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UNIVERSITY OF SOUTHAMPTON

ABSTRACT
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School of Physics and Astronomy

Southampton High Energy Physics

Doctor of Philosophy

ON DISCRETE FLAVOUR SYMMETRIES, NEUTRINO MASS AND
MIXING

by lain Ker Cooper

Neutrino mixing is a thriving area of particle physics research, with the recent dis-
covery of non-zero 63 inspiring a large amount of research into the field. This thesis
presents two models which aim to explain the observed neutrino mixing patterns in
the context of Grand Unified Theories, which also output quark masses and mixings.

A model predicting Tri-Bimaximal mixing is presented which combines a pre-
viously published SU(5) model with an A, family symmetry. Extra adjoint fermionic
matter is present as prescribed by the original Unified model, and this provides 2
seesaw particles; however they are constrained to give the same contribution to neu-
trino mixing once the flavour symmetry is imposed. This motivates the addition of
an extra field in order to obtain two non-zero neutrino masses. This model has the
desirable property of having a diagonal Majorana sector, something which is normally
assumed in such models.

In order to explain the discovery of non-zero 013, a second model is presented
which produces Tri-Maximal mixing, a perturbed version of Tri-Bimaximal mixing
which retains the solar prediction whilst changing the atmospheric and reactor pre-
dictions. This is also performed in a unified context and therefore charged lepton
corrections to mixing are related to the Cabibbo angle in a new way via a sum rule.

Finally the impact of flavour symmetries on leptogenesis is discussed; it is
mentioned that models which predict neutrino mixing can very often lead to 0 lepto-
genesis and therefore no baryon asymmetry in the Universe. However this conclusion
is drawn without considering the difference in scales between flavour symmetry break-
ing and leptogenesis. When this is taken into account it is shown in the context of
two simple models that successful leptogenesis can be achieved.
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Chapter 1

Introduction

The SM of particle physics describes the properties and interactions of all directly
observed matter in the Universe. With the recent discovery of “a neutral boson
with a measured mass of 126.0 £+ 0.4(stat) = 0.4(sys) GeV” [4] , it seems that the
last piece of the SM puzzle, the Higgs boson, has been discovered. Nevertheless,
there are observed phenomena that the SM fails to explain; solutions to these

problems require new, BSM physics.

A particular aspect of BSM physics is studied in this thesis, namely the generation
of observed neutrino masses and mixings. Since the 60’s when Ray Davis conducted
the Homestake experiment, data from neutrino observation had been inconsistent
with theory. In these early cases, the neutrinos came from the Sun and experiment
observed ~ % of the predicted neutrino flux [5]. Solar models were well trusted and
tested in other experiments so the conclusion was that there was some missing
ingredient in neutrino theory which overestimated the flux. This was known as the
solar neutrino problem. A solution was proposed by Pontecorvo [6] and refined in
the case of solar neutrinos by Mikheyev, Smirnov and Wolfenstein [7]: neutrinos can
oscillate or change flavour during propagation. In the case of the solar neutrino
problem, electron neutrinos produced in the Sun’s core can change to muon or
tauon neutrinos between creation and detection. Since the Homestake experiment
was only configured to detect electron neutrinos, there would be an observable

deficit. Super-Kamiokande [8] in Japan lent credence to this hypothesis with the



observation of a muon neutrino deficit from cosmic rays interacting with the
atmosphere - the atmospheric neutrino anomaly. The first experimental evidence
for neutrino mixing came from SNO [9] which measured both the electron neutrino
flux and the total neutrino flux from the Sun. Its measurement of the former agreed
with Homestake while the latter agreed with the predicted neutrino flux. This
implied that the electron neutrinos from the sun were indeed oscillating into muon
and tauon neutrinos before detection. Further experiments [10-17] have measured
these oscillation phenomena more and more accurately and future experiments are

being planned to measure previously inaccessible parameters.

This thesis studies how the observed pattern of neutrino mixing can be explained
by imposing some extra symmetry on the Lagrangian of the theory. A wide variety
of symmetries have been studied for this purpose [18] but the present work focuses
on what appears to be the smallest group available: Ay, the group of even
permutations on four elements. This group, and those which contain it, have
garnered much attention [19] since the first successful model was built with it [20].
The work presented in this thesis is more ambitious than simply reproducing
neutrino mixing patterns however: it also attempts to explain why mixing in the
charged lepton sector is so much bigger than mixing in the quark sector. This is
achieved by constructing GUT models and using the discrete symmetry to produce

both mixing sectors.

One of the consequences of imposing a discrete symmetry on the Lagrangian is also
studied in this thesis: the effects of constraining Yukawa couplings on leptogenesis.
Leptogenesis attempts to generate the baryon asymmetry of the Universe using the
decays of right handed neutrinos introduced to explain why SM neutrinos have such
a small mass. One of the parameters of leptogenesis, which encodes CP violation in
such decays, depends on the Yukawa couplings. It turns out that constraining these
Yukawa couplings in such a way as to explain neutrino mixing will very often lead
to the CP violating parameter being 0 and by extension, no baryon asymmetry. A
method for avoiding this conclusion is studied and applied to two well known

models of neutrino mixing.



The rest of the thesis is organised as follows. Chapter 2 presents a brief overview of
the SM in its current state, from the Lagrangian terms to EW symmetry breaking
(SU(3). interactions are mostly suppressed in this discussion since they are not
relevant for the work presented). Important BSM concepts are also introduced:
neutrino mass, GUTs and SUSY. Chapter 3 then looks more closely at the PMNS
matrix and how the parameters compare to experimental data. A well studied
mixing scheme, TB mixing is introduced and it is shown how such a scheme can be
related to a symmetry of the Lagrangian. The prototype A4 model is discussed
along with an extension to account for recent observations of non-zero #13 and
parameters describing deviations from the TB scheme are presented. Chapter 4
presents an original model studied in [1], which combines a GUT with A4 to predict
TB mixing. This model has several interesting features, most notably a naturally
diagonal Majorana sector, the significance of which is also discussed. Next, Chapter
5 presents work published in [2] which combines an extension to the prototype Ay
model with a GUT. This model accommodates non-zero 613 and also gives rise to
new sum rules between the neutrino parameters and the Cabibbo angle (the largest
parameter in the quark mixing matrix). Chapter 6 then presents work published

in [3] dealing with the consequences of discrete family symmetries for leptogenesis.
The common problem of family symmetry models producing 0 leptogenesis is
addressed by noting the difference in energy scales between the breaking of a family
symmetry and the onset of leptogenesis. This means parameters should be evolved
between the scales before calculations are performed. Two example models are
tested and both obtain successful leptogenesis, reproducing the observed baryon
asymmetry of the Universe for a finite region of parameter space. Finally, Chapter
7 concludes the thesis and two Appendices discuss spinor formalism (A) and

D-term vacuum alignment (B).






Chapter 2

The Standard Model and

beyond

2.1 The Standard Model of Particle Physics

The SM of particle physics provides a description of three of the fundamental forces
of nature: the EM force, the weak nuclear force and the strong nuclear force. It
does not include the fourth, gravity, as it is not currently known how to provide a
QFT description of general relativity. Since gravitational effects are only expected
to become important at energy scales around the Planck Mass

Mp ~ 1.2209 x 10" GeV, one can use the SM as a starting point for describing
physics below this scale. In fact, the SM is expected to be valid only up to around
the TeV scale (see the SUSY part of Section 2.2) and in this sense, it should only be
viewed as an effective theory. The current Section gives a brief overview of the SM
and its limitations and then several important BSM concepts are introduced,
namely neutrino mass, GUTs and SUSY. In writing this Section, the following

sources were consulted: [21], [22], [23], [24] and [25].



Field SU3). | SU2). | U1)y
ui
Q= < %) 3 2 6
L dL 6
T
(d°)y 3 1 5
7 VZ
()t 1 1 1
H*
H= < H0> 1 2 i

Table 2.1: Matter and Higgs content of the SM. The index ¢ runs from
1 — 3, reflecting the fact that each matter field comes in three flavours,
identical except for their mass.

2.1.1 Gauge symmetry and particle content

The SM is a very successful description of particle physics, describing the properties
and interactions of matter and gauge boson fields remarkably successfully. It is
based on the local gauge symmetry SU(3), ® SU(2)z ® U(1)y; here the SU(3).
symmetry describes QCD, the theory of coloured interactions involving quarks and
gluons; and SU(2);, ® U(1)y describes the EW interactions of the fermions with the
massive gauge bosons (as well as the Higgs boson) and the photon. The field
content of the SM can be found in Table 2.1, where all fields are LH in anticipation
of GUT building later on in this thesis (spinor conventions can be found in
Appendix A). The Lagrangian of the SM encodes all the processes and interactions

that the matter in Table 2.1 undergoes; it can be presented as
2L = zGauge + ZMatter + zYukawa + gHiggs- (21)

The gauge portion contains the kinetic and self-interaction terms of the gauge

bosons; these are of the form

1 vV a : a a aoc C
—JAMAL, with AG, = 0,40 = 0,A, +gf beAb A, (2.2)

6



with one copy of the above term for each simple subgroup of the SM; the gauge
fields AZ are in the adjoint representation of the group, and so there are 8 + 3 + 1
gauge degrees of freedom. The ¢ are the structure constants for the relevant
subgroup. For the rest of this thesis, SU(3). interactions will not be considered
(beyond its existence in unified theories), so unless specified only SU(2);, ® U(1)y
gauge bosons will be considered. The matter portion of (2.1) contains kinetic and

gauge interaction terms for the five matter fields in Table 2.1, of the form

i Py, (2.3)
Here, the familiar Feynman slash notation is used, and
g1

19204
eyye D, (2.4)

Dy =0y —

is the covariant derivative for SU(2);, ® U(1)y with weak coupling g and
hypercharge coupling g;. The W and B), are gauge fields, but do not yet represent
the physical gauge boson states. So far, the SM symmetry has forbidden fermion
mass terms and this means that there is a rather large accidental symmetry: each
of the five matter fields can undergo a U(3) rotation on its flavour index, leaving
these terms unchanged. This means that there is an accidental global U(3)3
symmetry in this part of the Lagrangian. This symmetry is broken by the Yukawa

sector which is presented explicitly as
Lrubawa = ~YIQ eH Wy — YV Q Hdl, — YT, Hel, + h.c. (2.5)

where € = io? is the totally antisymmetric tensor, required to maintain Lorentz
invariance. The presence of these terms breaks most of the accidental symmetry
from U(3)> — U(1)g ® U(1)y, corresponding to baryon and lepton number
symmetries respectively. It turns out that U(1)p ® U(1), suffers from dangerous
quantum effects, known as anomalies, that introduce serious problems with the
theory; these will be briefly discussed in Section 2.1.4. However, U(1)p_;, does not

suffer from anomalies and so this is still used as a constraining symmetry of the



SM. The Yukawa terms describe matter interactions with the Higgs field, which
give rise to fermion masses once EWSB takes place and the Higgs obtains its VEV.

This process is dictated by
Lrtiggs = (D"H)' (D, H) =V (H). (2.6)

At the time of writing, the LHC at CERN has recently published data showing
discovery of a boson with the same behaviour as the Higgs, with a mass of
~ 125 GeV, and with a statistical significance of ~ 50 [4,26]. This result completes

experimental observation of the SM particles.

2.1.2 The Higgs potential and Lagrangian masses

The term V (H) in Eq. (2.6) controls the breaking SU(2);, ® U(1)y — U(1)g which
allows the fermions and gauge bosons to attain masses. The resultant unbroken
symmetry describes electromagnetic interactions and its generator, the electric

charge, is built from the broken EW ones by

Q=7m3+Y. (2.7)

g4

where the 7; = -, Explicitly, the potential is

V(H) = —m2H'H + ) <HTH>2 , (2.8)

where m?, A > 0. These bounds ensure, respectively, a non-zero VEV for the Higgs,
and a potential which is bounded from below preventing an infinite cascade of
decays. Minimising this potential one obtains the Higgs VEV
1 0
==l (29)
v
with

(2.10)



Below the EW scale the Yukawa Lagrangian, Eq. (2.5), becomes
Ly = m”uLuR mjdeR mb eLeR—i—hc (2.11)

with

mil = Y;’J’%. (2.12)

To study how the Higgs VEV affects the gauge bosons, it is convenient to transform
to the unitary gauge where the Higgs doublet is real and has no charged
component. Then expanding about the vacuum state gives

1 0

H=—

v (2.13)

where o is the physical Higgs boson. Inserting this into Eq. (2.6) and keeping only

mass terms then gives
gpmass < 2< Wl 2 W2 2 B — W3 2 Y 2 2 214
Higgs — g ( u) +( u) +(91By — 92 u) vo. (2.14)

The fields W,}’2 are not eigenstates of the charge operator @) defined in Eq. (2.7)
since [Q, 71 2] = i12,1. However it is possible to define Wj = % (Wﬁ T 2W5) with
corresponding SU(2) raising and lowering operators 7o = % (11 £i72). These

operators satisfy

(@, 74] = £74, (2.15)

meaning the fields have charges +e. The fields ij and B, require a more careful
treatment since although they are both neutral eigenstates of (), they are mixed in

Eq. (2.14); indeed the term involving these fields may be written as

2
91 —9192 B,
<BM Wj) , NE (2.16)
—9192 95 Wu



In order to obtain the mass states, this term must be diagonalised which can be

done by defining the rotation matrix

. 92 __ ¢
cos Oy — sin Oy ViR e

g1 g2
Vg3 \9i+g3

, (2.17)

sin Ay cos Oy

where Ay is known as the Weinberg angle. Applying this rotation to the fields gives

the diagonalised system

0 0 A,
(4. 22) , (218)
09 +95) \ 2,

where the familiar photon A, = cos 6y B,, + sin HWWS and neutral Z-boson

ZB = —sin Oy By, + cos (91/1/1/1/[;S fields are defined. If one expands Eq. (2.3) using the
physical fields, the coupling between A, and the fermions (defined to be the electric
charge) can be read off as

e— 9192 (2.19)

N

Inserting the physical fields into Eq. (2.14) then gives

,02

_ 2
L =5 (288WEW5 + (0 +63) (2)7) = w0, (2.20)

allowing the masses to be read off:

ev

1
My = = = 2.21
W= T Sy (221)
1 ev
Mz =—-wn/@#+¢=—"F7—"7, 2.22
Z7 39 UV 9T 92 2 sin By cos Oy ( )
My =0, (2.23)
My = V2. (2.24)

It is instructive to ask what has happened in terms of degrees of freedom during
this breaking process. In the EW symmetric phase, there is a massless vector boson
triplet, a massless vector boson singlet and a massless complex scalar doublet,

giving 6 + 2 + 4 = 12 degrees of freedom. After EW symmetry breaking, there are

10



three massive vector bosons, one massless vector boson and one massive scalar
boson giving 9+ 2 4+ 1 = 12 again. What has happened is that three of the massless
degrees of freedom in the Higgs doublet H have been “eaten” by the gauge bosons,
becoming their longitudinal degrees of freedom. These massless degrees of freedom
are known as Goldstone bosons and theory dictates that there exists one Goldstone
boson per broken symmetry generator; thus in the case of the breaking

SU2)r ® U(1)y — U(1)q, there are 4 — 1 = 3 Goldstone bosons as expected.

Equations (2.21) and (2.22) lead to the relation

My
SOy = —— 2.25
cos Oy M, (2.25)
which itself gives the prediction that
M3,
=W 1, 2.26
P M?2 cos? Oy (2.26)

This is very accurately measured and so is a benchmark for BSM physics to

conform to.!

2.1.3 Quark mixing: the CKM matrix

In the previous subsection it was shown how the Higgs mechanism leads to fermion
mass matrices, in particular Eq. (2.11) was presented. As in the case of the B, WEL’
sector, the actual fermion masses are the eigenvalues of this matrix and so a
diagonalisation needs to be performed. This can be done by applying rotations to
each of the fermion fields in the SM; in the absence of right handed neutrinos
(which will be introduced in Section 2.2), the lepton rotations have no effect on the

rest of the Lagrangian. The quark rotations are more interesting in this framework

! Although it has now been superseded by the EW precision parameters S, T and U.

11



however; denoting the rotations by

/
Uy, = VuLUL,

/
ur = VupUR,

(2.27)
d; =V, dp,
dp = Vaudr,
puts the Lagrangian in the mass basis, where the mass matrices are diagonal:
m = (V) mu Vi, = diag (mo, me,my), (2.28)
di .
mdlag == (VdL)T dedR - dlag (md7 m87 mb) * (229)

All the Lagrangian terms involving quark fields will undergo this rotation, however

only the quark coupling to the I/VﬂjE is affected
ﬂLw“WjdL + h.c. — ﬂL’yMWﬁtUCKMdL + h.c. (2.30)

with

Uckym = (VuL)T VdL- (2.31)

This matrix describes interactions, mediated by the Wﬂi, which change the flavour
of the quark fields. It can be seen that the matrix arises due to the difference in
rotation between two fields which exist in the same SU(2)7, doublet before EWSB.
This means that only terms which depend on the doublet structure will be affected
by this rotation; the A, and the ZB, which have couplings proportional to 73 + Y,
are left invariant and therefore transitions changing flavour mediated by these
neutral gauge bosons do not exist within the SM. The statement that there are no
FCNCs in the SM arises from the GIM mechanism and is very well observed in

experiment.

The CKM matrix is a unitary 3 x 3 matrix and therefore has 9 parameters, however
only 4 of these are physical. The reason for this is that one is free to perform

individual phase redefinitions on each of the 6 quark fields involved in the definition

12



of the CKM matrix. One of these phases cannot be removed since Ugg s is
invariant under a global phase redefinition, so one can choose 5 of the quark phases
to cancel 5 of the CKM parameters, leaving the 4 physical parameters. These
correspond to 3 mixing angles and 1 complex phase; a popular parameterisation

using these parameters is

—304
C12C23 512€13 S513€

— ;i Sq - oq
UckM = | —s19c23 — C12593513""  c1ac23 — S12523513¢""  sazc13 | (2.32)

5

. -
512523 — €12€23513€""  —C12523 — $12C23513€"  €23C13

where ¢;; = cos 95, 5i; = sin 95 and 07 is the phase (the superscript ? is to
differentiate the parameters from those in the lepton sector that are introduced in
Section 3). Experimentally the CKM matrix is observed to be close to diagonal

with the biggest angle, 6,5, = 6 known as the Cabbibo angle, being roughly 13°.

2.1.4 Anomalies

Of importance for the consistency of a QFT are anomalies: the quantum violation
of a classical symmetry. A very brief overview of this topic follows. Classically,
conserved currents are associated to a symmetry principle by Noether’s theorem. In

particular, vector and axial currents are classically conserved (in the massless limit)

=y, G = Pty

(2.33)
O =0, 9.5 =0.
whereas at the quantum level, the axial current diverges as
9" o Tr <T“ {Tb, T}) , (2.34)

where the T are the normalized generators of the relevant gauge group. This
current can be used to construct triangle diagrams which violate Ward identities
and therefore gauge invariance. Explicitly, these diagrams can provide the photon

with a divergent mass (or equivalently, longitudinal and time-like degrees of
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Figure 2.1: A triangle diagram combining 2 SU(2);, vertices and one B,
L, or B— L vertex. Individually B and L give non-zero contributions from
this diagram, but the combination B — L gives no contribution.

freedom), and therefore should be cancelled in order to have a consistent theory.
There are a large number of possible triangle diagrams that arise in the SM which,

after calculation, are indeed 0 under three assumptions:
= the hypercharges of the fields are assigned as in Table 2.1,

= there are complete generations of matter, i.e. if there are u-, ¢- and t-type

quarks then there must also be e-, y- and 7- type leptons,

= there are three copies of quark doublet for every lepton doublet, i.e. there are

three colours of quark.

The first assumption finds no explanation within the SM, but GUTs can provide an
answer as described in subsection 2.2.2; the third arises from assigning quarks to an
SU(3).. gauge theory. The second, in combination with LEP data for the Z° decay
widths, constrains the number of light generations to be 3 [27]. As an example of
anomalies in the SM, consider Fig. 2.1, a triangle diagram with 2 SU(2);, vertices

and one B, L, or B — L vertex. The contribution of this diagram to the anomaly is

given by
1
B,L,B-L [ b _c|) _ *sbe B,L,B-L
Tr (T {T T }) = 3> Qp; , (2.35)
fr

which evaluate to

1 1

6% x3x3x =,

2 3

1

50 x 3% 1, (2.36)

1 1
5(SbC<3><3><§—3><1>:0,
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respectively. This demonstrates that while B and L are individually anomalous,

B — L is not.

2.2 Beyond the Standard Model

2.2.1 Neutrino mass and the seesaw mechanism

As can be seen in the previous Sections, the SM does not admit mass for the
neutrinos. This is because a Majorana mass term (the charge conjugation matrix C'

is defined in Appendix A)

—%m’j <VETCVi + h.c.> , (2.37)
breaks the B — L symmetry and is therefore forbidden. Experimental observation of
neutrino oscillation indicate that the neutrino cannot be massless however;
therefore the SM needs to be extended in some way as to provide neutrinos with
mass. Furthermore several constraints, such as the non-observation of Ov(3(3, exist
to bound the sum of the neutrino masses at < 1 eV. This means that the neutrino
mass scale is a factor ~ 1076 smaller than the electron and so the extension to the
SM should also explain this ratio ideally without inserting such a factor arbitrarily.
The key is to recall that the SM is an effective theory, valid up to a particular

energy scale A:
1
A

1

L= Loy + Az

L+ =L+ (2.38)

At energies below A, the higher dimensional terms %5, % etc are suppressed by
powers of A. Using the field content and gauge symmetries of the SM, the only
allowed dimension-5 term is [28] (the notation Y, is in anticipation of this leading
to neutrino mass terms)

v,/

L = TLZ’LT epCoT el + h.c. (2.39)
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known as the Weinberg dimension-5 operator. When the Higgs field obtains its
VEV, this becomes a Majorana mass for the neutrino field

)
Y v iT

.,%Maj = _7KVL CV% + h.c. (240)

which is suppressed by the scale at which new physics enters. This term still
violates the B — L symmetry, but only at a high scale, meaning it remains an
approximate symmetry at low energies. The issue is now to explain the origin of the
Weinberg operator. The most common explanation is to extend the SM by
introducing a RH neutrino Np (completing the pairs of LH and RH fields) which
has SM charges (SU(3)c,SU(2)L)y (1), = (1,1), ie. it is a singlet. This is known as

the Type I seesaw mechanism [29] and gives rise to the new Lagrangian terms
s 1. - .
I =YL e¢* N} — 3 W MJICNY + hec. (2.41)

where there is no constraint on the size of Mp. If it is taken to be 0, v;, and Ny
pair up to form a Dirac neutrino with mass ~ v; however, if Mg > v the N can be
integrated out of the Lagrangian using its equation of motion. This results in an

effective Majorana mass for the vy,

1 .. :
Lrypel = —§mffulLTCui + h.c. (2.42)

with
m, ~ —v?Y, MY, (2.43)

Schematically this can be represented by the Feynman diagram in Fig. 2.2. Taking
the Yukawa couplings to be ~ 1, the Higgs VEV to be 246 GeV and the neutrino
mass scale to be 0.1 eV, one obtains a RH neutrino mass scale of around 10'* GeV'.
Looking more closely at the Dirac vertex in Fig. 2.2, since Lz, and ¢ are SU(2).,
doublets, the internal field can be either 1 or 3 under SU(2). The former case is
the above Type I seesaw [29], whilst the latter is the Type III seesaw [30]. There is
also the Type II [31] seesaw where a new Higgs triplet couples to two Ly, but this is

fundamentally different from the other two and is not discussed further.
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Figure 2.2: Schematic diagram of the type I seesaw mechanism.

Knowledge of neutrino masses is fairly limited: the major observable effect is
neutrino oscillation, whose probability is dependent on the squared mass splittings
rather than the absolute masses. Current global fits [32,33] give these mass

splittings to be (using extreme lo ranges)

V2

7.32 <Am?2,; = m3 —m? (%) < 781, (2.44)
V2

2.37 <Am2, =m2—m? (160——3> <261 (NH), (2.45)
V2

—2.53 <Am2,, = m2 —m? <1e03> <230 (IH). (2.46)

This shows that while one of the signs of the splittings is known, the other is not
and therefore the neutrino spectrum could be one of the two shown in Fig. 2.3.
Furthermore, the absolute mass scale is not currently known, although cosmological
bounds can be placed on the sum of the neutrino masses, presently ~ 1leV (this is a

difficult parameter to place bounds on, see discussion and references in [34]).

The introduction of right handed neutrinos and, in particular, the Yukawa term in
Eq. (2.41) introduces a mixing matrix for the lepton sector, analogously to the
CKM matrix. It is known as the PMNS matrix and is defined in terms of charged

lepton and neutrino diagonalisation matrices as
Upvng = VeLVJL. (2.47)

The major difference between the PMNS matrix and the CKM matrix is the

number of parameters: whereas in the CKM case, 5 of the phases could be removed,
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Figure 2.3: The present status of neutrino mass measurements. The
colours also represent the approximate flavour content in each mass eigen-
state (taken from [35]).

in the PMNS case only 3 may be removed. This difference is because of the
(assumed) Majorana nature of the neutrino and therefore less freedom to redefine
fields in order to remove phases. If one were to use the neutrino fields to remove
PMNS phases, then the Majorana mass matrix of Eq. (2.43) would pick up
unremovable phases. Therefore one cannot absorb PMNS phases into the Majorana
neutrino fields (apart from an overall phase) and so the PMNS matrix has 3 angles
and 3 phases. It can be parameterised in the same way as the CKM matrix in Eq.

(2.32) but right multiplied by a diagonal matrix containing 2 phases.

It was stated above that the Majorana nature of neutrinos is assumed. Observation
of a process known as neutrinoless double beta decay will confirm that neutrinos
are indeed Majorana since the process cannot happen otherwise. The current status
and experimental progress on neutrinoless double beta decay can be found in [36]
and references therein. Experimentally measured values for the mixing parameters

(excluding Majorana phases) will be introduced and discussed in the next Chapter.

2.2.2 Grand Unification

The gauge group of the SM, SU(3). ® SU(2);, ® U(1)y, has three factors and
therefore three gauge couplings. Although these are sometimes referred to as

constants, in fact they run with energy scale. This will be used in Chapter 6, but
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Figure 2.4: Running of the inverse fine structure constants with energy
scale. The dotted lines correspond SM couplings and the solid to MSSM
couplings (taken from [37]).

for now it suffices to observe that the couplings appear to converge as the energy
scale is increased, as in Fig. 2.4 (dotted lines - here the running of the inverse fine

2
structure constants «; = Z—; are plotted such that the plot is linear). Although the

convergence is not exact in the SM, this tendency is enough to suggest that the 3
couplings could unify to one at some high scale denoted Mayr. This would
correspond to the SM gauge group being embedded in some larger group with only

one factor; the smallest group that can achieve this is SU(5) [38], generated by

A1—24

5. The fields of the SM are grouped together in larger multiplets and the

embedding is defined by the decomposition of SU(5) representations under the SM.

In particular [39]

5—(3,1): +(1,2)

)

2 (2.48)
+@JL%+ﬂﬂh.

1
3

10 — (3,2)

N[

This shows that the matter content of the SM can be contained in the combination

5; 4+ 10; with i being the generation index. One generation is then written as
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0 w§ —u§ —up —di
—u§ 0 uf —us —d

10:W’“:% u§ —u§ 0 —uz —ds | - (2.50)
up uz uz 0 —(e)

d1 dg dg (ec) I

Here, the numerical indices represent the three distinct colour charges of SU(3),
(recall that the quark fields are triplets under SU(3).). Calculating the anomaly
coefficient, Eq. (2.34), for these two representations shows that they cancel each
other and the SU(5) theory is anomaly free. The 5 representation contains the

charges corresponding to the Higgs doublet, along with a colour triplet in the field

hy
ha
Hs =1 hs3 |, (2.51)

hy

hs

whilst the GUT symmetry is broken by a Higgs in the adjoint representation

Hoy = qﬁ‘”‘—; (here, \* are the SU(5) generators). The existence of the SM Higgs
doublet in a representation which also contains a colour triplet is a common
problem with GUTs - while the SM state should be light (around the TeV scale),
the coloured state which could lead to proton decay should be heavy in order to
suppress such decays. This is known as the doublet-triplet splitting problem; there
are several generic solutions to this problem [40], generally involving introducing
extra large Higgs representations, which give the triplet Higgs a GUT scale mass
while keeping the SM Higgs at the EW scale.
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The general Yukawa Lagrangian with the above field content is (denoting 5 by F
and 10 by T')

Z = (Yd)ij FiT;Hg + (Yu)ij T:T;Hs, (2.52)

which demonstrates a problem with the unification: the mass matrices of the down
quark and charged leptons are the same at the GUT scale. This prediction fails
when the parameters are evolved to the EW scale and compared with

experiment [41] and so extra matter can be included in the model in order to fix
this. Introducing a Hzg gives the correct high energy mass (GJ) relations [42]; the

Yukawa sector is now (inserting Greek SU(5) indicies explicitly)

2 = (Fa); (T°) (Vi) (Hg) + (Fo); (T7) (Vo) (g, -
2.53
+ (Yu)ij (Ta6> . (T'Y‘S)j (HS)E €afvde-

(2

with €,846¢ the totally antisymmetric rank 5 tensor. The new term gives
contributions to the mass of the charged leptons and down type quarks once the
Higgs fields obtain their VEVs (note that the Hys satisfies Hys f‘{ﬁ = — Hys ga and
Hy5%% =0)

vs for o =25,
(Hs)* = (2.54)

0 for a#5.

V45 for f=5,a=y=1-23,

—3vys for (=5, a=v=4,

<H45>$B =9y —ws for a=58=v=1-3, (2.55)

3v45 for a=05,03=~y=4,

0 otherwise.

The factors of three arise from the tracelessness and antisymmetry of the Hyss and
the fact that the VEV of the Hys leaves SU(3), unbroken:

(Hys)2® = (Hys)1® 4 (Has)3” + (Has)3 + (Has)$® + (Has)3® = 3vss + (Has)$® = 0.
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Using (2.54) and (2.55) (2.53) can be expanded to find the mass matrices

ma = Yarvi +2Yauis and me = (Yar)" v — 6 (Ya2)" vjs. (2.56)

If the Yy 2can be constrained such that?

0A0 000
Yo~|Boo0o]| , Ye~|0S0], (2.57)
00D 000

then the form of the mass matrices is fixed

0A40 0 B 0
mg~|BCO]|, me~|A-3C0]|- (2.58)
00D 0 0 D

These yield GUT scale mass relations of [42]

=1 2.59
3me ’ ( )
s g (2.60)
my

my,
T _q, 2.61
e (261)

which are much closer to the data than those from minimal SU(5) [41].

Unifying the SM fields in this manner has some appealing properties beyond
unifying the fundamental forces; a particularly interesting property is explaining
the quantization of hypercharge and therefore electric charge. This simply arises
from the fact that, since Y is a generator of SU(5), its action on any representation

should sum to 0, leading to (see e.g. [43])
1
Y (d°) = _§Y (L). (2.62)

This argument explains the somewhat arbitrary looking hypercharge assignments

2This constraining can be enforced using discrete symmetries which is the method used in the
rest of this thesis.
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found in Table 2.1. Connected to this is the fact that in order to identify the

common GUT coupling (which is denoted by g5) with the SM couplings g1, g2 (and
g3), one needs to perform normalisation correctly. The covariant derivative in SU(5)
is (denoting gauge boson fields by Au) Oy — ig5flu =0, — i%Wﬁai —iLBulos+ ...
in an SU(2);, ® U(1)y theory, the covariant derivative is 9, —i%Wjo" —i% B,Y. In
order for the couplings to be identified, Aoy must be rewritten in terms of the

hypercharge matrix Y: Aoy = \/gY. This allows for the identification (where the g3

identification has been made for completeness)

3
g2,3) =95 and g1 = \/;95, (2.63)

ensuring that the hypercharges are defined consistently with Table 2.1.

As appealing as this theory is, it has already been excluded by several experiments
which search for decays of the proton. The reason is that the predicted proton

decay lifetime is given by [44]

1 M2
Tp= gL, (2.64)
Oé5 mp

as is the SU(5) fine structure constant and Mgy is determined by where the gauge
couplings meet, ~ 10" GeV in the SM; using this then gives a predicted proton

0% years. The IMB has put a lower limit on the proton decay

decay lifetime of ~ 1
lifetime at > 103? years, whilst more recently Super-Kamiokande has strengthened
this limit to > 1033 years [45]. Still, the simplicity of this theory motivates further

study and in the next subsection, the predicted value of 7, will be increased.

2.2.3 SUSY and the hierarchy problem

The SM with a Higgs boson is very robust from an experimental point of view,
however it has one major theoretical flaw known as the hierarchy problem. This
arises from the fact that any complex scalar in a QFT will receive dangerous
contributions to its mass beyond tree level, since it is not protected by any
symmetry (in other words, no symmetry is restored by setting the Higgs mass to 0).

Schematically, consider the first diagram in Fig. 2.5, where the scalar mass term is
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Figure 2.5: Dominant one-loop corrections to the Higgs mass from top
and stop loops.

corrected by a fermion in the loop. This correction will generically have the form
=7 (aAfry + bmi + ... (2.65)

where a is some order 1 coefficient and b is at most logarithmically divergent; both
of these parameters are renormalisation scheme dependent. This immediately looks
like a problem, since even if no new matter existed between the EW and the Planck
scale, the theory is still an effective one and so Ayy would be the cutoff of the
theory, Mp. Therefore in order that the Higgs mass parameter is ~ (125 GeV)z,
one needs to tune the bare Higgs mass and the one-loop corrections to around one
part in 10%°. It is of course possible here to exploit the fact that the theory is
renormalisable and so use counterterms to cancel the quadratic divergences at all
orders. One now has to consider the parts proportional to the mass of the particle
in the loop; this will be dominated by the highest m g in the theory which could
very well be around Mp itself. This part of the correction can be removed by a
counterterm at the current order, however new corrections of this sort will be
regenerated at the next order. In order to cancel these terms to all orders, one
needs to retune the counterterms at every order in order to prevent the mass

receiving a large correction o mp. Unless one is willing to accept these large fine

tunings, a solution must be sought.

Consider introducing a scalar field with mass mg and allowing this to couple to the
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Higgs as well, as in the second diagram of Fig. 2.5. This contributes
As (aAfy +bmE +...), (2.66)

to the Higgs mass parameter and these quadratic divergences will therefore cancel
with the fermion ones if A\g = )\QF. Furthermore if mp = mg, then the logarithmic
divergences will also cancel each other out; even if the masses are not exactly equal,
so long as their difference is not too large, the logarithmic divergences will not be

too damaging for the theory.

Such a situation arises in the form of SUSY, an extension of the Poincaré algebra to
include anticommuting operators () which act on fermions to produce bosons and

vice versa:

Q@|Boson) = |Fermion), Q|Fermion) = |Boson),

(2.67)

where P* is the four-momentum generator of spacetime translations. Spinor indices
(necessary since the ) are fermionic operators) have been suppressed in the above
for simplicity. The action of these new generators ) doubles the spectrum of the
SM, by introducing a bosonic partner for every fermion and vice versa. The
combined contributions of these partners cancels one another out when calculating
the correction to the Higgs mass. The MSSM is the minimal version of SUSY,
adding only the required superpartners to each SM field. The extra content can be
found in Table 2.2; notice that there are now two Higgs doublets as opposed to the
one in the SM. This is required for several reasons, the simplest of which is anomaly
cancellation: when the SM Higgs acquires its fermionic superpartner, the
corresponding hypercharge will contribute to the anomaly and spoil the
cancellation. A multiplet with opposing hypercharge must be introduced in order to
restore this cancellation. Each partner and superpartner reside in a multiplet called

a superfield; superfields which contain chiral fermions are called chiral superfields,
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Table 2.2: Matter superpartners of the MSSM. The index i runs from
1 — 3, reflecting the fact that each matter field comes in three flavours,
identical except for their mass.

whereas those containing the gauge bosons and fermion partners are called vector

superfields.

With respect to naming individual superpartners: a scalar partner to an SM
fermion is prefixed with an “s”, such that the partner of a fermion is called a
sfermion (and explicitly, the partner of an electron is called a selectron); a fermionic
partner to a SM scalar is appended with “-ino” (explicitly, the partner of a photon
is called a photino). Along with these fermion/scalar partners, each superfield must

also contain a non-propagating auxiliary field /" which is a complex scalar with

mass dimension 2: this is required in order to close the SUSY algebra off-shell.

Invariance under SUSY is very restrictive when trying to construct Lagrangians and
in fact all the interactions of matter fields can be described by the Superpotential
which is a polynomial in the scalar components of a superfield. The general

superpotential is given by
i L i L ik
W= L'¢i+ 5 MYidj + <y~ 010 b (2.68)

where objects of rank > 1 are symmetric in all indicies. Invariance under SUSY
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transformations also requires that W be holomorphic (simply put, it cannot contain
both ¢ and ¢*); this is more motivation for the addition of a second Higgs doublet.
In the SM, H interacted with d-type quarks and charged leptons while eH*
interacted with u-type quarks. In W, this is not possible due to the holomorphic
property, necessitating the introduction of a Higgs field in the conjugate
representation under the SM group; the notations H, and Hy correspond to the
quark sector with which they interact. A general Lagrangian can then be
constructed as (here the o# are the 2 x 2 identity for u = 0 and the Pauli matrices

for p=1-13)
Lsusy = =06 Oy + T Oty — 5 (Wi + Wil ) — WIWF, (2.69)

where the indicies i, 7 on the W indicate a partial derivative of W with respect to

bij:
ow
0¢i

Wi, = (2.70)

From this Lagrangian, it can be seen that W has mass dimension 3 and
encapsulates all the interactions of matter fields with one another. The gauge part
of the Lagrangian can be constructed similarly using fields from a vector
supermultiplet which contains the SM gauge bosons, their fermion superpartners
the gauginos and a real bosonic auxiliary field D®. This is analogous to the F; field
in the chiral supermultiplet; it doesn’t propagate and has mass dimension 2. Both
of these auxiliary fields can be re-expressed in terms of the scalar fields ¢ using

their equations of motion
Fy=-W{, Do=—g(¢"19), (2.71)

where g and T, are the relevant gauge couplings and normalised generators. Using

these equations one can write down the scalar potential of the theory
A 1 |
V(6,¢7) = FFi+ 5 > DDt =W;W+ 3 PG (2.72)
a a
As opposed to the Higgs potential of the SM, the parameters in this potential are
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defined by the SUSY interactions (Yukawa couplings, mass terms and gauge
couplings). Since experiment has not observed the numerous superpartners
predicted by exact SUSY, it can be inferred that these superpartners are heavier
than their SM counterparts, and therefore SUSY is a broken symmetry. This means
that SUSY breaking vacua can be found by looking for models with F; # 0 and/or
D® £ 0. It must be kept in mind however that this SUSY breaking can not be too

large, otherwise the hierarchy problem will be reintroduced again.

The introduction of a second Higgs doublet complicates the SUSY Higgs potential

somewhat; the most general potential is now

Vir = (10 +miy, ) (1O + [P + (b +mdy, ) (8 + 1 H )

b (Ff Hy — HOHS) + he] + 5 (63 +68) (|B0)° + | (2.73)
2
| EP | Hg ) + e | EY + HOH |

where b, mg, and mp, are SUSY breaking parameters. As before, one of the VEVs
can be rotated away; choosing (H;") = 0 then implies that <Hd_> = 0 meaning that

U(1)q is still unbroken in SUSY. This leaves the simplified potential

Vi = (1l +m, ) (JH2) + (1 + m, ) (1HS[?) = b (HOHS + hec.)

(2.74)
ot o) (e [

Denoting the VEVs of the two fields by v, = <H8> and vg = <Hg>, the SM Higgs

VEV is related to these two by

2
2 40l = % = (174 GeV)?. (2.75)

It is popular to express the ratio between the two VEVs as

tan 3 = %, (2.76)
Vg
which means that
vy, =vsin3, wg = vcospf. (2.77)
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The parameter p in the above is a source of concern for physicists: in order for the
quadratic Higgs terms in (2.74) to obtain VEVs around the EW scale without large
cancellations, | ,u|2 ~ m%{u ~ qud. Whilst p is a SUSY preserving parameter, the
other two break SUSY and so can in principle be much larger. This is known as the
p-problem of SUSY. There are several solutions (see, for

example [47], [48], [49], [50] or [51]), mostly involving forbidding this term but
allowing a term coupling the two Higgs doublets to a singlet; this singlet can then

obtain a VEV which becomes the p parameter. The size of the VEV is naturally
related to the EW scale by the SUSY breaking procedure.

The final consideration that needs to be made when constructing SUSY models is
the fact that B- and L-violating terms are allowed in the superpotential at the

renormalisable level:

1 .. . _ .
War—1 = 5)\”kLiLjEk + NURLQudy + 1 ' LiH,, (2.78)

1 ..
Wap=1 = 3\’ hud dy. (2.79)

These operators can lead to very rapid proton decay, violating the experimental
bounds from IMB and Super-Kamiokande. Such terms can generically be forbidden
by imposing a discrete symmetry known as an R symmetry, where a field’s charge
defined by

Pp = (—1)3B-0)+2s (2.80)

This definition implies that SM fields have an R-charge of +1 whilst the
superpartners have —1, meaning that at a vertex there must be an even number of
superpartners in order for R-symmetry to be conserved. One can conclude from
this that the LSP will be stable and therefore, if electrically neutral, a promising

candidate for dark matter that makes up ~ 25% of the matter in the Universe [46].

Referring back to Fig. 2.4, it seems that the unification of gauge couplings in SUSY
scenarios is better than in the SM; furthermore, it occurs at a higher energy, at
around 2 x 1016 GeV [52]. Using this value to estimate the proton decay lifetime

instead of the SM value gives 7, ~ 10%° years which is much more promising when
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compared to experiment than the SM value.
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Chapter 3

Discrete symmetry and neutrino

mixing

One of the outstanding issues that the SM leaves unanswered is that of flavour: why
are there three copies of SM generations, with the specific mass ratios and mixing
patterns observed? A particularly interesting question is the origin of the large
differences between CKM and PMNS parameters. The CKM matrix is observed to

be close to the identity; in the well known Wolfenstein parameterisation [53]

1— )‘72 A AN (p—in)
Uckm = A —A AN +0 (M), (3.1)
AN (1 — p—in) —AN? 1

where A = sin ¢ ~ 0.22 controls the magnitude of the entries. In contrast, the
PMNS matrix is observed to have two large mixing angles, as can be seen from the
latest global fits [32,33] in Table 3.1. The recent measurement of a non-zero 6,3 in
early 2012 represented a big step in neutrino physics as until then, most attempts

to explain mixing patterns focused on predicting #1353 = 0. Recalling that the PMNS
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Parameter Extreme range

sin 019 0.291 — 0.335

sin? fy3 0.365 — 0.57

Daya Bay sin’ 263 0.078 — 0.100
RENO sin? 26,3 0.100 — 0.126
Double Chooz sin® 26,3 || 0.079 — 0.139

Table 3.1: Experimentally measured mixing angles, from combined global
fits [32,33]. Values for 612 and 05 are obtained by combining extreme 1
o ranges from the two fits; values for 613 are simply taken from the most
recent observations [15-17].

matrix may be parameterised by

C12€23 512€13 s13e”"
UpmNs = | —s12co3 — 125235136 c1a023 — S12523513¢"°  sazciz | (3.2)

i i
512823 — C12C23513€"  —C12823 — S12C23513€"0 €23C13

it can be seen that 13 = 0 would preclude CP violation in neutrino mixing;
therefore the observation of relatively large 613 is welcome from the point of view of

experimental searches.

3.1 Tri-Bimaximal Mixing

Before this observation was made, experimental data was consistent with a3 = 7

(maximal mixing in the atmospheric sector) and 613 = 0 (0 reactor angle). Then an
interesting and still experimentally viable case of neutrino mixing could be obtained
by taking sj2 = %; these three conditions are known collectively as the TB mixing

scheme [54] and the mixing matrix becomes (up to phases)

2 1
—3 7 0
Urp 7% 73 7 (3.3)
\/_6 \/5 \/5

The existence of a maximal and a minimal angle, leading to the uniform structure
of the TBM matrix appears indicative of some symmetry in the Lagrangian, broken

at a high energy but leaving some observable remnant. In order to study this it is
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helpful to work in a basis where the charged lepton mass matrix is diagonal. Since
Upmns = Ve, VJL, in such a basis (where V., = 1) the PMNS matrix diagonalises

the effective neutrino mass matrix according to
_ U* diagUfl (3 4)
My =UYpynsTy “UpynNs: :

Using Eq. (3.4) with Upyrnvs = Urp one finds

4 =2 =2 111 00 O
mi ma ms
mu:? -2 1 1 +? 11 ‘|‘7 01 -1
()
-2 1 1 111 0-11

my ma ms3
= —A+—B+—C
6 + 3 + 2 7’

where m; are the eigenvalues of m,. These eigenvalues have corresponding

. . 1 1 1 P
(normalised) eigenvectors %(—2, 1,1), %(1, 1,1) and E(O7 1,—1); if it can be
argued that some symmetry requires the seesaw Lagrangian to be V%(b(ﬁTVL then
ensuring the field ¢ obtains a VEV in the direction of one of these eigenvectors will

go some way to producing the TB mixing pattern.

The most general symmetry of m, will be represented by a unitary matrix W such
that W*m, W' =m,, (since the neutrino mass term must remain invariant when W
is applied: v"m,v — vTWTW*m,WTWwv). This means that W should satisfy

W*A =AW, W*B = BW and W*C' = CW; inserting a generic matrix

abc
W=ldef]|, (3.6)
ghi
gives, in general
a b b
W=1bs c a+b—c]|- (3.7)

ba+b—c c
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Further requiring that det(W) = 1 then gives four possibilities for W:

100 10 0 12 2 1 —2 -2
1 1
W=lotol. o o -1f.g]2-12].g[-2-21[: (3.8)
001 0 -1 0 2 2 -1 2 1 -2

Notice that assigning label U to the second of these and S to the third, then the
fourth is given by SU. These 4 matrices are in fact the four elements of the Klein 4
group, Ky = Zég ® Z¥ were the superscripts denote the generator of the Z factor.
Since this is guided by experimental data, the conclusion is that the low energy
symmetry of the neutrino sector is K4. In a similar manner the most general

symmetry of the lepton sector can be found:

e 0 0
T=110 €% o |. (3.9)
0 0 e

Since in the current basis the lepton mass matrix is diagonal and non-degenerate,

d; # 0j; further restricting attention to det(7’) = 1 then leads to

100
T=|ow?o0]|, (3.10)

0 0 w

2mi

where w = exp ( T) Therefore it seems that groups generated by S, T and/or U

should be considered when searching for symmetries to impose on the Lagrangian.

3.1.1 The alternating group on four elements: A4

Guided by work in the previous Section, the extra symmetry chosen here to
reproduce this mixing pattern is A4, the group of even permutations on four
elements (or alternatively, the group of symmetries of the tetrahedron). Detailed
information about this group may be found in, for example, [55]; here, it suffices to

state that A4 can be generated by two elements S and T such that
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8§82 = (ST)3 = T2 = 1. It has three inequivalent 1-dimensional representations

i

1 S=1 T:exp<%2>:w2, (3.11)
o

1”7 §=1 Tzexp(%)zw,

and a 3-dimensional representation which is basis dependent. The following will be

referred to as the T diagonal basis:

100 -1 2 2
1
T=10w?0], S:§ 2 -1 2 |. (3.12)
00 w 2 2 -1

Note that these correspond to the matrices (3.10) and one of (3.8) discussed in
Section 3.1. Equations (3.11) and (3.12) can be used to show how to multiply
triplets correctly, in a basis dependent manner. The group character table [55]
shows that 3@ 3 =1® 1 ® 1" & 3 @ 3; taking two triplets a = (a1, az,a3) and

b = (b1, b2, b3) this multiplication rule can be decomposed into combinations of
triplet components a; and b;. For instance, (3.11) encodes the fact that the
representation 1 stays invariant under the actions of both S and T'; the combination
which satisfies this condition is (a1b1 + a2b3 + asbz). In a similar manner the other

decompositions may be constructed to find

1 = (ab) = (a1b1 + azbs + azba),

1" = (ab)’ = (asbs + a1by + azby),

1”7 = (ab)" = (az2by + a1bs + azby), (3.13)
3 =(ab)s = §(2a1b1 — agbs — agba, 2a3bs — a1by — agby, 2a2by — a1bs — asby),

1
3 = (ab)A = 5(0,2[)3 — a3b2, a162 — agbl,albg — agbl),
where the subscripts S and A mean, respectively, symmetric and antisymmetric

under index permutation. The first equality in each line of the above also serves to

define a notation used throughout this thesis: (ab) means the portion of the
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product 3 ® 3 which transforms as 1; (ab)” means the portion transforming as 1”
etc. In future chapters, the notation (ab)s will be used in a similar manner. Singlets

may be multiplied as follows: 1®1=1®1"=1,17®1 =1"and 1" 1" =11

The group A4 has two subgroups, one generated by S (and is one of the Z factors
of K4) and one by 7', which correspond to the low energy neutrino and charged
lepton symmetries respectively. Breaking A4 by letting a scalar triplet ¢ obtain a
VEV in a particular direction can constrain the form of the relevant mass matrices

and so reproduce the TB mixing pattern. The two relevant VEV directions are

<SDS> = (1’1a1)’ (314)

which is invariant under .S, and

(er) = (1,0,0), (3.15)

which is invariant under 7.

A second useful basis of A4 is found by applying the transformation VIG;V to all

group elements G;, where V is defined to be

11 1
AL P (3.16)
N w” w |- .
1 w w?

This results in the three dimensional generators

001 10 0
T=1100|, S=|o0o-10 |- (3.17)
010 00 —1

and will therefore be referred to as the S diagonal basis. The decomposition of

! An easy way to remember this is that when multiplying singlets, add the primes, mod 3.
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triplets in the product 3® 3 =1® 1 @©1” ® 3 ® 3 also changes as follows:

1 = (ab) = (a1by + azbs + asbs),

1" = (ab)' = (a1by + wagbs + wasbs),

1" = (ab)” = (a1by + washy + w?azbs), (3.18)
3 = (ab)s, = (azbs,asbi,arbs),

3 = (ab)32 = ((13527(1153702171),

and the triplet alignments preserving the Zo and Z3 subgroups swap to become

{ps) = (1,0,0), (3.19)

which is invariant under S, and

(or) = (1,1,1), (3.20)

which is invariant under T". This basis is particularly important for a group of
models classified as indirect [56]; since S in Eq. (3.17) is not part of the K4
neutrino symmetry,? it is not clear that such a basis will give the required neutrino
mixing. However, the approaches taken in building a direct or indirect model are
rather different. In a direct model one chooses flavons such as (3.14) and (3.15)
such that the resulting Lagrangian terms preserve some subgroup of the flavour
symmetry at low energies. Since the subgroup in the neutrino sector is generated by
the S of the observed Ky symmetry, TB mixing is expected to be recovered. In an
indirect model, flavon VEVs are instead chosen to be aligned with eigenvectors of
(3.5); therefore they will break the entire symmetry group (indeed the group’s only
purpose here is to realise such VEV alignments). The model is constructed in such
a way that what remains at low energies are outer products of the flavons, such as
to exactly reproduce (3.5). By construction these preserve the low energy Ky

symmetry generators, but these generators are not part of the original group; the

It should be emphasised that this S is a part of a K, symmetry but not the one inferred from
experiment.
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Field || ¢ e e | 7 | hua | or [ es | €] € el e | &
1

l
A4 3 (3|1 1”71 1 3 3 1 3 3 1
U)gr 1 ]1] 1 1 1 0 0 0 0 0 2 2 2
[ %5 [lo]e?[o?[o?][ 1 [1[?]e? ]’ 1 |e?]w?]
Table 3.2: Superfields and their transformations for the AF model

C

K, symmetry is said to have arisen accidentally.

3.1.2 An A4 model with Type I seesaw: the Altarelli-Feruglio

model

This Section follows closely work done in [20] and is constructed in the T-diagonal
basis; as such it is a direct model. Note that this is presented in a SUSY framework
for two main reasons. The first is to take advantage of SUSY as a cure for the
hierarchy problem and the provision of a natural LSP. The second is more
technical: the scalar potential of SUSY is naturally more constrained than the SM
scalar potential (including extra flavons) due to R-parity. This means that the
minimization of such a potential in order to obtain the desired vacuum alignments
is significantly less complicated and requires fewer assumptions . The relevant
superfield content here is displayed in Table 3.2 where A4 assignments are also
given. Two extra symmetries have been imposed, which will be explained
imminently; the Table also includes A4 singlets &, E and triplets @g, Lpg and &g,
which play a role in the vacuum alignment of the ¢ fields. Under these symmetries,
the superpotential of the theory is composed of two parts: w = w; + wy where wy is
the lepton sector and wy is the driving sector, which is where the vacuum alignment
in Egs. (3.14) and (3.15) is constrained. Focusing first on the lepton sector, the

superpotential is

wy = yee(orl) + Yt (orl) + yr7¢(orl)” + y (1) + (11€ + 5:6) (V°v°) (3.21)

+ Y2 (s,

where Higgses and powers of the cutoff scale A are suppressed. It can be seen that
the extra Zs symmetry prevents the interchange of the fields ¢ and ¢g, meaning

that the structures of the neutrino and charged lepton mass matrices arise from

38



independent sets of fields. The extra U(1)g, known as R-symmetry, gives rise to the
familiar R-parity of SUSY?, preventing unwanted B- and L- violating decays and
keeping the lightest SUSY particle stable. After EW and A4 symmetry breaking
(where Higgs obtain VEVs v, 4), the flavon fields obtain the VEVs

(ps) = (vs,vs,v5),
(¢r) = (vr,0,0), (3.22)

(€ =u.

Using the A4 decompositions from Eq. (3.13), the lowest order mass terms which

result are (including Higgs VEVs and factors of A):

v
Lo = vd%(yeece T Yub e+ Yr7T) + you(Veve + Ve +vivn) + yiulvere + 2v07)

2vg

+ Y2 3

C.,C c.,C c.,C C.,C c.,C c.,C
(veve + vy, + vivg — vevy, — vavs — vivg) + hee.

(3.23)

Inspection of the first term in this equation then leads to the charged lepton mass

matrix
Ye 00
vr
M =va5e | 0y 0 f - (3.24)
0 0 y-

There are three terms remaining, which give rise to ¥ masses: the second term gives
the Dirac mass matrix m? while the remaining two terms give the right handed

Majorana mass matrix M,,:

2B B B
100 A+2 B B
mp=yvu |001|, Mr=| -£ 2B 4_Blu, (3.25)
B B 2B
010 -5 4-B 28

where A = 2y, and B = 2y . The matrix Mg is diagonalised by the TB mixing

3Specifically R-parity is a discrete Za subgroup of U(1) g, where the transformation parameter 0
is chosen to take the value 7.

39



matrix, Eq. (3.3) to give

A+ B0 0
UQTBMRUTB = 0 A 0 Uu. (3.26)
0 0-A+B

In order to apply the seesaw formula, (2.43), M}gl is needed:

3A+ B B B
1
-1__ - 2AB+B2? B2_-AB-—3A2
My =saarmul| P B B | (3.27)
B B2—-AB—3A2 2AB+B?
B—A B—A

Application of Eq. (2.43) then gives the effective LH Majorana mass matrix

3A+B B B
_ v 2AB+B2  B2—AB—3A2 3.98
"™ = 3A(A+ Bu B B—A B—A ’ (3.28)
B B’=AB—3A> 2AB4B?
B—A B—A

and thus diagonalising this using (3.3) gives the light neutrino masses*

A R
A+B)yu’ °

[N
S |:@1\3

2 2
Y Vu

AT (3.29)

my = , 3 =

Both normal (ms3 > m;) and inverted (m; > mg) hierarchies can be obtained,

depending on the relative phase between A and B.

Charged lepton mass hierarchy is also obtainable by imposing an extra U(1)g
symmetry upon only the RH charged leptons: e¢ ~ 3 — 4, u¢ ~ 2 and 7¢ ~ 0. Then
introducing an extra field § ~ —1 which obtains a VEV % = A\ < 1 naturally gives
the required hierarchy by ensuring w; is invariant under this new symmetry. This

general idea is known as the Froggatt-Nielsen [57] mechanism and variants will be

used later on in this thesis.

The second part of the superpotential, wy, contains the driving fields Lpg, Lpg and

4This can be seen easily since if a square matrix A has eigenvalues \;, then A~! has eigenvalues
1
-

i
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&o; since they have R-parity 2 the driving terms are linear in these fields

wq = M@ or) + 9(k orer) + 1(espses) + g2 (9 ps) + gs€o(sps) 50
+ 946087 + g5£0€6 + g6€0S -

Note that in the above, since up until now there has been no distinction made
between £ and 5, 5 is defined to be the combination of £ and 5 that couples to
(cpg cps). In order to fix the VEVs of the flavon fields ¢g and ¢, they must

2
minimise the scalar potential ), %"‘ + ml2 ‘qﬁﬂ—l— ..; minimisation is performed

without soft SUSY breaking terms (i.e. in the SUSY limit) and these are accounted
for subsequently, since SUSY breaking occurs at a scale much below the seesaw
scale. Thus minimisation of the potential amounts to finding solutions to®

Owg/0¢pp; = 0. From (3.30) this gives 7 equations

m = Mo, + §[<PT1 — o1015] = 0, (3.31)

de 2g

9oL Meor, + §[<P2T2 — 1] =0, (3.32)
Y02

de 2g

sor = Men + et — enen] =0, (3.33)
%03

de ~ 2g1

955 = 925@51 + ?[90?91 - SDSQSDSS] =0, (334)
o1

dwg > 291

o5, = 928¢ss + 5 [95, — wsies] =0, (3.35)
¥02

Owy ~ 2q1

a—s = 925@52 + ?[90%3 - @SlgpSQ] =0, (336)
%03

owg ~ ~

Ty = 9E T 95EE+ 908" g3l + 20sm08,] = 0. (3.37)

Equations (3.31)-(3.33) can be solved by setting any two of the ¢z, = 0, however
the choices i = 1,2 or i = 1,3 give the trivial solution (¢7) = (0,0, 0); choosing

i = 2,3 then leads to

3M
(o) = (vr,0,0) with vy = ~ % (3.38)

which is in the direction of (3.15). Turning to Eqgs. (3.34)-(3.37), the trivial

SDifferentiating with respect to flavon fields will produce terms o a driving field, and so give zero
when the fields obtain their VEVs.
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solution (£) = (¢g) = 0 is inevitable with only one singlet flavon. Thus including

both singlets but choosing m? >0= <§> = 0 leads to the solution

() =0,
(&) =u, (3.39)
(ps) = (vs,vs,vg) with vg = —39—;3u2,

which is consistent with Egs. (3.14) and (3.22). Choosing positive SUSY breaking

masses for the driving fields then ensures they obtain zero VEV.

3.2 Deviations from TBM

As can be seen from the neutrino data in Table 3.1, although TBM is a reasonable
approximation to data, it should only be taken as a starting point to describing the
observed mixing. To this end it is useful to introduce three parameters defining

deviations from TBM [58]:

§13 = E, (3.40)
1

S12 = ﬁ (1 + 8) R (3.41)
1

So3 = \/5 (1 + a) (3.42)

These are defined for the full PMNS matrix, but can also be defined for individual
sectors by simply adding a superscript [ or v as appropriate. Using these

parameters, the PMNS matrix may be expanded and to first order is given as

%(1 — 15) %(1—!—5) %7‘6"5
Upning =~ —7(1+s—a—|—re 9) %(1 ts—a—ire®) %(14-@) , (3.43)
%(14—8—1—@—7“65) —%(1—53—1-(14- Lrei) %(1 a)

up to Majorana phases. This is analogous to the Wolfenstein parameterisation
which is an expansion of the CKM matrix away from unity. Using the data

provided in Table 3.1, these deviation parameters can be constrained to lie in
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extreme 1 o ranges too (here, the range of r is simply the extreme range given by

the three experiments)

0.199 <r < 0.269, —0.066 < s < 0.003, —0.118 < a < 0.068. (3.44)

Whilst the ranges for s and a still include 0, the range for r is rather a long way
from 0, indicating that TBM is indeed experimentally disfavoured without any
modification. Nevertheless, in the next Chapter a model predicting TBM is studied
since TBM is still a reasonable first approximation to the data and with some

modification can be used as a starting point for many models.

3.2.1 Extending the AF model to account for non-zero 6,3

Instead of TBM, schemes such as TM mixing remain viable [59]:

% cos 6 % % sin e’
Urnm = —% cosf — % sin e~ % % cos ) — % sinf@e’ | - (3.45)

1 A G getr L 1 L G getr
\/gcosﬁ—i— ﬂsm«?e 7 \/5(:089 \/gsm«?e
Here % sin @ = sin 13 and p is related to the Dirac phase. It is possible to extend

the AF model above by adding flavons in the 1’ and 1” representations of A4 which

reproduces this pattern [60]:
Wirsar = (she' + 9l€") NNV. (3.46)

Flavons in these representations explicitly break the U generator of K4 and have
been shown to lead to non-zero 613 [61,62]. These extensions lead to the mass

matrices
100

mp=1001]yvu, (3.47)
010
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and

2 —1 -1 100 001 010
Mrp=|Af-1 2 —1[+Bloo1|+C |oto|+C"|100]]|, (348
—1-1 2 010 100 001

with A = 2y (pg), B =2y2(§), C" =2y, (') and C” = 2y4 (¢”). The above matrix
may be rewritten as a sum of two matrices, one of which preserves TB mixing and

one which violates it:

Mg = MEB + AMp, (3.49)
2 —1 -1 100 011
MEB=A)_-12 —1|+Bloo1|+~|110], (3.50)
-1-1 2 010 101
0 1 —1
AMr=A1l1 -1 0 |- (3.51)
10 1

Here A = 1 (C" — C') and v = 3 (C' + C"). Since experimentally the mixing is still
close to TB mixing, the model requires |A| < |A|,|B|, whereas no such constraint
applies to . This observation allows one to diagonalise Mp perturbatively, such
that one ends up with Upry; = Urp + AU; performing this procedure gives the

lepton mixing matrix arising from the A4 model

2 1 2

VB VR
Urm = —% + %Oxlgg % % + %O/{g, (3'52)

S U ISR B B B
V6 Ve B TVa T Vs

The complex parameter aq3 is the only combination of input parameters (i.e. A, B,

v, A) which appears and is given by [60]

a3 = 5 Re——— +Im -1 (3.53)

A
V3 A A Img% Imge _
(A—=7) (A=7)Re= Re
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A comparison of Eqns. (3.52) with (3.43) then allows one to write a3 in terms of

the TB deviation parameters

R 2
s~0, a= M, rcosd ~ ———=Re (a13), ~ arg (aq3) + 7. (3.54)

V3 V3
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Chapter 4

SUSY SU(5) with singlet plus
adjoint matter and A, family

symmetry

This chapter presents a model combining several of the elements introduced
previously and which is published in [1]. The aim of the model is to combine the
framework of SUSY SU(5) with a family symmetry predicting TBM and a seesaw
mechanism. The choice of seesaw matter or Higgs is very ad hoc since the SU(5)
theory does not specify the nature of this extra matter and only requires that it be
anomaly-free. A popular choice is to add three RH neutrinos which arise from
singlet SU(5) representations. However the number of singlets is not predicted in
SU(5), and it is possible to add just a single RH neutrino to describe the
atmospheric mass scale [63]. In order to describe both atmospheric and solar
neutrino mass scales with two large mixing angles using the type I seesaw
mechanism two RH neutrinos are sufficient [64]. However, within SU(5) GUTs,

there are other possibilities.

It has been pointed out that, in (SUSY) SU(5) GUTs, non-fundamental matter
multiplets have decompositions which include both fermion singlets and fermion

triplets suitable for the type I and III seesaw mechanism, the smallest such example
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N L L Po, P3

Figure 4.1: Schematic diagrams of the type I (left) and combined type I
+ type III (right) seesaw mechanisms present in the model. The seesaw
messenger states are N and the pg, p3 components of 1a4. L is the SU(2),
doublet contained in the 5 of SU(5).

being the adjoint 24 representation [65—67]. The decomposition of a matter 24
under the SM gauge group SU(3). x SU(2)r, x U(1)y involves an SU(2)y, singlet
po = (1,1)9 as well as a triplet p3 = (1, 3)g, thus leading to a combination of a
type I seesaw with a type III seesaw [30]. However, assuming the simplest Higgs
sector, the pg and p3 are constrained by SU(5) to give equal contributions to the
neutrino mass matrix, up to an overall constant, resulting in a rank one neutrino
mass matrix and only one non-zero neutrino mass. This problem may be addressed
by allowing additional couplings to a Higgs 45 [67], but here a different possibility

is considered.

Instead, one can introduce a single RH neutrino singlet superfield N plus one
adjoint matter superfield 124 below the GUT scale. The model combines a type I
seesaw mechanism from the single RH neutrino N below the GUT scale [63] with a
type I plus type III seesaw mechanism from the py and ps components contained in
a single adjoint matter superfield 124 below the GUT scale [67]. The seesaw
mechanism in the model therefore results from three distinct diagrams as shown in
Fig. 4.1. Instead of using an adjoint Higgs representation Hs4 to spontaneously
break SU(5) to the SM gauge group, the assumption that the GUT group is broken
by geometrical effects in extra dimensions is made. However the theory here is
formulated in four dimensions and can then subsequently be uplifted to a higher
dimensional setting (as in, for example, [68]). The absence of Hay is crucial in
forbidding the mixing between the RH neutrino N and a4, leading to no mass
mixing between N and pg and hence a diagonal heavy Majorana sector as required

by CSD [69].
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The first part of this Chapter introduces the relevant GUT without a flavour
symmetry and it is demonstrated that this cannot be simply augmented by a
discrete symmetry in order to predict TBM. Instead it needs a small adjustment
which is explained in the second part of the Chapter; this is then uplifted to a

flavour model and the results presented in the remainder of the Chapter.

4.1 An SU(5) model with Type III seesaw

This Section is based on work from [66] and [67]. In these papers it was shown that
the simplest SU(5) GUT, which fails to unify the fundamental forces in satisfactory
manner, can have its unification properties improved with the addition of an extra
matter 24 to the particles listed in Section 2.2.2. Under the gauge group

SU(3). ® SU(2), ® U(1)y, 24 decomposes as

P24 = (8,1)0 & (1,3)0 @ (3,2) 5/6 @ (3,2)5/6 @ (1, 1)o = (s, p3, P(3,2)+ P(3,2): PO)
which contains the quantum numbers of both types I and III seesaw particles.! Two
seesaw particles makes it possible to predict two massive neutrinos with the
addition of only one SU(5) superfield (also note that since the adjoint is a real

representation, no extra anomalies are introduced here).

The introduction of this new superfield gives rise to the superpotential for neutrino

mass

wy, = ¢;FyaaHy + piFitpa4aHys, (4.1)

and this means that the seesaw mechanism has contributions from both the Hg and
the Hys. The 194 field can be represented as a 5 x 5 matrix using 1aq = p1T¢
where the T are the generators of SU(5)? [70] and the p, are related to the fields

contained in the 124. Using this decomposition along with Eqns. (2.54) and (2.55),

Note that this is the main motivation for the study undertaken in the current Chapter, as a
SUSY version of this model is used which has less need for improved unification.
*Normalised so that Tr {T, Ty} = %.
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the superpotential may be expanded:

1 1 (& (& 2 (&
o (G5 =)+ g (L 2 2E) (42)
3 po 03 \/§ Po
M= =3 = —/=-—= .

* \/; 3 ( 2 V52 s
In the above, the pg is the neutral component of the p3 corresponding to the
diagonal generator of SU(2);, and the p§ s are the fields contained in pg
corresponding to diagonal generators of SU(3).. The ... represent interactions
between the 194 and non-v fields, and the cancellation of interactions between v

and the coloured fields p§ g has been explicitly demonstrated . Rearranging the

result into seesaw interaction terms gives

wy, =

V15 /¢
(civs — 3pivas) vip + ~——— ( 155

5 + Pz‘v45> Vipo- (4.3)

N |

Application of the seesaw mechanism, Eq. (2.43) to integrate out the p fields then

results in
aiaj bzb]
mY; = 4 2 (4.4)
Y MPS MPO
with

a; =

\/ﬁ (Cﬂ)5

(civs — 3pivgs) and by = —— :

5 +piv45> . (45)

DO | —

It is important to note that the Hys is crucial to a satisfactory model of neutrino
mass; if it were not present, then a; < b; and so the mass matrix M would have

rank one = the model would only predict one massive neutrino.

The fields in the 194 get masses from their interactions with the Hay

wy = MsTr (H3g) + AsTr (H3y) + MTr (24°) + ATt (V24° Haa) (4.6)
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which gives

2Ms )\
M, =M
ro 3y
2Ms A\
M, = M — ==2,
Ay
4Ms A
M,, =M 4.7
P8 + 3)\2 ) ( )
MsA
Mp(3,2) = M - 3)\2 ’
Ms\
Mp(§,2> -4 3y |

once the Hayq obtains its VEV, (Hayq) = 23];\4; diag(2,2,2,—3,—3) (calculated using

the first two terms of wy,). For instance, inserting the decomposition of the 124 into

(4.6) and extracting the py term gives

1 3 4 4 4 8 8 8 \2Ms\, .
SRV i ) PP . ° )
o 4X5< <9+9+9+>+ <9+ 9 >3Ag>(p0)’
1
>

M —
(- 2522 .

_ 2Ms)
s

Nag

giving M,, = M

as required.

In order to extend this model to predict lepton mixings, the F; fields containing the
neutrinos will be combined into a triplet of A4, meaning the neutrino Yukawa
superpotential must be augmented by triplet flavons as in the AF model in Chapter

3

wy = c(ps )24 Hs + p(psF)baaHyz. (4.9)

Unfortunately this assignment leads to a prediction of only one massive neutrino.

Expanding (4.9) gives

0
3
wy, = cvsvs (Ve + vy + v7) <% + \/%%)

0
35
+ 3pvasvs (Ve + vy + vr) (% — \/%%) .

This will lead to a mass matrix with all entries proportional which, while part of the

(4.10)

TB mixing structure (3.5), is of rank 1 and thus has only one non-zero eigenvalue.
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To try and generate a more realistic phenomenology, the model can be extended

with another flavon ¢y3, whose VEV is proportional to the third eigenvector of (3.5)

(pa3) = v23(0,1, —1). (4.11)

The superpotential then becomes

wy, = c(psF)p2aHs + p(p2sF) 24 Hys, (4.12)

leading to (for simplicity, the contribution from the py can be ignored)

mrr ~a®al  with a= s+ p3, (4.13)
= ML ~ PsPs + P3P + Psng + P23PE. (4.14)

The cross terms here are not contained in (3.5) and so spoil the TB mixing pattern.
Reintroducing pg will simply add an extra multiplicative factor, keeping the
structure the same and so not changing the conclusion. An extra ingredient is
required in order to uplift this to a flavour model, which is introduced in the next

Section.

4.2 SUSY SU(5) with singlet and adjoint matter

This Section presents a SUSY SU(5) GUT with one single RH neutrino arising
from a singlet representation N below the GUT scale plus one extra adjoint matter
representation g4 with mass also below the GUT scale. The matter contained in
the 124 is degenerate thus avoiding problems with gauge coupling unification. The
model represents a new way to achieve a hierarchical neutrino mass spectrum

arising from a type I plus type III seesaw mechanism, as is now discussed.

The superpotential describing the neutrino sector takes the form

1 1
W = ¢;F;24Hyg + p; F; N Hg + §MNNN + §M Tr (¢242). (415)
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The seesaw diagrams illustrated in Fig. 4.1 then yield the light neutrino mass

matrix,

m¥ = ¢;eiv? < + ) 4+ 2502 (4.16)
v AM,, T 20M, My

Here v, is the VEV of the Minimal Supersymmetric Standard Model (MSSM)
Higgs field H,, which corresponds to the SU(2);, doublet within the SU(5) Higgs
Hs. As can be seen from Eq. (4.15), the Majorana masses for the seesaw
messengers pg and pg are identical, i.e. M, = M,, = M, while N has an
independent mass M. Note that there is no adjoint Higgs Hs4 which would break
the degeneracy of the components in the 124 and, more importantly, allow a mixing
term N1pag Hay leading to a mass mixing between N and pg. Note also that ¢; and
p; are independent dimensionless coefficients (where ¢ and j are family indices); this
independence is crucial to obtaining a rank two mass matrix and thus two non-zero

neutrino masses.

As ¢; and p; are uncorrelated parameters, Eq. (4.16) does not in general conform to
the TB structure of the neutrino mass matrix. It is the aim of this Chapter to
obtain TB neutrino mixing as a consequence of a discrete family symmetry in this
type of model. To this end, in the next Section, the adjoint SUSY SU(5) model is

augmented with the tetrahedral family symmetry Ay.

4.3 SUSY A, x SU(b) with singlet and adjoint matter

In this Section the model in Eq. (4.15) is uplifted to include a tetrahedral family
symmetry. The S-diagonal basis of [71] is used (see Chapter 3), in which two Ay
triplets a = (a1, a2,a3)” and b = (b1, b, b3)T give a singlet through the combination
a1by + agby + asbs. As before the three families of 5s are unified into an Ay

triplet F' ~ 3, and in order for Eq. (4.15) to remain invariant, flavons ¢; are

introduced to break the A4 symmetry and generate the Yukawa couplings.

Table 4.1 shows the chiral superfields present in the model. As mentioned above,
the three 5s of SU(5) are embedded in a triplet of A4, while the three 10s are

singlets. The a4 is an Ay singlet as is the RH neutrino N. The Higgs sector
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Field || tYo4 | N | F | Ty | To | T3 | Hs | Hg | Hzg | w123 | w23 | w3 | &€ | & | 1
SU(5) 24 15|10 |10 10 5 5 45 1 1 1 1 1 1
Ay 1 1|3 1 1 1 1 1 1 3 3 3 1 1 3
Ul 1 |11 1|1 |1Jolo0o[ 0] 0 ]olololo]o
OO | —1]2]o0]4]1]ofJo]Jo] 21 1] =2l0]-1]-4a
Z; i I R e B e e e e e e e B s
ZZ |+ [+ |+ |+ |+ -+ |+ + |+ [+ ][-1+][+]+

Table 4.1: Matter, Higgs and flavon chiral superfields in the model. The

U(1) charge g1 can take any value which prevents yp; from significantly

interacting with the other fields of the model, for instance ¢; = —% as

discussed below.

consists of fundamental Higgs fields Hs and Hg; introducing another Higgs in the
45 representation, Hgg, enables the implementation of the GJ mechanism [42] to

obtain the well known GUT scale mass relations from Eq. (2.61).

The U(1)g is the familiar R-symmetry; it is essential in forbidding F-term
contributions to the flavon superpotential which otherwise could dominate the
relevant D-term operators used for obtaining the desired vacuum alignment (see
Appendix B and the discussion in [72] and [73]). The U(1) and the two Z
symmetries constrain the structure of the Yukawa matrices in the quark and
charged lepton sectors. The standard MSSM p-term?® pH, Hy, is forbidden by the
first of the Z5 symmetries as well as by U(1)g, allowing for a natural solution to the
pu-problem of the MSSM using a GUT singlet from the hidden sector of

Supergravity theories [51].

The flavon fields ¢;, £ and & break the A4 symmetry and constrain the form of the
lepton and down quark Yukawa matrices. The vacuum alignments of the triplet
flavon VEVs assumed in this model are displayed in Table 4.2. They are achieved
using the D-term vacuum alignment mechanism discussed recently in [73]. This
mechanism is ideally suited for models such as this in which the flavons are used to
generate the neutrino flavour symmetry as an indirect result of the A4 symmetry as
discussed in [56]. Moreover, the D-term vacuum alignment mechanism does not
involve the introduction of extra “driving fields” in the superpotential and does not

impose any restrictions on the model other than the requirement that higher order

3Where H, is the SM doublet of Hs; and Hgy is a linear combination of the SM doublets in Hg
and Hzz.

o4




Flavon VEV | VEV alignment
<Q01> (1’ 0’ O)T
<Q03> (0’ 0’ 1)T
<9023> %(0’ 1’ _1)T
(p123) -(1,1,1)"

Table 4.2: The vacuum alignments of the triplet flavons used in the
model. Without loss of generality, the alignments are given without phases;
the relative sign between (p23), and (p23)4 is relevant, though the actual
position of the minus sign is mere convention.

terms in the flavon potential do not spoil the vacuum alignment arising from the
D-terms. This has been demonstrated to arise in a fairly generic way in [73]
providing that the model also respects a U(1)r symmetry and involves no
superfields with R = 2 which, like driving fields, could appear linearly in the
superpotential and lead to large terms in the flavon potential. The present model
involves only fields with R = 0,1 and so the D-term flavon potential will not receive
large corrections from the superpotential. Since the D-term vacuum alignment
mechanism is generic and does not provide any other restrictions on the model than

those stated, the operation of this mechanism is assumed, leading to the stated

alignments for ¢193, Va3, ©3, 1.

In order to avoid the massless Goldstone boson associated with the spontaneously
broken U(1) symmetry, it is assumed to be gauged.* In addition to the particle
content specified in Table 4.1 extra matter is needed to cancel the respective gauge
anomalies. The cubic SU(5) anomaly requires the introduction of a Higgs field Hys
whose U(1) charge is determined by the mixed SU(5) — SU(5) — U(1) anomaly to
be q(Has) = —53. Then the cubic U(1) anomaly can be removed in many ways; for
example, choosing ¢; = —% requires that three extra Ay x SU(5) singlets are
added with U(1) charges %, %, %. Assuming that Hys has the same Z5 charges as
H g while the three extra Ay x SU(5) singlets are neutral under both Z,
symmetries, that these additional fields lead to only negligible contributions to the
fermion mass matrices discussed below, provided they get VEVs of order €A or

smaller, see Eq. (4.21).

If it were not gauged, Goldstone boson masses could arise from explicit U(1) breaking in the
hidden sector which could generate soft SUSY breaking terms involving only flavon fields where
such terms explicitly violate the U(1). However such terms could jeopardise the D-term alignment
mechanism so here a gauged U(1) is preferred to avoid any potential problems.
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4.3.1 Allowed terms

The neutrino sector is composed of Dirac and Majorana mass terms which take the

form in the superpotential:

©123

W, =—= A

4
9023 3 80123 2
CF?/)24H5—|——A pFNHg+ AyNNN+2 5y Yy NN+ SA yTr (Y247) , (4.17)

with A a heavy mass scale and ¢, p, yn, ¥,y dimensionless coupling constants.
When the flavons get their VEVs the superpotential in Eq. (4.17) reproduces that

in Eq. (4.15) but with constrained couplings ¢; and p; leading to TB mixing.

The superpotential terms of the down quark and charged lepton sector are given as

follows

pa3&? T\ FH, + ©123€2 TyFH, + p23€

Wy ~
A3 A3 A2

TQFH45 —|— T3FH5, (418)

Ay

where Ay is the relevant messenger mass. The flavon £ plays a role similar to a
Froggatt-Nielsen field [57], except that it is not the sole contributor to the

generated mass hierarchy, here combined as it is with the triplet flavons.

Finally the up quark sector Yukawa superpotential terms take the form

@y <90235 & >
147 T\THs + (T + T2T1)Hs
2 2 2
* ‘Pwﬁgf (T3 + T3T1)Hs + fxz oIy Hs + %(Tﬂs + T5Tp)Hs  (419)
u U
+ 1373 Hs.

It should be mentioned that the messenger mass in this sector, A,, may in principle
be different from that in the down quark sector. The field ¢ is introduced

specifically to generate the 17177 term to the required order.

4.3.2 Fermion mass matrices

After spontaneous breakdown of the A4 family symmetry by the flavon VEVs, the

superpotential terms of Eqgs. (4.17), (4.18) and (4.19) predict mass matrices for the
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respective sectors. In the following, order one coefficients in the quark and charged
lepton sectors are omitted (including flavon VEV normalisation factors). Regarding

the scale of the flavon VEVs, an expansion parameter is defined

1 (4.20)

where ©; = @123, ©23, @3, £ or £. In order to obtain the hierarchical structure of

the quark and charged lepton mass matrices the assumption®

Mo3, o3, Mg = € and 03,7 =€, (4.21)

is made, where the numerical values for ¢ depend on the messenger scale of the
relevant sector. The superpotential terms of the quark and charged lepton sectors

are given up to and including O(e%).

In the Higgs sector, it is not the Hys, Hg or Hyg which get VEVs but their SM
doublet components. These are the two MSSM doublets H,, (corresponding to Hs)
and H, (corresponding to a linear combination of Hg and Hgg); they originate
below the GUT scale and remain massless down to the EW scale. The non-MSSM
states all acquire GUT scale masses, including the linear combination of Hg and
Hzz orthogonal to Hy. EW symmetry is broken after the light MSSM doublets H,, 4

acquire VEVs v, 4 and they then generate the fermion masses.

4.3.3 Neutrino sector

In this model the light neutrino masses arise from a combination of type I and
type III seesaw. Due to the absence of a Hoy the heavy seesaw messenger particles
N and py do not mix as can be seen from Eq. (4.17). Thus the 2 x 2 Majorana
mass matrix of the heavy RH SU(2), singlets is automatically diagonal.
Furthermore, the seesaw messenger responsible for the type III contribution, ps,
cannot mix with N as they furnish different SU(2)[, representations. A very generic

method for obtaining neutrino masses and mixings is to enforce a scheme known as

5Tt is possible to have a hierarchy in the flavon VEVs since the scales at which their mass terms
are driven negative can vary [73].
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CSD. In CSD, a heavy neutrino mass hierarchy is assumed as well as specific
relations between parameters of the Dirac mass matrix. The origin of these
relationships in this Chapter is the flavour symmetry, as is the case in many models
predicting TB mixing. However, in CSD the (approximate) diagonal nature of the
seesaw particles is usually a necessary extra assumption which often lacks a
fundamental explanation. In the current adjoint model, however, it is directly built
into the theory by not including Hs4. Therefore the model represents a very

natural realisation of CSD.

In the Dirac neutrino sector of Eq. (4.17), the spontaneous breaking of the Ay

family symmetry by the flavon VEVs (p123) and (pa3) gives

0
CI23v P3 3 P23V
£ = \/g = (Ve + v+ VT) (? - 2_0 /00) - \/iu (Vu - VT)N + hec., (422)

where the numerical factors of p$ and py are determined from the normalised SU(5)
generators in the adjoint representation [70]. Upon application of the seesaw

formula of Eq. (4.16) the effective LH Majorana neutrino mass matrix is found to be

111 00 O
2c202 p2v?
my = 111 01 —-17]- (4.23)
15yA 2(yn + y1ig /135) A
111 0-11

Since any matrix diagonalisable by Eq. (3.3) may be written as®

mig, ()7 /19412 + mawras(p123) 7 /|p123|? + mawas(wa3)T /| pas|? [56], the masses

may be read off as

00 O
N 26212 P2
my®® =10me 0 |, with mo= L omg= 4 . (4.24
g 2 Suh on + itk Y
00 ms

Hence the model predicts one massless left-handed neutrino and thus a hierarchical

neutrino mass spectrum.

690/1 S %(_27 1, 1)T'
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4.3.4 Down quark and charged lepton sector

In the down quark and charged lepton sector, the superpotential of Eq. (4.18)

predicts a mass matrix of the form (with messenger mass A4 in 7;)

0 12370 —11237
Maatg Maani + kpiaane Maani — kyioane | Vs (4.25)
0 0 3

where k; is the GJ factor (in the case that f = e, the mass matrix must also be
transposed):

1 for f=d,
kp= (4.26)

-3 for f=e.

Inserting the e suppressions of the flavon VEVs from Eq. (5.6) the down quark mass

matrix becomes

0 e —e
mq ~ 63 62 —62 €Vq, (427)
00 1

whilst the charged lepton mass matrix reads

0 €& 0
me ~ 63 —362 O €Vq. (428)
—e3 3e2 1

Here the further assumption the numerical value € ~ 0.15 is made. Upon
diagonalisation, these give mass ratios of €* : €2 : 1 for the down quarks and

% : 3¢2 : 1 for the charged leptons. These ratios are in good agreement with quark
and lepton data and also predict GUT scale mass relations of mg ~ %, my, ~ 3m
and m, ~ my as desired. In the low quark angle approximation, left-handed down

quark mixing angles 6%, ~ ¢, 0% ~ ¢ and 04; ~ €

are also predicted in agreement
with data (assuming an approximately diagonal up sector which is obtained in the
next Section). The corresponding charged lepton mixing angles are 6y ~ £, {3 ~ 0

and 655 ~ 0.
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The PMNS matrix is not of exact TB form but receives small corrections from
charged lepton mixing. In particular, the reactor angle deviates from zero by

015 ~ %% [74]. Furthermore, since 655 ~ 055 ~ 0, two sum rules for lepton mixing
are respected [74,75]. Expressed in terms of the TB deviation parameters in Eq.
(3.42), the sum rules read s = rcos§ and a = —r2/4 [76], with § being the leptonic

Dirac CP phase.

4.3.5 Up quark sector

Eq. (4.19) may be expanded after A4 symmetry breaking and is responsible for up
quark masses:
Me Masle T —Thanang
M3 + ¢ 0 Maansng | Vu- (4.29)
—123781F 1231373 1
Taking the VEV hierarchy as in Eq. (5.6), but now adopting the messenger scale

Ay =~ 3Ag4, gives a mass matrix with an expansion parameter € ~ 0.05,

& e -8
my~| @ &2 & |w (4.30)
—ee 1

and an up quark mass hierarchy & : €2 : 1. As the mass matrix of Eq. (4.30) is
diagonal to a good approximation, the up quark mixing is negligible. An important
consequence of this observation is that the CKM mixing arises predominantly from

the down quark sector, with the Cabibbo angle being 6o ~ 9%2 ~ E.

4.4 Conclusions

In conclusion, minimal (SUSY) SU(5) represents an attractive route to unification,
but the Weinberg operator cannot account for neutrino mass and mixing, and the
seesaw mechanisms all require extra matter or Higgs below the GUT scale. An

appealing possibility, considered here, is to extend SUSY SU(5) by assuming a
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single RH neutrino singlet and an adjoint matter representation below the GUT
scale, including an A4 family symmetry as well as a gauged anomaly-free U(1).
Hierarchical neutrino masses result from a combined type I and type III seesaw

mechanism, and TB mixing arises indirectly from the A4 family symmetry.

One attractive feature of this scheme is that the mixing between the single RH
neutrino and the matter in the adjoint can be forbidden by not including the Hag4,
leading to a diagonal heavy Majorana sector as required by CSD. The flavon
vacuum alignments arise from the elegant SUSY D-term mechanism. The model
also reproduces a realistic description of quark and charged lepton masses and

quark mixings, including the GJ relations.

Corrections to TB mixing in the lepton sector come solely from the 1-2 mixing of
the left-handed charged leptons, resulting in a PMNS matrix with two angles within
the experimentally allowed limits (recall that 613 = 0 is now experimentally
disfavoured). In particular the model respects the sum rules s = r cosd and

a = —r?/4 with r = 0¢/3.

61



62



Chapter 5

Ay x SU(H) SUSY GUT of
Flavour with Trimaximal

Neutrino Mixing

As mentioned in Chapter 3 the Daya Bay and RENO collaborations have published
results confirming the discovery of a sizeable reactor angle 613 [16,17] in the range
7.95° < 013 < 10.8° (combining statistical and systematic errors in quadrature for
each experiment separately and using the extreme 1o bounds). This confirms the
previous indications from T2K [13], MINOS [14], DOUBLE CHOOZ [15] and the

global fits based on several experiments [32, 33].

The measured reactor angle 613 ~ 9° clearly rules out the hypothesis of exact TB
mixing [54]. However, in the framework of SUSY GUTs of Flavour [77] (i.e. with a
Family Symmetry [18] implemented) it is already known that TB mixing cannot be
exact. As an example consider the model in the previous Chapter: TB mixing is
realised exactly in the neutrino sector, but observable lepton mixing is subject to
charged lepton (CL) corrections (due to the fact that Upnng = 1A% ). There are
also RG corrections, not to mention other corrections due to CN (for a unified
discussion of all three corrections see e.g. [75] and references therein). Therefore, in

the framework of SUSY GUTs of Flavour, the question of whether TB mixing may
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be maintained in the neutrino sector is a quantitative one: can the above CL, RG
and CN corrections be sufficiently large to account for the observed reactor angle?
The answer is yes in some cases (see e.g. [78]), but no in many other cases. For
example, in models based on the GJ mechanism [42], where the CL corrections are
less than or about 3°, and where the RG and CN corrections are less than or about
1° (which is the case for hierarchical neutrinos), it would be difficult to account for
a reactor angle 613 ~ 9°. For this reason, there is a good motivation to consider
other patterns of neutrino mixing beyond TB mixing, and many alternative
proposals [19] have indeed been put forward to account for a non-zero ;3. On the
other hand, since the solar and atmospheric mixing angles remain consistent with
TB mixing, there is also a good motivation to maintain these successful predictions

of TB mixing.

In a SUSY GUT of Flavour, the Family Symmetry is responsible for determining
the neutrino mixing pattern, which then gets corrected by CL, RG and CN
contributions to yield the observed lepton mixing angles. The question is what is
the underlying neutrino mixing pattern? To go beyond TB neutrino mixing, there

are many possibilities. One simple scheme is the TM mixing pattern [59]:

%COS’IQ % %sinz?e’p
quﬂlr\/[ = P —%cosﬁ—%sinﬁe‘w Lg %cosﬁ—%sinﬁew P, (5.1)
—%cosﬁ—l—%sinvﬂe*ip Lg —%cosvﬂ— %sinﬂei”

where % sind = sin 05, P’ is a diagonal phase matrix required to put

UpMmNs = UeUﬂ/[ into the PDG convention [79], and P = diag(1, eiaTQ,eia_;)
contains the usual Majorana phases. In particular TM mixing approximately
predicts TB neutrino mixing for the solar neutrino mixing angle 67, ~ 35° as the
correction due to a non-zero but relatively small reactor angle is of second order.
However it is emphasised again that, in a SUSY GUT of Flavour, TM mixing refers
to the neutrino mixing angles only, and the physical lepton mixing angles will
involve additional CL, RG and CN corrections. Nevertheless, TM neutrino mixing
could provide a better starting point than TB neutrino mixing, given that 613 ~ 9°,

and this provides the motivation for the approach followed in this Chapter.
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Recently, an A4 model of TM neutrino mixing was discussed in [60]. In the original
A4 models of TB mixing Higgs fields or flavon fields transforming under A4 as 3
and 1 but not 1’ or 1” were used to break the family symmetry and to lead to TB
mixing. However, as discussed above, exact TB mixing is no longer consistent with
data; a non-zero 613 must be accommodated, and the chain of logic to achieve this is
as follows. In the presentation of Section 3.1.1, A4 has two generators S and 7' . In
addition, the neutrino sector of the AF model respects an accidental U symmetry
which enforces 613 = 0 (as well as 63 = %) [56,80]. This can be broken by including
flavons transforming as 1’ or 1” [61], and in particular it was noted that they lead
to TM mixing [62], allowing a non-zero #13. In [60] the vacuum alignment of the AF
Ay family symmetry model [20], including additional flavons in the 1’ and/or 1”

representations, was studied and it was shown that it leads to TM neutrino mixing.

In this Chapter it will be shown how such a model with TM neutrino mixing may
arise from a SUSY GUT based on SU(5), leading to the sum rule bounds |s| < %C
and |a| < 3(r + ‘%C)| cos |, up to RG and CN corrections, where r, s, a are the TB
deviation parameters, § is the CP violating oscillation phase, and 6¢ is the Cabibbo
angle. Although the model is formulated at the GUT scale, the details of its
breaking are not discussed, since the results rely mainly on the assumption of a GJ
factor of —3, rather than the full details of the underlying GUT breaking
mechanism. As such, the GJ mechanism can be realised in various contexts. One
possibility to break the GUT, mentioned previously, is to rely on geometrical effects
in extra dimensions, which are known to provide an elegant solution to the
doublet-triplet splitting problem. In such a GUT breaking scenario, any 4
dimensional model (like the one presented here) would have to be uplifted to a
higher dimensional setting. This could be achieved along the lines of, e.g., [68].
Alternatively, the GUT could be broken spontaneously using large Higgs
representations. In that case, the existence of a family symmetry typically requires
the introduction of more GUT Higgses than would be necessary without a family
symmetry, see for instance [81], entailing a rather intricate Higgs sector. With the
main focus being on the quark and lepton sector, any detailed discussion of the

(geometrical or spontaneous) GUT breaking is, however, beyond the scope of this
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73 wlw W] 1 1 1 w w
Zs el L[] 1] p] p

Table 5.1: Matter and Higgs chiral superfields in the model.

Thesis.

The work in this Chapter is based on a paper published in [2]. The rest of the
Chapter is organised as follows. In Section 5.1 the model is introduced, presenting
field content, charges, flavon alignments and LO superpotential terms. Section 5.2
then presents the mass matrices and mixing angles for neutrinos, quarks and
charged leptons arising from the LO superpotential. The effect of the non-trivial
charged lepton corrections (due to the grand unified setup) on the physical lepton
mixing angles is discussed in Section 5.3. The discussion of the vacuum alignment
and the NLO terms is presented in Sections 5.4 and 5.5, respectively. The

conclusion can be found in Section 5.6.

5.1 The model

The transformation properties of the SU(5) matter and Higgs multiplets are shown
in Table 5.1. N and F furnish the triplet representation of A4, thus unifying the
three families of leptons, while the three families of the T; transform in the three
distinct one-dimensional representations of A4. The Higgs sector again contains the

Hyg in order to implement the GJ mechanism [42].!

The full set of flavon fields is shown in Table 5.2. The fields ¢g and & are
responsible for the flavour structure of the neutrino sector, while the flavons 7 and

6" control the quark and charged lepton sector. The vacuum structure is obtained

TAs before, the standard MSSM p-term pHy, Hg is forbidden by the A4, U(1), Z3 and Z5 symme-
tries as well as U(1)g, allowing for a natural solution to the u-problem of the MSSM using a GUT
singlet from the hidden sector of Supergravity theories [51].
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Zs Pl 1] 11

Table 5.2: Flavon chiral superfields in the model.

via the standard F-term alignment mechanism [20] where the F-terms of the
driving fields (presented in Section 5.4) are set to zero, thus giving rise to
constraints which in turn fix the flavon alignments. As shown in Section 5.4, one

obtains the following triplet flavon alignments,?

1 1
(pr) o< o],  {ps) < |1]- (5.2)
0 1

Since F-term alignment is being used in this Chapter the U(1) symmetry does not
need to be gauged, as the Goldstone bosons are free to obtain soft SUSY breaking
masses without fear of jeapordising the alignment mechanism. The model is

constructed in the T-diagonal basis of 3.

The U(1)g again represents an R-symmetry; the U(1) and the three Zy shaping
symmetries constrain the structure of the Yukawa matrices in the quark and
charged lepton sectors. Specifically, the Z5 prevents the neutrino flavons (pg and

¢%) from appearing in the quark and charged lepton Yukawa couplings.

In the neutrino sector, the A4 family symmetry is broken by the flavon fields g
and &!, thereby leading to a TM mixing pattern as observed in [60]. In the quark
and charged lepton sector the A4 symmetry is broken differently by virtue of the
flavon fields @7 and 6. Due to the SU(5) structure, the form of the charged lepton

and down quark Yukawa matrices is intimately related, leading to a non-trivial LH

2The auxiliary flavon field o is introduced for the purpose of achieving the alignment of the U(1)
charged flavon field pr.
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charged lepton mixing which combines with the TM structure of the neutrino

mixing to give the physical PMNS mixing.

5.1.1 Allowed terms

The neutrino sector is composed of Dirac and Majorana mass terms which take the

leading order form in the superpotential,
W, = yFNHs + (y1¢s + 26 + yp&’ + yo&") NN | (5.3)

with y, y1, y2, v5, y5 being dimensionless couplings.

The leading order superpotential terms of the down quark and charged lepton

sector are given as follows

929// 929/
Wq ~ (F (Fer) + N (F<PT)”> HgTh +
d d
(9/)2 9"
A

a06’ (9"
AG
00" 06’

(Fer) HgTs + <A_3 (For) + A3 (FSDT)”> HzzTs (5.4)

(For) HggTh

+

2p3

292 (9')? 1 0
v (“A#WT) el (<F¢T>”>> st + (T (Per) ) Hg
d d d

where Ay is the relevant messenger mass. Note that for some entries of the down
quark Yukawa matrix, there are several different operators of the same order; here
an example is chosen for illustrative purposes. The flavons 6* again play a role

similar to a Froggatt-Nielsen field [57].

Finally the leading order up quark sector Yukawa superpotential terms take the

form
04 (0)* 02 (0% (0")? o6 (0 ¢
Wy ~ /(XG) T1T1H5+< ( /)\6( ) +Z (A5) (ThT> + T2T1) Hs
020/ 06’
+ F(T1T3 + T3T1)Hs + FTQTZHS (5:5)
9/?@//)2 b

(12T3 + T3T)Hs + T3T3Hs.

As before the messenger mass in this sector, A,, may in principle be different from
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that in the down quark sector. The field ¢’ is introduced specifically to generate the

T5T5 term to the required order.

Examples of the many subleading higher order operators allowed by the symmetries
of the model are listed in Section 5.5.2 As their contribution to the mass matrices is

negligible, they do not induce physically relevant modifications of the LO picture.

5.2 Fermion mass matrices

After spontaneous breakdown of the A4 family symmetry by the flavon VEVs, the
superpotential terms of Egs. (5.3)-(5.5) predict mass matrices for the respective
sectors. In the following, order one coefficients in the quark and charged lepton
sectors are omitted (including flavon VEV normalisation factors). Regarding the
scale of the flavon VEVs the expansion parameter n; from Eq. (4.20) is again used,
where @;=@7, ' or 0. In order to get the hierarchical structure of the quark and

charged lepton mass matrices the suppressions

NG = € and  Nothers = €, (5.6)

are assumed, where the numerical values for € depend on the messenger scale of the
relevant sector. This hierarchy is justified in Section 5.4, where the driving
superpotential is studied. LO operators for each entry in the mass matrices are

presented; NLO operators can be found in Section 5.5.

5.2.1 Neutrino sector

Eq. (5.3) gives Dirac and Majorana mass matrices

100
mp=001]|Yyou, (5.7)
010

3Tt is emphasised that the full NLO spectrum has been studied, however only example terms are
presented since there are too many to include all of them.
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and

2 —1-1 100 001 010
Mp=|A|l-1 2 —1|+Bloo1|+C|o1o|[+C"|100]||, (538)
~1-1 2 010 100 001

with A = 2y1 (pg), B =2y2(§), C" = 2y5 (') and C” = 2y4 (¢"). As shown in
Chapter 3, the standard type I seesaw formula then yields a light neutrino mass
matrix of TM structure, and hence a neutrino mixing matrix of the form as given in
Eq. (5.1). The relationships between the given parameters and 613 are given in
Chapter 3; note however that in the limit that C’ = C”, exact TB mixing is

recovered.

5.2.2 Down quark and charged lepton sector

In the down quark and charged lepton sector, the superpotential of Eq. (5.4)

predicts a mass matrix of the form (with messenger mass A4 in 7;)

kfnononege mgner Mgner
namer  kenener kyngne | nrva (5.9)

nengng  kpamg 1

where this matrix has to be transposed for the charged leptons. k¢ is the familiar
GJ factor. Inserting the e suppressions of the flavon VEVs from Eq. (5.6) the down

quark mass matrix becomes

mg~ | e €2 2 | evy, (5-10)



whilst the charged lepton mass matrix reads

me ~ 63 —362 —365 €Vg. (511)

Again the numerical value € ~ 0.15 is assumed. Upon diagonalisation, these give
mass ratios of €* : €2 : 1 for the down-type quarks and % : 3¢? : 1 for the charged
leptons. These ratios are in good agreement with quark and lepton data and also
predict the GJ GUT scale mass relations of Eq. (2.61) as desired. In the low quark
angle approximation, the LH down quark mixing angles 9?2 ~ €, 9% ~ €3 and

033 ~ €2 are also predicted in agreement with data (assuming an approximately
diagonal up quark sector which we obtain in the next subsection). The
corresponding charged lepton mixing angles are 67, ~ 5, 073 ~ % and 055 ~ 30,

Therefore, the only significant charged lepton correction to the TM mixing of the

neutrino sector originates from 6, ~ (%C, where 6¢c denotes the Cabibbo angle.

5.2.3 Up quark sector

Eq. (5.5) may be expanded after A4 symmetry breaking and is responsible for

up-type quark masses

nana NN Man + NoToMa Mg Mg’
NENEMG + Moo G nong oy | Vu - (5.12)
NN o Mg 1

Taking the VEV hierarchy as in Eq. (5.6), but now adopting the messenger scale

A, ~ %Ad, a mass matrix with an expansion parameter € ~ 0.1 is obtained,

al

My ~ B3|, . (5.13)

A
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and an up-type quark mass hierarchy € : € : 1. This matrix gives mixing angles of
0%y ~ 0% ~ 04 ~ €. This means that the CKM mixing matrix is dominated by
down quark mixing, except that there may be a contribution to H%KM from the up
quark sector which is almost as significant as the contribution coming from the

down-type quarks. The Cabibbo angle is still approximately 0o ~ 0%, ~ €.

5.3 Charged lepton corrections to lepton mixing

The previous Sections present mixing angles which rotate the charged leptons and
neutrino fields between the mass and flavour bases, however these individual
rotations are not what experiments observe. It is the combination of the two mixing
matrices that appears in the EW coupling to the W boson, giving the physical

mixing matrix, as in Chapter 2
Upmns = Ue, Uy . (5.14)

While the neutrino sector predicts exact TM mixing, the effect of the charged
lepton corrections generates an experimentally detectable deviation from this in the
physical parameters. In this Section RG and CN corrections are ignored and the

CL corrections are studied.

There are (at least) two popular ways to parameterise the PMNS matrix; firstly one

can write Upnng = UagUi3Uq2 with [82]

c19 s12exp (—id12) 0
Uiz = | —s12exp (i612) C12 01, (5.15)
0 0 1
€13 0 s13exp (—id13)
Uiz = 0 1 0 ; (5.16)
—s13exp (id13) 0 13
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1 0 0
Uzz =10 Ca3 s93 exp (—id23) | - (5.17)

0 —s23 exp (id23) o3

Individual rotation matrices U,, and UJL are parameterised in the same way with
relevant superscripts. The second parameterisation is that used by the PDG [79]
and is as in Chapter 3, with a Dirac phase § and Majorana phases ag and as; this
is constructed as Ugﬁ%s = RggUlpgDGngP where the R;; are standard orthogonal
rotations, ULPY = Uy3 (613 = 6) and P = diag(1, eiaTQ,ei%S). A comparison of the
two parameterisations, after performing a global phase redefinition to absorb

remaining unphysical phases and obtain consistency with the convention stated in

the introduction, shows that [69]

0 = 013 — 023 — 012, (5.18)
a9 = — 2512, (519)
a3 = —2 (512 + (523) . (5.20)

It is possible to write the parameters of Upyng in terms of the neutrino mixing
parameters, with perturbative corrections from the charged lepton sector as

follows [69] (neglecting 6%, and 0%, as they are small),*

S23 €xXp (—id23) & Shz exp (—idys) , (5.21)
s13 exp (—id13) ~ 073 exp (—id3) — 07,553 exp (—i (053 + 672)) , (5.22)
S12 €Xp (—id12) & sT9 exp (—id]y) — 079Chscty exp (—idfs) . (5.23)

The dominance of the first term in Eq. (5.23) allows for the approximation
d12 & 0%y, while Eq. (5.21) gives directly do3 &~ 045. The phase d13 requires a more

careful treatment, since the first term of Eq. (5.22) is larger but not dominant

“In order to derive these equations consistently to first order, the Majorana phases from
Egs. (5.18)-(5.20) must be redefined by a correction of order 673; this is however only a subtlety
in the derivation and therefore this redefinition is not explicitly demonstrated.
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enough to drop the second term. If one assumes that 9%;9 2 g small,’ then
13

. 96 v . 96 v
(sm &Yy — 12723 gin (8%, + 5%2)> (cos 8%y + 22723 cos (85, + 5fg)>
13

v
13

tan 613 ~
e cos? 0y (5.24)

96 v
~ tan df3 <1 + @k) ,
13

cos(653+5f2) _ sin(553+552)
cos 07y sin 07y

with k£ =

. The expectation is that ;3 = 0] + Ady3 where
the correction is small; this allows for the approximation

tan (6 + Af) ~ tan 0 + 2L and therefore

cos2 6

96 v
Ady3 =~ ?TSQ?’IC sin 75 cos 073. (5.25)
13

This leads to an analytic form for ;3

96 v
13 % By — 228 sin (3% — oY + 3F,) - (5.26)
13

Using Eq. (5.18) allows the physical Dirac oscillation phase to be approximated by

e 14
079555 .

d ~ 013 — Oh3 — 07y — sin (053 — 073 + 072) - (5.27)

v

13

Turning to the resulting mixing angles, experimentally the TM mixing of the
neutrino sector must necessarily be a small deviation from TB mixing. Therefore

the results may be expressed using the neutrino TB deviation parameters [58],

7,,1/

E )

1 1
sinffy = —=(1+s"), sinfy; = —=(1+a"), sinfjy=

N 7 (5.28)

where here these parameters refer only to the neutrino sector. In terms of angles
and phases, using Egs. (5.21)-(5.23) (see, e.g. [75] for a discussion of this
procedure), the TB deviation parameters for the complete lepton mixing can be

written in terms of the TB deviations parameters in the neutrino sector and the

e v
015553 1
7

. 0 : ;
SUsing 05y ~ 22, sy~ % and 6075 ~ 0.15 gives a numerical value of it~ 5

2
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charged lepton corrections as,

a~a’, (5.29)
r & |r” exp (—idy3) — 0y exp (—i (053 + 0%5))] (5.30)
S X SV — 9?2 COS ((5?2 — T2) . (531)

With the neutrino mixing being of TM form as given in Eq. (5.1), the deviation
parameters of the neutrino sector can be shown to satisfy, see [58,60,83], s* =0
and a” ~ — - cos 6”. Using this and the fact that 65, ~ ‘%C and Eq. (5.27), the
above equations for the TB deviation parameters may be further simplified to first

order as

14

ar~ — o8 d, (5.32)
6
P — = cos (35 — 0y + 6), (5.33)
Oc 5
SN T cos (01 — 073) , (5.34)

again assuming that % ~ :fTC, is small. In the limit that charged lepton

corrections are switched off, the above results reduce to the usual TM sum

rules [58,60,83], s ~ 0 and a ~ —F cosd. In the limit that the neutrino mixing angle

{5 is switched off the above results reduce to the usual TB sum rules [74],

s~ rcosd where r = ¢ /3 and 0 ~ 67y — 6.

The results in Egs. (5.32)-(5.34) imply the relatively simple sum rule bounds:

|s] <

Oc
= (5.35)

la| < (T+9?C)|COS(S|, (5.36)

DO | —

where, again, r, s, a are the tri-bimaximal deviation parameters, in particular
r ~ /2013, 0 is the CP violating oscillation phase, and 6¢ is the Cabibbo angle.
These bounds do not include RG and CN corrections, which however are expected

to be rather small for the case of hierarchical neutrino masses. For example,
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[ Field || o7 [¢5 [ ][A"[B[C ]

SUG)| 1 [ 1 1|1 |1]1
Ay 3| 3|11 ]1]1
UDgl 2 22 21]2]2
Ul1) || 4| 4 | 4] 3|3]6
Zs + |+ |+ - |+ |+
Zs 1 w | w 1|1
Zs Tttt 11

Table 5.3: Driving fields in the model.

assuming 613 ~ 9° gives r &~ 0.22,% and using /3 ~ 0.075 these bounds become
|s| <0.075 and |a| < 0.15|cos d|. The present approximate limits from the global fit
la] < 0.118, —0.066 < s < 0.003 quoted in Eq. (3.44) are nicely consistent with

these sum rule bounds.

5.4 Vacuum alignment

In order that the flavon fields obtain the alignment presented in Eq. (5.2), their
potential must be minimised in the correct way. The method of [60] is followed very
closely, which employs F-term alignment as described in Chapter 3; the driving
fields can be found in Table 5.3. The leading order contributions to the driving

superpotential aligning the flavon triplets are:

Wo = ¢ (qro01 + g207071) + 0% (930505 + gaps€ + dhpsé + gipst”) 537,

+€% (gspsips + geb€ + g7€'e") .

Here, g1 (0) = M which appears in the vacuum alignment of [60]; this is required
since @7 is charged under the auxiliary symmetries and so the original structure
Lp% (M1 + @rer) that drives the ¢ alignment cannot be used. Minimising with

respect to go?p gives

1
g
(pry =vr |0, sz—91222>. (5.38)
0

— I,, and so a partial cancellation between

“Note that in [60], it is demonstrated that 7 ~ —

~" and 4" is required, to the level of ~ 20%.
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The conditions from gp% and £° are

s% — S9S3 S1 S3 S9 0

293 S% —s3s1 | tgau | s3 |+ gz,lu/ so | + gﬁllu” s1| =101, (539)
s% — 5189 S9 S1 S3 0

Js (s% + 25253) + geu® + gru/u" = 0. (5.40)

Here, (ps,) = si, (§) = u, (¢) =« and (¢”) = u”. The solutions to these equations

are
1
2 /1,11 !, ", .1
geu” + gru'u guu + gau
(ps) =wvs |1, vi=-"——T"—, u=-H—=—, (5.41)
395 94
1

As in [20], the undetermined singlets are assumed to obtain their VEVs as a result
of their soft mass parameters m? (where s stands for singlet) being driven negative

in some portion of parameter space.

The remaining flavons obtain the hierarchy in their VEVs through the driving

superpotential:

o g 2 . 17 3. g 3
Wo = A" <K19 (6")° + 9209’> +B (X?’ (0)° + XA‘ (6" )
g 9 g g (5:42)
6 7 6 3 3
rO (B O T 0 0))

Solving the F-flat conditions for B and C ensures that the VEVs of 6, 6’ and 0" are

correlated in the desired manner. The condition from A” then leads to the hierarchy

@ (9, a1

used in Section 5.2, under the assumption that (o) ~ (6).

5.5 Higher order operators

There are many higher order corrections to the mass matrices presented in

Section 4.3.2 of this paper; these give negligible contributions to masses and
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mixings. In Tables 5.4 and 5.5 are given suppressions and examples of the NLO
operators for each sector ; it can be seen that none of these will change the LO
results significantly (it has been confirmed that the LO structure is not altered by

any NLO terms, but there are too many to present here).

5.6 Conclusions

Recently Daya Bay and RENO have measured a sizeable reactor angle 613 ~ 9°
which rules out exact TB lepton mixing. On the other hand, the TB predictions
sinfp3 = 1/4/2 and sinf15 = 1/4/3 remain in agreement with global fits and
continue to provide tantalising hints for an underlying Family Symmetry. For
example, an Ay family symmetry model including additional flavons in the 1’ and
1” representations leads to TM neutrino mixing which maintains the prediction
sin 619 ~ 1/4/3, at least approximately, while allowing an arbitrarily large reactor
angle. Indeed, as discussed in a recent paper [60], the problem in this model is in
explaining why the reactor angle should be smaller than the atmospheric or solar
angles, which follows from the fact that the additional flavons would be expected to
have VEVs of the same order as the other TB flavon VEVs, with all undetermined
coefficients being of order unity. However, apart from this drawback, such a model
provides a simple example of a Family Symmetry model with a non-zero reactor

angle.

This Chapter presents a SUSY GUT of Flavour with a non-zero 613 based on Ay
Family Symmetry with additional flavons in the 1’ and 1” representations, and an
SU(5) GUT group. The model involves an additional continuous U(1) family
symmetry as well as three discrete symmetries designed to control the operator
structure of the model. All flavon representations of A4 are populated, and the main
flavon content of the quark sector mirrors that of the neutrino sector. The vacuum
alignment is obtained using the conventional F-term mechanism. NLO terms to the
mass matrices are negligible, demonstrating the stability of the LO matrix textures.
The resulting model exhibits TM mixing in the neutrino sector, with the physical

lepton mixing involving charged lepton corrections, which in turn are related to
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Term Contributes to NLO Example c.f. LO
FNH5 mp ©2020'0" ~ €6 1
NN Mg ©2.6? (0" " ~ € €
(ma)qy ob’ (9”)4 ~ €l €8
ForHgT, (ma)ys o ()7 (0") ~ €T et
(ma)y3 o (0")° ~ € et
(ma)qy a20°0" ~ €° €6
ForHggT, (ma)qy o0 (0) 0" ~ et
(ma)i5 of (9’)3 ~ €b et
(Ma)gy 010 ~ € €t
ForHgT, (M) 5 () ~ €t e’
(Ma)gs v’ (9”)2 ~ et e’
(md)21 o203 (9//)3 ~ €9 e
ForHzET, (M) s a2030' (0")* ~ ¢ €
(Ma)gs o203 (0)2 0" ~ € €
(md)31 36’ (9//)5 ~ ¢l0 €7
ForHgT, (M) 39 0202 (0")* ~ €7 €6
(Mma)ss 02020'0" ~ €7 €
(ma)4; o300 (0")° ~ @ €’
ForHgsTy (Ma)35 3002 (0")° ~ ¢ €6
(M) 30 (19”)4 ~ €Y €

Table 5.4: NLO corrections in the model. The first column shows each
basic term that exists in the neutrino, down quark (and charged lepton)
Yukawa superpotential, as specified in the second column. A collection
of flavons is appended to these basic terms to obtain the complete term
invariant under the symmetries. In the third column an example of such a
collection of flavons is given at NLO as well as the order of its contribution,
to be compared to the LO contribution given in the final column. Note
that in the terms contributing to My, there is a flavon @7 already present
in the basic term. It is furthermore not specified whether the LO term
comes from an Hg or an Hygg; the reader may refer back to Eq. (4.18) if

required.
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Term Contributes to NLO Example c.f. LO
ThThHy (mu)u ‘72545” ~E €
T1T2H5 (mu)12 5 (mu)21 0'969/9” ~ Eg e
T\T3Hy | (ma)yz, (mu)s, | 0 (60)(07)" ~ ¢ e
TToHy | (m)y, (0 8" ~ & e
ToT3Hg | (mu)ag s (Mu)sy o0 ~ & e
T3T3H5 (mu)33 0'2929/9” ~ EG 1

(,0(% W() O'BSQT929/9” ~ EJS EQ
0% Wo o2pst? (07)2 "~ | 2
50 Wo 0262 (9//)2 £e ~ 8 2
A" Wo o263 (0')" ~ & &3
B Wo a2620' (") ~ & &
C Wo ot (02 (') ~ & e

Table 5.5: NLO corrections in the model. The first column shows each
basic term that exists in the up quark Yukawa and vacuum alignment sec-
tors, as specified in the second column. A collection of flavons is appended
to these basic terms to obtain the complete term invariant under the sym-
metries. In the third column an example of such a collection of flavons is
given at NLO as well as the order of its contribution, to be compared to
the LO contribution given in the final column. The notation € is simply

used to denote a different sector to € or €.

80




quark mixing angles. In particular, the model involves a GJ relation, leading to
bounds on the TB deviation parameters |s| < %C, la| < 1(r+ %C)] cos 0| (up to RG
and CN corrections) derived for the first time, which are in good agreement with
current global fits. The presence of this GJ factor of —3 is dependent on the SU(5)
breaking chain which is not studied here. The considered model shows that it is
possible to accommodate 013 ~ 9°, within a SUSY GUT of Flavour which relates
quark and lepton masses and mixing angles, while continuing to provide an

explanation for the TB nature of the solar and atmospheric lepton mixing angles.

81



82



Chapter 6

Renormalisation group improved
leptogenesis in family symmetry

models

One of the most important and well studied questions in particle physics is why the
observable Universe has a tiny but non-zero ratio of baryons to photons without
which there would be no stars, planets or life. The measurement of cosmic
microwave background anisotropies and the successful prediction of light element
abundances from big bang nucleosynthesis, both lead to a consistent value of this

ratio at the recombination time when atoms are formed [84],

n="8 ~62x1071°, (6.1)

Ny
where np and n., are baryon and photon number densities respectively.! Any
theory which successfully produces such a baryon asymmetry must fulfil the famous
Sakharov conditions [85] of C and CP violation, B violation and departure from
thermal equilibrium. One of the most popular of these is known as
leptogenesis [86], which takes advantage of the fact that non-perturbative, B — L

conserving, B + L violating sphaleron processes can convert a lepton number

LCorresponding to a portion of comoving volume containing 1 photon at temperatures where the
RH neutrinos are relativistic.
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asymmetry into a B asymmetry. The lepton number asymmetry is obtained from
the decays of heavy Majorana neutrinos and so leptogenesis is intimately linked to

neutrino mass, mixing and CP violation.

Many models of neutrino mixing (predominantly employing the type I seesaw)
exhibit a property known as FD [87], defined by the condition that the columns of
the neutrino Yukawa matrix are proportional to columns of the mixing matrix in a
particular basis corresponding to diagonal charged lepton and RH neutrino mass
matrices. As discussed in several papers [83,88,90-94], models with family
symmetry typically predict vanishing CP violating lepton asymmetry parameters e
and hence zero leptogenesis.? As pointed out in [88], this can be understood very
simply from the FD property that the columns of the neutrino Yukawa matrix are
mutually orthogonal since they are proportional to the columns of the mixing
matrix which is unitary.> However in family symmetry models the Yukawa matrices
are predicted at the scale of family symmetry breaking, which may be close to the
GUT scale, and above the mass scale of RH neutrinos. Therefore in such models
the Yukawa matrix will be subject to RG running from the family symmetry
breaking scale down to the scale of RH neutrino masses relevant for leptogenesis.
To illustrate the effects of RG corrections, two specific models involving sizeable
neutrino and 7 Yukawa couplings and satisfying FD at LLO are analysed: the first
model [20] reproduces the well studied TB mixing pattern [54]; and the second
model [60] reproduces the TM mixing pattern [59] consistent with the results from
Daya Bay, RENO and Double Chooz. Both of these models have been briefly
introduced in Chapter 3. Although in both models RG running occurs over only
one or two orders of magnitude in the energy scale, this will be shown to lead to

sufficient violation of FD to allow successful leptogenesis in each case.

One could ask why RG effects should be considered when HO operators in the (TB)
A4 model have been shown to produce a realistic value of 7 [92]. The answer is that

RG effects turn out to be of equal importance to HO operators in determining

“For a discussion of how to achieve leptogenesis in the flavour symmetric phase, see e.g. [95].

3The vanishing of leptogenesis due to the orthogonality of the columns of the neutrino Yukawa
matrix was first observed in the case of hierarchical neutrinos and constrained sequential dominance
with TB mixing in [90] and was subsequently generalised to the case of FD with any neutrino mass
pattern and any mixing pattern in [88].
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leptogenesis and so in general both effects should be considered together. Here the
effect of HO operators is dropped for clarity: the effects of RG corrections to
leptogenesis are studied in isolation in order to illustrate the magnitude of the
effect. Moreover, there are ultraviolet completions of the A4 model of both TB [96]
and TM mixing [60] in which HO operators play a negligible role, and the viability
of leptogenesis in such cases then relies exclusively on the effects of RG corrections

considered here.

The results in this Chapter show that RG corrections have a large impact on
leptogenesis in any family symmetry models involving neutrino Yukawa couplings of
order unity. Therefore, when considering leptogenesis in such models, RG
corrections should not be ignored even when corrections arising from HO operators
are also present. It should be pointed out that the phrases “RG effect” and “RG
corrections” are taken to mean those between the family symmetry scale and the
leptogenesis scale, and those which help to generate a non-zero 7. RG effects in
evolving parameters from the leptogenesis scale to the EW scale are well studied
(e.g. in [97] or [98]) and are a generic consideration for all models which explain
neutrino mixings using a family symmetry broken at high energies. Furthermore, in

the A4 models considered here, such effects are expected to be small.

The rest of the Chapter is organised as follows. Section 6.1 briefly outlines the
process of calculating the baryon asymmetry of the universe n arising from
leptogenesis. Then in Section 6.2, the idea of FD is recalled and it is shown that the
CP violating parameter in leptogenesis is indeed zero under the condition of FD.
Section 6.3 presents the relevant parameters of the AF A4 model of TB neutrino
mixing, while Section 6.4 presents the relevant parameters of the A4 model of TM
mixing. In Section 6.5 the RG running of the neutrino Yukawa matrices is
analytically estimated in the leading log approximation. Numerical results for the
baryon asymmetry of the universe arising from leptogenesis in both TB and TM
models are presented in Section 6.6 including contour plots of input parameters

reproducing the physical value of 7. Section 6.7 concludes the Chapter.
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6.1 Leptogenesis

Leptogenesis takes advantage of the heavy RH neutrinos introduced in many
models to account for the smallness of the LH neutrino mass. As described in
Chapter 2, the addition of these RH neutrino fields N; introduces two new terms

into the superpotential*
1
W, = (Yy)ai (la - Hy,) N; + §Nz (MR)ij N;, (6.2)

which then lead to an effective light neutrino mass once the heavy degrees of
freedom are integrated out. These interactions also fulfil the well known Sakharov
conditions [85] required to generate a baryon asymmetry: 1) C and CP violation
(coming from the complex Yukawa coupling); 2) B violation (the Majorana mass of
Ns violates L; sphalerons convert ~ % of this into B violation); 3) Departure from
thermal equilibrium (due to out-of-equilibrium decays of the RH neutrinos). The
procedure for calculation of this asymmetry is first to calculate the amount of CP
violation in the decays of the RH neutrinos. This is then used as an input parameter
to find the B — L asymmetry through integration of the Boltzmann equations [99].
These equations take into account the evolution of a B — L asymmetry generated
by N decays against the background of IV inverse decays partially washing it out.
This procedure is not considered in detail in this Chapter since the goal is to
generate a non-zero €. Finally, this B — L asymmetry is converted into a B

asymmetry using previously calculated results for sphaleron processes [100,101].

6.1.1 Unflavoured asymmetry

To one-loop order, the CP asymmetry arises from the interference of the diagrams
in Fig. 6.1. Using the standard supersymmetric Feynman rules, one can calculate

the decay widths for the decay N; — lo + Hy, I's = >, T'ai; these are then used to

4Notation has changed slightly here, in line with notation used in leptogenesis studies: the charged
lepton flavour index is now an « to distinguish it from the RH neutrino index.
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(a) (®) (c)
Figure 6.1: Diagrams contributing to the CP violating parameter €; q;;
it is the interference of (a) with (b) and (¢) which gives rise to non-zero
€i,ai- Lines labelled N can be any one of the seesaw particles.

find the CP asymmetry for N; by summing over all lepton flavours « [102],

T —T, 1 2 M?
e Lizli_ Zm((ﬁn)_) = (6.3)
FitTi e (v)v,) i) "\ M

A
2

Here, M; are the real mass eigenvalues of Mg, and [88,90,103]

f(ﬁﬂz'j)ZfijZ\/ﬂf_ij< : —1D<1+?ij>>, (6.4)

1-— mij wij
. M2 .
with x;; = M—JQ is the loop factor. Note that ¢; is summed over all flavours of the

outgoing lepton and is called the unflavoured asymmetry. This formula implicitly
assumes that the IV; are not degenerate (since this would lead to an infinite
self-energy contribution unless one considers resonance effects); for studies of
leptogenesis with nearly degenerate neutrinos, see e.g. [104] or, in the context of

Abelian family symmetries, [105].

6.1.2 Flavoured asymmetry

The above discussion and formula for ¢; is relevant when the lepton doublets
produced are a coherent superposition of the three flavours. This is only the case
above a certain energy when the expansion rate of the universe is greater than all
charged lepton interaction rates. However, as the universe cools, the 7 lepton
Yukawa coupling will start to come in to equilibrium at an energy of around [90]
(1 + tan? ﬂ) x 102 GeV,’ breaking the coherence of the single state superposition

e + 1+ 7 down into two states: the 7 and the remaining coherent combination

®Here, tan 3 is the ratio of MSSM Higgs VEVs defined in (2.76).
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e 4 . Thus, if the dynamics of leptogenesis occur below this temperature,® one

should take such differences into account in the calculations. The CP parameter

taking into account such flavour effects is [88,90, 103]

€ai =

v m (YA (V1Y) ) flars
5 <Y5Yu>iigﬁ;<1 (102 ) S (6.5)

+Im <Y§iYaj(YJ Yu)jz‘) 9(%)) :

with g(z5) = gij = (17—1%) and f;; as above.

6.1.3 Final asymmetry

Ultimately an estimate for the value of the baryon to photon ratio at recombination
is desired; this is related to the B — L asymmetry Np_r, at the leptogenesis scale
by [107]

n =089 x10°Np_. (6.6)

The numerical coefficient above has two contributions: 1) from the B — L
conserving sphaleron processes (which are only ~ 33% efficient at converting B — L
into B); 2) from scaling by photon number density in the relevant comoving volume
(recall that the baryon to photon ratio at recombination is calculated). The
sphalerons convert part of the L asymmetry into a B asymmetry via a suppressed
dimension 18 operator active at the energies considered, > Mgy . The CP

asymmetries calculated in the previous Section are then related to Np_j via

Np_1 = Zfai"iaia (67)

a,t

which defines the efficiency parameters k,;; these encode how efficiently the decays
of N produce a B — L asymmetry at the leptogenesis scale. In the strong washout

regime, the k,; are approximated analytically by (up to superpartner effects which

5Strictly speaking the 7 interaction rate must be faster than the N inverse decay rate to overcome
the Quantum Zeno effect [106], but this is a small effect and beyond the scope of this Thesis.
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increase Np_r, by a factor of v/2; see, for example, [107]):

2 1
o~ (1- — —Kpizp (Ko 6.8
Rai KaiZB(Kai) < eXp( 2 ozzzB( az)>>7 ( )
with
0.13 2.5
25(Kai) = 2+ 4(Ky) ' exp %) (6.9)
at

the decay parameter

Koy = —ot (6.10)
Marssm
and effective neutrino mass
t v
=~ _u
P <Yl,)m (% )ai 3 (6.11)

The m,,; are model specific and are presented below for the model in question (in
Table 6.1), while m%,gq,, = 1.58 x 1073 sin? B eV [90] is the equilibrium neutrino
mass. The main point to address is then the form that the Yukawa matrices take.
This is discussed in the context of family symmetries which is the topic of the next

Section.

6.2 Form dominance

As studied in previous Chapters, many models invoke the idea that a high energy
family symmetry unifying the three flavours is spontaneously broken in a specific
way that leaves some imprint in the neutrino sector at low energies. This method
introduces relationships between the parameters of Y, leading to predictions for €,;
and ¢;. It is a striking fact that many of these family symmetry models exhibit

FD [87], which constrains the CP violating parameter of leptogenesis to be

identically zero [88], as is now discussed. The FD [87] condition is that the columns
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of Y}, in Eq. (6.2) are proportional to the columns of Upysng,
Ai=alUp, B;=pUpg, C;=7Us, (6.12)

where Upjsng is the unitary PMNS matrix. The consequences of such FD on
leptogenesis is then very simple to understand: since Upjsng is unitary, the
columns of Y, must be mutually orthogonal. This means that the contraction
(YJYV)U, with ¢ # j, appearing in Eqgs (6.3) and (6.5) is identically zero and so
leptogenesis gives 17 = 0. This condition also explains why washout of, for example
€1, due to No and N3 is not considered: the Dirac matrix describes how to write a
RH neutrino as a linear combination of charged leptons. Since FD implies that the
columns of the Dirac matrix are orthogonal, it also means that these RH neutrino
"flavour vectors’ are orthogonal. Therefore there is no projection of one onto
another, meaning that the washout from one will not affect another. FD is only
expected to be broken by a small amount in the calculation considered and so any

projection of one RH neutrino onto another will be small and is therefore neglected.

The FD condition also greatly simplifies the form of the effective neutrino mass
matrix arising from the type I seesaw formula. In terms of parameters in Eq. (6.2),

the effective neutrino mass matrix can be written,
m, = —v2Y, MY, (6.13)

In the basis where the RH neutrinos are diagonal, i.e. that in which

Mp = diag (My, Mp, M¢), Eq. (6.13) gives

my, = —0

2(AAT BBT CCT>

6.14
u MA + MB + MC ( )

In the charged lepton diagonal basis, m, is diagonalised by UITD uns- Assuming FD,
m, is diagonalisable independently of the parameters «a, 3, v, and, from (6.14) and
(6.12), one finds

_ 2 g2 .2
Mm99 — 2 diag (AO;—A ]@—B z\}—() . (6.15)

A particularly well studied case is that of TB mixing [54]. However, as emphasised
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in [83], TB mixing is not linked to FD. Indeed this Chapter considers two A4 family
symmetry models, one with TB mixing and one with TM mixing, where FD is
present in both cases, leading to zero leptogenesis at LO, before RG corrections are

included.

A useful parameterisation when considering leptogenesis in light of low energy data
is due to Casas and Ibarra [89]. It is constructed as follows: in the charged lepton
diagonal basis, denote U as both the PMNS matrix and the matrix which

diagonalises the effective light neutrino mass matrix
Ulm,U* = D,. (6.16)

One may also define a matrix which diagonalises the heavy right handed neutrino

mass matrix

Ul MrU}; = Dy (6.17)

These objects can be used to construct a complex orthogonal matrix R [89]

R=wv,D LU Y UD

-1
N B (6.18)
which is basis invariant [88]. For fixed choices of U, Dy, and D)y, the so called

R-matrix parameterises the freedom in Y,,. Using this parameterisation, it is

possible to rewrite the unflavoured and flavoured CP asymmetries as follows

r 2
2 *
3ar, |20 (%) }
€ = _16 3 - 3 s (6.19)
TS Y my | Rij
[ 1 3
€ai — — = 3 (620)
16mv? >4 My | Rij
In order to relate the R-matrix to FD, one can write

where D is some real diagonal matrix and has been factored into two matrices
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defined above and some remainder, all of which are real and diagonal; furthermore

the remainder has entries of +1. Rearranging for this remainder, one finds

Rq=v,D .V,JU*D (6.22)

Ay
which looks remeniscent of Eq. (6.18). In fact, using the basis invariance of the R
matrix implies that (6.22) is (6.18) in the diagonal right handed neutrino basis.
Therefore FD = R is a real, diagonal matrix with entries of £1; thus it can be seen
that both the flavoured and unflavoured asymmetries are 0 in FD regimes, and so
again it can be seen that leptogenesis appears to be unsuccessful in models which
exhibit FD. It is important to note that a merely real R-matrix is not sufficient to
fulfill this statement: this will lead to ¢; = 0 but not neccesarily €¢,; = 0 since the

matrix U may still have complex entries.

This discussion shows that in order to generate non-zero values of the CP violating
parameter, one will need to generate a shift from FD; since this is imposed on the
Yukawa matrices at the family symmetry breaking scale, the rest of this Chapter is

presented using Eqgs (6.3) and (6.5).

6.3 Parameters of the A; model of TB mixing

Here the relevant parameters of the AF Ay model of TB mixing [20] are briefly

given; the superpotential is

Wy = y(IN)Hy + (24§ + Za8)(NN) + 28(psNN), (6.23)

where x; are constant complex parameters. The charged lepton mass matrix in the
basis used in [20] is diagonal so the mixing structure in the neutrino sector will not

receive corrections from charged lepton rotations. The TB structure in the neutrino

92



sector arises from the flavon fields obtaining VEVs in particular directions,

1
(ps) =vs [1], (€) =u and <§>:0, (6.24)
1

where the dynamics responsible for vacuum alignment has been extensively studied
(for instance, in [20] for F-term alignment or in [71] for D-term alignment) and

briefly discussed in Chapter 3.

The TB structure arises in the Majorana sector of Eq. (6.23), explicitly

2B B B
A+5 -3 -3
Mp=| -B 22 4 51, (6.25)
B B 2B
B 4B 2

with A = 2x4u, B = 2xpv, being complex parameters with phase ¢,3. For the
purposes of leptogenesis it is convenient to rotate the N such that their mass matrix

is diagonal. The resulting neutrino Yukawa matrix in the diagonal N basis is then,

:/_%eﬂm ei®B 0
P8 :/_%ei%‘ . (6.26)
P %ei(bc

Yre =y | Leioa

S
B i s

One can see explicitly that FD is present in this model, since the columns of Yrp
are manifestly proportional to the columns of the TB mixing matrix, and thus it
immediately follows that ¢; = €4; = 0 at the scale of A4 breaking. The phases

defined in (6.26) are given as,

_ 1 —1 _|A|Sin (¢b_¢a)
Pi= <¢b tan <|B| Al cos (5 — %))) ’ (6.27)
¢B = —%%, (6.28)
1 o |Alsin(d - 60)
o=y <¢b tan <\Br Al cos (@ — %))) | (6.29)

Therefore, there are actually only two phases (¢, and ¢;) and two magnitudes (| 4|
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and |B|) in the model, although only phase differences appear when considering
physical quantities. This means that one phase may be set to zero without loss of

generality; here ¢, = 0 is chosen.

In this basis, the Majorana neutrino mass matrix is real and diagonal and is given
by
|JA+B| 0 0
M}céiag = diag (M;, My, M3) = 0 |4 0 . (6.30)

0 0 |-A+B|

The effective LH neutrino masses are then given by’

i
e

(6.31)

m;

which incorporates the SUSY parameter tan § introduced in Chapter 2; this can be

absorbed into the coupling as

Yp = ysin . (6.32)

6.4 Parameters of the A; model of TM mixing

As discussed in Chapters 3 and 5, models predicting TB mixing are now ruled out.

Instead, schemes such as TM mixing remain viable [59]:

% cos 0 % % sin fe’?
Urm = —% cosf — % sin fe~"° % % cosf — % sinfet? | . (6.33)

_L
V6

cos 0 + % sin fe~"° % —% cosf — % sin fet?

2

Here 7 sin @ = sin #13 and p is related to the Dirac phase. It is possible to

minimally extend the AF model above by adding a flavon in the 1’ representation

"Note that this Chapter considers a normal ordering of light neutrino masses, therefore M; is
the heaviest RH neutrino mass. This means that ez and e,3 will be dominant contributions to
leptogenesis, coming from the lightest RH neutrino. This is simply a notational consideration, and
does not affect the physics.
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of A4 which reproduces this pattern [60]:

Wy =20 NN, (6.34)

with the complex parameter C' = x¢ (£'), with phase ¢.. It has been shown in [60]
that the addition of this flavon doesn’t affect the RH neutrino masses to first order,
and so the parameters in common with the previous Section will be unaffected.
Analogously to Eq. (6.26), in the basis where charged leptons are diagonal and RH

neutrinos are real and diagonal, the Yukawa matrix for TM mixing is,

% % %a’{?) exp (ip4) O 0
Yru=vy —% — %Oqg% % - %oﬁ{?, 0 exp(igp) O . (6.35)
—% + %am%—% - %Of{g 0 0 exp (Z¢C)

where the ¢4 ¢ are as in Eq. (6.27). The columns of this matrix are proportional
to columns of Upys and therefore the model respects FD. Therefore, as for the
previous model of TB mixing, this model of TM mixing also gives zero leptogenesis
and 7 = 0, to leading order. The parameter o3 measures the deviation from TB
mixing and is given by [60]

B Im_C
3 C C A-C 2(A_C
+Im s 2 ) (636)

Note that this is the same as Eq. (3.53) but with " = 0.

6.5 Renormalisation group evolution of the Yukawa

couplings

In order to generate a non-zero €,; and ¢;, the effects of running the neutrino
Yukawa couplings from the scale at which Ay is broken down to the scale at which
leptogenesis takes place are now considered. At one-loop, the RG equation for the

neutrino Yukawa couplings in the MSSM above the scale of RH neutrino masses is

8For simplicity, only the & flavon is introduced in contrast to Chapters 3 and 5
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given by [97,108],°

dY, 1

= N, Y, +Y, N, + (Ng,) Y], 6.37
dt 1672 [Ni + + (Nu,)Y.] ( )
where
f P (32302
N =YY+ YY) — {502+ 591 ) s (6.38)
N, =2Y}Y,, (6.39)
T i 3 9 3 5
Ny, = 3Tr <Yu Yu> +Tr (YV YV) — (59 + 59 )- (6.40)

In these equations, t = log (%) with ()1 being the renormalisation scale and Qg

the family symmetry breaking scale; Y., are the charged lepton and up-type quark
Yukawa couplings respectively; g1 o are thel® U(1)y and SU(2)., gauge couplings
respectively; and I3 is the 3 x 3 identity matrix. Each Ny arises from all one-loop

insertions allowed by gauge symmetry on the X-leg of the vertex.

In leading log approximation, taking the continuous derivatives to be approximately

equal to a single discrete step, Eq. (6.37) may be approximated as:

de ~ AYV _ YV(QO) - YV(Ql) =7

At t(Qo) — 1(Q1) ’

(6.41)

yielding the solution,
Yo(Q1) ~ Y, (Qo) — ZAt. (6.42)

As an example, the RG evolution of the TB Yukawa matrix in (6.26) Y, = Ypp is

presented (the case of Y7,/ is completely analogous). Inserting (6.26) into (6.37)

9Note that, as has been pointed out before, running from the leptogenesis scale down to Mpw
is not considered; this which would be necessary if one wanted to consider leptogenesis effects on
neutrino mass bounds as studied in [98,109]. Also in [98] the importance of RG corrections in
calculating leptogenesis predictions in the framework of a generic GUT scale theory was emphasised,
although specific models were not considered.

ONote that g1 is the GUT normalised hypercharge coupling, related to the standard hypercharge

coupling ¢’ by g1 = \/ggﬁ
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and using the third family approximation then gives

:/_%eﬂm %ei@e 0
dYTB Yy 2 1 . .
~_ 9 1 iba 1 ios =1 i
" 16m2 (”?”y’ ) et B B
A ida 1 ids 1 idc
e e e
VBT VBT 2 (6.43)
0 0 0
+2 | o 0 0 = Zrp,

1 jiga 1 igp 1 ig
N LAY L

where J = Ny, — (%gg + f’—og%) and y, is the Yukawa coupling of the 7 lepton. This
shows that the contributions from the charged lepton Yukawa couplings breaks the
orthogonality of the columns, appearing as they do in only the third component of
each column. In SUSY models y, can be related to tan 8 using vgy, = m, so a scan
over y, will correspond to a scan over tan 3. This is the effect which gives rise to a
non-zero CP violating parameter. The leading log solution for the TB case is then
given by

YTB(Ql) =~ YTB(QO) — ZTBAt. (644)

One must also consider how the charged lepton Yukawa coupling runs; the relevant

RGE is [97,108]

dYy, 1
1 = 1622 [Nl Yo+Y. N, + (NHd) Ye] , (6.45)
with N, as before and
ty _ 0.2
Ne=2v[Y, — 2ot - I, (6.46)
3 3
Ny, = 3Tr (YdT Yd) +Tr (YeTYe> - (595 + 1—Og%> . (6.47)

Here Y, is the down quark Yukawa coupling matrix. Since Y), is unitary for both
models, specifically see Egs. (6.26) and (6.35), there will be no off-diagonal entries
in Eq. (6.45). Using again the third family and leading log approximations gives
small corrections to y, dependent upon vy, y;, the bottom quark Yukawa and vy, at
the GUT scale; taking values of y = 2\/7, y, = 1 and y, = 0.5 gives a correction of

~ 10% to the value of y, and therefore this effect is neglected (notice that the
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‘ | Asymmetry | e |

[Im (A% Bo (A1B)) fiz +1m (A5 B, (BTA)) gio | el

€al 87rATA
+Im (A}Cqo (ATC)) fi3 + Im (ALC (CTA) 913)

) )
| [ (b (B o (B () |
€03 o CTC [Im (C’*Aa (CTA)) f31 +1Im (C’;Aa (ATC)) g31 %’02
+Im (C;Bq (CTB)) f32 + Im (C: B, (BTC)) g32]

Table 6.1: Flavoured asymmetries and washout parameters

chosen values of y and y, are at the extreme end of the ranges that are scanned

over and so this correction is the largest expected).

6.6 Results

This Section details the results of analyses for both the TB and TM models in
leading log approximation. The use of leading log approximation is justified by the
small interval of energies over which the running takes place. Since this
approximation is used and since the neutrino hierarchy is not very strong (using
work in [92] to fix neutrino parameters), threshold effects from successive
decoupling of the right handed neutrinos are not considered. Furthermore, the RH
neutrino mass matrix will also run in a full calculation and this will in general give
rise to off-diagonal entries; thus at each successive stage in decoupling, one should
rediagonalise this matrix before proceeding. The prescription for dealing with this
is to replace the Yukawa matrix elements Yy, — Y,0, (In u — In M;) [97] where the
prime denotes the effect of rediagonalisation. This means that after crossing a
threshold one of the columns of the Yukawa matrix will be frozen out of the
process, remaining in its corrected form. The two remaining columns will be
corrected further until the next threshold and so on. The resulting Yukawa matrix
is then expected to be further from FD than in the current approximation. This
consideration also means that if the heaviest RH neutrino were heavier than the
flavour symmetry breaking scale, the 3 x 2 Yukawa matrix would still run and FD
would still be broken. For a detailed analysis of such effects one can consult [97]

or [98]. As before, one can represent the Yukawa matrix derived in (6.42) as

98



Y, (Q1) = (A(Q1),B(Q1),C(Q1)) where A(Q1), B(Q1) and C(Q1) are the RG
evolved versions of the column vectors in Section 6.2, which, as clearly seen in
(6.43), (6.44) are no longer orthogonal after RG corrections are included. This
allows the flavoured asymmetries to be written as in Table 6.1. Using Eq. (6.5) one
notices immediately that €13 = 0 since C1(Q1) = 0. To see that the €,; receive a

correction from RG running consider, e.g.

AQ)'B(Q1) = (A(Qo) — (ZA),1)" (B(Qo) — (ZAt) ), (6.48)

where the leading term on the right-hand side vanishes since FD implies that A(Qo)
and B(Qo) (and C(Qo)) are orthogonal.

In order to progress further, one will need to insert specific values for the
parameters in the matrix, which are model dependent. Here, guided by work
presented in [92] the parameters are fixed consistently with experimental data. The
leptogenesis scale ()1 is taken to be approximately the seesaw scale,

Q1 ~ (1.74242)10* GeV (using the basic seesaw formula).!! This indicates that for
small y the two flavour regime is relevant for tan § > 10; for larger values of y, tan 3
needs to be larger to be in the 2 flavour regime. However in the forthcoming plots,
parts of the contour existing at large y correspond also to larger y, and so
sufficiently large tan 3. The family symmetry scale is around an order of magnitude
below the GUT scale, roughly Qo ~ 1.5 x 10" GeV; and ; ~ 1. The asymmetry is
calculated for 0 < y < 24/ (to keep the coupling perturbative) and 0 < y, < 0.5

(to remain within bounds for tan 8 [113]).'2

In the course of this calculation, several complicated inter-dependencies of
parameters have been suppressed. The most obvious of these is that, as mentioned
above, the two-flavour regime is only valid for a subsection of the ranges scanned

over. The two-flavour regime is used for simplicity over the whole range, even areas

1 This mass scale may look quite large especially when compared to the upper bound on the
reheating temperature due to the over-production of late-decaying gravitinos [110]. However, heavy
gravitinos with masses mg/, > 40 TeV, will decay before nucleosynthesis. Assuming dark matter to
have a significant axion/axino component, then allows reheat temperatures to be sufficiently high to
produce RH neutrinos of mass ~ 10'* GeV, as recently discussed in e.g. [111], [112] (and references
therein).

12Note that the point where the couplings are 0 is unphysical and no significance should be inferred
by this.
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where the value of y; and hence tan 8 are such that the unflavoured regime is in
fact preferred. So when considering plots in the y-y, plane, one should in fact be
considering the portion where y and ¥, correspond to values of ()1 and tan 3
consistent with the two-flavour regime. This is still a significant region of the plot
and contains parts of the 7 contour required by observation. A second dependency
comes from the fact that [92] only fixes RH neutrinos masses up to factors of é

(namely M ~ 5Xyl—2015 GeV, My ~ w GeV and M3 ~ % GeV), so that in
3

Y3 Y3

some portions of the parameter space considered, the RH neutrino mass may well
be above the family symmetry breaking scale, a possibility already mentioned
above. The corresponding family symmetry breaking scale could be increased to
account for this, since this value is not fixed by anything. These approximations are
made in order to demonstrate that the studied effect is enough to generate a

non-zero baryon asymmetry, and they should be dealt with more thoroughly if on

wanted to perform a precise calculation.

6.6.1 TB mixing

Specialising to the case of RG improved leptogenesis in the TB model, where the

TB Yukawa couplings are given in (6.44), repeated below,

YTB(Ql) =~ YTB(QO) — ZTBAt. (649)

The results for the flavoured asymmetries versus y and y, are presented in Fig. 6.2,
in the two-flavour regime. It can be seen that the contributions from e,3 are the

dominant ones, as expected.

Following the procedure set out in Section 6.1.3, the next step is to calculate the
baryon to photon ratio n. Fig. 6.3 displays the contour matching the
experimentally measured value of 6.2 x 10710, along with two others, demonstrating
the sensitivity of the required Yukawa couplings to the value of 7. This shows that
there is a definite range of Yukawa couplings for which a realistic matter-antimatter
asymmetry can be obtained purely by considering RG evolution of the neutrino

Yukawa matrix, without the need for any extra particles or HO operators to be
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Figure 6.2: Flavoured asymmetries plotted against neutrino Yukawa y
and tau lepton Yukawa y, in the two flavour regime (i.e. ¢ — pu and 7) for
the TB model. In the y, graphs, y is fixed to be 3, while in the y graphs,
Y, is fixed to be 0.5. €.,,; are black solid lines while €, ; are red dashed
lines.

considered.

6.6.2 TM mixing

A similar analysis is now performed on the TM model, using the RG improved

Yukawa matrix analogous to (6.44), namely,

Yrum(Q1) = Yrum(Qo) — Zrum At. (6.50)

where the high energy Yukawa matrix Yras(Qo) is given in (6.35), with Zpas

analogous to (6.43) and otherwise assuming similar parameters to the case of TB
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mixing. However one must choose the new complex parameter C' carefully in order
to satisfy the relation [60]

V6
7 S1n 913 = |Oé13| . (651)

Flavoured asymmetries are given for #13 = 8° (consistent with current
measurements, see Section 3) and ¢. = 0 in Fig. 6.4. Contours of

n=142x10719 6.2 x 10719, 8.2 x 10719 for #y3 = 8° and n = 6.2 x 1071° for

013 = 0.1°, 3°, 6°, 9°, 12° are also presented; and for each value of 63, four
different choices of phase and modulus of C' which satisfy (6.51) are used. These can
be seen in Figs 6.5 and 6.6. For small 613 and therefore small C, the results are very
similar to those for TB mixing (c.f. Figs 6.3 and 6.6 purple line), which is expected
since the only difference between the two models is the presence of the & flavon.
For the larger values of 013, it is clear that changing C has a significant effect as one
can see from the variation of contours in Fig. 6.6; for instance the 12° contour for a

phase of ¢. = 0.91 rad doesn’t show up across the whole displayed plane.

Because experimental (i.e. low energy) input is used here, running between the
leptogenesis scale and the EW scale should briefly be mentioned. As with all
models of neutrino mixing the obtained high-energy (in this case leptogenesis scale)
parameters have to be RG evolved down to the EW scale before being compared
with data. However these effects have been well studied, [97,98] and shown to be
possible to control with respect to fitting the data. This discussion also applies for
the TB case presented in the previous subsection. Finally, one should not let these
considerations detract from the main goal of this Chapter which is to obtain a

non-zero value for € in the presence of FD.

6.7 Conclusion

This Chapter investigates RG corrections relevant for leptogenesis in the case of
family symmetry models such as the AF A4 model of TB lepton mixing or its
extension to TM mixing. Such corrections are particularly relevant since in large

classes of family symmetry models, to LO, the CP violating parameters of
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leptogenesis would be identically zero at the family symmetry breaking scale, due to
the FD property. The third family approximation is used, keeping only the largest
Yukawa couplings, subject to the constraint of perturbativity. In addition, the 7
Yukawa coupling is related to the SUSY parameter tan 3, which has had

experimental bounds placed upon it.

The results demonstrate that it is possible to obtain the observed value for the
baryon asymmetry of the Universe in models with FD by exploiting RG running of
the neutrino Yukawa matrix over the small energy interval between the family
symmetry breaking scale and the RH neutrino mass scale ~ 104 GeV. Of course,
the importance of RG corrections applies more generally than to the particular
models considered here for illustrative purposes, and the RH neutrino masses may

be lower in some models.

In conclusion, the results in this Chapter show that RG corrections have a large
impact on leptogenesis in any family symmetry models involving neutrino and
charged lepton Yukawa couplings of order unity, even though the range of RG
running between the flavour scale and the leptogenesis scale may be only one or two
orders of magnitude in energy. Therefore, when considering leptogenesis in such
models, RG corrections should not be ignored, even when corrections arising from

HO operators are also present.
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Figure 6.3: A plot showing the contours of the baryon to photon ratio n
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is the measured value of n = 6.2 x 10719,
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Figure 6.4: Flavoured asymmetries plotted against neutrino Yukawa y
and tau lepton Yukawa y, in the two flavour regime (i.e. ¢ — pu and 7) for
the TM model with 615 = 8° and a real parameter C' = z¢(¢’). In the y,
graphs, y is fixed to be 3, while in the y graphs, y, is fixed to be 0.5. €, ;
are black solid lines while €, ; are red dashed lines.
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Chapter 7

Summary and Conclusions

This thesis has presented two models which attempt to explain the observed
pattern of neutrino mixing using discrete flavour symmetries. Both models have
been constructed in a GUT context in order to attempt to reproduce the observed
quark mixing pattern as well. The consequences for leptogenesis are then studied
and a solution to a common problem with the combination of flavour symmetries

and leptogenesis is discussed.

In Chapter 4, the first model [1] is presented. An SU(5) GUT with extra fermionic
field content [67] is extended to introduce a flavour symmetry. The consequence of
introducing a flavour symmetry means that the initial matter content is not
sufficient to reproduce the neutrino data, so the minimal extension of one RH
neutrino is made. Once this is done, a model can be constructed that predicts TB
neutrino mixing with corrections from the charged lepton sector. The charged
lepton masses are related to the down quark masses by the GUT nature of the
model, and the GJ mechanism is utilised in order to obtain more phenomonogically
preferred relationships between these parameters. Quark mixings are small and
come predominantly from the down sector, while the mass ratios are quite large due
to the top mass being renormalisable. An attractive feature of the model is that
there is no mixing between the Majorana particles and therefore CSD is obtained

without having to assume a diagonal form for this matrix.
In Chapter 5, a second model [2] attempts to uplift a flavour model predicting TM
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mixing [60] to a GUT. This results in a theory predicting TM neutrino mixing with
corrections from the charged lepton sector; the GJ mechanism is again used and
this relates the charged lepton corrections to the Cabibbo angle. These corrections
are studied in the context of deviations from the TB mixing scheme, and new sum
rules are derived which give phenomonologically different predictions to those
existing in the literature. The NLO structure of the model is studied and example
terms are presented; these are known not to affect the LO model, leaving the
predictions unchanged. The vacuum alignment of the model is also briefly studied

and the assumed hierarchy of flavon VEVs is motivated.

Chapter 6 studies the effect of flavour symmetry on leptogenesis [3]. The idea of FD
is introduced and it is shown that this leads to a CP violating parameter of 0,
meaning that there is 0 baryon asymmetry in such models. However, the difference
in scales between the breaking of the family symmetry (and consequential
constraining of the Yukawa couplings) and the onset of leptogenesis caused by out
of equilibrium decays of RH neutrinos is not usually considered. It is demonstrated
that taking this scale difference into account by first running the neutrino Yukawas
down to the relevant scale can violate FD and generate a non-zero value for the CP
violating parameter. This procedure is performed in the context of the AF model
predicting TB mixing and the previously studied model of TM mixing [60].
Contours of the baryon asymmetry in Yukawa space are produced, showing that the
observed value of the baryon asymmetry of the Universe can be reproduced by a
range of values of neutrino and tau Yukawa (which is the dominant parameter in
such a calculation). For the TM model, similar contours are produced assuming a
range of values for 613 and the same conclusion is reached: leptogenesis can be
successful in the context of flavour symmetries by nothing more that RG evolving

the relevant parameters to the correct energy scale.

In the future, it would be interesting to study other flavour symmetries in the
context of non-zero 613. Indeed, current work involves obtaining a Golden Ratio
mixing pattern incorporating non-zero #13 coming from an As flavour symmetry. A
consequence of the method chosen to do this is that it also alters the prediction for

012, which in the LO Golden Ratio models tends to be too low to fit the data. This

110



work also includes a detailed discussion of the breaking of As down to the low
energy Ky symmetry of the neutrino mixing matrix, something that has not been

considered before.

111



112



Appendices

113



114



Appendix A

Spinor Formalism

This Appendix introduces the spinor formalism used throughout the thesis.

Since the Lorentz group, SO (3, 1) is locally isomorphic to SU(2) ® SU(2), it can be
represented by a pair of numbers representing the spin of each factor: (a,b). The
simplest nontrivial representation of this group is therefore (%, 0) (or (07 %)) and is

known as a Weyl spinor. It has two components and transforms as
1
X — exp <—Z§O' . 9> X, (A1)
1
X — exp <—250 . 77> X, (A.2)

where 6 is the angle of rotation, 7 is the rapidity of the boost (related to velocity by

B = tanhn) and the Pauli matrices are given by

01 0 —: 10
10 ¢ 0 0 -1

Using such a spinor, one can construct a mass term which is invariant under
Lorentz transformations

Z = %m (xTex + h.c.), (A.4)

with € = io?. This is a Majorana mass term, the simplest mass term possible. If the

Weyl spinor is allowed to transform under some (global or local) symmetry, this
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mass term is no longer invariant unless the spinor transforms as a real
representation; therefore in order to construct a theory with complex spinor
representations, a second Weyl spinor must be introduced in the complex conjugate

representation. A Dirac mass term is then constructed as
L =m (§T6X + h.c.), (A.5)

where the term is so-called since it can be constructed from a single four-component

(Dirac) spinor as follows

_ 01 X
10 €&

Here a specific basis, the Weyl basis, has been chosen for the Dirac gamma matrices:

01 4 0 o -10
= = | A=ty = 7 (A7)
10 —a' 0 01
where each entry is understood to be itself a 2 x 2 matrix. The advantage of this

basis is that the chiral projection operator projects out the upper and lower

components of the Dirac spinor

LF s
2

Prrp = Y =R, (A.8)

with 17 = (x,0)" and ¥ = (0,e¢*)”. Since the Dirac spinor transforms as

( %, 0) <) (0, %) under the Lorentz group, the projection operator is selecting only
one or other of these representations. The subscripts L, R then denote the
representation of the Lorentz group selected: this is the chirality of the spinor.

Setting xy = £ in the Dirac spinor gives a four-component Majorana spinor which

has a mass term

L = LGy, (A.9)

reproducing Eqn. (A.4).
In order to simplify GUTSs, the convention is to write mass terms with only LH
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fields (since LH and RH fields are unified into single representations in a GUT); this

is done using the charge conjugation matrix

Then it is possible to define the charge conjugated spinor

P =Cy* = ¢ :
ex*
such that
C § C
(V) = . = (Yr)".

This allows Dirac and Majorana masses to be written respectively as

ZL=-m ((W)E Capr, + h.c.> :

L = —%m (Y1 Cpr, + h.c.) .
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Appendix B

D-term alignment

In order to break the A4 symmetry, the flavon fields need to obtain non-zero VEVs.
The direction of these VEVs must in some way be forced into the desired
configuration; indirect models can use the method of D-term alignment [72] to
achieve this and so work in this Appendix is understood to be in the S diagonal
basis of Section 3.1.1. An Ay triplet flavon ¢ will in general have a scalar potential

of the form [71]
V3 —mZe' o + Ap(010i)® + koo + . (B.1)

where 7 here is the A4 index. The first two terms in this equation have an enhanced
SO(3) symmetry, which means that their vacuum alignment is not unique; in fact,
there is a continuum of possible alignments available. The third term breaks this
symmetry and is what is used to ensure the flavons obtain VEVs in the desired

directions. The alignment of ¢ depends on the sign of /-;(pzl

) 0,0,1)7 for Kk, <0,
@) X
(1,1,1)7 for kK, > 0.

Referring to table 4.2, it is clear that this argument is enough to generate the

desired alignments for 3 and ¢193. In order to obtain the remaining two,

!The choice of (0,0,1)7 as opposed to, e.g. (1,0,0)T simply defines what is meant by the 3-
direction of the A4 triplet.
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orthogonality arguments are invoked: arranging for the term /{23|30J{23 - 23] to have
a positive coefficient forces these flavons to be orthogonal in order to minimise V.
In this case, the condition gives that with (pa3) o (2,9,2)", # +y + z = 0 which is
not sufficient to define the desired alignment. This motivates the introduction of an
extra flavon ¢y whose only purpose is to impose x = 0 through an orthogonality
condition between it and po3. Its charge q; is chosen such that it doesn’t interact
with any other field in the model (and thus, if 7; ~ € then ¢; > 9). With this in
place, and a further orthogonality condition imposed by the term ]apg 1%, the
desired vacuum alignment is achieved. One should note that the scalar potential
(B.1) is invariant under a product of global U(1) symmetries, one for each avon
component. For a discussion of the implications of this observation, see [73].
Finally, since all terms used in this alignment are phase-blind each flavon has an
undetermined phase associated with it. Additionally, (p123) has independent phases
for each of its components; the component phases of (pa3) are related to those of
(p123) by the orthogonality relation above. However, in terms of obtaining
tri-bimaximal mixing, what is important is that the orthogonality conditions

<<PJ{23> - {p23) = 0 and <<,0J{> - (p23) = 0 are sufficient to generate 675 ~ 0 and

tan 6%, ~ —= in accordance with the CSD [69] conditions, regardless of the phases of
127 /5

©123-
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