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ON DISCRETE FLAVOUR SYMMETRIES, NEUTRINO MASS AND

MIXING

by Iain Ker Cooper

Neutrino mixing is a thriving area of particle physics research, with the recent dis-
covery of non-zero θ13 inspiring a large amount of research into the field. This thesis
presents two models which aim to explain the observed neutrino mixing patterns in
the context of Grand Unified Theories, which also output quark masses and mixings.

A model predicting Tri-Bimaximal mixing is presented which combines a pre-
viously published SU(5) model with an A4 family symmetry. Extra adjoint fermionic
matter is present as prescribed by the original Unified model, and this provides 2
seesaw particles; however they are constrained to give the same contribution to neu-
trino mixing once the flavour symmetry is imposed. This motivates the addition of
an extra field in order to obtain two non-zero neutrino masses. This model has the
desirable property of having a diagonal Majorana sector, something which is normally
assumed in such models.

In order to explain the discovery of non-zero θ13, a second model is presented
which produces Tri-Maximal mixing, a perturbed version of Tri-Bimaximal mixing
which retains the solar prediction whilst changing the atmospheric and reactor pre-
dictions. This is also performed in a unified context and therefore charged lepton
corrections to mixing are related to the Cabibbo angle in a new way via a sum rule.

Finally the impact of flavour symmetries on leptogenesis is discussed; it is
mentioned that models which predict neutrino mixing can very often lead to 0 lepto-
genesis and therefore no baryon asymmetry in the Universe. However this conclusion
is drawn without considering the difference in scales between flavour symmetry break-
ing and leptogenesis. When this is taken into account it is shown in the context of
two simple models that successful leptogenesis can be achieved.
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Chapter 1

Introduction

The SM of particle physics describes the properties and interactions of all directly

observed matter in the Universe. With the recent discovery of “a neutral boson

with a measured mass of 126.0 ± 0.4(stat) ± 0.4(sys) GeV” [4] , it seems that the

last piece of the SM puzzle, the Higgs boson, has been discovered. Nevertheless,

there are observed phenomena that the SM fails to explain; solutions to these

problems require new, BSM physics.

A particular aspect of BSM physics is studied in this thesis, namely the generation

of observed neutrino masses and mixings. Since the 60’s when Ray Davis conducted

the Homestake experiment, data from neutrino observation had been inconsistent

with theory. In these early cases, the neutrinos came from the Sun and experiment

observed ∼ 1
3 of the predicted neutrino flux [5]. Solar models were well trusted and

tested in other experiments so the conclusion was that there was some missing

ingredient in neutrino theory which overestimated the flux. This was known as the

solar neutrino problem. A solution was proposed by Pontecorvo [6] and refined in

the case of solar neutrinos by Mikheyev, Smirnov and Wolfenstein [7]: neutrinos can

oscillate or change flavour during propagation. In the case of the solar neutrino

problem, electron neutrinos produced in the Sun’s core can change to muon or

tauon neutrinos between creation and detection. Since the Homestake experiment

was only configured to detect electron neutrinos, there would be an observable

deficit. Super-Kamiokande [8] in Japan lent credence to this hypothesis with the

1



observation of a muon neutrino deficit from cosmic rays interacting with the

atmosphere - the atmospheric neutrino anomaly. The first experimental evidence

for neutrino mixing came from SNO [9] which measured both the electron neutrino

flux and the total neutrino flux from the Sun. Its measurement of the former agreed

with Homestake while the latter agreed with the predicted neutrino flux. This

implied that the electron neutrinos from the sun were indeed oscillating into muon

and tauon neutrinos before detection. Further experiments [10–17] have measured

these oscillation phenomena more and more accurately and future experiments are

being planned to measure previously inaccessible parameters.

This thesis studies how the observed pattern of neutrino mixing can be explained

by imposing some extra symmetry on the Lagrangian of the theory. A wide variety

of symmetries have been studied for this purpose [18] but the present work focuses

on what appears to be the smallest group available: A4, the group of even

permutations on four elements. This group, and those which contain it, have

garnered much attention [19] since the first successful model was built with it [20].

The work presented in this thesis is more ambitious than simply reproducing

neutrino mixing patterns however: it also attempts to explain why mixing in the

charged lepton sector is so much bigger than mixing in the quark sector. This is

achieved by constructing GUT models and using the discrete symmetry to produce

both mixing sectors.

One of the consequences of imposing a discrete symmetry on the Lagrangian is also

studied in this thesis: the effects of constraining Yukawa couplings on leptogenesis.

Leptogenesis attempts to generate the baryon asymmetry of the Universe using the

decays of right handed neutrinos introduced to explain why SM neutrinos have such

a small mass. One of the parameters of leptogenesis, which encodes CP violation in

such decays, depends on the Yukawa couplings. It turns out that constraining these

Yukawa couplings in such a way as to explain neutrino mixing will very often lead

to the CP violating parameter being 0 and by extension, no baryon asymmetry. A

method for avoiding this conclusion is studied and applied to two well known

models of neutrino mixing.
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The rest of the thesis is organised as follows. Chapter 2 presents a brief overview of

the SM in its current state, from the Lagrangian terms to EW symmetry breaking

(SU(3)c interactions are mostly suppressed in this discussion since they are not

relevant for the work presented). Important BSM concepts are also introduced:

neutrino mass, GUTs and SUSY. Chapter 3 then looks more closely at the PMNS

matrix and how the parameters compare to experimental data. A well studied

mixing scheme, TB mixing is introduced and it is shown how such a scheme can be

related to a symmetry of the Lagrangian. The prototype A4 model is discussed

along with an extension to account for recent observations of non-zero θ13 and

parameters describing deviations from the TB scheme are presented. Chapter 4

presents an original model studied in [1], which combines a GUT with A4 to predict

TB mixing. This model has several interesting features, most notably a naturally

diagonal Majorana sector, the significance of which is also discussed. Next, Chapter

5 presents work published in [2] which combines an extension to the prototype A4

model with a GUT. This model accommodates non-zero θ13 and also gives rise to

new sum rules between the neutrino parameters and the Cabibbo angle (the largest

parameter in the quark mixing matrix). Chapter 6 then presents work published

in [3] dealing with the consequences of discrete family symmetries for leptogenesis.

The common problem of family symmetry models producing 0 leptogenesis is

addressed by noting the difference in energy scales between the breaking of a family

symmetry and the onset of leptogenesis. This means parameters should be evolved

between the scales before calculations are performed. Two example models are

tested and both obtain successful leptogenesis, reproducing the observed baryon

asymmetry of the Universe for a finite region of parameter space. Finally, Chapter

7 concludes the thesis and two Appendices discuss spinor formalism (A) and

D-term vacuum alignment (B).
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Chapter 2

The Standard Model and

beyond

2.1 The Standard Model of Particle Physics

The SM of particle physics provides a description of three of the fundamental forces

of nature: the EM force, the weak nuclear force and the strong nuclear force. It

does not include the fourth, gravity, as it is not currently known how to provide a

QFT description of general relativity. Since gravitational effects are only expected

to become important at energy scales around the Planck Mass

MP ∼ 1.2209 × 1019 GeV , one can use the SM as a starting point for describing

physics below this scale. In fact, the SM is expected to be valid only up to around

the TeV scale (see the SUSY part of Section 2.2) and in this sense, it should only be

viewed as an effective theory. The current Section gives a brief overview of the SM

and its limitations and then several important BSM concepts are introduced,

namely neutrino mass, GUTs and SUSY. In writing this Section, the following

sources were consulted: [21], [22], [23], [24] and [25].

5



Field SU(3)c SU(2)L U(1)Y

QiL =

(
u iL
d iL

)
3 2 1

6

(uc)iL 3 1 −2
3

(dc)iL 3 1 1
3

LiL =

(
νiL
eiL

)
1 2 −1

2

(ec)iL 1 1 1

H =

(
H+

H0

)
1 2 1

2

Table 2.1: Matter and Higgs content of the SM. The index i runs from
1 − 3, reflecting the fact that each matter field comes in three flavours,
identical except for their mass.

2.1.1 Gauge symmetry and particle content

The SM is a very successful description of particle physics, describing the properties

and interactions of matter and gauge boson fields remarkably successfully. It is

based on the local gauge symmetry SU(3)c ⊗ SU(2)L ⊗ U(1)Y ; here the SU(3)c

symmetry describes QCD, the theory of coloured interactions involving quarks and

gluons; and SU(2)L ⊗ U(1)Y describes the EW interactions of the fermions with the

massive gauge bosons (as well as the Higgs boson) and the photon. The field

content of the SM can be found in Table 2.1, where all fields are LH in anticipation

of GUT building later on in this thesis (spinor conventions can be found in

Appendix A). The Lagrangian of the SM encodes all the processes and interactions

that the matter in Table 2.1 undergoes; it can be presented as

L = LGauge + LMatter + LY ukawa + LHiggs. (2.1)

The gauge portion contains the kinetic and self-interaction terms of the gauge

bosons; these are of the form

−1

4
AaµνAaµν with Aaµν = ∂µA

a
ν − ∂νAµ + gfabcAbµA

c
ν , (2.2)

6



with one copy of the above term for each simple subgroup of the SM; the gauge

fields Aaµ are in the adjoint representation of the group, and so there are 8 + 3 + 1

gauge degrees of freedom. The fabc are the structure constants for the relevant

subgroup. For the rest of this thesis, SU(3)c interactions will not be considered

(beyond its existence in unified theories), so unless specified only SU(2)L ⊗ U(1)Y

gauge bosons will be considered. The matter portion of (2.1) contains kinetic and

gauge interaction terms for the five matter fields in Table 2.1, of the form

iψ
i
/Dψi. (2.3)

Here, the familiar Feynman slash notation is used, and

Dµ = ∂µ −
ig2σa

2
W a
µ − ig1

2
Bµ, (2.4)

is the covariant derivative for SU(2)L ⊗ U(1)Y with weak coupling g2 and

hypercharge coupling g1. The W a
µ and Bµ are gauge fields, but do not yet represent

the physical gauge boson states. So far, the SM symmetry has forbidden fermion

mass terms and this means that there is a rather large accidental symmetry: each

of the five matter fields can undergo a U(3) rotation on its flavour index, leaving

these terms unchanged. This means that there is an accidental global U(3)5

symmetry in this part of the Lagrangian. This symmetry is broken by the Yukawa

sector which is presented explicitly as

LY ukawa = −Y ij
u Q

i
LǫH

∗ujR − Y ij
d Q

i
LHd

j
R − Y ij

e L
i
LHe

j
R + h.c. (2.5)

where ǫ = iσ2 is the totally antisymmetric tensor, required to maintain Lorentz

invariance. The presence of these terms breaks most of the accidental symmetry

from U(3)5 → U(1)B ⊗ U(1)L, corresponding to baryon and lepton number

symmetries respectively. It turns out that U(1)B ⊗ U(1)L suffers from dangerous

quantum effects, known as anomalies, that introduce serious problems with the

theory; these will be briefly discussed in Section 2.1.4. However, U(1)B−L does not

suffer from anomalies and so this is still used as a constraining symmetry of the

7



SM. The Yukawa terms describe matter interactions with the Higgs field, which

give rise to fermion masses once EWSB takes place and the Higgs obtains its VEV.

This process is dictated by

LHiggs = (DµH)† (DµH) − V (H) . (2.6)

At the time of writing, the LHC at CERN has recently published data showing

discovery of a boson with the same behaviour as the Higgs, with a mass of

∼ 125 GeV , and with a statistical significance of ∼ 5σ [4, 26]. This result completes

experimental observation of the SM particles.

2.1.2 The Higgs potential and Lagrangian masses

The term V (H) in Eq. (2.6) controls the breaking SU(2)L ⊗ U(1)Y → U(1)Q which

allows the fermions and gauge bosons to attain masses. The resultant unbroken

symmetry describes electromagnetic interactions and its generator, the electric

charge, is built from the broken EW ones by

Q = τ3 + Y. (2.7)

where the τi = σi
2 . Explicitly, the potential is

V (H) = −m2H†H + λ
(
H†H

)2
, (2.8)

where m2, λ > 0. These bounds ensure, respectively, a non-zero VEV for the Higgs,

and a potential which is bounded from below preventing an infinite cascade of

decays. Minimising this potential one obtains the Higgs VEV

〈H〉 =
1√
2




0

v


 , (2.9)

with

v =

√
m2

λ
. (2.10)

8



Below the EW scale the Yukawa Lagrangian, Eq. (2.5), becomes

LM = −mij
u u

i
Lu

j
R −mij

d d
i
Ld

j
R −mij

e e
i
Le

j
R + h.c. (2.11)

with

mij
α = Y ij

α

v√
2
. (2.12)

To study how the Higgs VEV affects the gauge bosons, it is convenient to transform

to the unitary gauge where the Higgs doublet is real and has no charged

component. Then expanding about the vacuum state gives

H =
1√
2




0

v + σ


 , (2.13)

where σ is the physical Higgs boson. Inserting this into Eq. (2.6) and keeping only

mass terms then gives

L
mass
Higgs =

v2

8

(
g2
2

((
W 1
µ

)2
+
(
W 2
µ

)2)
+
(
g1Bµ − g2W

3
µ

)2)− λv2σ2. (2.14)

The fields W 1,2
µ are not eigenstates of the charge operator Q defined in Eq. (2.7)

since [Q, τ1,2] = iτ2,1. However it is possible to define W±
µ = 1√

2

(
W 1
µ ∓ iW 2

µ

)
with

corresponding SU(2) raising and lowering operators τ± = 1√
2

(τ1 ± iτ2). These

operators satisfy

[Q, τ±] = ±τ±, (2.15)

meaning the fields have charges ±e. The fields W 3
µ and Bµ require a more careful

treatment since although they are both neutral eigenstates of Q, they are mixed in

Eq. (2.14); indeed the term involving these fields may be written as

(
Bµ W

3
µ

)



g2
1 −g1g2

−g1g2 g2
2






Bµ

W 3
µ


 . (2.16)

9



In order to obtain the mass states, this term must be diagonalised which can be

done by defining the rotation matrix




cos θW − sin θW

sin θW cos θW


 =




g2√
g21+g22

− g1√
g21+g22

g1√
g21+g22

g2√
g21+g22


 , (2.17)

where θW is known as the Weinberg angle. Applying this rotation to the fields gives

the diagonalised system

(
Aµ Z

0
µ

)



0 0

0 g2
1 + g2

2






Aµ

Z0
µ


 , (2.18)

where the familiar photon Aµ = cos θWBµ + sin θWW
3
µ and neutral Z-boson

Z0
µ = − sin θWBµ + cos θWW

3
µ fields are defined. If one expands Eq. (2.3) using the

physical fields, the coupling between Aµ and the fermions (defined to be the electric

charge) can be read off as

e =
g1g2√
g2
1 + g2

2

. (2.19)

Inserting the physical fields into Eq. (2.14) then gives

L
mass
Higgs =

v2

8

(
2g2

2W
+
µ W

−
µ +

(
g2
1 + g2

2

) (
Z0
µ

)2)− λv2σ2, (2.20)

allowing the masses to be read off:

MW =
1

2
vg2 =

ev

2 sin θW
, (2.21)

MZ =
1

2
v
√
g2
1 + g2

2 =
ev

2 sin θW cos θW
, (2.22)

MA = 0, (2.23)

Mσ =
√

2λv. (2.24)

It is instructive to ask what has happened in terms of degrees of freedom during

this breaking process. In the EW symmetric phase, there is a massless vector boson

triplet, a massless vector boson singlet and a massless complex scalar doublet,

giving 6 + 2 + 4 = 12 degrees of freedom. After EW symmetry breaking, there are

10



three massive vector bosons, one massless vector boson and one massive scalar

boson giving 9 + 2 + 1 = 12 again. What has happened is that three of the massless

degrees of freedom in the Higgs doublet H have been “eaten” by the gauge bosons,

becoming their longitudinal degrees of freedom. These massless degrees of freedom

are known as Goldstone bosons and theory dictates that there exists one Goldstone

boson per broken symmetry generator; thus in the case of the breaking

SU(2)L ⊗ U(1)Y → U(1)Q, there are 4 − 1 = 3 Goldstone bosons as expected.

Equations (2.21) and (2.22) lead to the relation

cos θW =
MW

MZ
, (2.25)

which itself gives the prediction that

ρ =
M2
W

M2
Z cos2 θW

= 1. (2.26)

This is very accurately measured and so is a benchmark for BSM physics to

conform to.1

2.1.3 Quark mixing: the CKM matrix

In the previous subsection it was shown how the Higgs mechanism leads to fermion

mass matrices, in particular Eq. (2.11) was presented. As in the case of the Bµ, W 3
µ

sector, the actual fermion masses are the eigenvalues of this matrix and so a

diagonalisation needs to be performed. This can be done by applying rotations to

each of the fermion fields in the SM; in the absence of right handed neutrinos

(which will be introduced in Section 2.2), the lepton rotations have no effect on the

rest of the Lagrangian. The quark rotations are more interesting in this framework

1Although it has now been superseded by the EW precision parameters S, T and U .
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however; denoting the rotations by

u′L = VuL
uL,

u′R = VuR
uR,

d′L = VdL
dL,

d′R = VdR
dR,

(2.27)

puts the Lagrangian in the mass basis, where the mass matrices are diagonal:

mdiag
u = (VuL

)†muVuR
= diag (mu,mc,mt) , (2.28)

mdiag
d = (VdL

)†mdVdR
= diag (md,ms,mb) . (2.29)

All the Lagrangian terms involving quark fields will undergo this rotation, however

only the quark coupling to the W±
µ is affected

uLγ
µW±

µ dL + h.c. → uLγ
µW±

µ UCKMdL + h.c. (2.30)

with

UCKM = (VuL
)† VdL

. (2.31)

This matrix describes interactions, mediated by the W±
µ , which change the flavour

of the quark fields. It can be seen that the matrix arises due to the difference in

rotation between two fields which exist in the same SU(2)L doublet before EWSB.

This means that only terms which depend on the doublet structure will be affected

by this rotation; the Aµ and the Z0
µ, which have couplings proportional to τ3 + Y ,

are left invariant and therefore transitions changing flavour mediated by these

neutral gauge bosons do not exist within the SM. The statement that there are no

FCNCs in the SM arises from the GIM mechanism and is very well observed in

experiment.

The CKM matrix is a unitary 3× 3 matrix and therefore has 9 parameters, however

only 4 of these are physical. The reason for this is that one is free to perform

individual phase redefinitions on each of the 6 quark fields involved in the definition

12



of the CKM matrix. One of these phases cannot be removed since UCKM is

invariant under a global phase redefinition, so one can choose 5 of the quark phases

to cancel 5 of the CKM parameters, leaving the 4 physical parameters. These

correspond to 3 mixing angles and 1 complex phase; a popular parameterisation

using these parameters is

UCKM =




c12c23 s12c13 s13e−iδ
q

−s12c23 − c12s23s13eiδ
q
c12c23 − s12s23s13eiδ

q
s23c13

s12s23 − c12c23s13eiδ
q −c12s23 − s12c23s13eiδ

q
c23c13



, (2.32)

where cij = cos θ qij, sij = sin θ qij and δq is the phase (the superscript q is to

differentiate the parameters from those in the lepton sector that are introduced in

Section 3). Experimentally the CKM matrix is observed to be close to diagonal

with the biggest angle, θ q12 = θC known as the Cabbibo angle, being roughly 13◦.

2.1.4 Anomalies

Of importance for the consistency of a QFT are anomalies: the quantum violation

of a classical symmetry. A very brief overview of this topic follows. Classically,

conserved currents are associated to a symmetry principle by Noether’s theorem. In

particular, vector and axial currents are classically conserved (in the massless limit)

jµ = ψγµψ, jµ5 = ψγµγ5ψ,

∂µj
µ = 0, ∂µj

µ5 = 0.

(2.33)

whereas at the quantum level, the axial current diverges as

∂µj
µ5 ∝ Tr

(
T a
{
T b, T c

})
, (2.34)

where the T a are the normalized generators of the relevant gauge group. This

current can be used to construct triangle diagrams which violate Ward identities

and therefore gauge invariance. Explicitly, these diagrams can provide the photon

with a divergent mass (or equivalently, longitudinal and time-like degrees of

13



Figure 2.1: A triangle diagram combining 2 SU(2)L vertices and one B,
L, or B−L vertex. Individually B and L give non-zero contributions from
this diagram, but the combination B − L gives no contribution.

freedom), and therefore should be cancelled in order to have a consistent theory.

There are a large number of possible triangle diagrams that arise in the SM which,

after calculation, are indeed 0 under three assumptions:

the hypercharges of the fields are assigned as in Table 2.1,

there are complete generations of matter, i.e. if there are u-, c- and t-type

quarks then there must also be e-, µ- and τ - type leptons,

there are three copies of quark doublet for every lepton doublet, i.e. there are

three colours of quark.

The first assumption finds no explanation within the SM, but GUTs can provide an

answer as described in subsection 2.2.2; the third arises from assigning quarks to an

SU(3)c gauge theory. The second, in combination with LEP data for the Z0 decay

widths, constrains the number of light generations to be 3 [27]. As an example of

anomalies in the SM, consider Fig. 2.1, a triangle diagram with 2 SU(2)L vertices

and one B, L, or B − L vertex. The contribution of this diagram to the anomaly is

given by

Tr
(
TB, L, B−L

{
τ b, τ c

})
=

1

2
δbc
∑

fL

QB, L, B−L
fL

, (2.35)

which evaluate to

1

2
δbc × 3 × 3 × 1

3
,

1

2
δbc × 3 × 1,

1

2
δbc
(

3 × 3 × 1

3
− 3 × 1

)
= 0,

(2.36)
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respectively. This demonstrates that while B and L are individually anomalous,

B − L is not.

2.2 Beyond the Standard Model

2.2.1 Neutrino mass and the seesaw mechanism

As can be seen in the previous Sections, the SM does not admit mass for the

neutrinos. This is because a Majorana mass term (the charge conjugation matrix C

is defined in Appendix A)

−1

2
mij
ν

(
νiTL Cν

j
L + h.c.

)
, (2.37)

breaks the B −L symmetry and is therefore forbidden. Experimental observation of

neutrino oscillation indicate that the neutrino cannot be massless however;

therefore the SM needs to be extended in some way as to provide neutrinos with

mass. Furthermore several constraints, such as the non-observation of 0νββ, exist

to bound the sum of the neutrino masses at . 1 eV . This means that the neutrino

mass scale is a factor ∼ 10−6 smaller than the electron and so the extension to the

SM should also explain this ratio ideally without inserting such a factor arbitrarily.

The key is to recall that the SM is an effective theory, valid up to a particular

energy scale Λ:

L = LSM +
1

Λ
L5 +

1

Λ2
L6 + . . . (2.38)

At energies below Λ, the higher dimensional terms L5, L6 etc are suppressed by

powers of Λ. Using the field content and gauge symmetries of the SM, the only

allowed dimension-5 term is [28] (the notation Y ij
ν is in anticipation of this leading

to neutrino mass terms)

L5 =
Y ij
ν

Λ
LiTL ǫφCφ

T ǫLjL + h.c. (2.39)
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known as the Weinberg dimension-5 operator. When the Higgs field obtains its

VEV, this becomes a Majorana mass for the neutrino field

LMaj = −Y
ij
ν

2

v2

Λ
νiTL Cν

j
L + h.c. (2.40)

which is suppressed by the scale at which new physics enters. This term still

violates the B − L symmetry, but only at a high scale, meaning it remains an

approximate symmetry at low energies. The issue is now to explain the origin of the

Weinberg operator. The most common explanation is to extend the SM by

introducing a RH neutrino NR (completing the pairs of LH and RH fields) which

has SM charges (SU(3)c,SU(2)L)U(1)Y
= (1, 1)0, i.e. it is a singlet. This is known as

the Type I seesaw mechanism [29] and gives rise to the new Lagrangian terms

LN = −Y ij
ν L

i
Lǫφ

∗N j
R − 1

2
N iT
R M ij

RCN
j
R + h.c. (2.41)

where there is no constraint on the size of MR. If it is taken to be 0, νL and NR

pair up to form a Dirac neutrino with mass ∼ v; however, if MR ≫ v the NR can be

integrated out of the Lagrangian using its equation of motion. This results in an

effective Majorana mass for the νL

LTypeI = −1

2
mij
ν ν

iT
L Cν

j
L + h.c. (2.42)

with

mν ∼ −v2YνM
−1
R Y T

ν . (2.43)

Schematically this can be represented by the Feynman diagram in Fig. 2.2. Taking

the Yukawa couplings to be ∼ 1, the Higgs VEV to be 246 GeV and the neutrino

mass scale to be 0.1 eV , one obtains a RH neutrino mass scale of around 1014 GeV .

Looking more closely at the Dirac vertex in Fig. 2.2, since LL and φ are SU(2)L

doublets, the internal field can be either 1 or 3 under SU(2)L. The former case is

the above Type I seesaw [29], whilst the latter is the Type III seesaw [30]. There is

also the Type II [31] seesaw where a new Higgs triplet couples to two LL, but this is

fundamentally different from the other two and is not discussed further.
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MRR

νR νR
L

H H

L

Figure 2.2: Schematic diagram of the type I seesaw mechanism.

Knowledge of neutrino masses is fairly limited: the major observable effect is

neutrino oscillation, whose probability is dependent on the squared mass splittings

rather than the absolute masses. Current global fits [32,33] give these mass

splittings to be (using extreme 1σ ranges)

7.32 <∆m2
sol = m2

2 −m2
1

(
eV 2

10−5

)
< 7.81, (2.44)

2.37 <∆m2
atm = m2

3 −m2
1

(
eV 2

10−3

)
< 2.61 (NH), (2.45)

−2.53 <∆m2
atm = m2

3 −m2
1

(
eV 2

10−3

)
< −2.30 (IH). (2.46)

This shows that while one of the signs of the splittings is known, the other is not

and therefore the neutrino spectrum could be one of the two shown in Fig. 2.3.

Furthermore, the absolute mass scale is not currently known, although cosmological

bounds can be placed on the sum of the neutrino masses, presently ∼ 1eV (this is a

difficult parameter to place bounds on, see discussion and references in [34]).

The introduction of right handed neutrinos and, in particular, the Yukawa term in

Eq. (2.41) introduces a mixing matrix for the lepton sector, analogously to the

CKM matrix. It is known as the PMNS matrix and is defined in terms of charged

lepton and neutrino diagonalisation matrices as

UPMNS = VeL
V †
νL
. (2.47)

The major difference between the PMNS matrix and the CKM matrix is the

number of parameters: whereas in the CKM case, 5 of the phases could be removed,
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Figure 2.3: The present status of neutrino mass measurements. The
colours also represent the approximate flavour content in each mass eigen-
state (taken from [35]).

in the PMNS case only 3 may be removed. This difference is because of the

(assumed) Majorana nature of the neutrino and therefore less freedom to redefine

fields in order to remove phases. If one were to use the neutrino fields to remove

PMNS phases, then the Majorana mass matrix of Eq. (2.43) would pick up

unremovable phases. Therefore one cannot absorb PMNS phases into the Majorana

neutrino fields (apart from an overall phase) and so the PMNS matrix has 3 angles

and 3 phases. It can be parameterised in the same way as the CKM matrix in Eq.

(2.32) but right multiplied by a diagonal matrix containing 2 phases.

It was stated above that the Majorana nature of neutrinos is assumed. Observation

of a process known as neutrinoless double beta decay will confirm that neutrinos

are indeed Majorana since the process cannot happen otherwise. The current status

and experimental progress on neutrinoless double beta decay can be found in [36]

and references therein. Experimentally measured values for the mixing parameters

(excluding Majorana phases) will be introduced and discussed in the next Chapter.

2.2.2 Grand Unification

The gauge group of the SM, SU(3)c ⊗ SU(2)L ⊗ U(1)Y , has three factors and

therefore three gauge couplings. Although these are sometimes referred to as

constants, in fact they run with energy scale. This will be used in Chapter 6, but
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Figure 2.4: Running of the inverse fine structure constants with energy
scale. The dotted lines correspond SM couplings and the solid to MSSM
couplings (taken from [37]).

for now it suffices to observe that the couplings appear to converge as the energy

scale is increased, as in Fig. 2.4 (dotted lines - here the running of the inverse fine

structure constants αi =
g2i
4π are plotted such that the plot is linear). Although the

convergence is not exact in the SM, this tendency is enough to suggest that the 3

couplings could unify to one at some high scale denoted MGUT . This would

correspond to the SM gauge group being embedded in some larger group with only

one factor; the smallest group that can achieve this is SU(5) [38], generated by

λ1−24

2 . The fields of the SM are grouped together in larger multiplets and the

embedding is defined by the decomposition of SU(5) representations under the SM.

In particular [39]

5 →
(
3, 1
)

1
3

+ (1, 2)− 1
2
,

10 → (3, 2) 1
6

+
(
3, 1
)
− 2

3
+ (1, 1)1 .

(2.48)

This shows that the matter content of the SM can be contained in the combination

5i + 10i with i being the generation index. One generation is then written as
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5 = ψj =




dc1

dc2

dc3

e

−νe




L

, (2.49)

10 = ψjk =
1√
2




0 uc3 −uc2 −u1 −d1

−uc3 0 uc1 −u2 −d2

uc2 −uc1 0 −u3 −d3

u1 u2 u3 0 − (ec)

d1 d2 d3 (ec) 0




L

. (2.50)

Here, the numerical indices represent the three distinct colour charges of SU(3)c

(recall that the quark fields are triplets under SU(3)c). Calculating the anomaly

coefficient, Eq. (2.34), for these two representations shows that they cancel each

other and the SU(5) theory is anomaly free. The 5 representation contains the

charges corresponding to the Higgs doublet, along with a colour triplet in the field

H5 =




h1

h2

h3

h4

h5




, (2.51)

whilst the GUT symmetry is broken by a Higgs in the adjoint representation

H24 = φa λ
a

2 (here, λa are the SU(5) generators). The existence of the SM Higgs

doublet in a representation which also contains a colour triplet is a common

problem with GUTs - while the SM state should be light (around the TeV scale),

the coloured state which could lead to proton decay should be heavy in order to

suppress such decays. This is known as the doublet-triplet splitting problem; there

are several generic solutions to this problem [40], generally involving introducing

extra large Higgs representations, which give the triplet Higgs a GUT scale mass

while keeping the SM Higgs at the EW scale.
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The general Yukawa Lagrangian with the above field content is (denoting 5 by F

and 10 by T )

L = (Yd)ij FiTjH5
+ (Yu)ij TiTjH5, (2.52)

which demonstrates a problem with the unification: the mass matrices of the down

quark and charged leptons are the same at the GUT scale. This prediction fails

when the parameters are evolved to the EW scale and compared with

experiment [41] and so extra matter can be included in the model in order to fix

this. Introducing a H
45

gives the correct high energy mass (GJ) relations [42]; the

Yukawa sector is now (inserting Greek SU(5) indicies explicitly)

L = (Fα)i

(
Tαβ

)
j

(Yd1)ij (H
5
)β + (Fα)i

(
T βγ

)
j

(Yd2)ij (H
45

)αβγ

+ (Yu)ij

(
Tαβ

)
i

(
T γδ

)
j

(H5)ǫ ǫαβγδǫ.

(2.53)

with ǫαβγδǫ the totally antisymmetric rank 5 tensor. The new term gives

contributions to the mass of the charged leptons and down type quarks once the

Higgs fields obtain their VEVs (note that the H45 satisfies H45
αβ
γ = − H45

βα
γ and

H45
αβ
α = 0)

〈H5〉α =





v5 for α = 5,

0 for α 6= 5.

(2.54)

〈H45〉αβγ =





v45 for β = 5, α = γ = 1 − 3,

−3v45 for β = 5, α = γ = 4,

−v45 for α = 5, β = γ = 1 − 3,

3v45 for α = 5, β = γ = 4,

0 otherwise.

(2.55)

The factors of three arise from the tracelessness and antisymmetry of the H45 and

the fact that the VEV of the H45 leaves SU(3)c unbroken:

〈H45〉α5
α = 〈H45〉151 + 〈H45〉252 + 〈H45〉353 + 〈H45〉454 + 〈H45〉555 = 3v45 + 〈H45〉454 = 0.
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Using (2.54) and (2.55) (2.53) can be expanded to find the mass matrices

md = Yd1v
∗
5 + 2Yd2v

∗
45 and me = (Yd1)T v∗5 − 6 (Yd2)T v∗45. (2.56)

If the Yd1,2can be constrained such that2

Yd1 ∼




0 A 0

B 0 0

0 0 D




, Yd2 ∼




0 0 0

0 C
2 0

0 0 0



, (2.57)

then the form of the mass matrices is fixed

md ∼




0 A 0

B C 0

0 0 D



, me ∼




0 B 0

A −3C 0

0 0 D



. (2.58)

These yield GUT scale mass relations of [42]

md

3me
= 1, (2.59)

3ms

mµ
= 1, (2.60)

mb

mτ
= 1, (2.61)

which are much closer to the data than those from minimal SU(5) [41].

Unifying the SM fields in this manner has some appealing properties beyond

unifying the fundamental forces; a particularly interesting property is explaining

the quantization of hypercharge and therefore electric charge. This simply arises

from the fact that, since Y is a generator of SU(5), its action on any representation

should sum to 0, leading to (see e.g. [43])

Y (dc) = −1

3
Y (L) . (2.62)

This argument explains the somewhat arbitrary looking hypercharge assignments

2This constraining can be enforced using discrete symmetries which is the method used in the
rest of this thesis.
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found in Table 2.1. Connected to this is the fact that in order to identify the

common GUT coupling (which is denoted by g5) with the SM couplings g1, g2 (and

g3), one needs to perform normalisation correctly. The covariant derivative in SU(5)

is (denoting gauge boson fields by Âµ) ∂µ− ig5Âµ = ∂µ− ig52 W
i
µσ

i− ig52 Bµλ24 + . . . ;

in an SU(2)L ⊗U(1)Y theory, the covariant derivative is ∂µ− ig22 W
i
µσ

i− ig12 BµY . In

order for the couplings to be identified, λ24 must be rewritten in terms of the

hypercharge matrix Y: λ24 =
√

3
5Y . This allows for the identification (where the g3

identification has been made for completeness)

g2,(3) = g5 and g1 =

√
3

5
g5, (2.63)

ensuring that the hypercharges are defined consistently with Table 2.1.

As appealing as this theory is, it has already been excluded by several experiments

which search for decays of the proton. The reason is that the predicted proton

decay lifetime is given by [44]

τp =
1

α2
5

M4
GUT

m5
p

. (2.64)

α5 is the SU(5) fine structure constant and MGUT is determined by where the gauge

couplings meet, ∼ 1015 GeV in the SM; using this then gives a predicted proton

decay lifetime of ∼ 1030 years. The IMB has put a lower limit on the proton decay

lifetime at ≥ 1032 years, whilst more recently Super-Kamiokande has strengthened

this limit to ≥ 1033 years [45]. Still, the simplicity of this theory motivates further

study and in the next subsection, the predicted value of τp will be increased.

2.2.3 SUSY and the hierarchy problem

The SM with a Higgs boson is very robust from an experimental point of view,

however it has one major theoretical flaw known as the hierarchy problem. This

arises from the fact that any complex scalar in a QFT will receive dangerous

contributions to its mass beyond tree level, since it is not protected by any

symmetry (in other words, no symmetry is restored by setting the Higgs mass to 0).

Schematically, consider the first diagram in Fig. 2.5, where the scalar mass term is
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Figure 2.5: Dominant one-loop corrections to the Higgs mass from top
and stop loops.

corrected by a fermion in the loop. This correction will generically have the form

−λ2
f

(
aΛ2

UV + bm2
F + ...

)
, (2.65)

where a is some order 1 coefficient and b is at most logarithmically divergent; both

of these parameters are renormalisation scheme dependent. This immediately looks

like a problem, since even if no new matter existed between the EW and the Planck

scale, the theory is still an effective one and so ΛUV would be the cutoff of the

theory, MP . Therefore in order that the Higgs mass parameter is ∼ (125 GeV )2,

one needs to tune the bare Higgs mass and the one-loop corrections to around one

part in 1030. It is of course possible here to exploit the fact that the theory is

renormalisable and so use counterterms to cancel the quadratic divergences at all

orders. One now has to consider the parts proportional to the mass of the particle

in the loop; this will be dominated by the highest mF in the theory which could

very well be around MP itself. This part of the correction can be removed by a

counterterm at the current order, however new corrections of this sort will be

regenerated at the next order. In order to cancel these terms to all orders, one

needs to retune the counterterms at every order in order to prevent the mass

receiving a large correction ∝ mF . Unless one is willing to accept these large fine

tunings, a solution must be sought.

Consider introducing a scalar field with mass mS and allowing this to couple to the
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Higgs as well, as in the second diagram of Fig. 2.5. This contributes

λS
(
aΛ2

UV + b′m2
S + ...

)
, (2.66)

to the Higgs mass parameter and these quadratic divergences will therefore cancel

with the fermion ones if λS = λ2
F . Furthermore if mF = mS , then the logarithmic

divergences will also cancel each other out; even if the masses are not exactly equal,

so long as their difference is not too large, the logarithmic divergences will not be

too damaging for the theory.

Such a situation arises in the form of SUSY, an extension of the Poincaré algebra to

include anticommuting operators Q which act on fermions to produce bosons and

vice versa:

Q|Boson〉 = |Fermion〉, Q|Fermion〉 = |Boson〉,
{
Q,Q†

}
= Pµ,

{Q,Q} =
{
Q†, Q†

}
= 0,

[Pµ, Q] =
[
Pµ, Q†

]
= 0,

(2.67)

where Pµ is the four-momentum generator of spacetime translations. Spinor indices

(necessary since the Q are fermionic operators) have been suppressed in the above

for simplicity. The action of these new generators Q doubles the spectrum of the

SM, by introducing a bosonic partner for every fermion and vice versa. The

combined contributions of these partners cancels one another out when calculating

the correction to the Higgs mass. The MSSM is the minimal version of SUSY,

adding only the required superpartners to each SM field. The extra content can be

found in Table 2.2; notice that there are now two Higgs doublets as opposed to the

one in the SM. This is required for several reasons, the simplest of which is anomaly

cancellation: when the SM Higgs acquires its fermionic superpartner, the

corresponding hypercharge will contribute to the anomaly and spoil the

cancellation. A multiplet with opposing hypercharge must be introduced in order to

restore this cancellation. Each partner and superpartner reside in a multiplet called

a superfield; superfields which contain chiral fermions are called chiral superfields,
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Field SU(3)c SU(2)L U(1)Y

Q̃iL =

(
ũ iL
d̃ iL

)
3 2 1

6

(ũc)iR 3 1 −2
3(

d̃c
)i
R

3 1 1
3

L̃iL =

(
ν̃ iL
ẽ iL

)
1 2 −1

2

(ẽ c)iR 1 1 1

H̃u =

(
H̃+
u

H̃0
u

)
1 2 1

2

H̃d =

(
H̃0
d

H̃−
d

)
1 2 −1

2

Table 2.2: Matter superpartners of the MSSM. The index i runs from
1 − 3, reflecting the fact that each matter field comes in three flavours,
identical except for their mass.

whereas those containing the gauge bosons and fermion partners are called vector

superfields.

With respect to naming individual superpartners: a scalar partner to an SM

fermion is prefixed with an “s”, such that the partner of a fermion is called a

sfermion (and explicitly, the partner of an electron is called a selectron); a fermionic

partner to a SM scalar is appended with “-ino” (explicitly, the partner of a photon

is called a photino). Along with these fermion/scalar partners, each superfield must

also contain a non-propagating auxiliary field F which is a complex scalar with

mass dimension 2: this is required in order to close the SUSY algebra off-shell.

Invariance under SUSY is very restrictive when trying to construct Lagrangians and

in fact all the interactions of matter fields can be described by the Superpotential

which is a polynomial in the scalar components of a superfield. The general

superpotential is given by

W = Liφi +
1

2
M ijφiφj +

1

6
yijkφiφjφk, (2.68)

where objects of rank > 1 are symmetric in all indicies. Invariance under SUSY
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transformations also requires that W be holomorphic (simply put, it cannot contain

both φ and φ∗); this is more motivation for the addition of a second Higgs doublet.

In the SM, H interacted with d-type quarks and charged leptons while ǫH∗

interacted with u-type quarks. In W , this is not possible due to the holomorphic

property, necessitating the introduction of a Higgs field in the conjugate

representation under the SM group; the notations Hu and Hd correspond to the

quark sector with which they interact. A general Lagrangian can then be

constructed as (here the σµ are the 2 × 2 identity for µ = 0 and the Pauli matrices

for µ = 1 − 3)

LSUSY = −∂µφ∗i∂µφi + iψ†iσµ∂µψi −
1

2

(
W ijψiψj +W ∗

ijψ
†iψ†j

)
−W iW ∗

i , (2.69)

where the indicies i, j on the W indicate a partial derivative of W with respect to

φi,j:

Wi,j =
∂W

∂φi,j
. (2.70)

From this Lagrangian, it can be seen that W has mass dimension 3 and

encapsulates all the interactions of matter fields with one another. The gauge part

of the Lagrangian can be constructed similarly using fields from a vector

supermultiplet which contains the SM gauge bosons, their fermion superpartners

the gauginos and a real bosonic auxiliary field Da. This is analogous to the Fi field

in the chiral supermultiplet; it doesn’t propagate and has mass dimension 2. Both

of these auxiliary fields can be re-expressed in terms of the scalar fields φ using

their equations of motion

Fi = −W ∗
i , Da = −g (φ∗Taφ) , (2.71)

where g and Ta are the relevant gauge couplings and normalised generators. Using

these equations one can write down the scalar potential of the theory

V (φ, φ∗) = F ∗iFi +
1

2

∑

a

DaDa = W ∗
i W

i +
1

2

∑

a

g2
a (φ∗T aφ)2 . (2.72)

As opposed to the Higgs potential of the SM, the parameters in this potential are
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defined by the SUSY interactions (Yukawa couplings, mass terms and gauge

couplings). Since experiment has not observed the numerous superpartners

predicted by exact SUSY, it can be inferred that these superpartners are heavier

than their SM counterparts, and therefore SUSY is a broken symmetry. This means

that SUSY breaking vacua can be found by looking for models with Fi 6= 0 and/or

Da 6= 0. It must be kept in mind however that this SUSY breaking can not be too

large, otherwise the hierarchy problem will be reintroduced again.

The introduction of a second Higgs doublet complicates the SUSY Higgs potential

somewhat; the most general potential is now

VH =
(
|µ|2 +m2

Hu

)(∣∣H0
u

∣∣2 +
∣∣H+

u

∣∣2
)

+
(
|µ|2 +m2

Hd

)(∣∣H0
d

∣∣2 +
∣∣H−

d

∣∣2
)

[b
(
H+
u H

−
d −H0

uH
0
d

)
+ h.c.] +

1

8

(
g2
2 + g2

1

) (∣∣H0
u

∣∣2 +
∣∣H+

u

∣∣2

−
∣∣H0

d

∣∣2 −
∣∣H−

d

∣∣2
)2

+
1

2
g2
2

∣∣H+
u H

0∗
d +H0

uH
−∗
d

∣∣2 ,

(2.73)

where b, mHu and mHd
are SUSY breaking parameters. As before, one of the VEVs

can be rotated away; choosing 〈H+
u 〉 = 0 then implies that

〈
H−
d

〉
= 0 meaning that

U(1)Q is still unbroken in SUSY. This leaves the simplified potential

VH =
(
|µ|2 +m2

Hu

)(∣∣H0
u

∣∣2
)

+
(
|µ|2 +m2

Hd

)(∣∣H0
d

∣∣2
)
− b

(
H0
uH

0
d + h.c.

)

1

8

(
g2
2 + g2

1

)(∣∣H0
u

∣∣2 −
∣∣∣Hd

0

∣∣∣
2
)2

.

(2.74)

Denoting the VEVs of the two fields by vu =
〈
H0
u

〉
and vd =

〈
H0
d

〉
, the SM Higgs

VEV is related to these two by

v2
u + v2

d =
v2

2
= (174 GeV )2 . (2.75)

It is popular to express the ratio between the two VEVs as

tan β =
vu
vd
, (2.76)

which means that

vu = v sin β, vd = v cos β. (2.77)
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The parameter µ in the above is a source of concern for physicists: in order for the

quadratic Higgs terms in (2.74) to obtain VEVs around the EW scale without large

cancellations, |µ|2 ∼ m2
Hu

∼ m2
Hd

. Whilst µ is a SUSY preserving parameter, the

other two break SUSY and so can in principle be much larger. This is known as the

µ-problem of SUSY. There are several solutions (see, for

example [47], [48], [49], [50] or [51]), mostly involving forbidding this term but

allowing a term coupling the two Higgs doublets to a singlet; this singlet can then

obtain a VEV which becomes the µ parameter. The size of the VEV is naturally

related to the EW scale by the SUSY breaking procedure.

The final consideration that needs to be made when constructing SUSY models is

the fact that B- and L-violating terms are allowed in the superpotential at the

renormalisable level:

W∆L=1 =
1

2
λijkLiLjek + λ′ ijkLiQjdk + µ′ iLiHu, (2.78)

W∆B=1 =
1

2
λ′′ ijkuidjdk. (2.79)

These operators can lead to very rapid proton decay, violating the experimental

bounds from IMB and Super-Kamiokande. Such terms can generically be forbidden

by imposing a discrete symmetry known as an R symmetry, where a field’s charge

defined by

PR = (−1)3(B−L)+2s . (2.80)

This definition implies that SM fields have an R-charge of +1 whilst the

superpartners have −1, meaning that at a vertex there must be an even number of

superpartners in order for R-symmetry to be conserved. One can conclude from

this that the LSP will be stable and therefore, if electrically neutral, a promising

candidate for dark matter that makes up ∼ 25% of the matter in the Universe [46].

Referring back to Fig. 2.4, it seems that the unification of gauge couplings in SUSY

scenarios is better than in the SM; furthermore, it occurs at a higher energy, at

around 2 × 1016 GeV [52]. Using this value to estimate the proton decay lifetime

instead of the SM value gives τp ∼ 1035 years which is much more promising when
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compared to experiment than the SM value.
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Chapter 3

Discrete symmetry and neutrino

mixing

One of the outstanding issues that the SM leaves unanswered is that of flavour: why

are there three copies of SM generations, with the specific mass ratios and mixing

patterns observed? A particularly interesting question is the origin of the large

differences between CKM and PMNS parameters. The CKM matrix is observed to

be close to the identity; in the well known Wolfenstein parameterisation [53]

UCKM =




1 − λ2

2 λ Aλ3 (ρ− iη)

λ 1 − λ2

2 Aλ2

Aλ3 (1 − ρ− iη) −Aλ2 1




+O
(
λ4
)
, (3.1)

where λ = sin θC ∼ 0.22 controls the magnitude of the entries. In contrast, the

PMNS matrix is observed to have two large mixing angles, as can be seen from the

latest global fits [32,33] in Table 3.1. The recent measurement of a non-zero θ13 in

early 2012 represented a big step in neutrino physics as until then, most attempts

to explain mixing patterns focused on predicting θ13 = 0. Recalling that the PMNS
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Parameter Extreme range

sin2 θ12 0.291 − 0.335

sin2 θ23 0.365 − 0.57

Daya Bay sin2 2θ13 0.078 − 0.100

RENO sin2 2θ13 0.100 − 0.126

Double Chooz sin2 2θ13 0.079 − 0.139

Table 3.1: Experimentally measured mixing angles, from combined global
fits [32, 33]. Values for θ12 and θ23 are obtained by combining extreme 1
σ ranges from the two fits; values for θ13 are simply taken from the most
recent observations [15–17].

matrix may be parameterised by

UPMNS =




c12c23 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13



, (3.2)

it can be seen that θ13 = 0 would preclude CP violation in neutrino mixing;

therefore the observation of relatively large θ13 is welcome from the point of view of

experimental searches.

3.1 Tri-Bimaximal Mixing

Before this observation was made, experimental data was consistent with θ23 = π
4

(maximal mixing in the atmospheric sector) and θ13 = 0 (0 reactor angle). Then an

interesting and still experimentally viable case of neutrino mixing could be obtained

by taking s12 = 1√
3
; these three conditions are known collectively as the TB mixing

scheme [54] and the mixing matrix becomes (up to phases)

UTB =




√
2
3

1√
3

0

− 1√
6

1√
3
− 1√

2

− 1√
6

1√
3

1√
2



. (3.3)

The existence of a maximal and a minimal angle, leading to the uniform structure

of the TBM matrix appears indicative of some symmetry in the Lagrangian, broken

at a high energy but leaving some observable remnant. In order to study this it is
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helpful to work in a basis where the charged lepton mass matrix is diagonal. Since

UPMNS = VeL
V †
νL , in such a basis (where VeL

= 1) the PMNS matrix diagonalises

the effective neutrino mass matrix according to

mν = U∗
PMNSm

diag
ν U−1

PMNS. (3.4)

Using Eq. (3.4) with UPMNS = UTB one finds

mν =
m1

6




4 −2 −2

−2 1 1

−2 1 1




+
m2

3




1 1 1

1 1 1

1 1 1




+
m3

2




0 0 0

0 1 −1

0 −1 1




=
m1

6
A+

m2

3
B +

m3

2
C,

, (3.5)

where mi are the eigenvalues of mν . These eigenvalues have corresponding

(normalised) eigenvectors 1√
6
(−2, 1, 1), 1√

3
(1, 1, 1) and 1√

2
(0, 1,−1); if it can be

argued that some symmetry requires the seesaw Lagrangian to be ∝ νTLφφ
T νL then

ensuring the field φ obtains a VEV in the direction of one of these eigenvectors will

go some way to producing the TB mixing pattern.

The most general symmetry of mν will be represented by a unitary matrix W such

that W ∗mνW
† = mν (since the neutrino mass term must remain invariant when W

is applied: νTmνν → νTW TW ∗mνW
†Wν). This means that W should satisfy

W ∗A = AW , W ∗B = BW and W ∗C = CW ; inserting a generic matrix

W =




a b c

d e f

g h i



, (3.6)

gives, in general

W =




a b b

b c a+ b− c

b a+ b− c c



. (3.7)
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Further requiring that det(W ) = 1 then gives four possibilities for W :

W =




1 0 0

0 1 0

0 0 1



,




−1 0 0

0 0 −1

0 −1 0



,

1

3




−1 2 2

2 −1 2

2 2 −1



,

1

3




1 −2 −2

−2 −2 1

−2 1 −2



. (3.8)

Notice that assigning label U to the second of these and S to the third, then the

fourth is given by SU . These 4 matrices are in fact the four elements of the Klein 4

group, K4
∼= ZS2 ⊗ ZU2 were the superscripts denote the generator of the Z2 factor.

Since this is guided by experimental data, the conclusion is that the low energy

symmetry of the neutrino sector is K4. In a similar manner the most general

symmetry of the lepton sector can be found:

T =




eiδ1 0 0

0 eiδ2 0

0 0 eiδ3



. (3.9)

Since in the current basis the lepton mass matrix is diagonal and non-degenerate,

δi 6= δj ; further restricting attention to det(T ) = 1 then leads to

T =




1 0 0

0 ω2 0

0 0 ω



, (3.10)

where ω = exp
(

2πi
3

)
. Therefore it seems that groups generated by S, T and/or U

should be considered when searching for symmetries to impose on the Lagrangian.

3.1.1 The alternating group on four elements: A4

Guided by work in the previous Section, the extra symmetry chosen here to

reproduce this mixing pattern is A4, the group of even permutations on four

elements (or alternatively, the group of symmetries of the tetrahedron). Detailed

information about this group may be found in, for example, [55]; here, it suffices to

state that A4 can be generated by two elements S and T such that
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S2 = (ST )3 = T 3 = 1. It has three inequivalent 1-dimensional representations

1 S = 1 T = 1,

1′ S = 1 T = exp

(
4πi

3

)
= ω2, (3.11)

1′′ S = 1 T = exp

(
2πi

3

)
= ω,

and a 3-dimensional representation which is basis dependent. The following will be

referred to as the T diagonal basis:

T =




1 0 0

0 ω2 0

0 0 ω



, S =

1

3




−1 2 2

2 −1 2

2 2 −1



. (3.12)

Note that these correspond to the matrices (3.10) and one of (3.8) discussed in

Section 3.1. Equations (3.11) and (3.12) can be used to show how to multiply

triplets correctly, in a basis dependent manner. The group character table [55]

shows that 3 ⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 3⊕ 3; taking two triplets a = (a1, a2, a3) and

b = (b1, b2, b3) this multiplication rule can be decomposed into combinations of

triplet components ai and bi. For instance, (3.11) encodes the fact that the

representation 1 stays invariant under the actions of both S and T ; the combination

which satisfies this condition is (a1b1 + a2b3 + a3b2). In a similar manner the other

decompositions may be constructed to find

1 = (ab) = (a1b1 + a2b3 + a3b2),

1′ = (ab)′ = (a3b3 + a1b2 + a2b1),

1′′ = (ab)′′ = (a2b2 + a1b3 + a3b1), (3.13)

3 = (ab)S =
1

3
(2a1b1 − a2b3 − a3b2, 2a3b3 − a1b2 − a2b1, 2a2b2 − a1b3 − a3b1),

3 = (ab)A =
1

2
(a2b3 − a3b2, a1b2 − a2b1, a1b3 − a3b1),

where the subscripts S and A mean, respectively, symmetric and antisymmetric

under index permutation. The first equality in each line of the above also serves to

define a notation used throughout this thesis: (ab) means the portion of the
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product 3 ⊗ 3 which transforms as 1; (ab)′′ means the portion transforming as 1′′

etc. In future chapters, the notation (ab)
3

will be used in a similar manner. Singlets

may be multiplied as follows: 1⊗ 1 = 1′ ⊗ 1′′ = 1, 1′ ⊗ 1′ = 1′′ and 1′′ ⊗ 1′′ = 1′.1

The group A4 has two subgroups, one generated by S (and is one of the Z2 factors

of K4) and one by T , which correspond to the low energy neutrino and charged

lepton symmetries respectively. Breaking A4 by letting a scalar triplet ϕ obtain a

VEV in a particular direction can constrain the form of the relevant mass matrices

and so reproduce the TB mixing pattern. The two relevant VEV directions are

〈ϕS〉 = (1, 1, 1), (3.14)

which is invariant under S, and

〈ϕT 〉 = (1, 0, 0), (3.15)

which is invariant under T .

A second useful basis of A4 is found by applying the transformation V †GiV to all

group elements Gi, where V is defined to be

V =
1√
3




1 1 1

1 ω2 ω

1 ω ω2



. (3.16)

This results in the three dimensional generators

T =




0 0 1

1 0 0

0 1 0



, S =




1 0 0

0 −1 0

0 0 −1



. (3.17)

and will therefore be referred to as the S diagonal basis. The decomposition of

1An easy way to remember this is that when multiplying singlets, add the primes, mod 3.
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triplets in the product 3⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 3 ⊕ 3 also changes as follows:

1 = (ab) = (a1b1 + a2b2 + a3b3),

1′ = (ab)′ = (a1b1 + ω2a2b2 + ωa3b3),

1′′ = (ab)′′ = (a1b1 + ωa2b2 + ω2a3b3), (3.18)

3 = (ab)31 = (a2b3, a3b1, a1b2),

3 = (ab)32 = (a3b2, a1b3, a2b1),

and the triplet alignments preserving the Z2 and Z3 subgroups swap to become

〈ϕS〉 = (1, 0, 0), (3.19)

which is invariant under S, and

〈ϕT 〉 = (1, 1, 1), (3.20)

which is invariant under T . This basis is particularly important for a group of

models classified as indirect [56]; since S in Eq. (3.17) is not part of the K4

neutrino symmetry,2 it is not clear that such a basis will give the required neutrino

mixing. However, the approaches taken in building a direct or indirect model are

rather different. In a direct model one chooses flavons such as (3.14) and (3.15)

such that the resulting Lagrangian terms preserve some subgroup of the flavour

symmetry at low energies. Since the subgroup in the neutrino sector is generated by

the S of the observed K4 symmetry, TB mixing is expected to be recovered. In an

indirect model, flavon VEVs are instead chosen to be aligned with eigenvectors of

(3.5); therefore they will break the entire symmetry group (indeed the group’s only

purpose here is to realise such VEV alignments). The model is constructed in such

a way that what remains at low energies are outer products of the flavons, such as

to exactly reproduce (3.5). By construction these preserve the low energy K4

symmetry generators, but these generators are not part of the original group; the

2It should be emphasised that this S is a part of a K4 symmetry but not the one inferred from
experiment.
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Field νc l ec µc τ c hu,d ϕT ϕS ξ ξ̃ ϕT0 ϕS0 ξ0
A4 3 3 1 1′′ 1′ 1 3 3 1 1 3 3 1

U(1)R 1 1 1 1 1 0 0 0 0 0 2 2 2

Z3 ω2 ω ω2 ω2 ω2 1 1 ω2 ω2 ω2 1 ω2 ω2

Table 3.2: Superfields and their transformations for the AF model

K4 symmetry is said to have arisen accidentally.

3.1.2 An A4 model with Type I seesaw: the Altarelli-Feruglio

model

This Section follows closely work done in [20] and is constructed in the T-diagonal

basis; as such it is a direct model. Note that this is presented in a SUSY framework

for two main reasons. The first is to take advantage of SUSY as a cure for the

hierarchy problem and the provision of a natural LSP. The second is more

technical: the scalar potential of SUSY is naturally more constrained than the SM

scalar potential (including extra flavons) due to R-parity. This means that the

minimization of such a potential in order to obtain the desired vacuum alignments

is significantly less complicated and requires fewer assumptions . The relevant

superfield content here is displayed in Table 3.2 where A4 assignments are also

given. Two extra symmetries have been imposed, which will be explained

imminently; the Table also includes A4 singlets ξ, ξ̃ and triplets ϕT0 , ϕS0 and ξ0,

which play a role in the vacuum alignment of the ϕ fields. Under these symmetries,

the superpotential of the theory is composed of two parts: w = wl + wd where wl is

the lepton sector and wd is the driving sector, which is where the vacuum alignment

in Eqs. (3.14) and (3.15) is constrained. Focusing first on the lepton sector, the

superpotential is

wl = yee
c(ϕT l) + yµµ

c(ϕT l)
′ + yττ

c(ϕT l)
′′ + y(νcl) + (y1ξ + ỹ1ξ̃)(ν

cνc)

+ y2(ϕSν
cνc),

(3.21)

where Higgses and powers of the cutoff scale Λ are suppressed. It can be seen that

the extra Z3 symmetry prevents the interchange of the fields ϕT and ϕS , meaning

that the structures of the neutrino and charged lepton mass matrices arise from
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independent sets of fields. The extra U(1)R, known as R-symmetry, gives rise to the

familiar R-parity of SUSY3, preventing unwanted B- and L- violating decays and

keeping the lightest SUSY particle stable. After EW and A4 symmetry breaking

(where Higgs obtain VEVs vu,d), the flavon fields obtain the VEVs

〈ϕS〉 = (vS , vS , vS),

〈ϕT 〉 = (vT , 0, 0), (3.22)

〈ξ〉 = u.

Using the A4 decompositions from Eq. (3.13), the lowest order mass terms which

result are (including Higgs VEVs and factors of Λ):

Lm = vd
vT
Λ

(yee
ce+ yµµ

cµ+ yττ
cτ) + yvu(νceνe + νcµντ + νcτνµ) + y1u(νceν

c
e + 2νcµν

c
τ )

+ y2
2vS
3

(νceν
c
e + νcµν

c
µ + νcτν

c
τ − νceν

c
µ − νcµν

c
τ − νcτν

c
e) + h.c.

(3.23)

Inspection of the first term in this equation then leads to the charged lepton mass

matrix

ml = vd
vT
Λ




ye 0 0

0 yµ 0

0 0 yτ



. (3.24)

There are three terms remaining, which give rise to ν masses: the second term gives

the Dirac mass matrix mD
ν while the remaining two terms give the right handed

Majorana mass matrix Mν :

mD = yvu




1 0 0

0 0 1

0 1 0



, MR =




A+ 2B
3 −B

3 −B
3

−B
3

2B
3 A− B

3

−B
3 A− B

3
2B
3



u, (3.25)

where A = 2y1 and B = 2y2
vS
u . The matrix MR is diagonalised by the TB mixing

3Specifically R-parity is a discrete Z2 subgroup of U(1)R, where the transformation parameter θ

is chosen to take the value π.
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matrix, Eq. (3.3) to give

UTTBMRUTB =




A+B 0 0

0 A 0

0 0 −A+B



u. (3.26)

In order to apply the seesaw formula, (2.43), M−1
R is needed:

M−1
R =

1

3A(A+B)u




3A+B B B

B 2AB+B2

B−A
B2−AB−3A2

B−A

B B2−AB−3A2

B−A
2AB+B2

B−A



. (3.27)

Application of Eq. (2.43) then gives the effective LH Majorana mass matrix

mν =
y2v2

u

3A(A +B)u




3A+B B B

B 2AB+B2

B−A
B2−AB−3A2

B−A

B B2−AB−3A2

B−A
2AB+B2

B−A



, (3.28)

and thus diagonalising this using (3.3) gives the light neutrino masses4

m1 =
y2

(A+B)

v2
u

u
, m2 =

y2

A

v2
u

u
, m3 =

y2

(−A+B)

v2
u

u
. (3.29)

Both normal (m3 ≫ m1) and inverted (m1 ≫ m3) hierarchies can be obtained,

depending on the relative phase between A and B.

Charged lepton mass hierarchy is also obtainable by imposing an extra U(1)F

symmetry upon only the RH charged leptons: ec ∼ 3 − 4, µc ∼ 2 and τ c ∼ 0. Then

introducing an extra field θ ∼ −1 which obtains a VEV 〈θ〉
Λ = λ < 1 naturally gives

the required hierarchy by ensuring wl is invariant under this new symmetry. This

general idea is known as the Froggatt-Nielsen [57] mechanism and variants will be

used later on in this thesis.

The second part of the superpotential, wd, contains the driving fields ϕT0 , ϕS0 and

4This can be seen easily since if a square matrix A has eigenvalues λi, then A−1 has eigenvalues
1
λi

.
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ξ0; since they have R-parity 2 the driving terms are linear in these fields

wd = M(ϕT0 ϕT ) + g(ϕT0 ϕTϕT ) + g1(ϕS0ϕSϕS) + g2ξ̃(ϕ
S
0ϕS) + g3ξ0(ϕSϕS)

+ g4ξ0ξ
2 + g5ξ0ξξ̃ + g6ξ0ξ̃

2.

(3.30)

Note that in the above, since up until now there has been no distinction made

between ξ and ξ̃, ξ̃ is defined to be the combination of ξ and ξ̃ that couples to
(
ϕS0ϕS

)
. In order to fix the VEVs of the flavon fields ϕS and ϕT , they must

minimise the scalar potential
∑

i

∣∣∣ ∂w∂φi

∣∣∣
2

+m2
i

∣∣φ2
i

∣∣+. . . ; minimisation is performed

without soft SUSY breaking terms (i.e. in the SUSY limit) and these are accounted

for subsequently, since SUSY breaking occurs at a scale much below the seesaw

scale. Thus minimisation of the potential amounts to finding solutions to5

∂wd/∂φ0i = 0. From (3.30) this gives 7 equations

∂wd

∂ϕT01
= MϕT1 +

2g

3
[ϕ2
T1

− ϕT2ϕT3 ] = 0, (3.31)

∂wd
∂ϕT02

= MϕT3 +
2g

3
[ϕ2
T2

− ϕT3ϕT1 ] = 0, (3.32)

∂wd
∂ϕT03

= MϕT2 +
2g

3
[ϕ2
T3

− ϕT1ϕT2 ] = 0, (3.33)

∂wd
∂ϕS01

= g2ξ̃ϕS1 +
2g1
3

[ϕ2
S1

− ϕS2ϕS3 ] = 0, (3.34)

∂wd
∂ϕS02

= g2ξ̃ϕS3 +
2g1
3

[ϕ2
S2

− ϕS1ϕS3 ] = 0, (3.35)

∂wd

∂ϕS03
= g2ξ̃ϕS2 +

2g1
3

[ϕ2
S3

− ϕS1ϕS2 ] = 0, (3.36)

∂wd
∂ξ0

= g4ξ
2 + g5ξξ̃ + g6ξ̃

2 + g3[ϕ2
S1

+ 2ϕS2ϕS3 ] = 0. (3.37)

Equations (3.31)-(3.33) can be solved by setting any two of the ϕTi = 0, however

the choices i = 1, 2 or i = 1, 3 give the trivial solution 〈ϕT 〉 = (0, 0, 0); choosing

i = 2, 3 then leads to

〈ϕT 〉 = (vT , 0, 0) with vT = −3M

2g
, (3.38)

which is in the direction of (3.15). Turning to Eqs. (3.34)-(3.37), the trivial

5Differentiating with respect to flavon fields will produce terms ∝ a driving field, and so give zero
when the fields obtain their VEVs.
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solution 〈ξ〉 = 〈ϕS〉 = 0 is inevitable with only one singlet flavon. Thus including

both singlets but choosing m2
eξ
> 0 ⇒ 〈ξ̃〉 = 0 leads to the solution

〈ξ̃〉 = 0,

〈ξ〉 = u, (3.39)

〈ϕS〉 = (vS , vS , vS) with v2
S = − g4

3g3
u2,

which is consistent with Eqs. (3.14) and (3.22). Choosing positive SUSY breaking

masses for the driving fields then ensures they obtain zero VEV.

3.2 Deviations from TBM

As can be seen from the neutrino data in Table 3.1, although TBM is a reasonable

approximation to data, it should only be taken as a starting point to describing the

observed mixing. To this end it is useful to introduce three parameters defining

deviations from TBM [58]:

s13 =
r√
2
, (3.40)

s12 =
1√
3

(1 + s) , (3.41)

s23 =
1√
2

(1 + a) . (3.42)

These are defined for the full PMNS matrix, but can also be defined for individual

sectors by simply adding a superscript l or ν as appropriate. Using these

parameters, the PMNS matrix may be expanded and to first order is given as

UPMNS ≈




2√
6
(1 − 1

2s)
1√
3
(1 + s) 1√

2
re−iδ

− 1√
6
(1 + s− a+ reiδ) 1√

3
(1 − 1

2s− a− 1
2re

iδ) 1√
2
(1 + a)

1√
6
(1 + s+ a− reiδ) − 1√

3
(1 − 1

2s+ a+ 1
2re

iδ) 1√
2
(1 − a)




, (3.43)

up to Majorana phases. This is analogous to the Wolfenstein parameterisation

which is an expansion of the CKM matrix away from unity. Using the data

provided in Table 3.1, these deviation parameters can be constrained to lie in
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extreme 1 σ ranges too (here, the range of r is simply the extreme range given by

the three experiments)

0.199 < r < 0.269, −0.066 < s < 0.003, −0.118 < a < 0.068. (3.44)

Whilst the ranges for s and a still include 0, the range for r is rather a long way

from 0, indicating that TBM is indeed experimentally disfavoured without any

modification. Nevertheless, in the next Chapter a model predicting TBM is studied

since TBM is still a reasonable first approximation to the data and with some

modification can be used as a starting point for many models.

3.2.1 Extending the AF model to account for non-zero θ13

Instead of TBM, schemes such as TM mixing remain viable [59]:

UTM =




2√
6

cos θ 1√
3

2√
6

sin θeiρ

− 1√
6

cos θ − 1√
2

sin θe−iρ 1√
3

1√
2

cos θ − 1√
6

sin θeiρ

− 1√
6

cos θ + 1√
2

sin θe−iρ 1√
3
− 1√

2
cos θ − 1√

6
sin θeiρ



. (3.45)

Here 2√
6

sin θ = sin θ13 and ρ is related to the Dirac phase. It is possible to extend

the AF model above by adding flavons in the 1′ and 1′′ representations of A4 which

reproduces this pattern [60]:

W1′+1′′ =
(
y′2ξ

′ + y′′2ξ
′′)NN. (3.46)

Flavons in these representations explicitly break the U generator of K4 and have

been shown to lead to non-zero θ13 [61, 62]. These extensions lead to the mass

matrices

mD =




1 0 0

0 0 1

0 1 0



yvu , (3.47)
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and

MR =



A




2 −1 −1

−1 2 −1

−1 −1 2




+B




1 0 0

0 0 1

0 1 0




+ C ′




0 0 1

0 1 0

1 0 0




+ C ′′




0 1 0

1 0 0

0 0 1






, (3.48)

with A = 2y1 〈ϕS〉, B = 2y2 〈ξ〉, C ′ = 2y′2 〈ξ′〉 and C ′′ = 2y′′2 〈ξ′′〉. The above matrix

may be rewritten as a sum of two matrices, one of which preserves TB mixing and

one which violates it:

MR = MTB
R + ∆MR, (3.49)

MTB
R = A




2 −1 −1

−1 2 −1

−1 −1 2




+B




1 0 0

0 0 1

0 1 0




+ γ




0 1 1

1 1 0

1 0 1



, (3.50)

∆MR = ∆




0 1 −1

1 −1 0

−1 0 1



. (3.51)

Here ∆ = 1
2 (C ′′ − C ′) and γ = 1

2 (C ′ + C ′′). Since experimentally the mixing is still

close to TB mixing, the model requires |∆| ≪ |A| , |B|, whereas no such constraint

applies to γ. This observation allows one to diagonalise MR perturbatively, such

that one ends up with UTM = UTB + ∆U ; performing this procedure gives the

lepton mixing matrix arising from the A4 model

UTM ≈




2√
6

1√
3

− 2√
6
α∗

13

− 1√
6

+ 1√
2
α13

1√
3

1√
2

+ 1√
6
α∗

13

− 1√
6
− 1√

2
α13

1√
3
− 1√

2
− 1√

6
α∗

13



. (3.52)

The complex parameter α13 is the only combination of input parameters (i.e. A, B,

γ, ∆) which appears and is given by [60]

α13 =

√
3

2

(
Re

∆

(A− γ)
+ Im

∆

(A− γ)

Im B
A−γ

Re B
A−γ

− i
Im ∆

(A−γ)
Re B

A−γ

)
. (3.53)
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A comparison of Eqns. (3.52) with (3.43) then allows one to write α13 in terms of

the TB deviation parameters

s ≈ 0, a ≈ Re (α13)√
3

, r cos δ ≈ − 2√
3

Re (α13) , δ ≈ arg (α13) + π. (3.54)
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Chapter 4

SUSY SU(5) with singlet plus

adjoint matter and A4 family

symmetry

This chapter presents a model combining several of the elements introduced

previously and which is published in [1]. The aim of the model is to combine the

framework of SUSY SU(5) with a family symmetry predicting TBM and a seesaw

mechanism. The choice of seesaw matter or Higgs is very ad hoc since the SU(5)

theory does not specify the nature of this extra matter and only requires that it be

anomaly-free. A popular choice is to add three RH neutrinos which arise from

singlet SU(5) representations. However the number of singlets is not predicted in

SU(5), and it is possible to add just a single RH neutrino to describe the

atmospheric mass scale [63]. In order to describe both atmospheric and solar

neutrino mass scales with two large mixing angles using the type I seesaw

mechanism two RH neutrinos are sufficient [64]. However, within SU(5) GUTs,

there are other possibilities.

It has been pointed out that, in (SUSY) SU(5) GUTs, non-fundamental matter

multiplets have decompositions which include both fermion singlets and fermion

triplets suitable for the type I and III seesaw mechanism, the smallest such example
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u

L

Figure 4.1: Schematic diagrams of the type I (left) and combined type I
+ type III (right) seesaw mechanisms present in the model. The seesaw
messenger states are N and the ρ0, ρ3 components of ψ24. L is the SU(2)L

doublet contained in the 5 of SU(5).

being the adjoint 24 representation [65–67]. The decomposition of a matter 24

under the SM gauge group SU(3)c × SU(2)L × U(1)Y involves an SU(2)L singlet

ρ0 = (1,1)0 as well as a triplet ρ3 = (1,3)0, thus leading to a combination of a

type I seesaw with a type III seesaw [30]. However, assuming the simplest Higgs

sector, the ρ0 and ρ3 are constrained by SU(5) to give equal contributions to the

neutrino mass matrix, up to an overall constant, resulting in a rank one neutrino

mass matrix and only one non-zero neutrino mass. This problem may be addressed

by allowing additional couplings to a Higgs 45 [67], but here a different possibility

is considered.

Instead, one can introduce a single RH neutrino singlet superfield N plus one

adjoint matter superfield ψ24 below the GUT scale. The model combines a type I

seesaw mechanism from the single RH neutrino N below the GUT scale [63] with a

type I plus type III seesaw mechanism from the ρ0 and ρ3 components contained in

a single adjoint matter superfield ψ24 below the GUT scale [67]. The seesaw

mechanism in the model therefore results from three distinct diagrams as shown in

Fig. 4.1. Instead of using an adjoint Higgs representation H24 to spontaneously

break SU(5) to the SM gauge group, the assumption that the GUT group is broken

by geometrical effects in extra dimensions is made. However the theory here is

formulated in four dimensions and can then subsequently be uplifted to a higher

dimensional setting (as in, for example, [68]). The absence of H24 is crucial in

forbidding the mixing between the RH neutrino N and ψ24, leading to no mass

mixing between N and ρ0 and hence a diagonal heavy Majorana sector as required

by CSD [69].
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The first part of this Chapter introduces the relevant GUT without a flavour

symmetry and it is demonstrated that this cannot be simply augmented by a

discrete symmetry in order to predict TBM. Instead it needs a small adjustment

which is explained in the second part of the Chapter; this is then uplifted to a

flavour model and the results presented in the remainder of the Chapter.

4.1 An SU(5) model with Type III seesaw

This Section is based on work from [66] and [67]. In these papers it was shown that

the simplest SU(5) GUT, which fails to unify the fundamental forces in satisfactory

manner, can have its unification properties improved with the addition of an extra

matter 24 to the particles listed in Section 2.2.2. Under the gauge group

SU(3)c ⊗ SU(2)L ⊗ U(1)Y, 24 decomposes as

ψ24 = (8, 1)0 ⊕ (1, 3)0 ⊕ (3, 2)−5/6 ⊕ (3, 2)5/6 ⊕ (1, 1)0 = (ρ8, ρ3, ρ(3,2), ρ(3,2), ρ0),

which contains the quantum numbers of both types I and III seesaw particles.1 Two

seesaw particles makes it possible to predict two massive neutrinos with the

addition of only one SU(5) superfield (also note that since the adjoint is a real

representation, no extra anomalies are introduced here).

The introduction of this new superfield gives rise to the superpotential for neutrino

mass

wν = ciFiψ24H5 + piFiψ24H45, (4.1)

and this means that the seesaw mechanism has contributions from both the H5 and

the H45. The ψ24 field can be represented as a 5 × 5 matrix using ψ24 = ρaT
a

where the T a are the generators of SU(5)2 [70] and the ρa are related to the fields

contained in the ψ24. Using this decomposition along with Eqns. (2.54) and (2.55),

1Note that this is the main motivation for the study undertaken in the current Chapter, as a
SUSY version of this model is used which has less need for improved unification.

2Normalised so that Tr {TaTb} = δab

2
.
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the superpotential may be expanded:

wν = ci

(
. . .− νi

(
−
√

3

5

ρ0

2
− ρ0

3

2

))
v5

− pi

(
. . .− νi

(
1

2
(ρc3 − ρc3) +

1

2

(
ρc8√

3
+
ρc8√

3
− 2ρc8√

3

)

+3

√
3

5

ρ0

3
− 3

(
ρ0
3

2
−
√

3

5

ρ0

2

)))
v45.

(4.2)

In the above, the ρ0
3 is the neutral component of the ρ3 corresponding to the

diagonal generator of SU(2)L and the ρc3,8 are the fields contained in ρ8

corresponding to diagonal generators of SU(3)c. The . . . represent interactions

between the ψ24 and non-ν fields, and the cancellation of interactions between ν

and the coloured fields ρc3, 8 has been explicitly demonstrated . Rearranging the

result into seesaw interaction terms gives

wν =
1

2
(civ5 − 3piv45) νiρ

0
3 +

√
15

2

(civ5
5

+ piv45

)
νiρ0. (4.3)

Application of the seesaw mechanism, Eq. (2.43) to integrate out the ρ fields then

results in

mν
ij =

aiaj
Mρ3

+
bibj
Mρ0

, (4.4)

with

ai =
1

2
(civ5 − 3piv45) and bi =

√
15

2

(civ5
5

+ piv45

)
. (4.5)

It is important to note that the H45 is crucial to a satisfactory model of neutrino

mass; if it were not present, then ai ∝ bi and so the mass matrix Mν
ij would have

rank one ⇒ the model would only predict one massive neutrino.

The fields in the ψ24 get masses from their interactions with the H24

wψ = MΣTr
(
H2

24

)
+ λΣTr

(
H3

24

)
+MTr

(
ψ24

2
)

+ λTr
(
ψ24

2H24

)
, (4.6)
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which gives

Mρ0 = M − 2MΣλ

3λΣ
,

Mρ3 = M − 2MΣλ

λΣ
,

Mρ8 = M +
4MΣλ

3λΣ
, (4.7)

Mρ(3,2)
= M − MΣλ

3λΣ
,

Mρ(3,2)
= M − MΣλ

3λΣ
,

once the H24 obtains its VEV, 〈H24〉 = 2MΣ
3λΣ

diag(2, 2, 2,−3,−3) (calculated using

the first two terms of wψ). For instance, inserting the decomposition of the ψ24 into

(4.6) and extracting the ρ0 term gives

wρ0 =
1

4
× 3

5

(
M

(
4

9
+

4

9
+

4

9
+ 2

)
+ λ

(
8

9
+

8

9
+

8

9
− 6

)
2MΣ

3λΣ

)
(ρ0)2,

=
1

2

(
M − 2MΣλ

3λΣ

)
(ρ0)2,

(4.8)

giving Mρ0 = M − 2MΣλ
3λΣ

as required.

In order to extend this model to predict lepton mixings, the Fi fields containing the

neutrinos will be combined into a triplet of A4, meaning the neutrino Yukawa

superpotential must be augmented by triplet flavons as in the AF model in Chapter

3

wν = c(ϕSF )ψ24H5 + p(ϕSF )ψ24H45
. (4.9)

Unfortunately this assignment leads to a prediction of only one massive neutrino.

Expanding (4.9) gives

wν = cv5vS(νe + νµ + ντ )

(
ρ0
3

2
+

√
3

5

ρ0

2

)

+ 3pv45vS(νe + νµ + ντ )

(
ρ0
3

2
−
√

3

5

5ρ0

6

)
.

(4.10)

This will lead to a mass matrix with all entries proportional which, while part of the

TB mixing structure (3.5), is of rank 1 and thus has only one non-zero eigenvalue.
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To try and generate a more realistic phenomenology, the model can be extended

with another flavon ϕ23, whose VEV is proportional to the third eigenvector of (3.5)

〈ϕ23〉 = v23(0, 1,−1). (4.11)

The superpotential then becomes

wν = c(ϕSF )ψ24H5 + p(ϕ23F )ψ24H45
, (4.12)

leading to (for simplicity, the contribution from the ρ0 can be ignored)

mLL ∼ a⊗ aT with a = ϕS + ϕ23, (4.13)

⇒ mLL ∼ ϕSϕ
T
S + ϕ23ϕ

T
23 + ϕSϕ

T
23 + ϕ23ϕ

T
S . (4.14)

The cross terms here are not contained in (3.5) and so spoil the TB mixing pattern.

Reintroducing ρ0 will simply add an extra multiplicative factor, keeping the

structure the same and so not changing the conclusion. An extra ingredient is

required in order to uplift this to a flavour model, which is introduced in the next

Section.

4.2 SUSY SU(5) with singlet and adjoint matter

This Section presents a SUSY SU(5) GUT with one single RH neutrino arising

from a singlet representation N below the GUT scale plus one extra adjoint matter

representation ψ24 with mass also below the GUT scale. The matter contained in

the ψ24 is degenerate thus avoiding problems with gauge coupling unification. The

model represents a new way to achieve a hierarchical neutrino mass spectrum

arising from a type I plus type III seesaw mechanism, as is now discussed.

The superpotential describing the neutrino sector takes the form

W = ciFiψ24H5 + piFiNH5 +
1

2
MNNN +

1

2
M Tr (ψ24

2). (4.15)
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The seesaw diagrams illustrated in Fig. 4.1 then yield the light neutrino mass

matrix,

mij
ν = cicjv

2
u

(
1

4Mρ3

+
3

20Mρ0

)
+
pipj
MN

v2
u . (4.16)

Here vu is the VEV of the Minimal Supersymmetric Standard Model (MSSM)

Higgs field Hu which corresponds to the SU(2)L doublet within the SU(5) Higgs

H5. As can be seen from Eq. (4.15), the Majorana masses for the seesaw

messengers ρ0 and ρ3 are identical, i.e. Mρ0 = Mρ3 = M , while N has an

independent mass MN . Note that there is no adjoint Higgs H24 which would break

the degeneracy of the components in the ψ24 and, more importantly, allow a mixing

term Nψ24H24 leading to a mass mixing between N and ρ0. Note also that ci and

pi are independent dimensionless coefficients (where i and j are family indices); this

independence is crucial to obtaining a rank two mass matrix and thus two non-zero

neutrino masses.

As ci and pi are uncorrelated parameters, Eq. (4.16) does not in general conform to

the TB structure of the neutrino mass matrix. It is the aim of this Chapter to

obtain TB neutrino mixing as a consequence of a discrete family symmetry in this

type of model. To this end, in the next Section, the adjoint SUSY SU(5) model is

augmented with the tetrahedral family symmetry A4.

4.3 SUSY A4 × SU(5) with singlet and adjoint matter

In this Section the model in Eq. (4.15) is uplifted to include a tetrahedral family

symmetry. The S-diagonal basis of [71] is used (see Chapter 3), in which two A4

triplets a = (a1, a2, a3)T and b = (b1, b2, b3)T give a singlet through the combination

a1b1 + a2b2 + a3b3. As before the three families of 5s are unified into an A4

triplet F ∼ 3, and in order for Eq. (4.15) to remain invariant, flavons ϕi are

introduced to break the A4 symmetry and generate the Yukawa couplings.

Table 4.1 shows the chiral superfields present in the model. As mentioned above,

the three 5s of SU(5) are embedded in a triplet of A4, while the three 10s are

singlets. The ψ24 is an A4 singlet as is the RH neutrino N . The Higgs sector
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Field ψ24 N F T1 T2 T3 H5 H
5

H
45

ϕ123 ϕ23 ϕ3 ξ ξ′ ϕ1

SU(5) 24 1 5 10 10 10 5 5 45 1 1 1 1 1 1

A4 1 1 3 1 1 1 1 1 1 3 3 3 1 1 3

U(1)R 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

U(1) −1 2 0 4 1 0 0 0 2 1 −2 0 −1 −4 q1
Z1

2 − − + + + + + − − − − − + − +

Z2
2 + + + + + − + + + + + − + + +

Table 4.1: Matter, Higgs and flavon chiral superfields in the model. The
U(1) charge q1 can take any value which prevents ϕ1 from significantly
interacting with the other fields of the model, for instance q1 = − 126

24
as

discussed below.

consists of fundamental Higgs fields H5 and H
5
; introducing another Higgs in the

45 representation, H
45

, enables the implementation of the GJ mechanism [42] to

obtain the well known GUT scale mass relations from Eq. (2.61).

The U(1)R is the familiar R-symmetry; it is essential in forbidding F -term

contributions to the flavon superpotential which otherwise could dominate the

relevant D-term operators used for obtaining the desired vacuum alignment (see

Appendix B and the discussion in [72] and [73]). The U(1) and the two Z2

symmetries constrain the structure of the Yukawa matrices in the quark and

charged lepton sectors. The standard MSSM µ-term3 µHuHd is forbidden by the

first of the Z2 symmetries as well as by U(1)R, allowing for a natural solution to the

µ-problem of the MSSM using a GUT singlet from the hidden sector of

Supergravity theories [51].

The flavon fields ϕi, ξ and ξ′ break the A4 symmetry and constrain the form of the

lepton and down quark Yukawa matrices. The vacuum alignments of the triplet

flavon VEVs assumed in this model are displayed in Table 4.2. They are achieved

using the D-term vacuum alignment mechanism discussed recently in [73]. This

mechanism is ideally suited for models such as this in which the flavons are used to

generate the neutrino flavour symmetry as an indirect result of the A4 symmetry as

discussed in [56]. Moreover, the D-term vacuum alignment mechanism does not

involve the introduction of extra “driving fields” in the superpotential and does not

impose any restrictions on the model other than the requirement that higher order

3Where Hu is the SM doublet of H5; and Hd is a linear combination of the SM doublets in H
5

and H
45

.

54



Flavon VEV VEV alignment

〈ϕ1〉 (1, 0, 0)T

〈ϕ3〉 (0, 0, 1)T

〈ϕ23〉 1√
2
(0, 1,−1)T

〈ϕ123〉 1√
3
(1, 1, 1)T

Table 4.2: The vacuum alignments of the triplet flavons used in the
model. Without loss of generality, the alignments are given without phases;
the relative sign between 〈ϕ23〉2 and 〈ϕ23〉3 is relevant, though the actual
position of the minus sign is mere convention.

terms in the flavon potential do not spoil the vacuum alignment arising from the

D-terms. This has been demonstrated to arise in a fairly generic way in [73]

providing that the model also respects a U(1)R symmetry and involves no

superfields with R = 2 which, like driving fields, could appear linearly in the

superpotential and lead to large terms in the flavon potential. The present model

involves only fields with R = 0, 1 and so the D-term flavon potential will not receive

large corrections from the superpotential. Since the D-term vacuum alignment

mechanism is generic and does not provide any other restrictions on the model than

those stated, the operation of this mechanism is assumed, leading to the stated

alignments for ϕ123, ϕ23, ϕ3, ϕ1.

In order to avoid the massless Goldstone boson associated with the spontaneously

broken U(1) symmetry, it is assumed to be gauged.4 In addition to the particle

content specified in Table 4.1 extra matter is needed to cancel the respective gauge

anomalies. The cubic SU(5) anomaly requires the introduction of a Higgs field H45

whose U(1) charge is determined by the mixed SU(5) − SU(5) − U(1) anomaly to

be q(H45) = −53
24 . Then the cubic U(1) anomaly can be removed in many ways; for

example, choosing q1 = −126
24 requires that three extra A4 × SU(5) singlets are

added with U(1) charges 5
24 , 25

24 , 51
24 . Assuming that H45 has the same Z2 charges as

H
45

while the three extra A4 × SU(5) singlets are neutral under both Z2

symmetries, that these additional fields lead to only negligible contributions to the

fermion mass matrices discussed below, provided they get VEVs of order ǫΛ or

smaller, see Eq. (4.21).

4If it were not gauged, Goldstone boson masses could arise from explicit U(1) breaking in the
hidden sector which could generate soft SUSY breaking terms involving only flavon fields where
such terms explicitly violate the U(1). However such terms could jeopardise the D-term alignment
mechanism so here a gauged U(1) is preferred to avoid any potential problems.
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4.3.1 Allowed terms

The neutrino sector is composed of Dirac and Majorana mass terms which take the

form in the superpotential:

Wν =
ϕ123

Λ
cFψ24H5+

ϕ23

Λ
pFNH5+

ϕ2
23

2Λ
yNNN+

ξ4

2Λ3
y′NNN+

ϕ2
123

2Λ
yTr

(
ψ24

2
)
, (4.17)

with Λ a heavy mass scale and c, p, yN , y
′
N , y dimensionless coupling constants.

When the flavons get their VEVs the superpotential in Eq. (4.17) reproduces that

in Eq. (4.15) but with constrained couplings ci and pi leading to TB mixing.

The superpotential terms of the down quark and charged lepton sector are given as

follows

Wd ∼
ϕ23ξ

2

Λ3
d

T1FH5
+
ϕ123ξ

2

Λ3
d

T2FH5
+
ϕ23ξ

Λ2
d

T2FH45
+
ϕ3

Λd
T3FH5

, (4.18)

where Λd is the relevant messenger mass. The flavon ξ plays a role similar to a

Froggatt-Nielsen field [57], except that it is not the sole contributor to the

generated mass hierarchy, here combined as it is with the triplet flavons.

Finally the up quark sector Yukawa superpotential terms take the form

Wu ∼ (ξ′)2

Λ2
u

T1T1H5 +

(
ϕ2

23ξ

Λ3
u

+
ξ5

Λ5
u

)
(T1T2 + T2T1)H5

+
ϕ23ϕ3ξ

2

Λ4
u

(T1T3 + T3T1)H5 +
ξ2

Λ2
u

T2T2H5 +
ϕ123ϕ3ξ

2

Λ4
u

(T2T3 + T3T2)H5

+ T3T3H5.

(4.19)

It should be mentioned that the messenger mass in this sector, Λu, may in principle

be different from that in the down quark sector. The field ξ′ is introduced

specifically to generate the T1T1 term to the required order.

4.3.2 Fermion mass matrices

After spontaneous breakdown of the A4 family symmetry by the flavon VEVs, the

superpotential terms of Eqs. (4.17), (4.18) and (4.19) predict mass matrices for the
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respective sectors. In the following, order one coefficients in the quark and charged

lepton sectors are omitted (including flavon VEV normalisation factors). Regarding

the scale of the flavon VEVs, an expansion parameter is defined

ηi =
〈|ϕi|〉

Λ
, (4.20)

where ϕi = ϕ123, ϕ23, ϕ3, ξ or ξ′. In order to obtain the hierarchical structure of

the quark and charged lepton mass matrices the assumption5

η123, η23, ηξ′ = ǫ2 and η3, ηξ = ǫ, (4.21)

is made, where the numerical values for ǫ depend on the messenger scale of the

relevant sector. The superpotential terms of the quark and charged lepton sectors

are given up to and including O(ǫ5).

In the Higgs sector, it is not the H5, H
5

or H
45

which get VEVs but their SM

doublet components. These are the two MSSM doublets Hu (corresponding to H5)

and Hd (corresponding to a linear combination of H
5

and H
45

); they originate

below the GUT scale and remain massless down to the EW scale. The non-MSSM

states all acquire GUT scale masses, including the linear combination of H
5

and

H
45

orthogonal to Hd. EW symmetry is broken after the light MSSM doublets Hu,d

acquire VEVs vu,d and they then generate the fermion masses.

4.3.3 Neutrino sector

In this model the light neutrino masses arise from a combination of type I and

type III seesaw. Due to the absence of a H24 the heavy seesaw messenger particles

N and ρ0 do not mix as can be seen from Eq. (4.17). Thus the 2 × 2 Majorana

mass matrix of the heavy RH SU(2)L singlets is automatically diagonal.

Furthermore, the seesaw messenger responsible for the type III contribution, ρ3,

cannot mix with N as they furnish different SU(2)L representations. A very generic

method for obtaining neutrino masses and mixings is to enforce a scheme known as

5It is possible to have a hierarchy in the flavon VEVs since the scales at which their mass terms
are driven negative can vary [73].
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CSD. In CSD, a heavy neutrino mass hierarchy is assumed as well as specific

relations between parameters of the Dirac mass matrix. The origin of these

relationships in this Chapter is the flavour symmetry, as is the case in many models

predicting TB mixing. However, in CSD the (approximate) diagonal nature of the

seesaw particles is usually a necessary extra assumption which often lacks a

fundamental explanation. In the current adjoint model, however, it is directly built

into the theory by not including H24. Therefore the model represents a very

natural realisation of CSD.

In the Dirac neutrino sector of Eq. (4.17), the spontaneous breaking of the A4

family symmetry by the flavon VEVs 〈ϕ123〉 and 〈ϕ23〉 gives

Lν =
cη123vu√

3
(νe + νµ + ντ )

(
ρ0
3

2
−
√

3

20
ρ0

)
− pη23vu√

2
(νµ − ντ )N + h.c. , (4.22)

where the numerical factors of ρ0
3 and ρ0 are determined from the normalised SU(5)

generators in the adjoint representation [70]. Upon application of the seesaw

formula of Eq. (4.16) the effective LH Majorana neutrino mass matrix is found to be

mν =
2c2v2

u

15yΛ




1 1 1

1 1 1

1 1 1




+
p2v2

u

2(yN + y′Nη
4
ξ/η

2
23)Λ




0 0 0

0 1 −1

0 −1 1



. (4.23)

Since any matrix diagonalisable by Eq. (3.3) may be written as6

m1ϕ
′
1 (ϕ′

1)T /|ϕ′
1|2 +m2ϕ123(ϕ123)T /|ϕ123|2 +m3ϕ23(ϕ23)T /|ϕ23|2 [56], the masses

may be read off as

mdiag
ν =




0 0 0

0 m2 0

0 0 m3



, with m2 =

2c2v2
u

5yΛ
, m3 =

p2v2
u

(yN + y′Nη
4
ξ/η

2
23)Λ

. (4.24)

Hence the model predicts one massless left-handed neutrino and thus a hierarchical

neutrino mass spectrum.

6ϕ′
1 ∝ 1√

6
(−2, 1, 1)T .
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4.3.4 Down quark and charged lepton sector

In the down quark and charged lepton sector, the superpotential of Eq. (4.18)

predicts a mass matrix of the form (with messenger mass Λd in ηi)




0 η23η
2
ξ −η23η

2
ξ

η123η
2
ξ η123η

2
ξ + kfη23ηξ η123η

2
ξ − kfη23ηξ

0 0 η3



vd, (4.25)

where kf is the GJ factor (in the case that f = e, the mass matrix must also be

transposed):

kf =





1 for f = d,

−3 for f = e.

(4.26)

Inserting the ǫ suppressions of the flavon VEVs from Eq. (5.6) the down quark mass

matrix becomes

md ∼




0 ǫ3 −ǫ3

ǫ3 ǫ2 −ǫ2

0 0 1



ǫ vd, (4.27)

whilst the charged lepton mass matrix reads

me ∼




0 ǫ3 0

ǫ3 −3ǫ2 0

−ǫ3 3ǫ2 1



ǫ vd. (4.28)

Here the further assumption the numerical value ǫ ∼ 0.15 is made. Upon

diagonalisation, these give mass ratios of ǫ4 : ǫ2 : 1 for the down quarks and

ǫ4

3 : 3ǫ2 : 1 for the charged leptons. These ratios are in good agreement with quark

and lepton data and also predict GUT scale mass relations of me ∼ md
3 , mµ ∼ 3ms

and mτ ∼ mb as desired. In the low quark angle approximation, left-handed down

quark mixing angles θd12 ∼ ǫ, θd13 ∼ ǫ3 and θd23 ∼ ǫ2 are also predicted in agreement

with data (assuming an approximately diagonal up sector which is obtained in the

next Section). The corresponding charged lepton mixing angles are θe12 ∼ ǫ
3 , θe13 ∼ 0

and θe23 ∼ 0.
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The PMNS matrix is not of exact TB form but receives small corrections from

charged lepton mixing. In particular, the reactor angle deviates from zero by

θ13 ∼ 1√
2
ǫ
3 [74]. Furthermore, since θe13 ∼ θe23 ∼ 0, two sum rules for lepton mixing

are respected [74,75]. Expressed in terms of the TB deviation parameters in Eq.

(3.42), the sum rules read s = r cos δ and a = −r2/4 [76], with δ being the leptonic

Dirac CP phase.

4.3.5 Up quark sector

Eq. (4.19) may be expanded after A4 symmetry breaking and is responsible for up

quark masses: 


η2
ξ′ η2

23ηξ + η5
ξ −η23η3η

2
ξ

η2
23ηξ + η5

ξ η2
ξ η123η3η

2
ξ

−η23η3η
2
ξ η123η3η

2
ξ 1



vu. (4.29)

Taking the VEV hierarchy as in Eq. (5.6), but now adopting the messenger scale

Λu ≈ 3Λd, gives a mass matrix with an expansion parameter ǫ ∼ 0.05,

mu ∼




ǫ4 ǫ5 −ǫ5

ǫ5 ǫ2 ǫ5

−ǫ5 ǫ5 1



vu. (4.30)

and an up quark mass hierarchy ǫ4 : ǫ2 : 1. As the mass matrix of Eq. (4.30) is

diagonal to a good approximation, the up quark mixing is negligible. An important

consequence of this observation is that the CKM mixing arises predominantly from

the down quark sector, with the Cabibbo angle being θC ∼ θd12 ∼ ǫ.

4.4 Conclusions

In conclusion, minimal (SUSY) SU(5) represents an attractive route to unification,

but the Weinberg operator cannot account for neutrino mass and mixing, and the

seesaw mechanisms all require extra matter or Higgs below the GUT scale. An

appealing possibility, considered here, is to extend SUSY SU(5) by assuming a
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single RH neutrino singlet and an adjoint matter representation below the GUT

scale, including an A4 family symmetry as well as a gauged anomaly-free U(1).

Hierarchical neutrino masses result from a combined type I and type III seesaw

mechanism, and TB mixing arises indirectly from the A4 family symmetry.

One attractive feature of this scheme is that the mixing between the single RH

neutrino and the matter in the adjoint can be forbidden by not including the H24,

leading to a diagonal heavy Majorana sector as required by CSD. The flavon

vacuum alignments arise from the elegant SUSY D-term mechanism. The model

also reproduces a realistic description of quark and charged lepton masses and

quark mixings, including the GJ relations.

Corrections to TB mixing in the lepton sector come solely from the 1-2 mixing of

the left-handed charged leptons, resulting in a PMNS matrix with two angles within

the experimentally allowed limits (recall that θ13 = 0 is now experimentally

disfavoured). In particular the model respects the sum rules s = r cos δ and

a = −r2/4 with r = θC/3.
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Chapter 5

A4 × SU(5) SUSY GUT of

Flavour with Trimaximal

Neutrino Mixing

As mentioned in Chapter 3 the Daya Bay and RENO collaborations have published

results confirming the discovery of a sizeable reactor angle θ13 [16, 17] in the range

7.95◦ . θ13 . 10.8◦ (combining statistical and systematic errors in quadrature for

each experiment separately and using the extreme 1σ bounds). This confirms the

previous indications from T2K [13], MINOS [14], DOUBLE CHOOZ [15] and the

global fits based on several experiments [32,33].

The measured reactor angle θ13 ∼ 9◦ clearly rules out the hypothesis of exact TB

mixing [54]. However, in the framework of SUSY GUTs of Flavour [77] (i.e. with a

Family Symmetry [18] implemented) it is already known that TB mixing cannot be

exact. As an example consider the model in the previous Chapter: TB mixing is

realised exactly in the neutrino sector, but observable lepton mixing is subject to

charged lepton (CL) corrections (due to the fact that UPMNS = VeV
†
ν ). There are

also RG corrections, not to mention other corrections due to CN (for a unified

discussion of all three corrections see e.g. [75] and references therein). Therefore, in

the framework of SUSY GUTs of Flavour, the question of whether TB mixing may
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be maintained in the neutrino sector is a quantitative one: can the above CL, RG

and CN corrections be sufficiently large to account for the observed reactor angle?

The answer is yes in some cases (see e.g. [78]), but no in many other cases. For

example, in models based on the GJ mechanism [42], where the CL corrections are

less than or about 3◦, and where the RG and CN corrections are less than or about

1◦ (which is the case for hierarchical neutrinos), it would be difficult to account for

a reactor angle θ13 ∼ 9◦. For this reason, there is a good motivation to consider

other patterns of neutrino mixing beyond TB mixing, and many alternative

proposals [19] have indeed been put forward to account for a non-zero θ13. On the

other hand, since the solar and atmospheric mixing angles remain consistent with

TB mixing, there is also a good motivation to maintain these successful predictions

of TB mixing.

In a SUSY GUT of Flavour, the Family Symmetry is responsible for determining

the neutrino mixing pattern, which then gets corrected by CL, RG and CN

contributions to yield the observed lepton mixing angles. The question is what is

the underlying neutrino mixing pattern? To go beyond TB neutrino mixing, there

are many possibilities. One simple scheme is the TM mixing pattern [59]:

Uν†TM = P ′




2√
6

cos ϑ 1√
3

2√
6

sinϑ eiρ

− 1√
6

cos ϑ− 1√
2

sinϑ e−iρ 1√
3

1√
2

cos ϑ− 1√
6

sinϑ eiρ

− 1√
6

cos ϑ+ 1√
2

sinϑ e−iρ 1√
3
− 1√

2
cos ϑ− 1√

6
sinϑ eiρ



P , (5.1)

where 2√
6

sinϑ = sin θν13, P ′ is a diagonal phase matrix required to put

UPMNS = U eUν†TM into the PDG convention [79], and P = diag(1, ei
α2
2 , ei

α3
2 )

contains the usual Majorana phases. In particular TM mixing approximately

predicts TB neutrino mixing for the solar neutrino mixing angle θν12 ≈ 35◦ as the

correction due to a non-zero but relatively small reactor angle is of second order.

However it is emphasised again that, in a SUSY GUT of Flavour, TM mixing refers

to the neutrino mixing angles only, and the physical lepton mixing angles will

involve additional CL, RG and CN corrections. Nevertheless, TM neutrino mixing

could provide a better starting point than TB neutrino mixing, given that θ13 ∼ 9◦,

and this provides the motivation for the approach followed in this Chapter.
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Recently, an A4 model of TM neutrino mixing was discussed in [60]. In the original

A4 models of TB mixing Higgs fields or flavon fields transforming under A4 as 3

and 1 but not 1′ or 1′′ were used to break the family symmetry and to lead to TB

mixing. However, as discussed above, exact TB mixing is no longer consistent with

data; a non-zero θ13 must be accommodated, and the chain of logic to achieve this is

as follows. In the presentation of Section 3.1.1, A4 has two generators S and T . In

addition, the neutrino sector of the AF model respects an accidental U symmetry

which enforces θ13 = 0 (as well as θ23 = π
4 ) [56,80]. This can be broken by including

flavons transforming as 1′ or 1′′ [61], and in particular it was noted that they lead

to TM mixing [62], allowing a non-zero θ13. In [60] the vacuum alignment of the AF

A4 family symmetry model [20], including additional flavons in the 1′ and/or 1′′

representations, was studied and it was shown that it leads to TM neutrino mixing.

In this Chapter it will be shown how such a model with TM neutrino mixing may

arise from a SUSY GUT based on SU(5), leading to the sum rule bounds |s| ≤ θC
3

and |a| ≤ 1
2 (r + θC

3 )| cos δ|, up to RG and CN corrections, where r, s, a are the TB

deviation parameters, δ is the CP violating oscillation phase, and θC is the Cabibbo

angle. Although the model is formulated at the GUT scale, the details of its

breaking are not discussed, since the results rely mainly on the assumption of a GJ

factor of −3, rather than the full details of the underlying GUT breaking

mechanism. As such, the GJ mechanism can be realised in various contexts. One

possibility to break the GUT, mentioned previously, is to rely on geometrical effects

in extra dimensions, which are known to provide an elegant solution to the

doublet-triplet splitting problem. In such a GUT breaking scenario, any 4

dimensional model (like the one presented here) would have to be uplifted to a

higher dimensional setting. This could be achieved along the lines of, e.g., [68].

Alternatively, the GUT could be broken spontaneously using large Higgs

representations. In that case, the existence of a family symmetry typically requires

the introduction of more GUT Higgses than would be necessary without a family

symmetry, see for instance [81], entailing a rather intricate Higgs sector. With the

main focus being on the quark and lepton sector, any detailed discussion of the

(geometrical or spontaneous) GUT breaking is, however, beyond the scope of this
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Field N F T1 T2 T3 H5 H
5

H
45

SU(5) 1 5 10 10 10 5 5 45

A4 3 3 1′′ 1′ 1 1 1′ 1′′

U(1)R 1 1 1 1 1 0 0 0

U(1) 1 −1 3 3 0 0 −1 −2

Z2 + + + + + + + −
Z3 ω ω2 ω2 1 1 1 ω ω

Z5 ρ ρ4 1 1 1 1 ρ ρ

Table 5.1: Matter and Higgs chiral superfields in the model.

Thesis.

The work in this Chapter is based on a paper published in [2]. The rest of the

Chapter is organised as follows. In Section 5.1 the model is introduced, presenting

field content, charges, flavon alignments and LO superpotential terms. Section 5.2

then presents the mass matrices and mixing angles for neutrinos, quarks and

charged leptons arising from the LO superpotential. The effect of the non-trivial

charged lepton corrections (due to the grand unified setup) on the physical lepton

mixing angles is discussed in Section 5.3. The discussion of the vacuum alignment

and the NLO terms is presented in Sections 5.4 and 5.5, respectively. The

conclusion can be found in Section 5.6.

5.1 The model

The transformation properties of the SU(5) matter and Higgs multiplets are shown

in Table 5.1. N and F furnish the triplet representation of A4, thus unifying the

three families of leptons, while the three families of the Ti transform in the three

distinct one-dimensional representations of A4. The Higgs sector again contains the

H
45

in order to implement the GJ mechanism [42].1

The full set of flavon fields is shown in Table 5.2. The fields ϕS and ξi are

responsible for the flavour structure of the neutrino sector, while the flavons ϕT and

θi control the quark and charged lepton sector. The vacuum structure is obtained

1As before, the standard MSSM µ-term µHuHd is forbidden by the A4, U(1), Z3 and Z5 symme-
tries as well as U(1)R, allowing for a natural solution to the µ-problem of the MSSM using a GUT
singlet from the hidden sector of Supergravity theories [51].
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Field ϕS ξ ξ′ ξ′′ ϕT θ θ′ θ′′ θ̃′ σ

SU(5) 1 1 1 1 1 1 1 1 1 1

A4 3 1 1′ 1′′ 3 1 1′ 1′′ 1′ 1

U(1)R 0 0 0 0 0 0 0 0 0 0

U(1) −2 −2 −2 −2 2 −1 −1 −1 −5 2

Z2 + + + + + − + + − +

Z3 ω ω ω ω 1 ω ω2 ω2 ω2 1

Z5 ρ3 ρ3 ρ3 ρ3 1 1 1 1 1 1

Table 5.2: Flavon chiral superfields in the model.

via the standard F -term alignment mechanism [20] where the F -terms of the

driving fields (presented in Section 5.4) are set to zero, thus giving rise to

constraints which in turn fix the flavon alignments. As shown in Section 5.4, one

obtains the following triplet flavon alignments,2

〈ϕT 〉 ∝




1

0

0



, 〈ϕS〉 ∝




1

1

1



. (5.2)

Since F-term alignment is being used in this Chapter the U(1) symmetry does not

need to be gauged, as the Goldstone bosons are free to obtain soft SUSY breaking

masses without fear of jeapordising the alignment mechanism. The model is

constructed in the T-diagonal basis of 3.

The U(1)R again represents an R-symmetry; the U(1) and the three ZN shaping

symmetries constrain the structure of the Yukawa matrices in the quark and

charged lepton sectors. Specifically, the Z5 prevents the neutrino flavons (ϕS and

ξi) from appearing in the quark and charged lepton Yukawa couplings.

In the neutrino sector, the A4 family symmetry is broken by the flavon fields ϕS

and ξi, thereby leading to a TM mixing pattern as observed in [60]. In the quark

and charged lepton sector the A4 symmetry is broken differently by virtue of the

flavon fields ϕT and θi. Due to the SU(5) structure, the form of the charged lepton

and down quark Yukawa matrices is intimately related, leading to a non-trivial LH

2The auxiliary flavon field σ is introduced for the purpose of achieving the alignment of the U(1)
charged flavon field ϕT .
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charged lepton mixing which combines with the TM structure of the neutrino

mixing to give the physical PMNS mixing.

5.1.1 Allowed terms

The neutrino sector is composed of Dirac and Majorana mass terms which take the

leading order form in the superpotential,

Wν = yFNH5 +
(
y1ϕS + y2ξ + y′2ξ

′ + y′′2ξ
′′)NN , (5.3)

with y, y1, y2, y
′
2, y

′′
2 being dimensionless couplings.

The leading order superpotential terms of the down quark and charged lepton

sector are given as follows

Wd ∼
(
θ2θ′′

Λ4
d

(FϕT )′ +
θ2θ′

Λ4
d

(FϕT )′′
)
H

5
T1 +

σθθ′ (θ′′)2

Λ6
d

(FϕT )H
45
T1

+
(θ′)2 θ′′

Λ4
d

(FϕT )H
5
T2 +

(
θθ′′

Λ3
d

(FϕT )′ +
θθ′

Λ3
d

(FϕT )′′
)
H

45
T2

+

(
σ2θ2 (θ′)2

Λ7
d

(FϕT ) +
1

Λd

(
(FϕT )′′

)
)
H

5
T3 +

(
σ2θ3

Λ6
d

(FϕT )′
)
H

45
T3 ,

(5.4)

where Λd is the relevant messenger mass. Note that for some entries of the down

quark Yukawa matrix, there are several different operators of the same order; here

an example is chosen for illustrative purposes. The flavons θi again play a role

similar to a Froggatt-Nielsen field [57].

Finally the leading order up quark sector Yukawa superpotential terms take the

form

Wu ∼ θ4 (θ′)2

Λ6
u

T1T1H5 +

(
θ2 (θ′)2 (θ′′)2

Λ6
u

+
σθ (θ′)2 θ̃′

Λ5
u

)
(T1T2 + T2T1)H5

+
θ2θ′

Λ3
u

(T1T3 + T3T1)H5 +
θθ̃′

Λ2
u

T2T2H5

+
θ′ (θ′′)2

Λ3
u

(T2T3 + T3T2)H5 + T3T3H5.

(5.5)

As before the messenger mass in this sector, Λu, may in principle be different from
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that in the down quark sector. The field θ̃′ is introduced specifically to generate the

T2T2 term to the required order.

Examples of the many subleading higher order operators allowed by the symmetries

of the model are listed in Section 5.5.3 As their contribution to the mass matrices is

negligible, they do not induce physically relevant modifications of the LO picture.

5.2 Fermion mass matrices

After spontaneous breakdown of the A4 family symmetry by the flavon VEVs, the

superpotential terms of Eqs. (5.3)-(5.5) predict mass matrices for the respective

sectors. In the following, order one coefficients in the quark and charged lepton

sectors are omitted (including flavon VEV normalisation factors). Regarding the

scale of the flavon VEVs the expansion parameter ηi from Eq. (4.20) is again used,

where ϕi=ϕT , θi or σ. In order to get the hierarchical structure of the quark and

charged lepton mass matrices the suppressions

ηeθ′ = ǫ2 and ηothers = ǫ, (5.6)

are assumed, where the numerical values for ǫ depend on the messenger scale of the

relevant sector. This hierarchy is justified in Section 5.4, where the driving

superpotential is studied. LO operators for each entry in the mass matrices are

presented; NLO operators can be found in Section 5.5.

5.2.1 Neutrino sector

Eq. (5.3) gives Dirac and Majorana mass matrices

mD =




1 0 0

0 0 1

0 1 0



yvu , (5.7)

3It is emphasised that the full NLO spectrum has been studied, however only example terms are
presented since there are too many to include all of them.
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and

MR =



A




2 −1 −1

−1 2 −1

−1 −1 2




+B




1 0 0

0 0 1

0 1 0




+ C ′




0 0 1

0 1 0

1 0 0




+ C ′′




0 1 0

1 0 0

0 0 1






, (5.8)

with A = 2y1 〈ϕS〉, B = 2y2 〈ξ〉, C ′ = 2y′2 〈ξ′〉 and C ′′ = 2y′′2 〈ξ′′〉. As shown in

Chapter 3, the standard type I seesaw formula then yields a light neutrino mass

matrix of TM structure, and hence a neutrino mixing matrix of the form as given in

Eq. (5.1). The relationships between the given parameters and θ13 are given in

Chapter 3; note however that in the limit that C ′ = C ′′, exact TB mixing is

recovered.

5.2.2 Down quark and charged lepton sector

In the down quark and charged lepton sector, the superpotential of Eq. (5.4)

predicts a mass matrix of the form (with messenger mass Λd in ηi)




kfησηθηθ′η
2
θ′′ η2

θηθ′′ η2
θηθ′

η2
θ′ηθ′′ kfηθηθ′′ kfηθηθ′

η2
ση

2
θη

2
θ′ kfη

2
ση

3
θ 1



ηT vd , (5.9)

where this matrix has to be transposed for the charged leptons. kf is the familiar

GJ factor. Inserting the ǫ suppressions of the flavon VEVs from Eq. (5.6) the down

quark mass matrix becomes

md ∼




ǫ5 ǫ3 ǫ3

ǫ3 ǫ2 ǫ2

ǫ6 ǫ5 1



ǫ vd, (5.10)
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whilst the charged lepton mass matrix reads

me ∼




−3ǫ5 ǫ3 ǫ6

ǫ3 −3ǫ2 −3ǫ5

ǫ3 −3ǫ2 1



ǫ vd. (5.11)

Again the numerical value ǫ ∼ 0.15 is assumed. Upon diagonalisation, these give

mass ratios of ǫ4 : ǫ2 : 1 for the down-type quarks and ǫ4

3 : 3ǫ2 : 1 for the charged

leptons. These ratios are in good agreement with quark and lepton data and also

predict the GJ GUT scale mass relations of Eq. (2.61) as desired. In the low quark

angle approximation, the LH down quark mixing angles θd12 ∼ ǫ, θd13 ∼ ǫ3 and

θd23 ∼ ǫ2 are also predicted in agreement with data (assuming an approximately

diagonal up quark sector which we obtain in the next subsection). The

corresponding charged lepton mixing angles are θe12 ∼ ǫ
3 , θe13 ∼ ǫ6 and θe23 ∼ 3ǫ5.

Therefore, the only significant charged lepton correction to the TM mixing of the

neutrino sector originates from θe12 ∼ θC
3 , where θC denotes the Cabibbo angle.

5.2.3 Up quark sector

Eq. (5.5) may be expanded after A4 symmetry breaking and is responsible for

up-type quark masses




η4
θη

2
θ′ η2

θη
2
θ′η

2
θ′′ + ησηθη

2
θ′ηeθ′ η

2
θηθ′

η2
θη

2
θ′η

2
θ′′ + ησηθη

2
θ′ηeθ′ ηθηeθ′ ηθ′η

2
θ′′

η2
θηθ′ ηθ′η

2
θ′′ 1



vu . (5.12)

Taking the VEV hierarchy as in Eq. (5.6), but now adopting the messenger scale

Λu ≈ 3
2Λd, a mass matrix with an expansion parameter ǫ ∼ 0.1 is obtained,

mu ∼




ǫ6 ǫ6 ǫ3

ǫ6 ǫ3 ǫ3

ǫ3 ǫ3 1



vu . (5.13)
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and an up-type quark mass hierarchy ǫ6 : ǫ3 : 1. This matrix gives mixing angles of

θu12 ∼ θu13 ∼ θu23 ∼ ǫ3. This means that the CKM mixing matrix is dominated by

down quark mixing, except that there may be a contribution to θCKM
13 from the up

quark sector which is almost as significant as the contribution coming from the

down-type quarks. The Cabibbo angle is still approximately θC ∼ θd12 ∼ ǫ.

5.3 Charged lepton corrections to lepton mixing

The previous Sections present mixing angles which rotate the charged leptons and

neutrino fields between the mass and flavour bases, however these individual

rotations are not what experiments observe. It is the combination of the two mixing

matrices that appears in the EW coupling to the W boson, giving the physical

mixing matrix, as in Chapter 2

UPMNS = UeL
U †
νL
. (5.14)

While the neutrino sector predicts exact TM mixing, the effect of the charged

lepton corrections generates an experimentally detectable deviation from this in the

physical parameters. In this Section RG and CN corrections are ignored and the

CL corrections are studied.

There are (at least) two popular ways to parameterise the PMNS matrix; firstly one

can write UPMNS = U23U13U12 with [82]

U12 =




c12 s12 exp (−iδ12) 0

−s12 exp (iδ12) c12 0

0 0 1



, (5.15)

U13 =




c13 0 s13 exp (−iδ13)

0 1 0

−s13 exp (iδ13) 0 c13



, (5.16)
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U23 =




1 0 0

0 c23 s23 exp (−iδ23)

0 −s23 exp (iδ23) c23



. (5.17)

Individual rotation matrices UeL
and U †

νL are parameterised in the same way with

relevant superscripts. The second parameterisation is that used by the PDG [79]

and is as in Chapter 3, with a Dirac phase δ and Majorana phases α2 and α3; this

is constructed as UPDG
PMNS = R23U

PDG
13 R12P where the Rij are standard orthogonal

rotations, UPDG
13 = U13 (δ13 = δ) and P = diag(1, ei

α2
2 , ei

α3
2 ). A comparison of the

two parameterisations, after performing a global phase redefinition to absorb

remaining unphysical phases and obtain consistency with the convention stated in

the introduction, shows that [69]

δ = δ13 − δ23 − δ12, (5.18)

α2 = − 2δ12, (5.19)

α3 = − 2 (δ12 + δ23) . (5.20)

It is possible to write the parameters of UPMNS in terms of the neutrino mixing

parameters, with perturbative corrections from the charged lepton sector as

follows [69] (neglecting θe13 and θe23 as they are small),4

s23 exp (−iδ23) ≈ sν23 exp (−iδν23) , (5.21)

s13 exp (−iδ13) ≈ θν13 exp (−iδν13) − θe12s
ν
23 exp (−i (δν23 + δe12)) , (5.22)

s12 exp (−iδ12) ≈ sν12 exp (−iδν12) − θe12c
ν
23c

ν
12 exp (−iδe12) . (5.23)

The dominance of the first term in Eq. (5.23) allows for the approximation

δ12 ≈ δν12, while Eq. (5.21) gives directly δ23 ≈ δν23. The phase δ13 requires a more

careful treatment, since the first term of Eq. (5.22) is larger but not dominant

4In order to derive these equations consistently to first order, the Majorana phases from
Eqs. (5.18)-(5.20) must be redefined by a correction of order θν

13; this is however only a subtlety
in the derivation and therefore this redefinition is not explicitly demonstrated.
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enough to drop the second term. If one assumes that
θe
12s

ν
23

θν
13

is small,5 then

tan δ13 ≈

(
sin δν13 −

θe
12s

ν
23

θν
13

sin (δν23 + δe12)
)(

cos δν13 +
θe
12s

ν
23

θν
13

cos (δν23 + δe12)
)

cos2 δν13

≈ tan δν13

(
1 +

θe12s
ν
23

θν13
k

)
,

(5.24)

with k =
cos(δν

23+δe
12)

cos δν
13

− sin(δν
23+δe

12)
sin δν

13
. The expectation is that δ13 = δν13 + ∆δ13 where

the correction is small; this allows for the approximation

tan (θ + ∆θ) ≈ tan θ + ∆θ
cos2 θ

and therefore

∆δ13 ≈ θe12s
ν
23

θν13
k sin δν13 cos δν13. (5.25)

This leads to an analytic form for δ13

δ13 ≈ δν13 −
θe12s

ν
23

θν13
sin (δν23 − δν13 + δe12) . (5.26)

Using Eq. (5.18) allows the physical Dirac oscillation phase to be approximated by

δ ≈ δν13 − δν23 − δν12 −
θe12s

ν
23

θν13
sin (δν23 − δν13 + δe12) . (5.27)

Turning to the resulting mixing angles, experimentally the TM mixing of the

neutrino sector must necessarily be a small deviation from TB mixing. Therefore

the results may be expressed using the neutrino TB deviation parameters [58],

sin θν12 =
1√
3

(1 + sν) , sin θν23 =
1√
2

(1 + aν) , sin θν13 =
rν√

2
, (5.28)

where here these parameters refer only to the neutrino sector. In terms of angles

and phases, using Eqs. (5.21)-(5.23) (see, e.g. [75] for a discussion of this

procedure), the TB deviation parameters for the complete lepton mixing can be

written in terms of the TB deviations parameters in the neutrino sector and the

5Using θe
12 ∼ θC

3
, sν

23 ∼ 1√
2

and θν
13 ∼ 0.15 gives a numerical value of

θe
12

sν
23

θν
13

∼ 1
3
.
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charged lepton corrections as,

a ≈ aν , (5.29)

r ≈ |rν exp (−iδν13) − θe12 exp (−i (δν23 + δe12))| , (5.30)

s ≈ sν − θe12 cos (δν12 − δe12) . (5.31)

With the neutrino mixing being of TM form as given in Eq. (5.1), the deviation

parameters of the neutrino sector can be shown to satisfy, see [58,60,83], sν = 0

and aν ≈ − rν

2 cos δν . Using this and the fact that θe12 ∼ θC
3 and Eq. (5.27), the

above equations for the TB deviation parameters may be further simplified to first

order as

a ≈ −r
ν

2
cos δ, (5.32)

r ≈ rν − θC
3

cos (δν23 − δν13 + δe12) , (5.33)

s ≈ −θC
3

cos (δν12 − δe12) , (5.34)

again assuming that
θe
12s

ν
23

θν
13

∼ θC
3rν is small. In the limit that charged lepton

corrections are switched off, the above results reduce to the usual TM sum

rules [58,60,83], s ≈ 0 and a ≈ − r
2 cos δ. In the limit that the neutrino mixing angle

θν13 is switched off the above results reduce to the usual TB sum rules [74],

s ≈ r cos δ where r ≈ θC/3 and δ ≈ δe12 − δν12.

The results in Eqs. (5.32)-(5.34) imply the relatively simple sum rule bounds:

|s| ≤ θC
3
, (5.35)

|a| ≤ 1

2
(r +

θC
3

)| cos δ|, (5.36)

where, again, r, s, a are the tri-bimaximal deviation parameters, in particular

r ≈
√

2θ13, δ is the CP violating oscillation phase, and θC is the Cabibbo angle.

These bounds do not include RG and CN corrections, which however are expected

to be rather small for the case of hierarchical neutrino masses. For example,
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Field ϕ0
T ϕ0

S ξ0 A′′ B C

SU(5) 1 1 1 1 1 1

A4 3 3 1 1′′ 1 1

U(1)R 2 2 2 2 2 2

U(1) −4 4 4 3 3 6

Z2 + + + − + +

Z3 1 ω ω ω 1 1

Z5 1 ρ4 ρ4 1 1 1

Table 5.3: Driving fields in the model.

assuming θ13 ∼ 9◦ gives r ≈ 0.22,6 and using θC/3 ≈ 0.075 these bounds become

|s| ≤ 0.075 and |a| < 0.15| cos δ|. The present approximate limits from the global fit

|a| < 0.118, −0.066 < s < 0.003 quoted in Eq. (3.44) are nicely consistent with

these sum rule bounds.

5.4 Vacuum alignment

In order that the flavon fields obtain the alignment presented in Eq. (5.2), their

potential must be minimised in the correct way. The method of [60] is followed very

closely, which employs F-term alignment as described in Chapter 3; the driving

fields can be found in Table 5.3. The leading order contributions to the driving

superpotential aligning the flavon triplets are:

W0 = ϕ0
T (g1σϕT + g2ϕTϕT ) + ϕ0

S

(
g3ϕSϕS + g4ϕSξ + g′4ϕSξ

′ + g′′4ϕSξ
′′)

+ ξ0
(
g5ϕSϕS + g6ξξ + g7ξ

′ξ′′
)
.

(5.37)

Here, g1 〈σ〉 = M which appears in the vacuum alignment of [60]; this is required

since ϕT is charged under the auxiliary symmetries and so the original structure

ϕ0
T (MϕT + ϕTϕT ) that drives the ϕT alignment cannot be used. Minimising with

respect to ϕ0
T gives

〈ϕT 〉 = vT




1

0

0



, vT = −g1 〈σ〉

2g2
. (5.38)

6Note that in [60], it is demonstrated that rν ∼ γ′′−γ′

β−γ′−γ′′ and so a partial cancellation between

γ′ and γ′′ is required, to the level of ∼ 20%.
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The conditions from ϕ0
S and ξ0 are

2g3




s21 − s2s3

s22 − s3s1

s23 − s1s2




+ g4u




s1

s3

s2




+ g′4u
′




s3

s2

s1




+ g′′4u
′′




s2

s1

s3




=




0

0

0



, (5.39)

g5
(
s21 + 2s2s3

)
+ g6u

2 + g7u
′u′′ = 0. (5.40)

Here, 〈ϕSi〉 = si, 〈ξ〉 = u, 〈ξ′〉 = u′ and 〈ξ′′〉 = u′′. The solutions to these equations

are

〈ϕS〉 = vS




1

1

1



, v2

S = −g6u
2 + g7u

′u′′

3g5
, u = −g

′
4u

′ + g′′4u
′′

g4
. (5.41)

As in [20], the undetermined singlets are assumed to obtain their VEVs as a result

of their soft mass parameters m2
s (where s stands for singlet) being driven negative

in some portion of parameter space.

The remaining flavons obtain the hierarchy in their VEVs through the driving

superpotential:

W̃0 = A′′
(
g̃1
Λ
θ
(
θ′′
)2

+ g̃2σθ̃
′
)

+B

(
g̃3
Λ

(
θ′
)3

+
g̃4
Λ

(
θ′′
)3
)

+ C

(
g̃5
Λ4
θ6 +

g̃6
Λ4

(
θ′
)6

+
g̃7
Λ4

(
θ′′
)6

+
g̃8
Λ4

(
θ′
)3 (

θ′′
)3
)
.

(5.42)

Solving the F-flat conditions for B and C ensures that the VEVs of θ, θ′ and θ′′ are

correlated in the desired manner. The condition from A′′ then leads to the hierarchy

〈θ̃′〉
Λ

∼
(〈θ〉

Λ

)2

, (5.43)

used in Section 5.2, under the assumption that 〈σ〉 ∼ 〈θ〉.

5.5 Higher order operators

There are many higher order corrections to the mass matrices presented in

Section 4.3.2 of this paper; these give negligible contributions to masses and
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mixings. In Tables 5.4 and 5.5 are given suppressions and examples of the NLO

operators for each sector ; it can be seen that none of these will change the LO

results significantly (it has been confirmed that the LO structure is not altered by

any NLO terms, but there are too many to present here).

5.6 Conclusions

Recently Daya Bay and RENO have measured a sizeable reactor angle θ13 ∼ 9◦

which rules out exact TB lepton mixing. On the other hand, the TB predictions

sin θ23 = 1/
√

2 and sin θ12 = 1/
√

3 remain in agreement with global fits and

continue to provide tantalising hints for an underlying Family Symmetry. For

example, an A4 family symmetry model including additional flavons in the 1′ and

1′′ representations leads to TM neutrino mixing which maintains the prediction

sin θ12 ≈ 1/
√

3, at least approximately, while allowing an arbitrarily large reactor

angle. Indeed, as discussed in a recent paper [60], the problem in this model is in

explaining why the reactor angle should be smaller than the atmospheric or solar

angles, which follows from the fact that the additional flavons would be expected to

have VEVs of the same order as the other TB flavon VEVs, with all undetermined

coefficients being of order unity. However, apart from this drawback, such a model

provides a simple example of a Family Symmetry model with a non-zero reactor

angle.

This Chapter presents a SUSY GUT of Flavour with a non-zero θ13 based on A4

Family Symmetry with additional flavons in the 1′ and 1′′ representations, and an

SU(5) GUT group. The model involves an additional continuous U(1) family

symmetry as well as three discrete symmetries designed to control the operator

structure of the model. All flavon representations of A4 are populated, and the main

flavon content of the quark sector mirrors that of the neutrino sector. The vacuum

alignment is obtained using the conventional F -term mechanism. NLO terms to the

mass matrices are negligible, demonstrating the stability of the LO matrix textures.

The resulting model exhibits TM mixing in the neutrino sector, with the physical

lepton mixing involving charged lepton corrections, which in turn are related to
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Term Contributes to NLO Example c.f. LO

FNH5 mD ϕ2

T θ
2θ′θ′′ ∼ ǫ6 1

NN MR ϕ2

T θ
2 (θ′′)

2
ξ′′ ∼ ǫ7 ǫ

(md)
11

σθ′ (θ′′)
4 ∼ ǫ7 ǫ6

FϕTH5
T

1
(md)

12
σ (θ′)2 (θ′′)3 ∼ ǫ7 ǫ4

(md)
13

σ (θ′′)
5 ∼ ǫ7 ǫ4

(md)
11

σ2θ5θ′′ ∼ ǫ9 ǫ6

FϕTH45
T

1
(md)

12
σθ (θ′)

2
θ′′ ∼ ǫ6 ǫ4

(md)
13

σθ (θ′)3 ∼ ǫ6 ǫ4

(md)
21

σθ4θ′ ∼ ǫ7 ǫ4

FϕTH5
T

2
(md)

22
(θ′)3 ∼ ǫ4 ǫ3

(md)
23

θ′ (θ′′)
2 ∼ ǫ4 ǫ3

(md)
21

σ2θ3 (θ′′)
3 ∼ ǫ9 ǫ4

FϕTH45
T

2
(md)

22
σ2θ3θ′ (θ′′)

2 ∼ ǫ9 ǫ3

(md)
23

σ2θ3 (θ′)
2
θ′′ ∼ ǫ9 ǫ3

(md)
31

σ3θ′ (θ′′)
5 ∼ ǫ10 ǫ7

FϕTH5
T

3
(md)

32
σ2θ2 (θ′′)2 ∼ ǫ7 ǫ6

(md)
33

σ2θ2θ′θ′′ ∼ ǫ7 ǫ

(md)
31

σ3θθ′ (θ′′)
3 ∼ ǫ9 ǫ7

FϕTH45
T

3
(md)

32
σ3θ (θ′)

2
(θ′′)

2 ∼ ǫ9 ǫ6

(md)
33

σ3θ (θ′′)
4 ∼ ǫ9 ǫ

Table 5.4: NLO corrections in the model. The first column shows each
basic term that exists in the neutrino, down quark (and charged lepton)
Yukawa superpotential, as specified in the second column. A collection
of flavons is appended to these basic terms to obtain the complete term
invariant under the symmetries. In the third column an example of such a
collection of flavons is given at NLO as well as the order of its contribution,
to be compared to the LO contribution given in the final column. Note
that in the terms contributing to Md, there is a flavon ϕT already present
in the basic term. It is furthermore not specified whether the LO term
comes from an H

5
or an H

45
; the reader may refer back to Eq. (4.18) if

required.
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Term Contributes to NLO Example c.f. LO

T1T1H5
(mu)

11
σ2ξ4ξ′′ ∼ ǫ7 ǫ6

T1T2H5
(mu)

12
, (mu)

21
σθ6θ′θ′′ ∼ ǫ9 ǫ6

T1T3H5
(mu)

13
, (mu)

31
σ (θ′)

3
(θ′′)

2 ∼ ǫ6 ǫ3

T2T2H5
(mu)

22
(θ′)5 θ′′ ∼ ǫ6 ǫ3

T2T3H5
(mu)

23
, (mu)

32
σθ4θ′′ ∼ ǫ6 ǫ3

T3T3H5
(mu)

33
σ2θ2θ′θ′′ ∼ ǫ6 1

ϕ0

T W0 σ3ϕT θ
2θ′θ′′ ∼ ǫ̃8 ǫ̃2

ϕ0

S W0 σ2ϕSθ
2 (θ′′)

2
ξ′′ ∼ ǫ̃8 ǫ̃2

ξ0 W0 σ2θ2 (θ′′)
2
ξξ′′ ∼ ǫ̃8 ǫ̃2

A′′ W̃0 σ2θ3 (θ′)
4 ∼ ǫ̃9 ǫ̃3

B W̃0 σ2θ2θ′ (θ′′)
4 ∼ ǫ̃9 ǫ̃3

C W̃0 σθ4 (θ′)
2

(θ′)
2 ∼ ǫ̃9 ǫ̃6

Table 5.5: NLO corrections in the model. The first column shows each
basic term that exists in the up quark Yukawa and vacuum alignment sec-
tors, as specified in the second column. A collection of flavons is appended
to these basic terms to obtain the complete term invariant under the sym-
metries. In the third column an example of such a collection of flavons is
given at NLO as well as the order of its contribution, to be compared to
the LO contribution given in the final column. The notation ǫ̃ is simply
used to denote a different sector to ǫ or ǫ.
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quark mixing angles. In particular, the model involves a GJ relation, leading to

bounds on the TB deviation parameters |s| ≤ θC
3 , |a| ≤ 1

2(r + θC
3 )| cos δ| (up to RG

and CN corrections) derived for the first time, which are in good agreement with

current global fits. The presence of this GJ factor of −3 is dependent on the SU(5)

breaking chain which is not studied here. The considered model shows that it is

possible to accommodate θ13 ∼ 9◦, within a SUSY GUT of Flavour which relates

quark and lepton masses and mixing angles, while continuing to provide an

explanation for the TB nature of the solar and atmospheric lepton mixing angles.
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Chapter 6

Renormalisation group improved

leptogenesis in family symmetry

models

One of the most important and well studied questions in particle physics is why the

observable Universe has a tiny but non-zero ratio of baryons to photons without

which there would be no stars, planets or life. The measurement of cosmic

microwave background anisotropies and the successful prediction of light element

abundances from big bang nucleosynthesis, both lead to a consistent value of this

ratio at the recombination time when atoms are formed [84],

η =
nB
nγ

≈ 6.2 × 10−10, (6.1)

where nB and nγ are baryon and photon number densities respectively.1 Any

theory which successfully produces such a baryon asymmetry must fulfil the famous

Sakharov conditions [85] of C and CP violation, B violation and departure from

thermal equilibrium. One of the most popular of these is known as

leptogenesis [86], which takes advantage of the fact that non-perturbative, B − L

conserving, B + L violating sphaleron processes can convert a lepton number

1Corresponding to a portion of comoving volume containing 1 photon at temperatures where the
RH neutrinos are relativistic.
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asymmetry into a B asymmetry. The lepton number asymmetry is obtained from

the decays of heavy Majorana neutrinos and so leptogenesis is intimately linked to

neutrino mass, mixing and CP violation.

Many models of neutrino mixing (predominantly employing the type I seesaw)

exhibit a property known as FD [87], defined by the condition that the columns of

the neutrino Yukawa matrix are proportional to columns of the mixing matrix in a

particular basis corresponding to diagonal charged lepton and RH neutrino mass

matrices. As discussed in several papers [83,88,90–94], models with family

symmetry typically predict vanishing CP violating lepton asymmetry parameters ǫ

and hence zero leptogenesis.2 As pointed out in [88], this can be understood very

simply from the FD property that the columns of the neutrino Yukawa matrix are

mutually orthogonal since they are proportional to the columns of the mixing

matrix which is unitary.3 However in family symmetry models the Yukawa matrices

are predicted at the scale of family symmetry breaking, which may be close to the

GUT scale, and above the mass scale of RH neutrinos. Therefore in such models

the Yukawa matrix will be subject to RG running from the family symmetry

breaking scale down to the scale of RH neutrino masses relevant for leptogenesis.

To illustrate the effects of RG corrections, two specific models involving sizeable

neutrino and τ Yukawa couplings and satisfying FD at LO are analysed: the first

model [20] reproduces the well studied TB mixing pattern [54]; and the second

model [60] reproduces the TM mixing pattern [59] consistent with the results from

Daya Bay, RENO and Double Chooz. Both of these models have been briefly

introduced in Chapter 3. Although in both models RG running occurs over only

one or two orders of magnitude in the energy scale, this will be shown to lead to

sufficient violation of FD to allow successful leptogenesis in each case.

One could ask why RG effects should be considered when HO operators in the (TB)

A4 model have been shown to produce a realistic value of η [92]. The answer is that

RG effects turn out to be of equal importance to HO operators in determining

2For a discussion of how to achieve leptogenesis in the flavour symmetric phase, see e.g. [95].
3The vanishing of leptogenesis due to the orthogonality of the columns of the neutrino Yukawa

matrix was first observed in the case of hierarchical neutrinos and constrained sequential dominance
with TB mixing in [90] and was subsequently generalised to the case of FD with any neutrino mass
pattern and any mixing pattern in [88].
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leptogenesis and so in general both effects should be considered together. Here the

effect of HO operators is dropped for clarity: the effects of RG corrections to

leptogenesis are studied in isolation in order to illustrate the magnitude of the

effect. Moreover, there are ultraviolet completions of the A4 model of both TB [96]

and TM mixing [60] in which HO operators play a negligible role, and the viability

of leptogenesis in such cases then relies exclusively on the effects of RG corrections

considered here.

The results in this Chapter show that RG corrections have a large impact on

leptogenesis in any family symmetry models involving neutrino Yukawa couplings of

order unity. Therefore, when considering leptogenesis in such models, RG

corrections should not be ignored even when corrections arising from HO operators

are also present. It should be pointed out that the phrases “RG effect” and “RG

corrections” are taken to mean those between the family symmetry scale and the

leptogenesis scale, and those which help to generate a non-zero η. RG effects in

evolving parameters from the leptogenesis scale to the EW scale are well studied

(e.g. in [97] or [98]) and are a generic consideration for all models which explain

neutrino mixings using a family symmetry broken at high energies. Furthermore, in

the A4 models considered here, such effects are expected to be small.

The rest of the Chapter is organised as follows. Section 6.1 briefly outlines the

process of calculating the baryon asymmetry of the universe η arising from

leptogenesis. Then in Section 6.2, the idea of FD is recalled and it is shown that the

CP violating parameter in leptogenesis is indeed zero under the condition of FD.

Section 6.3 presents the relevant parameters of the AF A4 model of TB neutrino

mixing, while Section 6.4 presents the relevant parameters of the A4 model of TM

mixing. In Section 6.5 the RG running of the neutrino Yukawa matrices is

analytically estimated in the leading log approximation. Numerical results for the

baryon asymmetry of the universe arising from leptogenesis in both TB and TM

models are presented in Section 6.6 including contour plots of input parameters

reproducing the physical value of η. Section 6.7 concludes the Chapter.
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6.1 Leptogenesis

Leptogenesis takes advantage of the heavy RH neutrinos introduced in many

models to account for the smallness of the LH neutrino mass. As described in

Chapter 2, the addition of these RH neutrino fields Ni introduces two new terms

into the superpotential4

Wν = (Yν)αi (lα ·Hu)Ni +
1

2
Ni (MR)ij Nj , (6.2)

which then lead to an effective light neutrino mass once the heavy degrees of

freedom are integrated out. These interactions also fulfil the well known Sakharov

conditions [85] required to generate a baryon asymmetry: 1) C and CP violation

(coming from the complex Yukawa coupling); 2) B violation (the Majorana mass of

Ns violates L; sphalerons convert ∼ 1
3 of this into B violation); 3) Departure from

thermal equilibrium (due to out-of-equilibrium decays of the RH neutrinos). The

procedure for calculation of this asymmetry is first to calculate the amount of CP

violation in the decays of the RH neutrinos. This is then used as an input parameter

to find the B − L asymmetry through integration of the Boltzmann equations [99].

These equations take into account the evolution of a B − L asymmetry generated

by N decays against the background of N inverse decays partially washing it out.

This procedure is not considered in detail in this Chapter since the goal is to

generate a non-zero ǫ. Finally, this B − L asymmetry is converted into a B

asymmetry using previously calculated results for sphaleron processes [100,101].

6.1.1 Unflavoured asymmetry

To one-loop order, the CP asymmetry arises from the interference of the diagrams

in Fig. 6.1. Using the standard supersymmetric Feynman rules, one can calculate

the decay widths for the decay Ni → lα +Hu, Γi =
∑

α Γαi; these are then used to

4Notation has changed slightly here, in line with notation used in leptogenesis studies: the charged
lepton flavour index is now an α to distinguish it from the RH neutrino index.
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Figure 6.1: Diagrams contributing to the CP violating parameter ǫi,αi;
it is the interference of (a) with (b) and (c) which gives rise to non-zero
ǫi,αi. Lines labelled N can be any one of the seesaw particles.

find the CP asymmetry for Ni by summing over all lepton flavours α [102],

ǫi =
Γi − Γi

Γi + Γi
=

1

8π
(
Y †
ν Yν

)
ii

∑

j 6=i
Im

((
Y †
ν Yν

)2

ij

)
f

(
M2
j

M2
i

)
. (6.3)

Here, Mi are the real mass eigenvalues of MR, and [88,90,103]

f(xij) = fij =
√
xij

(
2

1 − xij
− ln

(
1 + xij
xij

))
, (6.4)

with xij =
M2

j

M2
i

, is the loop factor. Note that ǫi is summed over all flavours of the

outgoing lepton and is called the unflavoured asymmetry. This formula implicitly

assumes that the Ni are not degenerate (since this would lead to an infinite

self-energy contribution unless one considers resonance effects); for studies of

leptogenesis with nearly degenerate neutrinos, see e.g. [104] or, in the context of

Abelian family symmetries, [105].

6.1.2 Flavoured asymmetry

The above discussion and formula for ǫi is relevant when the lepton doublets

produced are a coherent superposition of the three flavours. This is only the case

above a certain energy when the expansion rate of the universe is greater than all

charged lepton interaction rates. However, as the universe cools, the τ lepton

Yukawa coupling will start to come in to equilibrium at an energy of around [90]
(
1 + tan2 β

)
× 1012 GeV,5 breaking the coherence of the single state superposition

e+ µ+ τ down into two states: the τ and the remaining coherent combination

5Here, tan β is the ratio of MSSM Higgs VEVs defined in (2.76).
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e+ µ. Thus, if the dynamics of leptogenesis occur below this temperature,6 one

should take such differences into account in the calculations. The CP parameter

taking into account such flavour effects is [88,90,103]

ǫαi =
1

8π
(
Y †
ν Yν

)
ii

∑

j 6=1

(
Im
(
Y ∗
αiYαj(Y

†
ν Yν)ij

)
f(xij)

+Im
(
Y ∗
αiYαj(Y

†
ν Yν)ji

)
g(xij)

)
,

(6.5)

with g(xij) = gij = 1
(1−xij)

and fij as above.

6.1.3 Final asymmetry

Ultimately an estimate for the value of the baryon to photon ratio at recombination

is desired; this is related to the B − L asymmetry NB−L at the leptogenesis scale

by [107]

η = 0.89 × 10−2NB−L. (6.6)

The numerical coefficient above has two contributions: 1) from the B − L

conserving sphaleron processes (which are only ∼ 33% efficient at converting B − L

into B); 2) from scaling by photon number density in the relevant comoving volume

(recall that the baryon to photon ratio at recombination is calculated). The

sphalerons convert part of the L asymmetry into a B asymmetry via a suppressed

dimension 18 operator active at the energies considered, ≫MEW . The CP

asymmetries calculated in the previous Section are then related to NB−L via

NB−L =
∑

α,i

ǫαiκαi, (6.7)

which defines the efficiency parameters καi; these encode how efficiently the decays

of N produce a B − L asymmetry at the leptogenesis scale. In the strong washout

regime, the καi are approximated analytically by (up to superpartner effects which

6Strictly speaking the τ interaction rate must be faster than the N inverse decay rate to overcome
the Quantum Zeno effect [106], but this is a small effect and beyond the scope of this Thesis.
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increase NB−L by a factor of
√

2; see, for example, [107]):

καi ≈
2

KαizB(Kαi)

(
1 − exp

(
−1

2
KαizB(Kαi)

))
, (6.8)

with

zB(Kαi) ≈ 2 + 4(Kαi)
0.13 exp

(
− 2.5

Kαi

)
, (6.9)

the decay parameter

Kαi =
m̃αi

m∗
MSSM

, (6.10)

and effective neutrino mass

m̃αi =
(
Y †
ν

)
iα

(Yν)αi
v2
u

Mi
. (6.11)

The m̃αi are model specific and are presented below for the model in question (in

Table 6.1), while m∗
MSSM = 1.58 × 10−3 sin2 β eV [90] is the equilibrium neutrino

mass. The main point to address is then the form that the Yukawa matrices take.

This is discussed in the context of family symmetries which is the topic of the next

Section.

6.2 Form dominance

As studied in previous Chapters, many models invoke the idea that a high energy

family symmetry unifying the three flavours is spontaneously broken in a specific

way that leaves some imprint in the neutrino sector at low energies. This method

introduces relationships between the parameters of Yν leading to predictions for ǫαi

and ǫi. It is a striking fact that many of these family symmetry models exhibit

FD [87], which constrains the CP violating parameter of leptogenesis to be

identically zero [88], as is now discussed. The FD [87] condition is that the columns
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of Yν in Eq. (6.2) are proportional to the columns of UPMNS,

Ai = αUi1, Bi = βUi2, Ci = γUi3, (6.12)

where UPMNS is the unitary PMNS matrix. The consequences of such FD on

leptogenesis is then very simple to understand: since UPMNS is unitary, the

columns of Yν must be mutually orthogonal. This means that the contraction

(Y †
ν Yν)ij , with i 6= j, appearing in Eqs (6.3) and (6.5) is identically zero and so

leptogenesis gives η = 0. This condition also explains why washout of, for example

ǫ1, due to N2 and N3 is not considered: the Dirac matrix describes how to write a

RH neutrino as a linear combination of charged leptons. Since FD implies that the

columns of the Dirac matrix are orthogonal, it also means that these RH neutrino

’flavour vectors’ are orthogonal. Therefore there is no projection of one onto

another, meaning that the washout from one will not affect another. FD is only

expected to be broken by a small amount in the calculation considered and so any

projection of one RH neutrino onto another will be small and is therefore neglected.

The FD condition also greatly simplifies the form of the effective neutrino mass

matrix arising from the type I seesaw formula. In terms of parameters in Eq. (6.2),

the effective neutrino mass matrix can be written,

mν = −v2
uYνM

−1
R Y T

ν . (6.13)

In the basis where the RH neutrinos are diagonal, i.e. that in which

MR = diag (MA,MB ,MC), Eq. (6.13) gives

mν = −v2
u

(
AAT

MA
+
BBT

MB
+
CCT

MC

)
. (6.14)

In the charged lepton diagonal basis, mν is diagonalised by U †
PMNS. Assuming FD,

mν is diagonalisable independently of the parameters α, β, γ, and, from (6.14) and

(6.12), one finds

mdiag
ν = v2

udiag

(
α2

MA
,
β2

MB
,
γ2

MC

)
. (6.15)

A particularly well studied case is that of TB mixing [54]. However, as emphasised
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in [83], TB mixing is not linked to FD. Indeed this Chapter considers two A4 family

symmetry models, one with TB mixing and one with TM mixing, where FD is

present in both cases, leading to zero leptogenesis at LO, before RG corrections are

included.

A useful parameterisation when considering leptogenesis in light of low energy data

is due to Casas and Ibarra [89]. It is constructed as follows: in the charged lepton

diagonal basis, denote U as both the PMNS matrix and the matrix which

diagonalises the effective light neutrino mass matrix

U †mνU
∗ = Dk. (6.16)

One may also define a matrix which diagonalises the heavy right handed neutrino

mass matrix

U †
MMRU

∗
M = DM . (6.17)

These objects can be used to construct a complex orthogonal matrix R [89]

R = vuD
−1√
M
U †
MY

T
ν U

∗D−1√
k
, (6.18)

which is basis invariant [88]. For fixed choices of U , Dk and DM , the so called

R-matrix parameterises the freedom in Yν . Using this parameterisation, it is

possible to rewrite the unflavoured and flavoured CP asymmetries as follows

ǫi = − 3Mi

16πv2

Im

[∑
j 6=im

2
j

(
R∗
ij

)2
]

∑
j 6=imj |Rij|2

, (6.19)

ǫαi = − 3Mi

16πv2

Im

[∑
j 6=i
∑

km
1
2
j m

3
2
kU

∗
αjUαkR

∗
ijR

∗
ik

]

∑
j 6=imj |Rij|2

. (6.20)

In order to relate the R-matrix to FD, one can write

vuYν = UD = UD√
kRdD

√
M (6.21)

where D is some real diagonal matrix and has been factored into two matrices
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defined above and some remainder, all of which are real and diagonal; furthermore

the remainder has entries of ±1. Rearranging for this remainder, one finds

Rd = vuD
−1√
M
Y T
ν U

∗D−1√
k

(6.22)

which looks remeniscent of Eq. (6.18). In fact, using the basis invariance of the R

matrix implies that (6.22) is (6.18) in the diagonal right handed neutrino basis.

Therefore FD ⇒ R is a real, diagonal matrix with entries of ±1; thus it can be seen

that both the flavoured and unflavoured asymmetries are 0 in FD regimes, and so

again it can be seen that leptogenesis appears to be unsuccessful in models which

exhibit FD. It is important to note that a merely real R-matrix is not sufficient to

fulfill this statement: this will lead to ǫi = 0 but not neccesarily ǫαi = 0 since the

matrix U may still have complex entries.

This discussion shows that in order to generate non-zero values of the CP violating

parameter, one will need to generate a shift from FD; since this is imposed on the

Yukawa matrices at the family symmetry breaking scale, the rest of this Chapter is

presented using Eqs (6.3) and (6.5).

6.3 Parameters of the A4 model of TB mixing

Here the relevant parameters of the AF A4 model of TB mixing [20] are briefly

given; the superpotential is

Wν = y(lN)Hu + (xAξ + x̃Aξ̃)(NN) + xB(ϕSNN), (6.23)

where xi are constant complex parameters. The charged lepton mass matrix in the

basis used in [20] is diagonal so the mixing structure in the neutrino sector will not

receive corrections from charged lepton rotations. The TB structure in the neutrino
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sector arises from the flavon fields obtaining VEVs in particular directions,

〈ϕS〉 = vs




1

1

1



, 〈ξ〉 = u and

〈
ξ̃
〉

= 0, (6.24)

where the dynamics responsible for vacuum alignment has been extensively studied

(for instance, in [20] for F -term alignment or in [71] for D-term alignment) and

briefly discussed in Chapter 3.

The TB structure arises in the Majorana sector of Eq. (6.23), explicitly

MR =




A+ 2B
3 −B

3 −B
3

−B
3

2B
3 A− B

3

−B
3 A− B

3
2B
3



, (6.25)

with A = 2xAu, B = 2xBvs being complex parameters with phase φa,b. For the

purposes of leptogenesis it is convenient to rotate the N such that their mass matrix

is diagonal. The resulting neutrino Yukawa matrix in the diagonal N basis is then,

YTB = y




−2√
6
eiφA 1√

3
eiφB 0

1√
6
eiφA 1√

3
eiφB −1√

2
eiφC

1√
6
eiφA 1√

3
eiφB 1√

2
eiφC



. (6.26)

One can see explicitly that FD is present in this model, since the columns of YTB

are manifestly proportional to the columns of the TB mixing matrix, and thus it

immediately follows that ǫi = ǫαi = 0 at the scale of A4 breaking. The phases

defined in (6.26) are given as,

φA = −1

2

(
φb + tan−1

( −|A| sin (φb − φa)

|B| + |A| cos (φb − φa)

))
, (6.27)

φB = −1

2
φa, (6.28)

φC = −1

2

(
φb + tan−1

( |A| sin (φb − φa)

|B| − |A| cos (φb − φa)

))
. (6.29)

Therefore, there are actually only two phases (φa and φb) and two magnitudes (|A|
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and |B|) in the model, although only phase differences appear when considering

physical quantities. This means that one phase may be set to zero without loss of

generality; here φa = 0 is chosen.

In this basis, the Majorana neutrino mass matrix is real and diagonal and is given

by

Mdiag
R = diag (M1,M2,M3) =




|A+B| 0 0

0 |A| 0

0 0 |−A+B|



. (6.30)

The effective LH neutrino masses are then given by7

mi =
y2
βv

2

Mi
, (6.31)

which incorporates the SUSY parameter tanβ introduced in Chapter 2; this can be

absorbed into the coupling as

yβ = y sin β. (6.32)

6.4 Parameters of the A4 model of TM mixing

As discussed in Chapters 3 and 5, models predicting TB mixing are now ruled out.

Instead, schemes such as TM mixing remain viable [59]:

UTM =




2√
6

cos θ 1√
3

2√
6

sin θeiρ

− 1√
6

cos θ − 1√
2

sin θe−iρ 1√
3

1√
2

cos θ − 1√
6

sin θeiρ

− 1√
6

cos θ + 1√
2

sin θe−iρ 1√
3
− 1√

2
cos θ − 1√

6
sin θeiρ



. (6.33)

Here 2√
6

sin θ = sin θ13 and ρ is related to the Dirac phase. It is possible to

minimally extend the AF model above by adding a flavon in the 1′ representation

7Note that this Chapter considers a normal ordering of light neutrino masses, therefore M1 is
the heaviest RH neutrino mass. This means that ǫ3 and ǫα3 will be dominant contributions to
leptogenesis, coming from the lightest RH neutrino. This is simply a notational consideration, and
does not affect the physics.
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of A4 which reproduces this pattern [60]:8

W1′ = xCξ
′NN, (6.34)

with the complex parameter C = xC 〈ξ′〉, with phase φc. It has been shown in [60]

that the addition of this flavon doesn’t affect the RH neutrino masses to first order,

and so the parameters in common with the previous Section will be unaffected.

Analogously to Eq. (6.26), in the basis where charged leptons are diagonal and RH

neutrinos are real and diagonal, the Yukawa matrix for TM mixing is,

YTM= y




2√
6

1√
3

2√
6
α∗

13

− 1√
6
− 1√

2
α13

1√
3

1√
2
− 1√

6
α∗

13

− 1√
6

+ 1√
2
α13

1√
3
− 1√

2
− 1√

6
α∗

13







exp (iφA) 0 0

0 exp (iφB) 0

0 0 exp (iφC)



, (6.35)

where the φA,B,C are as in Eq. (6.27). The columns of this matrix are proportional

to columns of UTM and therefore the model respects FD. Therefore, as for the

previous model of TB mixing, this model of TM mixing also gives zero leptogenesis

and η = 0, to leading order. The parameter α13 measures the deviation from TB

mixing and is given by [60]

α13 =

√
3

2


Re

C

2
(
A− C

2

) + Im
C

2
(
A− C

2

)
Im B

A−C
2

Re B
A−C

2

− i
Im C

2(A−C
2 )

Re B
A−C

2


 . (6.36)

Note that this is the same as Eq. (3.53) but with γ′′ = 0.

6.5 Renormalisation group evolution of the Yukawa

couplings

In order to generate a non-zero ǫαi and ǫi, the effects of running the neutrino

Yukawa couplings from the scale at which A4 is broken down to the scale at which

leptogenesis takes place are now considered. At one-loop, the RG equation for the

neutrino Yukawa couplings in the MSSM above the scale of RH neutrino masses is

8For simplicity, only the ξ′ flavon is introduced in contrast to Chapters 3 and 5
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given by [97,108],9

dYν
dt

=
1

16π2
[Nl · Yν + Yν ·Nν + (NHu)Yν] , (6.37)

where

Nl = YeY
†
e + YνY

†
ν −

(
3

2
g2
2 +

3

10
g2
1

)
· I3, (6.38)

Nν = 2Y †
ν Yν , (6.39)

NHu = 3Tr
(
Y †
uYu

)
+ Tr

(
Y †
ν Yν

)
−
(

3

2
g2
2 +

3

10
g2
1

)
. (6.40)

In these equations, t = log
(
Q1

Q0

)
with Q1 being the renormalisation scale and Q0

the family symmetry breaking scale; Ye,u are the charged lepton and up-type quark

Yukawa couplings respectively; g1,2 are the10 U(1)Y and SU(2)L gauge couplings

respectively; and I3 is the 3 × 3 identity matrix. Each NX arises from all one-loop

insertions allowed by gauge symmetry on the X-leg of the vertex.

In leading log approximation, taking the continuous derivatives to be approximately

equal to a single discrete step, Eq. (6.37) may be approximated as:

dYν
dt

≈ ∆Yν
∆t

=
Yν(Q0) − Yν(Q1)

t(Q0) − t(Q1)
≡ Z, (6.41)

yielding the solution,

Yν(Q1) ≈ Yν(Q0) − Z∆t. (6.42)

As an example, the RG evolution of the TB Yukawa matrix in (6.26) Yν = YTB is

presented (the case of YTM is completely analogous). Inserting (6.26) into (6.37)

9Note that, as has been pointed out before, running from the leptogenesis scale down to MEW

is not considered; this which would be necessary if one wanted to consider leptogenesis effects on
neutrino mass bounds as studied in [98, 109]. Also in [98] the importance of RG corrections in
calculating leptogenesis predictions in the framework of a generic GUT scale theory was emphasised,
although specific models were not considered.

10Note that g1 is the GUT normalised hypercharge coupling, related to the standard hypercharge

coupling g′ by g1 =
q

5
3
g′.
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and using the third family approximation then gives

dYTB
dt

≈ y

16π2




(
J+3 |y|2

)




−2√
6
eiφA 1√

3
eiφB 0

1√
6
eiφA 1√

3
eiφB −1√

2
eiφC

1√
6
eiφA 1√

3
eiφB 1√

2
eiφC




+y2
τ




0 0 0

0 0 0

1√
6
eiφA 1√

3
eiφB 1√

2
eiφC







≡ ZTB ,

(6.43)

where J = NHu −
(

3
2g

2
2 + 3

10g
2
1

)
and yτ is the Yukawa coupling of the τ lepton. This

shows that the contributions from the charged lepton Yukawa couplings breaks the

orthogonality of the columns, appearing as they do in only the third component of

each column. In SUSY models yτ can be related to tan β using vdyτ = mτ so a scan

over yτ will correspond to a scan over tanβ. This is the effect which gives rise to a

non-zero CP violating parameter. The leading log solution for the TB case is then

given by

YTB(Q1) ≈ YTB(Q0) − ZTB∆t. (6.44)

One must also consider how the charged lepton Yukawa coupling runs; the relevant

RGE is [97,108]

dYe
dt

=
1

16π2
[Nl · Ye + Ye ·Ne + (NHd

)Ye] , (6.45)

with Nl as before and

Ne = 2Y †
e Ye −

6

5
g2
1 · I3, (6.46)

NHd
= 3Tr

(
Y †
d Yd

)
+ Tr

(
Y †
e Ye

)
−
(

3

2
g2
2 +

3

10
g2
1

)
. (6.47)

Here Yd is the down quark Yukawa coupling matrix. Since Yν is unitary for both

models, specifically see Eqs. (6.26) and (6.35), there will be no off-diagonal entries

in Eq. (6.45). Using again the third family and leading log approximations gives

small corrections to yτ dependent upon y, yb the bottom quark Yukawa and yτ at

the GUT scale; taking values of y = 2
√
π, yb = 1 and yτ = 0.5 gives a correction of

∼ 10% to the value of yτ and therefore this effect is neglected (notice that the
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Asymmetry m̃αi

ǫα1
1

8πA†A

[
Im
(
A∗
αBα

(
A†B

))
f12 + Im

(
A∗
αBα

(
B†A

))
g12

|Aα|2
M1

v2
u

+Im
(
A∗
αCα

(
A†C

))
f13 + Im

(
A∗
αCα

(
C†A

))
g13
]

ǫα2
1

8πB†B

[
Im
(
B∗
αAα

(
B†A

))
f21 + Im

(
B∗
αAα

(
A†B

))
g21

|Bα|2
M2

v2
u

+Im
(
B∗
αCα

(
B†C

))
f23 + Im

(
B∗
αCα

(
C†B

))
g23
]

ǫα3
1

8πC†C

[
Im
(
C∗
αAα

(
C†A

))
f31 + Im

(
C∗
αAα

(
A†C

))
g31

|Cα|2
M3

v2
u

+Im
(
C∗
αBα

(
C†B

))
f32 + Im

(
C∗
αBα

(
B†C

))
g32
]

Table 6.1: Flavoured asymmetries and washout parameters

chosen values of y and yτ are at the extreme end of the ranges that are scanned

over and so this correction is the largest expected).

6.6 Results

This Section details the results of analyses for both the TB and TM models in

leading log approximation. The use of leading log approximation is justified by the

small interval of energies over which the running takes place. Since this

approximation is used and since the neutrino hierarchy is not very strong (using

work in [92] to fix neutrino parameters), threshold effects from successive

decoupling of the right handed neutrinos are not considered. Furthermore, the RH

neutrino mass matrix will also run in a full calculation and this will in general give

rise to off-diagonal entries; thus at each successive stage in decoupling, one should

rediagonalise this matrix before proceeding. The prescription for dealing with this

is to replace the Yukawa matrix elements Yαi → Y ′
αiθp (lnµ− lnMi) [97] where the

prime denotes the effect of rediagonalisation. This means that after crossing a

threshold one of the columns of the Yukawa matrix will be frozen out of the

process, remaining in its corrected form. The two remaining columns will be

corrected further until the next threshold and so on. The resulting Yukawa matrix

is then expected to be further from FD than in the current approximation. This

consideration also means that if the heaviest RH neutrino were heavier than the

flavour symmetry breaking scale, the 3 × 2 Yukawa matrix would still run and FD

would still be broken. For a detailed analysis of such effects one can consult [97]

or [98]. As before, one can represent the Yukawa matrix derived in (6.42) as
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Yν(Q1) = (A(Q1), B(Q1), C(Q1)) where A(Q1), B(Q1) and C(Q1) are the RG

evolved versions of the column vectors in Section 6.2, which, as clearly seen in

(6.43), (6.44) are no longer orthogonal after RG corrections are included. This

allows the flavoured asymmetries to be written as in Table 6.1. Using Eq. (6.5) one

notices immediately that ǫ13 = 0 since C1(Q1) = 0. To see that the ǫαi receive a

correction from RG running consider, e.g.

A(Q1)†B(Q1) = (A(Q0) − (Z∆t)α1)† (B(Q0) − (Z∆t)α2) , (6.48)

where the leading term on the right-hand side vanishes since FD implies that A(Q0)

and B(Q0) (and C(Q0)) are orthogonal.

In order to progress further, one will need to insert specific values for the

parameters in the matrix, which are model dependent. Here, guided by work

presented in [92] the parameters are fixed consistently with experimental data. The

leptogenesis scale Q1 is taken to be approximately the seesaw scale,

Q1 ∼ (1.742y2)1014 GeV (using the basic seesaw formula).11 This indicates that for

small y the two flavour regime is relevant for tan β > 10; for larger values of y, tanβ

needs to be larger to be in the 2 flavour regime. However in the forthcoming plots,

parts of the contour existing at large y correspond also to larger yτ and so

sufficiently large tanβ. The family symmetry scale is around an order of magnitude

below the GUT scale, roughly Q0 ∼ 1.5 × 1015 GeV; and yt ∼ 1. The asymmetry is

calculated for 0 < y < 2
√
π (to keep the coupling perturbative) and 0 < yτ < 0.5

(to remain within bounds for tanβ [113]).12

In the course of this calculation, several complicated inter-dependencies of

parameters have been suppressed. The most obvious of these is that, as mentioned

above, the two-flavour regime is only valid for a subsection of the ranges scanned

over. The two-flavour regime is used for simplicity over the whole range, even areas

11This mass scale may look quite large especially when compared to the upper bound on the
reheating temperature due to the over-production of late-decaying gravitinos [110]. However, heavy
gravitinos with masses m3/2 > 40 TeV, will decay before nucleosynthesis. Assuming dark matter to
have a significant axion/axino component, then allows reheat temperatures to be sufficiently high to
produce RH neutrinos of mass ∼ 1014 GeV, as recently discussed in e.g. [111], [112] (and references
therein).

12Note that the point where the couplings are 0 is unphysical and no significance should be inferred
by this.
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where the value of yτ and hence tan β are such that the unflavoured regime is in

fact preferred. So when considering plots in the y-yτ plane, one should in fact be

considering the portion where y and yτ correspond to values of Q1 and tanβ

consistent with the two-flavour regime. This is still a significant region of the plot

and contains parts of the η contour required by observation. A second dependency

comes from the fact that [92] only fixes RH neutrinos masses up to factors of 1
y2β

(namely M1 ∼ 5×1015

y2β
GeV , M2 ∼ 3×1015

y2β
GeV and M3 ∼ 6×1014

y2β
GeV ), so that in

some portions of the parameter space considered, the RH neutrino mass may well

be above the family symmetry breaking scale, a possibility already mentioned

above. The corresponding family symmetry breaking scale could be increased to

account for this, since this value is not fixed by anything. These approximations are

made in order to demonstrate that the studied effect is enough to generate a

non-zero baryon asymmetry, and they should be dealt with more thoroughly if on

wanted to perform a precise calculation.

6.6.1 TB mixing

Specialising to the case of RG improved leptogenesis in the TB model, where the

TB Yukawa couplings are given in (6.44), repeated below,

YTB(Q1) ≈ YTB(Q0) − ZTB∆t. (6.49)

The results for the flavoured asymmetries versus y and yτ are presented in Fig. 6.2,

in the two-flavour regime. It can be seen that the contributions from ǫα3 are the

dominant ones, as expected.

Following the procedure set out in Section 6.1.3, the next step is to calculate the

baryon to photon ratio η. Fig. 6.3 displays the contour matching the

experimentally measured value of 6.2 × 10−10, along with two others, demonstrating

the sensitivity of the required Yukawa couplings to the value of η. This shows that

there is a definite range of Yukawa couplings for which a realistic matter-antimatter

asymmetry can be obtained purely by considering RG evolution of the neutrino

Yukawa matrix, without the need for any extra particles or HO operators to be
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Figure 6.2: Flavoured asymmetries plotted against neutrino Yukawa y
and tau lepton Yukawa yτ in the two flavour regime (i.e. e− µ and τ) for
the TB model. In the yτ graphs, y is fixed to be 3, while in the y graphs,
yτ is fixed to be 0.5. ǫeµ,i are black solid lines while ǫτ,i are red dashed
lines.

considered.

6.6.2 TM mixing

A similar analysis is now performed on the TM model, using the RG improved

Yukawa matrix analogous to (6.44), namely,

YTM(Q1) ≈ YTM (Q0) − ZTM∆t. (6.50)

where the high energy Yukawa matrix YTM(Q0) is given in (6.35), with ZTM

analogous to (6.43) and otherwise assuming similar parameters to the case of TB
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mixing. However one must choose the new complex parameter C carefully in order

to satisfy the relation [60] √
6

2
sin θ13 = |α13| . (6.51)

Flavoured asymmetries are given for θ13 = 8◦ (consistent with current

measurements, see Section 3) and φc = 0 in Fig. 6.4. Contours of

η = 4.2 × 10−10, 6.2 × 10−10, 8.2 × 10−10 for θ13 = 8◦ and η = 6.2 × 10−10 for

θ13 = 0.1◦, 3◦, 6◦, 9◦, 12◦ are also presented; and for each value of θ13, four

different choices of phase and modulus of C which satisfy (6.51) are used. These can

be seen in Figs 6.5 and 6.6. For small θ13 and therefore small C, the results are very

similar to those for TB mixing (c.f. Figs 6.3 and 6.6 purple line), which is expected

since the only difference between the two models is the presence of the ξ′ flavon.

For the larger values of θ13, it is clear that changing C has a significant effect as one

can see from the variation of contours in Fig. 6.6; for instance the 12◦ contour for a

phase of φc = 0.91 rad doesn’t show up across the whole displayed plane.

Because experimental (i.e. low energy) input is used here, running between the

leptogenesis scale and the EW scale should briefly be mentioned. As with all

models of neutrino mixing the obtained high-energy (in this case leptogenesis scale)

parameters have to be RG evolved down to the EW scale before being compared

with data. However these effects have been well studied, [97,98] and shown to be

possible to control with respect to fitting the data. This discussion also applies for

the TB case presented in the previous subsection. Finally, one should not let these

considerations detract from the main goal of this Chapter which is to obtain a

non-zero value for ǫ in the presence of FD.

6.7 Conclusion

This Chapter investigates RG corrections relevant for leptogenesis in the case of

family symmetry models such as the AF A4 model of TB lepton mixing or its

extension to TM mixing. Such corrections are particularly relevant since in large

classes of family symmetry models, to LO, the CP violating parameters of
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leptogenesis would be identically zero at the family symmetry breaking scale, due to

the FD property. The third family approximation is used, keeping only the largest

Yukawa couplings, subject to the constraint of perturbativity. In addition, the τ

Yukawa coupling is related to the SUSY parameter tan β, which has had

experimental bounds placed upon it.

The results demonstrate that it is possible to obtain the observed value for the

baryon asymmetry of the Universe in models with FD by exploiting RG running of

the neutrino Yukawa matrix over the small energy interval between the family

symmetry breaking scale and the RH neutrino mass scale ∼ 1014 GeV. Of course,

the importance of RG corrections applies more generally than to the particular

models considered here for illustrative purposes, and the RH neutrino masses may

be lower in some models.

In conclusion, the results in this Chapter show that RG corrections have a large

impact on leptogenesis in any family symmetry models involving neutrino and

charged lepton Yukawa couplings of order unity, even though the range of RG

running between the flavour scale and the leptogenesis scale may be only one or two

orders of magnitude in energy. Therefore, when considering leptogenesis in such

models, RG corrections should not be ignored, even when corrections arising from

HO operators are also present.
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Figure 6.3: A plot showing the contours of the baryon to photon ratio η
in the tau Yukawa, yτ , versus neutrino Yukawa, y, plane. The dotted and
dashed lines are η = 8.2 × 10−10 and η = 4.2 × 10−10 while the solid line
is the measured value of η = 6.2 × 10−10.
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Figure 6.4: Flavoured asymmetries plotted against neutrino Yukawa y
and tau lepton Yukawa yτ in the two flavour regime (i.e. e− µ and τ) for
the TM model with θ13 = 8◦ and a real parameter C = xC〈ξ′〉. In the yτ

graphs, y is fixed to be 3, while in the y graphs, yτ is fixed to be 0.5. ǫeµ,i

are black solid lines while ǫτ,i are red dashed lines.
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(a) φc = 0 rad (b) φc = 0.91 rad

(c) φc = 3.28 rad (d) φc = 6 rad

Figure 6.5: These plots show contours of the baryon to photon ratio η
from the TM model with θ13 = 8◦ in the tau Yukawa, yτ , versus neutrino
Yukawa, y, plane. The dotted and dashed lines are η = 8.2 × 10−10 and
η = 4.2×10−10 while the solid line is the measured value of η = 6.2×10−10.
Each plot is for a different value of the phase of C = xC〈ξ′〉, given above
the relevant panel.
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(a) φc = 0 rad (b) φc = 0.91 rad

(c) φc = 3.28 rad (d) φc = 6 rad

Figure 6.6: These plots show the observed baryon to photon ratio η =
6.2×10−10 from the TM model with θ13 = 0.1◦, 3◦, 6◦, 9◦, 12◦ (purple, red,
yellow, green, blue respectively) in the tau Yukawa, yτ , versus neutrino
Yukawa, y, plane. Each plot is for a different value of the phase of C =
xC〈ξ′〉, given above the relevant panel. Note that the θ13 = 12◦ contour is
not possible for φc = 0.91 radians.
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Chapter 7

Summary and Conclusions

This thesis has presented two models which attempt to explain the observed

pattern of neutrino mixing using discrete flavour symmetries. Both models have

been constructed in a GUT context in order to attempt to reproduce the observed

quark mixing pattern as well. The consequences for leptogenesis are then studied

and a solution to a common problem with the combination of flavour symmetries

and leptogenesis is discussed.

In Chapter 4, the first model [1] is presented. An SU(5) GUT with extra fermionic

field content [67] is extended to introduce a flavour symmetry. The consequence of

introducing a flavour symmetry means that the initial matter content is not

sufficient to reproduce the neutrino data, so the minimal extension of one RH

neutrino is made. Once this is done, a model can be constructed that predicts TB

neutrino mixing with corrections from the charged lepton sector. The charged

lepton masses are related to the down quark masses by the GUT nature of the

model, and the GJ mechanism is utilised in order to obtain more phenomonogically

preferred relationships between these parameters. Quark mixings are small and

come predominantly from the down sector, while the mass ratios are quite large due

to the top mass being renormalisable. An attractive feature of the model is that

there is no mixing between the Majorana particles and therefore CSD is obtained

without having to assume a diagonal form for this matrix.

In Chapter 5, a second model [2] attempts to uplift a flavour model predicting TM
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mixing [60] to a GUT. This results in a theory predicting TM neutrino mixing with

corrections from the charged lepton sector; the GJ mechanism is again used and

this relates the charged lepton corrections to the Cabibbo angle. These corrections

are studied in the context of deviations from the TB mixing scheme, and new sum

rules are derived which give phenomonologically different predictions to those

existing in the literature. The NLO structure of the model is studied and example

terms are presented; these are known not to affect the LO model, leaving the

predictions unchanged. The vacuum alignment of the model is also briefly studied

and the assumed hierarchy of flavon VEVs is motivated.

Chapter 6 studies the effect of flavour symmetry on leptogenesis [3]. The idea of FD

is introduced and it is shown that this leads to a CP violating parameter of 0,

meaning that there is 0 baryon asymmetry in such models. However, the difference

in scales between the breaking of the family symmetry (and consequential

constraining of the Yukawa couplings) and the onset of leptogenesis caused by out

of equilibrium decays of RH neutrinos is not usually considered. It is demonstrated

that taking this scale difference into account by first running the neutrino Yukawas

down to the relevant scale can violate FD and generate a non-zero value for the CP

violating parameter. This procedure is performed in the context of the AF model

predicting TB mixing and the previously studied model of TM mixing [60].

Contours of the baryon asymmetry in Yukawa space are produced, showing that the

observed value of the baryon asymmetry of the Universe can be reproduced by a

range of values of neutrino and tau Yukawa (which is the dominant parameter in

such a calculation). For the TM model, similar contours are produced assuming a

range of values for θ13 and the same conclusion is reached: leptogenesis can be

successful in the context of flavour symmetries by nothing more that RG evolving

the relevant parameters to the correct energy scale.

In the future, it would be interesting to study other flavour symmetries in the

context of non-zero θ13. Indeed, current work involves obtaining a Golden Ratio

mixing pattern incorporating non-zero θ13 coming from an A5 flavour symmetry. A

consequence of the method chosen to do this is that it also alters the prediction for

θ12, which in the LO Golden Ratio models tends to be too low to fit the data. This
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work also includes a detailed discussion of the breaking of A5 down to the low

energy K4 symmetry of the neutrino mixing matrix, something that has not been

considered before.
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Appendix A

Spinor Formalism

This Appendix introduces the spinor formalism used throughout the thesis.

Since the Lorentz group, SO (3, 1) is locally isomorphic to SU(2) ⊗ SU(2), it can be

represented by a pair of numbers representing the spin of each factor: (a, b). The

simplest nontrivial representation of this group is therefore
(

1
2 , 0
)

(or
(
0, 1

2

)
) and is

known as a Weyl spinor. It has two components and transforms as

χ→ exp

(
−i1

2
σ · θ

)
χ, (A.1)

χ→ exp

(
−i1

2
σ · η

)
χ, (A.2)

where θ is the angle of rotation, η is the rapidity of the boost (related to velocity by

β = tanh η) and the Pauli matrices are given by

σ1 =




0 1

1 0


 , σ2 =




0 −i

i 0


 , σ3 =




1 0

0 −1


 . (A.3)

Using such a spinor, one can construct a mass term which is invariant under

Lorentz transformations

L =
1

2
m
(
χT ǫχ+ h.c.

)
, (A.4)

with ǫ = iσ2. This is a Majorana mass term, the simplest mass term possible. If the

Weyl spinor is allowed to transform under some (global or local) symmetry, this
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mass term is no longer invariant unless the spinor transforms as a real

representation; therefore in order to construct a theory with complex spinor

representations, a second Weyl spinor must be introduced in the complex conjugate

representation. A Dirac mass term is then constructed as

L = m
(
ξT ǫχ+ h.c.

)
, (A.5)

where the term is so-called since it can be constructed from a single four-component

(Dirac) spinor as follows

L = −mψψ = −m
(
χ† −ξT ǫ

)



0 1

1 0






χ

ǫξ∗


 . (A.6)

Here a specific basis, the Weyl basis, has been chosen for the Dirac gamma matrices:

γ0 =




0 1

1 0


 , γi =




0 σi

−σi 0


 , γ5 = iγ0γ1γ2γ3 =



−1 0

0 1


 , (A.7)

where each entry is understood to be itself a 2 × 2 matrix. The advantage of this

basis is that the chiral projection operator projects out the upper and lower

components of the Dirac spinor

PL,Rψ =
1 ∓ γ5

2
ψ = ψL,R, (A.8)

with ψL = (χ, 0)T and ψR = (0, ǫξ∗)T . Since the Dirac spinor transforms as
(

1
2 , 0
)
⊕
(
0, 1

2

)
under the Lorentz group, the projection operator is selecting only

one or other of these representations. The subscripts L,R then denote the

representation of the Lorentz group selected: this is the chirality of the spinor.

Setting χ = ξ in the Dirac spinor gives a four-component Majorana spinor which

has a mass term

L = −1

2
mψMψM , (A.9)

reproducing Eqn. (A.4).

In order to simplify GUTs, the convention is to write mass terms with only LH
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fields (since LH and RH fields are unified into single representations in a GUT); this

is done using the charge conjugation matrix

C =



−ǫ 0

0 ǫ


 . (A.10)

Then it is possible to define the charge conjugated spinor

ψc = Cγ0ψ∗ =




ξ

ǫχ∗


 , (A.11)

such that

(ψc)L =



ξ

0


 = (ψR)c . (A.12)

This allows Dirac and Majorana masses to be written respectively as

L = −m
(

(ψc)TL CψL + h.c.
)
, (A.13)

L = −1

2
m
(
ψTLCψL + h.c.

)
. (A.14)
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Appendix B

D-term alignment

In order to break the A4 symmetry, the flavon fields need to obtain non-zero VEVs.

The direction of these VEVs must in some way be forced into the desired

configuration; indirect models can use the method of D-term alignment [72] to

achieve this and so work in this Appendix is understood to be in the S diagonal

basis of Section 3.1.1. An A4 triplet flavon ϕ will in general have a scalar potential

of the form [71]

V ∋ −m2
ϕϕ

i†ϕi + λϕ(ϕi†ϕi)
2 + κϕϕ

i†ϕiϕ
i†ϕi + . . . (B.1)

where i here is the A4 index. The first two terms in this equation have an enhanced

SO(3) symmetry, which means that their vacuum alignment is not unique; in fact,

there is a continuum of possible alignments available. The third term breaks this

symmetry and is what is used to ensure the flavons obtain VEVs in the desired

directions. The alignment of ϕ depends on the sign of κϕ:1

〈ϕ〉 ∝





(0, 0, 1)T for κϕ < 0,

(1, 1, 1)T for κϕ > 0.

Referring to table 4.2, it is clear that this argument is enough to generate the

desired alignments for ϕ3 and ϕ123. In order to obtain the remaining two,

1The choice of (0, 0, 1)T as opposed to, e.g. (1, 0, 0)T simply defines what is meant by the 3-
direction of the A4 triplet.
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orthogonality arguments are invoked: arranging for the term κ23|ϕ†
123 · ϕ23|2 to have

a positive coefficient forces these flavons to be orthogonal in order to minimise V .

In this case, the condition gives that with 〈ϕ23〉 ∝ (x, y, z)T , x+ y + z = 0 which is

not sufficient to define the desired alignment. This motivates the introduction of an

extra flavon ϕ1 whose only purpose is to impose x = 0 through an orthogonality

condition between it and ϕ23. Its charge q1 is chosen such that it doesn’t interact

with any other field in the model (and thus, if η1 ∼ ǫ then q1 ≥ 9). With this in

place, and a further orthogonality condition imposed by the term κ1|ϕ†
3 · ϕ1|2, the

desired vacuum alignment is achieved. One should note that the scalar potential

(B.1) is invariant under a product of global U(1) symmetries, one for each avon

component. For a discussion of the implications of this observation, see [73].

Finally, since all terms used in this alignment are phase-blind each flavon has an

undetermined phase associated with it. Additionally, 〈ϕ123〉 has independent phases

for each of its components; the component phases of 〈ϕ23〉 are related to those of

〈ϕ123〉 by the orthogonality relation above. However, in terms of obtaining

tri-bimaximal mixing, what is important is that the orthogonality conditions

〈ϕ†
123〉 · 〈ϕ23〉 = 0 and 〈ϕ†

1〉 · 〈ϕ23〉 = 0 are sufficient to generate θν13 ∼ 0 and

tan θν12 ∼ 1√
2

in accordance with the CSD [69] conditions, regardless of the phases of

ϕ123.
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