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Abstract

In this paper we propose a testing procedure for assessing the presence of threshold effects
in nonstationary Vector autoregressive models with or without cointegration. Our approach
involves first testing whether the long run impact matrix characterising the VECM type rep-
resentation of the VAR switches according to the magnitude of some threshold variable and
is valid regardless of whether the system is purely I(1), I(1) with cointegration or stationary.
Once the potential presence of threshold effects is established we subsequently evaluate the
cointegrating properties of the system in each regime through a model selection based approach
whose asymptotic and finite sample properties are also established. This subsequently allows us
to introduce a novel non-linear permanent and transitory decomposition of the vector process

of interest.
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1 Introduction

A growing body of research in the recent time series literature has concentrated on incorporating
nonlinear behaviour in conventional linear reduced form specifications such as autoregressive and
moving average models. The motivation for moving away from the traditional linear model with
constant parameters has typically come from the observation that many economic and financial time
series are often characterised by regime specific behaviour and asymmetric responses to shocks. For
such series the linearity and parameter constancy restrictions are typically inappropriate and may

lead to misleading inferences about their dynamics.

Within this context, and a univariate setting, a general class of models that has been particularly
popular from both a theoretical and applied perspective is the family of threshold models which
are characterised by piecewise linear processes separated according to the magnitude of a threshold
variable which triggers the changes in regime. When each linear regime follows an autoregressive
process for instance we have the well known threshold autoregressive class of models, the statistical
properties of which have been investigated in the early work of Tong and Lim (1980), Tong (1983,
1990), Tsay (1989), Chan (1990, 1993) and more recently reconsidered and extended in Hansen
(1996, 1997, 1999a, 1999b, 2000), Caner and Hansen (2001), Gonzalez and Gonzalo (1997), Gonzalo
and Montesinos (2000), Gonzalo and Pitarakis (2002) among others. The two key aspects on which
this theoretical research has focused on were the development of a distributional theory for tests
designed to detect the presence of threshold effects and the statistical properties of the resulting

parameter estimators characterising such models.

Given their ability to capture a very rich set of dynamic behaviour including persistence and
asymmetries, the use of this class of models has been advocated in numerous applications aiming
to capture economically meaningful nonlinearities. Examples include the analysis of asymmetries
in persistence in the US output growth (Beaudry and Koop (1993), Potter (1995)), asymmetries in
the response of output prices to input price increases versus decreases (Borenstein, Cameron and
Gilbert (1997), Peltzman (2000)), nonlinearities in unemployment rates (Hansen (1997), Koop and
Potter (1999)), threshold effects in cross-country growth regressions (Durlauf and Johnson (1995))
and in international relative prices (Michael, Nobay and Peel (1997), Obstfeld and Taylor (1997),
O’Connell and Wei (1997), Lo and Zivot (2001)) among numerous others.



Although the vast majority of the theoretical developments in the area of testing and estima-
tion of univariate threshold models have been obtained under the assumption of stationarity and
ergodicity, another important motivation for their popularity came from the observation that a
better description of the dynamics of numerous economic variables can be achieved by interacting
the pervasive nature of unit roots with that of threshold effects within the same specification. This
was also motivated by the observation that there might be much weaker support for the unit root
hypothesis when the alternative hypothesis under consideration allows for the presence of thresh-
old type effects in the time series of interest. In Pippenger and Goering (1993) for instance the
authors documented a substantial fall in the power of the Dickey Fuller test when the stationary
alternative was allowed to include threshold effects. This also motivated the work of Enders and
Granger (1998), who proposed a simple test of the null hypothesis of a unit root against asymmetric

adjustment instead of a linear stationary alternative.

One important property of threshold models that contributed to this line of research is their
ability to capture persistent behaviour while remaining globally stationary. This can be achieved
for instance by allowing a time series to follow a unit root type process such as a random walk
within one regime while being stationary in another. Numerous economic and financial variables
such as unemployment rates or interest rates for instance must be stationary by the mere fact that
they are bounded. However at the same time conventional unit roots tests are typically unable to
reject the null hypothesis of a unit root in their autoregressive representation. This observation has
prompted numerous researchers to explore the possibility that the dynamics of these series may be
better described by threshold models that allow the nonstationary component to occur within a
corridor regime. A well known example highlighting this point is the behaviour of real exchange
rate series which are typically found to be unit root processes, implying lack of international arbi-
trage and violation of the PPP hypothesis. Once allowance is made for the presence of threshold
effects capturing aspects such as transaction costs however it has been typically found that this
nonstationarity only occurs locally (e.g. between transaction cost bounds) and that the process is in
fact globally stationary (see Bec, Ben-Salem and Carrasco (2001) and references therein). Within a
related context, Gonzalez and Gonzalo (1998) also introduced a globally stationary process referred
to as a threshold unit root model that combines the presence of a unit root with threshold effects,

and found strong support in favour of such a specification for modelling interest rate series.

Although all of the above mentioned research operated under a univariate setup the recent



time series literature has also witnessed a growing interest in the inclusion of threshold effects in
multivariate settings such as vector error correction models. A key factor that triggered this line
of research has been the observation that threshold effects may also have an intuitive appeal when
it comes to modelling the adjustment process towards a long run equilibrium characterising two or

more variables.

From the early work of Engle and Granger (1987), for instance, it is well known that two or
more variables that behave like unit root processes individually may in fact be linked via a long
run equilibrium relationship making particular linear combinations of these variables stationary
or, as commonly known, cointegrated. When this happens, the variables in question admit an
error correction model representation that allows for the joint modelling of both their long run
and short run dynamics. In its linear form, such an error correction specification restricts the
adjustment process to remain the same across time thereby ruling out the possibility of lumpy and
discontinuous adjustment. An important paper, which proposed to relax this linearity assumption
by introducing the possibility of threshold effects in the adjustment process towards the long run
equilibrium and thereby capturing phenomena such as changing speeds of adjustment was, Balke
and Fomby (1997) where the authors introduced the concept of threshold cointegration (see also
Tsay (1998)).

The inclusion of such nonlinearities in error correction models has been found to have a very
strong intuitive and economic appeal allowing for instance for the possibility that the adjustment
process towards the long run equilibrium behaves differently depending on how far off the system
is from the long run equilibrium itself (i.e depending on the magnitude of the equilibrium error).
This naturally also allows for the possibility that the adjustment process shuts down over certain
periods. Consider, for instance, the prices of the same asset in two different geographical regions.
Although both prices will be equal in the long run equilibrium it could be that due to the presence
of transaction costs arbitrage solely kicks in when the difference in price (i.e. the equilibrium error)

is sufficiently large.

The concept of threshold cointegration as introduced in Balke and Fomby (1997) has attracted
considerable attention from practitioners interested in uncovering nonlinear adjustment patterns in
relative prices and other variables (see Wohar and Balke (1998), Baum, Barkoulas and Caglayan

(2001), Enders and Falk (1998), Lo and Zivot (2001), O’Connell and Wei (1997)). From a method-



ological point of view, Balke and Fomby (1997) proposed to assess such occurences within a simple
setup which consisted in adapting the approach developed in Hansen (1996) to an Engle-Granger
type test performed on the cointegrating residuals. Their setup also implicitly assumed the ex-
istence of a known and single cointegrating vector linking the variables of interest. In a related
study, Enders and Siklos (2001) extended Balke and Fomby’s methodology by adapting the work

of Enders and Granger (1998) to a cointegrating framework.

Despite the substantial interest generated by the introduction of the concept of threshold coin-
tegration in Balke and Fomby (1997) a full statistical treatment within a formal multivariate error
correction type of specification has only been available following the recent work of Hansen and
Seo (2002). See also Tsay (1998) who introduced an arranged regression approach for testing for
the presence of threshold effects in VARs. Although also dealing with a multivariable cointegration
setup, the methodology proposed in Balke and Fomby (1998) or Enders and Siklos (2001) focused
on the direct treatment of the cointegrating residuals akin to the familiar Engle-Granger test for
cointegration. In Hansen and Seo (2002) however, the authors developed a maximum likelihood
based estimation and testing theory starting directly from a vector error correction model repre-
sentation of a cointegrated system with potential threshold effects in its adjustment process. More
specifically, Hansen and Seo (2002) considered a VECM assumed to contain a single cointegrating
vector and in which the threshold effects are driven by the error correction term. Their analysis
also implicitly assumes that the researcher knows in advance the cointegration properties of the
system (i.e the system is known to be cointegrated with a single cointegrating vector) and inter-
est solely lies in detecting the presence of threshold effects in the adjustment process towards the
equilibrium. This simplifying assumption avoids the need to test for cointegration in the presence
of a potentially nonlinear adjustment process. In more recent research, Seo (2004) concentrated on
this latter issue by developing a new distributional theory for directly testing the null of no coin-
tegration against the alternative of threshold cointegration. In Seo’s (2004) framework it is again
the case that cointegration if present is solely characterised by a single cointegrating vector and as
in Hansen and Seo (2002) the threshold variable of interest is taken to be the error correction term

itself.

In the present research our goal is to contribute further to the analysis of threshold effects in
possibly cointegrated multivariate systems of the vector error correction type. Our initial goal is

to evaluate the properties of a Wald type test for testing the null of linearity against threshold



nonlinearity in the long run impact matrix of a VECM. Our analysis does not presume any specific
cointegration properties of the system and is valid regardless of whether the system is cointegrated
or not. One additional difference from previous work is our view about the threshold variable
that induces the presence of threshold effects. Instead of taking the error correction term to be
the variable whose magnitude triggers threreshold effects, we consider a general external threshold
variable which could be any economic or financial variable that is stationary and ergodic such
as the growth rate in the economy. Having established the existence of threshold effects in the
VECM representation of our system, we subsequently evaluate the properties of least squares
based estimators of the threshold parameter focusing on both its large and small sample properties
followed by the analysis of the formal cointegration properties of the system when applicable. This
then allows us to formally obtain a nonlinear permanent and transitory decomposition of the vector

process of interest following the same methodology as in Gonzalo and Granger (1995).

The plan of the chapter is as follows. Section II develops the theory for testing for the presence
of threshold effects in a Vector Error Correction type of model. Section III focuses on the theoret-
ical properties of estimators of the threshold parameters. Section IV proposes a methodology for
assessing the cointegration properties of the system, Section V introduces a nonlinear permanent
and transitory decomposition based on a VECM with threshold effects and Section VI concludes.

All proofs are relegated to the appendix.

2 Testing for Threshold Effects in a Multivariate Framework

2.1 The Model and Test Statistic

We let the p-dimensional time series {Y;} be generated by the following vector error correction type

specification, which allows for the presence of threshold effects in its long run impact matrix:

k
AY; = p+ILY; 1 I(q—qa <7v)+ LY 1I(q—qa> )+ ZI‘jAYt—j + uy (1)
=1

where II;, II; and I'; are p X p constant parameter matrices, ¢;_q a scalar threshold variable,
I(.) is the indicator function, 7 the threshold parameter, k and d the known lag length and delay

parameter and wu; is the p-dimensional random disturbance vector.

The model in (1) is a multivariate generalisation of an autoregressive model with threshold



effects whose dynamics are characterised by piecewise linear vector autoregressions. The regime
switches are governed by the magnitude of the threshold variable ¢; crossing an unknown threshold
value . The specification in (1) is similar to the one considered in Seo (2004) with the difference
that no assumptions are made about the rank structure of either II; or Ils, and the threshold
variable is not necessarily given by the error correction term such as ¢; = 3'Y; with 3 denoting the

single cointegrating vector for instance.

The initial question of interest in the context of the specification in (1) is whether the long run
impact matrix is truly characterised by threshold effects driven by the threshold variable ¢;. Under
the absence of such effects we have a standard linear VECM with II; = Il and this restriction

can be tested via a conventional Wald type test statistic against the alternative Hy : II; # Ils.

At this stage it is important to note that the sole purpose of testing the above null hypothesis
is to uncover the presence or absence of threshold effects in the long run impact matrix. More
importantly we wish to conduct this set of inferences regardless of the stationarity properties of
Y;, in the sense that our null hypothesis may hold under a purely stationary set up or a unit
root set up with or without cointegration. If the null hypothesis is not rejected we can then
carry on with the process of exploring the stochastic properties of the data following for instance
Johansen’s methodology (see Johansen (1998) and references therein). Before proceeding further
and to motivate our working model we consider two simple examples illustrating particular cases

of our specification in (1).

EXAMPLE 1: Here we present a bivariate system of cointegrated I(1) variables with threshold
effects in their adjustment process. Specifically, with Y; = (y1t, yat)’ we write y1; = Syt + 21 where
Ayar = €gp and Azy = prz—11(q—1 < 7) + p2zi—11(q—1 > ) + €1 with p; < 0 for i = 1,2 and for
simplicity we take ¢; to be an iid random variable. In this example both y1; and yo are I(1) and
cointegrated with cointegrating vector (1, —(3) since z; is a covariance stationary process following
a threshold autoregressive scheme. It is now straightforward to reformulate the above model as in

(1) writing,

Ay P1 Y1t—1
= (1 —ﬁ) I(g—1 <)+
Ayoy 0 Y2t—1
P2 Yit—1 Ui
( 1 —p ) I(gt—1 > ) + (2)
0 Y2t—1 U2t



with uis = €1+ + Beor and ugy = €9.

EXAMPLE 2: Here we consider a purely stationary bivariate system with both variables following a
threshold autoregressive process. Consider Ay = p11y11—11(qe—1 < v) + p21y1e—11(q—1 > ) + u1e
and Aya = prayae—11(qi—1 < ) + paoy2e—11(qi—1 > ) + uge with p;; <0 and pp < 0 for i = 1,2,

We can again reformulate this sytem as in (1) by writing

Ay pi1 0 Yit—1
= I(g—1 <)+
Ayt 0 pi2 Y2t—1
p21 0O Yit—1 u1t
I(qg—1>7)+ (3)
0 p22 Yat—1 U2t

In order to explore the properties of the Wald type test for the above null hypothesis, it will
be convenient to reformulate (1) in matrix form. In what follows, for the clarity and simplicity
of the exposition, we focus on a restricted version of (1) setting the constant term as well as the
coefficients on the lagged dependent variables equal to zero. Since our framework does not consider
threshold effects in those parameters it would be straightforward to concentrate (1) with respect
to IT; and IIs using an appropriate projection matrix. This is also with no loss of generality since
our distributional results presented in Propositions 1 and 2 below would remain unaffected. We

now write
AY = ILZ1+11Z2,+U (4)

where AY, Z; and Z are all p x T matrices stacking the vectors AY;, Y, 1I(¢—q < =) and
Yi—11(qi—q > ), respectively. Within the formulation in (4) we have AY = (Ay1, Ays, ..., Ayr)
Zy = (yol(q0-a < ), yr—1l(gr—a < 7)) and Zz = (yol(go-a > 7),---,yr—1l(ar-a > 7))
Similarly U is a p x T matrix of random disturbances given by U = (uq,...,ur). We note that
within our parameterisation the regressor matrices Z; and Zs are orthogonal due to the presence
of the two indicator functions. Their dependence on ~ is omitted for notational parsimony. For

later use we also introduce the p x T' matrix Z = (yo, ..., yr—1), which is such that Z = Z; + Zs.

The unknown parameters of the model in (4) can be estimated via concentrated least squares
proceeding conditional on a known 7. Indeed, since given v the model is linear in its parameters
the least squares estimators of II; and II, are given by II;(y) = AY Z{(Z,Z})~! and Iy (y) =

AY Z(Z225)~1. For later use we also introduce the vectorised versions of the parameter matrices,



writing 7t1 = wvec II; and @y = vec IIo, and the null hypothesis of interest can be equivalently

expressed as Ho : w1 = w2 or Hy: Rm = 0 with R = [I,2, —[,2] and 7 = (7, 75)’".

The Wald statistic for testing the above null hypothesis takes the following form
. -1
Wr(y) = (B#) [R(DD) " @ QR (R) (5)

where ® is the Kronecker product operator, w1 = [(Z12]) 7171 ® IyJvec AY, 7tg = [(Z225) "1 Zs @
Lvec AY and D = [Zy Z]. The p x p matrix §, refers to the least squares estimator of the
covariance matrix defined as Q, = UU'/T with U = AY — II;(v)Z; — y(y)Z,. Since Z; and
Zy are orthogonal it also immediately follows that DD’ = diag(Z1Z}, Z»Z5) and (DD')~' @ Q, =

diag[(Z212})" @ Qu, (Z225)" @ ). We can thus also reformulate the Wald statistic in (5) as
Wr(y) = (f1—%) (2225)(22")"N(2127) © Q1| (71 — 72) (6)
where ZZ' = Z,1Z + Zy Z},.

At this stage it is also important to reiterate the fact that when implementing our test of the
null hypothesis of linearity with say Il = Il = II, the corresponding characteristic polynomial
®(2) = (1 — 2)I, — Iz will be assumed to have all its roots either outside or on the unit circle and
the number of unit roots present in the system will be given by p —r with 0 < r < p. Our analysis
rules out instances of explosive behaviour or processes that may be integrated of order two. This
also allows us to have a direct correspondence between the stochastic properties of Y; under the
null hypothesis and the rank structure of the long run impact matrix II. In the particular case
where all the roots of the characteristic polynomial are outside the unit circle, the series will be

referred to as 1(0).

2.2 Assumptions and Limiting Distributions
Throughout this section we will be operating under the following set of assumptions

(A1) u¢ = (uig,...,up)" is a zero mean iid sequence of p dimensional random vectors with a

bounded density function, covariance matrix Efusu}] = Q, > 0 and with E|uy|? < oo for

some d >2andi=1,...,p;

(A2) ¢ is a strictly stationary and ergodic sequence that is independent of u;s Vt,s, i =1,...,p

and has distribution function F' that is continuous everywhere;



(A3) the threshold parameter «y is such that v € I' = [yr, ] a closed and bounded subset of the

sample space of the threshold variable.

Assumption (A1) above is required for our subsequent limiting distribution theory. It will ensure,
for instance, that the functional central limit theorem can be applied to the sample moments used
in the construction of Wald and related tests. Assumption (A2) restricts the behaviour of the scalar
random variable that induces threshold effects in the model in (1). Although it allows ¢; to follow
a very rich class of processes, it requires it to be external in the sense of being independent of the
ug sequence and also rules out the possibility of g, being I(1) itself for instance. Finally assumption
(A3) is standard in this literature. The threshold variable sample space I' is typically taken to be
[y, 7], with 72 and 4y chosen such that P(g;—q < 1) = 61 > 0 and P(g—a < ) = 1 — 61. The
choice of #; is commonly taken to be 10% or 15%. Restricting the parameter space of the threshold
in this fashion ensures that there are enough observations in each regime and also guarantees the

existence of nondegenerate limits for the test statistics of interest.

In what follows, we will be interested in obtaining the limiting behaviour of Wp(7) defined in
(6). In this context it will be important to explore the distinctive features of the limiting null
distribution of the test statistic when the maintained model is either a pure multivariate unit
root process with no cointegration (i.e. AY; = u;) or a VECM in the form AY; = IIY; 1 + u
with Rank(II) = r such that 0 < r < p. The case where r = p would correspond to a purely
stationary specification. We note that under all these instances the null hypothesis of linearity
holds. Before proceeding further it is also important to emphasise the fact that we are facing a
nonstandard inference problem, since under the null hypothesis the threshold parameter 7 is not
unidentified. This is now a well known and documented problem in the literature on testing for
the presence of various forms of nonlinearities in regression models and is commonly referred to as
the Davies problem. Under a stationary setting where Rank(II) = p and taking 7 as fixed and
given, we would expect Wr(7) to behave like a x? random variable in large samples. Since we
will not be assuming that v is known, however we will follow Davies (1977, 1987) and test the
null hypothesis of linearity using SupW = sup.cp Wr(7). In what follows we also make use of the
equality I(qi—qg < v) = I(F(q—q) < F(v)), which allows us to use uniform random variables (see
Caner and Hansen (2001), p. 1586). In this context we let A = F(y) € A with A = [61,1 — 61] and

throughout this chapter we will be using A and F'(y) interchangeably.



In the following proposition we summarise the limiting behaviour of the Wald statistic for testing

the null hypothesis of linearity when it is assumed that the system is purely stationary.

Proposition 1 Under assumptions A1-A3, Hy : II1 = Iy and Y; a p-dimensional 1(0) vector we

have
SupW = SupreaG\)'VN) TGN (7)

where G(\) is a zero mean p*-dimensional Gaussian random vector with covariance E[G(A1)G()\2)] =

V(AL A X2) and V(A) = M1 = N)(Q ® Q) with Q = E[ZZ'].

REMARK 1: It is interesting to note that the above limiting distribution is equivalent to a normalised
squared Brownian Bridge process identical to the one arising when testing for the presence of
structural breaks as in Andrews (1993, Theorem 3, p. 838). The same distribution also arises in
particular parameterisations of self-exciting threshold autoregressive models when only the constant
terms are allowed to be different in each regime (see Chan (1990)). We also note that for known and
given v, the quantity G(\)'V(A)~1G(\) reduces to a x? random variable with p? degrees of freedom.
Since G(A) is (Q ® Q)2 N(0,M(1 — M) ,2) = (Q © Q)2 [W(X) — AW (1)], with W(.) denoting a p*
dimensional standard Brownian Motion, the result follows from the above definition of V' (\). We
also note that the limiting process is free of nuisance parameters, solely depending on the number
of parameters being tested under the null hypothesis and is tabulated in Andrews (1993, Table 1,
p. 840). For a more extensive set of p-values of the corresponding limiting distributions see also

Hansen (1997).

In the next proposition we summarise the limiting behaviour of the same Wald test statistic
when the system is assumed to be a p-dimensional pure I(1) process as AY; = u; or alternatively
I(1) but cointegrated as in AY; = af'Y;—1 + uy, with a and 8 having reduced ranks. In what
follows a standard Brownian Sheet W (s,t) is defined as a zero mean two-parameter Gaussian
process indexed by [0,1]? and having a covariance function given by Cov[W (s1,t1), W (s2,t2)] =
(s1 At1)(s2 Ate) while a Kiefer process K on [0,1]% is given by K(s,t) = W(s,t) —tW(s,1). The
Kiefer process is also a two-parameter Gaussian process with zero mean and covariance function

COU[K(Sl,tl), K(Sg,tg)] = (81 N 82)(t1 Nty — tltg).

10



Proposition 2 Under assumptions A1-A3, Hy : II; = Ily and Y; a p-dimensional I(1) vector

cointegrated or not:

s = Sunea gy ([ weae ) (['wewer)
( /0 WK /\)’) (8)

where K(r,\) is a Kiefer process given by K(r,\) = W(r,\) — AW (r,1) with W(.) denoting a

p-dimensional standard Brownian Motion and W (r,\) a p-dimensional standard Brownian Sheet.

Looking at the expression of the limiting distribution in Proposition 2, we again observe that
for given and known A the limiting random variable is x?(p?) exactly as occurred under the
purely stationary setup of proposition 1. This follows from the observation that W (r) and K(r, \)
are independent. Note that we have E[W (r)K(r,\)] = E[W (r)W(r,\)] — AE[W (r)?] and since
E[W (r)W (r,\)] = rX and E[W (r)?] = r the result follows. It also follows that the limiting random

variables in (7) and (8) are equivalent in distribution.

2.3 Simulation Based Evidence

Having established the limiting behaviour of the Wald statistic for testing the null of no threshold
effects within the VECM type representation we next explore the adequacy of the asymptotic
approximations presented in Propositions 1-2 when dealing with finite samples. This will also
allow us to explore the documented robustness of the above limiting distributions to the absence or
presence of unit roots and cointegration, and to the stochastic properties of the threshold variable

g+ when faced with limited sample sizes.

We initially consider a purely stationary bivariate DGP, as the model under the null hypothesis,
parameterised as Y; = ®Y;_1 + u; with & = diag(0.5,0.8) and uy = NID(0,I2). As a candidate
threshold variable required in the construction of the Wald statistic we consider two options. One
in which ¢; is taken to be a normal iid random variable (independent of u;, i = 1,2) and one where
qr follows a stationary AR(1) process given by ¢; = 0q;—1 + € with 6 = 0.5 and ¢, = NID(0,1)
with Cov(e,uis) = 0 Vi, s and ¢ = 1,2. Regarding the magnitude of the delay parameter we
set d = 1 throughout all our experiments, all conducted using samples of size T = 200, 400, 2000
across N = 5000 replications and with a 10% trimming of the sample space of the threshold

variable. Another important purpose of our experiments is to construct a range of critical values

11



for the distributions presented in (7)-(8) and compare them with the corresponding tabulations in
Andrews (1993, Table 1, p. 840). Results for the purely stationary system are presented in Table
1 below.

Table 1: Critical Values under an I(0) system and p* = 4

T 90% 95% 99%

gt : NID(0,1)
SupW | 200 | 14.946 16.909 21.246
SupW | 400 | 14.606 16.686 21.239
SupW 2000 | 14.762 16.596 20.741
q : AR(1)
SupW 200 | 15.135 17.252 21.331
SupW | 400 | 14.836 17.024 21.323
SupW | 2000 | 14.829 16.737 20.854
Andrews | oo | 14.940 16.980 21.040

The critical values tabulated in Table 1 suggest that the finite sample distributions of the Wald
statistic track their asymptotic counterpart (as judged by a sample of size T=2000) very accurately.
As discussed in Remark 1 above we can also observe that the critical values obtained in Andrews
(1993) are virtually identical to the ones obtained using our DGPs and multivariate framework
with thresholds (note that within our bivariate VAR we are testing for the presence of threshold

effects across p2 parameters).

In Tables 2 and 3 below we concentrated on the limiting and finite sample behaviour of the Wald
statistic for testing the absence of threshold effects when the true DGP is a system of I(1) variables.
Table 2 focuses on the case of a purely I(1) system with no cointegration, given by AY; = u; while
Table 3 focuses on a cointegrated system given Ay; = w1 and yor = 0.8y2r—1 + uge. In this latter
case the bivariate system is characterised by the presence of one stationary relationship and the
corresponding rank of the long run impact matrix is one. The dynamics of ¢; were maintained as

above in both sets of experiments.

Table 2: Critical Values under a pure I(1) system and p? = 4

12



T 90% 95% 99%
gt : NID(0,1)
SupW | 200 | 14.970 17.023 22.098
SupW | 400 | 14.858 18.578 21.205
SupW | 2000 | 15.012 16.947 20.967
gt AR(1)
SupW | 200 | 15.369 17.197 22.164
SupW | 400 | 14.948 18.527 21.358
SupW | 2000 | 14.904 16.840 21.212
Andrews | oo |14.940 16.980 21.040

Table 3: Critical Values under a cointegrated system and p? = 4

T 90% 95% 99%
q: NID(0,1)
SupW | 200 | 15.030 17.236 21.431
SupW | 400 | 14.685 16.879 20.926
SupW | 2000 | 14.723 16.739 20.911
q : AR(1)
SupW | 200 | 15.068 16.903 21.074
SupW | 400 | 15.150 17.040 21.153
SupW | 2000 | 14.961 16.758 21.013
Andrews | oo | 14.940 16.980 21.040

The empirical results presented in Tables 2-3 above clearly illustrate the robustness of the
limiting distributions to various parameterisations of the threshold variable. Our tabulations also
corroborate our earlier observation that the limiting distributions are unaffected by the presence

or absence of I(1) components.

3 Estimation of the Threshold Parameter

Once inferences based on the Wald test reject the null hypothesis of a linear VECM our next
objective is to obtain a consistent estimator of the threshold parameter. The model under which

we operate is now given by AY = II1Z; + IIsZs + U. We propose to obtain an estimator of ~y

13



based on the least squares principle. Letting U(y) = AY — II1(v)Z1(v) — () Za(v) we consider

7 = argmin|U()U (). (9)
~yel

Before establishing the large sample behaviour of 4 introduced in (9) it is important to highlight the
fact that a VECM type of representation with threshold effects as in (4) is compatible with either
a purely stationary Y; or a system of I(1) variables that is cointegrated in a conventional sense and
with threshold effects present in its adjustment process. Examples of such processes are provided
in (2) and (3) above while a formal discussion of the stationarity properties of Y; generated from

(4) is provided below.

The following proposition summarises the limiting behaviour of the threshold parameter esti-

mator defined above with vy referring to its true magnitude.

Proposition 3 Under assumptions (A1)-(A3) with Yy I(0) or I(1) but cointegrated and generated

as in (4) we have 4 2~y as T — co.

From the above proposition it is clear that the consistency property of the threshold parameter
estimator remains unaffected by the presence of I(1) components. In order to empirically illustrate
the above proposition, and explore the behaviour of 4 in smaller samples, we conducted a Monte-
Carlo experiment covering a range of parameterisations including purely stationary and cointegrated
systems. Our objective was to assess the finite sample performance of the least squares based

estimator of vy in moderate to large samples in terms of bias and variability.

For the purely stationary case we consider the specification introduced in (3), setting (p11, p21) =
(—0.8,—0.4) and (p12, p22) = (—0.2,—0.6). Regarding the choice of threshold variable we consider
the case of a purely Gaussian iid process as well as an AR(1) specification given by ¢ = 0.5q;—1 4+ uy
with u; = NID(0,1). The true threshold parameter is set to 79 = 0.25 under the AR(1) dynamics
and to 79 = 0 when ¢ is iid. The delay parameter is fixed at d = 1. For the cointegrated
case we consider a system given by yi; = 2ya + 2z with Aya; = e and 2z = 0.2z 11(qi—1 <
Y) + 0.82;—11(q1—1 > 70) + v, while retaining the same dynamics for ¢; and the same threshold

parameter configurations as above. Both €y and v are chosen as NID(0,1) random variables.

Results for these two classes of DGPs are presented in Table 4 below, which displays the
empirical mean and standard deviation of 4 estimated as in (9) using samples of size T' = 200 and

T = 400 across N = 5000 replications.
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Table 4: Empirical Mean and Standard Deviation of ¥

gt AR(1),7 =0.15 | ¢ iid,y =0

E(F)  Std(¥) E(y)  Std(9)
Stationary System

T =200 | 0.142 0.278 —0.014 0.247

T =400 | 0.145 0.108 —0.004 0.100

Cointegrated System
T =200 | 0.140 0.266 —0.006 0.229
T =400 | 0.144 0.101 —0.003 0.091

From both of the above experiments we note that 4 as defined in (9) displays a reasonably small
and negative finite sample bias of approximately 0.5% under both configurations of the dynamics
of the threshold variable and system properties. At the same time, however, we note that 4 is
characterised by a substantial variability across all model configurations. Its empirical standard
deviation is virtually twice the magnitude of «y under T=200 and, although clearly declining with
the sample size, remains substantial even under T=400. Similar features of threshold parameter

estimators have also been documented in Gonzalo and Pitarakis (2002).

Taking the presence of threshold effects as given together with the availability of a consistent
estimator of the unknown threshold parameter, our next concern is to explore further the stochastic

properties of the p-dimensional vector Y;.

4 Stochastic Properties of the System and Rank Configuration of
the VECM with Threshold Effects

So far the test developed in the previous sections allows us to decide whether the inclusion of
threshold effects into a VECM type specification is supported by the data. Given the simplicity
of its implementation, and the fact that the limiting distribution of the test statistic is unaffected
by the stationarity properties of the variables being modelled, the proposed Wald based inferences
can be viewed as a useful pre-test before implementing a formal analysis of the integration and
cointegration properties of the system. If the null hypothesis is not rejected for instance we can
proceed with the specification of a linear VECM using for instance the methodology developed in

Johansen (1995 and references therein).
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Our next concern is to explore the implications of the rejection of the null hypothesis of linearity
for the stability and, when applicable, cointegration properties of Y; whose dynamics are now known
to be described by the specification in (4). Although rejecting the hypothesis that IT; = ITy rules
out the scenario of a purely I(1) system with no cointegration as traditionally defined, since having
II; # IIy is trivially incompatible with the specification AY = U, as shown below, it remains
possible that the system is either purely covariance stationary or I(1) with cointegration in a sense

to be made clear (see for instance the formulation in (2) under example 1).

4.1 Stability Properties of the System

In the context of our specification in (4), and maintaining the notation ®; = I, + IT; and ®; =
I,, + Iy so that the system can be formulated as Y; = ®:Y; 1 + w4 with ®; = ®11(q;—q < ) +
®91(qi—q > ), the stability properties of the system are summarised in the following proposition

where for a square matrix M the notation p(M) refers its spectral radius.

Proposition 4 Under assumptions (A1)-(AS3), Y; generated from (4) is covariance stationary iff
PE(Y) (@1 @ ®1) + (1 - F(7))(®2© ®2)) < 1.

From the above proposition it is interesting to note that even if one of the two regimes has a root
on the unit circle the model could still be covariance stationary. In fact the system could even be
characterised by an explosive behaviour in one of its regimes while still being covariance stationary,
if for instance the magnitudes of the transition probabilities are such that switching occurs very
often. Note also that the condition ensuring the covariance stationarity of Y; is also equivalent to

requiring the eigenvalues of F[®; ® ®,] to have moduli less than one.

EXAMPLE 3: We can here consider the example of a bivariate process given by Y; = I2Y;_11(q1—q <
v) + @Y, 11(q—q > 7v) + uy and let @9 = ¢Is with |¢| < 1 where Iy denotes a two dimensional
identity matrix. This system can be seen to be characterised by a random walk type of behaviour

in one regime and is covariance stationary in the second regime. In matrix form we have

Ay 0 0 Yit—1
= I(gi—1 <)+
Ayoy 0 0 Yor—1
p—1 0 Y1e—1 €1t
I(gt—1>7)+ . (10)
0 ¢—1 Y2t—1 €2t
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Letting M = F(7)(®1 ® ®1) + (1 — F(7))(®2 @ ®2)), it is straightforward to establish that in
the case of (10) we have p(M) = F(v) + ¢*(1 — F(v)) < 1, since $? < 1 and thus implying that

Y: = (y1t, y2¢) is covariance stationary.

EXAMPLE 4: Another example of a covariance stationary system is given by

Ayt 0 O Yii—1
= I(gi—1 <)+
Aygt 0 ¢—1 Y2t—1
p—1 0 Y1t—1 €1t
I(g—1 > ) + (11)
0 0 Yat—1 €2t

for which we have p(M) = (1 — F(7))(1 — ¢)? < 1 if F(y) < 0.5, and p(M) = F(v)(1 — ¢)? <
1 if F(y) > 0.5. On the other hand, if we concentrate on the specification given in (2), it is
straighforward to establish that p(M) = 1 thus violating the requirement for Y; to be covariance

stationary.

For later use it is also important at this stage to observe the correspondence between the ranks
of the long run impact matrices presented in the above examples and the covariance stationarity of
each system. In example 3, for instance, we note that r; = Rank(II;) = 0 and ro = Rank(Ilz) = 2,
while in model (11) we have (r1,72) = (1,1). This highlights the fact that within a nonlinear
specification, as in (4), the correspondence between the rank structure of the long run impact
matrices and the stability/cointegration properties of the system will be less clearcut than within
a simple linear VECM. Before exploring further this issue it will be important to clarify the type
of threshold nonlinearities that are compatible with an I(1) system and its VECM representation

in (4).

4.2 I(1)’ness and Cointegration within a nonlinear VECM

The recent literature on the inclusion of nonlinear features in models with I(1) variables and coin-
tegration can typically be categorised into two strands. Single equation approaches, which aim to
detect the presence of nonlinearities in regressions with I(1) processes known to be cointegrated
(see Saikkonen and Choi (2004), Hong (2003), Arai (2004)). In Saikkonen and Choi (2004), for
instance, the authors included a smooth transition type of function ¢(.) within a postulated coin-
tegrating regression model of the form y1; = Byar + Oyor g(yar; v) + ur and proposed a methodology

for testing the null hypothesis of no such effects given here by Hy : § = 0. The presence of such
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nonlinearities within a cointegrating relationship implies some form of switching equilibria in the
sense that the cointegrating vector is allowed to be different depending on the magnitude of yo;.
In both Hong (2003) and Arai (2004), the authors focused on a similar setup without an explicit
choice of functional form. This was achieved through the inclusion of additional polynomial terms

in the y9 variable in the right hand side of a cointegrating regression.

Another strand of the same literature focused on the treatment of nonlinearities within a mul-
tivariate error correction framework. The motivation underlying this research was again to detect
the presence of nonlinear cointegration, but here defined as a nonlinear adjustment towards the
long run equilibrium while maintaining the assumption that the cointegration relationship is itself
linear. Another important maintained assumption in this line of research is the existence of a single
cointegrating vector (see Balke and Fomby (1997), Seo and Hansen (2002), Seo (2004)). Regarding
the theoretical properties of multivariate models with nonlinearities, Bec and Rahbek (2004) have
explored the strict stationarity and ergodicity properties of multivariate error correction models

with general cointegrating rank and nonlinearities in their adjustment process.

One aspect that seems not to have been emphasised in the literature is the fact that, when
operating within a VECM type framework, an important aspect of restricting the presence of
nonlinearity to occur solely in the adjustment process stems from representation concerns. More
specifically it can be shown that two I(1) variables that are linearly cointegrated but with a nonlinear
adjustment process continue to admit a “nonlinear” VECM representation similar to (4) above.
If we also wish to explore the possibility of nonlinearities in the cointegrating relationship itself

however it becomes difficult to justify the existence of a VECM representation a la Granger.

To highlight this point let us consider the following simple nonlinear cointegrating relationship

which is characterised by the presence of a threshold type of nonlinearity

yie = By +O0y2l(q—1 > ) + 2
Ay = e
Azy = pze—1+ uyg. (12)

with p < 0 and z; representing the stationary equilibrium error.

If we were in a linear setup with 6 = 0 it would be straightforward to reformulate the above

specification as Ayyy = pzi—1 + v, with vy = uy + Begr, and we would have a traditional VECM
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representation with p playing the role of the adjustment coefficient to equilibrium and 2z, =
(y1:—1 — Pyat—1) denoting the previous period’s equilibrium error. At this stage it is important to
note that a key aspect of the linear setup that allows us to move towards an ECM type representation
is the fact that taking yo; to be an I(1) variable, as in (12), directly implies that yi¢ is also difference
stationary since taking the first difference of both sides of the first equation gives Ay = BAys:+Az;

and both the left and right hand side are characterised by the same integration properties.

When we introduce nonlinearities in the relationship linking y1; and y9;, however, the stochas-
tic properties of the system become less obvious. Specifically, taking yo; to be I(1) or equivalently
difference stationary no longer implies that yq; is also difference stationary. Indeed, it becomes
straightforward to show that although the I(1)’ness of y; makes y;; nonstationary this nonstation-
arity of y1; can no longer be removed by first differencing. Differently put, although the variance
of y1¢+ behaves in a manner similar to the variance of a random walk, first differencing y1; will no
longer make it stationary. More formally, if we take the first difference of the first equation in (12)

and using the notation I; = I(g; > ) we have

Ay = [Ayy + 0A(yaeli—1) + Az

= pz—1 + 0y 1AL+ (13)

where vy = e ly_1 + PBegy + uy. Clearly the presence of the term w9 1Al;, in the right hand
side of (13) precludes the possibility of a traditional ECM type representation & la Granger. If
we take ¢; to be an iid process for instance it is straightforward to establish that V(yo—1AL) =
2F(y)(1 — F(7))(t — 1). Similarly, y1; cannot really be viewed as a difference stationary process
as would have been the case within a linear framework. As dicussed in Granger, Inoue and Morin
(1997), where the authors introduced a specification similar to (13), the correct but not directly

operational form of the error correction model could be formulated as
Ay — Oy 1AL1 = pz1+ v

where now both the left and right hand side components are stationary. Practical tools and their
theoretical properties for handling models such as the above are developed in Gonzalo and Pitarakis

(2005a).

Our specification in (13) has highlighted the difficulties of handling switching phenomena within

the cointegrating relationship itself if we want to operate within the traditional VECM framework.
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It is also worth emphasising that similar conceptual difficulties will arise in non-VECM based
approaches to the treatment of nonlinearities in cointegrating relationships. Writing y1; = Bryor +ue,
with yo; an I(1) variable and u; an I(0) error term, defines a stationary relationship between y¢
and y9; which is not invalid per se. However, it would be inaccurate to refer to it as a cointegrating
relationship linking two I(1) variables since y3; cannot be difference stationary due to the time

varying nature of ;.

In summary, a system such as (12) which has a switching cointegrating vector cannot admit a
VECM representation as in (4) in which both the left and right hand sides are balanced in the sense
of both being stationary. Equivalently, for an I(1) vector to admit a formal VECM representation

as in (4) it must be the case that the threshold effects are solely present in the adjustment process.

4.3 Rank Configuration under Alternative Stochastic Properties of Y,

Our objective here is to further explore the correspondence between the rank characteristics of Il
and Ils and the stability properties of Y; akin to the well known relationship between the rank
of the long run impact matrix of a linear VECM specification and its cointegration properties.
We are interested for instance in the rank configurations of II; and II, that are consistent with
covariance stationarity of Y;. Similarly, we also wish to explore the correspondence between the
presence of threshold effects in the adjustment process of a cointegrated I(1) system and the rank

configurations of the two long run impact matrices that are compatible with such a system.

Within a linear VECM specification, whose corresponding lag polynomial has roots either on
or outside the unit circle, it is well known that having matrix IT that has full rank also implies
that the underlying process is I(0). Although, from our result in proposition 4 it is straightforward
to see that if both or either of IIy and IIy have full rank then Y; generated from (4) is going
to be covariance stationary as well, it is also true that the full rank condition is not necessary for
covariance stationarity. Our examples in (2) and (11), for instance, have illustrated the fact that two
identical rank configurations, say (r1,72) = (1,1) may be compatible with either a purely I(1) system
as in (2) or a covariance stationary system as in (11). Similarly, example 3 with (r;,72) = (0,2)
illustrated the possibility of having a covariance stationary DGP in which either IT; or Ils have
zero rank. These observations highlight the difficulties that may arise when attempting to clearly

define the meaning of “nonlinear cointegration” when operating within an Error Correction type
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of model.

Drawing from our analysis in section 4.2, if we take the a priori view that Y; is I(1) and (4) is the
correct specification it must then be the case that the rejection of the null hypothesis of linearity
Hy : I1; = Il directly implies that we have threshold cointegration, here undestood to mean that
the adjustment process has a threshold type nonlinearity driven by the external variable ¢; while
the cointegrating relationship itself is stable over time. Differently put, we can formulate IT; and

H2 as H1 = alﬁ' and ]._.[2 = OlQ,@/.

At this stage it is also important to note that even under the maintained assumption that the
cointegrating relationship itself is linear, and is not characterised by threshold effects, this does
necessarily imply that IT; and ITo must have identical ranks. This feature of the system can be
illustrated by considering our earlier example in (2) in which we set p; = 0 and py < 0. This
specific parameterisation implies, for instance, that r1 = Rank(IIy) = 0 and ro = Rank(Ily) =
1. Alternatively, we could also have set po = 0 and p; < 0 implying the rank configuration
(ri,m2) = (1,0) within the same example. Obviously our system could also be characterised by
a parameterisation such as p; < 0 and ps < 0 with a corresponding rank configuration given by

(r1,72) = (1,1) as in example 1.

Using our result in proposition 4, and our discussion above, it is straightforward to observe
that within a sytem whose characteristic roots may lie either on or outside the complex unit
circle (excluding roots that induce explosive behaviour) I(1)’ness with cointegration characterised
by threshold adjustment may only occur if the rank configuration of II; and Il is such that
(r1,m2) € {(0,1),(1,0),(1,1)}. Note, however, that the scenario whereby (r1,72) = (1,1) may also
be compatible with a purely stationary Y; as for instance in example 2 above with p;; = 0 and
p12 = 0 among other possible configurations. At this stage it is also important to recall that within
our operating framework cases involving processes that are integrated with an order higher than one

are ruled out. The above observations are summarised more formally in the following proposition.

Proposition 5 Letting r; = Rank(IL;) for j = 1,2 and assuming that p = 2, we have that (i) Y;
is covariance stationary if either r1 or ry is equal to 2, (ii) Y: is 1(1) with threshold cointegration
if (r1,m2) = (0,1) or (r1,7m2) = (1,0), (i) Y: is either covariance stationary or I(1) with threshold

cointegration if r1 = ro = 1.
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According to the above proposition, even if at most one of the two long run impact matrices
characterising the model in (4) is found to have full rank it must be that Y; itself is covariance
stationary. On the other hand if we have a rank configuration such as (r1,r2) = (0,1) or (r1,72) =
(1,0) then this would imply that Y; described by (4) is I(1) and the model is characterised by
threshold effects in its adjustment process towards its long run equilibrium. Intuitively, such a
rank configuration captures the idea of an adjustment process that shuts off when the threshold
variable ¢; crosses above or below a certain magnitude given by ~. Finally, the case whereby
(r1,72) = (1,1) is compatible with either a purely covariance stationary system or an I(1) system
with an underlying adjustment process characterised by different speeds of adjustment depending

on the magnitude of g;.

4.4 Estimation of r; and 7

Having established the correspondence between alternative rank configurations and the stochastic
properties of Y;, our next objective is to estimate each individual rank r; and 3. In what follows we
will take the view that Y; is known to be I(1), so that the rejection of the null hypothesis of linearity
directly implies threshold effects in the adjustment process towards equilibrium. Furthermore,
for the simplicity of the exposition, we will be assuming that the system under consideration is
bivariate, setting p = 2 in (4). Thus we wish to decide whether (r1,72) = (0, 1), (r1,72) = (1,0) or
(r1,72) = (1,1) in the true specification. Note that any other configuration of (r1,72) would imply

that Y; is covariance stationary and is therefore ruled out by our operating framework.

Before introducing our proposed methodology for estimating r; and ro we define the following
sample quantities. We let A/\Yl = AY xI(q < %), A/\Yg = AY % I(q > %) and Z1 and Zs are
as in (4) with ~ replaced with its estimated counterpart 4. The residual vector is obtained as
U=AY — 11,7, — I1,Z5 and we also define U; = A/\Yl — 117 and Uy = A/\YQ — f.[zZQ, from which
we note the equality Q = Q; + Qo where Qy = U,U}/T, Qy = UpUs)T and Q = UU'/T. For later
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use we also introduce the following moment matrices corresponding to each regime j

A 2.7
<Y _ I~
11 T ?
—
[ - AY;AY;
00 T ’
AN ol
g — Y
01 T ?
Slo = (Sp) (14)

with j = 1,2. Using (14) we can now reformulate the estimated covariance matrices as Qj =
Séo - Sgl(S{l)*lS{O Jj = 1,2, and for later use it will also be useful to note that the eigenvalues of

(5’30)*15’61(5{1)*15{0 are the same as those of I — (SSO)*lﬂj for j =1,2.

We now propose to estimate the unknown ranks of IT; and Ils using a model selection approach
as introduced and investigated in Gonzalo and Pitarakis (1998, 1999, 2002). We view the problem
of the estimation of r1 and ro from a model selection perspective in which our main task is to
select the optimal model among a portfolio of nested specifications. The selection is made via
the optimisation of a penalised objective function. The latter has one component which decreases
as the number of estimated parameters increases (e.g. as r; increases) and another component
that increases to penalise overfitting. The use of a model selection based approach for inferences
similar to the above has been advocated in numerous related areas of the econometric literature. In
Gonzalo and Pitarakis (2002), for instance, the authors explore the properties of a model selection
based approach for estimating the number of regimes of a stationary time series characterised by
threshold effects. In Cragg and Donald (1997), the authors used AIC and BIC type criteria for
estimating the rank of a normally distributed matrix. Similarly, in Phillips and Chao (1999) the
authors developed a new information theoretic criterion used to determine the rank and short run

dynamics of an error correction models.

Formally, letting Qj (rj) denote the sample covariance matrices obtained from each regime char-

acterising (4) under the restriction that rank(Il;) = r;, our estimator of r; is defined as
r; = argminICj(r;) (15)
rj
where

1C(rj) = In[Q(rj)] + Fm(ry) (16)
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with m(r;) denoting the number of estimated parameters (here m(r;) = 2pr; — rf) and cr a

deterministic penalty term. Next, using the fact that

rj

In|Q;(rj)] = In|Shl+> (1-A) (17)
=1

and noting that 5’60 is independent of the magnitude of r;, we can instead focus on the optimisation

of the following modified criterion
rj
IC’(rj):len(l—)\g)—i—T(2prj—rj). (18)
1=

A clear advantage of using (18) stems from the simplicity of its empirical implementation,
requiring solely the availability of the eigenvalues of I — (Sgo)*lﬂj for j = 1,2. It is also interesting
to observe the close similarity between conducting inferences using (18) and, for instance, a formal
likelihood ratio based testing procedure. Focusing on the estimation of ry for instance our model
selection based approach involves selecting 71 = 0 as the optimal choice if IC(ry = 0) < IC(r; = 1)
and 71 = 1 if IC(ry = 1) < IC(r; = 0). Equivalently, the model selection based approach points
to 7y = 1 if —T'In(1 — /A\%) > 3cr and to 71 = 0 otherwise under a bivariate setting. This is
equivalent to the formulation of a likelihood ratio statistic for testing the null Hy : 1 = 0 against
Hy : r1 = 1, except that here the decision rule is dictated by the magnitude of the penalty term and
the number of estimated parameters. A formal distribution theory for an LR test based approach
for the determination of r; and ry & la Johansen can be found in Gonzalo and Pitarakis (2005a).
We next summarise the asymptotic properties of the model selection approach in the following

proposition.

Proposition 6 Letting 7’? denote the true rank of Il; for j = 1,2 and 7; defined as in (15), with

cr such that (i) cp — oo and (it) cp/T — 0 as T — oo, we have 7 EN r?,

The above proposition establishes the weak consistency of the rank estimators obtained through the
model selection based approach. A possible candidate for the choice of the penalty term satisfying
both (i) and (ii) is ¢ = InT corresponding to the well known BIC type criterion. It is clear,
however, that other functionals of the sample size may be equally valid (e.g. ¢p = 2InlnT) making

it difficult to argue in favour of a universally optimal criterion.

Having established the limiting properties of our rank estimators we next concentrate on their

finite and large sample performance across a wide range of possible model configurations. Following
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Gonzalo and Pitarakis (2002) we implement our experiments using ¢y = InT" as the penalty term

in (18).

We initially consider the DGP given in (2) under example 1. We have a bivariate system that
is I(1) with a single cointegrating vector (1, —3). We set 8 = 2 and consider (p1, p2) = (0, —0.4) so
that the system is characterised by a true rank configuration given by (r1,72) = (0,1). In a second
set of experiments we set (p1, p2) = (—0.2, —0.6) so that this second system has (r1,72) = (1,1). Our
results are summarised in Table 5 below, which presents the decision frequencies for each possible
magnitude of r;. Throughout all our experiments ¢; is assumed to follow the AR(1) process given
by ¢ = 0.5¢;—1 + €; with ¢, = 1id(0, 1) and the true threshold parameter is set at 79 = 0. As in our

earlier experiments the delay parameter is set at d = 1 throughout.

Table 5: Decision Frequencies in an I(1) System

F1=0 =1 F1=2|Pa=0 fo=1 =2
(1) =0,70=1),8=2,(p1,p2) = (0.0,—0.4)
T =200 | 85.26 14.74 0.00 | 0.00 100.00 0.00
T =400 | 9342 658  0.00 | 0.00 100.00 0.00
T =1000 | 100.00 0.00  0.00 | 0.00 100.00 0.00
(r{ =1,18 =1),8=2,(p1, p2) = (—0.2,-0.6)
T =200 | 34.76 6524 0.00 | 0.02 99.98 0.00
T =400 | 10.16 89.84 0.00 | 0.00 100.00 0.00
T =1000| 0.00 100.00 0.00 | 0.00 100.00 0.00
(1) =1,70=0),8=2,(p1,p2) = (—0.4,0.0)
T =200 | 0.02 9998 0.00 | 84.76 15.24  0.00
T =400 | 0.00 100.00 0.00 | 93.50 0.00  0.00
T =1000| 0.00 100.00 0.00 |100.00 0.00  0.00

From the decision frequencies presented in Table 5 above it is clear that the proposed model se-
lection procedure performs remarkably well across the three alternative specifications. As expected
from our result in Proposition 6 it is pointing to the true magnitude of each rank 100% of the
times under T=1000, while maintaining very high correct decision frequencies even under T=200.
Under the specification in (2), for instance, with (r{,7J) = (0, 1), the procedure picked r; = 0 about
85% of the times and 7o = 1 100% of the times under T=200, with the correct decision frequency
increasing to about (93%, 100%) under T=400.
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To provide further empirical support for our proposed approach we next consider a set of
threshold DGPs that restrict Y; to be covariance stationary. For this purpose we have focused on
the specification given in (3) under example 2 and considered two alternative rank configurations.
First, imposing (p11, p12) = (0,0) and (pa21, p22) = (—0.2,—0.4) we have a covariance stationary
system with (r1,72) = (0,2). Second, setting (p11, p12, p21,p22) = (—0.4,0.0,0.0,—0.2) we have
another covariance stationary system this time with (r;,72) = (1,1). All simulation results are

presented in Table 6 below.

Table 6: Decision Frequencies in a Stationary System

71=0 r1=1 F1=2|170=0 fo=1 To =2
(r) = 0,79 = 2), (p11, p12, p21, p22) = (0.0,0.0, —0.2, —0.4)
T =200 | 88.36 10.24 1.40 0.00 0.00 100.00
T =400 | 94.16 5.32 0.52 0.00 0.00 100.00
T = 1000 | 100.00 0.00 0.00 0.00 0.00 100.00
(r) = 1,79 = 1), (p11, p12, p21, p22) = (—0.4,0.0,0.0, -0.2)
T=200 | 000 8690 13.10 | 0.56 86.94 12.50
T =400 | 0.00 90.38 0.00 0.00 91.00 9.00
T =1000| 0.00 92.64 7.36 0.00 92.96 7.04

From the empirical decision frequencies presented above it is again the case that the various es-
timators of r; and r9 point to their true counterparts as 7' is allowed to increase. Although the
accuracy of the estimators is somehow determined by the DGP specific parameters it is also clear
that under both experiments the frequency of pointing to the true rank is high, reaching levels

ranging between 90 and 100% accuracy.

5 A Nonlinear Permanent and Transitory Decomposition

Having established the threshold cointegration properties of Y;, we next investigate how this vector
process of interest can be decomposed into a permanent and transitory component following the

methodology developed in Gonzalo and Granger (1995).

Recall that in the linear case with Y; following a VECM of the form AY; = a3'Y; + u; we are
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interested in decomposing the p-dimensional vector Y; into two sets of components as
Y, = Afi+Y, (19)

where A; is the p x (p — r) loading matrix, f; the (p—r) x 1 common I(1) factors and Y; is the I(0)
component. The above decomposition of Y; is such that the factors f; are linear combinations of
Y; and A; f; and Y; form a Permanent-Transitory decomposition (see Gonzalo and Granger (1995)

for the detailed definitions of each component).

As shown in Gonzalo and Granger (1995), the above two conditions are sufficient to identify

the permanent and transitory components. Formally we can write
i = Aifi + Aszy (20)
with f; = a Yy, 2 = B'Y; and A; = B, (¢!, 1) 71, A2 = a(B'a)~t. Note that o/, a = 3|3 =0.

Now, let us consider the following VECM with threshold effects

AY; = a1Y 1 I(q-a < ) + a2B'Ye 1 I (qi—a > ) + us.

Following the same reasoning as in Gonzalo and Granger (1995) it is now straightforward to establish

the following Threshold Permanent-Transitory decomposition for Y;

i = Aifud(g—a <)+ Asforl(qi—a > v) + (A3l (qi—a < ¥) + Aal(qe—a > 7))z (21)

where f1; = 0/1 Yy, for = a1 Y and 2z = B'Y;. The corresponding loading matrices are then
given by A; = B1(af,81)7Y, A2 = Bi(ay, A1) and similarly A3 = a1(Baq)”! and Ay =
as(f'az)~t. Given our estimator of the threshold parameter  defined in (9) together with the
corresponding sample moment matrices introduced in (14), the practical implementation of the
above Threshold Permanent and Transitory decomposition becomes straightforward (see Gonzalo
and Pitarakis (2005b)) and is obtained following the same approach as in Gonzalo and Granger

(1995).

Despite the representational complications that would arise if we were to also allow the coin-
tegrating vector 3 to be characterised by the presence of threshold effects as say 0 = 11(¢—q <
v) + B2l(qi—a > ) (see our discussion in section 4.2) the above threshold based decomposi-

tion would translate naturally to such a framework by reformulating it as Y; = Aifi11/(qt—q <
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Y) 4 Az forl (qi—a > v) + Azz1e I (qe—a < ¥) + AszoI (qr—q > ), with 21y = B1Y:, 221 = B5Y;. The cor-
responding loading matrices would then be given by A; = ﬂu(a’uﬁu)_l, Ay = BQJ_(a’uﬂu)_l,

Az = oy (ﬁial)_l and A4 = ag(ﬁéOzQ)_l.

6 Conclusions

This chapter has focused on the issue of introducing and testing for threshold type nonlinear
behaviour into the conventional multivariate error correction model. The threshold nonlinearities
we considered were driven by a stationary and external random variable triggering the regime
switches. Within this context we obtained the limiting properties of a Wald type test statistic for
testing for the presence of such threshold effects characterising the long run impact matrix of the
VECM. An interesting property of the proposed test is its robustness to the presence or absence
of unit roots in the system, displaying the same limiting null distribution under a wide range of

stochastic properties of the system.

We subsequently proceeded with the interpretation and further analysis of the system following
a rejection of the null hypothesis of linearity. We showed that cointegration as traditionally defined
was compatible with such an error correction type specification only if the nonlinearities are present
in the adjustment process rather than the long run equilibrium itself. We then introduced a model
selection based approach designed to gain further insight into the stochastic properties of the system
through the determination of the rank structure of the long run impact matrices characterising each
regime. This then allowed us to extend the permanent and transitory decomposition of Gonzalo

and Granger (1995) into a nonlinear permanent and transitory decomposition.

Much remains to be done in the area of nonlinear multivariate specifications such as the
VAR/VECMs considered here. In this chapter for instance we restricted our analysis to mod-
els with no deterministic trends. Similarly our results also ignored the possibility of having such
components together with the lagged dependent variables and cointegrating vectors display thresh-
old switching behaviour. Extensions along these lines together with a formal representation theory

for such models are topics currently being investigated by the authors.
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APPENDIX

Lemma A1l: Under assumptions A1-A3 and Y; a p-dimensional vector of I(0) variables we have

as T — o
0 22 2 g=pz2),
w) B2 2 Py, 2% 1 - r)a,
(d) UTZ/ 20, UTZ; 20 forj=1,2,
(e) L Q,.

where (Q denotes a positive definite p X p matriz.

Proof: Under the stated assumptions parts (a) and (d) follow directly from the ergodic theorem.

Parts (b) and (d) follow from Lemma 1 in Hansen (1996) and part (e) is obvious.

1
Lemma A2: Letting Hr(y) = ﬁ(Zl ®@I)vec U, under assumptions A1-A3 and Y: a p-dimensional

vector of 1(0) variables we have Hr(y) = H(vy) as T — oo, where H(7Y) is a zero mean gaussian

process with covariance kernel F(y1 A ¥2)(Q ® ).

Proof: The use of the central limit therem for martingale differences applied to the sequence
{Yic1uiI(g—q < 7)} leads to the required gaussianity for each v € I". This combined with the
componentwise tightness of Hr(y) which follows from Hansen (1996, Theorem 1) leads to the

desired result.

Proof of Proposition 1: From Lemma A1 it directly follows that
(2:25/T)(22')T) (Z121/T) @ Q" 5 F()(1-F(7)Q e Q! (22)
and the Wald statistic in (6) can be formulated as

Wr(y) = F()1 - FMWT(71 - #2)(Q ® Q, " WT (1 — #2) + 0p(1). (23)
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Standard least squares algebra together with Lemma A1 also imply

VT (71 —m) = VT[(Z12})7 21 @ Lvec U
= 212 i vec
) o] o
1
= ) (Q ® I, )T(Zl ® Iy )vec U + 0p(1) (24)
and
N -1
VT (7ty —m) = (ZZTZ2> ® I, \/1T(Z2 ® Ip)vec U
— (1_;(7))(@—1 ® Ip)\/lf(z2 ® Ip)vec U + op(1). (25)
Combining (24) and (25) above and using the fact that Zy = Z — Z; we have
L Q') 1 1
VT (71 — 75) = Fo) A= F () [\/T(Zl ® Ivec U — F('y)ﬁ(Z ® Ivec U} + 0,(1).(26)

We can now write the Wald statistic as

b
VT

[\;T(Zl ® IvecU — F(v)

Wr(vy) = [ (Z1 @ IvecU — F(7) (Z ® I)vch} V(y)!

SRR

(Z ® I)vch} + 0p(1). (27)

where V(7) = F(7)(1-F(7))(Q®%Qy). Next letting Gr(v) = [(Z1@1)vecU —F () (Z&1)vecU] VT,

Lemmas A1-A2 together with the fact that —=(Z ® I')vec U < N(0,Q ®,,) which follows directly

f
from the CLT imply Gr(y) = G(v), where G(7) is a zero mean gaussian random vector with
covariance E[G(71)G(y2)] =V (11 Avy2) = F(yi Av2)(1 — F(y1 Ay2))(Q ® Q). It now follows that
the limiting distribution of the Wald statistic Wz (v) is given by Wr(v) = G(7)'V (y)"'G(y) and

the final result follows from the continuous mapping theorem.

Lemma A3: Under assumptions A1-A3 and Yy a p-dimensional vector of I(1) variables with

AY = U we have as T — 00
ZZ/ 1
(a) - :/ W (r)W (r) dr
0

/ 1
(b) Z}fl = F(’y)/o W (r)W () dr

© 22 = - re) [ wioweyd
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where W (r) = (Wi(r),...,Wp(r)) is a p-dimensional standard Brownian Motion.

Proof: Part (a) follows directly from Phillips and Durlauf (1986). For part (b) we first write

07 zz'"  Whw{
2 = PO+ =

(28)

where W1 W] stacks the elements of the form Y; 1Y) ;(I(¢t—a < v) — F(7)). It now suffices to

show that W;;V{ = 0p(1). Welet Sy = S>'_ (I(q—1 < ) — F(v)) and with no loss of generality

set d = 1 and take zero initial conditions. Using summation by parts we can write Zthl(I (-1 <
v)—F(y)Yi1Y/ | = Sr1YrY] — ZtT;f Si(Yip1Y/ | —YiYY). Next using the fact that Y; 1Y/ | =

Y YY + Yiuy g + w1 Yy + uppruy we also have

1 Sroa YrYy 1 1 —
WL = SR o g Yo Vi Si— g > weaYYSi -
t=1 t=1
1 T-1 1 T-1
72 D (g — Q)8 — 0y S (29)
t=1 t=1

Under the maintained assumptions the ergodic theorem ensures that Sp_; /T 2,0, Since YTYT’ /T is
stochastically bounded it thus follows that the first term in the right hand side of (29) is 0,(1). Next,
we consider the components y;1uj141S;. We have E [yituthSt} = 0 and it is also straightforward to

establish that

| -1 2
TlgTéOE TQtzlyit—lujtSt =0

and both the second and third terms in the right hand side of (29) are also 0,(1). Proceeding
similarly, the third and fourth components can also be seen to be 0,(1) and the final result follows

from (a). Part (c) can be shown to hold in exactly the same manner as part (b).

Lemma A4: Under assumptions A1-A3 and Yy a p-dimensional vector of I(1) variables with

AY = U we have as T — 00

(a) %(Z ® I,)vec U = vec [/01 dW(r)W(r)’}

) %(z1 @ I)vee U = vec [ /0 W F(’y))W(r)’}

Proof: Part (a) follows directly from Phillips and Durlauf (1986). For part (b), the result

follows from Lp(vy) = ﬁ ZE? ul(g—1 <) = W(r,F(vy)) where W(r, F(y)) denotes a standard
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Brownian Sheet (see Theorem 1 in Diebolt, Laib and Wandji (1997)) and Theorem 2 in Caner and
Hansen (2001).

Proof of Proposition 2 We assume that the underlying null model is a pure unit root process as

AY = U. Within the present I(1) framework we consider the following normalisation of the Wald

-1
() ()" (3 oo
T2 T2 T2 u

and with no loss of generality in what follows we will impose €, = I,. Next, from Lemma A3 it

statistic

T(ﬁ'l —frg)/ T(frl —frg).

follows that

-1
() (%) (5=
T2 T2 T2 “

and we formulate the test statistic of interest as

1
= F(y)(l—F(v))/O W (r)W(r)'dr® I,. (30)

1
W@W%:ﬂﬂﬂ—Fﬁﬂﬂﬁ—ﬁﬁ{/VWHWVW”®%ynﬁ—*ﬂ+%G)
0
We next focus on the large sample behaviour of T'(7; —7r2) when the true DGP is given by AY = U.
ZZ\ 7!
(7)) e
1 1

< /0 1 W(r)W(r)’dr) Y

Proceeding similarly for 79 and rearranging as above we have

We have

1
T(Zl ® Ip)vec U

%(Zl ® Ip)vec U + 0p(1). (31)

F(v)

1 —1
< / WW’) ® I,
0

Next, using Lemma A4 it follows that

1
F(y)(1 = F(v))

1

T(7, — 79) = -

(Z @ I,)vec U}

[;(Zl ® Ip)vec U — F ()

1

-l 1
T(Zl ® IvecU — F(’y)%(Z ® IvecU = wec _/0 dW (r, F(v))W(r)'] — F(vy)vec [/0 dW (r, 1)W(7°)’}
-l

= vec /0 [dW (r, F(vy)) — F(y)dW (r, 1)]W(T)/}

= wec /0 1 dK (r, F(fy))W(r)’} (32)
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where we let K(r, F(y)) = W(r,F(y)) — F(y)W(r,1). Using the above in the expression of the
Wald test statistic and rearranging we obtain the required result. The case for a cointegrated

system follows along the same lines.

Proof of Proposition 3 From U(v) =AY — 1117, — IIyZ + U we can write

~

~ N A~ ~ / ~ /
U(OG) = (AY -T2 — TaZy)(AY' - ZiET, — Z1L)

= AYAY' — AYZ(Z12)) ' 21 AY — AY Z5(Z2Z5) P Zo AY (33)

where we made use of the fact that Z,Z; =0Vi # jand 4,5 = 1,2. Next, letting vy denote the
true threshold parameter we write the model evaluated at 4y as AY = I3 Z) + I3 ZY + U where
7Y = (yoI(qo—a < 70)s--- yr—11(qr—q < 7)) and Z9 = Z — Z9 with Z)ZY = 0. Inserting into

(33) and rearranging gives

U)U(y) =T, 20 2910 + M, 29 Z9TT) + 210, 20U + 210, 29U + UU' — 11, 29 My Z9'TT —
I, Z9 My ZY'TT) — 210, Z) My Z9'TY), — 210, Z9 MU' — 2T1, Z9M U’ — UM U’ — T1 Z9 My Z)'TT) —
M2 Z9 My Z9'TT, — 210 Z9 Mo Z9'TY) — 2114 Z9 MU' — 2T Z9 MU' — U MU’

where My = Z}(Z1Z})"'Zy and My = Z5(Z275) =1 Z,. We next evaluate the limiting behaviour of
the above quantity for v < 9, v = 70 and v > 7. Applying appropriate normalisations we obtain

the following uniform convergence in probability result over v € I" for the case v < g

UU(~)

T % (I = IL)[(G(0) = GG = G(1)) (G = Gl70))](IL — ILz)' + 9,

(F(0) = F(7))(1 = F(%0))
1= F(v)

Proceeding similarly for the case v > ~9 we have

(Hl — HQ)Q(Hl - HQ)/ + Qu (34)

(W L (I - I)[G(10)G () (G (v) — G(v))](IT; — ILy)’ + Q,
F(v0)(F(v) — F(v0))

PO (TT; — TI)Q(II; — II,)' + Q,.

Finally with

A~ A

U(70)U (7o)’ »

Qu
T

we have that the objective function converges uniformly in probability to a nonstochastic limit that
is uniquely minimised at v = g and the required result follows from Theorem 2.1 in Newey and

McFadden (1994).
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Proof of Proposition 4: We are interested in the covariance stationarity of the stochastic
recurrence given by Y; = ®1Y, 1[1;_qg + ®oYi_110;_ 4 + u; where we use the notation I;_4 =
I(g—q <) and Iy;_q = I(q—q > 7). Note first that given assumption A2 we have E[Y;_1l1;—_4] =
ElLi_q|EYi—1] = F(7)E[Y:—1] and E[Yi—112t—1] = (1 = F(v))E[Y:—1]. With ¥; denoting a solution

to the stochastic recurrence we have V¢ E[Y;] = 0 and

EYY)] = E[®1Y; 1Y 1®111i1] + E[®Y; 1Y/ Polor 1] + Elusuy)

= F(m®LEY; 1Y/ |]®1+ (1 — F(7)82E[Y; 1Y/ 1] P2 + Q.

Letting V; = E[Y;Y/] the above stochastic difference equation can be written more compactly
as Vi = F(7)®1V;1®) + (1 — F(7)) P2V, 1P, + Q,. Next, vectorising both sides and letting
vy = vee(Vy) and w = vec(Qy,) we have vy = [F(7)(®1@®1)+ (1 — F(7))(P2 @ ®2)]v4—1 + w.
For Y, to be covariance stationary it is thus necessary that V; converges and this is ensured by
the requirement that p(F(7)(®1 ® ®1) + (1 — F(7))(®2 ® ®2)) < 1. Following the same line
of proof as in Brandt (1986) and Karlsen (1990) it is also straightforward to establish that if
P(E(y)(@1@P1)+(1—F (7)) (P22 P2)) < 1 then the above stochastic recurrence admits a unique
covariance stationary solution. We can thus conclude that the above threshold VAR admits a

unique covariance stationary solution if and only if p(F(7)(®1® ®1) + (1 — F(7))(P2® ®2)) < 1

Proof of Proposition 6: We first consider the case r; > r? and establish that under the
stated conditions P[IC(r;) < IC(r°)] — 0 as T — oo. From the definition of IC(.) in (18)
we have P[IC(r;) < IC(r?)] = P[- TZZ Loy In(1— 5\{) > ep(2pr; — 2prY — T‘]2~ + (r%)?)]. Since
-T Zl o (1 — /A\i ) is Op(1) and the right hand side diverges towards infinity we have that
limy_, P[IC(rj) < IC(r®)] = 0 and thus the procedure does not overrank asymptotically. For the
case r; < r¥ we have P[IC(r;) < IC(r?)] = P[Z;L__H In(1 — M) < F2pr® — (%) 4+ 77 — 2pry)].
Since — Zgirﬁll (1-M) 20 >0and & — 0 it follows that for r; < 0, limp_., P[IC(r;) <

I1C(r%)] = 0 as required.
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