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ABSTRACT

Individuals are typically members of a variety of
web-based social networks (both explicit and im-
plied), but existing trust inference mechanisms typ-
ically draw only on a single network in order to
calculate trust between any two individuals. This
both reduces the likelihood that a trust value can be
calculated (as both people have to be members of the
same network), and reduces the quality of any trust
inference that can be drawn (as it will be based on
only a single network, typically representing a single
type of relationship). To make trust calculations on
multiple distributed (MuDi) social networks those
networks must be first consolidated into a single net-
work. This is challenging as simple consolidation
strategies such as summing or averaging trust values
tend to distort trust values. In this paper we present
an analysis of different consolidation approaches for
MuDi trust networks, and propose a Weighted Or-
dered Weighted Averaging (WOWA) approach, that
avoids these problems by including the value added
(by a given tie in a given network) as a factor during
consolidation. We evaluate the consolidation strate-
gies using a numerical simulation, where we generate
a range of networks that simulate the characteristics
of real-world networks, and analyse what happens to
trust factors such as average strength of trust ties
(TS), and average length of trust path (TL), as they
are consolidated with different node and tie over-
lap. We discover that while simple strategies such as
summing or averaging distort the trust values in the
consolidated network by amplifying or dampening
trust metrics, the WOWA approach maintains the
integrity of the trust metrics between individuals,
and can dramatically increase the potential number
of trust paths.

I INTRODUCTION

Trust is important in a variety of online activities,
such as e-commerce, peer-to-peer networks, expert
finding, recommendation, etc. But these only form
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a small part of our total online activity, which in-
creasingly includes personal, social and professional
interactions. Leveraging these social interactions to
inform trust decisions is therefore increasingly impor-
tant.

There are many definitions of trust, but we take the
view that Trust of party A to a party B for a ser-
vice X is the measurable belief of A in that B behaves
dependably within a specified context (in relation to
service X) [1).

The reason for selecting this particular definition lies
in its capacity to characterise personalised subjec-
tive values of trust, of the sort that can be reason-
ably derived from social and professional interaction
networks. Trust values can be based on two types
of connections, explicit and implicit. Participants
of an explicit network deliberately make connections
with other people and it is that act of selecting them
for friendship or interaction that then implies trust.
Facebook, Twitter and LinkedIn are examples of ex-
plicit connections. Implicit networks are different in
that they emerge as a result of mutual activities by
users who are part of the same environment; for ex-
ample, interacting on a forum, or co-publishing an
article.

For either type of network we can quantify trust be-
tween pairs of nodes (for example, weighted by the
number of interactions), and then use the resulting
weighted network to calculate trust between any two
nodes in the network (by propagating trust along the
path between them, decaying due to the presence of
intermediate connections [2]).

As people’s use of the web becomes more sophisti-
cated it also becomes increasingly important to con-
sider Multiple Distributed (MuDi) networks rather
than single networks when making trust calculations.
This is complicated as these are heterogenous net-
works where the structure and weighting criteria are
different, but if the information and activities of users
in the various social networks could be combined, this
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would provide a much richer dataset for making de-
cisions about trust.

Unfortunately consolidating multiple trust networks
into a single network where trust calculations can be
performed is non-trivial. Care must be taken not to
inflate or dampen trust values artificially. Not all of
the users are connected in all of the constituent net-
works, and in some cases will not even be present in
some networks. Differentiating absence of trust from
distrust is therefore a key problem that any trust ag-
gregation mechanism should be able to cope with.
Throughout the paper, we use the following vocab-
ulary: N1 and N2 represent original networks that
are being consolidated, MuDi is the final consolidated
network and CN1 and CN2 are sub-networks in the
MuDi that represent the original networks.

In this paper we propose to consolidate trust net-
works using a Weighted Ordered Weighted Averaging
(WOWA) approach, normally seen in the domain of
data fusion [3].

We identify two key trust metrics: average strength
of ties (TS) and average length of trust path (TL),
and undertake a numerical investigation to study
how these vary as a result of consolidating MuDi so-
cial networks using the techniques of Summation (S),
Weighted Average (WA), and WOWA. Our hypoth-
esis is that consolidating MuDi networks based on
WOWA will result in consolidated MuDi networks
that better preserve the trust values of their con-
stituent networks CN1 and CN2, while adding value
for trust calculation by opening up many additional
trust paths.

The paper is structured as follows. Section [[I] de-
scribes related work in trust and social networks, and
also details the WOWA technique. Section [[II] de-
scribes the trust metrics that we have chosen to exam-
ine in our experiment, and describes how we generate
networks that simulate real-world properties. The re-
sults of our experiment are then presented and anal-
ysed in Sections [[V] and [V] respectively. Finally, Sec-
tion [VI] summarises our findings, and discusses how
the impact of consolidation on trust metrics may re-
late to their quality.

II BACKGROUND
1 TRUST

There are various studies in the literature that in-
vestigate a range of trust metrics for finding trust

between participants in social networks and they can
be broadly categorised as global and local. Global
trust metrics compute reputation values considering
whole network information, Pagerank being a notable
example [4], and result in each node in the network
receiving a single objective trust value; local trust
metrics are based on calculations from a given indi-
viduals position in the network, so each node takes its
own subjective view of the trust of every other node
[5]-

In our work we are concerned with local trust (as
online trust tends to be personalised and subjective).
Local trust calculations take the start and destination
participants as input parameters and calculates the
trust of the destination using trusted path(s). Empir-
ical evidence from psychologists and social psycholo-
gists shows that transitivity of trust exists along the
paths in social networks [6,[7]. People tend to trust
friends of their friends rather than unknown users [3],
but the strength of trust weakens as the length of
path to friend increases [9].

Ziegler and Lausen [2,/10] presented two trust and
distrust propagation models for social networks using
the Spreading Activation Model technique [11]. They
presented an Appleseed trust algorithm that studies
the trust propagation to the distant participants us-
ing the local group trust metrics. This is based on
the theory of trust transitivity and uses the concept
of trust decay mentioned in [9).

Golbeck [12] presented a model, “TidalTrust”, for
trust inference between indirectly connected individ-
uals in social networks [13]. Trustworthiness of the
distant node is calculated by taking the average of the
trust from different neighbours at each step between
the intermediate nodes. “FilmTrust” also uses this
model for movie recommendation and generates per-
sonalised recommendations of the movies using the
explicit trust rating of the participants. The fuzzy
trust algorithm defined by Mohsen and Saeed [14] is
similar to “TidalTrust” but it improves its accuracy
by using linguistic terms for definition of trust (Low,
Medium, High) rather than scaling (0, 0.5, 1), claim-
ing that it is more meaningful for the users.

Walter et al.’” s [15] trust propagation mechanism mul-
tiplies trust values along the trust path. It is different
from the Ziegler and Lausen technique [10], because
the decay of the trust is not controlled by the source;
rather decay takes place as a result of multiplication
of trust values (in the 0-1 range) along the path. This
mechanism is adapted and described in Section [3| for
our work.
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2 SOCIAL AND MUDI NETWORKS

There are range of explicit and implicit social net-
works on the web, but existing trust mechanisms only
rely on a single network for evaluation of trust be-
tween participants. Aggregation of these different
types of networks can allow us to base trust on differ-
ent type of relationships that exists between individ-
uals. The idea of aggregating MuDi social networks
has its application in lot of other areas, including
representation of separate social networks in a sin-
gle social graph and processing of distributed data
for reuse in search applications. They are however
limited to either combining networks or to use their
data in search systems, and the impact of different
consolidation parameters on derived trust factors to
date remains unexplored.

For example, Tang et al. [16] proposed a search sys-
tem for academic researchers using semantic tech-
nologies. Their system uses Google API for extract-
ing and integrating information about researchers
from distributed locations on the web. Ido et al. |17]
proposed “SONAR”, an API that can integrate in-
formation about users from multiple social networks
and they claim that it can give complete and useful
picture to the end users. To use this system, how-
ever, API needs to be installed on all systems from
where data need to be extracted. Similarly, another
system, “Polyphonet” extracts and analyses the net-
work information from multiple social networks [18].
Integrated information is analyzed to determine, for
example, degree distributions, path length and other
factors.

Bae and Kim’s work [19] integrates separate social
networks into a single global social graph for analysis
using the concept of a hypergraph. Resources in mul-
tiple networks are connected using hyperedges and
connections between them are normalised to depict a
single social network. However, their work examined
the resulting hyper-structures, rather than attempt-
ing to consolidate weights or tie meta-data.

3 DATA FUSION TECHNIQUES

Consolidating MuDi networks is essentially a problem
of data fusion and in particular of data aggregation.
A simple form of aggregation is to use Summation
(S), this will work for simple numerical information
(such as counts) but will inflate other statistical val-
ues. So the most common method of aggregation is to
consider the sources of information by using Weighted
Average (WA). This considers the importance and

number of sources to give an aggregated measure of
the data but can severely deteriorate the integrity of
information as it treats missing data the same way as
data with the value zero.

Yager [20] proposed an Ordered Weighted Averaging
(OWA), an aggregation operator that considers the
relative importance of the information used for aggre-
gation. Unlike simple operators, it prioritises values
in descending order, and allow us to assign weights
bearing in mind the position of the information in the
ordering. Although this mechanism is claimed to be
better than WA as it respects the integrity of each
data point out of multiple ones, it ignores the impor-
tance of the source of that information and hence still
provides an incomplete picture.

The disadvantages of both of the above techniques
are eradicated in the WOWA technique proposed by
Tore [3], that considers the relative importance of the
information and its source.

Importance of the information and source is repre-
sented using two weight vectors, w and p respec-
tively, each of dimension n. w = [wy,wa,...,wy]
and p = [p1,p2,-..,pn] such that i) w; € [0,1] and
Yaw; = 1ii) p; € [0,1] and X;p; = 1;. A mapping
function fwowa: R™ — R is a WOWA operator of
dimension n if:

(1)

fwowalar,az, ... an) =Y wite(
i

where {o(1),0(2),...,0(n)} is a permutation of
{1,2,...,n} such that ag(_1) > aoi, @ = 2,3,...,n,
weight w; is defined as:

wi=w | Y poy | —w [ D pei

j<i j<i

(2)

where w* is a monotonic function (e.g., a polynomial)
that interpolates the points (i/n, X;<;w;) along with
point (0,0). Term w represents set of weights {w;},
that is w = {wy,wa,...,wy}.

The WOWA technique has been adapted and used in
our own work, as explained in Section [4]
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III NUMERICAL SIMULATION

Our experiment is based around a numerical simula-
tion of the consolidation of pairs of networks, using S,
WA, and WOWA. The simulation is implemented in
Python (including code for network generation, con-
solidation and trust inference algorithms), and the
NetworkX API is used for measuring network prop-
erties.

1 CHARACTERISTICS
WORLD NETWORKS

OF REAL-

It is important that the networks we generate in our
simulation have the characteristics of real-world net-
works. It has been well established in the litera-
ture that social networks have the properties of small
world networks [21},122], and there are two proper-
ties that characterise such behaviour; clustering coef-
ficient (represented using C') and shortest path length
(mentioned as L). C represents the level of cluster-
ing in the network and its value ranges from 0 to 1,
scaling from low to high. It measures the extent to
which nodes in the network are connected to each
other and ensures transitivity as, in most cases in so-
cial networks, two friends of a single person are also
friends of each other. The value of C' for the network
can be calculated using Equation

1 n
C:ﬁ;ci (3)

where n is number of users in the network and c;
repersents local clustering of each user and its value
for an undirected network can be calculated as [22]:

€;

yT— @)

C; =

where e; represents actual number of ties and k;(k; —
1)/2 is the maximum possible number of ties between
neighbours of user i. The other small world property,
L, is the length of the shortest path between pairs
of participants in the social network and its average
value for the undirected network can be calculated
using Equation [5 [21].

1
L=——7+
in(n-1)

Z d(s,t)

s,teN

where N represents set of n users and d(s,t) is the
length of shortest path from s to t.

Apart from small world properties, another parame-
ter that impacts the structure of the network is the
density (indicated by D). While generating a net-
work, certain value of C' and L in the network can
only be ensured if the network has a certain value
of D, because otherwise it will end up having a defi-
ciency of connections. The value of D in any social
network is the ratio of number of connections in the
network to the total number of possible connections
assuming there are no self loops in the network. For a
network of n users, network density for a undirected
network can be calculated using Equation [6}

D_ #ofties

in(n-1)

(6)

For our simulation we have focused on the concept
of consolidating professional social networks, Table
shows value of these parameters for several co-
authorship networks collected from the literature and
properties of generated random networks should be in
accordance to them.

Table 1: Small World Properties of co-authorship
networks taken from [23H25].

Co-authorshi No of
Networks g Nodes © L D
Physics 52909 | 0.56 | 6.19 | 0.03504
Biology 1520251 | 0.6 | 4.92 | 0.00204
Math 253339 | 0.34 | 7.57 | 0.00309

2 GENERATING SAMPLE MUDI TRUST
NETWORKS

To measure the impact of network and consolidation
parameters on derived trust factors, a set of sam-
ple networks needs to be generated that conform to
the small world properties of example real-world net-
works described in Table [} Using this as a guide we
conducted a number of pre-experiments to find the
value of D that ensures values of these properties in
a comparable range and Table [2| shows such values.

In our experiment we wanted to vary the number of
overlapping nodes and overlapping ties in each pair
of networks, so we could see the effect on trust values
as the consolidated networks varied in similarity. We
used a three step mechanism for wiring connections
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between participants to achieve a given node and tie
overlap:

1. Firstly, users in each of the constituent networks
are connected in a ring lattice to ensure the con-
nectedness of the networks. If there is no tie overlap
(T'O) between the networks, then networks are still
connected, but overlapped connections are also re-
placed with non-overlapped connections.

2. Then, the remaining percentage of overlapped
ties are created between randomly selected pair of
participants with probability 1/N, among all present
in the network, where N, represents a pair of partic-
ipants.

3. In the final step, non-overlapped ties between
the random pair of participants are created with the
same probability as that in Step 2. Duplicate ties are
forbidden in Steps 2 and 3 to ensure target density
of the networks.

In our simulation we assume that the networks con-
tain trust information on their ties, represented as a
continuous value in the range (0,1). The ties of the
generated sample networks are randomly weighted
with these values and represent subjective symmetric
trust between the users, with values near to 0 repre-
sent low trust and those close to 1 show high trust
between the individuals connected.

3 TRUST PROPERTIES

When consolidating two networks we are interested in
measuring the trust properties of those original net-
works N1 and N2, the consolidated MuDi network,
and the CN1, CN2 (meaning the two original net-
works, as represented by sub-networks in the consoli-
dated MuDi network). Ideally we should see that the
trust properties are transformed but not damaged in
their journey from the N1, N2 to the consolidated
MuDi network.

Our trust evaluation uses an adopted version of Di-
jkstra’s pathfinding algorithm and the concept of
stronger path described in [14] that can result in
a longer but overall stronger trust path. For this,
it does not stop searching once the path is found
but continues unless each of the participants is vis-
ited. Suppose the trust path between participants a

and b is P(a,b), then the following equation adapted
from [15] can be used for evaluation of trust:

Ta,...,b _ Ti,i-i—l

II

(i,i+1)€P(a,b)

(7)

To quantify the performance of this trust inference
mechanism on CN1, CN2 and consolidated MuDi net-
works, there are two variables identified from the lit-
erature; namely strength of trust ties and length of
trust paths. 7% is the strength of the trust tie be-
tween participants a and b and length of trust path is
the number of ties involved in the path P(a,b). The
approximated estimation of these two trust properties
is evaluated for each of the networks N1, N2, CN1,
CN2 and MuDi by taking average of the trust estima-
tions for each pair of participants in the network and
examined for the change that happens as a result of
consolidation, for example, if T'S, TL represents such
values for strength of ties and length of trust paths
respectively, then it can be calculated as described in
Equation [§ and [9}

1 s—t

TS = n(n-1) ngp ®)
1

TL = ) tz;v P(s,t) (9)

We are looking for a consolidation that does not dam-
age existing trust properties, but uses the additional
information to enhance them. In terms of TS and TL
this means that we would like T'S for CN1, CN2 and
MuDi to remain close to that of N1, N2 even if there
is not a significant PO and TO. If TS is maintained in
this way it shows that damage was minimised during
consolidation. Furthermore, we would expect TL to
decrease overall significantly due to the emergence of
additional strong trust paths as compared to those in
N1 and N2. If TL decreases it shows that the consol-
idation has successfully enhanced trust calculations,
by opening up new trust paths.

4 METHODOLOGY

When conducted on real world data a consolidation
of networks would generally use a heuristic approach
of meta-data comparison to identify participants that
appear in both networks (for example, by comparing
familyName and givenName properties). The result
will be a certain number of overlapping participants
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(represented as PO) with potentially overlapping ties
(refered as TO) between them.

In our simulation we want to show the effect on the
two trust properties (strength of trust tie, and length
of trust path) as PO and TO vary. However, TO
is constrained by PO, as to achieve certain percent-
age of TO, at least PO > TOE| should be in place,
because otherwise number of overlapped connections
would exceed maximum possible number of ties be-
tween subset of overlapped participants. For exam-
ple, a 100% TO is only possible if there is 100% PO
as well.

We ran a number of simulations, setting PO at 40%,
60%, 80%, and 100%, and for each setting of PO
(except 40%Pda) allowed T'O to vary from 0 to PO
in increments of 20% . Then in each simulation we
consolidate the trust information on the ties using S,
WA and WOWA (as described in Section [3). Table
[2 shows the values and ranges for all the variables in
our simulation.

Table 2: Network and consolidation parameters used
for this study

Network Parameters Description
N 30
D 0.43
C 0.45 4+ 0.02
L 1.57 +£ 0.01
Ratio of D, C, L between 1
N1 and N2
Consolidation Parameters | Description
PO [40%, 100%]
TO 0, POfY
[1,0.5]
p [0.8,0.2]

As an example of using WOWA suppose that trust
information available from two MuDi networks is in
decreasing order as a = [0.8,0.5], w = [1,0.5] and
p = [0.8,0.2]. Normalised vector of the weights can be
calculated as w,, = [1,0.5]/1.5 = [0.67,0.33]. Next we
have to find the function w* interpolating the points
(i/n, Xj<;w;) and this can be done as described in

Equation [I0]:

0.5, w 0.5,0.67
(0.5,01) = (05,0.67 o)
(1,w1 + ’LUQ) = (1, ].)

Plotting the points {(i/n, Xj<;w;)|t = 1,2,...,n} U

{0,0} gives us the following polynomial interpolation
function:

w*(r) = —0.66672> + 1.6667z (11)

Equation [12|can be used to calculate final weights w;:

w1 =w"(p1) = w*(0.8) = 0.91

wy = w*(Zpi) - 1) = w*(1) — w*(0.8) = 0.09

(12)

This allows us to calculates final values of fyyow a:

fwowa(0.8,0.5) (13)

Zwlaz =0.77

Table [3| compares the values generated by WOWA to
those of the naive methods of S and WA for a pair of
values collected from MuDi networks.

Table 3: Trust aggregation using three different tech-
niques for three different set of values, 0 in [0.8,0]
represents absence of trust.

MuDi Trust Data S WA | WOWA
0.8,0.8] 1.6=099 | 0.8 0.8
0.8,0.5] 13=099 | 0.65 | 0.77

[0.8,0] 0.8 04 | 072

It shows that WOWA both respects high trust val-
ues, and handles the absence of trust values. The WA
mechanism considers absence of trust as distrust, and
hence dampens down the value to half, while WOWA
still decays the trust but preserves the integrity of the

1For 40% PO, PO > TO should be true, because 40% PO = 40% * 30 = 12, the maximum possible number of undirected

ties between overlapped participants can be (12 % 11)/2 = 66 and 40%T0O =

(40% = (0.43 * (30 % 29))/2) = 74. So the required

number of overlapped ties 74 exceeds maximum possbile number of ties ties 66.
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Table 4: Average Strength of Ties (TS) for three different trust aggregtion mechanisms i.e. Summation (S),
Weighted Average (WA) and Weighted Ordered Weighted Averaging (WOWA) in the networks with varying
percentage of PO and T'O. CN1 and CN2 represent sub-networks in the consolidated MuDi networks

Avg. Strength of Ties in the Network (7T5)
PO | TO N1 N9 CN1 CN2 MuDi
S | WA | WOWA | S | WA | WOWA | S | WA | WOWA

0 0.64 | 0.65 | 0.64 | 0.19 0.5 0.65 | 0.2 0.52 0.68 | 0.18 0.53
40 20 | 0.59 | 0.62 | 0.69 | 0.25 0.52 0.75 | 0.27 0.56 0.71 | 0.20 0.52
30 | 0.63 | 0.60 | 0.73 | 0.27 0.56 0.72 | 0.26 0.54 0.71 | 0.21 0.52
0 0.66 | 0.62 | 0.66 | 0.21 0.53 0.62 | 0.2 0.5 0.68 | 0.20 0.54
60 20 | 0.62 | 0.68 | 0.77 | 0.29 0.56 0.79 | 0.28 0.58 0.75 | 0.24 0.56
40 | 0.64 | 0.62 | 0.80 | 0.33 0.6 0.77 | 0.32 0.58 0.76 | 0.26 0.56
60 | 0.54 | 0.64 | 0.72 | 0.31 0.53 0.82 | 0.35 0.62 0.72 | 0.26 0.53
0 0.64 | 0.62 | 0.65 | 0.20 0.52 0.63 | 0.2 0.50 0.65 | 0.23 0.54
20 | 0.69 | 0.64 | 0.81 | 0.30 0.60 0.79 | 0.29 0.58 0.74 | 0.28 0.58
80 40 | 0.65 | 0.68 | 0.84 | 0.37 0.62 0.84 | 0.37 0.62 0.80 | 0.32 0.6
60 | 0.65 | 0.62 | 0.84 | 0.43 0.63 0.84 | 0.43 0.63 0.79 | 0.36 0.6
80 | 0.59 | 0.60 | 0.79 | 0.40 0.59 0.87 | 0.43 0.64 0.77 | 0.34 0.56
0 0.67 | 0.64 | 0.67 | 0.21 0.54 0.64 | 0.2 0.52 0.60 | 0.27 0.53
20 | 0.62 | 0.64 | 0.77 | 0.26 0.54 0.79 | 0.26 0.56 0.66 | 0.29 0.54
100 40 | 0.65 | 0.68 | 0.85 | 0.37 0.63 0.86 | 0.37 0.63 0.75 | 0.35 0.6
60 | 0.63 | 0.63 | 0.88 | 0.42 0.64 0.87 | 0.41 0.62 0.80 | 0.39 0.61
80 | 0.64 | 0.65 | 0.92 | 0.5 0.69 092 | 0.5 0.69 0.88 | 0.48 0.67
100 | 0.63 | 0.60 | 0.94 | 0.53 0.69 0.94 | 0.53 0.69 0.94 | 0.53 0.69

single high trust value. Data points in S greater than
1 are caped to 0.99, which is the maximum possible
trust in our mechanism.

IV RESULTS

There are two types of trust measurements in the
networks, the first type of measurements are on the
direct ties and are aggregated as a result of merging
individual networks. Second type of measurements
are evaluated for each pair of indirectly connected
participants Np, in (N1, N2), (CN1, CN2) and con-
solidated MuDi networks separately, and these val-
ues depend on the trust between intermediate nodes
in the trust path in that specific network. As the
density, D, of network in each of the constituent net-
works is 0.43, this means each original network N1
and N2 has 43% direct connections and 57% of the
trust evaluations are based on finding trust paths.

Table [] and [5] presents the values of T'S and TL for
varying consolidation parameters PO and TO, and

two sample results (for PO = [60%,100%]) are also
depicted in Figure|l} For different percentage of PO
and TO, TS and TL metrics are evaluated for N1,
N2 and then for each of the aggregation strategy (S,
WA, WOWA) it is evaluated for CN1, CN2 and the
MuDi network.

The aim of our experiment was to aggregate trust in-
formation from MuDi social networks without affect-
ing the integrity of that information. We can define
this as preserving the trust values from the original
networks (N1, N2) in the sub-networks (CN1, CN2)
of the consolidated networks.

Firstly, if we look at TS for CN1 and CN2 in Ta-
ble 4| and Figures it can be seen that the
value of this metric for WOWA resides in between
other two extreme approaches S and WA. S just
amplifies the trust by summing the values available
on the ties, hence inflating the trust up to 0.94 at
[100%PO,100% TO], while WA dampens the trust
down to 0.19 at [40% PO, 0% TO] which were 0.63 and
0.64 in N1 respectively. WOWA, in both of the above
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Table 5: Average Length of Trust Paths (TL) for three different trust aggregtion mechanisms i.e. Summation
(S), Weighted Average (WA) and Weighted Ordered Weighted Averaging (WOWA) in the networks with
varying percentage of PO and T'O. CN1 and CN2 represent sub-networks in the consolidated MuDi networks

Avg. Length of Trust Paths (TL)
PO | TO N1 N9 CN1 CN2 MuDi
S | WA | WOWA | S | WA | WOWA | S | WA | WOWA

0 2.68 | 241 | 2.68 | 1.64 2.09 2.41 | 1.63 1.99 3.04 | 1.82 24
40 20 | 2.26 | 243 | 2.35 | 1.87 2.11 2.36 | 1.84 1.99 2.95 | 2.16 2.45
30 | 231 | 239 | 233 | 1.8 1.94 2.62 | 1.85 2.04 3.17 | 2.16 2.45
0 2371236 | 237 | 1.6 1.89 2.36 | 1.62 2.01 2.62 | 1.63 1.99
60 20 | 2.13 | 2.47 | 240 | 1.85 1.88 2.51 | 1.87 2.01 2.82 | 1.88 2.11
40 | 234 | 24 | 2.18 | 1.94 2.09 2.27 | 1.93 2.12 2.72 | 2.10 2.37
60 | 2.61 | 2.14 | 2.13 | 1.95 2.19 2.02 2 2.07 2.53 | 2.29 2.52
0 2.35 1 249 | 2.38 | 1.61 1.96 2.56 | 1.67 1.92 2.04 | 1.43 1.68
20 | 2.37 | 2.29 | 2.50 | 1.82 1.97 2.68 | 1.83 2.03 2.29 | 1.59 1.77
80 40 | 2.24 | 2.33 | 2.05 | 1.85 1.95 2.0 | 1.89 1.9 2.13 | 1.79 1.89
60 2.6 | 229 | 2.05 | 2.25 2.17 1.94 | 2.20 2.09 2.20 | 2.22 2.17
80 | 253|219 | 1.89 | 1.97 2.11 1.97 | 1.96 2.15 227 | 221 2.43
0 239 | 252|239 | 1.64 1.95 2.52 | 1.63 1.92 1.37 | 1.14 1.2
20 | 223|280 | 311 | 1.74 1.93 2.88 | 1.79 2.03 1.70 | 1.27 1.32
100 40 | 2.58 | 2.37 | 2.19 | 1.94 2.15 2.20 | 1.98 2.14 1.66 | 1.48 1.49
60 | 2.62 | 2.31 | 1.90 | 1.89 2.01 1.91 | 1.91 2 1.62 | 1.60 1.62
80 | 2.20 | 2.24 | 1.67 | 1.87 1.91 1.69 | 1.90 1.91 1.58 | 1.75 1.74
100 | 2.15 | 2.33 | 1.64 | 1.88 1.98 1.64 | 1.88 1.98 1.64 | 1.88 1.98

mentioned cases calculates more stable metric with
values of 0.69 and 0.5 respectively.

Behaviour of T'S metric in MuDi is also in accor-
dance with those of CN1 and CN2, and the results of
WOWA again lies in between other two techniques. S
escalates the trust up to 0.94 at [100% PO, 100% TO],
while WA reduces it to 0.18 [40%PO,0%TO], but
WOWA maintains it at 0.69 and 0.53 respectively.

If the same sub-networks CN1 and CN2 are consid-
ered for average length of trust paths, TL from Table
and Figures [L(c)f1(d)] it is observed that, WOWA
improves the TL metric in CN1 and CN2. For S,
TL only decreases for TO > 40%, whereas, WA also
reduces it significantly for TO < 40%. TL using
WOWA also decreases with an increase in percent-

age of TO but this reduction is less as compared to
WA.

TL in MuDi behaves similarly to that in CN1 and
CN2 and its value for S and WA decreases with an in-
crease in PO, but higher than subnetworks CN1, CN2

at low PQO. Similar is the case with WOWA, where
an increase in PO decreases T'L except at some dat-
apoints with low PO. The noise and non-uniformity
in TL metric is due to its dependence on TS, as to
achieve the maximum 7S, the trust algorithm can
even select longer trust paths.

V  DISCUSSION

Our original hypothesis was that consolidating MuDi
networks based on WOWA would result in consoli-
dated networks that better preserve the trust values
of their constituent networks, while adding value for
trust calculation by opening up many additional trust
paths.

We can say that a consolidation approach better pre-
serves the trust values if the trust values in the orig-
inal networks are similar to those in the relevant
sub-networks of the consolidated network. We would
expect consolidation to create some differences, but
that each trust relationship would be as likely to rise
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Figure 1: Sample values of T'S and TL selected from Table for depiction.

as to fall, and therefore when averaged across all ties
should remain approximately stable. We can check
this by comparing TS between the networks for each
consolidation technique.

From analysing the TS metric presented in Section
[[V] it can be seen that WOWA technique better ag-
gregates the trust from MuDi social networks, as it
respects the integrity of trust in N1 and N2. S sim-
ply amplifies the trust while WA naively dampens
down the trust, but as WOWA fuses trust data avail-
able on the ties bearing in mind their importance
it gives a more balanced aggregation (distinguishing
the absence of trust from distrust). Table |§| presents
the statistical significance of the subnetworks CN1

and CN2 data using paired, two-tailed distribution,
and it shows that WOWA is significantly better than
WA at preserving the average strength of ties (7.5),
but this is less significant for average length of trust
paths (TL) where our experiment shows that it is sta-
tistically closer to TL for original networks (N1,N2)
only when considering situations where PO is 100%
or when looking at the Overall performance.

We would expect the second part of our hypothesis,
the opening up of many additional trust paths, to
manifest through the T'L metric that measures av-
erage length of trust paths. The data shows that
TL in the MuDi network is dependent on the Par-
ticipant Overlap PO. When PO is low it creates a
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path bottleneck in the consolidated network, and TL
is higher than for the original networks, but when PO
is high the increase in connections causes T'L to fall.
Additionally it can be seen that TL in each of the
sub-networks CN1 and CN2 is lower than in the cor-
responding original network N1 and N2 respectively,
regardless of the value of PO. This shows that addi-
tional trust paths are being created.

Table 6: Statistical Significance to show the improve-
ment of WOWA over WA in CN1 and CN2 for varied
percentage of PO and Owerall PO data using TTEST
(paired, two-tailed distribution).

(a) p value for T'S metric

PO CN1 CN2

40 0.0016 0.0016

60 0.0009 0.0001

80 0.0006 0.0002

100 0.0002 0.0002
Overall | 9.6222E-14 | 2.9173E-14

(b) p value for TL metric

PO CN1 CN2

40 0.0939 0.0684

60 0.0528 0.0638

80 0.1263 0.1874

100 0.0088 0.0170
Overall | 1.6444E-05 | 3.6873E-05

Our numerical simulation shows that WOWA consol-
idation of MuDi social networks is a productive ap-
proach that preserves the integrity of the trust values
(as measured by an increase in TS, average strength
of ties) while creating new trust paths (as measured
by decrease in TL, average length of trust paths). At
low PO it creates an opportunity for users to know
and interact with lot of new users which are not part
of their original networks, and hence creates ties be-
tween people from networks of different background.
On the other hand, at high PO and TO WOWA con-
solidation helps in refining trust values by combining
different perspectives of trust that exists between the
participants in different networks.

VI CONCLUSIONS
WORK

AND FUTURE

The increasing use of multiple heterogenous social
networks, both explicit and implicit, offers an op-
portunity to refine trust calculations by consolidat-
ing multiple trust networks into a single network for
analysis. However, consolidating trust networks is
non-trivial due to variances in node and tie overlap,
differences in the importance of networks, and differ-
ences in expressing trust.

In this paper we have presented a numerical simula-
tion of what happens when different trust networks
(with the characteristics of real-world networks) are
consolidated using one of three strategies: S, WA
and WOWA. In our experiment we varied partici-
pant and tie overlap, and recorded the effect on aver-
age strength of ties and average length of trust paths
for the whole consolidated network (MuDi), and the
sub-networks (CN1,CN2) that represented the origi-
nal networks (N1,N2).

Our analysis reveals that the Summation (S) strat-
egy results in an inflation of trust values, while the
Weighted Average (WA) results in dampened trust
values. However, the WOWA strategy has a much
improved performance, in that it better preserves the
integrity of the trust as compared to WA (p<0.0001),
while also being better than WA at creating shorter
trust paths (p<0.0001).

Our experiment shows that WOWA can be used to
consolidate trust networks without damaging trust
values. However, it is still not clear whether the
changes to trust values caused by consolidation actu-
ally increase their quality in terms of their similarity
to the trust actually felt by those individuals.

To test this our future plan is to attempt this consol-
idation activity with two real social networks (we are
looking at professional and co-authorship networks)
and then perform a qualitative evaluation with actual
users via a survey to compare actual trust values with
those in the original and consolidated networks.

We have shown that a WOWA consolidation strategy
can effectively combine multiple trust networks, pro-
viding evidence that trust values derived form multi-
ple distributed (MuDi) social networks can be merged
to create new trust paths without damaging trust val-
ues. Our hope is that this approach can be used in
the future to create more reliable trust calculations
that take advantage of our increasingly varied and
rich online interactions.
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