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by Maria Magou

Quantum Chromodynamics (QCD) poses a challenge in calculating physical
phenomena in low energy scales due to its strongly coupled character. The tools
available for understanding this region of QCD are limited. One such tool is
gauge/gravity duality which promises to attack strongly coupled related
phenomena, at least in a qualitative level, by using the conjectured equivalence
between string theory and some classes of quantum field theories (gauge/gravity
duality). In this thesis strongly coupled 3+1d and 2+1d field theories are explored
by using D3/D7 and D3/D5 brane systems respectively. These theories exhibit
some QCD-like characteristics like chiral symmetry breaking and confinement. The
main focus of the following chapters is understanding chiral phase transitions in
those theories and constructing their phase diagrams in finite temperature and
chemical potential. Chiral symmetry breaking is induced in these holographic brane
setups by turning on a background magnetic field or by choosing an appropriate
running dilaton profile. The phase diagrams for each field theory considered are
mapped, giving a rich structure of first, second and BKT holographic transitions.
Some successful attempts where made to reproduce the standard QCD phase
diagram, in the running dilaton scenario. Also, in the running dilaton case wrapped
D5 branes where used to introduce holographic baryons. The baryonic phase, for
some range of the parameter space, participates in the phase diagram and it is
found in the regime expected from QCD. Finally, chiral phase transitions with
energy scale where explored as well as their holographic effective potentials for
various D3/D7 and D3/D5 systems.
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Chapter 1

Overview

Quantum chromodynamics (QCD) is the current most successful theory describing

the strong nuclear interactions in nature. Although it is a part of the standard

model of particle physics, the strongly coupled regime of the theory remains until

today a challenging problem. That regime of QCD involves the physics related to

the bound states of the theory, the hadrons e.g proton.

From the methods available at the moment, lattice QCD is probably the most

successful tool available for dealing with strong coupling. Numerical methods are

employed to probe physics related to the strong coupling phenomena like chiral

symmetry breaking, confinement e.t.c. Although lattice is very successful in some

respects, it fails to explore dynamical quantities and also physics at finite chemical

potential. Other models are available as well but none of them provides an analytic

and systematic method for dealing with the physics of the strong coupling.

Gauge/gravity duality is an alternative tool, which gives access to the strongly

coupled regime of quantum field theory. It has been widely used the last fourteen

years and it is based on the conjecture that ten dimensional string theory living on

some manifold is an equivalent way of formulating some classes of quantum field

theories. This conjecture (or duality) implies that field theory knowledge can be

used to understand more about string theory and vice versa. One version of the

duality states that strongly coupled field theories are dual to the low energy

effective description of string theory, supergravity. Supergravity is a tractable
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theory, unlike string theory, and supergravity calculations are possible in contrast

to its dual strongly coupled field theory. This is the exact feature of the duality we

intend to apply in this thesis. Using the knowledge we have of supergravity, we will

try and gain some lessons on strongly coupled field theories, with a particular

interest in their phase structure.

In principle to describe QCD the knowledge of its dual description is necessary. The

dual of QCD is not known, mainly because QCD is weakly coupled in large energies

and full string theory is required to describe this weakly coupled sector.

Nevertheless, many useful lessons can be derived from studying other strongly

coupled field theories. The reason for that is that strongly coupled field theories

generally share some common features which can be universal in all those theories,

or at least in some classes of them. Although, the results gained from holography

are only qualitative, it does provide a way of studying phenomena that cannot be

accessed differently.

In this thesis, examples of strongly coupled field theories are considered which

exhibit some QCD-like characteristics like quark fields in the fundamental

representation, confinement and chiral symmetry breaking. D3/D7 and D3/D5

brane systems are used in order to study chiral symmetry breaking in non abelian

gauge theories. These systems allow a geometric interpretation of the chiral

condensate, which is the order parameter for the chiral transition, and of

confinement.

In order to follow this thesis, a short introduction regarding QCD is given in 2,

focusing only on the concepts which are necessary to understand this thesis. In

chapter 3, basic string theory and D branes are introduced which will lead into the

introduction of gauge/gravity duality with a specific interest in the introduction of

flavour in the duality.

In chapters 4-7 the phase structure of various strongly coupled field theories are

considered. All these chapters are based on D3/D7 and D3/D5 systems, which

correspond to 3+1d and 2+1d field theories with fields in the fundamental

representation (quarks). The main focus of these chapters is chiral symmetry

2



breaking with temperature and chemical potential. In chapters 4-5 chiral symmetry

breaking is induced by the introduction of a magnetic field in the theory, which

provides the chiral symmetry breaking scale. The work done in chapters 4,5 is

based on top down approaches.

In chapters 6-7 the chiral symmetry breaking is accomplished by using a

phenomenologically chosen running dilaton profile, which is equivalent to the

running of the gauge coupling in the field theory. This dilaton profile is introduced

by hand and therefore in these two chapters a bottom up logic is combined with the

top down approach of the D3/D7 and D3/D5 systems. Specifically, in chapter 6

various phase diagrams are calculated which capture many aspects of the QCD

phase diagram and hint on their dependence on the running coupling. In chapter 7

the existence of holographic baryons is explored, as well as the existence of a

baryonic phase transition in the phase diagram. Furthermore, confinement in the

geometry used in chapters 6 and 7 is studied, with the help of holographic Wilson

loops, in order to investigate a possible connection between the baryon phase and

confinement.

In chapter 8 chiral transitions are explored for varying Wilsonian cut-offs. Chiral

transitions in different setups are considered and low energy effective potentials are

produced. The setups used are in the spirit of chapters 4 and 5. Finally, in chapter

9 conclusions are given.

3



4



Chapter 2

A short introduction to QCD

A very short introduction to QCD is given in this chapter, presenting only concepts

that are necessary for understanding the following chapters.

2.1 QCD and colour

Quantum Chromodynamics (QCD) [1–4] is the current most successful theory

describing the strong nuclear interactions in nature. The fundamental degrees of

freedom in this theory are the quarks and gluons. The underlying gauge group of

the theory is SU(3)c (colour group) [7, 8] and the Lagrangian describing the theory

is

LQCD =
∑

f=u,d,..

qf (iγµDµ −mf )qf − 1
4
Ga

µνG
a
µν . (2.1)

There are six different flavours of quarks labeled by the index f = u, d, c, s, t, b and

the mf is the current quark mass for quark with flavour f . The qf are the quarks

fields, which are Dirac fermions (Dirac index is omitted) transforming under the

fundamental representation of the SU(3)c gauge group 1. The covariant derivative

Dµ and the field strength tensor Ga
µν are given by

Dµ = ∂µ − ig
λa

2
Aa

µ ,

Gα
µν = ∂µAa

ν − ∂νA
a
µ + gfabcAb

µAc
ν ,

1Quarks come in three colours, red, green and blue.
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where Aa
µ are the gauge fields (gluons) transforming in the adjoint representation of

SU(3)c and λa are the Gell-Mann matrices, which obey the following commutation

relations

[
λa

2
,
λb

2
] = ifabc λc

2
.

The colour index a takes the values a = 1, · · · , 8.

2.2 Beta function of QCD

Quantum field theory, when radiative corrections are considered, suffers from

divergences e.g in the couplings or masses of the particles. In order to remove these

infinities and to derive meaningful quantities, renormalisation techiniques are

applied which require the introduction of a renormalisation scale µ. A very

important quantity that arises from this procedure is the renormalised coupling

constant g, whose dependence on µ is expressed by the beta function

β(g) =
∂g(µ)
∂ log µ

. (2.2)

The beta function for the case of a non abelian SU(Nc) gauge theory with Nc

number of colours and nf number of active flavours of quarks 2 in the fundamental

representation is given by the following expression (at one-loop level)

β(g) = − g3

(4π)2
(
11
3

Nc − 2
3
nf ). (2.3)

In the case of QCD Nc = 3. If the beta function is solved in terms of the coupling

constant, the expression becomes

g2(µ) =
g2(M)

1 + g2(M)
(4π)2

(11
3 Nc − 2

3nf )log( µ2

M2 )
(2.4)

2The number nf of active flavours depends on the scale µ we are considering. Only the quarks
with masses smaller than the scale µ affect the beta function.
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and it can be rewritten in a way so that it depends on only one parameter

g2(µ) =
(4π)2

(11
3 Nc − 2

3nf )log( µ2

Λ2
QCD

)
. (2.5)

At large energies µ the coupling tends to zero, which means that the quarks tend to

behave as free particles in this regime. This phenomenon is called asymptotic

freedom [1,2] and is characteristic of all non abelian gauge theories with nf < 11
2 Nc,

at least in four dimensions. On the other hand, for small values of µ the coupling

becomes very large and results in the colour confinement of quarks, where quarks

form bound states. ΛQCD is the scale at which the coupling diverges to infinity and

its value is estimated to ΛQCD ∼ 200 MeV. Note that the size of the hadrons is of

the order Λ−1
QCD [15,16].

Because QCD becomes asymptotically free at large energies, perturbation theory is

a valid method for performing calculations in this regime. At small energies though

the coupling becomes very large and perturbation theory can not be applied.

Different tools are required for exploring the physics of the strong coupling. One

such tool is introduced and applied in this thesis and it is called gauge/gravity

duality. It is used to understand various strongly coupled field theories.

2.3 Wilsonian Approach

Before proceeding any further with QCD, let us introduce a different approach to

renormalisation theory. As already mentioned, divergences appear in quantum field

theories in some quantities like the masses and couplings. These divergence are a

result of high energy momentum modes in the loop corrections. Apart from the

infinities in those specific quantities, the high momentum modes do not really affect

other computations in the theory and that is because generally the fields at

different energy scales are independent degrees of freedom. A very geometrical and

intuitive picture is the one given by Wilson [5], who instead of using the usual

renormalisation techniques for removing the divergences in the theory, he described

the physics at different energies through scale dependent quantities.

7



In the path integral formulation of quantum field theory, the degrees of freedom of

the theory are variables of integration. In the following expression, the integration

variables are the Fourier components of the fields φ(k)

Z[J ] =
∫

Dφe
R

i[L+Jφ] =
∏

k≤Λ

∫
dφ(k)e

R
i[L+Jφ], (2.6)

where L is the bare Lagrangian, J is the source and Λ is the momentum scale at

which the bare Lagrangian is define at. If we focus on phenomena which are related

to some specific momentum scale Λ
′
, where Λ

′ ≤ Λ, then, taking into account the

fact that phenomena in different energy scales are decoupled, a new Lagrangian can

be define which is valid for k ≤ Λ
′
. The new Lagrangian will result from the bare

Lagrangian plus some correction which arise when all the modes with momentum

Λ
′ ≤ k ≤ Λ, in the path integral, are integrated out. This Lagrangian is called the

effective Lagrangian and is defined (Euclidean signature) as

Z[J ] =
∏

k≤Λ′

∫
dφ(k)e−

R
d4x Leff

=
∏

k≤Λ′

∫
dφ(k)e−

R
d4x (L+sum of connected diagrams).

(2.7)

The extra terms added to the Lagrangian compensate for the integration of modes

with Λ
′ ≤ k ≤ Λ. There are an infinite number of effective Lagrangians, for all the

different Λ
′
’s and they all form the renormalisation group flow [15].

2.4 QCD and global symmetries

In section 2.1 the QCD Lagrangian was introduced as well as the SU(3)c gauge

symmetry. The global symmetries of the Lagrangian play an important role as well,

especially at low energies, where the dynamics are determined by the symmetries of

the QCD vacuum.

A sensible starting point for studying the low energy regime of QCD and its

symmetries is to only consider the three lighter flavours of quarks, (u, d, s) and also

to assume that those quarks are massless (chiral limit). This approximation is valid
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because (u, d, s) are considerably lighter than c, t, b quarks and furthermore their

masses are much smaller than 1GeV, the scale at which the lightest hadrons (which

are not Goldstone bosons) are formed. For convenience (2.1) can be rewritten in

terms of its chiral components3, so that the symmetries that we wish to study

become manifest. The chiral Lagrangian in the chiral limit is given by

LQCD =
∑

l=u,d,c

qL,l(iγµDµ)qL,l + qR,l(iγµDµ)qR,l − 1
4
Ga

µνG
a
µν . (2.8)

By simple inspection, the Lagrangian4 (2.8) has a global SU(3)L × SU(3)R flavour

symmetry since the left and right handed components can be independently SU(3)

“rotated”. The SU(3)L transformation is the following

qL → q′L = exp

[
−i

8∑

α=1

θL
α

λα

2

]
qL,

where θL
α are parameters of the SU(3) group. The same applies for the right

handed fields, for different parameters θR
α . By investigating further the symmetries

of the lagrangian, it can be verified that the right and left handed fields can be

rotated by the same phase

qL → q′L = e−iφqL, qR → q′R = e−iφqR, (2.9)

without altering the lagrangian. This is the baryon U(1)B symmetry. Also, the

lagrangian remains unchanged when the left handed fields are rotated by a phase

and the right handed are rotated by minus the same phase

qL → q′L = e−iaqL, qR → q′R = eiaqR. (2.10)

This symmetry is the axial U(1)A symmetry of the Lagrangian

To summarise, the QCD Lagrangian, at a classical level, is characterised by a global

SU(3)L × SU(3)R × U(1)B × U(1)A symmetry. In the field theory level, only the

3The Dirac fields can be rewritten in terms of their chiral components. One way to do that is to
use the right and left hand projection operators PL = 1 − γ5, PR = 1 + γ5, which when applied on
the Dirac fields return back their chiral components qL,l = PLql.

4Notice that the covariant derivative is independent of flavour.
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SU(3)L × SU(3)R × U(1)B is a symmetry of the theory. The U(1)A singlet vector

axial current is not conserved and the symmetry is called anomalous5.

In nature the quarks are not really massless and therefore mass terms should be

added to (2.1)

LQCDm =
∑

l=u,d,s

(
mlqL,lqR,l + mlqR,lqL,l

)
. (2.11)

These mass terms mix the right with the left handed fields and therefore explicitly

break SU(3)L × SU(3)R symmetry. The U(1)B symmetry is not affected by the

presence of mass terms and therefore is always conserved. If it is assumed that the

masses ml are not only finite but equal as well, then the symmetry of the

Lagrangian is enhanced to SU(3)V × U(1)B
6. In the case where the masses are

equal and small the chiral symmetry can be considered an approximate symmetry

of the Lagrangian.

Of course, the assumption that the three lightest quarks have equal masses is not

very good. A better approximation is to assume that the up and down quarks have

equal masses and the strange quark has an infinite mass, which is more realistic.

Then the chiral symmetry would be SU(2)L × SU(2)R.

2.5 Spontaneous chiral symmetry breaking in QCD

One of the most celebrated examples of spontaneous symmetry breaking is the

Higgs mechanism [9–11] that gives rise to the mass of the particles in the standard

model of particle physics. In QCD, a different mechanism spontaneously breaks

chiral symmetry which results in a dynamical generation of mass for the quarks.

This dynamical generation of mass explains the large mass of the proton, when

compared to the sum of the current masses of the two up and one down quarks that

form the proton.

There are different possible ways to break a symmetry. One way is to explicitly

5In the large Nc (number of colours) limit the symmetry is restored. The axial vector current
divergence is proportional to g2 ∼ 1

Nc
and therefore in the large Nc limit it becomes zero [14].

6The SU(3)V is the group that SU(3) “rotates” both right and left handed fields by the same
angle, θL

α = θR
α = θV

α .
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break it by adding a term in the lagrangian that doesn’t respect its symmetries e.g

mass term in QCD Lagrangian. A symmetry can also be broken spontaneously

which means that although the Lagrangian describing the system is invariant under

some symmetry, the ground state of the system does not respect that symmetry.

That symmetry is said to be spontaneously broken [12,13].

The implications of having a symmetry spontaneously broken are described by the

the Nambu-Goldstone theorem which states that when a continuous global

symmetry is spontaneously broken a number of massless scalar particles

(Nambu-Goldstone bosons) arise. This number is equal to the number of the

broken symmetry generators. Note that the massless scalars share the same

quantum numbers with the broken generators. Usually the Lagrangians used to

motivate spontaneous symmetry breaking have a potential that exhibits a

degeneracy of the ground state. When exactly one possible ground state is chosen

then the symmetry is spontaneously broken. In the case of QCD the spontaneous

chiral symmetry breaking can not be seen from the Lagrangian but it is a result of

the formation of a chiral condensate that fills the vacuum of QCD.

Why is it believed that chiral symmetry is spontaneously broken in QCD? If it is

assumed that SU(3)L × SU(3)R is a symmetry of QCD, then this should be

reflected in the hadron spectrum. The experimental expectations should be the

that hadrons organise themselves into two degenerate octets, one for each SU(3)

group, with opposite parities. Experiment reveals that this is not the case. A vector

hadron octet is present and therefore it seems that only the SU(3)V symmetry is

present in the QCD vacuum [6]. Furthermore, a second pseudoscalar meson octet is

present which is much lighter than the hadron vector octet. These observations can

only be explained if the chiral symmetry is spontaneously broken in the QCD

vacuum and therefore SU(3)L × SU(3)R is spontaneously broken to SU(3)V . The

eight light pseudoscalars observed are the Goldstone bosons due to the hidden

SU(3)A symmetry. Although Goldstone bosons are expected to be massless, the

observed Goldstone bosons have small mass due to the fact that chiral symmetry is

explicitly broken in nature by the mass of the quarks. Therefore, chiral symmetry is

only an approximate symmetry and that is why the Goldstone bosons are massive.
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Figure 2.1: This is the standard picture of the QCD phase diagram for two massless flavours.
The dashed line corresponds to a second order transition and the continuous lines to first
order transitions.

The spontaneous chiral symmetry breaking is a result of the formation of a scalar

chiral condensate in the QCD vacuum. Specifically, the chiral condensate qq̄, which

is not invariant under chiral transformations, has a non vanishing vacuum

expectation value

< qq̄ > = < q̄RqL + q̄LqR >6= 0, (2.12)

but it is invariant under SU(3)V . Therefore, in QCD the chiral symmetry is

spontaneously broken to an SU(3)V . The chiral condensate fills the vacuum of QCD

and results in a dynamically generated mass for the quarks (constituent mass).

2.6 Phase Diagram of QCD

In the following chapters a detailed study of the phase diagrams of various strongly

coupled field theories, which share some common features with QCD, is considered.

Through this exploration of the various QCD-like theories we hope that we will

gain some knowledge about the possible phase diagram of QCD. Here we attempt

to summarise the current knowledge on the QCD phase diagram.

The phase diagram of QCD can be mapped as a function of temperature and finite

chemical potential. Not many things are known about the phase diagram of QCD

but a combination of various models, lattice QCD and heavy ion collision

experiments suggest that the phase diagram could be like the one shown in figure
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2.1. The exact structure of the phase diagram depends on various parameters,

mainly the number of the quarks considered and their masses.

Nature lives in the vacuum of QCD where hadrons and pions are the excitations of

the vacuum (confinement). Chiral symmetry is broken by the chiral condensate, as

explained in section 2.5. For zero chemical potential and small temperature QCD is

described by hadrons. As the temperature is increased a phase transition occurs

and the system moves to a phase where the fundamental degrees of freedom are

quarks and gluons (deconfinement) and where chiral symmetry is restored. The

nature of the transition is speculated to be second order, when two massless

flavours of quarks are considered, and the order parameter is the chiral condensate.

If the fact that the quarks in nature are massive is taken into account then the

second order chiral transition turns into a crossover7, as a result of the explicit

chiral symmetry breaking. The same chiral transition happens for zero temperature

and finite chemical potential with the transition being first order. The first and

second order transitions should meet at some point of the phase diagram which is

called the tricritical point (or critical in the case of massive quarks). Furthermore,

lattice QCD calculations indicate that chiral transition and deconfinement

transition overlap.

A different phase transition happens in zero temperature and for some finite

chemical potential. As the chemical potential is increasing the vacuum of QCD

becomes populated with quarks. When the chemical potential reaches a specific

value (µ), baryon density is created in a non continuous way and a first order

nuclear matter transition occurs. The phase transition separates a phase in which

baryons are present but in a delute state to a phase where baryons are condensed.

This first order phase transition extends to the finite but small temperature region

and ends at a critical point (T = Tc ∼ 10MeV ).

Finally let us note that there are more phases in QCD, like the flavour

superconducting and flavour locking phases, which are not considered here. More

details regarding the QCD phase diagrams can be found in various review

7Lattice simulations suggest that the crossover happens at Tc ∼ 140− 190MeV [22–25].
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Chapter 3

Introduction to String Theory

and Gauge/Gravity Duality

3.1 String Theory and D-branes

3.1.1 Introduction to string theory

Quantum field theory is built on the idea that the various particles in nature can be

modeled by mathematical point-like particles. String theory, on the other hand,

extends this idea further by considering a one dimensional object, a string, as the

fundamental object of the theory. What we experience as particles in nature are

just the result of oscillations of these strings.

If strings are the fundamental objects describing string theory, a more extensive

study of these objects is required. Let us start with a string embedded in a curved

d-dimensional target spacetime (x0, ..., xd−1), described by a metric gµν . The string

worldsheet, the area that the string sweeps out as it moves in time, can be

parametrised by two coordinates (τ, σ), where τ is a time coordinate and σ is a

space coordinate. In order to study the kinematics of the string, as moving in the

target spacetime, an action should be defined whose variational principle should
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minimise the area of the string worldsheet1. The action is given by

S[x] = −T

∫
dA = −T

∫
dτdσ

√
−det(hab), (3.1)

where dA is the infinitesimal area element of the worldsheet, hab is the induced

metric which describes the “pullback” of the background metric on the string

worldsheet and is defined as

hab = gµν∂ax
µ(τ, σ)∂bx

ν(τ, σ). (3.2)

The functions xµ(τ, σ) describe the embedding of the string in the target spacetime

and T is the string tension. The string tension has dimension of mass per unit

length and is related to the string length ls and the Regge slope parameter α
′

through

T =
1

2πα′
=

1
2πl2s

. (3.3)

The action (3.1) is called the Nambu-Goto action and it describes the relativistic

string. The presence of the square root in the action makes its quantisation

difficult. Polyakov suggested, as a solution to the square root problem, an

alternative action that is equivalent to (3.1), at a classical level, and is given by

S[x] = −T

2

∫
dτdσ

√
−det(γab)gµνγ

ab∂ax
µ∂bx

ν . (3.4)

The Polyakov action introduces a new auxiliary field, the symmetric tensor γab,

which has a physical interpretation as the worldsheet metric. It is natural that (3.4)

should be supplemented with some constraints, if is to be equivalent to (3.1),

coming from the equation of motion of the auxiliary tensor γab. These constraints

are Tab = 02 and reflect the presence of two local symmetries of the worldsheet

action, the reparametrisation invariance and the Weyl invariance

Reparametrisation : (τ, σ)→ (τ(τ ′, σ′), σ(τ ′, σ′)), (3.5)

Weyl invariance : γab → e2ρ(τ,σ)γab, (3.6)

1Greek letters µ, ν, · · · will be used for labeling target spacetime and Latin letters a, b, · · · will be
used for labeling worldsheet coordinates.

2Tab is the energy momentum-tensor of the 1 + 1 dimensional worldsheet field theory.
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where ρ(τ, σ) is an arbitrary function. The existence of these symmetries allow us

to completely gauge fix the action in the case of a string. Convenient choices of

gauge can simplify the problem e.g conformal gauge.

The next natural step to be taken, is finding the equation of motion of the string by

varying the Polyakov action with respect to xµ(τ, σ). The variation of the action

generates some boundary terms which can only be eliminated by imposing

appropriate boundary conditions to the string endpoints. The boundary condition

choice is not unique and can result in two type of strings, open and closed strings.

One possible choice is

xµ(τ, 0) = xµ(τ, π) and
dxµ

dσ
(τ, 0) =

dxµ

dσ
(τ, π), (3.7)

which describes periodic boundary conditions and it corresponds to a closed string3.

Alternative choices of boundary conditions (b.c.), which still satisfy δS = 0, can be

either

dxµ

dσ
(τ, σ)

∣∣∣∣
σ=0,π

= 0 (Neumann b.c.) (3.8)

or

dxµ

dτ
(τ, σ)

∣∣∣∣
σ=0,π

= 0 (Dirichlet b.c.). (3.9)

The boundary conditions (3.8), (3.9) apply for the open string case. If a string

obeys Neumann boundary conditions for all µ, then Poincare invariance is

preserved. If at least one of the d directions of the string obeys Dirichlet boundary

conditions, then the string endpoints do not oscillate in these directions and

therefore the string endpoints are fixed. Note that Dirichlet boundary conditions

break Poincare invariance. Finally, the solution to the equation of motion of

xµ(τ, σ) can be found for both open and closed strings. These solutions include

terms describing the center of mass position of the string xµ
0 , momentum of the

string pµ
0 and oscillation of the string4.

3We have assumed that the closed and open string space coordinate σ can acquire values in the
interval 0 ≤ σ ≤ π.

4The oscillation of the string is described by a sum of the different oscillation modes which are
described by the coefficients αµ

ν , α̃µ
ν , where ν is an integer giving the oscillation mode and µ is the
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Sector Boson/Fermion Massless fields
NS-NS Boson gµν , Bµν ,Φ
NS-R Fermion Ψµ,λ
R-NS Fermion Ψ′

µ,λ′

R-R Boson Ramond Ramond fields

Table 3.1: Closed string spectrum in IIB superstring theory [29]

Sector Boson/Fermion Massless fields
NS Boson Aµ(x)
R Fermion Spinor

Table 3.2: Open string spectrum in superstring theory

The picture of the string given until now is purely classical. If we wish to describe a

quantum field theory on the worldsheet, then the classical theory should be

quantised. The bosonic string can be quantised by following the standard canonical

quantisation techniques 5. The outcome of this analysis reveals two very important

features of the bosonic string. Firstly, the bosonic string requires the presence of at

least twenty six dimensions and secondly the string spectrum, for closed and open

strings, contains tachyonic modes. If string theory is going to be of any physical

interest, it should be free from instabilities (tachyons). Furthermore, nature has

many fermionic particles which somehow need to be included in string theory.

A solution to the bosonic string problems is given by superstring theory. It proves

that when supersymmetry is introduced in the theory, fermions are included and

instabilities are cured. The critical number of dimensions required for the theory to

be free from anomalies is reduced to ten. This new theory is called superstring

theory6.

Superstring theory is a very extensive subject so we have chosen to restrict our

discussion here to a brief presentation of the ten dimensional IIB superstring

massless (α
′ → 0) spectrum (see tables 3.1, 3.2) which is relevant to the following

sections. The NS-NS sector of the closed string spectrum contains: the symmetric

tensor gµν which describes the background metric, Bµν which is an antisymmetric

Kalb-Ramond tensor and Φ which is a scalar field called the dilaton and which is

spacetime index.
5In canonical quantisation xµ

0 , pµ
0 , αµ

ν , α̃µ
ν should be promoted to operators.

6There are 5 different superstring theories but for our purposes we limit our interest to the type
IIB superstring theory.
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related to the string coupling through eΦ = gs. The R-R sector contains three

n-form fields C(n), specifically C(0), C(2), C(4). The fermionic sector (R-NS,NS-R)

consists of Ψµ and Ψ
′
µ, which are spin 3

2 gravitino fields, λ and λ′ which are spin 1
2

dilatino fields. The open string spectrum contains a ten dimensional gauge field

Aµ(x) in the NS sector and a Spin(8) spinor in the R sector. For more details

regarding superstring theory see [26–29]

3.1.2 T duality

The T duality is a very unique symmetry, characteristic of bosonic string theory

with no quantum field theory counterpart. If bosonic closed string theory has at

least one compact dimension then some new quantum numbers arise, Kaluza Klein

number K and sometimes the winding number W . If the Kaluza Klein number is

interchanged with the winding number and simultaneously the radius of the

compact dimensions R is interchanged with a new radius R
′
= α

′

R , then the theory

remains unchanged. This symmetry is called T duality. This duality is of great

interest, as we are going to discover in this section, because it postulates the

existence of new objects in string theories, the D branes.

In more detail, imagine a closed string living in a nine dimensional flat Minkowski

spacetime described by xµ (µ = 0, 1, · · · , 8) with the tenth dimension x9

compactified on a circle of radius R. Naturally x9 should be periodic, obeying

x9 ∼ x9 + 2πR. Since the points x9 = 0 and x9 = 2πR should be identical, the

translation operator acting on the x9 direction should be single-valued at these two

points and therefore e−ip9x9
= e−ip9(x9+2πR) should hold, leading to the conclusion

p9 =
K

R
and K ∈ Z, (3.10)

where K is called Kaluza-Klein excitation number. Relation (3.10) implies that

momentum on the compact direction is quantised, as expected from quantum

mechanics. In addition, the string has the possibility of being wrapped W times

around the spacetime circle, something that a point particle can not do. That
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implies

x9(τ, σ + π) = x9(τ, σ) + 2πWR and W ∈ Z, (3.11)

where W is called winding number.

Now let us have a look on how the compactification of the x9 affects the mass

spectrum of the string as seen by an nine dimensional point of view. The mass is

expressed by the relation

m2 =
K2

R2
+

W 2R2

α′2
+ ... (3.12)

The first term is proportional to K and is a result of compactification and the

second term is proportional to W and is a strictly stringy effect, only a string can

wind around a compact dimension. The ellipsis represents the usual mass terms

arising from the oscillation of the string for K = W = 0.

If we take a closer look at (3.12), it is not difficult to notice that when the following

interchanges

K ←→W and R←→ R′ =
α′

R
(3.13)

happen simultaneously, then (3.12) remains invariant. Therefore, (3.13) is a

symmetry of the closed string spectrum, called T-duality. In the limit where R→ 0,

the K modes become infinitely heavy and decouple from the theory. The W modes

for K = 0 form a continuum tower of modes. This picture contradicts the

expectations from quantum field theory, where no continuum tower of modes is

present. Although R→ 0 implies a “disappearing” dimension, the result reveals

that the x9 dimension is recovered.

What happens in the case of open string? Open strings can not wind around

compact dimensions and therefore W is meaningless and also Kaluza-Klein

excitation number K is a result of compactification and it should be present. The

open string picture resembles that of R→ 0 from the quantum field theory point of

view. Therefore, when K 6= 0 the modes are infinitely heavy and decouple but in the

case of K = 0 no new continuum tower of states is revealed, therefore x9 dimension

is not recovered. When T-duality is applied to the open string, which obeys

Neumann boundary condition in the compact string theory direction, the T-dual
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picture is an open string obeying Dirichlet boundary condition in the compact x9

direction and Neumann in the rest of the dimensions. The T dual picture should be

interpreted as a string having its endpoints fixed in the x9 direction but which is

free to move in the other directions. Therefore, the T dual string have its endpoints

confined in a hypersurface. Generally, T duality can be applied to a larger number

m of compact dimensions. The T dual picture necessitates the presence of

hypersurfaces of dimension d + 1−m, called D branes [29].

Finally, in the T-dual picture the open string endpoints attached to the D brane

obey the following relation

x9′(τ, π)− x9′(τ, 0) =
2πα′K

R
= 2πKR′, (3.14)

where the x9′ indicates the T-dual x9 direction. If we take a closer look at (3.14),

we can conclude that under T-duality the Kaluza-Klein number K, of the initial

string theory, becomes a kind of winding mode number for the dual open string.

Furthermore, the T-dual theory is compactified on a circle with radius R′ = α
′

R .

Finally, T-duality is a symmetry for the open string, as well.

From all the above we can conclude that T-duality is a symmetry of bosonic string

theory. Let us note that T duality applies to superstring theories as well but with

the extra feature that the T dual theory of IIB superstring is IIA superstring and

vice versa7. T duality is of great importance because it gives rise to some new

objects in superstring theories, the D branes. These new objects are going to be

explored in more detail in the following section.

3.1.3 D branes

Dp branes are p + 1 dimensional hypersurfaces arising from T duality and on which

open strings can end. They are fundamental objects in superstring theories and

their existence opened the way to new applications of string theory, like AdS/CFT

correspondence. The objective of this section is to define the physics of the Dp

7This is true when an odd number of dimensions are T-dualised. When T duality is applied for
an even number of dimensions then IIB theory returns a IIB theory and the same applies for IIA.
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branes through a definition of their worldvolume action and also to understand how

D branes can give rise to non-abelian gauge theories.

D branes are dynamical objects in superstring theory that can fluctuate both in

shape and position. This is obvious if we keep in mind that open strings are

attached to D branes and therefore control both its shape and position. These open

strings respond to the various background fields and therefore the D branes should

respond to the background fields as well [28]. From this it should be clear that

background fields define the dynamics of the D brane worldvolume and therefore

the most general action describing the branes should depend on them.

Furthermore, the action describing the D branes should depend on the fields living

in its worldvolume, which are scalars and gauge fields. These fields arise from the

open string spectrum which contains a massless8 ten dimensional gauge field.

Because the open string endpoints are attached to the branes, the gauge field

decomposes to components parallel and perpendicular to the D brane. As a result

the ten dimensional gauge field give rise to an U(1) gauge field Aa (a = 0, · · · , p)

and 9− p scalars describing the fluctuation of the brane in the perpendicular

direction to its worldvolume [29].

As a first attempt to describe the D brane worldvolume action let us consider only

the scalar fields. The most obvious way to proceed, is to perform a geometrical

extension of the Nambu-Goto action in the case of a D brane. A reasonable

extension is

S ∼
∫

dp+1ξ
√
−det (P [Gab]), (3.15)

where P [Gab] is the pullback of the background metric which is defined as

Gab = gµν
∂xµ

∂ξa

∂xν

∂ξb
. (3.16)

Action (3.15) when varied minimises the D brane worldvolume. Of course (3.15) is

not the end of the story. As already discussed, a gauge field lives on the brane as

8We only care about the massless modes of the strings because we will only consider the low
energy limit of the D brane action. All the massive modes in the string spectrum decouple in this
limit.
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well. Also, background fields interact with the brane. Our purpose is to define a

low energy effective action, where only the massless fields of the closed and open

string spectrum contribute. This action should respect all of the symmetries of the

D brane worldvolume and gauge invariance. The most general form of the action in

the static gauge is9

SDBI = −Tp

∫
dp+1ξe−Φ

√
−det(P [Gab + Bab] + 2πa′Fab) (3.17)

and is called the Dirac-Born-Infeld (DBI) action, where P [Bab] is the pullback of the

background antisymmetric Kalb-Ramond tensor on the brane and Fab is the field

strength tensor of the gauge fields living on the brane and Φ is the dilaton field. Tp

is D brane tension, which expresses how much the brane responds to changes and it

has dimension of mass per worldvolume. The brane tension is defined as

Tp =
1

gs(2π)p(α′)
p+1
2

. (3.18)

The Dirac-Born-Infeld action has accounted for the NS-NS massless closed string

sector only. The closed string spectrum contains a R-R sector as well which is made

of n-form gauge fields C(n), as explained in string theory section, which couple to

the brane. In the same manner that a pointlike particle carries a charge which acts

as a sources to the one-form gauge field, Dp branes carry a charge which act as a

source to the C(p+1) fields living in the background. In type IIB superstring theory

the R-R sector consists of n-form gauge fields C(n), where n = 0, 2, 4, that can

couple electrically or magnetically to stable Dp branes with p = −1, 1, 3, 5, 710. In

type IIA, n takes the values n = 1, 3 and therefore stable branes are those with

p = 0, 2, 4, 6, 811 [26]. The contribution of the R-R sector to the dynamics of the D

9The D brane worldvolume is characterised by reparametrisation invariance. It is possible to use
this symmetry to choose a convenient gauge that simplifies our calculations. If xµ, µ = 0, · · · , 9 are
the target spacetime coordinates and ξa, a = 0, · · · , p are the D brane worldvolume coordinates then
the static gauge corresponds to xµ = ξa for µ = a = 0, · · · , p.

10A C(n) field can couple electrically to D(n−1) and magnetically to D(7−n) branes.
11Generally, it is possible to have branes with odd values of p in IIA and even values of p in

IIB superstring theory, but in that case the branes do not carry conserved charge and therefore are
unstable. Those branes are called non-BPS states.

23



brane worldvolume is expressed by the Chern-Simon action

SCS = −Tp

∫
dp+1ξ

[
C eBab+(2πα

′
)Fab

]
p+1

, (3.19)

where C is the sum of the C(n) fields that couple magnetically or electrically to the

brane considered. The Chern-Simon action plays a crucial role in chapter 7, where

holographic baryons are defined.

The final low energy effective action is given by the sum SDBI + SCS . This is a

purely bosonic action12. Furthermore, the action defined here applies to the abelian

case only. For the non-abelian action see [28].

Now let us move towards a different direction and discuss, a perhaps surprising but

at the same time very powerful feature of D branes, the appearance of a

non-abelian U(Nc) gauge theory from a group of Nc coincident D branes. Let us

start from the beginning. In the presence of a single brane, open strings can start

and end on the same brane. In this case, there is nothing that can stop the strings

from shrinking to zero length and give rise to massless U(1) gauge fields. If a

second parallel brane is added, separated by a distance r from the first one, then

there are some additional choices from where the open strings can start and end13.

Apart from the possibility of having an open string starting and ending on the same

brane, strings can start from the first brane and end on the second one and vice

versa. To distinguish the different gauge fields arising, new indices are assigned to

each string endpoint which are called Chan-Paton factors. The value of the index is

defined by the brane on which the string endpoint is attached to. Therefore the

gauge fields, coming from the open string spectrum, could be written as (Aµ)ij (

i, j = 1, 2), where the i index indicates the brane at which the string starts from

and j the brane it ends. An open string stretching between different branes are

always massive (the mass is given by m = Tr) and therefore an U(1)× U(1) gauge

theory arises from these two branes. If we bring the two branes on top of each

other, then all four gauge fields become massless. As a result the gauge symmetry is
12There is a contribution to the DBI action from the fermionic fields as well but since is not

considered in the next chapters we will not write it down explicitly. For more details see [41].
13Open strings in IIB Superstring are oriented strings, meaning that the endpoints of the string

are distinguished.
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enhanced to a U(2) gauge group. If we extend this to the case of Nc coincident D

branes then a U(Nc) gauge theory arises. Notice that the degrees of freedom

available, N2
c gauge fields, indicate that the gauge fields transform in the adjoint

representation of the gauge group. The fact that from a group of two coincident D

branes give rise to a U(2) gauge theory which can be broken to a U(1)× U(1)

symmetry when the branes are separated, is an example of a Higgs mechanism in

string theory. The same applies for a larger number of branes.

3.2 Large Nc gauge theories

For many years a relation between gauge theories and string theory was speculated.

That is not very surprising since string theory itself was invented as a candidate

theory of strong interaction. A possible description of a gauge theory through some

other equivalent (dual) theory, in this case the dual theory is string theory, could be

of great importance. It is well known that not many tools are available for tackling

strong coupling physics, as perturbation theory fails in this regime and only

numerical methods provide an alternative tool. It is hoped that a possible duality

can open the way for exploring the strong coupling regime of any quantum field

theory. This section is based on [32,37].

The first strong evidence connecting gauge theories and string theories was provided

by t’Hooft [31]. He studied the case of an SU(Nc) gauge theory and suggested that

the number of colours Nc can provide an expansion parameter that allows a

perturbative expansion in 1
Nc

, in the large Nc limit. This large Nc limit should be

taken with care so that it does not affect the ΛQCD scale of the theory. For this

reason a new parameter λ = g2
Y MNc (t’Hooft coupling) is defined that is kept fixed.

In more detail, let us assume that there is a general theory with fields Φα
i in the

adjoint of SU(Nc), where α is the adjoint index and i is some label for the field. We

can write down a schematic Lagrangian of the form

L ∼ Tr[dΦidΦi] + gY M cijk Tr[ΦiΦjΦk] + g2
Y M dijkl Tr[ΦiΦjΦkΦl],
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where gY M is the coupling constant of the theory. If the fields are redefined as

Φ
′
i = gY MΦi the new Lagrangian takes the form

L
′ ∼ 1

g2
Y M

(
Tr[dΦ

′
idΦ

′
i] + cijk Tr[Φ

′
iΦ

′
jΦ

′
k] + dijkl Tr[Φ

′
iΦ

′
jΦ

′
kΦ

′
l]
)

. (3.20)

This rescaling has brought an overall factor 1
g2

Y M
in front of all the terms of L

′
,

which factor can be written in terms of the t’Hooft coupling λ as 1
g2

Y M
= Nc

λ . If we

wish to derive the Feynman rules of the theory from the Lagrangian (3.20), it is

convenient to draw the Feynman diagrams in double line notation. To make the

double line notation possible the fields in the adjoint representation should be

written as Φj
i , where the i, j are now the fundamental and antifundamental

representation indices respectively. In this notation the Feynman diagrams are

arranged by their topology, each Feynman diagram corresponds to a compact,

closed, oriented two dimensional surface. The contribution of each Feynman

diagram to the vacuum-vacuum amplitude is given by

NV−P+LλP−V = N2−2h
c λP−V , (3.21)

where V, P, L are the numbers of vertices, propagators and loops respectively and h

is the genus of the two dimensional surfaces. The total contribution to the vacuum

to vacuum amplitude is given as

log Z =
∞∑

h=0

N2−2h
c fh(λ), (3.22)

where fh(λ) is a polynomial of λ.

Finally, in the large Nc limit it becomes clear that the planar diagrams (h = 0)

dominate the expansion and the contribution of the rest of the diagrams is

suppressed by powers of 1
N2

c
.

The most striking characteristic of this large Nc expansion is the fact that it

resembles the perturbative expansion of closed string theory

A =
∞∑

h=0

g2h−2
s Fh(α

′
), (3.23)
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where Fh(α
′
) is the contribution of the 2d surfaces with genus h, if Nc is

substituted by 1
gs

. This resemblance is more evident in the large Nc limit and

supports the statement that a string theory and a gauge theory can be related.

Which precise string theory is related to the SU(Nc) gauge theory is not clear from

t’Hooft’s idea. In the next section the AdS/CFT correspondence expands and

makes more specific the idea of the duality between a gauge theory and a string

theory and at the same time provides further evidence for its existence and makes

quantitative calculations possible.

3.3 Introduction to AdS/CFT correspondence

3.3.1 AdS/CFT correspondence

Gauge/gravity duality is a hypothesis stating that certain string theories can be

equivalently described by certain field theories. The first to suggest this conjecture

was Maldacena in 1998. In his paper [46], he made the conjecture that a four

dimensional SU(Nc) N = 4 Super Yang Mills (SYM) conformal field theory is

equivalent to ten dimensional IIB Superstring theory on AdS5 × S5. Maldacena’s

conjecture is an example of a gauge/gravity duality that is called the AdS/CFT 14

correspondence. The AdS/CFT conjecture originated from the dual interpretation

of D branes, as a gauge theory and as a gravity theory. In this section we are going

to focus on the AdS/CFT correspondence and we are going to present the various

arguments supporting this hypothesis.

Consider a stack of Nc parallel D3 branes, placed on top of each other. Branes are

massive objects which couple to gravity with a strength given by the string coupling

gs. Their total effect on the curvature of spacetime is measured by gsNc [33].

Let us first consider the limit gsNc << 1 where branes live in a flat ten dimensional

background. There are two types of string excitations in this case, open and closed

strings. The open strings are excitations of the D3 branes and closed strings are

14AdS stands for Anti de Sitter and CFT for conformal field theory.
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excitations of the bulk. In the low energy limit 15, the fields living on the branes

decouple from the fields living in the bulk and also only the massless degrees of

freedom contribute to the Lagrangian of the system. In this limit, the open string

excitations, described by an N = 4 SYM theory with an SU(Nc) gauge group, are

decoupled from the closed string excitations, described by ten dimensional IIB

Supergravity.

In more detail, the complete effective action16 describing the massless modes is

given by

S = Sbulk + Sbrane + Sint. (3.24)

There are three distinct contributions to the effective action coming from the

massless modes in the bulk (Sbulk), the brane (Sbrane) and the interaction between

them (Sint). The Sbulk is the ten dimensional IIB supergravity action plus some

higher derivative terms and Sbrane contains the four dimensional SU(Nc) N = 4

Super Yang Mills plus some higher derivative corrections. In the low energy limit

(α
′ → 0), the higher derivative terms in Sbrane and Sbulk vanish because they are

proportional to the square root of the Newton coupling
√

GN ∼ gsa
′2. Furthermore,

all the terms in Sint are proportional to
√

GN and therefore Sint → 0 when α
′ → 0,

which results in the decoupling between the ten dimensional IIB supergravity in the

bulk from the 3 + 1 dimensional gauge theory living on the branes.

If we choose to consider the limit where gsNc >> 1, then gravity is not negligible

anymore and D3 branes arise as a supergravity solution [34] given by

ds2 = f−
1
2 (−dt2 + dx2

1 + dx2
2 + dx2

3) + f
1
2 (dr2 + r2dΩ2

5), (3.25)

F5 = (1 + ∗)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ df−1, (3.26)

f = 1 +
R4

r4
, R4 = 4πgsα

′2Nc, (3.27)

where F5 is the field strength of the C(4) field sourced by the D3 branes, xi

(i = 1, 2, 3) are the space coordinates along the worldvolume of the D3 branes and

15Low energy compared to the inverse string length ls.
16It is an effective action in the Wilsonian sense where all massive degrees of freedom are integrated

out.
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dΩ2
5 is the metric of a unit radius five sphere. In the supergravity description there

are only closed string excitations. In the low energy limit the modes of the closed

strings that survive are, either the massless modes propagating in the bulk or closed

strings that are very close to r = 0 (horizon). These two type of excitations

decouple from each other in the low energy limit. Therefore, the low energy theory

consists of free bulk supergravity in the asymptotic flat Minkowski spacetime and

string theory on the near horizon region of the geometry. The near horizon metric is

ds2 =
r2

R2
(−dt2 + dx2

1 + dx2
2 + dx2

3) +
R2

r2
dr2 + R2dΩ2

5 (3.28)

and it describes an AdS5 × S5 spacetime [32,37]. The parameter R corresponds to

the radius of both the AdS5 spacetime and the S5 sphere.

By comparing the two descriptions of D branes for the two different gsNc limits we

can observe that each limit consists of two low energy decoupled sectors. Since both

limits have a common sector, which is free supergravity in ten dimensional

Minkowski spacetime, it is conjectured that the two sectors left are equivalent

descriptions of the same physical phenomena. Therefore, the most general

statement for the AdS/CFT correspondence is

3 + 1 dimensional N = 4 SYM theory with an SU(Nc) gauge group

m
ten dimensional IIB string theory on AdS5 × S5.

This is the first time that a connection between string theory and gauge theory was

found. The AdS/CFT correspondence as presented here does not provide a

quantitative connection between the two descriptions. A more quantitative version

of the correspondence is going to be presented later in section 3.3.6.

3.3.2 N = 4 SYM theory

It has been claimed in the previous section that a stack of parallel coincident D3

branes in the low energy limit gives rise to a four dimensional SU(Nc) N = 4 Super
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Yang Mills (SYM) theory. Although it has been explained in section 3.1.3 why is

the gauge group of the conformal field theory an SU(Nc) group and not some other

group, it has not been discussed yet the field content of the theory.

The SU(Nc) N = 4 Super Yang Mills theory is a conformal field theory whose beta

function is zero up to all orders in perturbation theory. The fact that the theory is

highly supersymmetric restricts its content to a unique supermultiplet. The field

content is as follows. There is a gauge boson Aµ transforming as a singlet of SU(4),

six real scalars φI (I = 1, · · · , 6) transforming in the 6 of SU(4) and two

4-component fermions transforming in the 4 and 4̄ of SU(4). The theory has a

global SU(4) (isomorphic to SO(6)) symmetry which is an R- symmetry17 [36, 39].

Now that the field content of the conformal gauge theory is known, it is obvious

that the fields of SU(Nc) N = 4 SYM are exactly the same as the fields living on

the stack of Nc coincident D3 branes, as described in section 3.1.3.

3.3.3 Symmetry and parameter matching

If the two sides of the correspondence are to be considered as different descriptions

of the same physical phenomena, it is necessary that firstly, the parameters of the

two theories are related and secondly, both theories share the same symmetries.

The gauge theory has two dimensionless parameters, the SYM coupling constant

gY M and Nc. The string theory has a dimensionless parameter gs and two

dimensionful parameters, ls and R, whose ratio gives a dimensionless parameter.

The matching between the dimensionless parameters is the following. In the gravity

side the gs can be matched to gY M through

g2
Y M = 4πgs (3.29)

and the Nc is interpreted as the total integrated flux of the F5 field strength over

17An R-symmetry is a symmetry whose operators do not commute with the supercharges. In this
particular case because of the R symmetry each different component of the supermultiplet has a
different SO(6) quantum number.
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the S5 sphere of radius R. The second relation connecting the various parameters is

R4

l4s
= (4πgsNc). (3.30)

Regarding the symmetries of the gauge theory and the string theory, the conformal

field theory has a Conf(1, 3) symmetry which matches with the SO(2, 4) isometry

of the AdS5 spacetime and the SU(4)R R-symmetry of the gauge theory can be

matched to the SO(6) isometry of the S5 sphere. Furthermore, supersymmetries are

matched in both sides of the correspondence. The conformal field theory has in

total 32 supercharges, the same number as the AdS5 spacetime. All these

symmetries can be described by the superconformal group SU(2, 2|4). Note that

gauge symmetries in the field theory side should not be matched by some symmetry

in the gravity side because gauge symmetry is a result of the use of redundant

variables (gauge fields).

3.3.4 Validity and the three versions of the correspondence

In section (3.3.1) a conjecture has been made that IIB string theory on AdS5 × S5

is equivalent to a 3 + 1 dimensional N = 4 SYM theory with an SU(Nc) gauge

group. Although this statement is very general (it applies for all values of Nc and

gs) and of great theoretical power, it poses some serious computational difficulties

which can not be overcome with our current knowledge. Specifically, string theory

on curved spacetimes with finite R-R flux is not well understood. Furthermore,

gauge theories are tractable only in the weak coupling limit, when perturbation

theory can be applied. Luckily, specific limits can be taken that return simpler

versions of the correspondence. One such limit is the t’Hooft limit at which

λ = gsNc is taken to be finite and fixed along with Nc →∞ [31]. The advantage of

this limit is that the string coupling gs = λ
Nc

is small and therefore string

perturbation theory can be used as a tool for performing certain calculations.

Moreover, the SYM theory is simplified in this limit in the sense that only the

planar diagrams contribute to the theory, see section 3.2. Even though the t’Hooft

limit simplifies the correspondence considerably, that is not always enough because
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neither perturbative string theory or the simplified gauge theory are easy to solve.

Luckily, if an extra limit is taken, the correspondence becomes tractable.

Specifically, if λ is fixed to a large value, string theory can be approximated by

classical IIB supergravity in AdS5 × S5 and therefore computations in this side of

the correspondence are possible. Also, in the large λ limit the field theory lives in

the strong coupling regime where computational tools are limited. Exactly at this

point is where the power of the correspondence is made apparent. The

correspondence can be used as a tool for accessing the, otherwise difficult to deal

with, strongly coupled regime of the field theory through supergravity calculations.

This weaker form of the correspondence (t’Hooft limit and large λ) is the one used

in the following chapters as a tool for studying strongly coupled gauge theories.

3.3.5 Holographic Energy scale

The gravity side of the correspondence has five non-compact dimensions18 as

opposed to the four dimensions of the gauge theory. The fact that a five

dimensional gravitational theory encodes the same amount of information as a

theory in four dimensions poses a very interesting question about the nature of this

extra dimension. An easy way of probing the fifth dimension is by using the

dilation symmetry of the theory. Since dilation is a symmetry of both theories, it

should leave them unchanged. Consider a scalar field in the gauge theory whose

action is given by

S =
∫

d4x(∂φ)2. (3.31)

If the transformation x→ eαx is applied, then the only way for the action to remain

unchanged is if φ transforms as φ→ e−αφ. Therefore, the scalar field φ has energy

dimension and the x has inverse energy dimension. If the same transformation is

applied in the gravity side of the correspondence and by requiring the metric (3.28)

18The fields living on AdS5×S5 are ten dimensional but because S5 is a compact space a Kaluza-
Klein reduction of the fields to five dimensions is possible. Since we only consider the low energy
limit of the theory, where only the massless modes contribute from all the modes of the Kaluza Klein
tower, we keep only the lower excitation terms.
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to remain invariant, the fifth dimension r of the metric should transform as

r → e−αr. (3.32)

Therefore, the extra dimension in the gravity side transforms in the same manner

as the scalar field in the gauge theory and therefore has energy dimension. It is

natural to interpret this extra dimension r as the Renormalisation group scale of

the gauge theory [39].

With this holographic identification, a natural question that arises is where is the

dual field theory located? The most fundamental field theory is considered the one

without any degrees of freedom integrated out (in the Wilsonian sense) and

therefore is defined in an infinite energy scale. According to the holographic

description of the correspondence, in this case the dual field theory should live at

the boundary r →∞ of the AdS5 spacetime, since r is identified with the energy

scale of the theory. If some UV degrees of freedom are integrated out in the field

theory (moving in lower energy scale), that will correspond in the gravity side as

moving towards the horizon r = 0 of the AdS5 spacetime [26,40].

3.3.6 Operator matching

According to the gauge/gravity duality, string theory and a gauge theory can

describe the same physical system. It is then logical that both descriptions should

respond to perturbations in a similar way [38]. More precisely, studying the

perturbations in each of the two theories could be very useful in creating a

dictionary that links the two different descriptions [47,48], based on the responses

to the perturbations.

Let us study a known example that can provide some insight on how to relate the

two theories. The SYM coupling gY M is related to the string coupling through

(3.29) and also the string coupling gs is given by the expectation value of the

dilaton field at the AdS5 boundary (r →∞). If a perturbation (sometimes called

deformation) is applied to the gauge theory by changing the SYM coupling
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constant, then the expectation value of the dilaton field at the boundary should

change as well so that the relation (3.29) will still hold. This example can be

generalised by considering a general deformation of the gauge theory of the form

S → S +
∫

d4x φ0(x)O(x), (3.33)

where O(x) is a local, gauge invariant operator and φ0(x) is the source of the

operator. The gY M in our example is a source to some operator. Therefore, in the

general case there should be a field in the gravity side whose asymptotic value

matches with the source φ0(x), as the dilaton in the above example, for each

operator in the field theory [37]. This one to one matching between the fields in the

bulk and the field theory operators is called field/operator matching. In [47,48] the

field/operator matching was stated in a path integral language as

Zstring

[
φ(~x, r)

∣∣
r=∞ = φ0(x)

]
=

〈
e
R

d4x φ0(x)O(x)
〉

FT
, (3.34)

where Zstring is the full partition function in string theory and the r.h.s is the

generating functional in the field theory. This is the most general operator/field

matching recipe arising from the gauge/gravity duality. It is possible to

approximate the string theory partition function with the supergravity partition

function, when using the weak form of the correspondence (see 3.3.4), and therefore

(3.34) becomes

e−ISUGRA ∼
〈
e
R

d4x φ0(x)O(x)
〉

FT
, (3.35)

where ISUGRA is the on-shell supergravity action19.

The next obvious question is how to determine the dual field for a given field theory

operator? This is not always possible but a guide for the identification should be

provided by the quantum numbers and symmetries. Specifically, the field and

operator should share the same quantum numbers under the global symmetries of

the theory [37].

19It is possible to have more than one on-shell supergravity actions, if there are more than one
solutions to the equation of motion of the bulk field of interest. In this case, it is necessary to decide
which solution is the real vacuum of the theory by comparing their free energies [32].
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To explore further the operator/field matching it is very instructive to consider the

case of a five dimensional massive scalar field Φ(~x, r) living in AdSd+1 × S5. This

field is dual to some operator O(x), which lives on the d dimensional Minkowski

boundary of AdSd+1 × S5, where the gauge theory lives. The bulk action is the

following

S = −1
2

∫
drddx

√−g
(
gMN∂MΦ∂NΦ + m2Φ2

)
, (3.36)

where M, N = 0, · · · , d + 1. It is convenient to Fourier decompose the field Φ in the

Minkowski directions xµ and then calculate its equation of motion which is the

following

r1−d∂r(rd+1∂rΦ)− (k2R2r−2 + m2R2)Φ = 0, (3.37)

where kµ = (E, ~p) and therefore k2 = −E2 + ~p2. The (3.37) describes the scalar

field Φ in the bulk. Since a connection between the field Φ in the bulk and the

operator on the boundary is investigated, the study is limited to the r →∞ case.

The solution to the asymptotic equation of (3.37) is20

Φ(~x, r) ∼ A(x)r∆−d + B(x)r−∆, (3.38)

where

∆ =
d

2
+ ν and ν =

√
m2R2 +

d2

4
. (3.39)

The next step is the interpretation of the asymptotic solution. There are two linear

contributions of which the first term ∼ A(x) is non-normalisable and the second

term ∼ B(x) is normalisable21. The non-normalisable term is dominant at the

boundary and therefore it is natural to match the non-normalisable asymptotic

value of the field to the source of the operator O(x) at the boundary. The solution

is singular at the boundary and needs to be regularised. The exact matching is

φ0(x) = lim
r→∞ rd−∆Φ(~x, r). (3.40)

20The solution is Fourier transformed back to position coordinate space.
21It is possible that both terms are normalisable when the mass is in the range − d2

4
≤ m2R2 ≤

− d2

4
+ 1 but this case is not going to be considered here.
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This last expression implies that the source acquires a mass dimension d−∆ and

therefore the operator O(x) has mass dimension ∆.

The normalisable terms should be identified with the states of the boundary theory

and more specifically the coefficient B(x) should be identified with the expectation

value of the operator O(x) [37].

Finally, let us make some observations regarding (3.39). This relation indicates a

correspondence between the mass dimension of the gauge theory operator and the

mass of the field in the bulk. For example, in the case of a massless scalar field the

mass dimension of the corresponding operator is d. The relation between mass and

dimension can be generalised for any p-form field in the bulk and the expression

that relates the mass of the bulk field with the dimension of the field theory

operator is

m2R2 = (∆− p)(∆ + p− d). (3.41)

Moreover, the definition of ν imposes a limit on the values of mass as a result of the

requirement that the square root should be real. The specific limit is

m2R2 ≥ −d2

4
. (3.42)

The conclusion from the above relation is that the mass of the scalar field in the

bulk can have negative values as long as it doesn’t become too negative. Generally,

all the fields in the bulk have a minimum allowed value for the mass which is called

Breitenlohner-Freedman(BF) bound [49,50] 22.

3.4 Generalisations of AdS/CFT

The discussion of the AdS/CFT correspondence in the previous sections was

restricted to a specific example of the duality, the case of N = 4 SU(N) SYM

theory being dual to a ten dimensional IIB superstring (supergravity) theory on

AdS5 × S5. The gauge theory considered in this case has no connection with nature

22Equation (3.42) holds for the case of a scalar field. For gauge fields, tensor fields e.t.c the BF
bound is different.
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and therefore is not directly useful for physical applications, but it can serve as a

starting point for the development of dualities between other more realistic field

theories and their gravity duals. The example discussed can be “deformed” in many

different ways like adding temperature, adding fundamental matter, non-trivial

dilaton e.t.c. so that the gauge theory will exhibit some interesting characteristics

like confinement, running coupling e.t.c. which will bring the theory closer to QCD.

The purpose of the present section is to present some ways that these deformation

can be achieved. More details will be provided in the following chapters when

necessary.

3.4.1 Adding flavour

The example of the N = 4 SYM theory with SU(N) gauge group, discussed in the

previous sections, includes only fields transforming in the adjoint representation of

the gauge group. In real QCD, quarks transform in the fundamental representation

of SU(3) and gauge fields in the adjoint representation of the same group.

Therefore, there is a need for extending the correspondence in a way that

fundamental degrees of freedom can be accommodated as well. One possible way to

do that is by introducing a small number of Nf Dp probe branes which was

originally suggested in [51]. In the next chapters we focus our interest in specific

cases of D7 and D5 branes. Understanding how to introduce these branes and how

the AdS/CFT correspondence is modified by them is the main purpose of this

subsection.

How does the introduction of a different type of Dp brane, where p > 3 and odd,

introduce fundamental matter in the theory? When a new type of brane is

introduced, additional types of open strings are present, those stretching between

D3-Dp and Dp-Dp branes. Open strings having both ends attached to D3 branes

produce fields transforming in the adjoint representation of the U(Nc) gauge group.

When only one end is ending on the D3 brane, naturally such a string describes

matter in the fundamental representation of the same gauge group.

Let us explain how the correspondence works in the case of a D7 brane, following a
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 X X X X
D7 X X X X X X X X

Table 3.3: The background D3 and the probe D7 branes embedded in a ten dimensional Minkowski
background.

similar logic to 3.3.1 . In the gsNc << 1 case, a stack of Nc coincident D3 branes is

placed in a flat ten dimensional spacetime and Nf D7 branes are added in a way

summarised in the above table. The D3 branes 23 share all of their directions

x0 − x3 with the D7 branes. In addition, the D7 branes extend in another four

directions x4 − x7. The x8 and x9 directions are perpendicular to both types of

branes. In this setup, there is an apparent SO(4)× SO(2) isometry characterising

the directions perpendicular to the D3 branes. SO(4) rotates the x4 − x7 directions

and SO(2) rotates the x8− x9 directions. The SO(2) symmetry and its breaking are

going to be of great importance in the next chapters for realising what is called

spontaneous chiral symmetry breaking in D3/D7 brane system. Extended discussion

is available in the next chapters. Let us also point out, before proceeding further,

that this specific choice of embedding the D7 branes into the AdS5 × S5 brane,

sharing the same directions as the D3 branes and wrapping an S3 sphere, preserves

a quarter of the total amount of supersymmetry in type IIB string theory [39,51].

There are two type of excitations in the D3/D7 system, open and closed strings.

Specifically, there are three types of open strings, the D3-D3, D7-D7 and D3-D7

strings. The first type was discussed in detail in section 3.3.1 and in the low energy

limit corresponds to an N = 4 SYM theory with an SU(Nc) gauge group. The

D7-D7 strings decouple in the low energy limit because the eight dimensional

t’Hooft coupling λD7 = λD3(2πl2s)
4 Nf

Nc
, controlling the interactions on the D7

branes, becomes zero in low energies. This decoupled D7-D7 sector gives rise to a

global U(Nf ) flavour symmetry which is the flavour symmetry expected in the four

dimensional gauge theory when Nf equal mass quarks are present [37]. The D3-D7

strings interact with the D3-D3 strings through the four dimensional t’Hooft

23In some occasions the D3 branes are called colour branes and the D7(or D5) branes flavour
branes.
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coupling which has a finite value in the low energy limit, but do not interact with

the D7-D7 strings. Moreover, the closed strings, which are the excitations of the

background, decouple from the brane dynamics in the low energy limit, as

explained in section 3.3.1. To summarise, the gsNc << 1 description includes two

decoupled sectors. The first sector, which is free, consists of the closed strings in the

bulk and the D7-D7 open strings on the D7 branes. The second sector, which is

interacting, consists of the D3-D3 and D3-D7 open strings.

In the gsNc >> 1 limit where gravity becomes important, the stack of Nc coincident

D3 branes curves spacetime and results in a near horizon AdS5 × S5 geometry. The

D7 branes can be considered as probes in the limit Nf << Nc, which means that

they do not backreact on the geometry 24. In the gsNc >> 1 limit there are two

different type of excitations, closed strings and D7-D7 open strings, which exist

both in the asymptotic region of the spacetime and in the throat of AdS5 × S5. In

the low energy limit the degrees of freedom in the asymptotic region become free

and they decouple from the degrees of freedom in the throat, which remain

interacting. Therefore two decoupled sectors are present, a free and an interacting.

Following the same logic that led to the original AdS/CFT correspondence, it is

conjectured that the free sector of each description can be matched with the free

sector of the other description and the same applies for the interacting sectors.

Therefore, the strong version of the duality in the presence of Dp branes is stated as

N = 4 SYM with SU(Nc) gauge group coupled to Nf N = 2

hypermultiplets

m
IIB closed strings in AdS5 × S5 coupled to open strings on the

worldvolume of Nf Dp probes

In the gauge theory side, N = 4 SYM is a conformal theory. The addition of

fundamental matter is equivalent to the addition of Nf N = 2 hypermultiplets in

24In lattice QCD this approximation is called quenched approximation. Practically, in the study
of the gauge dynamics the quark loops are neglected.
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the gauge theory. The final theory is an SU(Nc) N = 2 SYM and the expression for

its beta function is β ∝ λ2 Nf

Nc
. In the t’Hooft limit (fixed and finite λ, N →∞) and

for Nf fixed, β → 0 and the new gauge theory is conformal. In these limits and for

large λ the above duality simplifies and string theory can be described by

supergravity in the low energy limit. More accurately, the closed strings in

AdS5 × S5 can be approximated by supergravity in AdS5 × S5. The Dp branes are

considered as probe branes when Nf << Nc and therefore a supergravity solution is

not necessary for these branes in the quenched approximation.

Let us know proceed by explaining how the AdS/CFT dictionary works in the case

of Dp branes, a step necessary for understanding the following chapters. For

simplicity, let us focus on the specific example of a D7 probe brane embedded in an

AdS5 × S5 geometry. First of all, it is more convenient to parametrise the directions

perpendicular to the D3 branes in a different way such that the SO(4)× SO(2)

symmetry becomes manifest, so we rewrite the metric (3.28) as follows

ds2 =
r2

R2
(−dt2 + dx2

1 + dx2
2 + dx2

3) +
R2

r2
(dρ2 + ρ2dΩ2

3 + dL2 + L2dφ2), (3.43)

where ρ2 = x2
4 + · · ·+ x2

7 and r2 = ρ2 + L2. To describe the embedding of the D7

brane in AdS5 × S5 one must specify the two directions perpendicular to the D7

brane, L and φ. Due to the SO(2) rotational symmetry between these two

coordinates, it is sufficient to study L = L(ρ) and fix φ = 0.

The low energy dynamics of the D7 brane are governed by the DBI action plus the

Chern-Simons action, as explained in section 3.1.3 but repeated here for convenience

SD7 = −µ7

∫
d8ξ

√
−det(P [Gab] + 2πα′Fab) +

(2πα′)2

2
µ7

∫
d8ξP [C(4)] ∧ F ∧ F.

(3.44)

The next step is to find the equation of motion for the embedding which is

d
dρ


 ρ3L′ (ρ)√

1 + L′ (ρ)2


 = 0. (3.45)

The embedding L(ρ) is a scalar field in the bulk and according to the AdS/CFT
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dictionary it should correspond to a gauge invariant operator in the gauge theory,

which lives on the boundary of the AdS5 spacetime. To form a connection with the

gauge theory we find the asymptotic solution ρ→∞ to (3.45) which has the

following form

L(ρ) = m +
c

ρ2
+ · · · , (3.46)

where m is proportional to the bare quark mass in the gauge theory and c is the

vev of an operator which clearly has dimensions of mass 3 (ρ carries an energy

dimension) and shares the same symmetries with mass m. Therefore, c should

correspond to a quark bilinear vev < qq > in the gauge theory. Notice that

according to this prescription, separating the D7 branes from the D3 branes in the

L (or φ) direction is equivalent to giving a mass to the fundamental

hypermultiplets. Also a finite mass explicitly breaks the SO(2) symmetry of the

theory and consequently the chiral symmetry is explicitly broken.

There are various other ways that flavour can be added to the theory. A choice of a

different type of brane is possible, one such example is adding a D5 brane in the

system instead of a D7 brane. A different model for adding flavour to the

AdS/CFT is the Sakai-Sagimoto model [42,43].

3.4.2 Finite temperature

In all the cases considered until now, zero temperature was assumed. If more

realistic theories are to be achieved, finite temperature should be considered. The

extension of the gauge/gravity duality to the finite temperature case was initially

studied in [44].

The gravitational dual of the zero temperature N = 4 SYM theory is supergravity

on AdS5 × S5. If the finite temperature case is to be considered, AdS5 × S5

spacetime should be substituted by a Schwarzschild black hole geometry

ds2 =
r2

R2
(−f(r)dt2 + dx2

1 + dx2
2 + dx2

3) +
R2

f(r)r2
(dr2 + r2dΩ2

5),

f(r) = 1− r4
H

r4
, (3.47)
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which satisfies the same supergravity equation of motion as the AdS5 × S5

geometry, subject to the same boundary conditions.

The natural framework to work in a finite temperature field theory is to consider

periodic imaginary time with period β = 1
T , where T is the temperature of the

theory. It is also natural to implement this recipe to the gravity side of the

correspondence. The first step is to write the metric in the Euclidean signature

(Wick rotate). This Euclidean metric should not be continued for r ≤ rH , otherwise

the Euclidean character is spoiled. Also the metric should end smoothly on the

horizon. These two requirements are fulfilled if the time is periodic with period

β =
1
T

=
πR2

rH
. (3.48)

Note that, the temperature of the black hole (Hawking temperature) is the same as

the temperature in the field theory.

The advantage of working in the Euclidean signature is that allows the exploration

of various thermodynamic quantities using the gauge/gravity duality. All the

thermodynamic properties of the black hole e.g. entropy are related with those in

the field theory25. A very important quantity, for understanding the next chapters,

is the free energy F . The free energy F is defined using the statistical mechanics

partition function

ZCFT =
∑

e−βF . (3.49)

The corresponding generating functional in the gravity theory is given by 26

Zgravity = e−S , (3.50)

where S is the on-shell Euclidean action. Since the last two expressions should be

equal according to (3.35) we can conclude that [45]

S =
F

T
. (3.51)

25The field theory in the Euclidean signature is described by statistical mechanics.
26Assuming of course large Nc and large t’Hooft coupling λ, so that the supergravity approximation

is valid.
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Keep in mind that the free energy is an infinite quantity which should be

regularised. Also, note that when more than one solutions satisfy the supergravity

equations of motion, satisfying the same boundary conditions at infinity, the

solution with the lowest free energy is the real vacuum of the theory. In the case of

finite temperature N = 4 SYM for the infinite volume limit (R3 × S1 boundary

topology), which is the case considered in this thesis, the AdS-Schwarzschild black

hole is the preferred solution for all non zero temperatures.

A very important implication of finite temperature is the fact that supersymmetry

is broken explicitly due to the fact that fermions obey antiperiodic boundary

conditions in the Euclidean time direction [39]. Moreover, temperature introduces a

scale in the theory and therefore conformal invariance is broken.

3.5 Wilson loops and confinement in gauge gravity

duality

Wilson loops are gauge invariant non local operators in gauge theories which are

generally defined as

W (C) = Tr
[
Peig

H
P dxµAα

µ(x)tα
]
, (3.52)

where P is the path ordering27, tα are the generators of the gauge group in some

representation and g is the gauge coupling constant [15].

The expectation value of a Wilson loop contains information about the non

perturbative physics and is very useful for studying various phenomena in strongly

coupled gauge theories like confinement, quark screening etc. In QCD a Wilson

loop is related to a string stretching between a quark and an antiquark [32] and

therefore is an appropriate operator for studying confinement.

A Wilson loop in holography was originally studied in [121,122] and it was

suggested that the dual picture of a Wilson loop in the gravity side of the

correspondence is described by an open string attached to a Dp probe brane placed

27Path ordering is necessary in the non-Abelian case and the trace is for giving a gauge invariant
non abelian operator.
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at some radial position in some gravity background. The endpoints of the string

correspond to the quark and antiquark. If the path C of the Wilson loop is thought

as the path transversed by the quark, then the boundary of the open string

worldsheet should coincide with this path C [37]. The AdS/CFT dictionary for the

case of a Wilson loop according to (3.35) is

< W (C) > = Zstring[∂Σ = C] ∼ eiS(C), (3.53)

where the approximation made is valid only for large Nc and large t’Hooft λ

coupling. S(C) is the on-shell Nambu-Goto action (3.1) for the string worldsheet

satisfying the boundary conditions ∂Σ = C.

As mentioned before, Wilson loops provide a way for studying confinement. This is

possible by investigating what happens to the potential between an infinitely heavy

quark and antiquark. The quarks probe the dynamics of the gauge theory and are

chosen to be infinitely heavy so that they do not affect the gauge dynamics in any

way. The gauge dynamics are the geometry itself, in the context of the duality. To

achieve this infinitely heavy quarks, the probe Dp brane is placed at the boundary

of the gravitational background, so that the strings stretching between the stack of

D3 branes and the boundary are infinitely massive. For calculating the potential

the path should be chosen to be a rectangular loop with sides L, the distance

between the quark and the antiquark, and time T. When T >> L, the Wilson loop

in the field theory is expected to be

< W (C) >∼ e−T(2M+V (L)), (3.54)

where M is the mass of the quark/antiquark. Therefore, by working in the gravity

side of the correspondence the calculation of the S(C) is possible, after regularising

the action, and the calculation of the quark potential V (L) is straightforward.

The next step is the interpretation of the V (L). The V (L) can have many different

forms which reflect some properties of the background geometry. One case is V (L)

to be constant, in some range of values of L, which means zero energy is required
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for the quarks to be separated. What has happened in this case is that the quarks

are completely screened by the gluon plasma between them. Another possible

scenario is that V (L) has the form V (L) ∼ 1
L , which resembles the Coulomb

potential and is characteristic of conformally invariant backgrounds. Finally, it is

possible that V (L) has the form V (L) ∼ L which means that the potential between

the quark and antiquark is growing linearly as the distance between them is

increasing. This is a sign that the quark and antiquark are confined.

There are many Wilson loop calculations in the context of holography. An

interesting example is the calculation of the Wilson loop for a Schwarzschild black

hole background, given in [133]. In [133] the case of N = 4 SYM in finite

temperature, with the field theory living in a non-compact R3 × S1 boundary, is

considered. The Wilson loop calculation indicates that the theory is in a deconfined

phase, for all values of temperature.
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Chapter 4

Holographic Description of the

Phase Diagram of a Chiral

Symmetry Breaking Gauge

Theory

4.1 Introduction

The phase diagram in the temperature chemical potential (or density) plane is a

matter of great interest in both QCD and more widely in gauge theory [18–20]. In

QCD there is believed to be a transition from a confining phase with chiral

symmetry breaking at low temperature and density to a phase with deconfinement

and no chiral symmetry breaking at high temperature. In the standard theoretical

picture for QCD with massless quarks, the transition is first order for low

temperature but growing density, whilst second order at low density and growing

temperature. The second order transition becomes a cross over at finite quark

mass. There is a (tri-)critical point where the first order transition mutates into the

(second order) cross over transition. In fact though there could still be room in

QCD for a more exotic phase diagram [20] as we will discuss in the context of our
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results in our final section.

In this chapter we will present a precise holographic [46–48] determination of the

phase diagram in the temperature chemical potential plane for a gauge theory that

displays many of the features of the QCD diagram, although the precise details

differ. A pictorial comparison of our theory to QCD can be made by comparing Fig

4.5 to Fig 4.10.

The theory we will consider is the large N N=4 gauge theory with quenched N=2

quark matter [51–54] which has been widely studied [39]. An immediate difference

between the N=4 glue theory and QCD is that the thermal phase transition to a

deconfined phase occurs for infinitesimal temperature since the massless theory is

conformal [47]. Essentially the entire temperature chemical potential phase diagram

of our theory is therefore characterized by strongly coupled deconfined glue.

The quark physics is more subtle though - the phase diagram in the temperature

chemical potential (density) plane for the N = 2 quark matter has been studied

in [55–60]. When the quark mass is zero the theory is conformal and the origin of

the phase diagram is a special point with confined matter. Immediately away from

that point, in either temperature or chemical potential, a first order transition

moves the theory to a deconfined theory (the mesons melt [61–64]).

When a quark mass is present in the N=2 theory the meson melting transition

occurs away from the origin. This transition has been reported as first order with a

second order transition point where the first order transition line touches the T = 0

chemical potential axis [58,59] (in the grand canonical ensemble). Interestingly

there is a phase transition line in the temperature versus density plane (in the

canonical ensemble) in which the quark condensate jumps [55,56]. This area of the

phase diagram is intrinsically unstable though and not realizable by imposing any

chemical potential [59].

The crucial ingredient we will add to the theory is chiral symmetry breaking which

will also bring the theory closer in spirit to QCD. As shown in [65–67,69–72] the

N = 2 theory in the presence of a magnetic field displays chiral symmetry breaking

through the generation of a quark anti-quark condensate. At zero density the finite
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temperature behaviour has been studied [65–67,69] and there is a first order

transition from a chiral symmetry broken phase at low temperature to a chiral

symmetry restored phase at high temperature. In this chapter we will include

chemical potential as well to map out the full phase diagram in the temperature

chemical potential plane. We will find a chiral symmetry restoration phase

transition, which is first order for low density and second order for low temperature

- there is a tri-critical point where these transitions meet. This physics is in

addition to a meson melting transition which is first order at large temperature but

apparently second order at low temperature. This latter region of transition is

interesting because it is associated with a discontinuous jump from an embedding

off the black hole to one that ends on it and it looks naively first order. However,

when we plot any available order parameter in the boundary theory it appears

second order.

We will also track the movement of these transition lines and critical points as the

quark mass rises relative to the magnetic field. The infinite mass limit corresponds

to the pure N=2 theory without magnetic field [57,59]. The second order chiral

symmetry restoration transition becomes a cross over the moment a mass is

introduced. The first order transition structure though remains, even to the infinite

mass limit, with two critical points: one is the end point of the first order transition

and the other is the the end point of the second order meson melting transition.

This structure was not reported in the results in [57,59]1 but this is not surprising

since the structure, in that limit, is on a very fine scale. We have only found it by

following the evolution of the larger structure present at low quark mass with a

magnetic field. In addition we present evidence to suggest the parameter space with

a second order meson melting transition extends away from just the T = 0 axis,

again, even in the infinite mass limit. We have confirmed these results in the strict

B = 0 limit also.

The theory we study may appear to be a rather vague relative of QCD with

1The existence of two critical points is related with the existence of the black hole to black
hole transition. It is actually just visible in Fig 2c of [57] but the authors had not probed it in
detail previously. After discussion of our results with the authors of [57], they have refined their
computations and confirmed our results.
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magnetic field induced chiral symmetry breaking. On the other hand it is a theory

of strongly coupled glue with the magnetic field inducing conformal symmetry

breaking in the same fashion as ΛQCD in QCD. In fact the magnetic field case in

the basic N=4 dual is the cleanest known example of chiral symmetry breaking in a

holographic environment. Other deformations of the N=4 gauge theory typically

lead to an ill-understood IR singular hard wall - see for example [73,74]. The

magnetic field case provides a smooth IR wall where we have more control but the

results are likely to be the same in those more complex cases. We can hope to learn

some lessons for a wider class of gauge theories.

4.2 The holographic description

The N=4 gauge theory at finite temperature has a holographic description in terms

of an AdS5 black hole geometry (with N D3 branes at its core) [46–48]. The

geometry is

ds2 =
r2

R2
(−fdt2 + d~x2) +

R2

r2f
dr2 + R2dΩ2

5, (4.1)

f := 1− r4
H

r4
, rH := πR2T, (4.2)

where R4 = 4πgsNα
′2 and rH is the position of the black hole horizon which is

related to the temperature T .

We will find it useful to make the coordinate transformation

dr2

r2f
≡ dw2

w2
=⇒ w :=

√
r2 +

√
r4 − r4

H , (4.3)

with wH = rH . This change makes the presence of a flat 6-plane perpendicular to

the horizon manifest. We will then write the coordinates in that plane as ρ and L

according to

w =
√

ρ2 + L2, ρ := w sin θ, L := w cos θ, (4.4)
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The metric is then

ds2 =
w2

R2
(−gtdt2 + gxd~x2) +

R2

w2
(dρ2 + ρ2dΩ2

3 + dL2 + L2dΩ2
1), (4.5)

where

gt :=
(w4 − w4

H)2

2w4(w4 + w4
H)

, gx :=
w4 + w4

H

2w4
. (4.6)

4.2.1 Quarks/D7 brane probes

Quenched (Nf ¿ N) N=2 quark superfields can be included in the N=4 gauge

theory through probe D7 branes in the geometry [51–54]. The D3-D7 strings are

the quarks. D7-D7 strings holographically describe mesonic operators and their

sources. The D7 probe can be described by its DBI action

SDBI = −TD7

∫
d8ξ

√
−det(P [G]ab + 2πα′Fab), (4.7)

where P [G]ab is the pullback of the metric and Fab is the gauge field living on the

D7 world volume. We will use Fab to introduce a constant magnetic field (eg

F12 = −F21 = B) [65–67] and a chemical potential associated with baryon number

At(ρ) 6= 0 [56,75,76].

We embed the D7 brane in the ρ and Ω3 directions of the metric but to allow all

possible embeddings must include a profile L(ρ) at constant Ω1. The full DBI

action we will consider is then

S =
∫

dξ8L(ρ) =
(∫

S3

ε3

∫
dtd~x

) ∫
dρ L(ρ), (4.8)

where ε3 is a volume element on the 3-sphere and

L := −NfTD7
ρ3

4

(
1− w4

H

w4

)√√√√
((

1 +
w4

H

w4

)2

+
4R4

w4
B2

)

×
√(

1 + (∂ρL)2 − 2w4(w4 + w4
H)

(w4 − w4
H)2

(2πα′∂ρAt)2
)

. (4.9)
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Since the action is independent of At, there is a conserved quantity d
(
:= δS

δFρt

)
and

we can use the Legendre transformed action

S̃ = S −
∫

dξ8Fρt
δS

δFρt
=

(∫

S3

ε3

∫
dtd~x

) ∫
dρ L̃(ρ), (4.10)

where

L̃ := −NfTD7
(w4 − w4

H)
4w4

√
K(1 + (∂ρL)2), (4.11)

K :=
(

w4 + w4
H

w4

)2

ρ6 +
4R4B2

w4
ρ6

+
8w4

(w4 + w4
H)

d2

(NfTD72πα′)2
. (4.12)

To simplify the analysis we note that we can use the magnetic field value as the

intrinsic scale of conformal symmetry breaking in the theory - that is we can rescale

all quantities in (4.11) by B to give

L̃ = −NfTD7(R
√

B)4
w̃4 − w̃4

H

w̃4

√
K̃(1 + L̃′2), (4.13)

K̃ =
(

w̃4 + w̃4
H

w̃4

)2

ρ̃6 +
1

w̃4
ρ̃6 +

w̃4

(w̃4 + w̃4
H)

d̃2, (4.14)

where the dimensionless variables are defined as

(w̃, L̃, ρ̃, d̃) :=

(
w

R
√

2B
,

L

R
√

2B
,

ρ

R
√

2B
,

d

(R
√

B)3NfTD72πα′

)

In all cases the embeddings become flat at large ρ taking the form

L̃(ρ̃) ∼ m̃ +
c̃

ρ̃2
, m̃ =

2πα′mq

R
√

2B
, c̃ = 〈q̄q〉 (2πα′)3

(R
√

2B)3
. (4.15)

In the absence of temperature, magnetic field and density the regular embeddings

are simply L(ρ̃) = m̃, which is the minimum length of a D3-D7 string, allowing us

to identify it with the quark mass as shown. c̃ should then be identified with the

quark condensate with the relation shown.

We will classify the D7 brane embeddings by their small ρ̃ behavior. If the D7
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brane touches the black hole horizon, we call it a black hole embedding, otherwise,

we call it a Minkowski embedding. We have used Mathematica to solve the

equations of motion for the D7 embeddings resulting from (4.13). Typically in what

follows, we numerically shoot out from the black hole horizon (for black hole

embeddings) or the ρ̃ = 0 axis (for Minkowski embeddings) with Neumann

boundary condition for a given d̃. Then by fitting the embedding function with

(4.15) at large ρ̃ we can read off m̃ and c̃.

4.2.2 Thermodynamic potentials

The Hamilton’s equations from (4.10) are ∂ρd = δ eS
δAt

and ∂ρAt = − δ eS
δd . The first

simply means that d is the conserved quantity. The second reads as

∂eρÃt = d̃
w̃4 − w̃4

H

w̃4 + w̃4
H

√
1 + (L̃′)2

K̃
, (4.16)

where Ãt :=
√

22πα′At

R
√

2B
.

There is a trivial solution of (4.16) with d̃ = 0 and constant Ãt [59]. The

embeddings are then the same as those at zero chemical potential. For a finite d̃, Ã′t

is singular at ρ̃ = 0 and requires a source. In other words the electric displacement

must end on a charge source. The source is the end point of strings stretching

between the D7 brane and the black hole horizon. The string tension pulls the D7

branes to the horizon resulting in black hole embeddings [56]. For such an

embedding the chemical potential(µ̃) is defined as [56,75,76]

µ̃ := lim
eρ→∞

Ãt(ρ̃)

=
∫ ∞

eρH

dρ̃ d̃
w̃4 − w̃4

H

w̃4 + w̃4
H

√
1 + (L̃′)2

K̃
, (4.17)

where we fixed Ãt(ρ̃H) = 0 for a well defined At at the black hole horizon.

The Euclideanized on shell bulk action can be interpreted as the thermodynamic

potential of the boundary field theory. The Grand potential (Ω̃) is associated with

the action (4.9) while the Helmholtz free energy (F̃ ) is associated with the Legendre
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transformed action (4.10):

F̃ (w̃H , d̃) :=
−S̃

NfTD7(R
√

B)4Vol

=
∫ ∞

eρH

dρ̃
w̃4 − w̃4

H

w̃4

√
K̃(1 + (L̃′)2), (4.18)

Ω̃(w̃H , µ̃) :=
−S

NfTD7(R
√

B)4Vol

=
∫ ∞

eρH

dρ̃
w̃4 − w̃4

H

w̃4

√
(1 + (L̃′)2)

K̃
×

((
w̃4 + w̃4

H

w̃4

)2

ρ̃6 +
1

w̃4
ρ̃6

)
, (4.19)

where Vol denote the trivial 7-dimensional volume integral except ρ̃ space, so the

thermodynamic potentials defined above are densities, strictly speaking. Since

K̃ ∼ ρ̃6, both integrals diverge as ρ̃3 at infinity and need to be renormalized.

Thermodynamic potentials, (4.17),(4.18) and (4.19) are reduced to B = 0 case if we

simplify omit all eρ6

ew4 and then tildes. See for example (4.20).

4.3 Chiral Symmetry Breaking and the Thermal Phase

Transition

We begin by reviewing the results of [65–67,69] on magnetic field induced chiral

symmetry breaking and the thermal phase transition to a phase in which the

condensate vanishes. While they show the embeddings for fixed T and different

values of B, we will show the embeddings for fixed B and different values of T . By

fixing B we are using it as the intrinsic scale of symmetry breaking in the same

fashion as ΛQCD plays that role in QCD.

Let us digress here to explain how to understand the figures we will present in this

chapter. For example, in Fig 4.1 we have three columns. The left is the D7 brane

embedding configuration. The middle shows a plot of the allowed values of the

condensate c̃ as a function of the quark mass m̃ - these are thermodynamical
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(a) Low temperature - ewH = 0.15. Here we see chiral symmetry breaking with the blue embedding
thermodynamically preferred over the red at em = 0.
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(b) Transition temperature - ewH = 0.2516. This shows the point where the first order chiral
symmetry phase transition occurs from the blue to the red embedding. The transition can be
identified by considering Maxwell’s construction(Middle) or the lowest free energy(Right).

0.5 1.0 1.5 2.0 2.5
Ρ
�

-0.6

-0.4

-0.2

0.2

0.4

0.6
L
�

w� H = 0.3 0.05 0.10 0.15 0.20
m�

-0.25

-0.20

-0.15

-0.10

-0.05

-c�

0.00 0.02 0.04 0.06 0.08 0.10
m�2.490

2.495

2.500

2.505

2.510

2.515

2.520
W
�

(c) Above the transition - ewH = 0.3. This is the chiral restored phase with the em = 0 curve lying
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(d) High temperature - ewH = 300. Here the magnetic field is negligible and the embeddings show
the usual finite temperature meson melting transition.

Figure 4.1: The D7 brane embeddings(Left), their corresponding m̃− c̃ diagrams(Middle), and
the Free energies(Right) in the presence of a magnetic field at finite temperature. (Parameters
are scaled or B = 1/2R2 in terms of parameters without tilde.)

conjugate variables. The right is the corresponding thermodynamic potential. Each

row is for a fixed parameter we are varying - here it’s temperature. The left and

middle plots are plotted by solving the equation of motion (4.13) with the black

hole boundary condition that the embedding is orthogonal to the horizon.

The right hand plot is calculated using (4.18) or (4.19). Both are the same at zero

density. We subtract limeρ→∞ 1
4 ρ̃4 to remove the common infinite component.

Every point in the middle and right plots corresponds to one embedding curve in

the left plot. These points are color coded with the colors common across each of
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the three plots. The order of colors follows the rainbow from the bottom embedding

as a mnemonic.

In the middle plot we can find any transition point by a Maxwell construction (an

equal area law), which is also confirmed by the minimum of the grand potential on

the right. The vertical dashed line in the middle and right hand plots corresponds

to the transition point.

In the left plots the gray region contains embeddings that are excluded since they

are unstable, as shown in the middle and on the right.

The results for the case of a constant magnetic field and varying temperature are

displayed in Fig 4.1a-d. The Fig 4.1a (Left) shows the D7 embeddings when T ¿ B

and the black hole is small. The embeddings are driven away from the origin of the

L̃− ρ̃ plane - this behaviour is a result of the inverse powers of w̃, when w̃H ¿ 1, in

the Lagrangian (4.13) which lead the action to grow if the D7 approaches the origin

(note that the factor of ρ̃3 multiplying the action means the action will never

actually diverge). There are also embeddings that end on the black hole (shown in

red) but they are thermodynamically disfavoured as shown in Fig 4.1a (Right).

At large ρ̃ the stable embedding with m̃ = 0 has a non-zero derivative so c̃ is

non-zero and there is a chiral condensate i.e. chiral symmetry breaking. The U(1)

symmetry in the Ω1 direction is clearly broken by any particular embedding too.

We can numerically read off the values of m̃ and c̃ from the embeddings and their

values are shown in Fig 4.1a (Middle), where the dotted blue curves are for

Minkowski embeddings, whilst the red curves are for black hole embeddings.

If the temperature is allowed to rise sufficiently then the black hole horizon grows

to mask the area of the plane in which the inverse w̃ terms in the Lagrangian are

large. At a critical value of T the benefit to the m̃ = 0 embedding of curving off the

axis becomes disfavoured and it instead lies along the ρ̃ axis - chiral symmetry

breaking switches off. This first order transition occurs at w̃H = 0.2516 as shown in

Fig 4.1b by Maxwell’s construction (Middle) and by lower grand potential (Right).

Our value for the critical temperature agrees with the value B̃ = 16 in [69] since our

w̃ is the same as
√

1
eB in [69].
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We show an example of the embeddings above the critical temperature, their grand

potential and the evolution of the curves in the m̃− c̃ plane in Fig 4.1c.

The Fig 4.1d shows a case when T À B when the area of the plane in which B is

important is totally masked by the black hole and the results match those of the

usual finite T version of the N=2 theory. For m̃ > w̃H the embeddings are

Minkowski like whilst for small m̃ they fall into the black hole. There is a first order

phase transition between these two phases which is the meson melting phase

transition discussed in detail in [77–81]. Minkowski embeddings have a stable

mesonic spectrum [54] whilst in the case of black hole embeddings the black holes’

quasi-normal modes induce an imaginary component to the meson masses [61,62].

We can see that the previously reported “meson melting” transition at large quark

mass becomes also the chiral symmetry restoring transition at zero quark mass.

4.4 Finite density or chemical potential at zero

temperature

We can now turn to the inclusion of finite density or chemical potential in the

theory with magnetic field. In this section we consider the zero temperature

(w̃H = 0) theory only, and will continue to finite temperature in the next section.

A finite density (chemical potential) at zero temperature has been studied in the

N=2 theory without a magnetic field in [58], where analytic solutions for both a

black hole like embedding and a Minkowski embedding have been found. When a

magnetic field is turned on, analytic solutions are not available any more, but we

have found numerical solutions that continuously deform from the known analytic

solutions at zero magnetic field.

Minkowski embedding solutions correspond to zero density and finite chemical

potential. The black hole like embedding is the embedding deformed by the density

- a spike forms from the D7 down to the origin of the L̃− ρ̃ plane (Fig 4.2d (Left))

which has been interpreted as an even distribution of strings (i.e. quarks) forming

in the vacuum of the gauge theory.
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(a) Low density - ed = 0.01. Here we see chiral symmetry breaking (the blue embedding is preferred
over the red embedding) and a spiral structure in the em vs ec plane.
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(b) Increasing density below the transition - ed = 0.1. There is still chiral symmetry breaking here
with the orange embedding preferred to the red. Note the spiral structure in the em− ec plane has
disappeared.
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(c) Transition point - ed = 0.3197. This shows the point where the second order chiral symmetry
phase transition occurs.
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(d) High density ed = 1. This is the chiral restored phase with the em = 0 curve lying along the eρ
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Figure 4.2: The D7 brane embeddings(Left), their corresponding m̃− c̃ diagrams(Middle), and
the Free energies(Right) in the presence of a magnetic field at finite density. (Parameters are
scaled or B = 1/2R2 in terms of parameters without tilde.)

First of all it will be interesting to see how the repulsion from the origin induced by

a magnetic field and the attraction to the origin by the density compete. Thus we

start with the canonical ensemble (that is solutions with non-zero d̃) and consider

black hole like embeddings exclusively. The plot in Fig 4.2a (Left) shows the

embeddings for a small value of density. The solutions show the chiral symmetry

breaking behaviour induced by the magnetic field but then spike to the origin by

the density at small ρ̃. For m̃ = 0 one should compare the blue and red embeddings
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- the blue one is thermodynamically preferred as shown in Fig 4.2a (Right). The

theory shows similar behavior to that seen at zero density: there is a spiral

structure in the m̃ vs c̃ plane (Fig 4.2a (Middle)) [65–67]. That will disappear as

the density increases.

As the density increases the value of the condensate for the m̃ = 0 embeddings falls

- we show a sequence of plots for growing d̃ in Fig 4.2b-d (Middle). There is a

critical value of d̃ = 0.3197 where c̃ becomes zero for the massless embeddings -

above this value of d̃, D7 embedding is flat and lies along the ρ̃ axis (4.2c-d (Left)) .

One can see from the plots that there is a second order phase transition to a phase

with no chiral condensate. In Fig 4.2c (Left) and 4.2d (Left) we show embeddings at

the critical value of d̃ and above it respectively. At very large density the solutions

become the usual spike embeddings of the N = 2 theory at zero magnetic field.

We are not yet done though since there are also Minkowski embedding with zero

density but constant chemical potential. These can have lower energy and be the

preferred vacuum at a given value of chemical potential - that is, they are important

in the Grand Canonical Ensemble. The relevant analysis is in Fig 4.3a (Fig 4.3b-e

will be explained in the next section). On the left it shows the three possible types

of embedding of the D7 for a given chemical potential at zero temperature. The

black curve is the Minkowski embedding (with d̃ = 0), the blue the chiral symmetry

breaking spike embedding (with d̃ 6= 0) and the red the chiral symmetry preserving

black hole embedding (with d̃ 6= 0). Strictly speaking there is a fourth embedding

which lies along the ρ̃ axis and has constant At = µ - its energy is equal for all µ̃ to

that of the red embedding at µ̃ = 0 and is never preferred over the red embedding

with density, so we will ignore it hence forth. The trajectory of the three key

embeddings in the d̃− µ̃ space is shown in the middle plot (note that again these

two variables are thermodynamical conjugate variables). Finally on the right the

grand potential is computed. Clearly at low chemical potential the Minkowski

embedding is preferred and d̃ = 0. There is a critical value of µ̃ = 0.470 at which a

transition occurs to the spike embedding. This transition looks naively first order

since it is a transition between a Minkowski embedding and a black hole embedding.

However, we can see that the Grand Potential appears smooth and the quark
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(a) Zero temperature - ewH = 0. The second order meson melting transition and then the second
order chiral restoration transition are apparent.
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(b) Low temperature - ewH = 0.15. The zero temperature structure remains.
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(c) Above the first tri-critical point - ewH = 0.23. The meson melting transitions remains second
order but the chiral symmetry restoration transition is first order.
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(d) Above the second tri-critical point - ewH = 0.24. There is now only a single first order transition
for meson melting and chiral symmetry restoration.
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(e) High temperature - ewH = 0.2516. The ground state preserves chiral symmetry for all values
of µ̃.

Figure 4.3: The D7 brane embeddings (Left), their corresponding d̃ − µ̃ diagrams (Middle),
and the grand potentials (Right) for massless quarks in the presence of a magnetic field at a
variety of temperatures that represent slices through the phase diagram Fig 4.5. (Parameters
are scaled or B = 1/2R2 in terms of parameters without tilde.)

density is continuous, which is shown again in Fig.4a. The solid lines in Fig 4.4a are

calculated from (4.17), which is based on the holographic dictionary. The dotted

lines are obtained by numerically differentiating the grand potential (d̃ = −∂eΩ
∂eµ ),

which comes from a thermodynamic relation. This is a nontrivial consistency check
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of the holographic thermodynamics as well as our calculation [75,76,82].

Further, in Fig 4.4b we plot the behaviour of the quark condensate through this

transition. The density and quark condensate are both smooth and the transition

looks clearly second order. Here we have tested the smoothness numerically at

better than the 1% level. Whether there is some other order parameter that

displays a discontinuity is unclear but it would be surprising that any order

parameter were smooth, were the transition first order. We conclude the transition

is second order (or so weakly first order that it can be treated as second order).

This second order nature of the transition from a Minkowski to a spiky embedding

has been shown also in the B = 0, m̃ 6= 0 case at zero temperature analytically [58]

and numerically [59].

Finally, above the chemical potential corresponding to the meson melting transition

(µ̃ = 0.470), non-zero density is present and the physics already described in the

Canonical Ensemble occurs, which turns out to be equivalent to the results from

the current Grand Canonical Ensemble. Both Ensemble predict the second order

transition to the flat embedding at the same point, µ̃ = 0.708 or d̃ = 0.3197, which

is the chiral symmetry restoration point. Notice that for the Canonical Ensemble we

used (m̃,c̃) conjugate variables on constant d̃ slices, while for the Grand Canonical

Ensemble we used (µ̃,d̃) conjugate variables on constant m̃ = 0 slices. This

agreement from different approaches is another consistency check of our calculation.

(a) Density: the solid lines are calcu-
lated from (4.17) and the dotted lines
are obtained by numerically differenti-
ating the grand potential (d̃ = −∂eΩ

∂eµ ).

(b) The quark condensate.

Figure 4.4: Plots of the order parameters vs chemical potential at zero temperature and finite
B. Both are continuous across the Minkowski to spiky embedding transition(µ̃ ∼ 0.47). The
green arrows indicate the changes of phase.
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On the gauge theory side of the dual, the description is as follows. At zero density

there is a theory with chiral symmetry breaking and bound mesons. As the

chemical potential is increased d̃ remains zero and the quark condensate remains

unchanged. Then there is a second order transition to finite density (to a spike like

embedding) which is presumably associated with meson melting induced by the

medium. At a higher density there is then a further second order transition to a

phase with zero quark condensate.

Finally, we note that in paper [83] an alternative ground state was proposed for a

chiral symmetry breaking theory at finite density. They proposed that the string

spike might end on a wrapped D5 brane baryon vertex in the center of the

geometry. We have not considered that possibility here but it will be investigated in

detail in chapter 7. The magnetic field induced chiral symmetry breaking provides a

system in which this could be cleanly computed without the worries of the hard

wall present in that geometry.

4.5 The phase diagram in the grand canonical ensemble

We have identified a first order phase transition from a chiral symmetry breaking

phase with meson bound states to a chirally symmetric phase with melted mesons

in our massless theory in the presence of a magnetic field with increasing pure

temperature. On the finite density axis the meson melting transition is second

order and separate from another second order chiral symmetry restoring phase

transition. Clearly there must be at least one critical point in the temperature

chemical potential phase diagram. We display the phase diagram of the massless

theory, which we will discuss the computation of, in Fig 4.5.

To construct the phase diagram we have plotted slices at fixed temperature and

varying chemical potential. We display the results in Fig 4.3a-e where we show the

embeddings (Left) relevant at different temperatures, their trajectories in the d̃− µ̃

plane (Middle) and the grand potential (Right).

The phase diagram agrees with our previous results: At zero chemical potential we
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Figure 4.5: The phase diagram of the N = 2 gauge theory with a magnetic field. The
temperature is controlled by the parameter w̃H and chemical potential by µ̃. (Parameters
are scaled or B = 1/2R2 in terms of parameters without tilde.)

have the transition point w̃H = 0.2516. At zero temperature we have the transition

point at µ̃ = 0.708, which corresponds to d̃ = 0.3197. We also identify µ̃ = 0.470 as

the position of the second order transition to a meson melted phase with non-zero d̃

and chiral condensate c̃.

The dotted green line is the line along which d̃ = 0 and corresponds to the second

order meson melting transition from a Minkowski embedding to a black hole

embedding. The transition generates density continuously from zero. The quark

condensate also smoothly decreases from its constant value on the Minkowski

embedding. We display the continuous behaviour of the quark condensate across

the transition in Fig 4.6. Note this means that the slope of the embedding at the

UV boundary is continuous through the transition even though the embedding in

the IR is discontinuous and topology changing. Again we have checked the

smoothness of these parameters numerically to better than the 1% level.

(a) w̃H = 0.15 (b) w̃H = 0.23

Figure 4.6: Quark condensate vs chemical potential at finite B. Both are continuous across
the Minkowski (black) to black hole (orange) embedding transition. At w̃H = 0.23 the black
hole (orange) to black hole(red) transition is discontinuous.
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Figure 4.7: The phase diagram of the N = 2 gauge theory with a magnetic field. The
temperature is controlled by the parameter w̃H and the density by d̃. (Parameters are scaled
or B = 1/2R2 in terms of parameters without tilde.)

The blue line corresponds to a first order transition and the red dotted line is a

second order transition in density, chiral condensate etc. The red dotted line is

rather special in that this is a phase boundary only at m̃ = 0. This is because this

phase boundary is related to the spontaneous breaking of chiral symmetry which

only exists at m̃ = 0. At finite m̃ it must be a cross over region as we will discuss

further in section 4.7

The diagram then displays two tri-critical points. It is straightforward to identify

where the points lie numerically. The chiral symmetry tri-critical point where the

first and second order chiral symmetry restoration transitions join lies at the point

(µ̃, w̃H) = (0.267, 0.201). The second tri-critical point where the meson melting

transitions join is at (µ̃, w̃H) = (0.129, 0.236).

4.6 The Phase Diagram in the canonical ensemble

We can study the phase diagram also in the canonical ensemble. It is shown in Fig

4.7 and has the same information as Fig 4.5. The pale green region in Fig 4.5 lies in

the green dotted line along the w̃H axis of Fig 4.7. The chiral symmetry breaking

region enclosed by the red, green and blue lines in each figure map onto each other.

Similarly the high temperature and density region to the upper right of all the lines

in both plots map onto each other. The two double blue lines and the area between

them in Fig 4.7 correspond to the single blue line in Fig 4.5, which is natural since
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the blue line in Fig 4.5 is a first order transition line and the density change is

discontinuous. Thus the gray region in Fig 4.7 is an unstable density region which

hides in the phase boundary in Fig 4.5. That region may only be reached by

super-cooling or super-heating since it is unstable. The true ground state at those

densities and temperatures should be a mixture of the black hole and Minkowski

embedding in analogy with the liquid-gas mixture between the phase transition’s of

water [59]. It’s not clear how to realize that mixture in a holographic set-up.

4.7 Finite mass

We next describe the evolution of the phase diagram with quark mass. If we move

away from zero quark mass then the second order chiral symmetry restoration

phase transition at T=0 but growing chemical potential becomes a cross over

transition. This can be seen in Fig 4.2 where for m̃ 6= 0 the non-zero value of the

condensate can be seen to change smoothly with changing µ̃ and there is no jump

in any order parameter. The (chiral) tri-critical point becomes a critical point.

However, the other transition lines survive the introduction of a quark mass.

In Fig 4.8. we plot the phase diagram for various quark mass, m̃, at constant B.

The colors represent different quark masses - m̃ = 0, 1, 1.5, 2, 3 from bottom to top

are black, red, orange, green, and blue. The solid lines are for finite, fixed B. To

show the influence of the magnetic field we also display the B = 0 solution as the

dotted lines. The gray line shows the motion of the critical points.

In general the magnetic field shifts the transition line up and right, meaning that

the magnetic field makes the meson more stable against the temperature/density

meson dissociation effect. This is important at small m̃ but negligible at large m̃ as

expected.

Both critical points survive the introduction of a finite m̃, even though it looks like

there is no critical point in Fig 4.8a. Zooming in on the appropriate region at small

chemical potential reveals the two critical point structure as shown in Fig 4.8b.

Their positions, as m̃ changes, are marked by the gray line in Fig 4.8a. The one line
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Figure 4.8: The phase diagram at finite current quark mass with finite B (solid lines) and zero
B (dotted lines).

represents the two critical points which are indistinguishable close on the scale of

Fig 4.8a. The chiral symmetry critical point moves very close to the other critical

point even for a very small mass (m̃ ∼ 0.01). The interpretation of the critical

points and the phase boundaries are the same as in the m̃ = 0 case in the previous

section.

Notice that the black hole to black hole transition exists even in the B=0 case as

shown in Fig 4.8b(Right), so it is not purely due to the magnetic field. Nevertheless

this transition seems not to have been reported in the previous works [57,59]. We

believe that this is because the transition line between the two critical points is too

small to be resolved on the scale of Fig 4.8a, which agrees qualitatively with the

figures in [59]. In order to find those transitions we had to slice the temperature

down to order 10−3 as shown on the vertical axis in Fig 4.8b(Right). Any coarser

graining would miss it.
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The final surprise relative to the previous work is that the meson melting transition

below the critical point appears second order in our work even in the infinite mass

limit. To emphasize this we show a number of plots in the B = 0 theory in Fig 4.9.

Since the scaled variables (4.15) cannot be used at B = 0, (4.19) and (4.17) read in

terms of the original coordinates:

Ω̄(wH , µ̄) :=
−S

NfTD7Vol

=
∫ ∞

ρH

dρ
w4 − w4

H

w4

√
(1 + (L′)2)

K

(
w4 + w4

H

w4

)2

ρ6, (4.20)

where

µ̄ =
∫ ∞

ρH

dρ d̄
w4 − w4

H

w4 + w4
H

√
1 + (L′)2

K
, (4.21)

K =
(

w4 + w4
H

w4

)2

ρ6 +
w4

(w4 + w4
H)

d̄2, (4.22)

µ̄ :=
√

2
3
πα′At(∞), d̄ :=

√
2
3

NfTD72πα′
d. (4.23)

By the same procedures as in the previous sections we get Fig 4.9. Compared to

Fig 4.3, the left column of Fig 4.9 is the chiral condensate instead of the embedding

configurations. In Fig 4.3 there is always a red black hole embedding, which

corresponds to the flat embedding at zero quark mass. It is not present at finite

quark mass.

At very low temperature the transition is Minkowski to black hole and second order

in the condensate and density(Fig 4.9a). As the temperature goes up a new black

hole to black hole transition pops up by developing a ‘swallow tail’ in the grand

potential - this transition is first order in the condensate and density(Fig 4.9b). As

temperature rises the ‘swallow tail’ grows continually and eventually “swallows” the

second order Minkowski to black hole transition (Fig 4.9 c,d). i.e. At higher

temperature the second order Minkowski to black hole transition enters an unstable

regime and plays no role any more. Instead only the first order Minkowski to black

hole transition is manifest. Finally the Minkowski embedding becomes unstable
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(a) wH = 0.4. At µ̄ ∼ 0.4467 there is a Minkowski to black hole embedding transition, which is
second order in both chiral condensation and density.

0.0338 0.0340 0.0342 0.0344 0.0346 0.0348 0.0350
Μ0.022

0.023

0.024

0.025

0.026

0.027

0.028

0.029
-c

wH = 0.7575

0.0338 0.0340 0.0342 0.0344 0.0346 0.0348 0.0350
Μ0.000

0.002

0.004

0.006

0.008

0.010

d

0.0338 0.0340 0.0342 0.0344 0.0346 0.0348 0.0350
Μ-0.0095970

-0.0095965

-0.0095960

-0.0095955

-0.0095950

-0.0095945

-0.0095940

-0.0095935
W
�

(b) wH = 0.7575. There are two transitions. The first (µ̄ ∼ 0.0341) is a Minkowski to black hole
transition and second order in condensation and density. The second (µ̄ ∼ 0.03455) is a black hole
to black hole transition and first order.
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(c) wH = 0.7587. At µ̄ ∼ 0.0321 there is a Minkowski to black hole embedding transition, which
is first order in both chiral condensation and density.
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(d) wH = 0.762. At µ̄ ∼ 0.0235 there is a Minkowski to black hole embedding transition, which is
first order in both chiral condensation and density.

0.005 0.010 0.015 0.020
Μ

0.025

0.030

0.035

0.040
-c

wH = 0.7658

0.000 0.005 0.010 0.015 0.020
Μ0.000

0.002

0.004

0.006

0.008

0.010
d

0.005 0.010 0.015 0.020
Μ-0.01066

-0.01064

-0.01062

-0.01060

-0.01058

-0.01056

-0.01054

-0.01052
W

(e) Above wH = 0.7658 only a black hole embedding (Red) is stable configuration.

Figure 4.9: Chiral condensation (Left), density (Middle) and the grand potentials (Right) for
massive quarks (m = 1) at B = 0 at a variety of temperatures that represent slices through
the phase diagram Fig 4.8a.

compared to the black hole embedding(Fig 4.9e). At an even higher temperature

the Minkowski embedding is not allowed and only a black hole embedding is

available (Not shown in Fig 4.9).

These results all match with our work at finite B and increasing mass, confirming
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those results and our phase diagrams already presented.

4.8 Comparison to QCD

We have computed the phase diagram for a particular gauge theory using

holographic techniques. There are many differences between our theory and QCD:

the theory has super partners of the quarks and glue present; it is at large N and

small Nf , so quenched (and we have only computed for degenerate quarks to avoid

complications involving the non-abelian DBI action); the theory has deconfined glue

for all non-zero temperature; the theory has a distinct meson melting transition. In

spite of these differences the phase diagram for the chiral condensate shows many of

the aspects of the QCD phase diagram so we will briefly make a comparison here.

The QCD phase diagram is in fact not perfectly mapped out since there have only

recently been lattice computations attempting to address finite density [20]. The

phase structure also depends on the relative masses of the up, down and strange

quarks. The standard theoretical picture [18–20] for physical QCD is shown in Fig

4.10a. At zero chemical potential the transition with temperature is second order

(or a cross over with massive quarks). At zero temperature there is a first order

transition with increasing chemical potential (ignoring any superconducting phase).

These transitions are joined by a critical point. Comparing to our theory in Fig 4.5

we see that the transitions’ orders are reversed and the pictures look rather

different.

ΧSB

ΧS

Μ

T

(a) Standard scenario

ΧSB

ΧS

Μ

T

(b) Exotic Scenario

Figure 4.10: Two possible phase diagrams for QCD with the observed quark masses. (a)
is the standard scenario found in most of the literature but a diagram as different as (b)
remains potentially possible according to the work in [20]. We have not included any color
superconducting phase here at large chemical potential.
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In fact though as argued in [20] the picture could be very different in QCD. At zero

quark mass the finite temperature transition is first order and whether it has

changed to second order depends crucially on the precise physical quark masses.

Similarly whether the finite density transition is truly first order or second order

depends on the exact physical point in the mu,d, ms, µ, T volume. Arguments can

even be made for a phase diagram matching that in Fig 4.10b which then matches

the structure of the chiral symmetry restoring phase diagram of the theory we have

studied. For the true answer in QCD we must wait on lattice developments. Clearly

our model will not match QCD’s phase diagram point by point in mu,d, ms, µ, T

volume but it provides an environment in which clear computation is possible for

structures that match some points in that phase space.

Finally, we note a more general point that seems to emerge from the analysis. The

introduction of a chemical potential weakens the first order nature of the transitions

in our analysis. This matches with results found in QCD on the lattice. The

weakening of the first order phase transition is demonstrated for the chiral

transition in the light quark mass regime [84,85], and is shown for the

deconfinement transition in the heavy quark mass regime [86,87].
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Chapter 5

Phase diagram of the D3/D5

system in a magnetic field and a

BKT transition

5.1 Introduction

In the previous chapter holographic methods where used, specifically a D3/D7

system, for the study of the phase structure of a 3+1d gauge theory with quarks in

the fundamental representation in the presence of a magnetic field. That field

theory was studied as a loose analogue of QCD as it exhibits confinement and chiral

symmetry breaking.

Interest has also turned to the D3/D5 system [94–100] that describes fundamental

representation matter fields on a 2+1d defect within a 3+1d gauge theory. This

system may have some lessons for condensed matter systems. In [92] an analysis of

the D3/D5 system at finite density (d) and at zero temperature (T ) revealed that

the chiral symmetry breaking transition with increasing magnetic field (B) is not

second order but similar to a Berezinskii-Kosterlitz-Thouless (BKT) transition [101]

(see also the holographic example in [93,102]). In a BKT transition the order

parameters across the transition grow as exp(−a/
√

νc − ν), where a is a constant
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Figure 5.1: The phase diagram for the D3/D5 system. w̃H measure the temperature of
the theory whilst µ̃ is the chemical potential. The dashed line is a second order transition
associated with the formation of quark density and meson melting. The dotted line is a
second order transition for chiral symmetry restoration. In the D3/D5 case that transition
ends at a BKT transition point. The continuous line is the merged first order transition. The
position of critical points are marked.

and ν = d/B. (νc the critical value for the transition). For small T the authors

of [92] showed the BKT transition returns to a second order nature. This difference

from the D3/D7 case is surprising so it seems worth fleshing out the entire phase

diagram for the theory to see if other surprises are present. In this chapter we

present that analysis - much of the computation matches that in the D3/D7 system

which was presented in chapter 4. Here we very briefly present the formalism and

the conclusions. We display the resulting phase diagram for massless matter fields

in Fig 5.1b. Clearly much of the structure is similar to the D3/D7 case (see Fig 4.5)

but the second order boundary of the chiral symmetry breaking phase is distorted

by the presence of the BKT transition.

5.2 The holographic description

The N=4 super Yang-Mills gauge theory at finite temperature has a holographic

description in terms of an AdS5 black hole geometry (with N D3 branes at its

core) [46–48]. The geometry can be written as

ds2 =
w2

R2
(−gtdt2 + gxd~x2 + gxdy2)

+
R2

w2
(dρ2 + ρ2dΩ2

2 + dL2 + L2dΩ̄2
2), (5.1)
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where ~x is two dimensional, y will be the D3 coordinate not shared by our D5, we

have split the transverse six plane into two three planes each with a radial

coordinate ρ, L and a two sphere, R4 = 4πgsNα
′2 and

gt :=
(w4 − w4

H)2

2w4(w4 + w4
H)

, gx :=
w4 + w4

H

2w4
. (5.2)

The temperature of the theory is given by the position of the horizon, wH = πR2T

We include our 2+1d defect with fundamental matter fields by placing a probe D5

brane in the D3 geometry. The probe limit corresponds to the quenched limit of the

gauge theory. The D5 probe can be described by its DBI action

SDBI = −TD5

∫
d6ξ

√
−det(P [G]ab + 2πα′Fab), (5.3)

where P [G]ab is the pullback of the metric and Fab is the gauge field living on the

D5 world volume. We will use Fab to introduce a constant magnetic field (eg

F12 = −F21 = B) [65] and a chemical potential associated with baryon number

At(ρ) 6= 0 [56,75,76,103] We embed the D5 brane in the t, ~x, ρ and Ω2 directions of

the metric but to allow all possible embeddings must include a profile L(ρ) at

constant y, Ω̄2. The full DBI action we will consider is then

S =
∫

dξ6L(ρ) =
(∫

S2

ε2

∫
dtd~x

) ∫
dρ L(ρ), (5.4)

where ε2 is a volume element on the 2-sphere and

L := −NfTD5
ρ2

2
√

2

(
1− w4

H

w4

)

×
√(

1 + (∂ρL)2 − 2w4(w4 + w4
H)

(w4 − w4
H)2

(2πα′∂ρAt)2
)

×
√((

1 +
w4

H

w4

)
+

4R4

w4 + w4
H

B2

)
. (5.5)

Since the action is independent of At, there is a conserved quantity d
(
:= δS

δFρt

)
and

we can use the Legendre transformed action

S̃ = S −
∫

dξ6Fρt
δS

δFρt
=

(∫

S2

ε2

∫
dtd~x

) ∫
dρ L̃(ρ), (5.6)
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where

L̃ := −NfTD5
(w4 − w4

H)
2
√

2w4

√
K(1 + (∂ρL)2), (5.7)

K :=
(

w4 + w4
H

w4

)
ρ4 +

4R4B2

w4 + w4
H

ρ4

+
4w4

(w4 + w4
H)

d2

(NfTD52πα′)2
. (5.8)

To simplify the analysis we note that we can use the magnetic field value as the

intrinsic scale of conformal symmetry breaking in the theory - that is we can rescale

all quantities in (5.7) by B to give

L̃ = −NfTD5(R
√

B)3
w̃4 − w̃4

H

w̃4

√
K̃(1 + L̃′2), (5.9)

K̃ =
(

w̃4 + w̃4
H

w̃4

)
ρ̃4 +

1
w̃4 + w̃4

H

ρ̃4 +
w̃4

(w̃4 + w̃4
H)

d̃2, (5.10)

where the dimensionless variables are defined as

(w̃, L̃, ρ̃, d̃) (5.11)

:=

(
w

R
√

2B
,

L

R
√

2B
,

ρ

R
√

2B
,

d

(R
√

B)2NfTD52πα′

)
.

In all cases the embeddings become flat at large ρ taking the form

L̃(ρ̃) ∼ m̃ +
c̃

ρ̃
. (5.12)

In the absence of temperature, magnetic field and density the regular embeddings

are simply L(ρ̃) = m̃, which is the minimum length of a D3-D5 string, allowing us

to identify it with the quark mass as shown. c̃ should then be identified with the

quark condensate.

We will classify the D5 brane embeddings by their small ρ̃ behavior. If the D5

brane touches the black hole horizon, we call it a black hole embedding, otherwise,

we call it a Minkowski embedding. We have used Mathematica to solve the

equations of motion for the D5 embeddings resulting from (5.9). Typically in what

follows, we numerically shoot out from the black hole horizon (for black hole
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embeddings) or the ρ̃ = 0 axis (for Minkowski embeddings) with Neumann

boundary condition for a given d̃. Then by fitting the embedding function with

(5.12) at large ρ̃ we can read off m̃ and c̃.

The Hamilton’s equations from (5.6) are ∂ρd = δ eS
δAt

and ∂ρAt = − δ eS
δd . The first

simply means that d is the conserved quantity. The second reads as

∂eρÃt = d̃
w̃4 − w̃4

H

w̃4 + w̃4
H

√
1 + (L̃′)2

K̃
, (5.13)

where Ãt :=
√

22πα′At

R
√

2B
.

There is a trivial solution of (5.13) with d̃ = 0 and constant Ãt [59]. The

embeddings are then the same as those at zero chemical potential. For a finite d̃, Ã′t

is singular at ρ̃ = 0 and requires a source. In other words the electric displacement

must end on a charge source. The source is the end point of strings stretching

between the D5 brane and the black hole horizon. The string tension pulls the D5

branes to the horizon resulting in black hole embeddings [56]. For such an

embedding the chemical potential(µ̃) is defined as

µ̃ := lim
eρ→∞

Ãt(ρ̃)

=
∫ ∞

eρH

dρ̃ d̃
w̃4 − w̃4

H

w̃4 + w̃4
H

√
1 + (L̃′)2
√

K̃
, (5.14)

where we fixed Ãt(ρ̃H) = 0 for a well defined At at the black hole horizon.

The generic analysis below with massless quarks and B, T and µ all switched on

involve four types of solution of the Euler Lagrange equations. All of these

approach the ρ̃ axis at large ρ to give a zero quark mass. Firstly, there are

Minkowski embeddings that avoid the black hole so have a non-zero condensate c̃ -

these solutions have d̃ = 0 so Ãt = µ. Secondly, there can be generic black hole

solutions with both of c̃ and d̃ none zero. Finally there are solutions that lie entirely

along the ρ̃ axis so that c̃ = 0 but with d̃ either zero or non zero. In fact the flat

embeddings with d̃ = 0 are always the energetically least preferred but the other

three all play a part in the phase diagram of the theory.
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To compare these solutions we compute the relevant thermodynamic potentials.

The Euclideanized on shell bulk action can be interpreted as the thermodynamic

potential of the boundary field theory. The Grand potential (Ω̃) is associated with

the action (5.5) while the Helmholtz free energy (F̃ ) is associated with the Legendre

transformed action (5.6):

F̃ (w̃H , d̃) :=
−S̃

NfTD5(R
√

B)3Vol

=
∫ ∞

eρH

dρ̃
w̃4 − w̃4

H

w̃4

√
(1 + (L̃′)2)

√
K̃, (5.15)

Ω̃(w̃H , µ̃) :=
−S

NfTD5(R
√

B)3Vol

=
∫ ∞

eρH

dρ̃
w̃4 − w̃4

H

w̃4

√
(1 + (L̃′)2)

K̃(d̃ = 0)√
K̃

, (5.16)

where Vol denote the trivial 5-dimensional volume integral except ρ̃ space, so the

thermodynamic potentials defined above are densities, strictly speaking. Since

K̃ ∼ ρ̃4, both integrals diverge as ρ̃2 at infinity and need to be renormalized.

5.3 Chiral symmetry restoration by temperature

The chiral symmetry restoration transition by temperature is first order [72] (a

transition related to the thermal transition for non-zero mass at B=0 [77–81]). The

transition on the gravity side is between a Minkowski embedding that avoids the

black hole to an embedding that lies along the ρ̃ axis ending on the black hole. Fig

5.2 shows the (−c̃, m̃) diagram for some temperatures (w̃H = 0.25, 0.3435, 0.45 from

the bottom). The solid lines are the black hole embeddings and the dotted lines are

Minkowski embeddings. Since we are interested in the case m̃ = 0, the condensate

is the intersect of the curves with the vertical axis. As temperature goes up the

condensate moves from the lower dot to the middle curve continuously, then jumps

at w̃H = 0.3435 to the origin (zero condensate), which corresponds to the chiral

symmetric phase. It is also the transition from a Minkowski (dotted line) to a black

hole embedding (solid line). This jump can be seen by a Maxwell construction: m̃

and c̃ are conjugate variables and the two areas between the middle curve and the
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Figure 5.2: A plot of the condensate vs the quark mass to show the first order phase transition
at zero chemical potential induced by temperature. The solid line corresponds to the black
hole embedding and the dotted line to a Minkowski embedding. From bottom to top the
curves correspond to temperatures w̃H = 0.25, 0.3435, 0.45.

axis are equal at the transition point. See [72] for more details.

This transition as well as restoring chiral symmetry also corresponds to the melting

of bound states of the defect quarks since the Minkowski embedding has stable

linearized mesonic fluctuation whilst the black hole embedding has a quasi-normal

mode spectrum [61–64].

5.4 Chiral symmetry restoration by density

At zero temperature we find two phase transitions with increasing chemical

potential.

At low chemical potentials the preferred embedding is a Minkowski embedding with

Ãt = µ so there is no quark density. There is then a transition to a black hole

embedding with non-zero quark density, d̃. This transition, whilst appearing first

order in terms of the brane embeddings, displays second order behaviour in all field

theory quantities such as the condensate or density (which grows smoothly from

zero). The transition also corresponds to the on set of bound state melting since

the black hole embedding has quasi-normal modes rather than stable fluctuations.

The chiral symmetry transition induced by density at zero temperature is distinct

and also a continuous transition. It has been shown to be of the BKT type for this

D3/D5 case [92] as opposed to a mean-field type second order transition as seen in

the D3/D7 case in chapter 4 and [91].
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(c) w̃H = 10−5 near the critical
point

Figure 5.3: Plots of the condensate vs chemical potential on fixed temperature slices, showing
the phase structure of the theory. Figure (b) and (c) show that at low temperature the BKT
transition becomes second order.

The chiral symmetric phase corresponds to the trivial embedding, L = 0. Chiral

symmetry breaking is signaled by the instability of small fluctuation around the

L = 0 embedding. The Free energy (5.15) with (5.9) at zero T reads

F̃ ∼
√

1 + L̃′2
√

ρ̃4 +
ρ̃4

w̃4
+ d̃2, (5.17)

which can be expanded up to the quadratic order in L̃ as

F̃ ∼ −1
2

√
1 + ρ̃4 + d̃2L̃′2 +

L̃2

ρ̃2

√
1 + ρ̃4 + d̃2

. (5.18)

At ρ̃À 1, eLeρ behaves as a scalar with m2 = −2 in AdS4, while at small ρ̃¿ 1 and

ρ̃¿ d̃ it behaves as a scalar with m2 = − 2

1+ed2
in AdS2. The

Breitenlohner-Freedman (BF) bound of AdS2 is −1
4 , so below d̃c =

√
7 the BF

bound is violated and the embedding L̃ = 0 is unstable [92]. This critical density

corresponds to the critical chemical potential µ̃ ∼ 2.9 as can be computed from

(5.14). In [92] it was shown that the condensate scales near this transition as

−c̃ ∼ −e
−π

r
1+ed2

ed2
c−ed2

, (5.19)
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which corresponds to BKT scaling [101]. This transition is an example of the

analysis in [102] where it was shown that if a scalar mass in a holographic model

could be tuned through the BF bound a BKT transition would be seen at the

critical point.

5.5 Phase diagram in µ-T plane

To compute the full phase diagram we work on a series of constant T slices. We

have found the four relevant embeddings discussed above and found those that

minimize the relevant thermodynamic potential. The methods and analysis followed

is exactly the same as the one in chapter 4, so not many details are given here. Fig

5.3 shows some example plots of the dependence of the condensate on the density

on fixed T slices. It shows that the Minkowski embedding with d̃ = 0 is preferred at

low µ̃, a black hole embedding with growing d̃ at intermediate µ̃, before finally a

transition to a flat embedding occurs at high chemical potential.

Qualitatively the phase diagram, shown in Fig 5.1, is almost the same as the D3/D7

case (see Fig 4.5) - the two second order transitions at zero temperature converge at

two critical points to form the first order transition identified at zero density. The

only difference is induced by the chiral phase transition at zero T. Comparing to

the D3/D7 case we see there is a long tail near zero T, the end point of which

corresponds to the BKT transition. However even infinitesimal temperature turns it

into mean-field type second order transition [92,93]. In Fig 5.3(b),(c) we plot the

condensate against µ at a very low temperature (w̃H = 10−5)to show the second

order nature.
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Chapter 6

Towards a Holographic Model of

the QCD Phase Diagram

The QCD phase diagram is notoriously difficult to compute. Firstly, the physics

associated with deconfinement or chiral symmetry restoration is strongly coupled

where we traditionally do not know how to compute. Secondly, at finite density

lattice gauge theory, the first principles simulation of the theory on supercomputers,

suffers a “sign problem” that means Monte Carlo methods break down. In fact with

light quarks there is no clear order parameter for deconfinement so we will

concentrate on the chiral transition. Progress has been made by identifying effective

theories of the transitions and through lattice computations at low density. [104]

and section 2.6 provides a review of the standard picture of the QCD phase

diagram.

It is interesting to ask whether holographic models can in principle describe a phase

diagram like that of real QCD. An example of a holographic model of 3+1d

strongly coupled theory has been explored in chapter 4, without having any success

in reproducing the standard phase diagram of QCD. In this chapter we will follow a

more phenomenological approach in order to study a holographic model of quark

fields, in an attempt to reproduce key features of the QCD phase diagram.

Quarks can be introduced into the AdS/CFT Correspondence through probe
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Figure 6.1: A schematic of the D3/D7 showing our conventions. The D3-D3 strings generate the
N = 4 theory, the D3-D7 string represent the quarks and D7-D7 strings describe mesonic operators.

branes [39,51–54] and a number of systems with chiral symmetry breaking have

been developed [42,65,77,106–108]. True QCD can not be described

holographically because the holographic dual, if it exists, is not known and is

probably very complicated (and strongly coupled, at least, in the UV). The analysis

followed here is therefore in the spirit of AdS/QCD [109,110], a phenomenological

modeling of the QCD phase diagram. If one could model the phase diagram

correctly one might hope to then predict other features of the theory such as time

dependent dynamics during transitions and so forth.

The models developed in this chapter will be in the context of the simplest brane

construction of a 3+1d gauge theory with quarks which is the D3/D7 system of Fig

6.2 [39,51–54]. The basic gauge theory is large N , N = 4 super Yang-Mills with Nf

quark fields. On the gauge theory side the D7 branes, that provide the quarks, are

not backreacted on the geometry but instead the probe approximation [51] is

adapted, which corresponds to the quenched approximation in the field theory side.

The theory has a U(1) symmetry under which a fermionic quark anti-quark

condensate has charge 2 and plays the role of U(1) axial [77]. Although the theory

does not have a non-abelian chiral symmetry (as for example the Sakai Sugimoto

model does [42]) this is not important in the quenched approximation since the

dynamics of the formation of the quark condensate is flavour independent. The

model is very simple to work with having a background geometry that is just

AdS5 × S5 and the gauge theory is 3+1d at all energy scales.

So called top down models of this type exist which exhibit chiral symmetry

breaking. Supergravity solutions exist that correspond to the AdS space being
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Figure 6.2: The phase diagrams of the massless N = 2 gauge theory with a magnetic field. First order
transitions are shown in blue, second order transitions in red. The temperature is controlled by the
parameter T , chemical potential by µ and electric field by E. The inset diagrams are representative
probe brane embeddings (dotted lines), where a black disk represents a black hole.

deformed in reaction to a running coupling introduced by a non-trivial dilaton

profile [77,107]. In cases where the coupling grows in the infra-red (IR), breaking

the conformal symmetry, chiral symmetry breaking is induced. These models have

very specific forms for the running coupling and are typically singular somewhere in

the interior. At the string theory level a full interpretation is lacking.

A yet simpler and completely computable case (top-down) with chiral symmetry

breaking is provided by introducing a background magnetic field associated with

U(1) baryon number [65]. Such a background source can be described by a gauge

field on the surface of the D7 brane. A chiral condensate is induced. Very

simplistically one can think of the B-field as introducing a scale that breaks the

conformal symmetry as the strong coupling scale ΛQCD does in QCD allowing the

strong dynamics to form the quark condensate. In chapter 4 (see also [111–114]) we

have explored the phase structure of the theory with magnetic field . The phase

diagram of the theory is shown in Fig 6.2. The chiral restoration transition was

found to be first order with temperature and second order with density. A

tricritical point lies between these regimes.

In paper [116] a similar, to chapter 4, top down analysis was performed but instead

of having a magnetic field inducing chiral symmetry breaking, a running dilaton

geometry was used. The geometry is that of [117] in which there is a non-zero

profile for both the dilaton and axion fields in AdS. The field theory is the N = 4

gauge theory with a vev for both TrF 2 and TrFF̃ which preserves supersymmetry
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Figure 6.3: The phase diagram of the massless axion/dilaton gauge theory in [116].

at zero temperature but displays confinement. A D7 was introduced in a

supersymmetry breaking fashion and chiral symmetry breaking is observed. The

temperature density chiral transformation was first order throughout the plane and

is shown in Fig 6.3. It shows the same three phases as the magnetic field case. An

extra component of the analysis in [116] was to note that in the confining geometry

with a running dilaton a baryonic phase was also present. A baryon vertex is

described by a D5 brane wrapped on the S5 of the AdS5 × S5 space. More about

holographic baryons will be explained in chapter 7. Finally, the phase diagram of

this setup (Fig 6.3) is certainly unlike QCD.

The phase structures mentioned above are very interesting and surprisingly

complex but do not match the expectations in QCD. In QCD, a second order

transition with temperature and a first order transition with density to the chirally

symmetric phase is expected (standard picture).

In this chapter, we want to work in a much more generic framework to ask what

phase structures it is possible to get in the holographic description and to try to

force ourselves onto a representation of the QCD phase diagram. We will therefore

take a bottom up approach within the model and allow ourselves to dial the

running of the gauge coupling by hand. We will have a dilaton profile that

smoothly transitions from a UV conformal regime to an IR conformal regime

through a step of variable height and width. Such an ansatz allows one to consider

runnings that range from precocious growth in the IR to more walking like

dynamics [118]. A similar ansatz was used in [108] to study the impact of walking
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on meson physics and as a mechanism for generating inflation [119]. Here, in a

completely new analysis of the phase structure of these models, we find that with

the simple step ansatz we can move from a totally first order transition in the phase

plane to a configuration similar to that we obtained with a B field (a first order

transition with temperature but second order with density). With this ansatz we

can not achieve a second order transition with temperature.

The model directly suggests other phenomenological generalizations though. In

particular, if we think of the running dilaton profile as a short cut for including the

back reaction due to the quark fields/D7 brane 1, then it is natural to break the

SO(6) symmetry of AdS5 in the dilaton in the same fashion as the D3/D7 system’s

geometry. This allows us an extra phenomenological freedom to distort the dilaton

or black hole horizon. These simple changes do allow us to reproduce a wide range

of phase diagrams including QCD-like ones as we will show below. We will discuss

the simple geometric reasons for the emergence of first or second order transitions

in these different scenarios.

Our conclusions derived from this anaysis is that holographic model has no intrinsic

problem with mimicking the QCD phase diagram and these systems may therefore

be phenomenologically useful in the future.

6.1 The Model

First let us review the gravity dual description of the symmetry breaking behaviour

of our strongly coupled gauge theory.

Dp-branes are p dimensional membrane like objects to which the ends of open

strings are tied. The weak coupling picture for our D3/D7 set up is shown in Fig

6.2 [39,51–54] - there are N D3 branes and the lightest string states with both ends

on the D3 generate the adjoint representation fields of the N = 4 gauge theory.

Strings stretched between the D3 and the D7 are the quark fields lying in the

1In [120], D3-D7 solutions at finite temperature and chemical potential, with the inclusion of
dynamical flavor effects, have been derived and studied as full-fledged top-down models. They will
be the first step towards the top-down study of phase transitions in D3-D7 systems with dynamical
flavors.
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fundamental representation of the SU(N) group (they have just one end on the D3).

In the strong coupling limit the D3 branes in this picture are replaced by the

geometry that they induce. We will consider a gauge theory with a holographic

dual described by the Einstein frame geometry AdS5 × S5

ds2 =
r2

R2
dx2

4 +
R2

r2

(
d%2 + %2dΩ2

3 + dw2
5 + dw2

6

)
, (6.1)

where we have split the coordinates into the x3+1 of the gauge theory, the % and Ω3

which will be on the D7 brane world-volume and two directions transverse to the

D7, w5, w6. The radial coordinate, r2 = %2 + w2
5 + w2

6, corresponds to the energy

scale of the gauge theory. The radius of curvature is given by R4 = 4πgsNα
′2 with

N the number of colours. The r →∞ limit of this theory is dual to the N = 4

super Yang-Mills theory where gs = g2
UV is the constant large r asymptotic value of

the gauge coupling.

In addition we will allow ourselves to choose the profile of the dilaton as r → 0 to

represent the running of the gauge theory coupling, eφ ≡ β, where the function

β → 1 as r →∞. An interesting phenomenological case is to consider a gauge

coupling running with a step of the form [108,119]

β(r) = A + 1−A tanh [Γ(r − λ)] . (6.2)

Of course in this case the geometry is not back reacted to the dilaton and the

model is a phenomenological one in the spirit of AdS/QCD [109,110]. This form

introduces conformal symmetry breaking at the scale Λ = λ/2πα′ which triggers

chiral symmetry breaking. The parameter A determines the increase in the

coupling across the step.

We will introduce a single D7 brane probe [51] into the geometry to include quarks

- by treating the D7 as a probe we are working in a quenched approximation

although we can reintroduce some aspects of quark loops through the running

coupling’s form if we wish (or know how). This system has a U(1) axial symmetry

on the quarks, corresponding to rotations in the w5-w6 plane, which will be broken
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by the formation of a quark condensate.

In the true vacuum at T = 0 the brane will be static. We must find the D7

embedding function e.g. w5(%), w6 = 0. The Dirac Born Infeld (DBI) action in

Einstein frame is given by

SD7 = −T7

∫
d8ξeφ

√
−detP [G]ab

= −T 7

∫
d4x d% %3β

√
1 + (∂%w5)2,

(6.3)

where T7 = (2π)−7α′−4g−1
UV and T 7 = 2π2T7 when we have integrated over the

3-sphere on the D7. The equation of motion for the embedding function is therefore

∂ρ

[
β%3∂%w5√
1 + (∂%w5)2

]
− 2w5%

3
√

1 + (∂%w5)2
∂β

∂r2
= 0. (6.4)

The UV asymptotic of this equation, provided the dilaton returns to a constant so

the UV dual is the N = 4 super Yang-Mills theory, has solutions of the form

w5 = m +
c

%2
+ · · · , (6.5)

where we can interpret m as the quark mass (mq = m/2πα′) and c is proportional

to the quark condensate.

The embedding equation (6.4) clearly has regular solutions w5 = m when g2
Y M is

independent of r - the flat embeddings of the N = 2 Karch-Katz theory [51].

Equally clearly if ∂β/∂r2 is none trivial in w5 then the second term in (6.4) will not

vanish for a flat embedding.

There is always a solution w5 = 0 which corresponds to a massless quark with zero

quark condensate (c = 0). In the pure N = 2 gauge theory with β = 1 this is the

true vacuum. In the symmetry breaking geometries this configuration is a local

maximum of the potential.

If the coupling is larger near the origin then the D7 brane will be repelled from the

origin 2. The parameter Γ spreads the increase in the coupling over a region in r of

2In fact there is a competition between the increased action from the D7 entering the region with
larger dilaton and the derivative cost of the D7 bending to avoid it. This leads to a critical value of
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Figure 6.4: Example coupling flows (6.2) (top) and the induced D7 brane embeddings/quark self
energy (bottom) with the parameter choices shown in the table.

order Γ−1 in size.

We display the embeddings for some particular cases in Fig 6.4. Note that we have

chosen parameters here that make the vacuum energy of the theory the same in

each case. The vacuum energy is given by minus the DBI action evaluated on the

solution. In fact this energy is formally divergent corresponding to the usual

cosmological constant problem in field theory. As usual we will subtract the UV

component of the energy to renormalize.

The symmetry breaking of these solutions is visible directly [77]. The U(1)

symmetry corresponds to rotations of the solution in the w5-w6 plane. An

embedding along the % axis corresponds to a massless quark with the symmetry

unbroken (this is the configuration that is preferred at high temperature and it has

zero condensate c). The symmetry breaking configurations though map onto the

flat case at large % (the UV of the theory) but bend off axis breaking the symmetry

in the IR.

One can interpret the D7 embedding function as the dynamical self energy of the

quark, similar to that emerging from a gap equation [108]. The separation of the

A to trigger chiral symmetry breaking. For example for λ = 1.7 and Γ = 1 Ac = 2.1. In this chapter
we will consider only super-critical values of A.
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D7 from the % axis is the mass at some particular energy scale given by %.

6.1.1 Temperature

Temperature can be included in the theory by using the AdS-Schwarzschild black

hole metric. In Einstein frame we have

ds2 = −K(r)
R2

dt2 +
R2

K(r)
dr2 +

r2

R2
d~x2

3 + R2dΩ2
5, (6.6)

where
K(r) = r2 − r4

H

r2
, rH = πR2T. (6.7)

Witten identified this as the thermal description of the gauge theory in [47]. The

parameter rH is of dimension one in the field theory and preserves the SO(6)

symmetry so is identified as shown with temperature T. The black hole is the

natural candidate since it has intrinsic thermodynamic properties such as entropy

and temperature.

We make the coordinate transformation [77]

rdr

(r4 − r4
H)1/2

≡ dw

w
, 2w2 = r2 +

√
r4 − r4

H , (6.8)

with
√

2wH = rH , such that the metric becomes

ds2 =
w2

R2
(−gtdt2 + gxd~x2) +

R2

w2
(dρ2 + ρ2dΩ2

3 + dL2 + L2dΩ2
1), (6.9)

where

gt =
(w4 − w4

H)2

w4(w4 + w4
H)

, gx =
w4 + w4

H

w4
,

w =
√

ρ2 + L2, ρ = w sin θ, L = w cos θ.

(6.10)

Now we have to transform β also:

eφ = β

(
w4 + w4

H

w2

)
(6.11)

and therefore
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β = A + 1−A tanh


Γ




√
(ρ2 + L2)2 + w4

H

ρ2 + L2
− λ





 . (6.12)

Note that for wH → 0: w → r, ρ→ % and L→ w5, if we set w6 = 0.

6.1.2 Chemical Potential

The DBI action for the D7 brane naturally includes a surface gauge field which

holographically describes the quark bilinear operators q̄γµq and their source, a

background U(1) baryon number gauge field [55,56,75]. We introduce a chemical

potential through the U(1) baryon number gauge field which enters the DBI action

in Einstein frame as

SD7 = −T7

∫
d8ξe−φ

√
−det

(
eφ/2P [G]ab + (2πα′)Fab

)
.

We allow a chemical potential through At(ρ) 6= 0. So the Action becomes

SD7 =
∫

d4x dρ L

= −T 7

∫
d4x dρ β(ρ)ρ3

√
gtg3

x (1 + L′2)− g3
x

β(ρ)
Ã′2t .

(6.13)

where Ã′t = (2πα′)A′t. In our convention of the metric this is

L = −T 7β(ρ)ρ3

(
1− w4

H

w4

)(
1 +

w4
H

w4

) √√√√(1 + L′2)− w4
(
w4 + w4

H

)
(
w4 − w4

H

)2

Ã′2t
β(ρ)

. (6.14)

Now we can Legendre transform the action as we have a conserved quantity, the

density, d
(
= δSD7

δA′t

)
.

S̃D7 = SD7 −
∫

d8ξA′t
δSD7

δA′t
=

(∫

S3
ε3

∫
d4x

) ∫
dρ L̃,

where

L̃ = −T 7

(
w4 − w4

H

)

(w4)

√
1 + L′2

√√√√√

 w4d2β(ρ)(

(2πα′)2T 2
7

(
w4 + w4

H

)) +
ρ6

(
w4 + w4

H

)2

w8
β(ρ)2


.

(6.15)
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We can redefine d = (2πα′)T 7d̃ to give the simpler expression

L̃ = −T 7

(
w4 − w4

H

)

(w4)

√
1 + L′2

√√√√
(

w4d̃2β(ρ)(
w4 + w4

H

)
)

+
ρ6

(
w4 + w4

H

)2

w8
β(ρ)2

)
.

(6.16)

By varying the Lagrangian with respect to A′t, we get an expression for d̃(Ã′t) which

we can invert for an expression for Ã′t(d̃)

Ã′t = d̃

(
w4 − w4

H

)
(
w4 + w4

H

)
√

1 + L′2
√√√√

1
d̃2

β(ρ)
w4

(w4+w4
H) + ρ6

(
w4+w4

H
w4

)2 . (6.17)

This can be used to find the chemical potential µ = µ̃
(2πα′)

µ̃ =
∫ ∞

ρH

dρ d̃

(
w4 − w4

H

)
(
w4 + w4

H

)
√√√√√

(1 + L′2)
d̃2

β(ρ)
w4

(w4+w4
H) + ρ6

(
w4+w4

H
w4

)2 , (6.18)

where µ̃(ρ→ ρH) = 0.

The free energy can be found by integrating the Legendre transformed Lagrangian,

the grand potential by integrating the original Lagrangian, where we replace Ã′t(d).

F = − S̃D7

T 7

=
∫ ∞

ρH

dρ

(
w4 − w4

H

)

(w4)
β(ρ)

√
1 + L′2

√√√√ d̃2

β(ρ)
w4

(
w4 + w4

H

) +
ρ6

(
w4 + w4

H

)2

w8
.

The grand potential is

Ω = −SD7

T 7

=
∫ ∞

ρH

dρ β(ρ)
w4 − w4

H

w4
ρ6

(
w4 + w4

H

w4

)2

√√√√√
(1 + L′2)

d̃2

β(ρ)
w4

(w4+w4
H) + ρ6

(
w4+w4

H
w4

)2 ,

where we need to note that F (ρ→∞) = Ω(ρ→∞) = ρ3, so we need to subtract

1
4(ΛUV )4 from both integrals to renormalize them.
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6.2 Analysis and results

The methodology to study the phase diagram of our model is straight-forward if

laborious. We will work throughout in the massless quark limit. We can think of

the scale λ in the dilaton ansatz as our intrinsic scale of the theory and so we will

leave that fixed. Then for each choice of parameters in the dilaton profile (A,Γ) we

analyze the theory on a grid in T and µ space.

For each point on the T, µ grid we seek three sorts of embedding. The flat

embedding L = 0 exists in all cases and describes the theory with m = 0 and c = 0.

We use (6.18) to compute the d-µ relation for these embeddings.

We can also seek curved embeddings that miss the black hole. These solutions must

have d = 0 but are consistent for any value of µ. Here we use the equation of

motion for L from (6.16) and numerically shoot from an initial condition at ρ = 0

with vanishing ρ derivative, L′(0) = 0. We seek solutions that approach L = 0 at
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(a) T = 0.4, A = 30, Γ = 0.1, λ =
1.715 - shows a single first order
transition.
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1.715, α̃ = 3 - shows a first order
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Figure 6.5: Plots of density d versus chemical potential µ. The top lighter line (green) in each case
corresponds to the flat embedding; the horizontal line (black) along the axis is a chiral symmetry
breaking (Minkowski) embedding; the near vertical dark line (blue) is a black hole embedding.
Transition points are shown by the dotted vertical lines.
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large ρ. These configurations have a non-zero condensate parameter c.

Finally we can look for solutions that end on the black hole horizon. To find these

we fix the density d and shoot out from all points along the horizon seeking a

solution that approaches L = 0 at large ρ. We then use (6.18) to compute µ from

the solution. In this way we can fill out the T ,µ grid. The condensate can again be

extracted from the large ρ asymptotics of the embedding.

After finding as many such solutions as exist at each point the easiest method to

identify the transition points is to plot the density against µ on fixed T lines. The

transitions and their order are then manifest. We display four sample plots in Fig

6.5 taken from scenarios below showing the four cases of the chiral transition and

the meson melting transition being respectively first or second order in all

combinations.

6.2.1 Dependence on the change in coupling

Let us first consider how the phase diagram depends on the height of the step in

the gauge coupling function β. We fix λ (the intrinsic scale of the theory) and also

Γ = 1 and explore the phase structure as a function of A. We display the results for

three choices of A in Fig 6.6.

In these and all our future phase diagrams the regions shown are similar to that in

Fig 6.2 we will simply display the phase boundaries and their order henceforth.

As mentioned in footnote 2 above there is a critical value of A for chiral symmetry

breaking to occur. A conformal theory can not break a symmetry since it offers no

scale for that symmetry breaking to occur at. In fact some finite departure from

conformality is needed to break the chiral symmetry. For these choices of λ,Γ the

critical A is Ac = 2.1. We work above this value throughout.

At low A there is a single transition for chiral symmetry restoration and meson

melting which is first order for all T and µ. On the gravity side this is a transition

between the curved embedding that misses the black hole and the flat embedding.

In this case an embedding ending on the black hole never plays a role.

93



0.5 1.0 1.5 2.0 2.5 3.0 3.5
Μ

0.2

0.4

0.6

0.8

T

(a) A = 3

2 4 6 8 10 12
Μ

0.5

1.0

1.5

T

(b) A = 15

5 10 15
Μ

0.5

1.0

1.5

2.0
T

(c) A = 30

Figure 6.6: Plots for three possible phase diagrams for the choices A = 3, 15, 30. Large (small) A
gives second (first) order transition at low T . Γ = 1, λ = 1.715.

For larger A, a new phase with chiral symmetry breaking but melted mesons

develops. There is a regime now in which the curved embedding ending on the

black hole is energetically favoured. The transition from the chiral symmetry

breaking phase to this new phase is second order. The chiral symmetry restoration

phase remains first order.

At very large A the chiral restoration transition becomes second order at high

density. This latter phase resembles that of the theory with chiral symmetry

breaking induced by a magnetic field [65]. In fact the B field case can be thought of

as our case but with a choice of β given by

β =

√
1 +

B2w4

(w4 + w4
H)2

. (6.19)

It is the black dotted curve (wH = 0) in Fig 6.4 - it is not surprising therefore that

we see similar phase structure here (and indeed that we do provides strength to our

analysis which is capturing the behaviour of top down models).

For very large A the step becomes very sharp and there is little change relative to
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Figure 6.7: Plots for parameter choices A = 5, Γ = 100, λ = 1.7. The blue lines show the value of
the coupling β. The red line shows the position of the horizon. The final plot corresponds to the
point of the first order transition.

our phase diagram in Fig 6.6(c). In particular the thermal transition always

remains first order.

The behaviour we are seeing here can be readily explained from the D7 perspective.

First of all the zero density transition with temperature is first order for a simple

reason. The D7 embedding breaks chiral symmetry at zero temperature because it

prefers to avoid the action cost of entering the region in which the dilaton is large.

As temperature is introduced through a small horizon the interior of the space is

“eaten” but the D7 embedding remains oblivious to this change since it never

reaches down to small r. As temperature rises the point of transition is when the

horizon moves through the scale λ where the dilaton step is. Once the region with a

large dilaton is eaten by the black hole the preferred D7 embedding is the flat one.

In Fig 6.7 we show an extreme case of this behaviour explicitly. Here we have taken

Γ very large so that the transition in the dilaton between the low and high value is

very sharp. We plot the β profile against our radial parameter w and mark in red

the position of the black hole horizon. Note that in the w coordinates the region

where β is large depends on the temperature (it doesn’t in the original r
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coordinate). The dilaton effective radius λ∗ is

λ∗ =

√
λ2 +

√
λ4 − 4T 4

2
, (6.20)

where the argument of tanh in (6.12) vanishes. So, as T increases λ∗ decreases.

When T becomes Tc = λ√
2
, λ∗ = Tc the dilaton is perfectly screened by the black

hole horizon. (i.e. If T = 0, λ∗ = λ. If T = λ√
2
, λ∗ = λ√

2
). The point of the first

order transition is where the horizon screens the dilaton.

When density is introduced the story can become more complex. The action is

(6.16) where it can be seen from the first of the two terms in the square root that

including d increases the action. This increase can be beneficial though if the

second term with β can be reduced. It is possible to reduce the β term if the D7

enters the region where β is large at small ρ. This means that the situation can

arise where curving off the axis and then spiking on to the axis can be the lowest

action state. This is typically more likely where β is largest in the interior space

and the most savings can be made entering that region at low ρ. As we have seen at

large values of A embeddings that spike onto the horizon do play a role introducing

an extra phase.

It is only possible to have second order transitions if all three phases we have

described are present. In the D7 description the D7 must move from a curved

embedding that avoids the black hole to a configuration that spikes onto the black

hole to a flat embedding smoothly.

6.2.2 Dependence on the speed of running

The parameter Γ controls the period in ρ or RG scale over which the change in the

coupling A occurs. It allows us to naively go from a precociously running theory to

a walking theory (although the change in the parameter A over that period may

enter into what is meant by walking versus running too).

In Fig 6.8 we show the phase diagram as a function of Γ at fixed λ and A. We start

at Γ = 1 with a configuration already discussed that has all three phases present
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Figure 6.8: Example plots of three possible phase structures for A = 30, λ = 1.715 and varying Γ.
Large (small) Γ gives a second (first) order transition at low T .

and second order transitions at high density. As Γ is reduced so that the step

function in the dilaton becomes broader the first order nature of the transitions

reasserts itself. By Γ = 0.1 the mixed phase with chiral symmetry breaking but

melted mesons is no longer preferred at any temperature or chemical potential

value - there is a single first order transition.

In conclusion then moving towards a walking theory by either increasing the width

of the running or decreasing the magnitude of the increase in the coupling both

move us towards a first order chiral transition. Stronger or quicker running favours

a second order transition at low temperature, high density.

6.3 Breaking the ρ-L symmetry

Our goal is to attempt to reproduce a phase diagram comparable to that of QCD in

our holographic model. So far we have failed to generate a second order transition

with temperature at zero density which is a key part of the QCD picture.

We have a further natural freedom within our holographic model to exploit though.

97



Our running dilaton is in someway supposed to represent the backreaction of the

quark fields on the strongly interacting gauge dynamics to allow us to model

theories with more interesting dynamics than the conformal N = 4 gauge fields. We

introduce quarks through D7 branes that break the SO(6) symmetry of the five

sphere of the original AdS/CFT Correspondence down to SO(4) × SO(2). Our

metric and ansatz for the running coupling (6.2) though respected the full SO(6)

symmetry. It seems reasonable to make use of the broken symmetry to introduce a

further free parameter into our model.

The most successful scenario we have found is to introduce our explicit L− ρ

symmetry breaking parameter, α through the blackening factors of the metric

gt =
(w4 − w4

H)2

w4(w4 + w4
H)

, gx =
w4 + w4

H

w4
, (6.21)

with

w2 → ρ2 +
1
α

L2 , α > 1. (6.22)

We show the α dependence of our model in Fig 6.9. We start from a model with a
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Figure 6.9: Sample phase diagrams for theories with none zero α.
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first order transition throughout the phase plane. As we increase α a region with

melted mesons but chiral symmetry breaking develops, associated with second order

transitions. It then spreads to the zero chemical potential axis

The reason for the onset of second order transitions with just temperature is simply

understood. We have deformed the black hole horizon into an ellipse whose major

axis is along the L axis. The area of enlarged dilaton remains circular in the ρ-L

plane. Thus there are temperature periods in which the area of the ρ-L plane with

a large dilaton is covered except for a small piece that emerges from the horizon

near the ρ axis. If the value of the dilaton is sufficiently large in that uncovered

area to encourage the D7 to avoid it, but the horizon on the L axis has met the zero

temperature D7 embedding, then a second order transition to a black hole

embedding is likely. Since in the absence of the rise in the dilaton the flat

embedding would now be preferred the D7 settles on the horizon so it just misses

the raised dilaton area. As the black hole grows further the embedding is likely to

track down onto the axis smoothly as the raised dilaton area is finally eaten. This

intuition is indeed matched by the solutions as shown in Fig 6.9.

The bottom phase diagram in Fig 6.9 achieves our goal of reproducing a chiral

transition that is second order with temperature but first order with density.

6.4 Summary

In this chapter we have converted the D3 probe-D7 system, that holographically

describes N = 4 super Yang-Mills theory with quenched N = 2 quark multiplets, to

a phenomenological description of strongly coupled quark matter. We introduced a

simple unback-reacted profile for the dilaton that describes a step of variable height

and width in the running coupling of the gauge theory - (6.2). This breaks the

conformal symmetry of the model and introduces chiral symmetry breaking. We

have then studied the temperature and chemical potential phase structure of the

model.

The phase diagrams consist of three phases - a chirally symmetric phase at large
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temperature and density; a chirally broken phase with non-zero quark density at

intermediate values of T and µ; and a chiral symmetry broken phase with zero

quark density at low T and µ. Fig 6.2 shows these phases and their holographic

analogue in a previously studied case where chiral symmetry was broken by an

applied magnetic field. Here we showed that a small wide step in the gauge

coupling’s running gives rise to a single first order transition between the chiral

symmetric and the broken phase (see Fig 6.6). If the step is made larger in height

or thinner then the chirally broken phase with non-zero density also plays a role.

Here the transitions at low temperature with chemical potential can be second

order. These results match known results in top down models in the presence of

magnetic fields to induce the symmetry breaking.

We were interested in reproducing phase diagrams with the structure believed to

exist in QCD. To do this we made use of the broken SO(6) symmetry of the gravity

dual in the presence of D7 branes. Were the branes backreacted the dilaton and

geometry would reflect this symmetry breaking. We introduced a further

phenomenological parameters α in the black hole blackening factor. This models

allowed us to control which volumes of the holographic space have a large dilaton

value within, which the D7 branes prefer to avoid. Using this one extra parameter

we were able to generate phase diagrams like those in QCD with a chiral restoration

transition that was second order with temperature but first order with density (see

Fig 6.9).

The ease with which such a variety of phase structures could be obtained is very

encouraging for the idea of phenomenologically modeling the QCD phase diagram

holographically. Further, the phenomenological parameters we introduced are very

natural in this context and it seems likely that top down models with such phase

structures should be possible as a result.
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Chapter 7

The Baryonic Phase in

Holographic Descriptions of the

QCD Phase Diagram

7.1 Introduction

In this chapter we will continue our attempts to find a holographic description of

the QCD phase diagram. Our studies are based on the previous chapters, with new

elements added that allow a new holographic baryon phase to be included in the

phase diagram of the strongly coupled gauge theory under consideration.

The QCD phase diagram is characterised by the quark and baryon densities and

the chiral condensate. It is therefore sensible to continue exploring the same simple

holographic model that was used in previous chapters and which encodes the

physics of quarks and chiral symmetry breaking, the D3/D7 system [39,51–54].

This system describes the SU(Nc) N = 4 super Yang-Mills theory with Nf quark

hypermultiplets. In the quenched approximation the theory is conformal and on the

gravity side is described by probe D7 branes in AdS5 × S5. The theory is 3+1

dimensional at all energy scales and has a conformal UV in which the identification

of the operator matching between the field theory and the gravity description is
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clear.

The simplest example of chiral symmetry breaking in the D3/D7 system is found by

imposing a background magnetic field [65]. We have in detail consider this scenario

in chapter 4. In chapter 6 we have explored an alternative way of inducing chiral

symmetry breaking in these type of holographic setups, the introduction of a non

trivial running dilaton. We introduced a phenomenological model in which we

treated the running of the gauge coupling/dilaton profile as a free function. This

was inspired by the fact that the DBI action for the probe with the magnetic field

present is equivalent to the same theory with a particular choice of unbackreacted

dilaton. Using an ansatz which steps between a conformal UV and a conformal IR

with a larger coupling value we could reproduce phase diagrams like that for the

magnetic field case but also a wider set of phase diagrams.

Although the phase diagram of the magnetic field case is interesting it does not

overlap with expectations in QCD, where the finite temperature transition is

believed to be second order and the finite density transition first order. In the

dilaton running case, to describe phase diagrams that looked like the QCD case we

used a further phenomenological freedom. The D3/D7 system if backreacted would

display an SO(4)×SO(2) symmetry in the directions transverse to the D3 rather

than the SO(6) symmetry of AdS5 × S5 space. We therefore allowed ourselves to

introduce a parameter breaking the symmetry in that fashion in the emblackening

factor of the black hole providing temperature. With this extra freedom we could

produce the phase diagram in Fig 6.9(c) which maps more closely to that expected

in QCD. The high T and low µ transition can therefore be fitted well. Here we turn

our interest to the phase structure in the low T, high µ regime.

In [116] the phase diagram was studied for the holographic description of a theory

with a running dilaton. The background has an induced vev for both TrF 2 and

TrF̃F ; in the gravity dual these scalar solutions satisfy the equations of motion

whilst leaving a pure AdS background. Quarks are again introduced using a D7

probe. The phase diagram is shown in Fig 7.1a and shows the same three phases as

the cases already discussed. The chiral transition is first order throughout the plane.
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Figure 7.1: Example holographic phase diagrams (see the appropriate references for conventions):
red lines are first order transitions and blue second order. Phases are labelled by whether chiral
symmetry is broken or not and whether there is a quark density, d, present. In each case the vertical
axis is the size of the black hole in the geometry which measures the temperature T.

The extra key component of the analysis in [116] was to note that in the geometry

with a running dilaton a baryonic phase was also present. A baryon vertex is

described by a D5 brane wrapped on the S5 of the AdS5 × S5 space [83,125–129].

In the pure N = 4 theory such vertices shrink to zero size. However in the running

dilaton geometry the large IR value of the dilaton stabilizes the D5 embedding.

Solutions exist that link the D5 to the D7 brane embedding with a balancing force

condition. These configurations describe the gauge theory with finite baryon

density rather than finite quark density. The D7 bends off axis to meet the D5 and

so the phase has chiral symmetry broken. This phase sets in at a particular finite

chemical potential value and then persists to infinite chemical potential (as shown

in Fig 7.1a) which is certainly unlike the equivalent phase in QCD (the phase

diagram is very similar to that found in the Sakai Sugimoto model in [130]).
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In QCD the transition to the baryon phase from low µ is known to be first order at

zero and small T and ends at some critical point. In fact the low T phase is

characterized by “droplets” (nuclei) due to the inter-nucleon interactions. Nucleons

in the D3/D7 system presumably also interact but in [116] and here we will not

include these interactions. The first order behaviour of the transition from droplets

to constant baryon density is therefore not surprisingly missing but a second order

change of phase is observed. It is worth stressing again that since the field theory is

at strong coupling there is no secure field theory technique to analyze the transition

from the baryonic phase to the quark density phase and holography gives us unique

insights.

The goal of this chapter is to combine the approaches of the chapter 6 with [116].

We will investigate the baryonic phase in the model with phenomenological freedom

in the running coupling. As we had hoped, we will show that these models can

possess a baryonic phase and that, for regions of parameter space, it can be in the

finite region one would expect it to be in for QCD. Our dilaton ansatz transitions

between two conformal regions. In each of those conformal regimes, as in the N = 2

Karch Katz theory, the baryon vertices are free to shrink. Around the transition

radius though there is an extra cost to the D5s shrinking further since they must

encounter the larger dilaton value within. The result is a set of stable D5

configurations when the change in dilaton between the two conformal regimes is

sufficiently large. These configurations are present for low temperatures where the

black hole horizon has not “eaten” the D5s but not present at large temperatures.

The D7 branes that introduce the quark fields can end on the D5 baryon vertex

when they are available. The D7 branes also prefer not to enter the interior of the

geometry with a large dilaton value. Thus if the dilaton is sufficiently large inside

the D5 radius they will prefer to join the D5. For very large interior dilaton values

this occurs for all values of chemical potential and the baryonic phase exists out to

infinite chemical potential as in the analysis of [116] (in that model the dilaton

actually diverges in the IR). However we find that if the change in the dilaton is

more modest across the transition then whether the D7 energetically prefer to join

the D5 or end on the black hole horizon must be calculated and depends on the
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parameters. In particular we do find ranges of parameter space where the baryonic

phase lives in the regime shown in Fig 7.1b corresponding to the region expected in

QCD. This is the main result of this chapter which we will explore in detail.

Finally, we briefly explore the link between confinement and the baryonic phase.

The quark anti-quark potential can be computed by drooping a string into the AdS

interior [121,122]. The step dilaton profile induces a linear potential between a

quark and an anti-quark when the step size is sufficiently large. The transition from

a Coulomb potential to linear confinement qualitatively happens at the same value

of the step size that induces a baryonic phase in the theory at finite chemical

potential as one might expect.

7.2 The Holographic Model

We seek to describe a strongly coupled gauge theory with quenched quark fields

using the D3/probe-D7 system. A running coupling will be imposed on the theory

through a radial dilaton profile. Finite temperature will be included through an

AdS-Schwarzchild geometry and baryon number / chemical potential via a gauge

field in the probe D7 DBI action. The final ingredient will be to also allow D5

configurations wrapped on the S5 of the geometry to represent baryon density. We

review each of these steps in turn:

7.2.1 The Background

Our geometry will be the AdS-Schwarzschild black hole metric in Einstein frame

which reads

ds2 =
r2

R2

(−fdt2 + d~x3
3

)
+

R2

r2

dr2

f
+ R2dΩ2

5, (7.1)

where R is the AdS radius (R4 = 4πgsNcα
′2) and f is the emblackening factor

f(r) = 1− r4
H

r4
, rH = πR2T, (7.2)
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with the temperature T . There is also the self-dual RR five-form G(5)

G(5) = (1 + ∗)dt ∧ d~x ∧ d(gxx). (7.3)

We will impose an unbackreacted dilaton profile in the AdS-Schwarzschild geometry

to allow us to explore a range of gauge coupling runnings in the gauge theory. In

particular we will use the simple step-function form

eφ = A + 1−A tanh(r − λ), (7.4)

where the dimensionless constant A is the change in the value of the gauge

coupling, or eφ, from the UV to the IR. The step is centred at the radial position λ,

which corresponds approximately to the energy scale ΛQCD, in the gauge theory. It

is important to stress here that this ansatz does not satisfy the supergravity

equations and we are instead moving to a phenomenological model in the spirit of

AdS/QCD [109,110], although retaining the key ingredients of the dynamics of

chiral symmetry breaking from the top down D3/D7 systems. Our hope is that with

this ansatz we still capture the key elements of the dependence of chiral symmetry

breaking on the way in which conformal symmetry breaking is introduced. The step

ansatz is convenient because it returns the theory to N = 4 SYM in the UV and

allows us to vary the strength of conformal symmetry breaking.

The rescaling of the radius (r) coordinate [77]

dr

r
√

f
≡ dw

w
=⇒ w =

1√
2

√
r2 +

√
r4 − r4

H , r =

√
w4 + w4

H

w2
, (7.5)

with
√

2wH = rH , makes the R6 structure in the transverse space explicit:

ds2 =
w2

R2
(−gtdt2 + gxd~x2) +

R2

w2
(dw2 + dΩ2

5), (7.6)

where

gt =
(w4 − w4

H)2

w4(w4 + w4
H)

, gx =
w4 + w4

H

w4
. (7.7)
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AdS-Black hole S5

coordinate t x1 x2 x3 r, w S5

Background D3 • • • •
R4 R2

coordinate t x1 x2 x3 ρ S3 L S1

Flavour D7 • • • • • • • •
R S5

coordinate t x1 x2 x3 ξ θ S4

Baryon vertex D5 • • • • • •

Table 7.1: The brane profile showing the coordinates we use: the background D3, the compact D5
and the probe D7

7.2.2 D7 flavour brane and quark phase

We include a small number (Nf ) of quark flavours by placing probe D7 branes into

the background we have constructed. For this purpose, it is convenient to

parameterize R6 so that R4 × R2 is explicit (see the middle of Table 7.1):

dw2 + w2dΩ2
5 = dρ2 + ρ2dΩ2

3 + dL2 + L2dΩ2
1, (7.8)

where the D7 brane lies in the (t, ~x, ρ,Ω3) directions and L and ρ are related to w, θ̃

w =
√

ρ2 + L2, ρ = w cos θ̃, L = w sin θ̃, (7.9)

where 0 ≤ θ̃ ≤ π/2 and is different from 0 ≤ θ ≤ π in the bottom of Table 7.1.

The action for a D7 brane is given by the DBI action without the Wess-Zumino

term

SD7 = −T7

∫
d8ξe−φ

√
−det(e

φ
2 P [G]αβ + (2πα′)Fαβ), (7.10)

where TD7 = 1
g2

UV (2π)7a′4 and

eφ = A + 1−A tanh







√
(ρ2 + L2)2 + w4

H

ρ2 + L2
− λ





 . (7.11)

We add a chemical potential to our system by allowing

Ãt ≡ 2πAt(ρ) 6= 0 [55,57,75,76], and assume that the D7 brane embedding profile is

non trivial in ρ only, L = L(ρ). The action becomes:
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SD7 = TD7

∫
d4xdρLD7, (7.12)

LD7 = −eφρ3

√
gtg3

x(1 + L′2)− g3
x

eφ
Ã
′2
t , (7.13)

where TD7 = TD7NfΩ3.

Since At is a cyclic coordinate, there is the conserved charge defined by

d̃ ≡ ∂LD7

∂Ã′t
, (7.14)

in terms of which, the Wick-rotated (Euclidean, t→ −itE ) Legendre transformed

action (Ã′t → d̃) is defined by

SE,LT
D7 = TD7

∫
dtEd~x

∫
dρL

E,LT
D7 ,

L
E,LT
D7 = Ã′td̃− LD7

= eφ w4 − w4
H

w4

√
1 + L′(ρ)2

√(
w4 + w4

H

w4

)2

ρ6 +
w4

w4 + w4
H

d̃2

eφ
,

(7.15)

where the following relation obtained from (7.14) is used.

Ã′t = d̃
w4 − w4

H

w4 + w4
H

√√√√ 1 + L′2(
w4+w4

H
w4

)2
ρ6 + w4

w4+w4
H

d̃2

eφ

. (7.16)

We solve the equation of motion for L(ρ) minimizing the action (7.15) for a given d̃.

The equation is second order and we impose two boundary conditions: L(∞) = m

and the IR (ρ→ ρH) regularity. Asymptotically at large ρ the embedding field L

takes the form L = m + c/ρ2 + ... with m and c proportional to the quark mass and

condensate bilinear. By plugging the classical solution L(ρ) into (7.16), we also get

the solution At, for which the large ρ behaviour is Ãt = µ̃− d̃
2ρ2 + ... with µ̃ and d̃

proportional to the chemical potential and quark density. To compute the chemical

potential, µ̃, we simply integrate the right hand side of (7.16), i.e.

µ̃ =
∫ ∞

ρH

dρ d̃
w4 − w4

H

w4 + w4
H

√√√√ 1 + L′2(
w4+w4

H
w4

)2
ρ6 + w4

w4+w4
H

d̃2

eφ

, (7.17)
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where Ãt(ρH) = 0 by a regularity condition at horizon.

The field theory free energy density (F) is holographically identified as

F = TD7

∫ ∞

ρH

dρ L
E,LT
D7

∣∣∣
on−shell

, (7.18)

where L
E,LT
D7 is written in (7.15). The field theory grand potential density (Ω) is

identified with the Euclidean original action before the Legendre transformation:

Ω = TD7

∫ ∞

ρH

dρ LE
D7

∣∣
on−shell

= TD7

∫ ∞

ρH

dρρ6eφ w4 − w4
H

w4

(
w4 + w4

H

w4

)2 √
1 + L′2

√√√√
1(

w4+w4
H

w4

)2
ρ6 + w4

w4+w4
H

d̃2

eφ

.

(7.19)

In both cases, we added the counterterm ∼ − 1
4ρ4

cut−off
to renormalize the actions.1

7.2.3 D5 Baryon Vertex

The D7 world volume gauge field (dual to the chemical potential) has to be sourced

by strings (quarks in the gauge theory). The string endpoints on the D7 world

volume are point charges and the world volume gauge field At couples to this point

source. The other end of the strings must end on either the black hole horizon or

another brane. In the previous section, we considered the first case: the D7 brane

touches the black hole horizon and the source for the gauge field is behind the

horizon. Now we turn to the latter case.

Baryons, bound states of Nc quarks, are described in AdS5 × S5 by a baryon vertex,

a D5 brane wrapped on the five sphere with Nc fundamental strings attached to it.

This idea was first introduced in [125]. A baryon should correspond to an object

made from N quarks or open strings ending on the D7 brane. Normally a

fundamental string cannot end on some new compact brane since the fundamental

string end points act as electric charges for the U(1) gauge field living on the

1Since we consider only the massless case, L(∞) → 0, the counter term is simple. In general, the
counter term is a function of m and c.
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D-brane worldvolume. However, these charges can be cancelled in the case of a

wrapped D5 by the RR field flux. This is possible because of the coupling
∫

A ∧ F(5) ∼ N
∫

dtA0 where A is the world volume gauge field and F(5) is the RR

5-form field: F(5) induces N units of electric charge on the D5 brane. In other

words, N fundamental strings have to be attached to the compact D5 brane

wrapping S5 in the bulk, and the other end points of strings will attach to the Nf

D7 probe branes. This compound object is widely identified as the “holographic

baryon”. Therefore, it is natural to consider such a baryon vertex as a source of

strings coupling to the At world volume field of the D7 brane. Note in the field

theory dual to the D3/D7 system baryon states made purely from N valence quarks

presumably match the structure of those in QCD - the additional super-partner

states will only enter as sea states and the hope is that these effects do not modify

the quantitative physics we will see. Of course a precise understanding of these

states in these theories is again not possible on the field theory side and we rely on

holography to describe them.

For a D5 brane baryon vertex configuration, it is more useful to parameterize R6 as

dw2 + w2dΩ2
5 = dξ2 + ξ2

(
dθ2 + sin θ2dΩ2

4

)
, (7.20)

rather than (7.8), since the D5 brane will lie in the (t,Ω4) directions with a

non-trivial profile ξ(θ). See the bottom of Table 7.1. We renamed w to ξ, to make

clear that the radial coordinate is a function of θ here, which is different from

w(ρ) =
√

L(ρ)2 + ρ2 in the D7 brane case. Furthermore, θ here is also different

from θ̃ in the D7 brane case as noted below (7.9). The plots in the following section

show the D7 and D5 brane embeddings simultaneously in one plot, which is not,

strictly speaking, correct because of these different coordinate systems. The

superposition of the two pictures, which only match where the two branes join, is

though helpful to understand the solutions.

The action for the D5 baryon vertex in the string frame is given by the DBI and the
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Wess-Zumino term:

SD5 = −TD5

∫
d6ξe−φ

√
−det(P [G]αβ + (2πα′)Fαb) + TD5

∫
d6ξA(1) ∧G(5), (7.21)

where TD5 = 1
g2

UV (2π)5a′3 and A(1) is the world volume gauge field one-form on the

D5 brane, which is different from At introduced on the D7 brane. In (7.20) the

dilaton reads

eφ = A + 1−A tanh







√
ξ4 + w4

H

ξ2
− λ





 . (7.22)

Note that the Wess-Zumino term contributes to the action as well due to the

coupling of the worldvolume gauge field A(1) with the background five-form G(5)

(7.3). A nontrivial temporal gauge field At(θ) couples to Nc charge on the D5

brane. With assumptions ξ = ξ(θ) and At = At(θ), the action is given by:

SD5 = TD5

∫
dtdθLD5,

LD5 = − sin θ4

(√
eφ

√
(ξ4 − w4

H)2

ξ4(ξ4 + w4
H)

(ξ2 + ξ′2)− 1
eφ

Ã′2
t − 4Ãt

)
,

where TD5 = R4Ω4TD5. Note that we extract R4 to make LD5 dimensionless.

The equation of motion for the gauge field At(θ) takes the form:

∂θD̃(θ) = 4 sin θ2 , (7.23)

where the conjugate momentum D̃ of Ãt is defined by

D̃(θ) =
δLD5

δÃt
′ =

Ãt
′
sin4 θ

√
eφ

√
(ξ4−w4

H)2

ξ4(ξ4+w4
H)

(ξ2 + ξ′2)−
˜A
′
t

2

eφ

. (7.24)

The general solution of (7.23) is:

D̃(θ) =
3
2
(νπ − θ +

3
2

sin θ cos θ + sin θ3 cos θ), (7.25)

where 0 ≤ ν ≤ 1 is the integration constant and it is related to the number of

fundamental strings attached to each pole [126]. For our purposes we choose ν = 0
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which is the case that all the fundamental strings emerge from only one pole of the

baryon vertex which we choose to be θ = π. Using (7.24) we can rewrite our

Euclidean baryon vertex Lagrangian as:

LE
D5 =

√
eφ

√
(ξ4 − w4

H)2

ξ4(ξ4 + w4
H)

(ξ2 + ξ′2)
√

D̃(θ)2 + sin8 θ , (7.26)

where D̃(θ) is defined in (7.25) with ν = 0. This is for one Baryon vertex. The

holographic energy density of many non-interacting free baryon vertex system at

finite density nB is

nBTD5

∫
dθLE

D5, (7.27)

where nB = nq

Nc
and nq is the quark density. Note here we have introduced a

translationally invariant density of baryons in the field theory directions and we will

not consider crystal like structures which in any case are only possible in the

presence of inter-nucleon interactions.

7.2.4 Baryon phase: D7 + D5 branes

The baryon phase is constructed by connecting a D7 flavour brane and D5 baryon

vertices by strings between them. It can be shown that the strings’ tension is so

strong that they tend to shrink to a point [116], which makes the D7 flavor brane

and D5 baryon vertices meet at a point. Therefore, ignoring strings, we start with

the D7 - nB D5 combined system. Its free energy density is

FB = TD7

∫ ∞

0
dρL

E,LT
D7 +

nq

Nc
TD5

∫ π

0
dθLE

D5 (7.28)

= TD7

(∫ ∞

0
dρL

E,LT
D7 +

2
3π

d̃

∫ π

0
dθLE

D5

)
(7.29)

≡ TD7(F̃D7 + F̃D5), (7.30)

where nq

2πα′T D7
= d̃ since nq is identified with 1

V3

δSD7
δAt(∞) (V3 is the three dimensional

volume). Let us consider, at a fixed finite density d̃, the configuration of the D7

brane with a fixed boundary value L(∞) = m and the D5 brane with a fixed

ξ(0) = ξ0. The two brane embeddings have to meet at ρ = 0 and θ = π, i.e.
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L(0) = ξ(π) ≡ w0. There are infinitely many configurations satisfying this

condition, parameterized by w0. To find out the lowest energy configuration, we

vary the total free energy

δFB ∼
∫ ∞

0
dρ(EOML)δL +

∂L
E,LT
D7

∂L′
δL

∣∣∣∣∣
∞

0

+
2
3π

d̃

∫ π

0
(EOMξ)δξ +

2
3π

d̃
∂LE

D5

∂ξ′
δξ

∣∣∣∣∣
π

0

∼ − ∂L
E,LT
D7

∂L′
δL

∣∣∣∣∣
ρ=0

+
2
3π

d̃
∂LE

D5

∂ξ′
δξ

∣∣∣∣∣
θ=π

,

(7.31)

where the EOML and EOMξ are the equations of motion of L and ξ respectively.

They vanish since we consider only the solutions of the equation piecewise.

δL(∞) = δξ(0) = 0 by our boundary condition. At the matching point, δL = δξ, so

the condition is reduced to

∂L
E,LT
D7

∂L′

∣∣∣∣∣
ρ=0

=
2
3π

d̃
∂LE

D5

∂ξ′

∣∣∣∣∣
θ=π

⇒ L′(0) =
ξ′(π)
ξ(π)

, (7.32)

which is called a force balancing condition [83,116].

In the baryon phase, the chemical potential has an extra contribution from D5

branes
µ̃ ≡ 1

TD7

∂FB

∂d̃
= µ̃D7 +

2
3π

∫ π

0
dθLE

D5, (7.33)

where µ̃D7 means (7.17) now integrated from the D5/D7 join to infinity. Note the

extra term from the D5 originates from (7.29) where there is an extra coefficient of

d̃.

However, both in the quark phase and the baryon phase, the grand potential is

computed as a D7 brane Euclidean on-shell action, which is written explicitly in

(7.19). The D5 brane action does not explicitly contribute in the baryon phase

because

Ω̃B ≡ ΩB

TD7

= F̃B − µ̃d̃

= F̃D7 + F̃D5 −
(

µ̃D7 +
2
3π

∫ π

0
dθLE

D5

)
d̃

= F̃D7 − µ̃D7d̃ .

(7.34)
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However, the D5 brane still implicitly contributes by changing the classical

embedding solution. In the following section, we will drop the subscripts B and D7.

In this phase, the physical objects which carry U(1) charge are baryon vertices.

Each baryon is a bound system of N quarks and N U(1) charges are associated

with the D5 vertex. Therefore, this phase can be interpreted as a nuclear matter

system or quark-confined phase. Without a baryon vertex, the U(1) charge is

carried by single unconnected strings, which correspond to quark matter.

7.3 Phase diagram in grand canonical ensemble

We will explore the phase diagram of the model with massless quarks. The phase

diagram, neglecting the baryon vertex, was explored in chapter 6. The scale λ is the

only conformal symmetry breaking scale in the model and so its value can be scaled

(for numerical work we take λ = 1.715 to match previous work). The phase

structure depends on the value of the parameter A that determines how much the

dilaton changes between the UV and the IR.

For each point in the phase diagram one numerically seeks all possible D7

embedding solutions that asymptote to L = 0 at large ρ. There is always the flat

solution L(ρ) = 0. There can also be “Minkowski” solutions that end at ρ = 0 with

L′(0) = 0. Finally there can be embeddings that end on the black hole horizon. It is

convenient to fix the density d and then determine µ from (7.17). The grand

potentials of the solutions are then compared to determine the preferred phase.

-2 2 4 6 8 10
Ρ

-2

2

4
L

Figure 7.2: Examples of the baryon vertex solutions and their behaviour as we increase density - for
these parameters there are two vertices for each value of density. The energetically preferred one is
always that with the largest radius. The red lines corresponds to d = 0.01, blue d = 5 and green
d = 1000. Parameters wH = 0.1, A = 10, λ = 1.715.
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Figure 7.3: Behavour of the baryon vertex with temperature for fixed density. There is always
one baryon vertex for the temperatures considered and typically two as shown. The energetically
preferred one is always the one with the largest radius. Parameters d = 5, A = 10, λ = 1.715.

For A < 2.1 the model is always in the chirally symmetric phase. The massless D7

embedding is L(ρ) = 0 at all temperatures and density. To induce chiral symmetry

breaking the cost of entering the interior volume with the enlarged dilaton must

outweigh the cost of bending off axis. For A > 2.1 such chiral symmetry breaking is

preferred at low T and µ. In the parameter regime 2.1 < A < 15 the phase diagram

divides into a chiral symmetric phase at high T, µ and a region with chiral symmetry

breaking at low T, µ. The transition between is first order throughout the phase

diagram. For A > 15 the D7 embeddings that end on the black hole play a role in

the phase structure at high µ and the phase diagram mutates to the form shown in

Fig 6.6(b)(c). The extra phase has non-zero quark number and chiral symmetry

breaking. The transitions between the phases at high density become second order

(the transition with T at µ = 0 remains first order no matter how large A).

In addition to these embeddings we can now seek linked D5-D7 configurations as

well with the same massless asymptotic boundary condition on the D7. Some

examples of these configurations are shown in Fig 7.2 and Fig 7.3. The D5s are all

stabilized for radii of order λ. Note that each of these figures corresponds to a

translationally invariant constant density of baryons in the field theory. The
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Figure 7.4: Plots showing the variation of a number of order parameters through the transition
regions. The colour coding is - Green:flat embedding, Black: Minkowski embedding, Blue: large
radius baryon vertex, Orange: small radius baryon vertex, Red: black hole embedding. Parameters:
A = 10, λ = 1.715, Γ = 1. Top: the grand canonical potential vs chemical potential, Middle: d-µ
plot, Bottom: condensate c vs µ.

structure shown is in the holographic and S5 directions of the gravity description.

The precise shapes presumably encode information about the inter-baryon quark

wave functions and the relative role of the various R-charged super partners in the

sea. There is certainly no deep understanding of the relations in the literature

though so we shall simply accept these configurations and compute their energy to

see which phase is preferred under various conditions.

Generally the number of baryon vertex solutions (linked D5/D7 solutions with

massless boundary conditions on the D7) vary with the parameters A, d and T . For
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Figure 7.5: Phase diagrams as a function of the parameter A in the dilaton profile. The temperature
T is in units of wH . Transitions marked in blue are first order, those in red second order. The
phases are labelled by whether chiral symmetry is broken (χS or χSB) and whether there is a baryon
(Baryon) or quark density (d 6= 0). In the language of gravity side, “χSB and d = 0” means the
curved Minkowski embedding, “χS and d 6= 0” means the flat embedding, “χSB and d 6= 0” means
the curved black hole embedding, “Baryon” means the curved embedding contacting the baryon
vertex.

some parameter sets we don’t have any baryon vertex solutions (for small A’s and

densities). In Fig 7.2 we show an example of a parameter set where we have two

baryon vertex solutions. Regardless of the number of baryon vertex solutions, we

have always found that the energetically favoured solution is the one with the

largest radius at the south pole. As we increase A the number of solutions increases

and the D5 embeddings grow in radius. The baryon vertex solutions also change

with density. Starting from very small density and increasing density the baryon

vertex increases its radius rapidly in the beginning before asymptoting to a slower

growth for larger densities. At fixed density, increasing temperature typically

generates a smaller baryon vertex due to the black hole attraction (Fig 7.3). At

high enough temperature, the baryon vertex cannot exist because the size of the

black hole horizon becomes larger than the size of the D5 brane. So only the quark

phase exists at high temperature.
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Our job now is to again compare the Grand Potential energies of all these

configurations. Some examples of that process are shown in Fig 7.4(a,b). The

points where transitions occur can be read from the energies and then checked

against transitions in order parameters of the model. For example in Fig 7.4(c,d)

we plot the quark density against the chemical potential where the transitions and

their orders can also be seen. The parameter c determining the quark condensate is

also shown in Fig 7.4(e,f).

After this work one can construct the full phase diagram, summarizing the physical

content of Fig 7.4, which is shown in Fig 7.5 for three choices of the parameter A.

For small A (but still above the threshold for there to be chiral symmetry breaking)

the baryonic phase plays no role. The cost of entering the high A area is not large

enough to discourage the flat embedding.

At intermediate A we see the baryonic phase enters at intermediate chemical

potential and low T . Fig 7.5b looks similar to expectations in QCD for the position

of the baryonic phase and this is the most significant result we present. Note that

the transition to the baryonic phase from the vacuum phase is second order. In

QCD it is expected to be first order at low temperature due to the interactions

between the nucleons. At low µ the phase in QCD can be thought of as sparse

liquid droplets of nucleons (ie nuclei) in the vacuum. When µ is sufficient to fill

space with nucleons the droplets rearrange themselves into the hadron gas. The

entropy change associated with the internuclear interactions in this rearrangement

generates the first order behaviour. In our analysis such interactions are neglected

so not surprisingly a simple second order transition results. Recent work on

computing inter-baryon forces using holography are summarized in [131].

Finally for large A the baryonic phase is stable out to infinite chemical potential -

the cost of entering the large A region is so great that the flat embedding is always

less preferred than a D5 ending embedding. This matches the model of [116] in

which the dilaton diverges at small radius (and also the Sakai Sugimoto phase

diagram in [130]). The A = 20 diagram also displays a small phase region in which

black hole embeddings are dominant corresponding to a chiral symmetry broken
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Figure 7.6: The canonical ensemble phase diagram for the case A = 10. The temperature T is in
units of wH . Transitions marked in blue are first order, those in red second order. The phases are
labelled by whether chiral symmetry is broken and whether there is a baryon or quark density.

phase but with quark density.

7.4 The canonical ensemble

The phase diagram of our theory shows some additional structure in the canonical

ensemble that is worth mentioning. We will work just in the case A = 10. Here we

fix the density d rather than the chemical potential µ and we minimize the free

energy rather than the grand potential. We display the phase diagram in Fig 7.6.

The chiral symmetry breaking phase with d = 0 in the grand canonical ensemble

lies entirely on the T axis in this plot. Interestingly though the canonical ensemble

phase diagram includes a region with black hole embeddings (the chiral symmetry

breaking, d 6= 0 phase) which is absent in the grand canonical ensemble. This is not

a discrepancy. At the first order transitions in the grand canonical ensemble there is

a jump in all order parameters including the quark density d - there must therefore

be regions of the canonical ensemble phase diagram that are not present in the

grand canonical ensemble and indeed are energetically unstable. On any given fixed

T line the first order transition from either the Minkowski embedding or the baryon

phase to the symmetric phase “leaps” over the black hole embedding phase of the

canonical ensemble. As we saw in Fig 7.5(c) for A = 20 this third phase does play a

small role in the phase diagram in the grand canonical ensemble.
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7.5 Quark-antiquark potential

We found above that a larger dilaton step-size, A, makes a baryonic phase more

stable, which implies that a large A triggers a confinement transition as well as

chiral symmetry breaking. Therefore, it is interesting to study the

confinement/deconfinement transition property by other methods. One of the

standard tools is the Wilson-Polyakov loop, which can be obtained holographically

by computing the on-shell Nambu-Goto action [117,121,122,132,133].

SNG =
1

2πα′

∫
dreφ/2

√
1 +

( r

R

)4
f(r)x′2, (7.35)

where the static string worldsheet is parametrized as x(r) and x is one of the field

theory spacial direction. There are two types of solutions: a pair of parallel strings

and a U-shaped string. In principle, the string end points can end on the deep IR

bottom of the D7 probe brane. Such a non-trivial embedding is determined by the

DBI action. However, in this work, we will simply consider the D7 brane infinitely

far away from the horizon, which corresponds to an infinitely heavy quark.

For a pair of parallel strings, the embedding is simply

x(r) = constant, (7.36)

and for a U-shaped strings, we have the conserved quantity (x is a cyclic coordinate)

c0 ≡ eφ(r)/2

√
r4

R4 f(r) + 1/x′2

r4

R4
f(r) =

eφ(r0)/2r2
0

√
f(r0)

R2
, (7.37)

where r0 is the minimum value of r giving x′(r0) =∞. From (7.37) we have

x(r) = 2R2

∫ r

r0

dr
1

r2
√

f(r)
√

eφ(r)r4f/(eφ(r0)r4
0f(r0))− 1

. (7.38)

We can compute the on-shell action of the U-shaped string embedding (SU
NG) by

plugging (7.38) into (7.35). However, it is divergent because of the infinitely heavy

quark mass contribution. We regularize the on-shell action by subtracting this
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infinite mass, which is nothing but the on-shell action of a pair of parallel strings

(S‖NG).

In summary, we define the quark-antiquark potential (Vqq̄(l)) as

Vqq̄(l) ≡
SU

NG − S
‖
NG

2πα′

= 2
∫ ∞

r0

dr
eφ(r)/2

√
1− eφ(r0)r4

0f(r0)/(eφ(r)r4f(r))
− 2

∫ ∞

rH

dreφ(r)/2,
(7.39)

which is the function of l ≡ x(∞), the distance between the quark and antiquark.

r0 on the right hand side can be related to l = x(∞) by (7.38). Our numerical plots

of Vqq̄ for given parameter sets are shown in Fig 7.7.

Let us start with the case A = 0 which is just the well known N = 4 theory, Fig

7.7(a). This is the case with a trivial dilaton, eφ = 1, which was studied first

in [121,122,132,133]. At zero T , the potential scales as 1/l (dotted line), which is a

consequence of the conformality. At finite low T , the potential scales as

1/l(1 + O((T l)4)). Again the dependence on the T l combination is due to the

underlying conformal symmetry. The new feature at finite T is the existence of the

phase transition from the bound quark antiquark pair to the free quark state, as the

distance between quarks increases. In Fig 7.7(a) it corresponds roughly to the

transition from the blue solid curve (a U-shape string) to the red horizontal line (a

pair of parallel strings) near l = 1.52.

Now let us turn on A at a fixed T, Fig 7(b) (wH = 0.5 and here again we set the

scale in (7.4) at λ = 1.715). As A increases a linear potential starts forming, which

is the characteristic feature of confinement. It is interesting that the linearity is

very clear at A = 10, where there exists a stable baryon phase, see Fig 7.5(b)3. So,

we see a rough correlation between our phase diagrams Fig 7.5 and Vqq̄ (Fig 7.7).

Fig 7.7(c) corresponds to Fig 7.5(a). The linearity is not clear in Fig 7.7(c) and it is

2In principle one should also take into account “graviton exchange” between the separated string
worldsheets as was done carefully in [134] for large quark separation. This will modify the potential
at large separation and will replace the phase transition shown at l ∼ 1.5 with a cross-over. Since
we focus on the dilaton effect at intermediate distance we don’t consider that modification. If we
considered it we could have a smoother cross over at larger distance, and also possibly, lose the
additional first order transition in the inset of Fig 7.7(d).

3This linear potential was observed also in a similar setup with eφ = 1 − q/r4
H log

`
1− r4

H/r4
´
,

where q plays the role of our A [117].
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Figure 7.7: Quark-antiquark potential (Γ = 1, λ = 1.715)

natural that we expect a deconfined phase and no stable baryons as shown in Fig

7.5(a). Fig 7.7(d) corresponds to Fig 7.5(b). At high temperature we tend to loose

the linearity and there is no big difference from Fig 7.7(c) (deconfinement, no

baryon). However at lower temperature, the linearity becomes stronger

(confinement, baryon phase). So it is consistent with the phase diagram Fig 7.5(b).

There is one additional interesting feature at low temperature and large A. As

shown in the insert of Fig 7.7(d), there is a first order phase transition between the

linear potential and Coulomb-like potential. This is at odds with QCD, but makes

good sense in our model. Our dilaton profile is a step function so there is a potential

barrier localized at r = λ. As l increases, the string will extend inside, reduce r0

and finally meet r0 = λ, where a linear potential is built. If we further increase l,

then the string finally will manage to get through the barrier at r = λ and beyond

that point, there is no friction against the string moving to lower r since the dilaton

is constant. Therefore the potential becomes Coulomb-like again. We don’t see this

first order transition at high T , because at high T , the interval between rH and λ is

too short and there is no room for a “Coulomb” phase. i.e. After getting inside

r = λ, the string should meet the black hole horizon very quickly.
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The Coulomb-phase should not be present in QCD. We could easily cure this

artifact by considering a continuously growing dilaton profile in the IR rather than

the flat form. However, to keep the phase diagram seen in Fig 7.5(b), the dilaton

should only increase mildly (For example, as 1/rq as studied in [135]). If it is too

strong, the phase diagram will be always the type of Fig 7.5(c), destroying our

motivation for this work. However, a simpler explanation of the Coulomb phase is

that it is a result of the quenched approximation. In reality we would expect q̄q

pair production to break the string at separations before the Coulomb phase sets in

for large A. For this reason these models still seem reasonable for QCD. In this

section, our discussion has only been qualitative. More quantitative studies of the

Wilson-Polyakov loop, together with other modifications of dilaton, would be

interesting.

7.6 Summary

We have used the D3/D7 system to holographically study the phase diagram of a

chiral symmetry breaking gauge theory as a function of the running coupling profile.

We have included a running coupling through a phenomenological non-backreacted

dilaton profile which steps between conformal UV and IR regimes. Here we have

considered dependence on the height of the step. The model has previously been

shown to have three phases : a chirally symmetric quark plasma at high T and µ; a

chiral symmetry broken phase at small T and µ; and a more exotic chiral symmetry

broken phase with quark density at intermediate T, µ for some parameter values.

The order of these phase transitions depend on the height of the step. A first order

transition to the chirally symmetric phase can be achieved for low step values.

Previous work has also shown that the low µ transition with T can be made second

order by phenomenologically tinkering with the shape of the AdS black hole horizon

(in a way compatible with the spatial symmetry breaking of the D3/D7 system).

The crucial extra ingredient we have concentrated in this analysis is the low T and

intermediate µ baryonic phase. Baryons can be introduced as D5 branes wrapped

on the S5 of the dual geometry and linked D7-D5 systems describe the hadronic
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phase. In [116] such configurations were introduced in a geometry with a diverging

dilaton in the IR. The resulting baryonic phase persisted though to arbitrarily high

density unlike in QCD (but in a similar fashion to the equivalent phase diagram in

the Sakai Sugimoto model [130]). Our intuition for our analysis was that in a model

with a step function dilaton profile there would be no very large or small baryon

vertices because in the two conformal regimes they would shrink away. The only D5

brane configurations would lie around the step and we could hope they would only

play a role at intermediate µ. We indeed find, after careful numerical analysis, that

this is the case for some range of the step size. Our model which best matches

expectations for QCD in the low T regime is shown in Fig 7.5(b). The second order

transition to this regime matches expectations in the absence of internuclear

interactions which we neglected.

We have also made a qualitative link between the presence of the baryonic phase

and the observation of linear confinement in Wilson loop computations in the

background. The step function dilaton form generates both confinement and chiral

symmetry breaking when the step size is large enough.

The phase diagrams we produce are not intended as predictions for QCD since the

underlying physics model is somewhat different (e.g. the presence of super-partners)

but they do demonstrate the wealth of behaviours possible in strongly coupled

gauge theory. We can also hope for some universality and by finding models that

match QCD’s expectations for the phase structure it may be possible in the future

to study phenomena beyond that structure using the models. For example in [114]

the temporal behaviour of these systems, such as bubble formation, could be

followed through a first order phase transition in a model of this type.
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Chapter 8

Holographic Wilsonian

Renormalization and Chiral

Phase Transitions

8.1 Introduction

Recently a number of authors have proposed using renormalization ideas in the

spirit of Wilson in holographic descriptions of strongly coupled gauge

theories [136–143]. (For earlier discussions, see [144–149]) The radial direction in

AdS like spaces is dual to energy scale in the field theory [46,150–152] and one can

imagine introducing a cut-off at some finite radius, splitting the supergravity

solution in two. By integrating out the high energy regime an effective Wilsonian

description should emerge. The precise matching of the radial direction to a gauge

invariant measure of energy scale remains an open problem so a precise match to

Wilsonian renormalization in the field theory will also remain imprecise but the

spirit is clear.

In this chapter we wish to bring these ideas to bare on some explicit examples of

theories with phase transitions. We wish to study how those transitions emerge in

the Wilsonian language and will find examples of new transitions with changing
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Wilsonian cut-off scale. We are also interested in deriving low energy effective

actions near the transition points using this language.

In particular we will use the simple but highly instructive D3/D7 and D3/D5

systems [51]. The D3/D7 theory is the N = 4 Super Yang-Mills theory in 3+1

dimension with N = 2 quark hypermultiplets. In the D3/D5 case the

hypermultiplets are restricted to a 2+1 dimension sub-surface of the gauge theory.

In the quenched limit, when the number of quark flavours is small but the number

of colours large, we can use the gauge/gravity dual consisting of probe D7(D5)

branes in AdS5×S5. This system has been widely explored (For example in the

D3/D7 case see chapter 4, [39,55,56,65,77,91,111,112,114,119,153] and references

therein and chapter 5 and [92,94–97] for the D3/D5 case) and we will make use of a

number of known phenomena. In these systems the radial coordinate on the probe

brane plays the role of the renormalization group (RG) scale in the field theory.

We will first introduce our methodology in the supersymmetric N = 2 theory. That

theory does not induce a chiral quark condensate (which would break

supersymmetry were it present) but we can nevertheless attempt to find an effective

potential for the quark condensate which should be minimized at zero. We will

study its dependence on changing Wilsonian scale. This introduces the first subtlety

which is the need to define holographic flows for non-vacuum, “off-shell”, states in

the field theory. In the UV, solutions of the Euler Lagrange equation for the D7

embedding exist for all values of the condensate. In fact we show analytically in

this case that the D7 embeddings with non-zero condensate become complex at

some finite AdS radius. At any fixed radius the solutions that are still real do not

share the same boundary condition so formally one should not cut them off and

compare their actions. To remedy this we consider a cut-off with explicit width i.e.

effectively two close cut-offs. We use the naive UV solutions down to the the higher

cut-off but then match them to classical embeddings between the two cut-offs that

share the same IR boundary conditions. After making this construction one can

then take the limit where the cut-offs come together. In this case that limit leaves

us just evaluating the UV flow’s action down to the cut-off as one naively expects,

however it prepares the ground work for later more complicated cases. If the cut off
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is taken too low then an embedding will become complex and computing the action

is impossible. We interpret this as high energy states being integrated from the low

energy effective theory - these states have energy above the cut off and are simply

no longer present in the Wilsonian effective IR theory.

The precise meaning in the field theory of any cut-off we introduce of course is

ambiguous but we presume there is some sensible mapping. Indeed there are also

many distinct ways in which a cut-off can be introduced in the field theory from a

sharp cut on UV modes to some smooth function suppressing the UV contributions.

Using our prescription for the cut-off, we then evaluate the action of the D7 brane,

which is just the free energy in the field theory. If we evaluate the UV component

of that action above our cut-off we are simply determining the effective classical

potential for the quark condensate that encapsulates the physics above that scale.

This is the Wilsonian effective potential. The deep IR of this potential only

contains the vacuum state with the condensate equal to zero since all other states

are associated with complex embeddings - we can though freeze the energy of those

states at the point they are integrated out (become complex) to generate an IR

effective potential.

In the presence of a magnetic field, B, in the D3/D7 system a quark condensate is

induced that breaks a U(1) chiral symmetry [65]. In this system we again study the

effective potential for the quark condensate with changing Wilsonian scale using the

ideas so far developed. In the pure B case the resulting RG flow shows a novel

second order transition to the symmetry breaking configuration as the Wilsonian

scale is changed. This is an example of a strongly coupled Coleman Weinberg [154]

style symmetry breaking. We also holographically compute the effective potential

close to the transition and show it is mean field in nature. We plot the RG flow of

the couplings of the Wilsonian effective potential. In the deep IR the effective

potential for the condensate again develops gaps as embeddings become complex

and are integrated from the low energy theory. The picture that emerges is

satisfyingly Wilsonian. The bare UV theory has no symmetry breaking; at

intermediate RG scales integrated out, UV, quantum effects enter the bare

potential and display the symmetry breaking; in the deep IR all states but the true
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vacuum are integrated from the low energy theory. The Wilsonian approach gives a

sensible intuition.

The pure B theory can also be related immediately to the case of a B field and a

perpendicular electric field, E [113,155,156]. These two theories essentially share

the same action. The E field [69,153,157] tends to dissociate quark bound states

and so disfavours chiral symmetry breaking [113]. We show that our previous

results can be mapped to display the E dependence of the Wilsonian description.

We next turn our techniques to analyze the D3/D7 system with a magnetic field

and chemical potential (see chapter 4, [91]). The chemical potential tends to induce

a non-zero quark density which also disrupts the chiral condensate. Here the naive

embedding flows for the D7 brane, describing different condensate values, all

progress to the deep IR where they mostly end in a singular fashion. Previously

those flows that end at the position of the D3 branes (the origin) have been picked

out to describe the physical vacuum [56]. The picture is that fundamental strings,

representing the quark density, link the D3 and D7 brane. They manifest as a spike

in the D7 brane embedding to the origin. The fundamental strings are needed to

source the D7 brane world volume gauge field that is dual to chemical potential. To

compare the actions of these vacuum flows and the off shell configurations, the off

shell configurations must be forced to have the same IR boundary conditions. We

use our cut-off procedure to argue that in the deep IR the off-shell configuration

should be completed with a spike of D7 brane to the origin. The natural extension

of this procedure at non-zero cut-off values is that all configurations should be

completed with a spike along the cut-off.

Having argued for this implementation of the cut-off we then analyze the Wilsonian

effective potential of this theory at fixed B but varying density. Again we find a

sensible Wilsonian description with the UV theory showing no symmetry breaking.

Then, provided the density is sufficiently small, there is a transition with lowering

cut-off scale to the chiral symmetry broken vacuum. This transition is in parts of

parameter space first order and elsewhere second order and mean field. We can

explicitly derive the effective potential through the transition. As the cut-off is
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taken into the IR the second order behaviour dominates and we perform a fit to the

mean field potential. In this case we do not see the degeneracy of the potential in

the deep IR we described in the supersymmetric and pure B case - none of the

embeddings become complex. This might reflect that our cut-off prescription is

overly naive. We simply report on what we find in this case.

Finally we study the D3/D5 system [94–96] with a magnetic field and density, d,

using our Wilsonian methodology. This system is of further interest because it is

known to exhibit a holographic BKT transition (see Chapter 5, [92]) at which the

condensate grows as e−1/
√

dc−d. Here we again display the density versus cut-off

phase diagram, in which there are first order transition regimes, second order

regimes and finally for the cut-off in the deep IR a BKT transition. Here we

successfully derive an effective potential for the BKT transitions when the

Wilsonian scale goes to zero.

8.2 Wilsonian Flow For the N = 2 Theory

We will begin by exploring a Wilsonian analysis of the simplest model N = 2 gauge

theory which does not display chiral symmetry breaking. The N = 4 gauge theory

at zero temperature is described by the dual geometry (AdS5 × S5)

ds2 =
r2

R2
dx2

4 +
R2

r2
(dρ2 + ρ2dΩ2

3 + dL2 + L2dφ2), (8.1)

where r2 = ρ2 + L2 and R4 = 4πgsNα′2.

Quenched (Nf ¿ N) N=2 quark superfields can be included through probe D7

branes in the geometry. The D3-D7 strings are the quarks. D7-D7 strings

holographically describe mesonic operators and their sources. The D7 probe can be

described by its DBI action

SDBI = −TD7

∫
d8ξ

√
−det(P [G]ab + 2πα′Fab), (8.2)

where TD7 = (2π)−7α′−4g−1
s and P [G]ab is the pullback of the metric and Fab is the
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gauge field living on the D7 world volume. The Wess-Zumino term is irrelevant to

our discussion.

The gauge field holographically describes the operator q̄γµq and its source, a

background U(1) gauge field for baryon number. We will use Fab below to introduce

a constant magnetic field (eg F12 = −F21 = B/(2πα′)) [65] but for the moment keep

it zero.

We embed the D7 brane in the t, ~x, ρ and Ω3 directions of the metric but to allow

all possible embeddings must include a profile L(ρ) at constant Ω1. The full DBI

action we will consider becomes one dimensional:

SDBI = N

∫
dtd~xdρ L(L,L′; ρ), (8.3)

where N = NfTD72π2 and

L = −ρ3
√

(1 + L′2) . (8.4)

The Euler-Lagrange equation for the embedding is then

∂ρ

(
ρ3L′√

(1 + L′2)

)
= 0. (8.5)

At large ρ the classical solution from (8.3) behaves as

L(ρ) ∼ m +
c

ρ2
+ · · · , (8.6)

where m is proportional to the quark mass and c to the quark condensate.

Numerically we can shoot into the IR from a UV solution with particular values of

c and m. For the particular case m = 0 we show such flows in Fig. 8.1(a). All

except the c = 0 solution appear to stop at some finite ρ. In this case we can find

the analytic solution to investigate this in more detail. The real solution valid in

ρ ∈ (ρc,∞), where ρc = (2c)1/3 is

L(ρ) = m +
c

ρ2 2F1[1/3, 1/2, 4/3, 4c2/ρ6], (8.7)
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Figure 8.1: Plots of D7 embeddings in the N = 2 theory. (a) Full embedding solutions for m = 0.
(b) The embeddings interrupted by a two scale cut off.

with

L′(ρ) =
2c√

ρ6 − 4c2
. (8.8)

From (8.8) we can see that the gradient of the embedding becomes complex at

ρc = (2c)1/3. These results match very well to the numerical results in Fig 8.1(a)

and provide an explicit form for the behaviour at ρc. The only solution that

survives to ρ = 0 is the flow with c = 0.

One would naively like to plot the effective potential V (c) generated by the

holographic flows to show the c = 0 solution is the minimum. However, since all but

one flow (c=0) become ill-defined this is confusing. Understanding why there is no

IR effective potential provided by holography is one of our goals. We will adopt the

recently suggested idea that we should approach the holographic description in a

Wilsonian manner. In particular we will introduce a cut-off in ρ, the holographic

direction for quark physics (i.e. the radial direction on the D7 brane), which we will

call ε and study the theory as a function of changing that cut-off.

Thus specifically to convert the “off-shell” flows, with non-vacuum values of the

quark condensate, into kosher flows we will interrupt them with a cut-off at an

intermediate value of ρ. In the UV we find the Euler Lagrange equation solutions

with large ρ asymptotics c/ρ2 and solve down to the cut-off. A technical issue arises

at this point though. The flows ending on the cut-off do not share the same IR

boundary conditions since they meet the cut-off at arbitrary angles. Formally one

should not compare their actions in a Euler-Lagrange analysis.
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To cure this let us imagine a more general structure for our cut-off in which it has

finite width. We introduce two cut-offs in ρ, ε− and ε+. In the UV from infinite ρ

down to ε+ we use the flows in Fig 8.1(a). Then we match these flows to flows

beginning at ε− with L′(ε−) = 0 and ending at ε+ at the same point as the UV

flows. We pick this boundary condition at ε− because it naturally matches on to

the boundary condition of the regular flows as ε− → 0 ie L′(0) = 0. We show

example flows in Fig 8.1(b). Now all of our flows have the same IR and UV

boundary conditions.

Having introduced this cut-off structure it is actually most natural to remove it by

taking ε+ → ε−. In this example the flows between ε− and ε+ simply become short

straight lines whose action vanishes as the two cut-offs coincide. This digression

therefore is just to justify that one can effectively consider the UV flows down to

the common ε to share IR boundary conditions and directly compare their action

sensibly. In other words we assume a small change to the flows at the cut-off that

bends them to satisfy L′(ε) = 0 but assume this doesn’t make a large change to the

action. Here this seems rather trivial but we shall see much more structure emerge

in the later example with density.

We now proceed in this case with the single cut-off ε. For each choice of ε we can

plot a potential (density) given by

Veff(c) = −
∫ ∞

ε
dρ L(ρ), (8.9)

which is nothing but a Euclidean on-shell action (8.3) normalized by N and a field

theory volume (so it is a density.). These actions diverge in the UV but the

difference between them determines which is preferred (or they can be regulated by

adding a holographic counter term ∼ Λ4/4, where Λ is a UV cut-off to be set to ∞
at the end). A minus sign comes from Euclideanization. To regulate these flows we

will always compute the difference in action from the flat embedding L = 0 with the

equivalent cut-off ε. The L = 0 embedding will therefore always lie at V = 0 in our

plots. The potential should be viewed as the potential energy incurred for a

particular value of the condensate from scales above the cut-off ε. In other words
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Figure 8.2: Plots of the effective potential against the parameter c in the N = 2 theory. Plots for
ε = 0.2, 0.15, 0.1 (red,blue,black) from right to left. The dotted curve is the extended IR effective
potential with the values of the action frozen at the point the embeddings become complex.

this potential is the equivalent of the potential in the “bare” Lagrangian written

down for the theory at the given cutoff which should be used in conjunction with

quantum (or holographic) behaviour below the cut-off. This is exactly the

Wilsonian paradigm.

8.2.1 Wilsonian Potentials

Using the methodology described above we can now plot the Wilsonian effective

potential for the quark condensate as a function of cut off scale ε. We show this in

Fig 8.2. Reassuringly c = 0 is the minimum of the potential at all values of the cut

off as we would expect in the supersymmetric theory.

The finite extent of the plots in c is a result of solutions with larger c having gone

complex before reaching the cut off at ε. We interpret the removal of states with

large values of the condensate from the effective potential as a sign that these states

can not be reached with the energy available in the IR theory. This seems to match

well with a Wilsonian approach and explains the degeneracy if ε→ 0. In the

examples below we will simply omit states that are not in the low energy theory in

this sense. One could though simply freeze the potential value at the point where

the embedding becomes complex and retain that value for lower choices of the cut

off. We plot that version of the IR effective potential for the N = 2 system as the

dotted curve in Fig 8.2 - again it is minimized at c = 0.
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Figure 8.3: In (a) we show the flat and vacuum embeddings of the D7 brane probe in AdS5×S5

with a magnetic field (B = 1). In (b) we plot the quark condensate against mass extracted from
embeddings such as those in (a).

8.3 Wilsonian Flow for a Chiral Condensate

We will now move on to study more interesting examples of gauge theories that

induce chiral symmetry breaking in the IR. We next look at the N = 2 theory with

an applied magnetic field which induces a chiral condensate [65]. We introduce the

B field through the D7 brane world volume gauge field in (8.2). We now have

L = −ρ3
√

(1 + L′2)

√(
1 +

R4

(L2 + ρ2)2
B2

)
. (8.10)

At large ρ the asymptotic solution is again given by (8.6) and we can again

interpret m, c as the quark mass and condensate. In the absence of B the theory is

conformal so it is natural to write all dimensionful parameters in units of
√

B, the

intrinsic conformal symmetry breaking scale, which we do for our numerical work

(i.e. put B = 1).

The solutions of the Euler-Lagrange equations for the embedding L(ρ) are well

known (chapter 4, [65]) and we show two1 regular solutions with m = 0 and with

L′(0) = 0 in Fig 8.3(a) - numerically one shoots out from ρ = 0 to find these. More

generally one can seek such solutions for any mass m and read off the condensate c

from the large ρ asymptotics. In Fig 8.3(b) we show a plot of c vs m for the regular

embeddings. It has the spiral structure discussed in [65]. The Fig 8.3(a) solutions

1In principle there are infinite number of meta-stable solutions corresponding to the spiral struc-
ture in Fig 8.3(b). However, we omit them since they are always meta-stable not a ground state.
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are the c = 0 flat embedding and the largest c solution with m = 0. The vacuum

energy of these configurations can be found by integrating minus the holographic

action over the ρ coordinate. These actions diverge in the UV but the difference

between them determines which is preferred (or they can be regulated by adding a

holographic counter term ∼ Λ4/4 + B2/2 log Λ, where Λ is a UV cut-off to be set ∞
at the end). The curving configuration shown, with the quark condensate, is the

preferred state and the flat embedding is a local maximum of the effective potential.

8.3.1 Wilsonian Effective Potentials

As in the previous example we would like to plot the effective potential V (c)

generated by the holographic flows to show the solutions we have found are the

turning points. To describe off-shell states we find numerical solutions of the

embedding equation for massless quarks that look like c/ρ2 at large ρ and shooting

into the interior. We plot these flows in Fig 8.4(a), where it can be seen that most

fail to reach the L axis or a deep IR cut-off. We expect that these are associated to

the embedding becoming complex by continuity to the c >> B3/2 curves, although

here we do not have analytic solutions.

To proceed we again introduce a cut off. In Fig 8.4(b) we show such a cut off with

the two scale structure, ε+, ε− that allows us to make the flows all share the same

L′(ε−) = 0 boundary condition. As with the pure supersymmetric case we can take

ε− → ε+ limit trivially here, having a single cut off ε at which we end the flows. We

0.5 1.0 1.5 2.0
Ρ

0.2

0.4

0.6

L

(a)

1 2 3 4 5
Ρ0.0

0.2

0.4

0.6

0.8

1.0

LHΡL

(b)

Figure 8.4: (a) Plots of the D7 embeddings against ρ for several asymptotic values of the quark
condensate at zero quark mass with a magnetic field (B = 1). (b) Those flows interrupted by a two
scale cut-off (ε− = 1 and ε+ = 2 here) used to give the flows the same IR boundary condition.
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Figure 8.5: Plots of the Wilsonian effective potential for the quark condensate in the D3/D7 system
with a world volume magnetic field (B = 1) at different values of the Wilsonian cut-off ε (ε =
0.5, 0.4686(phase transition point), 0.3, 0.2, 0.15 and 0.03 respectively). In (a)-(c) we see a second
order transition from the unbroken to the broken phase. In (d)-(e) we see the IR potential degenerate
as non-vacuum states are integrated out. In (f) we show the potential close to the origin at ε = 0.03
displaying one of the metastable vacua, which corresponds to c ∼ 0.025 also shown in Fig 8.3(b).

now proceed in this case with the single cut-off ε evaluating the action integrated

from ε to infinity.

In Fig 8.5 we plot the potential as a function of ε for the D3/D7 system with

magnetic field. When ε is large we are describing the UV lagrangian which has no

preference for a quark condensate. As ε decreases we are “adding in” more of the

strongly coupled quantum effects of the theory from lower scales to the bare

potential. The first clear feature shown in Fig 8.5(a)-(c) is that there is a phase

transition at the critical value εc = 0.4686B1/2 to the chiral symmetry broken

phase. This transition is our first main result. One can think of this transition as

being in the spirit of a Coleman-Weinberg transition - at high energies the theory

has no condensate but then strongly coupled loop effects enter in the IR and break

the symmetry. We will return to the deep IR later but let us first explore this phase
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Figure 8.6: (a) A plot of the quark condensate c against Wilsonian cut-off scale ε. (b) A log log plot
of the same close to the transition point to show the mean field exponent.
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Figure 8.7: Plots of the parameters (a) a and (b) b in our fitting potential in (8.11) against Wilsonian
cut-off ε through the transition point.

transition in detail.

In Fig 8.6 we plot the quark condensate against ε showing that the transition is

second order. We also plot log c vs log(εc − ε) near the transition point from which

we can extract the critical exponent as 1/2 - the transition is a mean field one.

In fact close to the transition we can perform a numerical fit to the potential we

have derived of the form

Veff(c; ε, B) = acp + bcq, (8.11)

where a and b are functions of ε and B. Through the ε range 0.467− 0.48 the fit

gives p = 2 and q = 4 to better than a percent.

The existence of such a potential (which is not present in the far UV theory at all)

corresponds to the emergence of multi-trace operators in the spirit of the discussion

in [138,139]. We next plot the coefficients a, b against ε in Fig 8.7. a and b are
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Figure 8.8: (a) A summary plot of Fig 8.5 showing the Wilsonian potential at six different choices
of ε on a single plot. (b) The potential and fit (solid line) close to the transition point - the dots are
holographically determined data.

approximated as linear functions close to the transition. a is proportional to (ε− εc)

and b is always positive. This is all standard mean field expectations. In Fig 8.8(a)

we plot the potential for different ε on a single plot. In Fig 8.8(b) we plot the

potential for values of ε close to the transition, where the points are the numerical

data whilst the solid curves are our fit potentials.

Veff(c; ε, B) = −4.17
(

0.4686− ε√
B

)
c2

B

+
(
−13.98

ε√
B

+ 10.81
)

c4

B4
.

(8.12)

It is clear that the transition is well described by the expected mean field potential.

We stress though that here we have derived this form holographically.

Another key feature is visible in Fig 8.5(d)-(e). When we impose a cut-off at ρ = ε

we are excluding some range of condensates. In fact even for large ε, flows with very

large c become complex in the UV before they reach the cut-off as we saw in the

N = 2 supersymmetric theory. Qualitatively it makes sense that if we write a

Wilsonian effective model at low energies then large condensate values should be

excluded from the theory since such states would be completely integrated out -

they have an energy above the cut-off.

As we move to much lower ε, the deep IR, in addition some intermediate ranges of

condensate also disappear from the effective description in the same fashion. This is

why there are breaks in the potential plot for low ε. Again qualitatively these states

have such high energy relative to the low cut-off scale of the effective theory that
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they are integrated out.

If ε is strictly taken to zero only the regular flows corresponding to the turning

points of the potential have finite action. This is clear from Fig 8.4(a). The

effective potential we are computing therefore degenerates in the deep IR. In this

Wilsonian language though this degeneration seems entirely appropriate - when we

have integrated out anything above the vacuum energy it is no surprise we are left

with only the vacuum state in our effective theory.

In addition to the vacuum state we have considered so far, in principle, at ε = 0

there are an infinite number of meta-stable vacua near the flat embedding. This is

shown in the self-similarity (spiral) structure in the c vs m plot in Fig 8.3(b). This

self-similarity is realized in our Wilsonian context as follows. When ε is large c = 0

is the global minimum. As ε decreases it becomes a local maximum and a new

ground state forms. This is shown in Fig 8.5(c). As ε decreases more, c = 0

becomes a local minimum Fig 8.5(e), which is preparing to produce a new

meta-stable vacuum. As ε decreases yet further then c = 0 becomes a local

maximum again Fig 8.5(f) leaving a meta stable vacuum. This process (from Fig

8.5(c) to Fig 8.5(f)) will continue as ε→ 0 leaving more and more meta stable

points. The first of these metastable vacua is visible in Fig 8.5(f) where we have

focused near the origin at yet lower ε.

Finally here we should comment that the precise meaning of these phase transitions

and absent regions will depend on the precise choice of cut-off. The cut-off in ρ

seems natural in the D7 context but without a precise link between the holographic

direction and the field theory RG scale there is some ambiguity. For example one

could have chosen to make the cut-off at constant r =
√

ρ2 + L2 surface rather than

constant ρ. Actually we find that particular choice unnatural because the true IR

vacuum state would be missing from the ε = 0 theory since the chiral symmetry

breaking flow does not hit r = 0. Further at the point where the true vacuum

disappears from the IR theory its vacuum energy remains above that of the flat

embedding because the flat embedding has a missing contribution to its energy

from where it extends below the cut off - we don’t see the true vacuum emerge at
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Figure 8.9: The fitting powers p, q in (8.11) as a function of Wilsonian cut-off ε below the second
order transition.

any scale. This discussion shows though that the choice of cut-off could be

dependent on the explicit flow. Although this identification remains an outstanding

problem we believe the Wilsonian style description we have presented is very

plausible and qualitatively helpful in understanding the holographic description.

8.3.2 Towards an on-shell IR effective potential

It is clear from our Wilsonian analysis above that the deep IR effective potential is

highly degenerate. It is interesting though to track the form of the effective

potential below the Wilsonian second order transition we described above. We can

again fit the potential at varying ε to a potential of the form in (8.11). In Fig 8.9

we show the best fit values of the powers p, q with ε. Although p stays close to 2, q

rises fast at values of ε below the second order transition. Of course this does not

mean that the c4 term is switching off but that the coefficients of c6, c8, .. type

terms are becoming large - one could in principle use a more complex potential

fitting form to see this behaviour. At lower values of ε than those shown in Fig 8.9

the potential starts to become degenerate.

In the deep IR (ε = 0) only the vacuum configuration with c = 0.2255B3/2 and

V = −0.05534B2 is described holographically. If one wishes one can imagine (using

dimensional analysis) an effective potential of the form

Veff = α
c2

B
+ β

c4

B4
(8.13)

and fit for α and β. We find α = −2.17659 and β = 21.4014.
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It is important to stress though that the form of this potential is not fixed by the

holographic flows - we could have included more terms with higher powers of c for

example that would reproduce the computed values of c and V . Also there is no

sense in which this potential is derived away from the minimum - it is an off-shell

effective potential extrapolated from on-shell values. That is (8.13) is assumed to

be true for off-shell c values so that the condition ∂V
∂c = 0 makes sense. However, α

and β are fixed only by on-shell data. In our off-shell method at finite ε above, α

and β are determined by the off-shell data.

The on-shell action also describes a second order phase transition as B → 0. For

B > 0 the quark condensate grows as B3/2 as it must on dimensional grounds. It is

important to stress the difference between this transition and the holographic

transition we found above with changing ε at fixed B.

8.3.3 B and perpendicular E

The pure B field theory is also very closely related to the theory with both a

magnetic and perpendicular electric field present [69,153,155,157]. The D7 action is

L = −ρ3
√

(1 + L′2)

√(
1 +

R4

(L2 + ρ2)2
(B2 − E2)

)
. (8.14)

Clearly this is little different from the previous case since we have an effective

B̃ =
√

B2 − E2. Indeed one can think of this system as a boosted version of the

static case with just a B field. However, we find it a useful case to consider in this

form because we can compare the magnitude of the condensate in units of the

magnetic field with varying electric field value. It is interesting to have more than

one scale in the problem.

One expects, since B̃ is the only scale in the DBI action that at small E values

c ∼ (B2 − E2)3/4. (8.15)

In other words there should be a second order transition at E = B with a non-mean

field exponent.
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Figure 8.10: (a) Plot of the quark condensate against electric field (with a background perpendicular
B field (B = 1)) at different values of ε. (b) Plot of the E− ε phase diagram - the points are derived
from the holographic flows whilst the continuous curve is E =

p
1− (ε/η)4

Above the transition the theory exhibits a singular surface where the DBI action

naively turns complex. This can be resolved by introducing currents induced by the

electric field. The theory becomes a conductor as well as chirally symmetric. We

will not be exploring this high E phase here.

We can study the theory in our Wilsonian approach with a cut-off ε. The theory is

equivalent to the analysis of our previous section but with B replaced by B̃. We

can write the effective potential, valid close to the Wilsonian transition (8.12)

Veff

B̃2
= α

(
ε

B̃1/2
− η

)
c2

B̃3
+ b

c4

B̃6
, (8.16)

where

η =
εc

B̃1/2
= 0.4686, α = 4.17. (8.17)

We can now hold ε fixed and vary E. This potential tells us the full E dependence

of the theory near the transition point. In particular we can determine the

transition point from where the mass term changes sign.

E2
c = B2 − ε4

η4
(8.18)

Further by writing E = Ec + δE and expanding we find the effective mass squared

depends on E as

m2 =
α

2
η4

ε4

√
B2 − E2Ec(E −Ec). (8.19)
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In other words the transition is mean field as one moves in E as well as ε.

In Fig 8.10 we plot the condensate against E for various choices of ε and the phase

diagram in the E − ε plane. It is important to realize that the transition for which

we have found the effective potential is that at finite positive B2 −E2 and finite ε

close to the transition in ε. In other words our effective theory describes the c−E

plot only near the c = 0 axis. We can see that the range of validity of our effective

theory is only away from the point B̃ = 0 (i.e. away from E = B)

√
B2 − ε4

η4
< E < B, (8.20)

which clearly has no extent at ε = 0 The point ε = 0 on the E axis of the c−E plot

is distinct with a critical exponent of 3/4 relative to the mean-field exponent along

the rest of the axis. We can not compute the form of the effective potential for the

transition at ε = 0 other than in the on-shell fashion described in the previous

section.

8.4 Transitions with B-field and Density

The next models we will explore are the D3/D7 and the D3/D5 systems with

magnetic field, to trigger chiral symmetry breaking, and density, d, which opposes

chiral symmetry breaking. The phase structure of these theories has been explored

in chapter 4 and [91] for the D3/D7 system that has a second order mean field

transition with increasing density, and in chapter 5 and [92] for the D3/D5 system

that displays a holographic BKT transition in which the condensate grows like an

exponential of −1/
√

dc − d. Our goal is again to use Wilsonian techniques to learn

about these transitions and find the form of the effective potential responsible for

the BKT transitions. This system is more complicated than the pure B system as

we shall see but we will again enforce that all flows we compare have the same IR

boundary conditions at the Wilsonian cut-off to give a concrete prescription. The

outcome is a consistent Wilsonian picture of the theories and our ability to derive

the effective potential for the condensate including a potential that generates the

BKT behaviour. We will concentrate first on the D3/D7 system.
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8.4.1 Density in the D3/D7 system

Density is introduced into the theory through a background value for the temporal

gauge field of the U(1) baryon number [55,56,75,76]. The UV asymptotic form of

the field is Ãt = 2πα′At = µ + d/ρ2 + .. and describes the chemical potential µ and

the quark density d. The probe D7 DBI action with Ãt is given by

L = −ρ3
√

1 + L′2 − Ã′2t

√
1 +

B2

(ρ2 + L2)2
. (8.21)

Since the action only depends on the derivative of Ãt there is a conserved charge

density, d, defined as

d ≡ ∂L

∂Ã′t
. (8.22)

We may Legendre transform the Lagrangian (8.21) to write the action in terms of

density

LLT = L− Ã′td

= −
√

1 + L′2
√

d2 + ρ6

(
1 +

B2

(ρ2 + L2)2

)
.

(8.23)

For fixed B and d we can find solutions to the embedding equation of the D7 brane

with UV behaviour m + c/ρ2. We plot example flows in Fig 8.11(a). At first sight

this system seems rather different from the d = 0 theory - solutions for a large

range of c extended all the way to ρ = 0. One can naively evaluate the action of

these curves and plot it as an effective potential against c - see Fig 8.11(b). This

interpretation is though incorrect for several reasons.

Firstly, these flows all meet the L axis at different angles. This means that they

have different IR boundary conditions and we should not compare their action in a

standard Euler-Lagrange context. Further, since L′(0) 6= 0 these branes are actually

kinked at ρ = 0, when SO(4) rotated to provide the full D7 embedding.

Secondly, these flows have a non-zero gauge field on their surface that should be

sourced. In [56] the authors argued that the correct source should be fundamental

strings stretched between the D3 (or the origin) and the D7 branes. These would be
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Figure 8.11: (a) D7 embeddings with a fixed B field (B = 1) and density (d = 0.25) but varying
condensate c. (b) The incorrect effective potential derived by integrating over the action of the flows
in (a) - the position of the true vacuum is marked.
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Figure 8.12: A plot of the quark condensate parameter c versus density in the D3/D7 system with
a magnetic field B = 1.

explicitly the quarks corresponding to the density. Such a continuous distribution of

fundamental strings can be absorbed into the D7 world volume and show up as the

D7 brane spiking to the origin of the space. The authors of [56] argued in this way

that only the embedding that ends at the origin was a “good” flow and it should

represent the vacuum. This is now the standard interpretation and has provided a

coherent picture across a wide range of problems including density.

Note that, with a naive choice of boundary condition shown in Fig 8.11(a), the

vacuum flow for massless quarks is not the minimum of the potential (Fig 8.11(b)).

This is no surprise since the other flows are not physical.

Using the “good” flow condition one can compute the quark condensate against

density at fixed B (Fig 8.12). There is a phase transition at d = dc = 0.3198. It is

second order and mean field in nature (c ∼ √dc − d).
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Figure 8.13: An example of matching UV flows to flows between the two cut-offs ε+ and ε− (here
ε− = 0) which have L(ε− = 0) = 0.

8.4.2 Wilsonian Flows and Potentials

Our traditional analysis of the D3/D7 system with B, d has again left us with no

consistent supergravity flows that describe off-shell quark condensate

configurations. Let us try to use a Wilsonian cut-off to provide a hint as to how to

proceed. To make progress we will again introduce a cut-off with structure

consisting of two boundaries in ρ at ε− and ε+.

First consider the case when ε− = 0 but ε+ is finite. For massless quarks, we shoot

in from the UV, using a boundary condition of the form c/ρ2, to the cut-off ε+.

These configurations must be unified to a single IR boundary condition at ε−. They

also have a non-zero At on their world volumes for which we must provide a source.

Two of the flows, the true vacuum and the flat L = 0 embedding, have smooth

extensions to ε− = 0 which end at the origin. These flows describe good vacuum

states of the field theory and must be included. They, therefore, dictate what our

choice must be for the ε− boundary condition: we must have the flows satisfying

L(ε−) = 0, so that we can correctly compare their actions. It is natural then to

complete the off shell solutions with flows from L(ε−) = 0 to ε+ that meet the UV

flows. We show such flows in Fig 8.13.

We can explore the phase transition with changing density at fixed magnetic field

using this cut-off prescription for the deep IR. In Fig 8.14 we show the effective

potential for a range of d. Here we take ε− = 0 and ε+ = 0.01 so the cut-off is very

thin. There is a second order transition as d is raised matching the previously

derived critical value of d. Close to the transition point with changing d we can
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Figure 8.14: The effective potential with ε− = 0 and ε+ = 0.01. B = 1. Every curve is for a fixed
density increasing from bottom to top. The red points are computed from the holographic flows, the
blue lines are our fit potential.

perform a fit to the form of the potential and we find

Veff(c; d) = −5.53(0.3198− d)c2 + 30.76c4, (8.24)

This is a mean field potential. In Fig 8.14 the points are holographically derived

data whilst the curves are this fit potential. The coefficients of this mean field

potential is a function of ε+ in general, but a qualitative mean-field potential form

is valid for all ε+ near the phase transition.

Now we would again like to shrink ε+ to ε− to return to a single cut-off, which will

fix our potential uniquely as a function of ε = ε− = ε+. If we do that with ε− = 0

then the UV flows become those we had declared unphysical in Fig 8.11(a) but with

an added length of D7 extending up the L axis from the origin. This suggests that

that spike is the completion of the flows to make them physical. One can think of

that spike as the fundamental strings that should source the At gauge field on the

D7 world volume.

What then is the correct way to include the spike contribution at non-zero ε−? The

natural answer seems to be to maintain the condition L(ε−) = 0 at finite ε−2. We

must enforce the same boundary condition on all the flows at ε− and that condition

must smoothly map to the case ε− = 0. When we remove the structured cut-off by

taking ε+ → ε− ≡ ε we will again be left with a spike from the flow of Fig 8.11(a) to

2One could just evaluate the sum of the IR and UV contributions of the flows in Fig 8.13 for
varying ε+ and identifying ε = ε+. If one does so then the vacuum flow is the minimum of the
potential at all ε. This picture then does not match our previous analysis of the pure B theory - in
the UV we expect to find a potential that is minimized at c = 0 representing the UV bare theory’s
unbroken symmetry. We have included too much IR information with such a prescription.
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Figure 8.15: Our prescription for completing the flows of Fig 8.11(a) at non-zero Wilsonian cut off
is to extended them with a spike lying along the cut-off down to the ρ axis as shown.

the ρ axis, but now at the scale ε as shown in Fig 8.15.

In a Wilsonian sense we would argue this is reasonable since the UV degrees of

freedom should see all the IR physics compressed at the IR cut-off scale ε. In some

sense the UV theory can not distinguish the origin from the point (L = 0, ρ = ε).

Flows of the form shown in Fig 8.15 will then be our cut-off prescription away from

ε = 0.

The benefits of this configuration are that with a large cut-off the spike simply

increases the action of non-zero c configurations and will leave c = 0 as the vacuum,

whilst in the ε→ 0 limit it will reproduce the known physical solution as the

potential minimum. To compute the action of the spike we simply take a very thin

limit of our two ε prescription - in particular below we will use ε+ = ε− + 0.001.

Taking this prescription we will now show that we get a sensible Wilsonian story

including a derivation of an appropriate effective potential for both the D3/D7 and

D3/D5 systems.

We first present results for the D3/D7 system. In Fig 8.16(a)-(c) we show the

effective potential as a function of c for three choices of ε and various d. B = 1 is

fixed. At large ε for all d we see that c = 0 is the preferred vacuum. As ε is

decreased, provided d < dc ∼ 0.32, there is then a transition to a chiral symmetry

broken phase. We show examples of values of the cut-off where this transition is

first order and second order in Fig 8.16(b) and (c) respectively. We can summarize

the full picture by drawing the d− ε phase diagram which we show in Fig 8.16(d).

Note that the d = 0 transition point matches that we found above. The ε = 0
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(d) The d-ε phase diagram. The blue colour
corresponds to a first order transition and the
red to second order.

Figure 8.16: The D3/D7 system d-ε phase diagram (B = 1).

transition point reproduces our potential fit in (8.24). The red line is a mean-field

second order transition, while the blue lie is a first order transition.

The insertion of the quark spike with ε has therefore provided a believable

Wilsonian picture. In fact though as presented so far the IR diverges from the story

we told at d = 0. In particular we argued that the potential should degenerate as

ε→ 0 as all states other than the vacuum are integrated from the low energy

Wilsonian theory. We simply don’t observe the embeddings that shoot in from the

UV becoming complex in this system with density for embeddings with condensate

values of order d (very large choices of c do still go complex). We’ve not been able

to find a simple resolution. Most likely the effective potential we are deriving here

is equivalent to that we produced in the pure N = 2 theory freezing and retaining

the potential value at the point where the embeddings go complex - see Fig 8.2(b).

We leave this issue for future thought.
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8.4.3 BKT transitions in the D3/D5 system

The D3/D5 system with magnetic field and density displays a (holographic) BKT

transition [92]. The reason it is distinct from the D3/D7 case is that both B and d

are dimension 2 in 2+1 dimension and they can be tuned against each other in the

deep IR to force the embedding scalar mode of the theory to violate the

Breitenlohner Freedman bound of the effective IR AdS2. The result is that a BKT

transition occurs with an exponential growth of the order parameter (quark

condensate) for d below dc =
√

7B (c ∼ e−1/
√

dc−d). This is discussed in detail

in [92] and chapter 5. Our goal here is to derive an effective potential for a BKT

transition.

The probe D5 brane is embedded in the t and two x directions of the D3 brane

coordinates so that the quarks live on a 2+1 dimensional defect in the N = 4 gauge

theory [94–97]. The D5 brane also extends in three directions perpendicular to the

D3 brane. The probe D5 brane DBI action with Ãt and B present is given by

L = −ρ2
√

1 + L′2 − Ã′2t

√
1 +

B2

(ρ2 + L2)2
. (8.25)

We may Legendre transform to write the action in terms of density (8.22)

LLT = L− Ã′td

= −
√

1 + L′2
√

d2 + ρ4

(
1 +

B2

(ρ2 + L2)2

)
.

(8.26)

For fixed B and d we can find solutions to the embedding equation of the D7 brane

with UV behaviour m + c/ρ.

Following the last section we will introduce a cut-off at the scale ε and complete the

UV flows with a spike down the cut-off to the ρ axis (we again fix ε+ = ε−+0.001 to

generate the spike’s action) - see Fig 8.15. We can determine the phase diagram of

the theory in the d− ε space at fixed B which is shown in Fig 8.17. The transition

is first order at large ε (the blue line) then becomes a mean field second order

transition at small ε before finally ending on a BKT transition at ε = 0. The cut-off
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Figure 8.17: The D3/D5 system d-ε phase diagram (B = 1). The blue colour corresponds to a first
order transition, the red to a second order and the end point BKT transition is labelled.
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Figure 8.18: The potential with the cut-off ε = 0 for the condensate in the D3/D5 system at fixed
B (B = 1) and finite density close to the transition. Every curve is for a fixed density increasing
from bottom to top. Red points are holographic data and the blue curves are the fitted potential in
(8.28).

behaves like temperature which has already been observed to convert the BKT

transitions to second order with the introduction of any non-zero temperature [92].

We plot the ε→ 0 potential for varying choices of d in Fig 8.18. This potential can

not be well fitted by a mean field potential. Instead if we fit to

Veff = ac2 + bc2(log c)2, (8.27)

we find a good fit - see Fig 8.18. The fitting potential in Fig 8.18 is

Veff(c; d) = (0.74d2 − 4.72)c2 + (0.016d2 − 0.12)c2(log c)2. (8.28)

This potential form implies that the condensate near the phase transition is

c ∼ e
−
√−4a+b

2
√

b ∼ e
−3.29√
2.77−d . (8.29)

Note that to numerically extract this data one needs to work at extremely high
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accuracy near the transition where the condensate is exponentially small. The data

shown are the best we have managed. In fact the form of the condensate is known

analytically to be given by [92]

c ∼ e
−3.86√
2.65−d . (8.30)

Although we have not reproduced this perfectly our numerics support this form.

We consider it a considerable success to have derived the potential for the BKT

transition in the holographic setting.

8.5 Conclusions

We have analyzed the phase structure of a number of theories that break chiral

symmetry and have a holographic dual using a Wilsonian cut-off. Including a

cut-off allows us to consider off-shell states, i.e. configurations with a value of the

quark condensate different from that in the true vacuum. We believe that the

results give an improved intuitive understanding of the holographic description and

we have been able to derive low energy effective actions for the phase transitions in

these models including a potential for a BKT transition. The precise identification

of our cut-offs in the holographic description and the equivalent cut-off structure in

the gauge theory remains inexact but the spirit seems correct.

We first studied the D3/D7 system (the N = 4 gauge theory with quark

hypermultiplets in 3+1d). This theory has N = 2 supersymmetry and does not

generate a quark condensate. We nevertheless can in principle plot an effective

potential for the condensate that should be minimized at zero. The D7 embedding

encodes the quark condensate and in Fig 8.1(a) we display the Euler Lagrange

solutions for the theory with different condensate values. In Fig 8.1(b) we insert a

cut-off at a finite value of ρ - here we give the cut-off some finite width and use that

width to match all of the solutions to solutions of the Euler Lagrange equations with

the same IR boundary condition at the lower cut-off. In this case as one shrinks the

width of the cut-off, the UV action returns to that of just the UV flow. In Fig 8.2

we plot the Wilsonian potential, evaluated from the action of the D7 brane above
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the cut-off, in the theory as a function of cut-off value. The Wilsonian potential is

indeed minimized at zero condensate at all energy scales. There is a finite extent of

the potential in the quark condensate because the embeddings become complex

(which we showed analytically in (8.7). We interpret the removal of large

condensate configurations from the low energy effective actions as representing

those configurations having too high energy to appear in the low energy theory.

The same system with an applied magnetic field has chiral symmetry breaking. We

display the Euler Lagrange solutions for the D7 branes with different condensate

values in Fig 8.4(a). We introduced a cut off at finite ρ as in the pure N = 2 theory.

In Fig 8.5 we plot the resulting Wilsonian potential as a function of cut-off value.

The UV of the theory preserves chiral symmetry. The system then shows a second

order mean field transition to the broken phase at intermediate cut-offs in the spirit

of a Coleman Weinberg transition. The form of the potential near the transition

can be extracted numerically and is displayed in (8.12). Finally in the deep IR

non-vacuum configurations begin to be integrated out of the IR effective theory

because they can not be accessed with the IR theory’s energy and the effective

potential again degenerates.

We translated these results to the theory with a magnetic field and perpendicular

electric field. This theory shares the same DBI action as the pure B theory but our

results enlarge to describe the phase diagram in the electric field versus cut-off

plane, which we show in Fig 8.10.

We then added a constant quark density into the D3/D7 theory with magnetic

field. The density opposes chiral symmetry breaking. In Fig 8.11 we show the D7

embeddings for different values of the quark condensate which are again ill

determined because they end at the IR axis in a kinked configuration. The true

vacuum is the embedding that ends at the origin. Introducing a cut-off with width

as in Fig 8.13 allows us to define non-vacuum configurations that all end at the

origin. If we take that cut-off to zero then the embeddings are completed by a spike

to the origin. For a generic value of the Wilsonian cut-off we have suggested that

such a spike should be introduced along the cut-off as shown in Fig 8.15. Using this
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prescription we have determined the phase structure in the density, cut-off plane at

fixed magnetic field, see Fig 8.16. Here we see first order transitions with changing

Wilsonian scale as well as mean field cases. The IR transitions are mean field and

the effective potential is of the form given in (8.24) (in units of B).

Finally we looked at the D3/D5 system describing the N = 4, 3+1 dimensional

theory with quarks introduced on a 2+1 dimensional defect. Here with a magnetic

field and density the zero temperature theory exhibits a holographic BKT

transition. We have again determined the phase diagram in the density cut-off

plane at fixed magnetic field in Fig 8.17. As the cut-off is lowered the transition

changes from first to second order before becoming a BKT transition in the deep

IR. We have been able to derive an effective potential for the BKT transition in the

IR given by (8.28).

The Wilsonian style analysis therefore allows one to see strongly coupled versions of

Coleman Weinberg like symmetry breaking transitions. It also allows us to derive

the low energy effective action in these theories by defining off-shell configurations.

The effective potential for the BKT transition is a new result derived here.

A number of problems remain to be analyzed in these settings including introducing

finite temperature and looking at the non-mean field transitions that lie between

mean field and BKT transitions [111]. We hope to study these in the future. These

methods will hopefully also be of use away from the probe limit where even simple

deformations of AdS are typically singular and hard to interpret [74,158].
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Chapter 9

Discussion

In this thesis holographic methods where employed to study strongly coupled field

theories. Of particular interest throughout this work were chiral phase transitions.

Various phase diagrams where produced regarding chiral phase transitions and in

some cases confinement/deconfinement transitions. The underlying purpose of all

studies performed was to investigate theories which are in the spirit of QCD and

exhibit QCD-like characteristic, with the hope that these theories would provide an

insight into how QCD and strongly coupled theories could potentially behave e.g

perhaps give a hint for the existence of new phases in the phase diagram.

In chapter 4 a D3/D7 system was studied which is the dual description of a 3+1d

N = 2 SYM strongly coupled field theory with fundamental matter. To introduce

chiral symmetry breaking a magnetic field was turned on in the D3/D7 system,

which provided the scale for the chiral symmetry breaking. The purpose of the

chapter was the exploration of the phase diagram of the theory and therefore the

study was performed at finite temperature and chemical potential. A confinement /

deconfinement phase transition was studied as well. It should be made clear though

that bound states in this setup are more in the spirit of atomic bound states rather

than QCD bound states. The reason for this is that firstly the N = 4 background

does not induce linear confinement and secondly the presence of any temperature

leads to screening of the quarks at the length scale of the inverse temperature.

The phase diagram produced was rich with first and second order phase transitions
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connected by a tricritical point and with the chiral transition and

confinement/deconfinement transition been separated for the most part of the

phase diagram. Also, the order of the chiral transition was found to be first order

with temperature and second order with chemical potential. Our phase diagram

does not match the standard picture of the QCD phase diagram but the real phase

diagram of QCD is not known. Many different scenarios are possible and some of

them qualitatively match our chiral transition phase diagram. Another element

that distinguishes our phase diagram from the standard picture of QCD is the

existence of a phase with chiral symmetry broken and finite density, in some part of

the phase diagram, created by the confinement/deconfinement transition when this

transition is separated from the chiral transition. This phase and the separation of

the two different transitions could potentially exist in QCD. Therefore, although

our phase diagram might not describe true QCD, a very rich structure arose which

develops our intuition about strongly coupled field theories.

In chapter 5 the same analysis was performed as in chapter 4, but this time for a

D3/D5 brane system. This setup corresponds to a 2+1d N = 2 SYM strongly

coupled field theory with fundamental matter. The phase diagram calculated has

the same structure as that of chapter 4, apart from the zero temperature chiral

transition. At zero temperature a BKT transition was present as opposed to the

mean field transitions present in other regions of the diagram. This type of

transition is relatively new in holography and it could potentially be of interest in

condense matter physics, where such transitions are known to exist.

In chapter 6 a D3/D7 system was explored again for finite temperature and

chemical potential. The new element of this chapter was the introduction, by hand,

of a running dilaton (instead of the magnetic field used in the previous chapters) in

order to induce chiral symmetry breaking. Some parameters in the dilaton profile

were free to be dialed and the purpose was to explore all the possible phase

diagrams that can arise using holography for different parameters of the running

coupling. The purpose was achieved since a plethora of phase diagrams were

produced for different running couplings, among them a diagram matching the

standard picture of QCD. Therefore, the analysis done in this chapter clearly proves
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that holography can very easily model many different phase diagrams and at the

same time gives a hint on how the profile of the running coupling can affect the

form of the phase diagram.

The analysis performed in the chapters 4,5,6 included bound states of mesons or a

quark-gluon plasma phase but no baryons at all. The QCD phase diagram is known

to have a baryon phase transition in low temperatures and for increasing chemical

potential, which is first order for zero temperature and second order for some range

of temperatures. In chapter 7 a baryon vertex was introduced in the field theory by

introducing a wrapped D5 brane in the gravity description. The rest of the setup

remained the same as in chapter 6. The analysis of the baryon vertex revealed that,

at least for some dilaton profiles, a baryon phase can exist in our holographic phase

diagram in the area of the phase diagram expected from QCD. The phase transition

is second order for all temperatures up to some critical temperature where the

phase ceases to exist. The order of the transition found in our study is different

from that expected in QCD for the zero temperature case but that could be

because the interactions between the nucleons, which result in the first order

transition, are not included in the D3/D7 system.

Furthermore, Wilson loops where used to explore the possibility that baryon

formation and their presence in the phase diagram can be related, in a loose way, to

confinement in the geometry. Indeed, according to our analysis, the potential

between the quark-antiquark pairs became linear at the same values of dilaton

parameters that gave rise to baryons as preferable configurations in the phase

diagram, giving a qualitative consistent picture.

In chapter 8 the idea of Wilsonian renormalisation approach in holography was

applied. The aim was to understand chiral phase transitions for different Wilsonian

cutoffs and to holographically produce effective potentials for the quark condensate

near the transition points. D3/D7 and D3/D5 brane setups where considered,

whose phase structure was known. Wilsonian (energy) cutoffs where imposed in

order to split the embedding solutions in two pieces, the high energy(UV) regime

and low energy(IR) regime . The UV part of the solution was integrated out so that
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a Wilsonian description would emerge. Effective potentials where succefully derived

using this holographic method, giving examples of first, second (mean-field or not)

and BKT transitions.

In this chapter a clear picture of phase transitions in Wilsonian language was been

achieved. Some problems remain unsolved like the the choice of the cutoff, whose

choice might seem a bit naive since it does not give a clear picture of the field

theory cutoff. Also what was used as energy scale in our holographic models does

not have a precise matching in the field theory side. Nevertheless, the results

derived are consistent with the expectations of the Wilsonian description and

provide a qualitative holographic way of understanding chiral phase transitions. .

Finally, in this thesis many different studies of strongly coupled field theories where

performed by using gauge /gravity duality. The strongly coupled field theories used

are considerably different than QCD (superpartners, large N e.t.c) but manage to

captures many characteristics of QCD. The holographic analysis is considerably

easier than attempting to calculate strongly coupled phenomena using other

methods and at the same time it does provide a very rich picture that could be

useful to understand strongly coupled field theories.
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