called 'cycle skipping'. It is analogous to a forced pendulum performing complete
rotations.

&.
=
~
~
v

+ e
1/(ptK) l-;—a»

K/p |€'— —1 g0 |

Fig. The phase-locked loop Fig. The transformed loop
ge)=e—sine=e"/6
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Chapter 3

MULTIDIMENSIONAL SYSTEM TRANSFORMS

3.1 Multidimensional system transforms

Multidimensional transforms generalize the transfer function method from linear to analytic
nonlinear systems. They arose from Wiener's (1942) use of multidimensional Fourier transforms
in a special problem which then became generalized in early work on Volterra series (Deutsch
1955, Barrett 1955-57, Brilliant 1957, Zames 1959, George 1959)

Consider a time-invariant Volterra series corresponding to a physically realizable system

o0 ¢ 9] (e 8]
y) =2 1 | .. ] ho(risen, ) X(t-11) .. X(t-7p) d1y ... dTy
n=1 n! O 0

The system transforms are the following multidimensional Laplace transforms:

o0
Hi(s) = [ hy(n)exp-stde
0
o o0
Hj(s1, 52) = _[ I hy(t1, T2) exp -(s1T1182T2) dt; dt,
0 0
o0 e8]
Hy(s1,..., Sn) = [ ... ] hp(Ty,.., Tn) €Xp -(S1T1 ..+ SpTy) d7y ....dTy
0 0

If the kernels are completely symmetric these transforms will also be completely symmetric.

For physically realizable kernels the integrals here written from 0 to co may also be written over
the range -0 to co. The multidimensional Fourier transforms of the kernels can then be written in
terms of system transforms:

e8]

Hiio) = Jhi(t)exp-iotde
-00
o0 o0
Hy(iog, imy) = [ hy(ty, t2) exp -i(0;T1+m,12) dridt,
-00 -00

Hy(log,...10,) = [ ... hy(1y, .., Tn) €Xp -1(@171+..F ©4Ty) d1y....dT,
-0 -00
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These Fourier transforms have an inversion formula

o0 o0
(T @) =1 | [ Hy(ioy,..., iog) exp i(o1t1+..+ 04T,) doy....do,
Q2m)" -0 -0

which for the Laplace transforms would correspond to a formula of the type

ha(tle ) = 1 [ ] Hu(s1,e., S0) €xp (s171+..+ SpTn) dsy....dsq
@2mni)" C

Such integrals would be over suitable contours C in the n-dimensional complex space of sy, ..., Sp
As insufficient is known about this kind of representation it has limited use but can sometimes be
used as a guide in inverting certain types of integrals (e.g. by association of variables as
described later.)

Stability condition: In linear systems analysis the stability condition is that the transfer function
H(s) has all its infinities in the left half s-plane. A similar condition applies to multidimensional
transforms of kernels satisfying the boundedness condition

0 0
[ o] h(ry,. )l duy....dty <
0 0

On putting s; = 61 +i®, ..., Sn = 0p + 10, and assuming 61 >0, ..., 6, > 0,
[0 0] e8]
| HoGS1yeo su) | = |1 | ha(ty,..t0) exp -(s1tr+.+ suTy) dry....dy |
0 0
0 8]

e8]
< ] |ba(ts, .t)| exp ~(o171+..+ 6470) d1y....dT,
0 0

00 o0

<[ | |ha(ty, .10)| dryediy <
0 0

The function Hy(si,..., sp) is consequently uniformly bounded when Re s; > 0,...,Res, > 0.
So any singularities must lie in a region where one at least of these inequalities fails to hold.



3.2 Use of delta functions for instantaneous operations:

Instantaneous operations are represented by delta functions. Basic is
o0

x(t) = | 8(t-ty) x(tr) dt;
-00
The operation of raising to the nth power leads to the nth kernel: e.g.

o0

) = (] 8tt) xt) dt) =1 [ oo J8(tt0) ooon 8Ctt ) Xt X(ta) dty ... dty

o0 -00 -00 -00
The corresponding n-dimensional kernel transform is

o0

e8]

[ T8t o 8(tn) exp -{5171 + vone + S4T0) dy .. dty =1
=00 =00

As a consequence, an analytic function

o0

fx)= >, 1 f,x"(t)

n=0 n!

may be considered as a Volterra series with n-dimensional transforms constant
and equal to f;, n=0, 1, 2,...

Derivatives are similarly defined e.g.

X(0) = | §'(ttr) x(ty) dty,

-00
so that
0 o0 o0
)" = (] 8'tt) xt) dt)" =] oo ] 8'tt)) oo 8'(ttn) X(0)..o. X(tr) Aty ...dEy
-00 =00 ~00
The transform is
o0 (e 8]
I ..... ,[ 3'(t1) ... 8'(Ty) exp -{s1T1 + ... + SyTy) ATy ... dTn =51 S2 .. S
-0 -00

and similarly with higher derivatives. The nth order transform of rth derivative is s',...,Sp"
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3.3 Transforms for instantaneous nonlinearities combined with linear operators

(a) Linear + instantaneous nonlinear: The nth power {H(p) x(t)}" of a linear operation H(p)
acting on x(t) has the nth order kernel given by

{(Hp) x(®)}" = ([ h(t-t;) x(t:) dt,)"

= [ Th(tt) .. B(tt ) X(t)ewn X(t) dty ... dty

~-00

giving transform H(s;) ..., H(sy). Consequently if, as in the diagram below

z=fy®)=2. 1Hy'®= Y 1 f {Hp) x@®}"

n=0 n! n=0 n!

the combination system has nth order kernel transform f;, H(s1) ..., H(sp)

X y —_— Zz
—s| Hp) |— ) —

Fig. The LN system

(b) Instantaneous nonlinear + linear: Taking a linear operation K(p) on an nth power x(t)"

corresponds to an nth order kernel given by

K@) x"®) = | [ JK(t) Stt1) .. 8-t 1) X(t1).... X(ta) dty ... dt, At

which has kernel transform Ky(s; + +5s,) So the system shown with

2(t) =K(@) y() = K@) fx®) = X 1 HKE)x®"

n=1 n!

has nth order kernel transform f;, K(s; + ...+ s5)

X y —— Z
> ) [/ K@) |

Fig. The NL system

* The names "Wiener model' and 'Hammerstein model' are commonly used to describe systems
(a) and (b). While convenient the names are inappropriate as Wiener did not use this simple
model and Hammerstein was concerned with boundary type problems arising in nonlinearly
vibrating systems (Hammerstein: Acta Math. 1930)
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3.4 Cascade formulae for multidimensional transforms

With analytic systems, cascading corresponds to the process of series substitution

Suppose there are two analytic time-invariant systems H and K in cascade giving a total system
G of KoH as in the diagram.

—>| HQ) | KO) |77

Fig. Cascaded systems

The input-output relations are assumed given by the Volterra series

o0 e 8} o0

yO) = 2 1 o J ha(t-tyent - t) X(t) .. x(tn) dt; ... diy

n=1 n!-0 -o0

e 8} 0 o0

7Z() = 22 1 o ] Ka(t-trest - tn) y(t1) .. y(tn) dt; ... dty
n=1 n! - -

By substitution of the first into the second there is found

o0 (o8] o0

7Zt) = 2 1 o ] galt-tet - to) X(ty) ... x(ta) dt; ... dt,

n=1 n! -0 -0

The first 3 kernels of the resulting system KoH are:

o0
git-t) = [kt —t) hy(t' - t;) dt’
-00
a0
gt-t,t-t) = [ kit —t) hy(t' - t;, t' - t) dt’
-00 .
o0 o0

+] [ kot -t t=t2) hi(th - t) hy(ts - ©) dt'dt,

-0 -0
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o0
gt-t, t-,t-1) = | ky(t—t) ho(t' - ty, t' - 1o, t' - t3) At
-00

o0 O
+ [ kot —th, t—t2) hy(t - t1) hi(ts - to, t2 - t3) dt'ydt’
-00 -00

o0 00
+] [ ko(t—t', t —t2) hy(t') - 1) hy(t - t5, t' - t;) dt'dt}
~00 =00

o0 00
+] [ ko(t—t'y, t —t) hy(t'y - t3) hy(t} - ti, t' - to) dt'dt}
~00 ~00

o0 00 00
+ _[ I I k3(t —t'1,t—th,t—t's) hy(t') - t)) hy(th - t) hy(t's - t3)dt'1 dt'; dt's

~00 =00 =00

On taking Laplace transforms of the appropriate orders the following equations are found
relating successive transforms.

Gi(s) =K;(s) Hi(s)
Ga(s1,52) = Ky(s1+sz) Ha(si, s2) + Ka(s1, s2) Hi(s1) Hi(sz)

Gs(s1, 2, 83) = Ky(s1+ s2+s3) Hi(sy, 52, 83)
+ K3 (s1, s2 + s3) Hi(s1) Ha(s2, $3)
+ K2 (82, 83+ 1) Hi(s2) Ha(ss, s1)
+ K (s3, 51+ s2) Hi(s3) Ha(sy, s2)
+ K3 (s1, 82, 83) Hi(s1) Hi(s3) Hi(s3)

Note a characteristic repetition with permutation of variables. Here there is a threefold repetition
for K, resulting from 3 partitions of s), sy, s3 into groups of 1 +2 For 4" order there are found 15
terms starting with

Gu(s1, 2, 53, 84) =Ky (s1+ 52 + 53 + 54) Ha(s1, 2, 3, 54)
+ K2 (s1, s2+ 53 + 54) Hi(s1) H3 (52, 83, 84)
+ Kz (82, 83+ 54 + 51) Hy(s2) H3 (53, 84, 51)
+ K3 (s3, s4+ 51+ 52) Hi(s3) H3 (s4, 51, 52)
+ Kz (s4, 51+ 52 + 83) Hi(s4) H3 (51, 82, 83)
+ K3 (s1 + 52, 53 + 54) Ha(s1, 52) Ha(s3, 54)
+ Kz (s1 + 82, 83+ 84) Ho(s1, 52) Ha(s3, s4)
+ K (51 + 82, 83 + 84) Ha(s1, $2) Ha(s3, s4)
+ etc

Here the partitions of the 4 variables sy, S5, S3, S4 into partitions1 + 3 and 2 + 2 result in 4 and 3
repetitions respectively. Altogether there are found 1+4+3+6 +1 = 15 terms. The number of
terms clearly rapidly increases with order, e.g. the symmetrical 5" order form has 52 terms
resulting from the 1+5+10+10 + 15 + 10 + 1 different partitions of 5.

A contracted way of writing the equations is to use an unsymmetrical form corresponding to a
fixed order of the variables which is conveniently taken as ascending order. See the table on the
next page
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3.5 Cascade formulae in contracted notation
Gi(s) =Ki(s) Hi(s)

Ga(s1,2) = Ki(sitsz) Ha(sy, 52)
+ Ka(s1, s2) Hi(s1) Hi(s2)

Gs(s1,82,83) = Ki(s1 + 52 + s3) Hs(s1, 52, 83)
+ 3Kz (s1, s2 + s3) Hi(s1) Ha(s2, $3)
+ Ki(s1, $2, s3) Hi(s1) Hi(s3) Hi(s3)

Ga(s1, S2, 83, 84) = Ky (s1+ 82 + 83+ s4) Hy(s1, 82, S3, S4)
+ 4K, (s1, s2+ 83+ s4) Hi(s1) H3 (s2, 3, S4)
+ 3Ka (51 + 82, 83 1 54) Ha(sy, 52) Ha(ss, s4)
+ 6K3(sy + s2, S3, S4) Hz(Sl, Sz) H](S3) Hl(S4)
+ Ky (51, 82, 83, 84) Hi(s1) Hi(s2) Hi(s3) Hi(sq)

Gs(sy, S2, 83, 84, 85) =Ky (81 + 82 + 83+ 84 + 85) Hs(s1, S2, S3, S4, S5)
+ 5K3(s1, 52+ 53+ 54+ 55) Hi(s1) Ha(s2, 53, 54)
+ 10K, (s1 + 82, 83 + 84 + 85) Ha(s1, 52) H3 (83, 84, S5)
+ 10K (s1, $2, 83 + 84 + 85) Hi(s1) Hi(s2) Ha (s3, 84, S5)
+ 15K (s1, 82 + 83, S4 + 55) Ha(s1) Ha(sa, s3) Ha(s4, S5)
+ 10K4 (s1, $2, 83, 84 + 55) Hi(s1) Hi(s2) Hi(ss) Ha (s4, S5)
+ Ks(s1, S2, 83, S4, Ss5) Hi(s1) Hi(sz) Hi(s3) Hi(s4) Hi(ss)

Ge(s1, S2, S3, 84, S5, S6) = Ky(s1 + 82 + 83 + 54+ 55+ 56) Hg(51, S, S35 S4, S5, S6)
+ 6 Ka(s1, 82 + 83 + 84 + 85+ 5¢) Hi(s1) Hs(s2, S3, S45 S5, S6)
+ 15 Ky(s1 + 52, 83 + 84 + 55 + 56) Ha(s1, S2) Hs(s3, 84, S5, S6)
+ 10 Ka(s; +sp+83,84 +55+ se) Hs(s1, s2, s3) H3(s4, Ss, S6)
+ 15 Ks(sy, 82, 53 + 54 + 55 + 56) Hi(s1) Hi(s2) Ha(s3, s4, Ss, S6)
+ 60 Kas(s1, 82 + 83, 5S4 + 55 + s6) Hi(s1) Ha(s2, s3) H3(s4, Ss, S6)
+ 15 K3(s1 + 82, 83 + 54, S5 + 56) Ha(s1, 52) Ha(sz, s4) Ha(ss, se)
+ 20 Ky(s1, 82, 83, 84+ 85 + 86) Hi(s1) Hi(s2) Hi(s3) Ha(sa, ss, S6)
+ 45 Ky(s1, 82, S3+ 54, 85 + 86) Hi(s1) Hi(s2) Ha(ss, s4) Ha(ss, S6)
+ 15 Ks (81, $2, 83, 84, 5+ 86) Hi(s1) Hi(s2) Hi(s3) Hi(s4) Ha(ss, s6)
+  Ke(s1, 82, 83, 84, 85, S6) Hi(s1) Hi(s2) Hi(s3) Hi(se) Hi(ss) Hy(se)

Odd order systems
Gi(s) = Ki(s) Hi(s)
Gs(s1, 82,83) = Ki(si + 52+ 53) Ha(sy, 82, 83)
+ K3 (s1, 82, 83) Hi(s1) Hi(ss) Hi(s3)
Gs(s1, 82, 83, 84, 85) = Ky(s1+ 82+ 53+ 84 + 85) Hs(s1, 82, 83, 84, S5)

+10K;3 (81, 82, 83 + 84+ 85) Hi(s1) Hi(s2) Hz (83, 84, 85)
+  Ks(s1, 82, 3, 54, 55) Hi(s1) Hi(s2) Hi(ss) Hi(ss) Hi(ss)
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3.6 Inverse systems

The mathematical definition of inverse extends to system analysis A system with operator H(.)
is said to have an inverse system with operator K(.) if this system results in the identity when
cascaded with the first system H(.). viz

Z=X

. >l H(.) ‘—y——> KV |——

Fig. Inverse systems

Terminology is confusing because mathematically H(.) is the right inverse of K(.) although in
the figure it lies to the left of K(.) - and similarly with the left inverse. So, taking definitions
from the cascading relation of the figure, H(.) will be called the pre-inverse of K(.) and K(.) the
post-inverse of H(.).

Inversion with system transforms: Setting KoH(.) equal to unity gives the equations
1 =K,(s) Hi(s)
0=Ki(s1 + s2) Ha(s1, 2) + Ka(s1, 82) Hi(s1) Hi(s2)

0 = Kl(sl + S2 + S3) H3(Sla S2, S3)
+ 3K3 (51, 52 + 83) Hi(s1) Ha(sz, s3)
+ K3 (51, 2, s3) Hi(s1) Hi(s3) Hi(sz)

0 =K (51 + s2 + 53+ 54) Ha(s1, 82, 53, S4)
+ 4K, (S], sy + s3 + s4) Hi(s1) Hs (s2, 83, 84)
+ 3K5 (s + s2, 83 + 84) Ha(sy, 52) Ha(ss, 84)
+ 6K3(s1 + 52, 3, 54) Ha(s1, s2) Hi(s3) Hi(s4)
+ Ka(s1, 82, 83, 84) Hi(s1) Hi(s2) Hi(ss) Hi(s)

0 =K (s1 + 82+ 53 + 54 + 55) Hs(s1, S2, 53, S4, S5)
+5K; (81, S2 + 53 + 84 + 85) Hi(s1) Ha (s, S3, S4)
+10K (81 + $2, 53 + 84+ 55) Ha(s1, 52) H3 (83, 54, 85)
+10K;3 (81, $2, 83 + 84 + 85) Hi(s1) Hi(s2) H3 (s3, 84, 85)
+15K5 (81, 82 + 83, 84 + 85) Ha(s1) Ha(so, s3) Ha(s4, s5)
+10K4 (51, S2, 83, 84 + Ss5) Hi(s1) Hi(s2) Hi(s3) Ha (s4, S5)
+ K4 (81, 82, 83, 84, 85) Hi(s1) Hi(s2) Hi(s3) Hi(s4) Hi(ss)

The pre-inverse: Solving for the kernels of H gives a recursive form for the kernels of the pre-
inverse of K. This is the more applicable form of inverse as it is used for solving differential
equations and for analysing feedback system.

To solve for kernels H it is usually necessary for K(s) to have a stable inverse. Assuming this
condition satisfied the equations can be solved recursively as follows.
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Hi(s) = Ki@s)"
Hy(s1, $2) = -Ki(s1+ s2)" {Ka(s1, 52) Hi(s1) Hi(2)}
Hi(s1, 2, 83) = -Ky(s1+ s2+s3)7" {

3K, (s1, s2 + 83) Hi(sy) Ha(sz, s3) +
K3 (s1, 82, 83) Hi(s1) Hi(s3) Hi(s3)}

Hy(s1, 82, 83, 84) = -Ky(s; +sp+s3+ S4)-1{
4K (s1, s2+ 83+ s4) Hi(s1) Hs (s2, 83, 84) +
3K (sy + s2, 83+ 84) Ha(s1, 82) Ha(s3, 84) +
6K(s1 + 82, 83, S4) Ha(sy, s2) Hi(s3) Hi(sq) +
K4 (s1, 82, 83, 84) Hi(s1) Hi(s2) Hi(s3) Hi(sa)}

Hs(s1, $2, 83, 84, 85) = -Kj(s;+spy+s3+s4+ ss)'1 {
5K (s1, 82 + 83 + 84 +55) Hi(s1) Ha (s, S3, 84) +
10K (s1 + 82, 83 + 54 + 85) Ha(s1, 52) H3 (83, 84, 85) +
10K3 (81, 82, 83 + 84 + s5) Hi(s1) Hi(s2) Hz (s3, s4, S5) +
15K (81, 82 + 83, 84 + 85) Ha(s1) Ha(S2, 83) Ha(ss, s5) +
10K4 (s1, S2, S3, 84 + 85) Hi(s1) Hi(s2) Hi(s3) Ha (s4, 85) +
Ks (Sl, S2, 83, S4, S5) H1(S1) Hl(Sz) H](S3) H1(S4) Hl(Ss)}

The post-inverse: Solving for kernels of K gives a recursive form for the kernels of the post-
inverse of H. To solve the equations it is usually necessary for the linear kernel H;(s) to have a
stable inverse

Ki(s) = H@s)!
Ka(si, $2) = - Hy(s)" Hi(s2) {K(s1 + s2) Ha(s1, 52)}
K3 (s1, $2, 83) = - Hy(s))" Hi(s2)" Hi(s){

K(s1 + s2+s3) Ha(s1, 52, 83) +
3K, (S], Sy + S3) H](S]) Hz(Sz, S3)}

Ky (s1, 92, 83, 54) = - Hi(s1)" Hi(s)" Hss)™ Hi(sa) ' {
K; (S] + 8 + 83+ S4) H4(S], S2, S3, S4)
+ 4K; (s1, 82+ s3 + s4) Hi(s1) H3 (s, s3, S4)
+ 3Ka (81 + 82, 83 + 54) Ha(s1, $2) Ha(ss, s4)
+ 6Ks(s; + s, 83, S4) Ha(s1, 52) Hi(s3) Hi(s4)}

Ks (s1, S2, 83, 84, Ss5) = - Hi(s1) " Hi(s2)™ Hi(ss)™ Hi(sa)™! Hi(ss)™{
Ki(s1+ 52 + 53+ 54 +s5) Hs(s1, 2, 53, 54, S5)
+5K; (s1, 82 + 83 + 84 + 85) Hi(s1) Hy (2, 83, S4)
+10K; (1 + s2, 83+ 84 + 55) Ha(s1, 52) H3 (53, 54, S5)
+10K;3 (s1, 52, 53 + 84 + 55) Hi(s1) Hi(s2) H3 (s3, 84, 85)
+15K3 (s1, 52 1 83, 84+ 85) Ha(s1) Ha(s2, $3) Ho(ss, s5)
+10K4 (s1, S2, S3, 84 + 85) Hi(s1) Hi(sz) Hi(s3) Ha (s4, 85)}
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3.8 Multidimensional transforms for a typical forced differential equation

Consider again the equation

L(p) y(t) + %ya)z + 3g'3 yO' + = x(1)

i.e a power series with the first coefficient g; a stable linear operator L(p). In the cascade below
it is convenient for the notation to call K the differential operator K;(s) = L(s), Kn() =gn n>1
The Volterra solution is then given by the left hand operator H.

X y X
> H() ’—> K() '7>

Fig. Solution of differential equation having kernels K
The first three transforms of H are given in the unsymmetrical preinverse formulae by

Hi(s) = Ky
Ha(s1, S2) -Ki(s1 + s2){Ka(s1, s2) Hi(sy) Hi(s2)}
Hs(s1, 2, S3) ~Ku(s1 + s2+83)" {3K; (51, 52 + 53) His1) Ha(sa, 3) +
K3 (Sl, S2, S3) Hl(Sl) Hl(Sz) H](S3)}

1

Substituting values for the K kernels gives the transforms of the first three kernels of the
Volterra solution of the forced differential equation

Hi(s) = L) = H(s) say
Ha(s1, $2) = - gy H(s1 + s2) H(s1) H(sz)
Hj(sy, 82, 83) = -K(s1 + s2+83) {3g2 Hi(s1) Ha(s2, 83) + g3 Hi(s1) Hi(s2) Hu(s3)}
The corresponding kernels have previously been derived as
hi(t—t) = h(t—t)
ha(t— tr, t—t2) = - g2 ] h(t — ) h(t' — t)) h(t' — ;) dt

hs(t—ti, t—to, t—t3) = 35 | h(t'— ) h(t' — t;) ho(t' — 1o, t — t5) dt’
- g3 [ h(t— ) h(t' — t;) h(t — t) h(t' ~ t5) dt

It is easily verified that multidimensional Laplace transform of these kernels gives the above
values.

Substitution of the second order transform H, and second order kernel h, gives the full non-
recursive form for the third order transform H; and kernel hs. The kernels are then still
unsymmetrical but can easily be symmetrized if necessary.
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3.9 Feedback systems

The usual form of a feedback system is that shown in the diagram below. It is characterized by
open-loop and closed-loop operators G and H.

x + e y
0 G()
- Tv
y
H()

Fig: A typical feedback system

Starting from open-loop dynamics the system equations are:

y = G(e)

e=x-y
From these follow

x=e+ G(e)= I+ G)(e)
Stability condition: To proceed further the existence of the pre-inverse (I + G)['l]
must be assumed. In the linear case this assumption corresponds to the Nyquist stability
condition and so it may therefore be considered to be the nonlinear analogue of the stability
condition. When satisfied the last equation may be inverted to give.

e=I+G)x) =Ux)

The operator U() defined by this equation is called the return difference operator.
Substitution gives

y=x-Ux)=1-1U) ()
This gives input-output operator H() as
H=1-U
There follows the relation between the basic operators U, H,G describing the system:

U=1-H={+G)M
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Relation between transforms: If the system is analytic and the transforms of the forward loop
operator are Gi(s), Ga(si, $2), G3(s1, S2, $3), ... €tc then the existence of the pre-inverse to I + G
depends on existence of the inverse (1 + Gy(s))" of the linear term 1 + Gy(s) so Gi(s) must be
Nyquist stable. The relation between system transforms is then
Ui(s) = (1 + Gu(s))”
Ua(s1, 82) =-(1 + Gy(s1 + Sz))_l Ui(s1) Ui(s2)

Us(s1, 52, 83) = (1 + Gi(s1 + 2 +53)
{3Ga(s1, 52 + s3)Ui(s1)Ua(s2, s3) + G3(s1, $2, 53)G1(s1) Gi(s2) Gi(s3)}

etc. From these follow the transforms of
Hi(s) = 1-Uy(s) = Gi(s) (1 + Gu(s))"
Ha(s1, 82) = - Ua(s1, s2)
Hjs(s1, 82, 83) = - Us(s1, 82, $3)
etc. In the most important case the forward-loop is an odd order system when there is found
Ui(s) = (1 + Gu(s))”
Us(s1, 82, 83) = -(1 + Gy(s1 + 52+ 83)™ Gi(s1. 82, 83) Gi(s1) Gu(s2) Gi(s3)
Us(s1, S2, 53, S4, S5) = -{1 + G1(8; + 52 + 53 + 84 + 55)}
{10 Gs(s1. 52, 53 + 54+ 55) G1(s1) Gi(s2) Gi(s3)

+ Gs(s1, ss) H(s1) H(sz) H(s3) H(s4) H(ss)}
etc
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Chapter 4

MULTILINEAR NOTATION

4.1 Multilinear representation of analytic functions relating vectors

When dealing with analytic relations between vectors, generality is obtained by the use of an
abstract notation. In this notation formulae apply equally well to continuous- or discrete-time
and finite- or infinite-dimensional systems.

Consider functions between two vector spaces X and Y:
y=1x), xeX,yeY.

The basic property of an analytic expansion is the possibility of representing the function with
terms of successive degrees 0, 1, 2, ...

fix)="fo + fi(x) + fr(x) + ...
For any scalar multiplier A the term of nth degree satisfies the homogeneity property
fLx)=A"fy(x), n=1,2, ...

This homogeneity property is not in itself sufficient to characterize the expansion of being of
power series type, e.g. the function of a vector [xy, X3, ..., Xp]

f(x) = V&2 + %7 + ... + Xy7)

is homogeneous of degree 1 yet it is not linear. The correct approach to the abstract
representation of power series was found by Fréchet* and uses multilinear functions.

A multilinear function £,(xV, .., x™) is defined as a function linear in each of its variables xV,..,
x® in a vector space X and with value in another vector space Y.

A function f(x) relating vector variables x € X., y €Y will be said to be analytic if it has a
representation in terms of the multilinear functions f,(.,..,.),n =0, 1,2,.. as

[e 0]
y=f(X)=f0+Z _1_ f1’1(X9 ---9X)
n=1 n!

The terms fy(x, .., X), n = 1,2,.. occurring in the expansion of f(x) then have the homogeneity
property for any scalar A

fax, ..., Ax) = A" f(x,...., X)

* See e.g. Fréchet: 'Pages choisies de l'analyse générale’, Paris 1953
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Example I: Let X e R™ Y ¢ RN, Then the expansion of the function f{.) is obtained on using
the multilinear functions having jth components

M M
fuxP, o x ™= DY i i xPh o x®h, j=1, M
i1=1 in=1

Example 2: Let X = R be the space of real-valued functions x ={x(t), t € [to, tf]} and Y =R.
The Volterra expansion is obtained by using the multilinear functions

tr tr
f,x, |, x®) = j j fu(x1, oo t0) X011 XD (1) dry ondtn
ty to

A restriction is placed on the class of functions under consideration to make the integrals well-
defined.

Example 3: Let X ¢ R0y ¢ RN The representations of the last two examples may be
combined when the variables are vector functions of time.

M Mt tr

fn(X(l), . X(n))j = Z e Z I J. fn('[l, cees '[n)j;il, in X(l)(t1)i1...X(n)(tn)in d'[] ...d'[n

Two multilinear function f(x,..., x™), gn(x(l),..., x™) will be said to be equivalent if they are
equal for all values of xD L x®,

Symmetry: a multilinear function f,: X — Y is said to be symmerrical if, for all permutations
k..., kyof 1, ...n,

£,(xD,..., x) = £,x®, .., x*)

Any multilinear function f, has a corresponding symmetrized form defined as

fo(xD, xXMgym = 1 Y £u(x® xE)
n! perms k

the sum on the right-hand side being over all the n! permutations k,,..., k, of 1, ..., n.
On putting here x'V = ... = x® = x there follows

(X5 X)sym = fu(X,...,X), n=1,..,n
so that f; is equivalent to its symmetrized form and can be replaced by it in the power series

representation of any function. Thus it is possible to make the symmetry convention that all
multilinear functions occurring in the power series representation of a function are symmetrical.
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4.2 Uniqueness of power series representation
It is convenient to use the notation
falx] =fux, .., x) n=12,..

for the homogeneous terms in a power series. This formula expresses homogeneous terms by
multilinear functions. Conversely it is possible to express symmetrized multilinear functions in
terms of homogeneous ones. For it is simple to verify

b, x) = 1{G[xi+x]—(H[xi]+ B[x]) }
2!

f3(X1, X2, X3) =1 {f3[X1 + X3+ x3] — (f3[X2 +x3] + f3[x; + x2] + f3[X2 +x3]) +
3!

(f3[x1] + f3[x2] + f3[x3] ) }
etc. leading to the nth degree formula

£.x®, L x®y =1 {FxP + o+ xP) = ExP L xP]+ L)+ ete
n!
+ (D) (E[xP] + ..}

As a deduction from this formula it follows that if f[x] =0 forall x e X then  f(x®, .., x®™) =
0 for all xV,.., x™ ¢ X.

Theorem: If an analytic function f(x) is zero for all x, its multilinear terms vanish.

Proof: For any vector x and scalar A,

o0 o0
0=10x)=fo+ Y, 1 fu(x, ., Ax)= fo+ Y. A" fu(x, .., X)
n=1 n! n=1 n!

Since this holds for all A it follows that for all n
fn(X> e X) = fn[X] = 0
so all multilinear operators fn(x(l), v x(“)) also vanish.

Corollary: if f,(x, .., x®) and g,(x?, .., X(")) are multilinear functions of the same degree such
that f,[x] = g,[x] for all x € X then they are equal for all x, .., x®. In particular, if they are both
symmetrical then they coincide. It is only necessary to apply the lemma to the difference of the
functions. This result justifies the procedure of 'equating coefficients' of two equal power series.

Equivalence of multilinear functions: two multilinear functions f,, g, are defined to be equivalent
if f, = g, or equally, f;[.] = gn[ 1. This is an equivalence relation in the accepted mathematical
sense. From the equality of two power series can be deduced equivalence of the multilinear
functions for each degree. This is 'equating coefficients'. The use of the weaker equivalence
instead of the stronger equality between the symmetrized forms of the multilinear functions can
abbreviate formulae and is often useful for this purpose.
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4.3 Analytic functions in a normed space
The generalizations here from the Volterra series case are completely straightforward
X, Y spaces with norms denoted by || ||. Typical cases are:

(a) Finite n-dimensional vector space,
| x || = max | x; |, i=1,..,n.

(b) Real function on range [to, t¢],
[ x || = max | x(t) | t € [to, te].

(c) n-dimension vector function on range [to, t¢],
|| x || = max |x;(t)], i=1,..,n, t € [to, tg].

A multilinear function an(x(l), s X(“)) inx® ¢ X,i=1, ...,nwith value in Y is called bounded if
there is a constant A such that |ja,(x", ..., x(n))ll <A |xY ... Hx(n)ll for all values of the x’s The
least such A (i.e. infimum) is defined as || a; ||

A class of analytic functions X—Y is defined by a formal series

y=fx)=ap+aix)+akx x)+..
2!
When the ay() n=0,1,2, .. are bounded multilinear functions X" —Y a majorant series X >0, Y >
0 may be formed

Y=FX)=A¢+ A X+A, X*+ ...
2!

where A, > |ja,|| (equality giving least majorant) so that if ||x|| < X each term of the series is less
or equal in norm to the corresponding term of the majorant series.

llan(x, X, ... X)|| < A X"

It is easy to demonstrate the following analogue of the scalar case following the proof in
Appendix 1. The normed spaces should be complete, i.e .Banach spaces

Theorem If the majorant series converges for X € S then the series for f(x)
(1) is absolutely convergent when ||x|| & S
(ii) is uniformly convergent on Sy = {x| ||x]| <X ¢ S}
(iii) when |[x|| <X & S, ||[f(x)|| < F(X)

Reference: Lyusternik & Sobolev: Elements of Functional Analysis. (Russian) Moscow-Leningrad 1951;
English translation New York 1961 (Ungar).
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4.4 Series substitution

Use of the notation of multilinear functions effectively reduces calculations with power series to the
scalar case. There are only a few differences.

Suppose that h: X |— Y, k: Y |— Z are two functions having power series representation

o0

y=hx) = 2 1 hx, .., x)
n=1 n!
o0

z=k@y)= 2 1 k%, ...y)
n=1 n!

By substitution there is found a function g = k o h with power series representation say
0

z=g(x)= > 1 g%, ..., %)
n=1n!
where
g1(x) = ky(hi(x))
22(%, x) = ki(ha(%, x)) + kao(hi(x), hi(x))
23(x, X, X) = ki(hs(x, %, X)) + 3 ka(f1(x), f2(x, x)) + ka(hi(x), hi(x), hi(x))

Following a similar procedure as with scalar power series, the general term is found as

Z(X, X, ... X) =

2 {22 .. 2% Pnin Tt kn(hi(X), (), ha(x, %), ...hs(x, %), ...}

1I<m<n 1 nr I'm Il T

where the sum inside the bracket on the rhs is over all positive integers 11, 1y, ... such that
rn+2rn+..=n, ntrnt =m

Omission of the variable x does not lead to ambiguity and results in the abbreviated forms:
g1 = ki(hy)
2 = ki(hy) + ka(hy, hy)

g3 = ki(hz) + 3 ka(hy, hy) + ka(hy, hy, hy)

gn= 2 { 22 .. 2 P, 12 et K (hyy By, By, oy b, By

I<m<n n n m e  p FN SR rm----m

Discussion of majorants follows the scalar case of Appendix 1
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4.5 Inversion, reversion:
If two systems are inverse to one another the cascaded system is the identity. Then follow
I =ki(h))
0 =kj(hy) + ka(hy, hy)

0 =ki(hs) + 3 ka(hy, hy) + ks(hy, hy, hy)

These equations can be solved either for the k in terms of h or vice versa. Solving for the h in terms of
the k gives the same result as the recursion method. To do this write

k](hl) =1
ky(hy) = - ka(hy, hy)

ki(hs) = - {3 ka(hy, hy) + ks(hy, hy, hy)}

From which
h = kM(x)
hy = - kM(x) ko(hy, hy)

hy = - k(%) {3 ko(hy, hy) + ks(hy, hy, hy)}

These determine the h recursively. The same result is found from reversion writing

o0
y =k - k(X 1 k(y, ¥, y)
=2 r!

and substituting with unknown h,
o0

y = 2 1 hy(x, x, ..x)

n=1 n!
resulting in the recursive equations for the kernels h:

Discussion of convergence by majorant series is similar to the scalar case of Appendix 1.
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4.6 Solution of vector differential equations

Equations of the type

Lp)y®+e{y®) = x(®)

Between vectors x(t) and y(t) can be solved by the same method as in the scalar case previously
considered. L() will be a matrix differential operator which, when stable, can be inverted to give
a matrix impulse response function h() and the equation converted to the nonlinear integral form
on the infinite time interval as

y () = [ het) x(t)dt - ] h(e-t) g{y(t)}dt

The multilinear operator form of the procedure was given by Halme et al. For this it is
convenient to redefine the variables x and y to represent the vectors x(t), y(t) over the appropriate
time interval, e.g. (-0, ). Then the equation can be written in the form

y =h(x) -ho g(y)
The solution developed by the reversion technique. The comparison equation is again
Y=HX+HGX)
Here H will exceed the norm of the matrix h() i.e.
Hmax | 2 [hy(t-t)] dt
j i

If (X', Y") is the turning values of the comparison equation the reverted form of the equation
gives a contraction map for ||X|| < X", (Halme et al 1971).

The state-space equation: With a little modification the reversion method also extends to the
state-space equation written in the usual vector notation as

dx = f(x, v)
dt

where X 1s the state-vector and u the control vector and f is assumed analytic in these variables.
In the neighbourhood of a stable point taken at x=0 the linear term in f(x,u) can be separated out

and the equation written

dx = Ax +g(x, v)
dt

where A is a stable Hurwitz matrix and g(x, u) contains no linear terms in Xx.

Reference: Halme, Orava & Blomberg, Int. J. sys. Sci 1971
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Then on the infinite interval the equation can be reverted to the integral form
x(t) =] h(7) g(x(t-1), u(t-1) de
where h() will be the exponential matrix
h(t) =exp At

An explicit solution can be given of the solution found by iteration if multilinear notation is used.
To prove convergence within a certain range the comparison equation can be formed

X=HGX,U)
where H > ||h()|| and G(X, U) majorizes g(x, u). The determination of a range of convergence for

values ||x]| <X, |ly|| <Y is made possible by the use of Hille's theorem -for details see the
references in the footnote below

The bilinear equation on the infinite time interval: The procedure is especially simple for the
multidimensional bilinear equation

r T S T
dxi(t) = agx®) + ) b u® + Y, Y cijxX® wt) i=1,2....,n
dt j=i k=1 i=1 k=1

On inverting the linear terms in x it becomes a nonlinear integral equation which in multilinear
form is

x = hbu + he(u, x))
where h is the linear integral operator, b is a linear matrix operation and c(., .) is a bilinear
operator. The solution may be immediately be generated as an infinite series by iteration. The
comparison equation is

X =HBU + HCXU
where A, B, C exceed the norms of operators a, b, c. Solved for X this is

X =HBU/(1 - HCU)
which for U < 1/HC generates the convergent majorant series

X =HBU{1 + HCU + (HCU)* + ...}

So the solution of the bilinear equation on the infinite interval is valid if |ju|| < 1/HC

References: Hille's theorem, described in Appendix 1, was originally applied to the state-space problem
by Kielkiewicz: Bull. Acad. Pol. Sci., 1969. For a detailed derivation of the results see the writer's papers
in Comptes Rendus Acad. Sci. Paris' 1980 and Proc IEE 1981. On the bilinear equation Bruni c., di Pillo,
Koch: Ric. Autom. 1971
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Chapter S

TRANSIENT RESPONSE

5.1 Association of variables

One method for calculating transient response referred to in the literature is the method of
association of variables due to George (1959). It is as follows. Suppose we wish to find the
response of a Volterra system with kernels hy(.) to an input x(t) having Laplace transform X(s).
The input will typically be a delta function, step function, ramp function etc. To evaluate the nth
order term of the Volterra series a function yy(t;',...., tp') of n time variables ty, ..., t, is defined by

o0 00 o0
Valty o t) = 1 1 o T (-1, o ta - 1) X(E) o Xt Aty .. dty
-00 00 =00

Since yp(ty, ..., ty) is a convolution it has multidimensional transform
Yn(S1, «ees Sn) = Hn(S1, «ovvs Sn) X(S1), ..., X(Sp)

The term yp(t) is obtained from yy(ty, ...., t,) by putting t; = t, = ...= t,=t.
In principle there are two methods by which y,(t) could be calculated.

(a) Firstly there is the direct calculation of inverse transform

Vot ceos tn) =_1 I ,[ Yn(S1, ..os Sn) €Xp (S1 11 + ... + 8y ty) dsy ... dsp
@2ni)" C

Then there is put t; =t, = ... = t, =t. This method is not normally possible as it involves
inversion of an n-dimensional transformation.

(b) Secondly it is possible to proceed as follows
va() = yn(t, ..., 1)

= 1 I I Yn(S1, oo, Sn) €Xp (81 + ... +85) t dsy ... dsy
2ni)" C

= 1 [ etYq(s)ds
(2mi)

where Y,(s), called the associated transform, is

Yas) = 1§ Ya(st, s s) dsy ... dsp
QCri)™ s;+..+s,=s

Ref: George: Continuous nonlinear systems. D.Sc. thesis MIT 1959: www.dspace.mit.edu.
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These two possible ways of calculating yy,(t) from Yy(sy, ...., Sy) are shown in the diagram below.

Inverse n-dimensional Laplace transform

Yn(sl, esees Srl) > yl’l(tla ceves tn)
l |
| Association |
| of variables | ti=..=th=1t
| I
Ya(s) > Ya(t)

Inverse 1-dimensional Laplace transformation

Fig. Nlustrating the process of
association of variables.

The process of going from Yy(sy, ..., Sn) to Yu(s) is called association of variables and Y, (s) is
called the associated transform of Yy(sy, ..., Sn)

The basic idea of the method of George can be explained for n = 2 as follows. Suppose Ya(s1, $2)
has the form

Ya(s1, s2) = Ma(sy + s2) G(s1) K(s2)

Then the associated transform is

Yas) = 1 | [ Ya(si, s2) dsi dss

21 s +s;=3

= Mys) 1L | | G(sp)K(sy) ds; dsa

27|:i S T8 =5

The integral represents a convolution of G() and K() which corresponds to multiplication in the
time domain .Using this fact, the integral may be evaluated.

Suppose, in the simplest case, G(), K() may be put into partial fraction form

Ge=Y A Ke=Y_B.

s+P s+v
Then
g®) = XA,  gt) = XBe"
and so
g k(®) = L X ABe O
Consequently,

1 | Joes)K)dsids, =YY AB .
27 s;+s,=s s+PR+y



To summarize, with Y(s;, s2) expressed as

Ya(s1, s2) = M(s1 +s2) G(s1) K(s2) = M(s1+52) Q. D, AB

1 +B) G2+

it is possible to pass immediately to the associated transform which is

Ya(s, %) = M(s) ., __AB .
(stB+v)

More generally, with a partial fraction decomposition

Gs)=) _A, K@) =) B.
(s1+B)" (s2+7)"
there is found

Ya(s1,82) = M(s) 2 2, (m+n-2)! AB |
(m-D!(n-1)! (S+B+Y)m+n_1

Lubbock & Bansal (1969) compiled an extensive table of multidimensional transforms to

facilitate such calculations.
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When there are more than two variables to be associated a method has been described by Chen &

Chiu (1973). The same rules are used to associate the variables two at a time the others being
held constant, e¢.g. with n variables sy, sy, ..., s, we first associate s,.; with s, the other values s;,
S2, ..., Sp2 being treated as constant. The new variable which replaces s,.; and s, may then be
called sp.;. The number of variables has now been reduced by one and the process should be

repeated until only one variable remains.

Refs: Lubbock & Bansal: Proc. IEE, 1969, vol. 116, pp 2075-2081.
Chen & Chiu: J. Syst. Sci. Jul. 1973, vol 14, no 4, pp 647-664
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5.2 Example: Step response of the phase-locked loop

The analysis of a phase-locked loop using multidimensional transforms was made by George
(1959) and Van Trees (1964) and was one of the first applications of the method of association
of variables..

As previously described, the forward loop operator consists of a cascade of an instantaneous
nonlinearity and an integrator. It has transforms to order five of

Gi(s) = K
S

Ga(sp,se,83) =-K__ 1 .
6 (S] + 5+ S3)

Gs(s1, .or85) = K 1.
120 (Sl +...+Ss

The corresponding closed-loop operator is found to have transforms to third order of

Hi(s) = K.
s+K
Hz(s1, s2,83) = K . 1 .

6 (K+s +s+s3) (K+s)(K+sy)(K+ss

Step response: The input is A1(t) (A constant) with Laplace transform = A/s The output is found
by association of variables from

Yis)=_K . A=A-A . ->AI1{# (1 -exp(-Kt))
s+K s s s+K

Yi(s1, 52, 83) = - KA’ 1 :
6 (K+s+s3+s3

->-KA®. 1 .
6 (s+K)(s+3K)

> A?J (e-Kt _ 6-3Kt).1(t)
12

To this approximation the step response is consequently

1(t) {A(l - exp(-Kt)) - A% (™ — ™).}
12
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5.3 Calculation of transients using a nonlinear Volterra integral equation
Consider the equation for transients
L) yO+gy@®) =0

where L(p) is a linear polynomial operator and g(y) is an analytic function containing no
constant or linear term

Lp)=p"+a,poi+... +a,

o0
gy) =@ tmx t..=1 ) gy
2! 31 n! n=2

The initial values of y and its first n-1 derivatives at t = 0 are assumed given.

The differential equation may be transformed to the equivalent integral equation using the same
method as before and written

y+ 1L g@y@®) =_L 0
L(p) L(p)

which is interpreted on the semi-infinite interval t > 0 as

t
y(®) + ({ h(t-t) g(y(t)) dt' = z(t)

h(.) being the impulse response of operator L(p) and z(t) a solution for t > 0 of the differential
equation

L{p) z(t) =0
Now since
h(0) =0, h'(0) =0, ..., h®P0)=0
it follows on differentiating the integral equation, that
¥(0) = 2(0), y'(0) = 2(0), ... , y"(0) = 2"(0),
Consequently it is seen that if z(.) satisfies the same initial conditions as y(.) then the integral

equation is equivalent to the differential equation for y. The integral equation may now be
written in the form

t
y(®) = z() - ({ h(t-t) g(y(t)) dt’

and solved by successive approximation.
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5.4 Operational solution of the nonlinear Volterra integral equation
Consider again the equation on the semi-infinite interval t > 0.

t
y(®) = z(® - oI h(t - t) g(y(t)) dt'

where h(.) and g() are as before. The equation can be solved by Laplace transform using the
following method due to Pipes (1965). Laplace transformation Ls gives

Y(s) = Z(s) - H(s) 2 L g Ls{y(®")

n=2 n!

where Y(s), Z(s), H(s) are the transforms of y(t), z(t), h(t) respectively. The method of
successive approximation is applied to this equation using the recurrence equation

Yi(s) = Z(s)

o0
Yuei(8) = Z(s) - H(s) X, 1gnLs{ym®"} m=1,2,..
n=2 n!
The computation proceeds

L L
Yul(s) = Ym®) = Yu®" — Ymu(s) —
For low order approximation use may be made of the following table quoted from Pipe’s book.

(A similar table is found also in the book of Rugh). For higher order approximation the method is
in a form suitable for computer algebra.

Table for Pipe’s Method
Fs). L{L fs))2 L{L 1F(s)}3
A A% A3
s+a s+2a s+ 3a
A @n-2)! AZ% (Gn-3) A3
(s +a)l [n-1]2 (s + 22)20"] [(a- 113G + 3a) 302
A A%{_2s+a; . - 2} A3 3 - 2 5

32+als+a2 A{(52+2als+a2) (s +ay)} A{s3+3als—9.a2 52+3als+(2a12+a2)}

A=a12—4a2

Reference: Pipes L.A. Operational Methods in Nonlinear Mechanics.
Reprinted New York 1965 (Dover)
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Chapter 6

SINUSOIDAL INPUT

6.1 Response of an instantaneous nonlinearity to a sinusoid

It is convenient to consider first the sinusoidal response of an instantaneous analytic system.
So suppose the input-output relation is

y(® = fx®) =2+ fPx®) + P x@®)’ + £ x®’+...
2! 31

A constant term £© has been added on the right hand side because the output may have constant
(dc) contributions. Suppose the input is

x(t) = acos (ot +0) =% (A e + A* 1%

Here A is the complex amplitude ae'’ and asterisk denotes complex conjugate. Successive terms
in the series for f may be arranged in a triangular array as follows:

Constant (dc) term:
©
Linear term: ' .
(%) £ [e T A + AR ]
Quadratic term:

2iwt -2imt

120 (A fP[ e 2N A% +2AA% + 20T A%?
Cubic terms:

1730 () f [ A% + 2 ¢ P AZA* 4+ 2 ¢ T AAR? 4 310 A %3]
Here AA* may be replaced by a” and then a little rearrangement gives

Constant (dc) term:
©
Linear terms:
f(l) A eimt+ f(l)A* e-imt
2 2
Quadratic terms:

i(Z) A2 e 2imt " f(2) g2 + f_(z) A*Z e-zimt
21 2? 2? 21 2
Cubic terms:
i(3) A_3 e3icot n f_(3) A 2_12 e ot i(3) A* 2_12 e—imt + i(3) A*3 e_3imt
312° 21 227 21 2 2° 31

etc. The constant terms are in the centre, the positive powers of the exponential are to the left
and the negative powers, their conjugates, to the right.



If the process is continued, vertical summation gives the output in the form

2 ot . . . .
. +B3* e31(0t+B2* e21(1) +B1*elmt+B0+B1 el(ot+B2 eZlu)t+B3 e31(ot + .

0

2 B emio)t
m

m = -0
B.m here is defined as Bj,*. Alternatively the output can be written in real form as
iot 2imt micot
Bo+2Re[Bje +Bye" +..+Bpe  t...]

The complex coefficients B up to order 3 are found to be

Bo = {fo+Hha +fia'+ }
{ 1 2% 212t }

B, :A{f +f; &+ f5 at+.. )
2{1 211122 3121 2 }
=A{fHh +f 27+ £ att.. }

22 {21 311122 412124 }

By = A{fs + f5_ 2+ _f_a'+.}
2 (31 422 52120 )

The pattern of formation, as seen from these terms, leads to the general formula
0]
Bp=A" 20 f™90 g% 1 = A"y, m=..,-2-1,0,1,2, ...
2™ k=0 2% (m+k) k! 2™

where

ym=A"{f™ ] 422 ™D 1 o+ 2™D 1 o+ )
2"{  mlo! 2? (m+D 11 24 (m+2)! 2! }

Here the factors y, are real so that ., = ym. The response is
_ X()+2RC[A€KOX+A2 21o)tX2+ +Am ml(ntXm_i_.“]
2 2? 2™

_ xO+2Re [Q. e1m +¢) i +a§ eZl(cot+<p)x2+ +ann: em1(mt+q>)xm + ]
2 2 2

Since the ¥, are real the result can be written as.

o + 2 [a 31 cos(ot + @) +a” y; cos 2(wt + @) + ...+ a™ xm cos m(ot + @) + ..]

2 2? oM

54
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6.2 Response of a Volterra system to sinusoidal input

Let the input-output relation be

o0 o0 o0
y©) = ho+] htt) xt) dt + 1 [ [ ho(t-to, t-t) x(t;) x(t) dt;dty
-00 2! —0 -0
o0 o0

+ 1§ T T hstt-tit- ot - t5) X(t) X(&) X(ts) dt; dtp dts + ...

3! -0 -0 -0

A constant term hg has been added on the right hand side because the output may have constant
dc contributions. Suppose the input is as before,

x(t) = acos (wt+@) =% (Ae™ + A¥ ')

Here the complex amplitude ae'? and asterisk denotes complex conjugate. Substituting for x(t)
in the Volterra series and using the kernel multidimensional transforms H® (=h©®), H(s),
H(z)(sl, S2), ...etc, which are assumed symmetrical in their variables, successive terms are

Linear term:

) e A HOMw) +
N HY(-iw)]

Quadratic term:

12! )7 [ 2 A2 HP(o, i0)  + AA*H(io, -io)
e 29 A*2 O, -im) + AA*H(Ho, io)]
Cubic terms:

1731 (%) [ A’ Ho, i, i0)  +e ' 3A%A* HO (o, io, io)

e A¥3 4O, -ia, -io) + e " 3AA*? H)(io, -ie, -i0)]
Combining complex conjugates, these may be written in real form as

Linear term: .
2 Re [e "' AHO ()]

Quadratic term:

1/2! (%)* 2 Re [e 2

A?HP0, o) + a° H(ia, -io)]

Cubic terms:

1/3! (%)*2 Re [¢*"

A3 H® (o, io, i0) + 3 ¢ ot p 42 H®(Hio, io, io)]
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If terms up to 5™ order are taken into account, the result can be written as

Bo+2 Re [B; '+ B, e + . + Bs 2
where
Bo= {H? + 2H%o,-ie)+ a' HYo, i, -ie, -ie) }
22 22 2121

Bi= A {ﬂ(im) +a? H((0, -io, -io) + a* HY(0,i0.,io,-i0.- iw)}
2 110! 22 211 22 312!

B, = Az {ﬁ(im, i) + gz HY(w, i, io, -i@}
22 210! 22 3111

B;= A® {H0, 0, o) + a* HY(i0. ie, io, io, -io) }
23 310! 2 41 1!

Bs= A4 HY(o, io, io, i)
24 410!

Bs= A’ H%0, 0, io, ie, i®)
23 510!

The pattern of formation can be seen from these terms. Using symmetrized transforms, the nth
order contribution will contain terms of the type

] AR ATK 00t ) HO(, .. ie; -, ... io)

n! 2% @K ke e ke

where there are n-k plus and k minus signs for +i®, which can happen in n!/(n-k)! k! ways. This
will make a contribution to B, where m =n - 2k. Consequently,

o0
Bn=A" 2 o 1 . H™X(g, .., i0; -io, ...,-i0) = Ag Y say
2™ k=0 2% (m+k)! k! etk . k.. 2@
where
v = {H™(iw, i, ..io) + a° H™(i, io,..ie: io, -ie) +
m! 0! 2? (m+1)! 1!

a* H™ (i, io, ... o, ie, -io, - ie) +....}
24 (m+2)! 2! }

The mth negative harmonic correspondingly has complex amplitude B., = Bp*. Since By is
consequently real, the resulting response can be written

e8]
Z B miot _ iot 2imt miwmt +
m € = By+2Re[Bje +Bye +..+Bne vee]
m=-o0
= ¥y +2Re [a @+ xit+ 2 et o 1o+ .. +a" M@+ o) Yrtee.]

2 2? 2"
Since now the factors ¥, are complex no further simplification is possible.

Reference: This derivation is a simplified form of that of Mircea & Sinnreich (1969)
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6.3 Example

L) yt) + a2yt + a3 y®’+ = x(®)
21 31

The left hand side of the differential equation is interpreted as a Volterra series with transforms
KP(s)=1L(s), K®Gi,....sn) =2, forn>1

Application of the formula for finding pre-inverse give the inverse kernels as
Hi(s)=L(s)' = H(s) say

Ha(s1, s2) - ap H(s1 + s2) H(s1) H(s)
Hi(sy, $2, 83) = - H(sy + s2 + s3)H(s1) H(sy) H(s3){3a,” H(s; + s2) - a3}

Here all the terms of Hj(sy, s3) are symmetrical but for Hs(si, sz, s3) they are not since the term
3H(s; + s) should be interpreted as an abbreviation for the symmetrical form

H(sy +s3) + H(s3 + s1) + H(s; +52)

which must be used in the formula for the sinusoidal response. The rest of the terms are already
symmetrical in sj, sy, s3. The chi factors are found from the formulae

%= 8 H? (o, -io)
22

v = HY(w) + a* H®(-io. ie. i)
1ot 22 211
v = Hw, io)
210!
vs = H®w, io. in)
310!

They are in this case,

xo = a° a H(0) H(io) H(-io)

22
v = H(iw) -gj 1 H(io)’ H(-io){3a,* {HQ2io) + 2H(0)}- a3}
22 2
©= -2 HQ2io) H(io)’
2

v3= - 1 HBGin) H(in)’{3a,> HQiw) - a3}
6
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6.4 Example: Odd-order system

Consider the same equation but with odd nonlinearity up to the 5™ term.

L) y(© + ks y® + ksy@®’ + = x(t)
3! 5!

The formulae to be used are:

= g iw) + 3_12 (A, io, io) + 2_14 H%%0, io, io, -io, - io)

o 22 211 2? 3121
= H%o,io, iv) + a2 H(i, i, io, i®, -io)
310! 2? 4111
vs= H%w, o, ie, io, io)
51 0!

The values already found in the last example can be used for the terms not involving the 5™ order
kernel in the 2™ and 3™ equations. The kernels are:

H(l)(s) = Kl(s)'1 = H(s) say
H®(s1, 5, 83) = H(s1 + $ + s3) ks H(sy) H(ss) H(s3)

H®(s1, s2, 83, 84, 85) = H(s + 85 + 83 + 84 + s5)H(s1) H(s2) H(s3) H(s4) H(ss)
{10ks® H(s3*s4+ss) + Ks}

Here the kernels of the first two equations are symmetrical but in the third there occurs an
abbreviation 10 H(ss+s4+s5) which must be expanded into the different ways of choosing the

three s terms from sy, sy, S3, S4, Ss.

The 10 possible partitions of s, S5, S3, 84, S5 0ccurring in the formula for Hs() are

S1 S S3 + s4 + S5 S> Sq S + 83 + 85
S1 S3 Sp t+ 84 + 85 Sz S5 S + 83 + 84
S1 Sq Sy + s3 + S5 S3 Sq S T+ s + S5
S1 S5 S + 83 + 84 S3 Ss S1 + s + 84
S S3 S + 84 + S5 Sq S5 S| + s + 83

Putting 2 values (e.g. s1, s2) equal to -i® and the other 3 equal to iw there is found:
1 term of the type S]=-1®, S;= -l®, S3 + S4 + S5 = 3iw
6 terms of the type  s;=-l®, s3= i®, s + 84 + S5 = i®
3terms of thetype s3=i, s4= i, s + S + 85 = -i®

S0
H(S)(im, io, io, -io, -io) =

H(io) H(io)* H(-in)*{ks* (H(3io) + 6 H(io) + 3 H(<i®)) +ks}



Putting 1 value -i® and 4 values i there is found
4 terms of the type  s;=-i0, $;= i®, $3 + s4 + 85 = 3iw
6 terms of the type S;= 1o, $3= 1®, S + S4 + S5 = 1®
giving
H(S)(im, io, 1o, 1o, -lo) =
H(3io) H(io)* H(-io){ks* (4H(3in) + 6H(in)) + ks}
Further, using symmetry,
H%% o, io, io, ie, io) = H(5io) H(io)® {10ks* HGio) + ks}
The chi factors are then given by the formulae:

n= HYw)+ 2’ H¥¢0. i, ie) + a* HO(o, io, io, -io, - io)

1ot 22 211 22 3121
1= H%w.io.i0) + 2" HY(o. e, io. o, -ie)
31 0! 2 4111
= H®(, i, io, io, io)

510!
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6.5 Volterra system response to a sum of sinusoids (Mircea-Sinnreich formula)
A general formula was found by Mircea and Sinnreich (1969) for the response of a Volterra

system to a sum of sinusoids. It is briefly given here in slightly modified form and notation.
The previous formulae for single input are special cases.

Let the input be
N N
x(t) = 2 ap, cos (wpt + @p) =% > (Ape opt 1 Ap* e-ia)pt)
p=1 p=1

where o, p =1, 2, ... N are incommeasurable frequencies and
Ap = ap exp 1@,
On writing A., = Ap*, ., = -0, the input may be written

N

x(t) = Y% Y Apelopt
=N

On substitution of x(t) into the Volterra series the output can be written as

y(t) =By +2 Re (E 2 Bmy,...,my exp i(mj®; + mym; + ...+ myon) )
ml,..., mN

summed over all positive zero and negative integers. The B are complex given by

_ m, m
Bmy,...my = A; ' . AN Y ymy,...,my

m m

2! 2N

2r 2r,

Ay = 24 eee 2a AP AN

I I'N r1!(m1+r1)! v rN!(mN+rN)!

Hinor(1001, veeey 1015 =101, coy =1001; savene 10N, ey 10ON; -10ON, ooy ~10N)

my I m;+ry N

The output consequently contains harmonics, combination and difference frequencies.

Mircea and Sinnreich also considered the limiting case of an infinite number of sinusoids which
leads to the formula for spectrum resulting from an input Gaussian process (see later).

Reference: Mircea A & Sinnreich H: Distortion noise in frequency dependent networks. Proc.IRE 116
1969 1644-1648. See also Bedrosian & Rice (1969).
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Chapter 7

GAUSSIAN INPUT AND HERMITE EXPANSIONS

7.1 Instantaneous nonlinear operation with Gaussian input

Calculation of higher order statistics of the output from a nonlinear system with Gaussian input
is extremely complicated. What will be done here is to calculate the second order statistics which
is not too difficult. These second order statistics are of interest as they give the output spectrum.
The calculation is similar for both instantaneous and Volterra systems which will be emphasized
by similar layout of the calculation.

The system: The input/output relation will be assumed analytic as

y=fx)=fh +Hx+HX+Hx +..
21 3!

Input x(t) is assumed to be a stationary Gaussian process having zero mean, variance o’
autocorrelation function R« (t) and spectral density Oy(®).

Output mean value: The probability density function of x at any time is

p(x) = _1  exp(-x*1269)
\VQ2n) o

For this probability density moments of odd order are zero and of even order are:

E{™ = (2n-1)(2n-3)..3.1 6*" = (2n)! o™
2" n!

So the mean value of output is found immediately as

E{y}=E{fx)}=fo +H "+ fuc' +...
202 2122

Output auto-correlation: The output correlation is

E{y(®) y)} = E{fxOfx(t)} = 2 X fu fa BH"O x"0)}

m n m!n!

Here odd-order moments (m+n odd) are zero so m + n can be assumed even. Then E {x"(t)
x"(t")} will be the sum of products of second order moments with say

(a) s cross-pairs between variables x(t) and x(t'),
(b) p pairings of variables x(t) among themselves,
(c) q pairings of variables x(t') among themselves.



In this case, m =2p + s, n = 2q + s and the number of terms can be shown to be

m!n! .
2p! 2q! s!

On evaluating possibilities it is found that the right hand side can be written as the sum of
contributions from s =0 and s > 0 as

o + X 1 g2 B{x()x()}’

s=1 s!

where g is the output mean found above and g; for s > 0 is

o0
g2s= 2 fs+2pgzp
p=0 p! 2F

Putting © =t — t' output autocorrelation function is consequently

R,y (0= B{y() yt)}- By} = 2 1 g2 Ro*()
s=1 s!

The relation with Hermite polynomials: Hermite polynomials* of degrees 0, 1, 2, 3,.. etc
associated with Gaussian probability density are

heo(x) =1, hei(x) =X, hey(x) = x% — 02, hes(x) = x> — 367 X, ... etc
Conversely, powers of x may be expressed in terms of the Hermite polynomials as
1= heg(x), x = hei(x), X = hex(x) + 6> heg(x), x> = hes(x) + 30° hey(x), ... etc
If these relations are substituted into the power series for f(x) there is found the series

y = f(x) = goheo(x) + g1 hei(x) + g2 hex(x) + g3 hes(x) + ...
2! 3!
where the g's given by.

gs= fs +fs+292+ £s+4§4+--- s=0,1,2,...
2 21 2

which are the same as the coeffcients g found in the previous calculation. So the previous
coefficients g are identified as coefficients in a Hermite polynomial expansion of the
input/output function ().

* Hermite polynomials and their properties are described in detail in appendix 4.



7.2 Direct use of Hermite polynomials

The coefficients g in the expansion of a function into a Hermite series

f(x)= D, go hea(x)

n=0 n!
may be found directly by using the orthogonality property

o0

| hem(x) hey(x) p(x) dx = 0 m#n

n
-00 =nlo2,m=n

Statistically interpreted this means that polynomials of different degrees are uncorrelated. A
coefficient g, is found by multiplication by hey(x) p(x) and integration giving

| £(x) hem(x) p(x) dx = [ hem(x) D, gn hen(X) p(x) dx

-00 -00 n=0 n!
= D g | hen(®) hea(®) p(x) dx

n=0 n! -o0
= gno2™®
So
gn= 1 | f(x) hen(x) p(x) dx
o2 oo

If f(x) has an mth derivative f™(x) this expression may be put into a very convenient form.
Integration by parts shows g, to be

gn = | fx) p(x) dx = E{f™(x)}, m=0,1,2, ...

In particular, g is the mean value of f(x) and g; is the average gradient:

20 =E{y} = E{f®)}, g1 =E{f'()}

63
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Output autocorrelation: The output autocorrelation function may be found by using the
generalized orthogonality property

I | hem(x1) hea(x2) p(x1, X2; 7) dx; dx, = 0, m#n,
n! E(xlxz)z, m=n

N

Here p(x1, X2 ; T) is the joint probabilty density of two values x, x time 7 apart.
(see appendix 4 for derivation)

The covariance of the output is
o0 o0

E{f(x(t) fxt + 1)} = | | f(x)) f(x2) p(x1, %23 ©) dx; dxo

-00 =00

On substituting the expansion for f(x) in terms of Hermite polynomial and using the generalized
orthogonality property there follows the value

o o0 o0

E{f(x(®) fxt+ 1)} =Y, Y. gmgs | ... ] hem(x1) hea(xs) p(x1, X3 7) dx; dxy

- m=0n=0 m! n! -© -0
o
—_ Z 2 n
= 20" Ru(7)
n=0 n!

Consequently since the first term gy is the mean value E(y)

Ry (1) = E (f(x(®) fx(t + 1)) —E(y)

o)
= Z gnz R (0"
n=1 n!

Cross-correlation function: Easy extension of this calculation gives the cross-correlation
function of input with output as

Riy (1) = g1 R(7)

This is known as Bussgang's result: output autocorrelation is proportional to input auto-
correlation®. The above calculation identifies the constant of proportionality as the average
gradient of f(x).

e8]

g1 = [ fx) xp(x) dx = BEx{f(x) hea()} = Ex{f'(x)}

-00

* Bussgang: Res. Lab. Electron. MIT Tech. Rep. 216, 1952
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7.3 The output spectrum:

The Wiener-Khinchin theorem gives the relation between any autocorrelation function R(t) and
the corresponding spectral density ®(w) as

o0
R(@®)= 1 | ®O()expintdo
27 -0
Thete follows
e Ol ¢}
R)= 1 [ | ®w,) P, exp i(w, + )t do,do,
(27)? -00 -0

=1 [ { I@(wl) D(w - w,) dw, } exp iwt do

(2n)* -0 -0

L.e. to multiplication of R corresponds convolution of @

In general,
o0 o0 o0}
R'y= 1 | [... [®() O@,) ... D(wy)
n)" -0 -0 -0 exp{(0;+®; ... to,) 1}dodw; ... do,
(e 0]
= 1 [ ™) expiot do
21 -0
where
=1 | .. | &) d0)... (0w, do;doy...do,

)" © 1+ ot ... Ao= @
representing the n fold convolution of ® with a constant multiplier, i.e.

R"(1) has Fourier transform _1__ ®*®* ._*® (o) = ®™(v)

m)™  ntimes

The series for output autocorrelation then transforms to a corresponding series in the spectra:

o0
D) = Y. g Bu™(0)
n=1 n!
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7.4 Narrow-band input
The significance of the expression for output spectrum becomes clearer when the input is
narrow-band, concentrated near a frequency wo say. In this case the convoluted spectra resulting
from Fourier transformation of the powers of the autocorrelation function are concentrated near

to frequencies 0, = @y, + 2w, = 3y, .. etc similarly to a nonlinearly transformed sinusoid.

A narrow-band input can be represented by a sinusoid with slowly varying amplitude and phase
in the form

x(t) = A(t) cos (ot + (1))
with autocorrelation function given by
Ryx (1) = Raa (1) cos mpt

(Rice 1944-45) On taking Fourier transforms follows

0
Oy (@) = | Raa (1) cos oot exp (-iot) do
-00
o0
= 1 [ Raa (@) {exp - i(® — o) t + exp - i(® + @) t} do
-00

= 2 {Daa(0 - 0g) + Daa(® + mo)}

Since A(t) is a slowly-varying function of t, @4 4(®) will have a peak concentrated near to @ = 0.
So there result peaks to Oy (®) near to @ = % .

If n > 1 then similarly

Rux (0)" = Raa (1) cos" wpt = ()" Raa ()" (exp iwot + exp -imgt)"

= Raa (7)"{exp inwot + n exp i(n-2)wot + n(n-1) exp i(n— 4)wet +.... + exp -inwot}
p

1.2
On transformation there results
0
O (@) = | Raa () exp (-iot) do
= ; 1 l{cﬂ:i‘")(m— nawg) + n ax™ (0— (n-2)ag) + g&%) O™ (0—(n-4)w0)

ot ©an™ (0 + noo)}
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Consequently O™ (@) has peaks near to + nay,  (n-2)ao, ...etc and the ratio of the heights of
these peaks is given by binomial coefficients. Convolution has a smoothing effect so that the peaks
progressively become less peaked at higher frequencies and, since they arise from repeated
convolution, tend towards a Gaussian form. The general effect is shown in the figures below.

D(0) = D)

0P ()

2Wg

-3Jw, - Wo Wy AW,

Fig. Convoluted Spectra -
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7.5 A Volterra system with Gaussian input

An analogous method to that for an instantaneous relation applies to the passage of Gaussian
noise through a Volterra system. The Volterra system will be taken in time-invariant form with
symmetric kernels which are essential in this calculation.

o0 o0 o0 00

y©) = 21 | [ o Thy(t-tiye, t-to) x(t1) ... x(t) dty ... dt,

n=1 n!-00-00 -0

The input Gaussian process x(t), -oo <t < oo will be assumed to be stationary with zero mean and
autocorrelation function R(.).

Output mean value: Using known values of Gaussian moments there follows

E{y®} =
o0 o0 O e 0}

21 T Thaptty e t-tyy)

p=0 (2p)' -00 -00 -00 R(ts+1 — tS+2) R(ts+2p-1 — tS+2p) dt5+1, ...,.dts +2p

Output correlation: On taking expectation of multiplied output values at different times there
follows

E{y® yt)} =
202 1 T Bat-ty e ttw) ha(t - ', oo €t
m n m!n! -0 -00

E{x(t)x(t,)... x(tm) X(t')X(Y)... X(t')}dt; ..o Aty dt' ... Aty

Odd-order cross-moments (m+n odd) are zero so m + n may be supposed even. Then

E {x(t)x(ty)... x(tm) x(t')x(t)... x(t')}
will be the sum of all (m + n)! possible products of second order moments with say

(a) s cross-pairs between variables x(t,), x(t,),... X(t) and x(t";), x(t),.., X(t"),

(b) p pairings of variables x(t,), x(t,),..., X(t,) among themselves,

(c) q pairings of variables x(t'}), x(t), ..., x(t',) among themselves.
For this it is necessary that

m=2p+s, n=2q+s
The choice of the s values for cross-pairing from x(t,), x(t,),... X(t,) can be done in m!/(2p)!s!
possible ways and similarly the choice of s values for cross-pairing from x(t')), x(t%),.., x(t',) can

be done in n!/(2q)!s! ways. When the two sets of s values are chosen they can be cross-paired in
s! ways.
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So the total number of possibilities is

s! 2p+s)! 2g+s)! = m!'n! .
Zp)!'s! (2q)! s! Cp)! 2q)! s!

By symmetry all these terms will all make the same contribution to the integral. So it is possible
to concentrate on one of them when x(t,), x(t,),... x(t;) and x(t',), x(t"),.., X(t';) are paired in that
order so giving a term E {x(t,) x(t')}E{x(t,) x(t,)}... E{x(t,) x(t')}. This term is then multiplied
by cross-moments resulting from the 2p remaining x(t) paired among themselves and the 2q
remaining x(t') among themselves. These cross-moments will occur in all possible combinations

and can be reconstituted as E{x(ts+,) ... X(ts+20)} and E{x(t's+1) ... X(t's429)} respectively. So the

complete symmetry of the kernels makes it possible to write the cross-moment E{y(t) y(t)} as
the sum of terms

1 T ] dty e dty dty . dty,
2p)! (2q)) s!
h2p+s(t - tl, cees t- t2p+s) h2q+s(t'; t- t'l, cees t' -t'2q+s)
E{x(ts+1) ... X(terp) JE{X(t's+1) ... X529}
E{x(t) x(t')}E{x(t,) x(t)}... E{x(t) x(t)}

This expression must be summed over all non-negative integral values of s, p and q. On
summing first over p and q arise identical sums

(i) for s = 0 the value go> where go = E{y}
(i) fors=1, 2, 3, ... the value

gt—t o t—t) =1 oo [ dty e dts dt, ... dt's

[0.0] o0 0
2 1 Jo Theiaptty e t-tors)
p=0 (2p)! -0 -o0 E{x(tsr) ... X(tsi2p)} dtsri, «eredts+2p

Output autocorrelation: On summation with respect to s there is finally found the autocorrelation
function of the output

Ry(t-t) = Ely(®) y)] - Ely®©F =

= 201 o Tttt -t g -t ot - £

s=1s! -0 -0 R(ti-t1) ...R(t-ts)dt ... dt; dt ... dty

Ref : Bedrosian & Rice Proc IEEE 1971.
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7.6 Multidimensional Hermite polynomials and Hermite functional expansion

For an instantaneous nonlinearity it was seen that the passage of a Gaussian process is most
conveniently analysed by using Hermite polynomials. The same is true for the passage through a
Volterra system except that in this case a functional Hermite polynomials must be used. These
are based on the multidimensional Hermite polynomials for N variables described in appendix 4

For a stationary Gaussian stochastic process with zero mean and auto-correlation function R(, )
the Hermite polynomial functionals are

he©@(x) =1

heW(x; t) = x(t)

he®@(x; t1, ) = x(t1) x(t2) - R(t2 - t1)

he®(x; 1, to, t3) = x(t)) X(t2) X(t3)- x(t1) R(ts - 1) - x(t2) R(t; - t3) - x(t3) R(tz - 1)

etc. The general term follows from the finite dimensional case (appendix 4).
The inverse formulae are similar but with positive signs:

x(t) = he(l)(x; 1)
x()x(t)  =he®(x;ti, ) + Rt - t1)
x(t1) x(t2) x(tz) = he®(x; ty, o, t3) +
R(t3 - to) he"(x; t)+R(t; - t3) he'V(x; )+R(t; - t1) he(x; 15)

etc. When this transformation is made to the Volterra series with symmetrical kernels
o0 00

21 ] gt -ty t- ) x(8) ... x(t) dy ... dt,

n=] n! -0 -

there results the Hermite series with kernels g.

o0 o0 e 0]
go + 21 | o Jan(t-tiy, t-t) he®0x th, ... to) dt ... dt,
n=1 n! -0 -0

The kernels g are related to the kernels h by the same formulae as were found before, gy being
the mean value of output.y(t) given above and for s >0,

gs(t - tl: ceey t = ts) =

o0 o0 o0
2 l_ I ces J.hs+2p(t" tl, ..-,t'.ts+2p)
p:() (2p)' -00 =00 R(tS+1 — ts+2) R(ts+2p_1 - ts+2p) dts+1, ---,-dts+2p

The previous kernels g are consequently identified as kernels of a Hermite expansion of the
input/output relation.



~ From the relation between products of the inputs x and the Hermite polynomials the inverse
formulae are easily found, it only being necessary to change the sign of R in this expression

hs(t - tl, ceey t - ts) =

o0 (e 0] o0
2 -1 i ,[ I gs+2p(t' t., ...,t-.t3+2p)
p:() (Zp)! -00 -00 R(ts+1 - ts+2) ese R(ts+2p_1 - ts+2p) dts+1’ ...’.dts+ 2p

The output autocorrelation function: The previously derived formula for the output
autocorrelation function now follows immediately from the orthogonality property of the
Hermite functional polynomials

Two Hermite functional polynomials of different degrees m and n are orthogonal:
E {he™x; 1, .... tm) he®™(x: t, .... t)} = 0, m/=n
while for the same degree n:

E{he®x; ty, ... t)) he®(x: ty', .o t)} = D, R(tp -t)...R(t'p -t,)

perms {p, P2, --- Pn}

Here the sum on the right is over n! permutations {pj, p2, ... pn} of the set {1, 2, ..., n}
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Applying these formulae to the shifted product y(t) y(t') of two Hermite functional series there is

found
E [y(®) y(t] =

o0
g2 + 2 1 T gt -ty s t-t0) gt - th, ooy £ - 1)
=1 sl R(t)-t) ... R((s-t)dt, dtdt, dt

from which the formula for the output autocorrelation function follows as before.

It should finally be remarked that, as in the scalar case previously considered, the Hermite
functional expansion is valid for functionals of finite variance.

Reference: This type of Hermite functional polynomial expansion was introduced by the writer in the

report 'Use of functionals ..." in 1955 and later. When the input is white Gaussian noise it includes as a

special case the so-called Wiener functionals described in the following chapter.
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7.7 Relation between transforms of Volterra and Hermite kernels
On introducing the Fourier transforms of the kernels hy(.), go(.), n = 1,2, ...

[ 2NN o]

Hy(ioy,.., iop) = /... fhn(’cl,.xn) exp i(o0;T1+..+ ©yTy) d1y....dTy
~-00 ~00
o0 e 0]
Gu(i0y,.., i0n) = [ ... [ gn(T1,..T0) exp (1 T1+..+ OpTy) dry....dT,
=00 -0

the relations between the two sets of kernels become (changing p to k)

(a) Volterra to Hermite:

Go= Hp+
o0 o0 00
> 1 . HaGor, - ior..., o, - iof) @@r) . O dor'... doy
k=0 2°k! -0 -0 on on

Gn(wiy,...,0i) = Hy(iog, ..., ioy) +

o0 o0 0
S 1T T Hea @m0, o)., o, i)
k=0 25kl -0 -o0 D(@)) ... D(wy) doy'... doy
2n 2
(b) Hermite to Volterra:
Ho= Go+
[0 0] o0 o0
> 0 [ Gadior, - ior..., oy, - o) ©@) .. O doy'... doy
k=0 2k k! -0 -00 21 2n
Hn((l)il,...,(!)in) = Gn(iml, veey ia)n) +
o0 o0 (o 0]
Z g-lzk I IGn+2k(m1,...,mn, o, -io/,..., oy, -io' )
k=0 2k! -0 o0 D(@r) ... D(ey) doy'... doy

2n 21



7.8 The output spectrum

The previous equations relating input and output autocorrelations may be transformed into the
frequency domain giving corresponding relations between input and output spectra. Then on
introducing the inverse transform:

o0
R = 1 [ Dplo)expiot do
21 -0

into terms on the right-hand side of the equations there is found, on settingt =t —t'

(a) for the term withn =1

00
I Gn(io)? Dyl @) exp iot do
-00

(b) for the terms withn=2, 3, ...

o0 o0

11 1Gaio, .., i0n) D) ... Orel(®n) exp (01Tt + onty) dor, .don
n! (2n)" -0 -00

These last terms may be written in the form

(e 0]
1 1 j{...} exp ot do
n! 2n)" -0

where the expression in the bracket is

11 o (16D Gy, .., ion)P Ol@)) ...Du(n) doy, .. doy
n! 2n)" o, +.+t o, =0

On substituting terms (), (b) into the expression for output autocorrelation it becomes
e 8]

Ry(t) = I Dyy(®) exp ioT do

-00
which identifies the output spectral density as
Oyy(@) = [Gi(io) Pu(®) +

0

> 11 o TG, ., o) Ou(@) Oulon) dor, .., do,
=0 n! 20)"" o, +.+0, = ®
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Chapter 8

WHITE NOISE INPUT

8.1 The use of a Hermite expansion for white noise input

We now consider the response of Volterra systems to white noise which was the first application
of Volterra functional series in engineering with the initial paper by Wiener in 1942.

The white noise input process denoted by w(t), -0 <t <o, will be assumed to have zero mean
value and power N If this white noise is input to a Volterra system there result terms of the type:

o0 O o0
[ o ] byt tety,..., t-t0) W(t) W(t) ...w(ty) dt; dt, ... dt,
-00 -0 -0

Here arises immediately the question as to what is the correct interpretation of this expression in
view of the fact that there occur powers of white noise whose meaning is unclear when certain of
the t;, t5,..., t, are equal i.e. down the 'diagonals' of the n-dimensional region of integration. This
question is clarified by use of the Hermite form which is now considered

Hermite polynomial functionals for white Gaussian noise: For a stationary Gaussian white noise
process x(t), -co < t < oo having zero mean and noise power N, the autocorrelation function is

R(1) = N §(v)

The corresponding Hermite functionals follow from the values given in the last chapter as

he@(x) =1

he(x; t) = x(t)

he®(x; 11, 1) = x(t;) x(t2) - N 8(t - t;)

he®(x; t, b, t3) = x(th) X(t2) x(t3) + x(t2) N 8(ts - to) - x(t2) N 8(t; - t3) - x(t3) N 8(to — t1)

The formulae inverse to these have a similar form and are:
x(t) =he(x; t)
x(t1) X(t2) =he¥(x; 1, t) + N 8(tz - t)

x(t1) x(t2) x(t3) = he®(x; 11, t5, t3) + N 8(ts - t2) he(x; ;) + N 8(t; - t3) he(x; 1)
+N 8(ts - t;) heV(x; t3)
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When this transformation is made to the Volterra series considered above i.e.

201 T Thy (- tie, t-t) X(t) - X(tg) dt; ... dt

n=1 n!

there results the Hermite series with kernels g() i.e..

o0
201 T T et tie t-t) he™(x; i, .o to) dt; ... dty
n=1 n!

Here and below, the range of integration is understood as infinite. On first sight the Hermite form
of the expansion appears to involve delta functions which occur in the expressions for the he™()
but this is not really so since they are absorbed into the kernels. e.g. forn=2

[ Je(t-ti,t-t2) he®x; ti, ) dt; dt
= | g t-t1,t-t){x(t) x(t2) - N 8(tz - tp)}dt; dty
= [ Jet-t, t-t) x(t) x(t2) dt; dt
N Jg -1, t-)8(t - tp)}dt; dty
= [ [gat-t, t-t) x(t) x(t) dt; dta- N[ go (t - t1, t - t1) dty
= [ Jet-t, t-t) x(t) x(t) dty dtp - N [ g5 (¢, ) dt'
Similarly there is found
[T est-t1,t-to, t- 1) he®(x; t, b, t3) dt; di dts
= [ [ Jas(t-tn, t-t,t-t3) x(t) x(t) x(tz) dt; dtz dts
23N J [ g t-t, v, t) x(t) dty dt’

The last step assumes symmetric kernels. In the literature such formulae are ascribed to Wiener,
the kernels being described as Wiener kernels*.

* The connection with Hermite polynomial functionals as defined here did not occur in Wiener's 1958
book and so he did not explicitly define the Hermite kernels although these were mentioned in subsequent
literature.
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8.2 IMlustration: a LNL system with noise input.

With white noise input the LNL (linear-nonlinear-linear) system has the form below.

w X Yy z

— Hp) (— ) |—| k@ |—

Fig: A LNL system with noise input.

The initial linear filter with transfer function H(s) is a shaping filter acting on white noise w
giving Gaussian input to an instantaneous nonlinear element having input-output characteristic

y =1f(x)

This output then passes through another linear filter with transfer function K(s).
The Gaussian input x to the nonlinear element has variance

o0
o*= N | ht)dt
-00
The function f(.) relative to this input is then of the form
00
fx)= Y, 1 byheq(x)
n=0 n!

The Hermite polynomials on the right are the polynomials he,(X, 6) (appendix 4) They are now
expressible by Hermite functionals, e.g. hex(x) is

o0 0
x(t) - o = (| h(t-t) w(t') dt)? - N[ he)* dt
-00 -00
o0 o0
= [ | ht-t) ht=t ) {w(tDw(t2 ) - N 8(t2 -t1)}dt; dio
-00 -00
o0 o0
= [ h(tt;) h(t-t2) he®(x; t1, ) d t1 dty
-00 =00
In general there is found
o0 00 e 0]
hea®) = | | oo | h(tt)) h(tto)... h(t-ts) he®(x; th, toynnns t) dty dtz... dt
-00 -00 -0

On convoluting this system with the final linear filter it is seen that the input-output relation of
the system is a white noise Hermite functional series with nth order kernel

ba | k(tt) h(t't;) h(t-t) ... h(t-t,) dt

=00
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8.3 Definitions using integration with respect to the Wiener process

Wiener's approach did not use the concept of white noise and so was more rigorous mathematically.
Instead integrating with respect to white noise, he used Stieltjes integrals with respect to a one-
dimensional Brownian motion or 'Wiener process'. The Wiener process W(t) is integrated white
noise so white noise can be thought of intuitively as its (strictly non-exisiting) derivative There is
defined from some initial instant t:

t
W) = [ w(t) dt
to

Initially Wiener considered linear functionals of the process W(t), t € [0,T] of the type

T
[ k(e dw(o)
0

This linear functional will be a Gaussian variable of zero mean and mean square value

T
N? [ k(t)* dt
0

For this to be finite the function k(.) must be taken to be square integrable in the Lebesgue sense.
For such functions however, the above Stieltjes integral is not defined according to normal theory
which would require k(.) to be of bounded variation since W(.) is continous. So another way is used
to define the integral, sometimes known as the Paley-Wiener-Zygmund (PWZ) integral. First the
integral is defined for a step function approximation to k(t) based on regular subdivision of the
interval of integration as indicated in the figure below. The value taken in each interval is the mean
value of k(t) in that interval

2

-

]_T*

(0,0) (T,0)

Fig: Stepwise kernel approximation

Note: Actually Wiener in all his writings used the Wiener process in the form W(t, o) where o is a parameter
lying in the range 0 < o < 1. He had shown in 1930 that the Brownian motion paths can be uniquely specified
by such a parameter. Lebesgue integration with respect to this parameter gives expected (mean) values.
Nowadays it is the custom to omit the parameter as will be done here.
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If the number of subintervals is M, the mean value of k() in the nth subinterval I, is

k, = 1 Jk@)dt n=1,.,M

The value of the integral for this stepwise function is taken as
M
Sm =, ky AW
n=1

the sum being over M subintervals. With increasing M it can be shown the sequence Sy converges
in mean square as M — oo to a limit so defining the integral*.

The multidimensional Wiener integral: In his 1939 paper on turbulence 'The homogeneous chaos'
Wiener used multidimensional integrals of the form

T Tkt tay ooy ) AW () AW(E) ... dW(tn)

taken over a rectangular region. The implicit assumption was that such integrals could be defined in
a similar way to the one-dimensional linear case. However a significant difference occurs with the
multidimensional form** which Wiener appears to have been unaware of at the time as he did not
discuss it either then or later.

The difference may be explained in the two-dimensional case by considering the integral
TT
I T kty, t) dW(t)) dW(t)
00
extended over the square of side T as in the diagram below where, for the approximating integral,
both axes are divided into M subintervals of equal size.
(T, 0) (T, T)

I |
[ |

|
(0,0) (T, 0)

|l
[ |
||
I

Fig. Uniform partition for the definition
of a 2 dimensional Wiener integral.

* The Cauchy general principle of convergence for mean square convergence is satisfied.
** As observed by V Mandreker, Wiener's multidimensional integral was of a type later called the
Stratonovich integral. See: Notices Amer.Math.Soc.vol.42(6), 1995, p.668
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By the same method of definition as for the linear case, the integral would be defined as a mean
square limiting value of approximating sums taken over all cells.

D Ko AWp AW,

m n

This sum may be split up over the upper triangle, the diagonal, and the lower triangle.

D Ko AW AWy + 2D K AW AW+ D Y K AW AW,

m<n m=n m>n

Of special interest is the sum over the diagonal cells (m = n). In the normal definition of an integral
the contribution of these would tend to zero with decreasing mesh size since their total area tends to
zero and in the limit they approach the diagonal line. However for the Wiener integral this is not
so; the diagonal terms summing to give a finite limiting value arising from their autocorrelation as
expressed by the equation

E (AW)’ = N At

where AW is the increment of the Wiener process in a time interval At. As a result the sum of the
diagonal elements tends in the limit to the value

T T
[k(t, t) N dt) = N[k, t) dt
0 0

It shows that the Wiener integral has quite different properties to ordinary integrals. The value of
the original integral is in consequence made up of 3 contributions from the upper triangle the
diagonal and the lower triangle.

' + I+ T1 vkt t) dWt) dW)

0<ti<tr<T O0=Zt;=t,<T 0<t,<t;<T

Similar behaviour is observed in Wiener integrals of higher dimension and the region of integration
has to be divided up in order to evaluate them.

* Apparently first pointed out by P Lévy (see Doob's book: Stochastic Processes 1953).
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8.4 The It6 integral

Based on such considerations the Wiener integral was redefined by It6 in 1951 as

T T Tk, tay ooy ta) dW(t) dW(L) ... dW(t)

The integral is taken over a open triangular or tetrahedral region. The kernel function k() being
assumed square integrable these integrals may be defined analogously to the one dimensional
case. Such integrals have the property not shared by the Wiener's form in that integrals of
different orders are orthogonal i.e. uncorrelated. Such a property is of central importance

By breaking up the region 0 <tj, t, ..., t, < T of integration into tetragonal subregions in the.
previous Wiener integral it can be shown that It6 and Hermite representations are equivalent; in
fact they differ only by a numerical factor:

at | § o | Kt by o, ) dW(E) dW() ... dW(tn)

O St1< ...< tnST

TT T
= I I _[ k(ty, to, ..., t) he(“)(w; t,to, ..., ty) dty dty ... dty
00 0

The Itd expansion corresponding to the Hermite expansion previously considered will consequently
not have the factorial multipliers

The verification in the 2 dimensional case is as follows. From above and using the symmetry of the
kemel,

TT TT T
] Kty 1) dW(t) dW(t) =2 | | k(ti, ty) dW(ty) dW(tp) + N [k, t) dt
00 0<t;<t<T 0

Rearranging and putting dW(t) = w(t) dt there follows

TT T
2 [ [ k(t, ) dW(t1) dW(t) =] [ k(ti, 1) dW(t) dW(t) - N [kt 1) dt
0<t<t,<T 00 0

TT

=] Jk(ty, ) {w(t)) w(ta) - N 8(t2 - t;)}dt;dt
00
TT

= I I k(tl, tz) he(z)(w; t1, tz) dt; dt,
00

Showing equivalence of the Hermite and It6 forms. Similar calculations exist for higher
dimensional integrals.

Reference: K 1t6: J. Math. Soc. Japan 1951
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Consider now a 3™ order Wiener integral

TTT
[T ke, to, 1) dW(t) dW(t) dW(ts)
000

The region 0 <ty, t3, t, < T must be subdivided into 6 (= 3!) tetrahedral regions of the type 0 <t;<
t;<t3 < T and 3 regions of the type 0 <t;<t,=t3 < T Followoing the same method as before,

TTT
F 1Tkt to, t3) dW(t) dW(t) dW(ts) =
000
61 | [k(ty, t2, t3) dW(t) dW(ty) dW(ts) + 3] | [k(ty, ta, tz) dW(t;) dW(t) dW(t3)
0<t1<t<t; <T 0<t;<tz=1:<T
The last integral is

[ 1Tkt t, £ dW(t) (N di)

0 §t1<t2= t3ST
Using white noise w there results in a similar way to case n = 2,

61 I T kit ta, t5) dW(t)) dW(t2) dW(t3) =

0<t;1<t,<t3 <T

TTT
=[ | [ kt1, ta, t3){w(t:) w(tz) w(ts) —3 N w(t;) 8(tz - t;)}dt; dt, dt
000
TTT
= [ | | Kt ta, t3) he®(w; t1, 1, t3) dty dt dt3
000
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8.5 Wiener's G-functionals

In 1958 Wiener published a book Nonlinear Problems of Random Theory' giving his version of
the theory. In doing so he corrected his earlier oversight regarding orthogonality. Calling the
method expansion by G-functionals he gave no description of the prior forms of the It6 and
Hermite expansion*. His form of the expansion was not new but his reputation in this field soon
led to this type of orthogonal expansion becoming known as the Wiener expansion..

He obtained his G-functionals by successive orthogonalization of the sequence
T TT TTT
k, [k) dW(), | Tk, t) dWt) dW), | [ [k, t, t") dW(E) dW(t) dW(E"), et
0 00 000

The first four G-functionals are easy to find as:

Go(ko, x(1)) = ko

Gk, x(1) = ) ka(t) dW(D)

T T
[ Ka(t, t) dW(t) dW(t') - N[ ko(t, t) dt
0

Ga(ka, x(t))

00
TTT TT

Ga(ks, x(©) =1 [ | ks(t, t', ") dW(t) dW(t) dW(t") - 3N [ [ ka(t, t, t') dt dW(t)
000 00

These are of course exactly the same as those which would be found by either the Hermite or It6
theory. Wiener's definition does not easily lead to an expression for the nth order G-functional.
A systems analysis restatement using white noise was made by Lee in 1964** who wrote the
equations in the form

o0
Gi(ky, x(t) = [ki(t-) x(11) dr
-00
o0 00 (0.0}
Goko, () = | [ka(t1, 1) X(t-11) X(t-12) dr1d1y - A [ko(t1, 1) dry
=00 ~00 -00
o0 00 00
Giaks, x®) = | | | ks(m1, 12, 13) x(t-71) X(t-12) X(t-13) d7; d12 d73
-00 =00 =00 00
-3A _[k3 (11, 12, T ) x(t-11) dt; dr,
-00

This notation then became adopted in its sampled data form by Marmarelis and Rugh*** which
led on to rediscovering the Hermite connection.

*  Apparently Wiener was not aware of Itd's work but on p.38 of this book he referenced the writer's 1957

report describing Hermite functionals which was known to his students.
** Y.W. Lee: pp.17-33 in 'Selected Papers of Norbert Wiener' SIAM & MIT Press 1964
**% See the books of P.Z. Marmarelis & V.S. Marmarelis 1978; W.J. Rugh 1981
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Appendix 1

POWER SERIES

1 Remarks on notation

An analytic function is characterised by a power series in x

0
f(x)=ap + ajx + ax* + ax + . = )y ap X"
n=0

The Taylor-MacLaurin form gives coefficients in terms of derivatives at x zero

an= fY0) n=0,1,2, ..
n!
Correspondingly it is convenient to use the representation

fx) = fop +hix +Hx +HX

2! 3!

+ ...

where
£,=1f"0) n=0,1.2,..

the coefficients f;, then being called Taylor-MacLaurin coefficients. This notational convention
can extend to functions of several variables

The most important case is when the constant term f; is zero so that x = 0 corresponds to f(x) = 0
This can be arranged by change of scale. Attention will be restricted to this case in what follows.

2 Bell polynomials

It is frequently necessary to form powers of quantities expressed by power series. Suppose that

y=fix +6Hx +fx + fx°

2! 3! 4!

t ..

Then it is found that

Vv = ()% +Ghib) x> + GBR2+4ff)x" + ..
2! 2! 31 4!

v = (1) x° +66°6)x" + 106% + 15669 +.
3! 3! 41 51

vh= Yt HQ060) x 7 + (0f°6 + 45 A6 x ¢+ .
41 41 51 6!
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The equation for the nth power has the form

Y' = Baa®x" +Buuia 5™ + Broa® x4 = 2 Bua(f) x”

n! n! (n+1)! (n+2)! m>n m!
The quantities By o(f) defined by this equation are polynomials in the Taylor-MacLaurin
coefficients f called Bell Polynomials after the American mathematician E.T. Bell.

The polynomial By, 5(f) depends on £, ..., fn and is also written By, n(f, ..., fine)
The first few polynomials may be set out to correspond with the above equations as:

BLih=1fi Byi(h=£, BsiH)=1f;, Bai()=1, Bs(f) =15,

Box(f) =" Bsaf) =3fifs, Bao(f) =4fifs + 367  Bsy(f) =5 fify +106:6,

Bss(f) =1 Baa(f) = 666, Bss(f) = 10f;°f; +156;£,7,
B4,4(f) = f14 B5,4(f) = 10f13f2,
Bss(f) = fi°

3 Series substitution

Suppose given two power series relating y to x and z to x:

y = h x +h2§2 +h3§3 + ..
21 31

ki y +k222 +k3y3 + ..
2! 3t

N
I

Substitution for y from the first into the second series results in a series relating z to x

Z=g Xt @X F ;X + o
2! 31
The first few coefficients are:

g1 = ki hy

g =kih + kh?

g3 = kihs + ky Bhyhy) + ks by’

gs = kihs + kp (4 hy h3+3h%) + ks (6h” hy) + ks by

gs = ki hs + ky (5hihg + 10 hy hs) + ks (10 by hs + 15 hy hy?) + ks (10 hy® hy) + ks hy®

The general term may be written down using Bell polynomials as

g0 = 24 ki Bam(h)

m<n

*Reference: Riordan: 'Combinatorial Analysis', Wiley 1958.
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4 Series inversion and the reversion method

Two power series of the form

y = h x -th_)g2 +h3>_(3 + ..
2! 3!

x =ky +k2¥2 +k3y3 + ..
2! 3!

are called inverse the relation being mutual. Such a relation implies that h; and k; are both
nonzero. It is frequently necessary to know the relation between the two sets of coefficients.
To keep the notation conforming with other calculations in the book it will be convenient to
solve for the second series from the first.

The reversion method: A direct method of inversion is to rearrange the equation to be inverted as

y=k'x - kM{ky +ky + ..}
2! 31

and iterate using successive polynomial approximations for y on the right side starting with the
linear term. This quickly gives the first few terms. This method is easily generalized to higher
dimensions and it leads directly to the proof of convergence of the inverse series. The successive
terms may be found alternatively and more systematically by substituting the power series for y
into the right hand side giving the recursive equations for the undetermined coefficients h.

hy = ki

hy =-ki {ko b’}

hy =- ki {k, Ghih) + ks b’}

hy =-ki ' {ky (4 h; b3 +3 ") + ks (6h” hy) + kg by}

The same equations result from using the previous substitution formula and equating to unity the
series found by substituting the first series into the second i.e.

= kl h1

k] h2 -+ k2 h12

ki hs + ko Ghihp) + ks hy?

=kihs+ ko (4 hy+3h°) +k (6h° hy) + kehy*

e ettt taetrenteteetenreneneatranraataarhen st thanntatanrhsaerasnenennenennnes ete.

SO O~
i

h1 = kl_l

hz =- k1-3 kz

hy; =- k1-4 k3+3 kl_s k22

hy =-k"ke + 10k P ko ks — 15 k7 k)
N etc
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5 Analytic implicit functions

An implicit function relation has the form

y=fxy)=fiox + fory + 2 2 _1 £ x"y"

m+n>1 m! n!

It will be assumed that fy; # 1 otherwise the y term cancels. Then the term fy;y may be
transferred to the left hand side and division by 1 — fj; again comes to a similar implicit relation
but without a linear term in y on the right hand side, i.e.

y=fx,y)=flox + 2 E I fnx"y"

m+n>1 m!n!

This may be called the normal form of an implicit function relation. A series solution of the
equation is now found by substituting a series with unknown coefficients

y=h(x)=hx +1 h2x2 +1 h3x3 + .
2! 3!

Then equating coeffients of powers of x which gives recursive equations for these coefficients:

h; = fio

hy = f0 + 2f hy + fp hy?

hy = f3o + 3fuhy + 3(Enh + fiuh®) + 3 fphihy + fyzhy?
.......... nq

ha = 20 _nl  2fnq:Bah, ... hget)

=0 (n-g)! q! r=1
This expression is derived by noting that on expanding f(x, y), terms in x" result from

1 foqex™y, q=0,1,..n,r<q
(n-g)! !

where y' /r! contributes aterm B o, x?/q! forr=1, 2, ..., q.
The recursive equations give explicitly

h; =10
hy = 20 + 2 fi1 fio+ fo2 fi0”
hs = 30+ 3 a1 fio + 3 (f11 (f20 + 2 £11 f10 + fo2 £10°) + fiz fi0?)
+ 3 fop f10 (F20 + 2 f11 fro + fo fi0°) + fo3 fio®
etc
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6 Convergence - the method of majorant series

The method of majorant series is a convenient and flexible technique for dealing with
convergence of power series and it extends easily to vector and functional cases.

Suppose the power series whose convergence is to be discussed is

) =fo + ix + B+ B + .. = 2 1 £,x°
21 31 n=0 n!

Definition: A scalar power series

[0 o]
FX)=F + X+ EX +KBEX + .. = 2 1 X"
21 31 n=0 n!

is a majorant (or majorizing) series to the preceeding series if its coefficients satisfy
F, > |fJ, n=0,1,2, ...

The least majorant series is one for which
Fo=Ifi, n=0,1,2,

Consequently any majorant series has non-negative coefficients. The variable X is also
considered to be positive, X > 0. When |x| < X, every term of the series for f(x) is less or equal in
absolute value to the corresponding term of the majorant series for F(X). There follows:

Theorem: I F(X) majorizes f(x) and has radius of convergence X* finite or infinite, then
(a) The series for f(x) is absolutely convergent when |x| < X',

(b) If X < X* the series for f(x) is uniformly convergent when x| <X,

(¢) The inequality |f(x)| < F(X) holds when |x| <X < X*.

Proof: () and (b) follow from the inequality

"< X 1ERX

! n!

The sum here can be over any selection of terms and so can transfer the Cauchy general principle
for convergence from the series for F(X) to the series for f{x). (c) is immediate.

All its terms being non-negative, any majorant series converges monotonically either to a finite
positive limit or to +oo. Assuming a nonzero radius of convergence there are two possibilities:



94

Case (a): The majorant series converges for all X > 0, i.e. X* = +oo the majorized series also
converges for all x (an entire function e.g. exp X)

Case (b): The majorant series has a finite radius of convergence X’. The majorized series
converges for [x|< X* and possibly also when |x|=X

Operations on power series: The relationship of majorant is conserved under many operations
with power series.

(1) Addition: If f(x), g(x) are majorized by F(X), G(X) respectively then f(x) + g(x) is tajorized
by F(X) + G(X).

(2) Multiplication by a positive constant: If f(x) is majorized by F(X) and C > 0 then C f{x) is
majorized by C F(X).

(3) Multiplication of series: If {x), g(x) are majorized by F(X), G(X) respectively then f{(x) g(x)
is majorized by F(X) G(X).

(4) Substitution of series: If y = h(x) and z = k(y) are majorized by Y = H(X) and Z = K(Y)
respectively then z = g(x) = k(h(x)) is majorized by Z = G(X) = K(H(X)).

The proofs are straightforward for (1) to (3). For (4) the formulae for the coefficients of
substituted series give the following inequalities from which the result follows.

lg1| = [k {h] =K; H; =G

82| < lka] o] + [k b , SKilKGH? =G,
lgs] < [k ] + ko] (3lhalhal) + flo I’ <Ky Hs + Ky 3Hi o) + K3 Hi® =G

g0 < 22 fknl Bam((B], . o) < 2 KuBow (Hi, ., Hom) = Ga

m<n m<n
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5) Series reversion. The determination of the majorant in series reversion requires a slightly
different technique. Consider the inverse relations

x=k(y) = kiy tky’ +kiy’ + ... (ki # 0)

2! 3!
y=hx)=hx +hx? +hx + .. (h# 0)
2! 3!

The reverted form of the first equation for finding the second from the first is
o0

y=k'lx -k’ 2 1ky
n=2 n!

From this a comparison equation is set up:
o0

Y=HX+HX 1KY
n=2 n!

H>[ki", Ko >k, n=2,3, ..
This will have a series solution with positive terms:

Y=HX)=H X +HLX +HX + ..
21 3!

From the recursive equations for the coefficients h,, Hy, n =1, 2, ..., are found the inequalities.

b=k <H - H,
ha| = [k, {lke] I} . S H{KH N
bal < il Blufba) + ol P} < HifKe SHIED) + Ko} < By

hal < k™| 22 [Kenl Binn (Buly oo [hme]) < Ko™ 22 Ko Brnn (Hyy oy Hognor) < Ha
2<m<n 2<m=n

i.e. the series solution of the comparison equation provides a majorant for the reverted series.
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6) Solution by series of implicit function equations. A similar technique applies to the general
implicit function equation in the normal form

y = flox + ZZ 1 fmnxmy"
m+n>1 m! n!
having series solution

y=hx+1hx*+1hx +..

2! 3!

Set up the comparison equation

Y =FeX+2 2 1 FpX"Y"

m+n>1 m! n!
Fin > |fmn|

The series solution defines a function H(X)

Y=HX+1HLX+1HX + ..=HX
21 31

From these recursive equations for coefficients follow the inequalities

lhy| = [f1o] <Fro , = H,

lho| < [f20] + 2 [f11] [ha| + [foo] [hy] ,
< |Faol + 2 [Fy [hu| + [Fozl [hy] = H

......... nq
|hn| = Z _nl 2 |fn-q,r|qu(|h1|= |hq-r+1|)
=0 (n-q)! q! =1

n q
<2 0l 2Fuq:BerHp ... Hem)=H,

=0 (n-q)! q! r=1

i.e. the series solution H(x) of the comparison equation provides a majorant to the series solution
of the given implicit function relation.

Convergence: The classical result of Cauchy is that the method of series substitution gives a
solution of an analytic implicit function equation convergent for sufficiently small values of the
independent variable. The idea of the proof is to construct a majorant which can easily be proved
convergent. A clear description is given in Goursat's Course of Mathematical Analysis®.

* References: Cauchy A-L: Comptes Rendus Acad Sci Paris 1839, 587-588; Goursat E: Cours d'analyse
mathématique, Paris 1915; Eng. Transl. by Dunkel and Hedrik, 1916 (Ginn); rpr Dover (1950). See vol.l,
p-400-
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Cauchy's result was considerably strengthened by Hille (1959). By using methods of the theory
of functions of a complex variable, Hille showed that the radius of convergence X' of the series
solution of the implicit function equation may be determined as the unique solution of the
simultaneous equations for the majorant function F(X, Y)

Y'=FX, Y 1=0FX,Y)
X

These equations have the simple geometrical interpretation on the graph of the comparison
equation Because of the positivity of terms in the expansion of F(X, Y), the graph is increasing
from the origin and curves upward having a vertical tangent and turning back at the point (X,
Y™ satisfying the above equations called the turning value.

The series solution of the implicit function equation for the majorant is consequently convergent
for values X on the range 0 <X <X i.e up to the turning value. The series solution on this
range defines an analytic function H(X) which represents the arc OP over its entire length, P
being the turning value with coordinates (X*, Y"). This function H(X) may be termed the
principal solution of the implicit function since there is a second solution for the upper branch of
the graph. Since H(X) majorizes h(x) the series solution of the original implicit function equation
y = f(x, y) will also be convergent over the same interval. So Hille's theorem may be stated as:

Statement of Hille's Theorem: The series solution of an analytic implicit function equation in
normal form y = f(x, y) is convergent when |x| < X" where X" is the turning value of X on the

graph of the comparison equation Y = F(X, Y).

Proof: Hille's proof using complex analysis is given in his book. It can also be proved by real
analysis. (see footnote below)

Series reversion: This is the special case considered in the text with majorant equation
Y=HX+HK()
The values (X', Y") are here determined by the equations

Y'=HX'+HK(Y", 1 =HK Y
oY

The second equation does not involve X and may be solved immediately for Y* from which X'
may then be found from the first equation.

Hille E: Analytic Function Theory, Boston 1959 (Ginn). A proof using only real analysis was given by
the writer in the report: 'A generalization of a result of Hille', Report 79-Wsk-03 1979, Dept Math Tech,
Highschool, Eindhoven, NL
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Appendix 2

LINEAR SYSTEMS

1 Linear continuous-time systems

These satisfy the superposition principle and so may be characterized by impulse response
Junction h(t, t') defined as response at time t due to unit impulse input at time t' <t

Physical realizability condition: Due to causality this function must satisfy
h(t, t)=0 t'>t
So linear superposition results in the input/output relation:
t
y(® = Iht ) x() a
-00
This can also be written over the doubly infinite range as
Q0
y® = Ihet ) ) dt
-0
Time-invariant condition: if the system input/output relation is not time-varying then h(t+r, t'+1)
= h(t, t') for all values of 1. On putting T = -t' there follows identically h(t, t') = h(t—t', 0) and so
h(t, t') depends only on the time-difference t —t'. h(t —t', 0) is abbreviated as h(t — t")
The realizability condition then becomes

h(t—t) =0 unless t>t'

The input-output equation becomes

t 00
y(©) = [ht—t)x(t)dt = [ ht—t)x() dt'

Orinterms oft=t—t'
h(t)= 0 unlesst>0

o0 o0

y(t) = [h()x(t-1)dv = [ h(z) x(t - 1) de

0 -00
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Systems are equally defined by their transfer function H(s), the Laplace transform of the
impulse-transform function

H(s) = | h(t) exp(-st)dt
0

The integral here may also be written over the doubly infinite range (bilateral Laplace transform)
which allows easy transition to the Fourier transform

0

H(io) = | h(t) exp(-iot) dt

=00

Stability condition: Stability follows from the boundedness condition
o0

JIh@)dt <
0

a condition which appears to have originated in the book of James, Nichols, Phillips (1946)
From it is deduced that when ¢ >0

H(o +im)| = | § h(t) exp -(c-Ho)t dt | <[ |h(t) exp —ot | dt <[ |h(t)| dt <

So H(s) is bounded in the right hand s plane and any infinities must lie in the region ¢ <0.
Further there follows the BIBO condition

Iyl = max [y()| < |/ h() x(t - ©) d < [ |n(z) x(t - )] dre < |l |fx]

The stability of a general time-varying linear system may be defined by the condition that the
response to any bounded input is bounded (Zadeh 1952). This will be the case if
t
J e, 0y dt' < oo
-00
For time invariant systems this is the same as the BIBO condition but for general time-varying
systems it is not and a slightly stronger condition is needed:
t
|h|[= max J[htt) dt < oo

~00<t<o0 -00

From this follows

Iy Tl
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2 The use of delta functions.

The need to use delta functions for time-domain representation of systems is already evident in
linear systems analysis. Consider the system with input-output relation

y() = H(p) x(1)

where H(.) is a rational function:

H(s) = P(s)/Q(s)

P(s), Q(s) being polynomials in s without common factor and Q(s) in addition satisfying the
stability condition. The time-domain representation will be of the form

00

y(t) = Jh(t-t") x(t)) dt’

-00

where h(.) the impulse response function is the inverse transform of H(s). If H(s) is a proper
rational fraction in s, so that the degree of Q(s) exceeds the degree of P(s) then h(.) is an
absolutely integrable function:

JIh@®ldt < o

-cO
However if H(s) is not a proper rational fraction then h(.) is no longer a regular function and will

involve delta function and derivatives of delta functions. In this case the linear operator can also
be written in terms of instantaneous values and derivatives in the form

n o0
y) = Y ¢ xOt) + [ hit-t') x(t') dt

=0

Consequently it is necessary to define the impulse response function as

n
gt) = Y. ¢ 89t + h()

=0
Then the input-output relation can be written in the usual form
Q0

y(t) = [ g(t-t) x(t) dt

~00
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3 Inversion of time-invariant linear relations

Inverse time-invariant linear relations are characterized by simultaneous satisfaction on the
infinite time interval (-0, 00) of the equations

o0

yt)= [ h(t-t)x(t)dt

=00

o0
x(t)= [ k{t-t)y@t)dt
-00
By substitution we find that
o0
S(t—t") = [ h(t-t) k(' -t") dt’
-00
o0
d(t-t") = [ k(t-t)h(t -t")dt
-00
Both these relations are equivalent to the Laplace transform relation

1 = H(s) K(s)
This relation implies that the poles and zeros of the two transforms are interchanged so that from
the stability condition of both it follows that each must have poles and zeros in the left hand half

plane, i.e. both operators must be minimum phase. In the most important case where the
transforms are rational so that

H(s) = P(s)/Q(s)
K(s) = Q(s)/P(s)
Here P(s), Q(s) are stable polynomials. There are three cases:
I degree P(s) <degree Q(s)
II degree P(s) = degree Q(s)
IIT degree P(s) > degree Q(s)

In cases I and III one of the operators represents a differential operator and the other an integral
operator. In case II both operators will be of the type occurring in the Volterra integral equation.
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Appendix 3

PROBABILITY THEORY

1 Probability distributions.

A convenient way to characterize probability distributions is by the expectation operator.
For a distribution having a probability density p(x), the expectation operator E is defined by

E{f{x)} = [ f(x) p(x) dx
The integral is extended over the whole range of the distribution. E has the properties

1) E is linear
2) E is positive: if f(x) > 0 then E{f(x)} >0
3) B{1} =1

4) E is continuous relative to monotone convergence:

In condition (4) monotone convergence means that if f,(x), n =1, 2, 3,... is a monotone
increasing sequence of positive functions with f(x) as limit, then E{f;(x)}— E{f(x)} asn — o

According to a theorem of Riesz an operator with these properties defines a probability
distribution

One dimensional distributions: The moments of the distribution may be defined by:
u=E{x"} n=0,1.2,..

The characteristic function is
c(iu) = E{exp iux}

It defines the moments through the series expansion

cliw)= 1+ pi(w) + 1 oG’ + 1 pa(u)’ +..
21 3!

If a probability density function p(x) exists the characteristic function is its Fourier transform:
o0
c(in) = | exp fux .p(x) dx

-00

It is known that under conditions normally satisfied the characteristic function uniquely
characterizes the probability distribution (Lévy's theorem). The moments will also normally
define the characteristic function and thereby the probability distribution

Reference: Cramér H: Mathematical Methods of Statistics, Princeton, 1948
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The Gaussian (normal) distribution: This, the most well known distribution, has the probability
density for a scalar real valued random variable x,

p(x) = _1  exp{-% (x-m)’/c’}
2n G

where m is the mean and ¢ is the variance. Most frequently, by suitable choice of scale, the
mean is taken to be zero, the characteristic function then being

c(in) = exp{- % (uo)*}
Expansion now shows that even ordered moments are zero while even order moments are:
on =(2n-1)(2n-3)...3.1 6** = (2n)! 6™ /2" n!

Probability distributions in N dimensions: The axioms and Riesz's theorem carry over to finite
dimensional vectors (X;, X, ... Xy). The moments are defined by

tmy .omy = Bx™ %™ L oxy™]

The characteristic function has an expansion

ciw)=E{). 1 (ux)"}
m=0 m!
=E{> ... > 1 . (ux) ™ ux,) ™ L (uxy) ™ 3

m=0 m=0 m;!m,!... my!

o0 Q0
Yo D, 1 . (u)™EW™ . GO)™ Pty
m=0 mx=0 m;! my!.... my!

The N-dimensional Gaussian distribution: The probability density is:

px) = 1 exp-%(x-m)A" (x-m)
Vdet A

m is the vector mean and A is the covariance matrix, here assumed non-singular. If A is singular
then a similar formula exists with A inverse replaced by generalized inverse. The mean value m
is usually made to be zero. For zero mean the characteristic function is

00 N N
c(iu) = exp {~%u'Au} = Y 1Y (D, ) ajjuuw)

=0 2'r! i=1 j=1
From expansion of this result it is found that the odd order moments are zero while those of even

order 2n are formed by summing products of pairs of covariances. e.g the moment of order 4
from the product of random Gaussian variables x; X2 X3 X4 is

E[x) X2 X3X4] = 12 834 + a13 a4 + aj4 a3
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The general formula is

E[Xi; Xiz ... Xio] = ), ajuj2 jsje-r: Bfaniizn
pairs

the sum being over (2n)!/ 2" n! selections of n pairs (j; ,j2) (s> jo)---Gzn1» jon) from 2n suffixes iy, ... ip

Two-dimensional (bivariate) Gaussian distribution: An important special case of the N-
dimensional distribution. Two correlated Gaussian random variables x; and x; having zero
means, equal variances o and normalized cross-correlation p have joint probability density

exp -1 x12+ xzz- 2 pX1 X2

pxL,X)= ___1
216°\(1 - p?) 2 o(1-p9)

This corresponds through Fourier transformation to the characteristic function

c(iuy, iwp) = exp - g2 ( u12 + u22 -2puup)
2

Mehler's Formula: This useful formula relates two dimensional Gaussian to one dimensional
Gaussian distributions. Expanding the two dimensional characteristic function in powers of p
there results the series representation

o0
o(iug, i) = exp-o® (u’ + wH{1+Y 1 (°p)" (wiw)"}
2 n=1n!

Now use is made of the fact that there are Fourier pairs
c(in) —— px), (W' (i) —— (6" d/dx)" p(x)

Then it is seen that the inverse Fourier transformed series expansion is:

o0
p(x1, %2) = p(xp) p(x2) + Y. p" o> d" p(x1) 0" d" p(x2)
n=1 n! Xmn din

This is Mehler's formula which may be interpreted in terms of the homogeneous Hermite
polynomials associated with the one dimensional distributions of x;, X, (see appendix 4)
o0

p(x1, X2) = p(x1) p(x2) + 2, 0" hen(xi, ©) hen(x2, 6) p(x1) p(x2)
n=1n!

A generalized orthogonality property: using Mehler's formula inside the integral gives

0 o0 0 m#n
[ hem(x1, 6) hen(xz, 0) p(x1,%2) dxydx; = {
-00 -00 n! 2"E (x; xp)" m=n

showing orthogonality of Hermite polynomials extends to correlated Gaussian random variables.
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2 Random (stochastic) processes

From multidimensional distributions it is possible to go to stochastic processes by defining the
probability distribution of each collection of values x; = x(t), X2 = x(t), ..., Xn = X(ts).
Statistical parameters for the process become functions of time, e.g

(1) mean value  m(t) =E {x(t)}
(2) autocovariance function a(t;, t;) = E {(x(t;) - m(t)))(x(t2) - m(t2))}

A Gaussian stochastic process has a multidimensional Gaussian distribution, for each finite set
of values x; =x(t1), X2 = x(tp), ..., Xy =x(t,) for all times t;, tp, ..., tn The process is completely
determined by its mean value m(t) and autocovariance a(t;, t3).

Stationary stochastic process: The most important case when all probability distributions are
independent of time. Then the first two moments m(t) and a(t;,t;) are independent of time origin
which implies

m(t) = m = const, a(t ', b+t = a(ty, tp) forallt'
The last of these implies that the covariance a( ..) has the form
a(t, )= Rtz - 1)
where R() is the autocorrelation function.

Since R() is an autocovariance it has positive definite property and this implies according to a
theorem of Bochner that it can be represented as

o0
R(t)=1 | expiotdF(o)

21 -0
where F() is an increasing function of o (integrated spectrum). By decomposition of F(®) into
two components, one representing step discontinuities and the other continuous increase the
process may be separated into a deterministic and purely random components. Normally
attention is restricted to the continuous purely random part characterized by the power spectrum
(spectrum for short) ®(w), the derivative of F(w). Then follows the Wiener-Khinchin theorem

o0
R =1 [ &) expintdo
2T -00
with inverse relation
o8]
O(w) = | R(x) expiot do
-0
In his derivation of this relation Wiener had considered the harmonic analysis of a long sample
of the process which assumes that such a long sample gives approximations to the statistical
averages (ergodic hypothesis). Certain important processes may be proved to have this property,
such as a stationary Gaussian process with continuous spectrum. {Itd: Proc.Imp.Acad.Japan 1944).
It follows from the work of Wiener, that processes derived from Brownian motion are ergodic.
Similar results hold for the Poisson process and processes derived from it (see Doob: 'Stochastic
Processes').
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White noise: White noise does not fit into the normal definitions of stochastic process theory and
Wiener approached the problem by considering its integrated form, now referred to as the
Wiener process. Thus white noise becomes the (strictly non-existent) derivative of the Wiener
process. It has infinite flat spectrum and delta function autocorrelation.

®(w) =N, const R(t) =N é(7)
where N is the power of the noise

The Wiener process is an additive process i.e. the increments in successive time intervals are
statistically independent. It is not the only the only process with this property the other
important example being the Poisson process which has step increases occurring purely
randomly in time. The formal derivative of this gives another form of white noise (shot noise).
By a theorem of Kolmogorov a general additive process may be regarded as the sum of a Wiener
process and a range of Poisson processes for different parameters*. Correspondingly there is the
representation of general white noise in terms of Gaussian white noise and a range of shot noise
processes.

A simple derivation was given by the writer in J. Sound & Vibr. 1964, vol.1.
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Appendix 4

HERMITE POLYNOMIALS

1 Homogeneous one-dimensional Hermite polynomials

In the literature one dimensional Hermite polynomials are found with two definitions, one for
weight function exp - x* and the other for weight function exp - ¥ x°. The former are used in
physics. For statistical problems the second form is appropriate and it is most convenient to
modify the normal definition by choosing weight function as a Gaussian distribution of zero
mean and variance ¢ so having probability density function

px)= _1_ exp-x
\2no 26°

For this weight function homogeneous Hermite polynomials can be defined as follows.

Definition: The homogeneous Hermite polynomials he,(x, o), are defined by the equation
hen(x, ) p(x) = (- 6°d/dx )" p(x) n=0,1,2,...

These polynomials up to degree 5 are:

heo(x,0)= 1
he; (x, 6) = x

he, (x, 0) = x* - &°
hes(x,0)= X° -3 X 0

hes (%, 6) = x'-6x°0% +346°
hes (%, 6) = x-10x 6% +5x 06"

When o = 1 these reduce to the usual polynomials based on weight function exp -% x* and their
properties are similar. In what follows he, (x, 6) will be written he, (x) for brevity, dependence
on ¢ being understood.

It can be shown by induction that

hey(x) = x" - n(n-1) 6°x™* +n (n-1)(n-2)n-3) ¢* x"* +
12 2! 2

[n/2]

— Z (_1)1’ n! g21’ Xn-2r
=0 r! (n-2r)! 2°

This formula may be expressed in the convenient operator form

hey(x) = exp (- % o” d¥/dx*) x"
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There follows the inverse operator equation
X" = exp (% o” d¥/dx* ) hey(x)
On expansion results the inverse relation with all signs positive

x" = hey(x) + n(n-1) 6® hepa(x) + n (0-1)(n-2)(n-3) g4zhen.4(x) +
2 2! 2

[n/2]

=Y _nl o hena(x)
=0 r!(n-2r)! 2'

The first few values are

x = he; (x)
2= he, (x) + 6
3= hes (x) + 3 he; (x) 6
‘5‘= heq (x) + 6 hey (x) o> +3 ¢*

= hes (x) + 10 hes(x) o> + 5 he; (x) ¢*
These have the same form as the reverse equations with positive coefficients.

Orthogonality: The orthogonality property is

o 0 (m #n)
| hem(x) hea®) p(x) dx = §
-00 n! ¢*" (m=n)

This may be proved from the definition in terms of derivatives and integration by parts.

Expansion formula: Using the orthogonality property, and the known completeness property of
the polynomials*, a function f(x) of finite mean square satisfying the condition
o0
I 60 p(x) dx <o
-00
may be expanded into a mean square convergent series
[0.8]

fix)= Y. 1 by hey(x)
n=0 n!
where
o0

ba = L [ £(x) hen(x) p(x) dx
G n

-0

* Completeness is proved in, e.g.
(a) Wiener The Fourier integral Cambridge Univ. Press 1933 p.64
(b) Courant & Hilbert: Methods of Mathematical Physics.
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Chebyshev's Formula: If {(x) is n times differentiable then the coefficients b, may be expressed
in another way. From

bn = L [ 0 (- Pdidx) ™ p(x) dx

o -0

On integrating by parts n times and making the reasonable assumption that the end terms vanish
at infinity it is found that
o0

by = | (d/dx)" £(x) p(x) dx

-00

This formula generalizes that due to Chebyshev 1859 for the case o = 1, n=1. Interpreted
statistically, it takes the simple form

b= E {d"f(x)/dx" }
where E is the expectation operator.

Hermite series for an analytic function: Suppose that

24

f(x) =ag+ayx +1 ax
2!

then

f(")(x) =a, + agXx + 1 ama x> + ...
2!
so that Chebyshev's formula gives

Ch = an + ans E{x} +1ay E{XZ} + ..
21
All odd moments are zero while even moments are

E{x’*} = 2p-1)2p-3)...3.10% = 2p)/2° p! o

Hence the Hermite coefficients are

Ch = Z Ant2p E{x
p=0 (n+2p)!

o0

D 2wy 2D O”
p=0 (n+2p)! 2P p!

+ 1 an+20 + 1 ayu o'+ ..
2.1! 2221
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2 Expansion of the delta function and functions derived from it

Several useful Hermite expansions result from use of the delta function. The delta function 8(x)
has coefficients

bo = L J 8(x) hen(x) p(x) dx = hey(0) p(0)
o -0

All odd coefficients are zero since the odd Hermite polynomials vanish at x = 0.
The even ones for n = 2m are

bun = (1™ _(2m)!
V26 m! 2™ 6™

giving
800 = 1_ Y. (D™ hemm(x)

V2o m=0 m! 2™ o™

= _1 {1 -1hex)+ 11 heyx) -}
21 o 2 o 2122 &

By integration and identification of the constant term is found the expansion for the Heaviside
step function.

o0
10 =1+ _1_ Y (D™ heypu(x)
2

The sign function is related to this by

sgn(x) = 2 {1(x) - %2}

0

= 2 ) L™ hepn(x)

Vio m=0 m!2™ o™
By a similar method is found the integrated step function, i.e. the unit ramp

fix) = x, x>0,
0, x<0

Its expansion is
(e 8]

fx) =o +x+ _1 D, (D™ besmu®x)
V2 2 V2rom=0 m!2™ o™




111
3 The Mehler formula and generalized orthogonality of Hermite polynomials

If x; and x; are two correlated Gaussian random variables having zero means, equal variances
62, and normalized cross-correlation p then their bivariate probability density is

p(X1, X2) = 1 exp -1 X2+ x22- 2 p X1 %o
2162V(1 - p2) 2 o(1-p?)

This corresponds through Fourier transformation to the bivariate characteristic function

c(iuy, iup) = exp - o2 (w2 + w2-2 p U up)
2
This has series representation

o0
c(iuy, iup) = exp - 02 (W2 + w2){1 + Z 1 (cszp)n (ujup)n }
2 n=1 n!

Now make use of the fact that there are Fourier pairs
c(iu) «—— p(x) Gu)R c(iu) «—— (02 d/dx)1 p(x)

and also that the cross-correlation.is 62p = E (xy, X3). Then the transformed series expansion
will be:

p(X1, X2) = p(x1) p(x2){1 + Z E (x;x2) ™ hen(xi, 0) he(x2, 6)}
n=1 n!

This is Mehler's formula giving the bivariate probability distribution in terms of the one-
dimensional distributions and the Hermite polynomials.

The generalized orthogonality property: Using Mehler's formula for p(x, x») follows

oo 0 m#n
J' | hem(xy, 6) hen(xy, ©) p(xi, X2) dxidxy = {
00 -00 n! E (x;x2)? m=n

showing orthogonality of Hermite polynomials in correlated Gaussian random variables.

Ref: Mehler: J. f. Math.(Crelle) vol.66, 1866



4 General n dimensional Hermite polynomials
These are defined for a vector
X = [X1,..., Xn ]T
having an N dimensional Gaussian distribution with probability density

px)= 1 exp-%x Bx
Vdet A

Here B is the inverse of A the covariance matrix [a;;], assumed non-singular.

Let A denote the operator (A, ..., Ay) defined by

N
Ai=Zaij8_ i=1,...,N
j=1 an

The Hermite polynomials of order n form an array he™i i, ... i, (x) of N terms defined by
he®ii, ... ip (%) pX) = (- Ai)(- Ab) ... (- Aiy) p(x) i, .oy ig=1,..,N

Up to order 3 they are

he® (x) = ]

he™, (x) = xi, ii=1,...,N

he( )11 1y (X) = X1 X1, = ailp 1, ,= 1, ressy N
he®i i, i(X) = Xi; Xiz Xis - Xiy@bis - Xbabi, - Xbaii  Iuinis=1,...,N

The nth order term takes the form

(n/2]

he®i in@= 20" D { Maye Ilxi } by ooy in=1, ..., N

=0 r pairings r pairs p,q (n-2r) terms
Orthogonality: Using the definition of the polynomials it can be shown for m # n,
o0 00
[ o] he ™5, . ix) he @i, ... () px)dx = 0

-00 -00

while if m = n the value is

Z AP 2P ... Anpn

perms

Here the sum is over the n! permutations py, p2,.. , pn 0f 1, 2, ..., n.
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Expansion formula: a function of finite mean square has a mean-square convergent expansion
(e8]
f)= D 1 Y @iy in(x) he®iiy ... ix(x)
n=0 n! iji,... 10

The inner summation is over all permutations of 1, 2, ..., N. In the case when f() is sufficiently
differentiable the coefficients may be written as an extension of Chebyshev's formula

¢™ iy e ii(X) = . biip,birpy ... binpy By {fx) he®™ 51 ... pu(x)}

perms

the sum being over the permutations of i; i, ... i,. Using the definition of the Hermite
polynomials the equation reduces to

i, ... i(x) = By {0™f(x)/oxi,dxi, ... Oxiy }

For a more detailed derivation of the properties of these polynomials see the appendix to the
writer's 1980 paper referenced below.

Reference: IEE PROC Vol 127 Part D No 6 Nov 1980
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S Homogeneous Grad Hermite polynomials
A homogeneous form of Grad’s (1948) N-dimensional polynomials can be defined for a vector
X = [X1y0es XN]T
having as weight function the probability distribution

p(x) = 1 exp - X2+ .. + x0) 267
QD)o N

These are an important special case of the general polynomials which have additional properties.
Grad in his original 1948 paper dealt with the special case when ¢ = 1.

The nth order polynomials form an array he™ i, i, ... i, (x) defined by the general formula
he® i, ... iy (X) p(x) = (- 6% d/Oxi)(- 0> d/Ki,) ... (- 6° BIOxi,) p(X)

The suffixes 1 range from 1 to N. The first few polynomial arrays are

he® (%) =1

heWi, (x) = xi ii=1,.,N
he@ii, (x) = XiXi, - 6% i i i, ,=1,..,N
he(3)ili2 i5(X) = Xi, Xi, Xi; - o* Xi; O iz 6% X i, 8iziy - 6% X iy Oi, iy i, 1,3=1,...,N

From their definition in terms of derivatives these may be seen to be products of homogeneous

one-dimensional Hermite polynomials. For suppose the sequence i i, ... iy contains integers 1,
2, ..., N repeated 1y, 12, ..., rn times respectively. Then

he® i, ... iy (X) p(x)
= (- 6% 8/6x1)" (- 6% BlOX)™ ... (- 6% BIFxN)™ P(X1) P(X2) ... P(XN)
= hep (X)) hen(xz) ... hen (X) p(x)

This property does not hold for the general Hermite polynomials defined previously.
Orthogonality: From the last equation it follows immediately that two Hermite polynomials

he™ i, ... i(x) and he®™ jj, ... ju(X)
are orthogonal unless the sequences iy, iy, ..., in and ji, jo, ..., jn are permutations of each other.
This implies (i) they have the same degree (m =n) and (ii) both have the same decomposition of

the degree as 1, 2, ..., N repeated 11, 15 ..., ry times. Then from the orthogonality of the one-
dimensional polynomials it follows that

o0 o0
[ o] he®i, ... i(X) he @jii, ... %) px) dx = 11!, 1!, ..., 1n! 07
-00 =00

Reference: Grad H: A note on N-dimensional Hermite polynomials. Comm. Pure Appl. Math. 1949



The right hand side may also be written as

2n .. . -
o Z 511]p181sz2...51n]pn

perms
the sum being over the n! permutations p1, pa, ..., Pn. 0f 1, 2,..., n.
FExpansion formula: a function of finite mean square

f(x) = f(x1, X2, ..., XN)

has a mean-square convergent expansion

f) = 2 1 2 D D i, he®i, L i(X)

n=0 n! i +i,+...+i;=n
where
o o0 o0

5 =1 T o T ) he®™ i, ... i(X) p(x) dx, dx, ... dxy

6°" -0 -0 -0

Proof: It is known that from the completeness of the Hermite polynomials follows the
completeness of their products* so that

o0 o0 o0
f(x) = Z Z Z 1 fr 6,,.nv hen(X) hen(x) ...hen(x)
r=0rn=0 ry=0 I‘]! r2! I'N!
where
[0 0]

o0 o0
£ o =1 [ T ] %) hen(x,) hen(xs) ...hen(xy) p(x) dx, dx; ... dxy
N

(52 ~00 =00 ~00

Arranging terms by degree gives

) =Y, 1> D) 0t % ,n hen(x) hen(x) ...hen(x)

n=0 n! rint. dneEn nlin! ooy

With a change of notation, this is seen to be the required expansion

fx) = D0 12D 0 i iy he®ii, L. (%)

n=0 n! i, +i+... H,=n

Here the coefficients may be written in terms of derivatives by a straightforward extension of
Chebyshev's formula

i, .0 (x) = By {8 f(x)/0xi0xi, ... 0%y }

* See e.g. Hilbert-Courant: Mathematical Physics
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6 Historical remarks on Hermite polynomials

History: What are nowadays called Hermite polynomials were apparently first used in the 1812
classic of Laplace on probability although there they are hardly recognizable as such and there is
little description of the familiar properties of these polynomials. The first treatment of these
properties in remarkably modern form was given by Chebyshev in 1860 who also described
several other types of orthogonal polynomials now in common use, €.g. those usually called
Laguerre polynomials. Hermite's 1864 paper described, not the familiar one-dimensional
polynomials, but their multidimensional form and only in this sense was his development new.

Laplace P.S. Théorie analytique des Probabilités 1812, livre 2'°™ 321-323; Oeuvres 1847 VIL.

Chebyshev P.L. Sur le développement des fonctions a une seule variable.
Bull. Imp. Acad. Sci, St Petersb. I 1859 193-200; Oeuvres 1860 I 501-508.

Hermite C. Sur un nouveau développement en série des fonctions
C.R. Acad. Sci. Paris 58 1864 93-100; 266-273; Oeuvres Paris 1908; 11 293-308.

Notation: There are many notations in the literature using the two weight functions exp (-x%) and
exp (- %4 x%). The weight function exp (- % x%) apparently originates from the book of Appel &
Kampé de Feriet (1926). Our notation follows Rosenhead & Fletcher's Mathematical Tables
which recgmmends using Hen(x) for weight function exp(-x>) and he,(x) for weight function
exp(- Y2 x°).

Further references:

Appell P & Kampé de Fériet J: Fonctions hyper géométriques et hyper sphériques —
polyndmes d'Hermite. Paris 1926 (Gauthier Villars).

Campbell J.T: The Poisson correlation function. Proc. Edinb. Math. Soc. 4 1934/6 18-26.
Shohat, Hille E, Walsh: Bibliography on orthogonal polynomials, 1940. (2000 refs)

Grad H. Note on N-dimensional Hermite polynomials.
Comm. Pure Appl. Math. 2 1949 325-330.

Erdelyi A., Magnus W., Oberhettinger F., Tricomi F: Higher Transcendental Functions.
New York 1953 (McGraw Hill)

References on systems application These use the homogeneous polynomials

Shutterly H.B: General results in the mathematical theory of random signals and noise in
nonlinear devices. IEEE IT-9 1963, 74-84

Campbell L.L: On a class of polynomials useful in probability calculations.
IEEE IT-10 1964, 255-.

Bonnet G: Transformations des signaux aléatoires.
Ann, Télécom. 19 1964 203-220.
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