
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

A Design Framework for identifying Optimum Services

using Choreography and Model Transformations

By

Saad Ali Alahmari

A thesis submitted for the degree of Doctor of Philosophy

In the

Faculty of Physical and Applied Science

Electronics and Computer Science

August, 2012

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL & APPLIED SCIENCES

 ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

A Design Framework for identifying Optimum Services using Choreography and

Model Transformations

by Saad Ali Alahmari

Service Oriented Architecture (SOA) has become an effective approach for

implementing loosely-coupled and flexible systems based on a set of services. However,

despite the increasing popularity of the SOA approach, no comprehensive methodology

is currently available to identify “optimum” services. Difficulties include the

abstraction gap between the business process model and service interface design as well

as service quality trade-offs that affect the identification of the “optimum” services.

The selection of these “optimum” services implies that SOA implementation should be

driven by the business model and should also consider the appropriate level of

granularity. The objective of this thesis is to identify the optimum service interface

designs by bridging the abstraction gap and balancing the trade-offs between service

quality attributes.

This thesis proposes a framework using the choreography concept to bridge the

abstraction gap between the business process model and service interface design

together with service quality metrics to evaluate service quality attributes. The

framework generates the service interface design automatically based on a chain of

model transformations from a business process model through the use of the

choreography concept (service choreography model). The framework also develops a

service quality model to measure service granularity and service quality attributes of

complexity, cohesion and coupling. These measurements aim to evaluate service

interface designs and then select the optimum service interface design. Throughout this

thesis, a pragmatic approach is used to validate the transformation models applying

three application scenarios and evaluating consistency. The service quality model will

be evaluated empirically using the generated service interface designs.

Despite several remaining challenges for service-oriented systems to identify

“optimum” services, this thesis demonstrates that optimum services can be effectively

identified using the new framework, as explained herein.

Contents

Chapter 1 Introduction ... 1

1.1 Research Hypothesis ... 3

1.2 Research Contributions .. 5

1.3 Thesis structure .. 6

1.4 Publications ... 8

Chapter 2 SOA and MDA ... 11

2.1 Service Modelling ... 12

2.1.1 Service Oriented Architecture (SOA) 13

2.1.2 The Definition of Service ... 16

2.2 Service-Oriented Architecture Decomposition................ 18

2.2.1 Service Identification ... 19

2.2.2 Service Granularity .. 22

2.2.3 Service Quality Models .. 24

2.2.4 Service Choreography WS-CDL 25

2.3 Business Process Modelling ... 28

2.3.1 Business Process Model Notation (BPMN) 29

2.4 Model-Driven Transformation .. 31

2.4.1 Model Driven Architecture (MDA) 32

2.4.2 Meta-Modelling Supported Standards 34

2.4.3 Model Transformations .. 35

2.4.4 ATLAS Transformation Language (ATL) 37

2.5 Summary .. 38

Chapter 3 Service Identification Current Approaches 40

3.1 Service Identification Methodologies 40

3.1.1 Business-Driven Service Identification 41

3.1.2 Ontology-Driven Service Identification 45

3.1.3 Legacy system-Driven Service Identification 46

3.2 Quality of Service (QoS) .. 48

3.3 Analysis Comparison of Existing Approaches 50

3.4 Summary .. 61

Chapter 4 Choreography and Model Transformation Design ... 62

4.1 Introduction .. 62

4.1.1 Service Meta-model ... 65

4.2 Why Choreography? .. 67

4.3 Business Model versus Choreography 68

4.3.1 Preliminary: BPMN Choreographies and BPs

Modelling 68

4.4 Choreography versus Service Choreographies 73

4.4.1 Preliminary: The Service Choreography Concept

and WS-CDL ... 73

4.5 Choreography Requirements .. 77

4.6 Service Interface in WSDL .. 81

4.7 Summary .. 83

Chapter 5 Service Quality Model .. 85

5.1 Service Granularity Quality Model 85

5.2 Basic Metrics of Service Granularity 87

5.2.1 Metrics for the Data Granularity Score 87

5.2.2 Metrics for the Functionality Granularity Score

 89

5.2.3 Metrics for Service Operations Granularity Score

 90

5.3 The Impact of Service Operation Granularity 91

5.3.1 Service Operation Complexity 92

5.3.2 Service Operation Cohesion 93

5.3.3 Service Operation Coupling 94

5.4 Metrics Validation .. 95

5.5 Summary .. 102

Chapter 6 Service Identification implementation 104

6.1 Framework Architecture ... 105

6.2 Choreography and model transformation...................... 106

6.2.1 Business process choreography modelling 106

6.2.2 Service choreographies ... 107

6.2.3 Service interface design ... 109

6.3 Semantic transformation implementation 110

6.3.1 BPMN-to-WS-CDL transformation 110

6.3.2 WS-CDL-to-WSDL transformation 117

6.3.3 WSDL transformation (re-factoring) 120

6.4 Transformation chain ... 123

6.5 Service quality model ... 125

6.6 Summary .. 127

Chapter 7 Pragmatic Evaluation ... 129

7.1 Introduction .. 130

7.2 Hypotheses ... 130

7.3 Pragmatic Validation ... 131

7.3.1 Service Choreographies (WS-CDL) 131

7.3.2 Design of Service Interfaces (WSDL) 133

7.4 Application Examples .. 135

7.4.1 Incident Management Example 135

7.4.2 Nobel Prize Example ... 142

7.4.3 Customer Order Example 147

7.5 Limitations of Pragmatic Evaluation 152

7.5.1 Semantic elements ... 152

7.5.2 Abstraction gap ... 152

7.6 Reflection on Research Hypotheses 153

7.7 Summary .. 154

Chapter 8 Empirical Evaluation ... 156

8.1 An Empirical Evaluation .. 157

8.2 Hypotheses ... 157

8.3 Study Design .. 159

8.4 Variables and Measures .. 159

8.4.1 Independent Variables .. 160

8.4.2 Dependent Variables ... 160

8.5 Research Data ... 161

8.6 The Data Analysis ... 162

8.6.1 Descriptive Statistics ... 162

8.6.2 Statistical Testing .. 163

8.6.3 Regression Analysis ... 163

8.7 Results and Discussion .. 165

8.7.1 Service granularity versus individual quality

attributes (H2) .. 166

8.7.2 Relationships between quality attributes (H3) ... 170

8.8 Reflection on Research Hypotheses 173

8.8.1 Impact of granularity on quality attributes (H2)

 174

8.8.2 Dependencies between Quality attributes (H3) ... 179

8.9 Limitations of Empirical Evaluation 184

8.9.1 Dataset size .. 184

8.10 Summary .. 185

Chapter 9 Conclusions and Future Work 187

9.1 Research Summary ... 187

9.2 Future Work .. 190

9.2.1 Finding Optimum Service Interface Designs 190

9.2.2 An Intelligent Digital Dashboard 194

9.2.3 Expand the Dataset of the Study 195

References 196

Appendix A 208

Appendix B 213

Appendix C 215

List of Figures

Figure ‎1-1 Thesis structure ... 10

Figure ‎2-1 Typical SOA Layers of Abstraction .. 14

Figure ‎2-2 Service Development Life-cycle .. 16

Figure ‎2-3 Service Elements ... 18

Figure ‎2-4 SOA Product Measurements .. 25

Figure ‎2-5 A View of the WS-CDL Package Root Elements 27

Figure ‎2-6 A Process Diagram Examples .. 30

Figure ‎2-7 A Collaboration Diagram Example ... 31

Figure ‎2-8 A Choreography Diagram Example .. 31

Figure ‎2-9 A Conversation Diagram Example .. 31

Figure ‎2-10 MDE Architectural Abstraction Levels .. 34

Figure ‎2-11 An Example of MOF Architecture .. 35

Figure ‎2-12 Model Transformation during System Development Life Cycle 36

Figure ‎2-13 General View of Model Transformation ... 38

Figure ‎4-1 The Conceptual Model of SOA Business Process Choreographies and

Service Choreographies ... 64

Figure ‎4-2 The Service Meta-model View.. 66

Figure ‎4-3 BPMN Meta-model .. 69

Figure ‎4-4 Message Types Extension Meta-model Class Diagram 71

Figure ‎4-5 New Attributes and Relationships Extension Meta-model Class

Diagram .. 72

Figure ‎4-6 The WS-CDL Meta-model (part 1) ... 75

Figure ‎4-7 The WS-CDL Meta-model (part 2) ... 77

Figure ‎4-8 WSDL 2.0 Meta-model .. 83

Figure ‎5-1 The Service Granularity Quality Model ... 87

‎5-2 ASOG metrics evaluation using the properties of length 98

Figure ‎6-1 Overall Architecture of Service Identification Framework 105

Figure ‎6-2 Implementation of the transformation chain 123

Figure ‎6-3 Implementation of the architecture of service quality model 126

Figure ‎7-1 Incident Management Process Choreography 135

Figure ‎7-2 Nobel Prize Process Choreography .. 142

Figure ‎7-3 Customer Order Process Choreography.. 147

Figure ‎8-1 Linear regression results of ASOM and ASOG variables from the

framework dataset ... 167

Figure ‎8-2 Nonlinear regression results of ASOC and ASOG variables using the

Cubic regression model for the framework dataset 169

Figure ‎8-3 Linear regression chart of ASOU and ASOG variables on the

framework dataset ... 170

Figure ‎8-4 The relationship between Granularity (ASOG) and Complexity

(ASOM) .. 175

Figure ‎8-5 The relationship between Granularity (ASOG) and Cohesion

(ASOC) variables .. 177

Figure ‎8-6 The relationship between Granularity (ASOG) and Coupling

(ASOU) variables .. 179

Figure ‎8-7 The relationship between Complexity (ASOM) versus Cohesion

(ASOC) ... 181

Figure ‎8-8 The relationship between Complexity (ASOM) versus Coupling

(ASOU) ... 182

Figure ‎8-9 The relationship between Cohesion (ASOC) versus Coupling

(ASOU) ... 184

Figure ‎9-1 Graph of three linear/nonlinear equations: Complexity, Coupling,

and Cohesion .. 191

Figure ‎9-2 Graph of three linear/nonlinear equations: Complexity and Cohesion

attributes .. 192

Figure ‎9-3 intersected points of three linear/nonlinear equations: Complexity,

cohesion and coupling attributes ... 193

List of Tables

Table ‎3-1 Comparison of Service Identification Approaches 58

Table ‎3-2 Comparison of Service Identification Approaches 59

Table ‎3-3 Comparison of Service Identification Approaches 59

Table ‎3-4 Comparison of Service Identification Approaches 60

Table ‎3-5 Comparison of Service Identification Approaches 60

Table ‎4-1 Assessment of BPMN 2.0 and WS-CDL Support for Choreography

Requirements .. 80

Table ‎5-1 Evaluation of the Granularity Level for a Service Operation 91

Table ‎7-1 Summary of mapping between BPMN elements and WS-CDL code for

Incident Management scenario .. 137

Table ‎7-2 Summary of mapping between WS-CDL code and WSDL for Incident

Management scenario .. 140

Table ‎7-3 Summary of mapping between BPMN elements and WS-CDL code

for the Nobel Prize scenario ... 143

Table ‎7-4 Summary of mapping between WS-CDL code and WSDL for the

Nobel Prize scenario .. 145

Table ‎7-5 Summary of mapping between BPMN elements and WS-CDL code

for the Customer Order scenario ... 148

Table ‎7-6 Summary of mapping between WS-CDL code and WSDL for the

Customer Order scenario .. 150

Table ‎8-1 Metric Results for Framework Dataset .. 162

Table ‎8-2 Descriptive statistics - ASOG, ASOM, ASOC and ASOU metrics . 165

Table ‎8-3 Simple linear regression coefficients for ASOG dependent and ASOM

independent variables for the framework dataset ... 167

Table ‎8-4 Nonlinear regression model summary using cubic test for ASOC and

ASOG variables on the framework dataset ... 168

Table ‎8-5 Linear regression model summary for ASOU and ASOG variables on

the framework dataset .. 170

Table ‎8-6 The Spearman's rho for ASOM and ASOC variables from the

framework dataset ... 171

Table ‎8-7 The Pearson (r) test for ASOM and ASOU variables from the

framework dataset ... 172

Table ‎8-8 The Spearman's rho for ASOC and ASOU variables from the

framework dataset ... 173

Table ‎9-1 Generated datasets for different scenarios of an OMG example based

on the quality metrics ... 194

 Declaration of Authorship

I, Saad Ali Alahmari, declare that the thesis entitled “A Design Framework for

Identifying Optimum Services using Choreography and Model Transformations”

and the work presented in the thesis are both my own, and have been

generated by me as the result of my own original research. I confirm that:

 this work was done wholly or mainly while in candidature for a research

degree at this University;

 where any part of this thesis has previously been submitted for a degree

or any other qualification at this University or any other institution, this

has been clearly stated;

 where I have consulted the published work of others, this is always

clearly attributed;

 where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own

work;

 I have acknowledged all main sources of help;

 where the thesis is based on work done by myself jointly with others, I

have made clear exactly what was done by others and what I have

contributed myself;

 Parts of this work have been published in a number of conference and

journal papers (see Section 1.4 for a detailed list).

Signed:..

Date:...

Acknowledgements

Throughout the past four years, I was given a privileged opportunity to work

with Ed Zaluska, David de Roure and Dave Millard. All of them provide

invaluable and unlimited support and guidance.

I cannot thank Ed enough for the outstanding support you showed throughout

the years. Your constant detailed comments, encouragements and personal

guidance were very essential to present this thesis. David De Roure, thanks for

the confidence you gave me from the first day I met you. Your remarkable

discussions and suggestions have shaped my research and helped me to be a

researcher. I appreciate your continues support that you offered me after

joining the Oxford University. Dave Millard, although you joined the

supervisory team on my fourth year, your criticisms and excellent advices

influence my research and direct me to solve hard research problems.

I would also like to thank Prof. Peter Henderson for his comments and

guidance at early stage of my research. I also highly acknowledge effective

meetings and helpful discussions with Rob Phippen and Kim Clark (IBM

Hursley Park, UK).

I would also like to thank my friends and colleagues in the WAIS group, for

their great support I received during my PhD at University of Southampton.

Finally, I would like to thank all my family members for their support, patient

enthusiastic encouragement not only throughout my PhD, but also throughout

my life. I would like to thank my father and mother and pray for them, who

had provided me with endless care and love. I would also thank my oldest

brother, Abdulrhman, who would always encourage and support me.

Definitions and Abbreviations Used

ARIS Architecture of Integrated Information Systems

ASOC Average Service Operation Cohesion

ASOG Average Service Operation Granularity

ASOM Average Service Operation Complexity

ASOU Average Service Operation Coupling

ATL ATLAS Transformation Language

BPEL Business Process Execution Language

BPEL4Chor Business Process Execution Language for Choreography

BPM Business Process Management

BPMN Business Process Modeling Notation

BPMS Business Process Management System

BPSS Business Process Specification Schema

CBD Component Based Design

CIM Computation-Independent Model

CORBA Common Object Request Broker Architecture

CRM Customer Relationship Management

CRUD Create-Retrieve-Update-Delete

CXML Commerce eXtensible Markup Language

DCOM Distributed Component Object Model

ebXML Electronic Business Extensible Markup Language

EDOC Enterprise Distributed Object Computing

EMF Eclipse Modelling Framework

ERP Enterprise Resource Planning

IDE Integrated Development Environment

IEC International Electrotechnical Commission

ISO International Organization for Standardization

JNI Java Native Interface

M2M Model-to-Model

MDA Model-driven Architecture

MDE Model-driven Engineering

MEP Message Exchange Pattern

MOF Meta-Object Facility

OCL Object Constraint Language

ODG Operation Data Granularity

OFG Operation Function Granularity

OMG Object Management Group

OO Object Oriented

OOD Object-Oriented Design

OWL-S Ontology Web Language for Services

PCD Process Chain Diagram

http://www.pera.net/Methodologies/ARIS/ARIS_Paper_by_Ted_Williams.html

PIM Platform Independent Model

PSM Platform Specific Model

QoS Quality of Service

QVT Query/Views/Transformation

REST Representational State Transfer

RUP Rational Unified Process

SDE Software Development Environment

SDLC System Development Life Cycle

SLA Service Level Agreement

SOA Service-Oriented Computing

SOC Service Operation Cohesion

SOG Service Operation Granularity

UDDI Universal Description, Discovery and Integration

UML Unified Modelling Language

URI Universal Resource Identifier

USM Unified Service Model

W3C World Wide Web Consortium

WS Web service

WSBPEL Web Services Business Process Execution Language

WS-CDL Web Services Choreography Description Language

WSDL Web Services Description Language

XMI XML Metadata Interchange

XPDL XML Process Definition Language

XSLT XML Stylesheet Language Transformation

Chapter 1 Introduction

Service-Oriented Computing (SOC) is a cross-disciplinary paradigm for

principles, technologies, and methods, and is based on software services that use

its core architectural style, Service-Oriented Architecture (SOA). Organisations

have increasingly shifted software development to SOA-based systems in order

to improve interoperability, flexibility, and reusability. A software service

presents a coherent set of functionality that is exposed via a standardised

interface. The implementation of a software service is separated into the service

implementation aspects and its interface. However, a key part of developing

service-based systems is to break required functionalities down into a set of

services, and a key challenge is to find an appropriate breakdown method to

identify the “optimum” services. Because the business modelling and service

interface designing are disconnected, developed services do not always meet the

user requirements and specifications that satisfy software quality attributes.

Moreover, its design and implementation suffer from not taking appropriate

service granularity into account which results in low aspects of service quality.

In this thesis, “optimum” services refer to identified services that consider

three challenges: the purpose of the service, the level of service granularity and

the balance between trade-offs of the service quality attributes.

Firstly, the purpose of the service refers to the functionalities offered by

the service in terms of service types, e.g., a service that provides Create, Read,

Update and Delete functions (CRUD) is different from that one that provides

infrastructure functions. The definitions of these functionalities can be derived

from business processes in a process-oriented system. The service identification

process is an initial step in service modelling for transforming business

processes/requirements to candidate services. With the business processes and

services residing on different architectural layers, the abstraction gap is the first

challenge. We refer to the abstraction gap as the separation between the

definitions of business models and the descriptions of service interface designs.

 Chapter 1 Introduction

2

The existing methodologies of such authors as Kohlborn and Arsanjani have

failed to bridge this gap (Arsanjani, Ghosh et al. 2008; Kohlborn, Korthaus et

al. 2009). As a result, these contributions can be viewed as conceptual

frameworks and general guidance. This thesis uses the choreography concept to

bridge the semantic gap between the business process model and service

interface design. The choreography concept appears at business process level

and the service composition. At the business process level, the choreography

concept describes an observable behaviour of a participant (e.g., a company) or

participant’s role (e.g., a buyer or seller) in an interaction. In service

composition, the service choreography refers to a peer-to-peer description of the

global observable interactions between aggregated services. As a result, bridging

the abstraction gap should enable the automatic generation of service interface

designs according to corresponding defined business process models.

Secondly, Service designers do not agree on when services should be

coarse-grained or fine-grained. A recent study by industry experts that

evaluated different SOA development processes concluded that service

granularity is a key issue in the design phase (Haines and Rothenberger 2010),

to a certain extent there is some agreement on the importance of the

granularity concept for service-based systems (Haesen, Snoeck et al. 2008;

Rosen, Lublinsky et al. 2008; Haines and Rothenberger 2010; Sweeney 2010). It

is difficult to specify heuristic rules for defining the appropriate level of

granularity that can be applied in all circumstances. But, the quantification of

service granularity using the proposed service quality model can assist selecting

the appropriate level of granularity for a given service interfaces. This

quantification allows the service designer to evaluate the service granularity for

the service interface design in accordance with the service quality attributes of

complexity, cohesion and coupling.

Finally, balancing the trade-offs between the service quality attributes

that affect identifying the “optimum” services is essential. The level of the

service granularity influences the service quality attributes. For example,

implementing a system with a number of fine-grained services can result in a

negative effect such as poor performance because of increasing communication

trips but offer good reusability (as smaller services are more loosely-coupled).

Thus, we define a service quality model that defines the properties required to

measure service granularity and the service quality attributes of complexity,

 Chapter 1 Introduction

3

cohesion and coupling; employing the software quality attributes for SOA can

assist in the achievement of “optimum” services.

This thesis explores the problem of identifying “optimum” service interface

design for process-oriented systems, and answers the following questions:

 Is it possible to generate service interface designs automatically from

business process models using the choreography concept?

 What is the impact of a high level of service granularity on the

quality attributes of complexity, cohesion and coupling compared to a

service interface design with a low level of service granularity?

 What are the relationships between each of the service quality

attributes of complexity, cohesion and coupling?

In section 1.1, the research hypotheses and questions are discussed. In

section 1.2, an outline of the thesis contributions is given. The thesis structure

and publications are explained in sections 1.3 and 1.4 respectively.

1.1 Research Hypothesis

There is a need to develop a complete methodology for identifying optimum

services. Given the above challenges: the abstraction gap, the service

granularity and balancing service quality trade-offs, the hypotheses of this

thesis as follows:

H1: “It is possible to use service choreographies (WS-CDL) to derive the

automatic transformation of a business process choreography model (BPMN

2.0) into a service interface design (WSDL)”.

 Automatic transformations. The transformation process should be

automated fully from the business process model to the service interface

designs. That is, no manual human intervention should be required to

determine the semantic elements that should be defined for a service

interface. This is because manual intervention decreases the robustness of

the service identification process and affects the level of detail, depending

on the human’s understanding of system requirements. In particular, it

increases the abstraction gap between the descriptions of the business

process model and the corresponding service interface design. With respect

 Chapter 1 Introduction

4

to current intensive research and practice in service modelling

methodologies in various domains, a significant shift from human-based

decisions and manual architectural activities to a higher degree of

automation is needed.

 Standardised mapping. The semantic mapping between different models

(e.g., business process models and service choreography models) needs to

be based on standard specifications and firm theoretical grounds. This is

particularly important for defining the meta-models for source and target

models and developing a theory to bridge the abstraction gaps. The

framework herein is based on a coherent series of transformed models that

achieve ultimately SOA benefits in heterogeneous development

environments.

 Improve flexibility and accuracy. Implementing the transformation should

be flexible enough to generate a variety of service interface designs to

enable service designers to evaluate the impact of trade-offs on various

designs and selecting the optimum design. These service interfaces are

supported with benchmarks for service quality attributes to provide

accurate measurements. The time needed to generate the various service

interface designs automatically is more efficient compared to the manual

human process.

H2: “A set of services with a high value of service granularity would correspond

with a positive effect on the quality attributes of complexity and cohesion and

a negative effect on the quality attribute of coupling compared to services with

a low value of service granularity”.

 The relationships between quality attributes. The relationships between

service granularity and service quality attributes of complexity, cohesion

and coupling need to be analysed. The statistical method of

linear/nonlinear regression can be used to analyse the effect of service

granularity as an independent variable on service quality attributes as

dependent variables. Prior to the analysis, a quality model that quantifies

service granularity and the service quality attributes of complexity,

cohesion and coupling need to be developed.

 Valid quality metrics. The quality model should provide theoretically and

empirically valid metrics. The theoretical validations can be based on

standard property definitions; empirical validations can use the dataset

 Chapter 1 Introduction

5

generated from the service interface designs. The quality model should

provide key features of defined metrics and show how these metrics are

driven. This is important when the cause-effect relationship between

these attributes is investigated. The service quality model should assist

with the achievement of optimum service interface designs by providing

numerical results.

H3: “The following architectural quality attributes are dependent on one

another, cohesion correlated with coupling, coupling correlated with complexity

and complexity correlated with cohesion”.

 The correlated relationships. The results of correlation investigation will

be useful to understand the significant effects of these quality attributes

on each other which might provide an insight to the selection of optimum

service interface designs. The correlation relationships between service

quality attributes can be investigated statistically using the correlation

test. The correlation coefficient value can be interpreted into different

scale values. All data computations and extractions can be completed

using the proposed service quality model.

1.2 Research Contributions

As a summary, the main conceptual contributions of our research work are:

 A method to generate a service interface design (WSDL) automatically

from the business process model (BPMN 2.0) using service choreography

(WS-CDL) thus enabling the choreography concept to bridge the

abstraction gap between a business model and service interface designs.

This method also supports seamless integration between SOA and MDA

and offers an application for such integration. (Explained in chapter

‎Chapter 4).

 A service quality model was developed to provide metrics for measuring

the service granularity and SOA quality design attributes of complexity,

cohesion and coupling. The service quality model was also used to select

the optimum service interface design for a set of services. We developed

theories of these metrics based on our understanding and knowledge

together with existing literature on the topic of software quality

 Chapter 1 Introduction

6

measurement. We provided a measurement for service granularity that

can be enhanced to include additional factors. (Explained in chapter

‎Chapter 5).

 We offered an extension of the semantics of BPMN 2.0 specifications to

generate service choreographies (WS-CDL) and to facilitate

measurements of service quality attributes. (Explained in chapter ‎4.3).

The practical contributions of this thesis are as follows:

 Implementation of a chain of transformation programs in ATL from the

business process model (BPMN 2.0) to service choreography (WS-CDL)

and then from service choreography (WS-CDL) to service interface design

(WSDL). (Explained in chapter ‎6.4).

 Implementation of a Java-based application for the analysis and

computation of a set of metrics for service granularity and the service

quality attributes of complexity, cohesion and coupling. (Explained in

chapter ‎6.5).

A further contribution of this thesis is as follows:

 The service granularity metrics (OFG, ODG, SOA and ASOG are

described in section ‎5.2) that are proposed in this thesis are recognized

and adapted by Prof. Cássio Prazeres at Department of Computer

Science (DCC) at Federal University of Bahia, Brazil. The metrics will be

implemented in a project to develop a test platform for evaluating service

compositions. The implementation will be published at the

14th International Conference on Information Integration and Web-based

Applications & Services (iiWAS2012).

1.3 Thesis structure

The remainder of this thesis is structured as follows:

 Chapter 2 presents the field disciplines of SOA and MDA that are

relevant to this thesis. The service development cycle for SOA is

described, focussing on service modelling. We provide an overview of the

service definitions and elements used in this thesis and phases of service

identification showing the currently used strategies for identifying

 Chapter 1 Introduction

7

services. We explain the concept of service granularity and how quality

attributes fit in SOA. We then introduce the basic concept of the

modelling language BPMN 2.0 and the choreography language WS-CDL.

After that, a general review of the model-driven approaches is provided

along with supported technology standards, model transformations and

languages (in particular, ATL is reviewed).

 Chapter 3 discusses current research in the area of service identification

by classifying current research efforts into three views: business-driven,

ontology-driven and legacy system-driven. We also investigate current

approaches concerning service quality attributes and metrics. A

comparative analysis is conducted based on a number of criteria for

current research efforts, as explained at the beginning of this Chapter.

Important challenges of service identification are bridging the abstraction

gap between business models and service implementation, and measuring

quality attributes. These two challenges are discussed in Chapters 4 and

5 which form the initial framework design.

 Chapter 4 presents choreography concepts, which are important for

bridging the abstraction gap and transforming models. We discuss why

and how the choreography concepts are applicable for use in the research

hypotheses. An analogy is developed between business process

choreography and service choreographies. To realise the model-driven

approach, we defined the meta-models that are required for the model

transformations using BPMN 2.0, WS-CDL and WSDL. We attempt to

adapt available meta-models in literature and standard specifications,

rather than define meta-models from scratch. We also evaluate the

suitability of the choreography specifications in BPMN 2.0 and WS-CDL

against a number of choreography requirements.

 Chapter 5 introduces a service quality model that is developed based on

the service granularity definitions. We present the basic definitions for

service granularity metrics. After investigating the impact of service

operation granularity on architectural quality attributes, metrics for the

service quality attributes of complexity, cohesion and coupling are

defined. These metrics are validated theoretically using a number of

mathematical property definitions.

 Based on the choreography concept (chapter 4) and the service quality

models (chapter 5), the framework architecture and detailed

 Chapter 1 Introduction

8

implementations are described in chapter 6. The framework architecture

is presented in two architectural parts: model transformations using

choreography and a service quality model. The implementation of each

part is individually explained in detail. First, the technical

implementations and transformation rules are explained for each model

transformation. Second, the implementation of the service quality model

is described.

 To evaluate and analyse our framework, we decided to conduct two types

of evaluation using different scales: pragmatic and empirical. In Chapter

7, we validate the consistency of the modelling behaviour between inputs

and outputs during the transformations. Three application scenarios are

used to demonstrate the pragmatic approach.

 In chapter 8, after the computation of quality metrics using the service

quality model, we empirically evaluate the generated service interface

designs. The analysis and findings of the research results are discussed.

 Chapter 9 concludes the thesis with a review of its contributions to the

field of “service modelling” and a presentation of extensions for future

work.

1.4 Publications

During the research, the following peer-reviewed papers have been published:

 S. Alahmari, Ed. Zaluska, D. De Roure (2011). A Metrics Framework for

Evaluating SOA Service Granularity. In, The 8th IEEE 2011

International Conference on Services Computing (SCC

2011), Washington, D.C, USA, 04 - 09 Jul 2011. IEEE Computer Society

Press.

 S. Alahmari, D. De Roure, Ed. Zaluska (2010). A Model-Driven

Architecture Approach to the Efficient Identification of Services on

Service-oriented Enterprise Architecture. At The Second Workshop on

Service oriented Enterprise Architecture for Enterprise Engineering in

conjunction with the 14th IEEE International Enterprise Distributed

Object Computing Conference, Vitória, Brazil. IEEE Computer Society

Press.

http://eprints.soton.ac.uk/272219/
http://eprints.soton.ac.uk/272219/
http://eprints.soton.ac.uk/271359/
http://eprints.soton.ac.uk/271359/
http://eprints.soton.ac.uk/271359/

 Chapter 1 Introduction

9

 S. Alahmari, Ed. Zaluska, D. De Roure (2010). Migrating Legacy Systems

to a Service-Oriented Architecture with Optimal Granularity. ICEIS 2010

- Proceedings of the 12th International Conference on Enterprise

Information Systems, Volume 1, DISI, Funchal, Madeira, Portugal, June

8 - 12, 2010.

 S. Alahmari, Ed. Zaluska, D. De Roure (2010). A Service Identification

Framework for Legacy System Migration into SOA. In, IEEE SCC 2010

-7th International Conference on Services Computing, Miami, Florida,

USA, 05 - 10 Jul 2010. IEEE Computer Society Press.

http://eprints.soton.ac.uk/271008/
http://eprints.soton.ac.uk/271008/
http://eprints.soton.ac.uk/271009/
http://eprints.soton.ac.uk/271009/

 Chapter 1 Introduction

10

Figure ‎1-1 Thesis structure

Chapter 2 SOA and

MDA

The need for a complete methodology to identify optimum services in the

context of business process has been intensively discussed (Zdun and Dustdar

2007). In Chapter 1, we described the challenges that face the service

identification process. In this chapter we provide an overview of the field, and

the technologies that are particularly important and relevant for understanding

the context of the thesis. The overview is important to define the two major

fields of SOA and MDA. These technologies are used in current approaches for

the service identification process which will be explained in Chapter 3.

This chapter is structured as follows: Section 2.1 introduces the field of

Service modelling in the service development cycle. In particular, an overview is

given which explores the service identification process within the service

modelling and the definitions of a term “service”. Section 2.2 discuses service

oriented decomposition as one of the modelling strategies used to identify

services in enterprise architecture. Service designers do not know the size of

functionalities a service should offer nor when a service can be called

“optimum”. The size of a service is presented through the discussion of the

service design issues related to granularity with considerations of the

importance of having an appropriate level of granularity, where employing the

software quality attributes for SOA can assist to achieve the “optimum”

services. During the service identification process, they may be composable and

described by the choreography languages from a global viewpoint.

Section 2.3 describes business process modelling with a focus on Business

Process Model Notation (BPMN) representations. Section 2.4 explores the field

of Model Driven Architecture (MDA) and the concept of model transformation,

Chapter 2 SOA & MDA

12

using relevant technologies and methods. These show techniques and

technologies of MDA can be used to identify potentially “optimum” services.

2.1 Service Modelling

Service-Oriented Architecture (SOA) is a modern approach to implementing

(re-implementing) a system as a set of interoperable services. Service-oriented

analysis, design, and architectural disciplines all contribute to the service

modelling approach (Bell 2008). Within the development life cycle, the term

“modelling” denotes what was previously referred to as “analysis and design” in

previous design methodologies (Bieberstein, Bose et al. 2005). These

methodologies of modelling service-oriented systems are built on theoretical

foundations, adopting a variety of effective approaches such as Model Driven

Architecture (MDA). Service modelling considers the process of service delivery

within an interoperable environment, beginning with a model representing real

business requirements and includes the construction of a code skeleton to assist

the implementation of these requirements. The software is required to conform

to key design characteristics such as flexibility and reusability because these

characteristics are important to decide whether the service design is

appropriate. These might be fundamental non-functional requirements for the

system.

The notion of modelling has received significant attention within SOA. A

reference model has been proposed to formalize the underlying aspects of SOA

(Haesen, Snoeck et al. 2008). This proposal is intended to cover the significant

entities and properties of SOA, as well as their relationships, although the

proposed model is limited in its description of advanced service interaction

scenarios and therefore not comprehensive. In industry, development activities

that relate to the design phase are almost invariably different from one

organization to another because of the absence of development standards

(Haines and Rothenberger 2010). With more general views comparing to the

“reference model”, Dijkman and Dumas propose a core model for

service-oriented design, based on multi-viewpoints of choreography,

orchestration and provider behaviour, as well as interface behaviour with

specific characteristics such as high autonomy, and low level of granularity

(Dijkman and Dumas 2004). In fact, currently there are neither clear

characteristics nor a formal approach that might guide modelling services.

Chapter 2 SOA & MDA

13

2.1.1 Service Oriented Architecture (SOA)

Accommodating technological evolution and rapid business changes is a

significant problem with current software systems. Current software systems

were typically developed with embedded business rules and logic, scattered and

duplicated code, unstructured modules and tightly-coupled functions.

Furthermore, external changes in business and application requirements are

introduced (e.g., the recent emphasis on governance), emphasising the

requirement for a modern architectural style such as SOA. A design

methodology based on SOA provides a standardized way to improve both

efficiency and flexibility because SOA enables transformation of the logic and

views of business applications to a number of reusable services (Sweeney 2010).

It provides a mechanism to incorporate the business strategies, implementation

methodologies and operational aspects of the service-oriented system. SOA is

not a new concept, having evolved from previous module-based development

methodologies such as modular programming, software component and O-O

design (Endrei, Ang et al. 2004). In fact, the term “SOA” has traditionally been

defined from a number of different perspectives, for example; its functional

aspects as being layered-enterprise based (Rosen, Lublinsky et al. 2008),

usefulness in achieving business and solution strategies (Rosen, Lublinsky et al.

2008), and from a technical or business aspect (Bieberstein, Bose et al. 2005).

This breadth illustrates that SOA can be presented and discussed from various

different viewpoints. With this in mind, the level of abstraction provides an

effective technique to study software architecture(Bieberstein, Bose et al. 2005).

Figure 2-1 shows SOA layers of abstraction, as typically presented in the

literature (Erradi, Anand et al. 2006; Rosen, Lublinsky et al. 2008) which

partitions the architecture into six specific layers as follows:

 Presentation layer: this layer provides users with specific applications or

alternatively a mechanism for interaction with business processes.

 Business process layer: this layer represents workflows (business processes)

which are uniquely defined as sequences of activities responding to a

business function or functions. A business process is often implemented as a

service or a composite of services, and executed as part of a Business

Process Management System (BPMS).

 Business services layer: this layer provides a number of services that respond

to the business process layer, presenting coherent business functionalities.

Chapter 2 SOA & MDA

14

Typical services are coarse-grained, though every service can be

implemented with a number of fine-grained services. A Service Level

Agreement (SLA) can be specified to govern and manage the quality of

service provided to the service consumer.

 Infrastructure service layer: this layer provides a number of services

supporting shared functions (e.g., to implement authorization or perform

performance tuning) and also can support other enterprise services such as

data services and integration services.

 Service Component layer: this layer typically comprises a block of services

designed specifically to meet a potential future requirement (e.g., future re-

use or an anticipated new requirement).

 Operational and resources layer: this layer usually represents existing

applications (i.e., legacy systems and custom applications). These

applications provide operational functionalities for underlying service

components (e.g., existing systems Enterprise Resource Planning (ERP) and

Customer Relationship Management (CRM) or custom application J2EE).

Figure ‎2-1 Typical SOA Layers of Abstraction

Chapter 2 SOA & MDA

15

Each level of abstraction can however be further divided into finer detail.

In addition, business and infrastructure service layers in particular will often be

consolidated which narrows the abstraction gaps between the SOA layers and

facilitates the service identification process.

The service development life cycle is an incremental process with multiple

phases (Papazoglou and Van 2006). Different research methodologies propose

different service development cycles. A “traditional” service development cycle

consists of six phases: planning, service analysis, service design, service

development, service testing, service deployment and service administration

(Erl 2005), figure 2-2. The planning phase creates business and IT strategies

that assist in achieving the benefits of an SOA implementation, studying the

feasibility of the proposed system. It can also ease the transformation from

traditional architectural and development practices towards a robust, flexible

development environment within a service-oriented approach. The service

analysis phase gathers business and software requirements, defines constraints,

and identifies candidate business services using a specific modelling strategy.

For example, a policy to re-use valuable existing components using a re-

engineering method (e.g., the use of web-service wrappers).

The service design phase defines the specifications and features of services

within the service boundaries in order to allow tracing of service specifications

between requirements. The service development phase transforms service

elements into executable software which operates using appropriate

technologies. The service-testing phase comprises verification and validation of

service code using rigorous testing techniques and is intended to ensure that the

service implementation satisfies the functions and proprieties defined at the

design stage. The service deployment phase carries out the configuration and

advertising of services in a repository enterprise, i.e., installing and integrating

middleware software. The service administration phase manages service issues

such as monitoring, versioning, and maintenance, through, for example,

defining ways to enhance and monitor performance.

Chapter 2 SOA & MDA

16

Figure ‎2-2 Service Development Life-cycle

The disciplines of analysis and design are embodied in the service-oriented

modelling paradigm (Bell 2008). The service identification process aims to

transform a description of a service (in either text or model form), and will

move typically from business application requirements at the planning phase to

more detailed formal specifications with a mapping technique (such as top-

down mapping). The final result of the process is a skeleton containing a full

specification of the service elements in the design phase. This transformation is

an iterative process, based on the state of the service during the life cycle, and

correspondingly it leads to a service-modelling discipline (Bell 2008). Essential

challenges addressed are the ways in which services are identified, described,

and realized to deliver maximum flexibility, agility and reusability (Arsanjani

2004; Erradi, Anand et al. 2006; Dwivedi and Kulkarni 2008; Bell 2010). Service

identification is one of the most important tasks in defining the optimum set of

services, as any ill-advised modelling decision can result in compromises that

will affect the entire service-oriented enterprise. We would argue that the

“optimum” services are those that correspond to the requirements of business

applications and consider trade-offs between service quality attributes according

to the system/user requirements.

2.1.2 The Definition of Service

The service is the core element of any SOA implementation. The term service is

used generally across a wide spectrum of different computer science areas, with

many different specific meanings. Study of the literature in service design and

modelling will reveal a number of different service definitions, based on (for

example) the analysis techniques used in modelling, the potential benefits of

adopting SOA, and an understanding of the guiding principles of SOA. From a

business perspective, a service can be defined as a discrete unit of business

functionality (Rosen, Lublinsky et al. 2008). Technically a service can be

Chapter 2 SOA & MDA

17

defined as a software resource exposed and discovered via an interface, with

policies to facilitate different configurations (Arsanjani, Ghosh et al. 2008). A

number of other service definitions can be found in (Wiersma 2010).

For the purposes of this thesis, it is essential to have a clear

understanding of the term “service” (Bell 2010). We have adopted the W3C

definition for a service, “an abstract resource that represents a capability of

performing tasks that represents a coherent functionality from the point of view

of provider entities and requester entities” (W3C 2004). The capability offered

depends on the level of abstraction and the type of service. For example, data

services residing in the data layer will typically support data access and

manipulation. Unlike other service definitions, the W3C definition emphasises

that (functionally speaking) the service always offers benefits as a resource in a

self-contained representation between a service provider and a service recipient.

It is worth noting that with this definition, the W3C attempts also to link

service definition with a web service (WS) definition (service implementation)

by means of the term “resource”. According to W3C (W3C 2004), the service

also embodies the properties of the definition of the term “resource” such as

an identifier in service definition. Although the W3C definition of a service

(Funk, Kuhmunch et al. 2005) is general, it also addresses the key

characteristics necessary to call a software unit a service.

The design of a service can be defined conceptually according to three

elements: the contract, the interface and the implementation (as shown in

Figure 2-3). The service contract provides informal specifications of the

purpose, message types, functionality, constraints, and usage of services which

are published as documents. The service interface exposes the service

functionalities to the representation layer through a set of operations. The

design of an interface is isolated from the design of the software system in most

modern software approaches (Berners-Lee 2003), with the service

implementation encapsulating both business logic and related data.

http://www.w3.org/TR/ws-arch/#provider_entity
http://www.w3.org/TR/ws-arch/#requester_entity
http://www.w3.org/TR/ws-arch/#identifier

Chapter 2 SOA & MDA

18

Figure ‎2-3 Service Elements

2.2 Service-Oriented Architecture Decomposition

Service-oriented decomposition is one of the modelling strategies used to

identify services in enterprise architecture, describing the way in which a

business-domain model is partitioned into services. In the literature, the term

“composition” is often used in conjunction with the word “service” to refer to a

combination of services to provide new functionality (Rosen, Lublinsky et al.

2008). As software complexity has increased, the technique of decomposition

has become more important and is intended to separate entire applications into

a number of separate programs (Rosen, Lublinsky et al. 2008) .

In the context of SOA, decomposition is the breaking down of hierarchical

business domains into business processes or functions using a top-down analysis

technique. A considerable number of existing methodologies are available to

define services based on decomposition of business processes models (Zhang and

Yang 2004; Zhang, Liu et al. 2005; Jamshidi, Sharifi et al. 2008) (these

methodologies are explained in section 3.1). Each business process is

decomposed into activities (a set of tasks) which can be realized as either a

candidate service (or a set of services), and consideration of the appropriate

level of service granularity by the service identification process is the main task

of the service-oriented decomposition process (Erradi, Kulkarni et al. 2009).

The underlying technique of service identification affects both the service

features and also the level of granularity. The key issue here is that it is

important to find a methodology to identify the optimum services. The

methodology should consider service quality attributes and the design issue of

service granularity.

Chapter 2 SOA & MDA

19

2.2.1 Service Identification

As explained above, service identification is the key issue when identifying

business services in service-oriented systems (Endrei, Ang et al. 2004 ; Rosen,

Lublinsky et al. 2008). The service identification process is part of both the

analysis and design phases of the SOA development cycle and denotes the

process of generating definitions of an appropriate set of services in a service-

oriented project. Indeed, the service identification process is based on analysis

techniques that depend on the available resources and project constraints, e.g.,

migrating legacy code by simply wrapping the code as one or more web services

because budget constrains prevent a more comprehensive review.

Although there are a number of approaches for service identification in

SOA, identifying the optimum services for a service-oriented system remains a

significant challenge. A number of possible approaches have been delivered from

a variety of different perspectives, including business process driven, tool-based

MDA, wrap legacy, developing legacy code as components, data-driven, and

message-driven approaches (Arsanjani 2005). Further classification of SOA

developmental approaches is possible, based on the delivery strategy, lifecycle

coverage, degree of prescription, target availability, process agility, and planned

retention of existing processes, techniques and notation (Ramollari, Dranidis et

al. 2007). However, the SOA paradigm has the potential to address distinctive

features and requirements, which requires a comprehensive methodology in

order to provide sufficient guidance for every phase of the service development

cycle. (A full review of the literature will be provided in chapter 3).

The service identification phase is crucial because mistakes made at this

stage can lead to overall failure of the resulting SOA-based systems. The set of

services defined at this stage needs to be of an appropriate size for the required

system and we believe that service granularity is one of the key architectural

issues affecting service identification process to achieve the optimum service

interface design. In fact, SOA has inherited important architectural

considerations (such as software size (Costagliola, Ferrucci et al. 2005)) from

former architectural approaches (e.g., O-O (Booch, Maksimchuk et al. 2007),

CORBA (Mowbray and Malveau 1997)). Success is critically dependent on the

correct identification, presentation and definition of key services at the “right”

level of granularity since the exposed functionalities in a service define its

granularity. It is important to appreciate that achieving an appropriate level of

Chapter 2 SOA & MDA

20

service granularity inevitably requires a compromise between many elements,

both technical and non-technical. In particular, the optimal granularity of key

services can be expected to vary in different layers with different service types

(Kohlmann and Alt 2007) and layers (Reldin and Sundling 2007; Kulkarni and

Dwivedi 2008).

Despite these requirements, there is an increasing acceptance of the SOA

based design approach for developing large-scale systems, despite there being no

standardised methodology. The typical strategies for SOA development are

referred to as “top-down”, “bottom-up” and “meet-in-the-middle”

(Perepletchikov, Ryan et al. 2005). In this thesis, we will focus on these

strategies, because most of the available published work has used these terms:

Top-down strategy: This strategy identifies business services from a business

perspective, by (for example) mapping products, business processes or use cases

onto a set of business services (Galster and Bucherer 2008), and decomposing

business domains into functional areas and components (Perepletchikov, Ryan

et al. 2005). SOA can be specifically differentiated from other software

methodologies because it is explicitly intended to be strategically aligned with

the underlying business vision (Arsanjani and Allam 2006). It is particularly

relevant in business models which must respond to business transactions using

a set of sequenced activities or tasks. This strategy makes use of domain

analysis, which itself requires use of specific analysis methods. Chen et al.

suggest a feature analysis method that can be used to identify, model, locate,

and then aggregate system features, and also assist in the conceptual

classification of legacy system granularity (Chen, Li et al. 2005). Zhang and

Yang (Zhang and Yang 2004) apply clustering analysis methods together with

human supervision to specify acceptable levels of granularity and service loose

coupling for the migrated code (Fraley and Raftery 1998). Although the

top-down strategy defines service with improved quality attributes, in practice

some migration of existing infrastructures is always required.

Bottom-up strategy: This strategy deliberately works ‘backward’ from the

technical basis to the system requirements based on existing technologies, i.e.,

legacy-system components are grouped into services on the basis of existing

system functionalities. This strategy particularly advocates the migration of

legacy systems into services (Krafzig, Banke et al. 2005). It requires an analysis

of the business requirements in order to define service functionalities, and

Chapter 2 SOA & MDA

21

integrates appropriate functions of the legacy systems into independent

components based on the validity of the business logic. Adaptors can then be

created which shield the legacy systems from the web service interface; this

strategy is sometimes referred to as the “black-box” approach (Sneed 2001). It

might also develop web services to implement the key business logic of the

existing code (Zou and Kontogiannis 2001). Jianzhi, Zhuopeng et al use a

reverse engineering technique on a component-based approach using a Java

Native Interface (JNI) wrapper to encapsulate code, and the Commerce

eXtensible Markup Language (CXML) to describe specifications for

communication within a workflow (Jianzhi, Zhuopeng et al. 2005).

Meet-in-the-middle: This strategy combines both the bottom-up and top-

down approaches, with an emphasis on migrating valuable components from

the legacy system. Software designers start by deciding what existing software

assets should be migrated and the best way to migrate them without losing

significant system functionalities. It is an iterative process; along with

integration of available software assets (by defining web service wrappers for

legacy functionality), high-level business activities are decomposed into business

services. Defined services from both approaches are validated iteratively against

the software requirements. Erradi et al. (Erradi, Anand et al. 2006) advocate a

hybrid approach, incorporating a top-down approach for domain decomposition

and a bottom-up approach for application portfolio analysis, using a variety of

manual techniques (e.g., interviews and questionnaires) together with

automation tools. Other design and development approaches are also available

(such as Middle-Out, and Front-to-Back (Shirazi, Fareghzadeh et al. 2009; Bell

2010), but these alternatives are less well accepted than the strategies discussed

above. Middle-out models services based on defined goals as goal-service

modelling, Front-to-Back tracks calls for the user interface and presentation

layer logic.

In summary, there is no comprehensive strategy that guides the analysis

and design phases of service identification for a complex system. Furthermore,

ambiguity in the definition of major enterprise business processes is a common

issue with all of these strategies (top-down, bottom-up and meet-in-the-middle)

when applied to the development of business scenarios (Papazoglou and Van

2006). Nonetheless, a number of approaches assert that the meet-in-the-middle

Chapter 2 SOA & MDA

22

approach combines the advantages of the other strategies (Erradi, Anand et al.

2006; Arsanjani, Ghosh et al. 2008; Kohlborn, Korthaus et al. 2009).

2.2.2 Service Granularity

The term granularity is defined as “the scale or level of details in a set of data”,

according to the Oxford dictionary1. Granularity reflects the degree of system

complexity in software design, and is thus a key design factor in defining

software units for software development methods, irrespective of whether the

software unit is a module, object, component, or service. Indeed, this increasing

level of modularity and abstraction is designed to solve issues related to

granularity (Brereton and Budgen 2000), e.g., objects in object-oriented

programming were intended to represent real-world concepts. In the context of

SOA, service granularity refers to the complexity of the functionality offered by

a service . Granularity refers to the functional capabilities offered by a service,

or the number of business transactions/processes implemented by a service.

Coarser-grained services include large numbers of operations and exchange

larger amounts of data.

To a certain extent there is some agreement on the importance of the

granularity concept for service-based systems (Kohlborn, Korthaus et al. 2009).

A recent study by industry experts which evaluated SOA development

processes concluded that service granularity is one of the key issues in the

design phase (Haines and Rothenberger 2010). Nonetheless, the definition of

this property is still not fully agreed, due to the subjectivity of the relative

aspects and a lack of any theoretical grounding (Haesen, Snoeck et al. 2008).

Architectural layering of services in the SOA is used to classify services and

then define levels of granularity based on different service types (figure 2-1).

Dwivedi and Kulkarni define in broad terms eight hierarchical service types:

process service, business service, composite service, informational service, data

service, utility service, infrastructure service, and partner service (Dwivedi and

Kulkarni 2008) (more classifications can be found in (Erl 2005; Papazoglou and

Van 2006)). Service granularity is evaluated based on the type and definition of

every service. For example, a business service is coarse grained compared to an

infrastructure service due to a higher level of abstraction, and vice versa.

1
 (2011) Granularity: Compact Oxford English Dictionary Online http://oxforddictionaries.com/.

http://oxforddictionaries.com/

Chapter 2 SOA & MDA

23

The concept of granularity applies to different levels of abstraction, i.e.,

the functionality offered by an operation in a particular service interface is

different from the functionality that is offered by a service implementation. It is

important that we differentiate between different types of granularity in order

to analyse the relative quality attributes. Erl et al. propose four types of service

granularity (Erl, Karmarkar et al. 2008). The first is service granularity, which

indicates the functional scope of the overall service context. The second is

capability granularity, which focuses on the functional scope at an individual

service level. The third is constraint granularity, which aims to quantify the

level of validation logic detailed. Finally, data granularity refers to the size of

the exposed data. In a more structural classification, Haesen et al (Haesen,

Snoeck et al. 2008) classify three types of service granularity: functionality

granularity, which refers to the size of functionalities offered by a service, data

granularity, which is the size of data exchange within a service, and business

value granularity, which refers to the business value added by a service. These

service types and levels of abstraction are also used together to assist with the

definition of the various types of service granularity. A number of resources

have discussed granularity from the perspective of development strategies,

including top-down and bottom-up, focusing on the impact of development

strategies on the correct definition (Perepletchikov, Ryan et al. 2005; Boerner

and Goeken 2009; Ma, Zhou et al. 2009). According to these classifications,

functionality, data, and level of abstractions are the most important elements

in the classification of granularity. Further analysis of these elements would

assist in providing better decisions regarding the service design.

The underlying service identification process in SOA specifically depends

on defining the right services with a proper level of granularity. A considerable

amount of literature has proposed methodologies for identification of the right

services with appropriate granularity (Papazoglou and Van 2006; Dwivedi and

Kulkarni 2008; Kim, Kim et al. 2008; Kulkarni and Dwivedi 2008; Zhang, Zhou

et al. 2008) (these references will be explained later in chapter 3, section 3.1).

Although these approaches have used a variety of different techniques, they

have not agreed on how to define the correct level of granularity effectively,

agreeing instead on the difficulty of delivering a set of services with appropriate

granularity. Furthermore, when designing the services, the impact of

granularity on quality of service (QoS) aspects must also be considered.

Identification of services with an appropriate level of granularity has the

Chapter 2 SOA & MDA

24

potential to provide other potential benefits of SOA such as flexibility,

reusability, and functionality.

2.2.3 Service Quality Models

Evaluation and enhancement of software quality is a key objective of software

engineering. The definition of the important software qualities are always

different from one stakeholder to another, e.g., do we require a flexible set of

services with high reusability standards or alternatively low complexity service

components with high agility? In literature, a number of quality models have

been suggested to evaluate various quality attributes within different

applications. The concept of such models was established by McCall for quality

investigation in development processes (McCall, Richards et al. 1977), with

additional models (such as the models published by Boehm and Deutsch

(Boehm 1976; Deutsch and Willis 1988)) appearing later. A quality model

defines characteristics and properties that need to be measured, enabling the

use of software metrics to measure such. Software quality metrics (essentially a

subset of software metrics with special focus on quality) have been classified

into product metrics, process metrics and project metrics (Kan and Jones

2004). The first attempt to use metrics for software quality prediction was by

Akiyama (Akiyama 1972) in a simple regression-based model (Fenton and Neil

1999).

SOA is an approach, not a product (Rud, Schmietendorf et al. 2006). It

does not follow a specific development methodology process and furthermore

SOA implementation can be achieved by a variety of different technologies,

e.g., Representational State Transfer (REST), Web service (WS) and

Distributed Component Object Models (DCOM). We believe that focusing on

the implementation of services means that product metrics are more

appropriate to SOA than project or process metrics. The features and

properties of a product (service) represent software quality attributes

(Perepletchikov, Ryan et al. 2005); typically classified as external and internal

attributes (Costagliola, Ferrucci et al. 2005). The external attributes, called

characteristics, relate to the product environment, for example, the ISO/IEC

9126-1:2001 standard defines external software quality attributes as usability,

maintainability, efficiency, portability, functionality, and reliability (ISO/IEC

2001). The internal attributes are related to the product itself, for example,

measuring the software size, coupling, cohesion, and complexity, and such an

Chapter 2 SOA & MDA

25

attribute might impact one or more external attributes. At the enterprise level,

quality-in-use can be used to measure specific needs in order to achieve specific

goals effectively, productively, safely and satisfactorily in specific contexts of

use, according to the ISO/IEC 25020 (ISO/IEC 2007). Fig. 2-4 shows the

relationships between different quality attributes in the context of an enterprise

system adopting SOA.

Figure ‎2-4 SOA Product Measurements

Currently, SOA is emerging as an innovative approach with considerable

promise for improving common software quality concerns such as unacceptable

inflexibility and complexity. Despite the extensive amount of research within

the area of service quality (QoS), no agreed standards are currently available to

evaluate the implementation quality of service-based systems. Indeed, the

existing SOA quality models focus on broad measurements of external

structural software service attributes (such as complexity, reusability and

performance), neglecting the impact from internal structural software

attributes, and in particular from service granularity.

2.2.4 Service Choreography WS-CDL

Web Services (WS) are currently a widely adopted implementation method for

SOA (Barker, Walton et al. 2009). Web services can be composable and

described by choreography languages from a global viewpoint. The

choreography languages describe rules of collaborations between participants

and help to ensure service interoperability between services. Despite the large

number of existing choreography languages such as Web Services Choreography

Description Language (WS-CDL), BPEL4Chor (Decker, Kopp et al. 2007),

Chapter 2 SOA & MDA

26

Ontology Web Language for Services (OWL-S) (Martin, Burstein et al. 2004)

and Let’s Dance (Taylor, Shields et al. 2003), none has achieved acceptance as

a de facto standard for describing WS composition (Cambronero, Diacuteaz et

al. 2009). Nonetheless, the drivers of these choreography languages have been

developed and refined based on various requirements For example, a detailed

comparison of the existing literature on choreography languages can be found in

(Bucchiarone and Gnesi 2006; Cambronero, Diacuteaz et al. 2009), giving a full

semantic descriptions for all stages of the web service lifecycle. Based on our

problem space, we found WS-CDL to be the most suitable choreography

language because it is designed for describing abstract business processes and

focuses on web service architecture (Bucchiarone and Gnesi 2006). Indeed, it

concentrates on role representations that can be used to simulate roles in

business processes for description of participant behaviour in a collaboration of

services. Moreover, the WS-CDL is based on a formal language (derived from

the π-calculus) which allows us to ensure the correctness of service behaviour

based on behavioural type checking (Ross-Talbot 2004; Li and Miao 2008).

An overview of the elements and structure of WS-CDL, as described in

the WS-CDL v1.0 specification (dated 9 November 2005), is at the W3C

candidate recommendation stage (W3C 2005). WS-CDL is an XML-based

language that describes the observable behaviour of peer-to-peer collaborations

(i.e., multiple services), using message exchanges to accomplish a common

business goal (Bordbar and Staikopoulos 2004). It defines the relationships

among activities through executed interactions by means of message exchanges

among web services described in WSDL. It is also an independent platform and

business process implementation language, specifically designed for composing.

Figure 2-5 shows an overview of the WS-CDL package in a set of type

definitions, and it can be seen that the WS-CDL code consists conceptually of

two parts: the package root elements, and the choreography definition.

The package root elements define both the exchanged messages and

collaborating participants responsible for the observed behaviour. An

informationType element specifies the type of exchanged messages and

variables (e.g., capturing the state of a purchase order during the order creation

routine of a business process). The token and tokenLokator elements refer

respectively to relevant data pertaining to variable values, and how to access

the token information in other resources. The roleType element represents the

behaviour of the collaborating participant. It refers to one or more exhibited

Chapter 2 SOA & MDA

27

behaviours (e.g., operations in WSDL file) and optionally identifies associates if

the implementation supports web service interfaces. The relationType element

consists of two roles (roleType), optionally including a subset of their

collaborative behaviours. The participantType element groups roles (roleType)

to which they will be executed by the same participant. The ChannelType

element describes behaviours of a participant as a message recipient (rather

than a requestor of messages) in order to specify both how exchanged

information is passed and the target destination. Figure 2-5 illustrates a view of

package root elements.

Figure ‎2-5 A View of the WS-CDL Package Root Elements

One or more choreographic definitions are included in every package. The

choreographic definitions can be globally defined without the root package and

other choreographies can invoke it when needed. The choreography section

defines collaboration rules between two or more participants, and Alistair et al.

(Alistair, Dumas et al. 2005) summarise activities in WS-CDL into three

categories: control-flow activities, workunit notation, and basic activities. The

first category can be subdivided into sequence, parallel, and choice elements,

with these elements expressing the ordering structure by which interactions are

executed. The second category, the workunit element, describes required

conditions for successful execution of collaborations and synchronisation among

activities. These conditions might include activity looping, guarding, exception

handling, and coordination. Finally, basic activities include the following

elements: interaction, perform, assign, noAction, silentAction and finalize. These

Chapter 2 SOA & MDA

28

describe the lowest level actions performed within a choreography definition.

Figure 2-5 illustrates a view of choreography definitions.

The W3C has promoted the suitability and stability of WS-CDL as a

choreography language, based on web services from a global viewpoint (W3C

2005; Decker, Overdick et al. 2006), however there are some specific criticisms

of the current version that could affect the definition of corresponding

modelling notations in the context of SOA (Alistair, Dumas et al. 2005). An

example is the integration of the XML syntax and semantic (meta-model) of

service choreography into one specification, which affects the definition of an

interchange format and modelling constructs (Alistair, Dumas et al. 2005). In

addition, WS-CDL is bound to the WSDL interface with limited

implementation (ISO/IEC 2007).

2.3 Business Process Modelling

A Business Process (BP) is a set of tasks or activities which is performed

collaboratively to realize an overall business objectives (Medjahed, Benatallah

et al. 2003). These objectives are achieved by using services which can adapt to

requirements changes rapidly. Business Process Management (BPM) governs

and controls BP in workflows, in order to improve agility and integrity.

Business process modelling is the activity of representing and analysing business

processes (Luo and Tung 1999), and a number of business modelling languages

and tools have been proposed to model, implement, and execute these models.

Among these modelling languages are the UML EDOC Business Processes, the

PCD (Process Chain Diagram) of ARIS, and the activity diagram of UML

(Unified Modelling Language). There are also ebXML BPSS and BPMN which

are intended to be mapped to execution languages such as Business Process

Execution Language (BPEL), XML Process Definition Language (XPDL)

(Coalition 2008) and Web Services Business Process Execution Language

(WSBPEL) (OASIS Standard 2007). A model in BPMN can be executed in a

process-executable environment on a process engine (Genon, Heymans et al.

2011). The adoption of process modelling using BPMN 2.0 as the modelling

language in this research is motivated by several factors:

Chapter 2 SOA & MDA

29

 Relevant research has confirmed that process-oriented modelling

provides a good basis for SOA (Rolland and CentreKaabi 2007;

Jamshidi, Sharifi et al. 2008).

 BPMN 2.0 supports rich constructers. There are limitations when

modelling related resources and representing various types of control-

flow constructs using other modelling languages such as UML 2.0

Activity Diagrams for business process modelling (introduced by

OMG) (Decker, Overdick et al. 2006).

 BPMN 2.0 focuses on extensibility in choreography descriptions.

2.3.1 Business Process Model Notation (BPMN)

BPMN is the leading standard among modelling languages for business

processes and workflows (Chinosi and Trombetta 2011). BPMN is an OMG

specification, which was initiated by a working group within the Business

Process Management Initiative (BPMI), and then completed and published by

OMG in February 2006 (version 1.0) (Recker, zur Muehlen et al. 2009). The

initial goal of BPMN was to provide a standardized graphical notation that is

comprehensible by business analysts and developers, without a native

serialization format. The updated specification of BPMN was released in

January 2008 and January 2009 as versions 1.1 and 1.2 respectively. These

updates included better-defined semantics, such as various types of events

(OMG 2008; OMG 2009). The most recent specification is BPMN 2.0, in which

the focus and capabilities from previous versions have apparently been changed

and extended (OMG 2011). This version formalizes the execution semantic for

BPMN elements, provides extensibility capacity for processing models and

graphical data, refines event composition and correlation, enables mapping of

business process models in BPMN to other models, updates the semantic and

definitions of human interactions, and extends its scope to define choreography

and conversation models (OMG 2011). It also resolves some of issues with

previous versions such inconsistencies and ambiguities. Moreover, it defines a

meta-model and a schema for diagram interchanges, unlike previous versions

that failed to provide an official meta-model (List and Korherr 2006; Debnath,

Zorzan et al. 2007; Korherr and List 2007; Recker, zur Muehlen et al. 2009).

According to the BPMN 2.0 specification (OMG 2011), diagram types include:

Chapter 2 SOA & MDA

30

1. Process Diagrams: these contain description of flow elements and attributes

used in a stand-alone business processes (orchestration), private non-

executable processes for documentation, private executable processes for

modelling and execution, and public processes for describing interactions

between a private business process and another process or participant (see

an example in figure 2-6).

2. Collaboration Diagrams: these consist of two or more participants

communicating via a communication route known as a message flow, which

considers the internal behaviour within business processes. Participants

representing other business processes are assigned a role in a business

interaction. These diagrams are designed to show the relationship between

choreography and orchestration processes (see an example in figure 2-7).

3. Choreography Diagrams: these define interactions and communication

protocols among participants using sequences of message exchanges. In

contrast to orchestration concepts, this interaction description is based on

Message Exchange Patterns (MEPs - see an example in figure 2-8).

4. Conversation Diagrams: an informal description of a collaboration diagram

focusing on a logical grouping of message exchanges based on a correlation

key, e.g., grouping of message exchanges for a specific object. (See an

example in figure 2-9).

Figure ‎2-6 A Process Diagram Examples

Chapter 2 SOA & MDA

31

Figure ‎2-7 A Collaboration Diagram Example

Figure ‎2-8 A Choreography Diagram Example

Figure ‎2-9 A Conversation Diagram Example

2.4 Model-Driven Transformation

The model-driven transformation (MDT) technique in MDA is used to develop

a software program which can transform abstract models to code. Thus, the

MDT can be used for SOA to generate service implementations from abstract

models such as business process models. Although Software Development

Chapter 2 SOA & MDA

32

Environments (SDE) (e.g., the integrated development environment (IDE))

have greatly improved in the past twenty years, software complexity and

development costs continue to rise (Mellor, Scott et al. 2004). In order to

develop software systems efficiently, the Object Management Group (OMG)

has supported and defined the (MDA) as “software development processes

based on a model” (OMG 2003). MDA is “an evolutionary step that consolidates

a number of trends that have gradually improved the way we produce

software” (Frankel 2003). To support a chain process of transformation, MDA

requires the compliance and portability of standards such as Meta-Object

Facility (MOF), Unified Modelling Language (UML) and XML Metadata

Interchange (XMI) (OMG 2003).

2.4.1 Model Driven Architecture (MDA)

MDA is based on models that are defined using meta-meta-models, with every

model based on a unique meta-model possessing precise vocabularies and

auxiliary properties (Bezivin, Hammoudi et al. 2004). A model, as a primary

artefact, presents statements about a system for a specific goal (Bezivin and

Gerb 2001; Seidewitz 2003). Different forms can be used to describe a model,

such as a general-purpose modelling language (which is a specific meta-model

dependent) e.g., using a UML class model to describe detailed design of

software systems. The aim is to have a model presenting a system, and defined

according to a recognized standard. Models are transformed to other models,

executable code or text using transformation languages.

An MDA increases the level of abstraction by separating the specification

and business logic of a system from its software platform (Kleppe, Warmer et al.

2003). Conceptually, the level of abstraction in an MDA is designed according

to three levels: the Computation Independent Model (CIM), the Platform

Independent Model (PIM), and the Platform Specific Model (PSM) (OMG

2003). Models defined on the level of CIM correspond to business models in

that they have a pure business specification; the focus is on the system

environment, with little relevance afforded to how the software system is built.

The PIM describes a system from a platform independent viewpoint, showing

that the model description is sufficient to define system behaviour, e.g., a class

diagram presenting the structure of a system. If the CIM separates business

http://en.wikipedia.org/wiki/Integrated_development_environment

Chapter 2 SOA & MDA

33

specification from the design, the PIM separates the design of the system from

implementation. The modelling languages used (e.g., plain UML, Executable

UML (Mellor and Balcer 2002) combining UML with OCL) are an important

factor in the quality of PIM models, however, the model must also have a high

level of completeness and consistency (Kleppe, Warmer et al. 2003). The PSM

describes a software system from a specific platform (OMG 2003), combining

the PIM specifications with additional information about a specific platform,

i.e., information about a specific operating system that impacts software

systems.

A meta-model describes the properties and constructs of every model

precisely. For the definition of such concepts, the OMG determines a

meta-model architecture definition based on four layers of abstraction: M0, M1,

M2, and M3. Figure 2-10 shows classical metadata for a (place order) business

process modelled in BPMN. According to the definitions of these levels, M0

presents runtime-environment instances (e.g., a Customer with id=AAA places

order_id=10 into a shopping cart_id=AAA100), M1 presents the model (e.g., a

business process defined using a BPMN model), and the meta-model resides on

level M2 where the transformation rules are defined, i.e., rules defined using

OVT (OMG 2002) or OCL (OMG 2006). Those meta-models are always

dependent on a common meta-meta-model (MOF) which is represented at level

M3 (OMG 2008). Any meta-model frameworks of MOF dependent comprises of

the four meta-layers.

Chapter 2 SOA & MDA

34

Figure ‎2-10 MDE Architectural Abstraction Levels

2.4.2 Meta-Modelling Supported Standards

MOF represents a set of modelling elements used in the specification and

development of meta-models in a domain-specific modelling environment, and

exists at level M3 (Frankel 2003). The definitions of the meta-meta-models are

MOF dependent, and MOF can be also used to define non-Object-Oriented

using meta-meta-models (Frankel 2003), i.e., using the Rational Unified software

development Process (RUP). It supports the metadata management which

binds a model to its meta-model (OMG 2002). UML is aligned with MOF and

based on a four-layer meta-model architecture (Frankel 2003). As a graphical

modelling language, UML provides MOF with the basic constructs to define

and visualize meta-models. XML based Meta-data Interchange (XMI) is a

specification language that defines rules for exchanging interchange format

(e.g., metadata). Figure 2-11 shows the MOF architecture in an example of

definitions of a business process in BPDM.

Chapter 2 SOA & MDA

35

Figure ‎2-11 An Example of MOF Architecture

2.4.3 Model Transformations

The foundations for transformation in MDA come from theoretical computer

science and practices within software engineering such as rewrite systems and

complier construction (Davis, Sigal et al. 1994; Biehl 2010). In the context of

the model-driven architecture (MDA), the Object Management Group (OMG)

defines model transformation as “the process of converting a model into another

model of the same system”. Model transformations are a core element in Model

Driven Engineering (MDE), providing a seamless way to process source models

in order to generate, filter, and update target models. The transformation

modelling languages achieve different types of transformation such as

Model-To-Model or Model-To-Code. The transformation always depends on a

model, to which it presents a set of statements about some particular systems.

The representation of these statements can be achieved graphically

(Hidaka, Hu et al. 2009) e.g., a model might represent different level of

abstractions of systems as views. A modelling transformation can be achieved

either through a rule-based transformation (Debnath, Zorzan et al. 2007;

Benaben, Touzi et al. 2008) or by the use of parameterized patterns (Brahe and

Bordbar 2006; Delessy and Fernandez 2008). The transformation mechanism

can be used in different phases of the software development cycle, for example,

in development of a transformation program for software quality control to

detect bugs (Bezivin, Bruneliere et al. 2005). Figure 2-12 shows some examples

of model-transformation-mechanism use during different phases of a general

System Development Life Cycle (SDLC) (e.g., transformation of functional

http://en.wikipedia.org/wiki/Theoretical_computer_science
http://en.wikipedia.org/wiki/Theoretical_computer_science

Chapter 2 SOA & MDA

36

requirements to UML class diagrams, and then to Java skeleton code using

model-to-code method transformation).

Figure ‎2-12 Model Transformation during System Development Life Cycle

As the applicability of model transformation has grown, a number of

transformation languages offering many features have been proposed, under

both open source and commercial licenses (Czarnecki and Helsen 2006;

Milanovic 2007). These underlying transformation languages and approaches

include Query/Views/Transformations (QVT) (OMG 2002), ATL (ATLAS

Transformation Language) (Jouault and Kurtev 2006), Extensible Platform of

Integrated Languages for model management)Epsilon (Kolovos, Rose et al.

2012), KerMeta (Moha, Sen et al. 2010), and XML Stylesheet Language

Transformations (XSLT) (W3C 1999). The evaluation of different

transformation languages and tools can be found in references (Czarnecki and

Helsen 2006; Biehl 2010). In this thesis, we have adopted the ATL

transformation language in an exogenous transformation (a type of

transformation when source and target models are defined in different

languages), for of the following reasons:

 ATL is described by an abstract syntax (MOF meta-meta-model).

 ATL provides a complete transformation model and supports several

advanced features and complex transformations, e.g., it supports a

number of source pattern elements.

Chapter 2 SOA & MDA

37

 ATL has gained extensive support for development from the user

community via discussion and available projects have been implemented

in ATL for various examples and case studies.

2.4.4 ATLAS Transformation Language (ATL)

ATL (ATLAS Transformation Language) was first proposed by the Atlas

Group and the TNI-Valisos Company as a model transformation language in

response to the MOF/QVT for transformation implementation (BEzivin,

Jouault et al. 2003). It also provides a modelling transformation platform to

transform a set of source models into a set of target models (the semantics of

involved models are defined in MOF meta-models or meta-meta-models.) It is a

hybrid language supported by declarative constructs for less complex mappings,

imperative constructs for advanced mappings, and offers the capacity to handle

queries, views and transformations. In the context of model transformation, it

consists of different rule styles (e.g., called rule and matched rules) dependent

on the invocation method and targeted results, supported by concepts of

polymorphism and inheritance. The “helper” construct defines global variables

and functions expressed in the Object Constraint Language (OCL) standard.

ATL is developed on top of the Eclipse environment as an Integrated

Development Environment (IDE) supported with development tools (e.g.,

compiler and debugger, etc.), and an ATL transformation engine is used to

compile and execute ATL programs. Figure 2-13 shows an overview of

transformation models using ATL. A source model conforms to a specific

meta-model, whereas a target model conforms additionally to a meta-model.

The source meta-model and target meta-model conform to a standardised

meta-meta-model (such as MOF or Ecore). The ATL program defines the

transformation rules that enable generation of the target model based on the

source model input.

Chapter 2 SOA & MDA

38

Figure ‎2-13 General View of Model Transformation

2.5 Summary

This chapter introduced the research fields of service modelling for service-

oriented systems and MDA. We gave an overview of SOA, and showed how

SOA covers a wide spectrum of enterprise architecture, as well as providing an

illustration of the SOA hierarchical layers. We explained the traditional

lifecycle phases of SOA development, focusing on service modelling that aims to

use theoretical foundations to model service-oriented systems. Ambiguity

remains about a universal-accepted definition for a service, however we adopted

the service definition by W3C because it defines the key characteristics of a

service (such as being self-contained). Then, we described the strategy of

service-oriented decomposition process with elaboration on a service

identification process to define the ‘right’ services with the appropriate level of

granularity.

Service granularity might impact other software quality attributes, service

granularity being classified into different types based on amount of exchanged

data, functionality, and the level of abstraction. Software product metrics are

possible methods to measure service granularity. WS-CDL is a suitable

choreography language to bridge the gap between business process models and

web service architecture. We also discussed the concept of business process

modelling and introduced BPMN as a suitable business modelling language to

depict business processes complex scenarios for service-oriented systems. We

introduced the MDA approach and described the architectural aspects behind

http://www.eetimes.com/design/automotive-design/4027657/Using-Autosar-s-hierarchical-software-architecture-to-diagnose-CAN-apps

Chapter 2 SOA & MDA

39

it. We used a metadata example to demonstrate the model-driven engineering

(MDE) four-layer of abstractions. We described the model transformation

method that converts models of different types to new models or source code.

Finally we introduced ATL as the adopted transformation language and

implementation framework for this thesis.

The next chapter will focus mainly on current research approaches in

service identification and will contain a comprehensive literature summary. We

will also discuss how to measure service quality attributes and how these

measurements can be used within the service identification process.

Chapter 3 Service

Identification Current

Approaches

In Chapter 2, we gave an overview about the research areas of SOA and MDA.

In this Chapter, we provide an overview of current literature in the area of

service identification and highlight the limitations of existing approaches.

This literature review is divided into three main sections. In Section 3.1,

we discuss the area of service identification and classify existing approaches into

three sub-sections: business-driven, ontology-driven and legacy system-driven.

In Section 3.2, we briefly cover research into quality of service (QoS) in the

context of service identification. In section 3.3, we evaluate the approaches

identified in section 3.1 using a number of criteria. Finally, Section 3.4

concludes by summarizing the main findings.

3.1 Service Identification Methodologies

A considerable amount of literature has been published in the area of service

modelling covering various different contexts. Although service modelling covers

both the analysis and design phases, most of the current research focuses on

either the analysis or design aspects individually. A number of systematic

literature reviews and surveys have been undertaken on service modelling

issues, mainly concentrating on service identification (Papazoglou and Van

2006; Bianchini, Cappiello et al. 2009; Kohlborn, Korthaus et al. 2009). The

research methods of these reviews were based on predefining a set of SOA

characterises or aspects to evaluate and then comparing the results, e.g.,

comparing supported phases of SOA life cycle and targeted types of service.

Chapter 3 Service Identification Current Approaches

41

The important result for this research is to investigate these different delivery

strategies and select a suitable strategy for service identification. The design

strategy of service-based systems is generally classified into top-down, bottom-

up and meet-in-the-middle approaches (further details in section ‎2.2.1). We can

classify the research conducted in service identification for service-based

systems into: business-driven, ontology-driven and legacy system-driven. Each

of these approaches will be considered in the next sections.

3.1.1 Business-Driven Service Identification

A rapid response to changing business requirements is one of the important

objectives of the SOA approach. Thus, some researchers argue that SOA does

not merely integrate an IT infrastructure, it must also fully take into account

the underlying business models (e.g., business process, use case, and activity

diagrams) (Papazoglou and Van 2006; Kim and Doh 2007). A top-down

analysis technique might identify services seamlessly mapping from business

processes or use cases (Galster and Bucherer 2008). SOA can be specifically

differentiated from other software methodologies because it is explicitly

intended to be strategically aligned with the underlying business vision. The

decomposition of business processes or business functions is a key technique to

drive a top-down strategy.

Galsters and Bucherer propose a graph-based framework that discovers

service granularity according to specified business goals during the design phase

(Galster and Bucherer 2008). However, this approach does not define fine-

grained services and only quantifies coarse-grained services using a non-

technical description. Kim et al (Kim, Kim et al. 2008) focus mainly on how to

define the right services in the analysis phase in respect of business change

factors and goals. Rolland and CentreKaabi (Rolland and CentreKaabi 2007)

introduce an approach that depends on exploring the purposes of a business

process in order to identify a service. As a result, this approach defines a new

type of service called an “Intentional Service” which considers business goals,

pre- and post-conditions, and different interpretations instead of the technical

aspects of interfaces, behaviour and composition of services respectively. Nayak

et al. attempt to solve the gap between service provider and requester regarding

the service agreements (Nayak, Nigam et al. 2006). A Unified Service Model

(USM) is proposed along with a service operational model to specify business

Chapter 3 Service Identification Current Approaches

42

services from a business perspective. Although the authors of this approach

claim that the USM defines business services at multiple levels of granularity,

no metrics or guidelines are provided to identify the service granularity.

Arsanjani and Allam (Arsanjani and Allam 2006) outline a set of activities

in the analysis phase that lead to an adequate broad foundation for service

identification. The authors classify service types into three layers; orchestration

layer (process service), business layer (task and entity service) and application

service layer. Even though the author emphasizes the importance of the key

principles of service-oriented, no details have been provided as to how those

principles can be applied to guarantee optimised services. Boerner and Goeken

(Boerner and Goeken 2009) provide a general approach to identify services

including economic aspects, e.g., service robustness decreases operations costs

and SOA governance, e.g., considering SOA lifecycle to prevent service

redundancy. It also emphasizes the importance of BPM as foundation for

service identification concerning appropriate standards. The authors of this

approach mention broad aspects implicitly with neither practical guidelines nor

specific process details. Shirazi et al. (Shirazi, Fareghzadeh et al. 2009) attempt

to categorize services based on the operational state of services and logical

presentations, i.e., differentiating between applications and business services.

Then they use this classification to build their method that consists of several

instructional steps to identify services. However, the approach is incomplete

because the authors did not consider important elements that affect the service

identification phase such as granularity and complexity.

Nuffel (Van Nuffel 2007) focuses on deriving guidelines for service

identification from business requirements by means of a BPM language

definition and an analysis of relative artefacts. Stewart and Chakraborty

(Stewart and Chakraborty 2010) use the value chain and prioritization analysis

technique to model business service and software services from business

strategies and a business process model respectively. Kim and Doh (Kim and

Doh 2009) define a formal method using graph clustering techniques. Cost

metrics are used to evaluate interaction patterns between activities; a UML

activity diagram represents the business model as input of the method. Dwivedi

and Kulkarni (Dwivedi and Kulkarni 2008) introduce a semi-automated

approach to identify services in process-oriented systems. It converts

UML-based business process models into XMI. The XMI reader (NSUML) is

used to produce the MOF (Meta Object Facility) for mapping XMI

http://www.google.co.uk/url?q=http://catb.org/~esr/jargon/html/S/semi-automated.html&ei=9PqPSoDnLo2NjAfkw9D2DQ&sa=X&oi=spellmeleon_result&resnum=2&ct=result&usg=AFQjCNFcaevJ7jviMz4WMU9T-pmkWVmppw

Chapter 3 Service Identification Current Approaches

43

meta-model. The algorithm used runs over an XMI meta-model developed using

a statistically-based approach which is used to create APIs to query candidate

services. Although this approach provides a good definition of the service

identification issues and presents an interesting tool, it fails to demonstrate how

the tool will integrate the service hierarchy layers and properties.

In order to realize the potential of SOA and address the lack of detailed

approaches, researchers have sometimes considered full-cycle approaches for

SOA development and design. The objective of this approach is to support

various phases of service-based system and resolve the issues related to the

internal activities of every phase of the SOA development cycle, e.g., issues

related to service identification process in the service modelling phase.

Papazoglou and Van (Papazoglou and Van 2006) suggest a full cycle

development methodology for web services, based on other development models

such as Rational Unified Process (RUP), Component-based Development and

Business Process Modelling. It is an iterative and incremental methodology

with six phases: planning, Analysis and Design (A&D), construction and

testing, provisioning, deployment, execution and monitoring. It also discuses

characterises and principles of service-oriented design and development.

Erradi et al. (Erradi, Anand et al. 2006) introduce the Service Oriented

Architecture framework (SOAF) approach with five conceptual levels:

information elicitation, service identification, service definition, service

realization and roadmap with planning. Each level requires inputs to proceed

with a set of activities that deliver outputs as inputs for the next layer. It

captures the “As-is” and “To-be” business models to identify business services

and then maps the captured business processes of existing applications to

determine potential functionalities within the candidate business services. To

identify the optimal services, it capitalizes on the top-down approach for

domain decomposition and the bottom-up approach for application portfolio

analysis using manual techniques (e.g., interviews and questionnaires) and also

uses automation tools (e.g., IBM’s Asset Analyser). For service identification, it

defines the design tasks to be performed (e.g., by specifying a service policy). It

also scales service granularity levels by means of grouping the number of

invoked components or services via one operation on a service interface and

number of updated sources. Transformation strategies are defined along with

the plan for service implementation. The SOAF illustrates merely these steps at

Chapter 3 Service Identification Current Approaches

44

conceptual level, which neglects explaining details of relevant design issues of

every level.

Evaluation and validation play an important role in the applicability of

the proposed methodology, especially with significant differences between SOA

development compared to formal software development approaches (Haines and

Rothenberger 2010). Erradi et al. (Erradi, Kulkarni et al. 2009) extend the

service design concepts of the SOAF framework (Erradi, Anand et al. 2006)

with a business-driven approach built on top of a meta-model based on a

practical service design process from a real case study. It highlights broad

guidelines for enhancing the service granularity such as reusability, business

alignment, designing for assembly, and reducing the ripple effects of application

changes.

From experience with industry practices and implementation of several

real projects, IBM (Arsanjani 2004) introduced Service-Oriented Modelling and

Architecture (SOMA) as a service-oriented modelling methodology. For

modelling services, it defines three steps: identification, specification, and

realization, and includes flows and composition of services. Although SOMA

was successful in highlighting the broad architectural aspects, it could not

provide detailed implementation guidance. This methodology explains how to

identify the important aspects of service modelling, not how to implement

them. However, we believe that SOMA has gained acceptance in industry (Lane

and Richardson 2011) because it is driven from real case studies, which

increases its validity and applicability (in contrast to many other

methodologies) (Rolland and CentreKaabi 2007; Galster and Bucherer 2008;

Kim, Kim et al. 2008). Moreover, at the time that SOMA was published there

was very little available research in the area of service modelling. Further

research based on the SOMA methodology was conducted to enhance SOMA

by learning from its adoption and past usages which have turned it into a

“fractal model” for service-oriented software development (Arsanjani, Ghosh et

al. 2008). The fractal model refers to enablement of the SOMA method to

evolve in an approach as needed during different phases of the software

development life cycle. Recent work advances SOMA usage to leverage method

components and patterns. Zhang et al. (Zhang, Zhou et al. 2008) also extend

SOMA to providing SOMA-ME as a platform for model-driven design to

provide tools and design and development environment for SOA solutions. This

Chapter 3 Service Identification Current Approaches

45

is an integrated development environment (IDE) which facilitates the

evaluation, design, and validation of service models.

3.1.2 Ontology-Driven Service Identification

The service identification process always concurs with decomposition

mechanism between architectural layers which results in model (semantic)

transformations. During the transformations of models, semantic inconsistency

might occur. To cope with semantic inconsistency, some researchers have used

ontology-based approaches to identify services (Klose, Knackstedt et al. 2007).

Semantic web concepts, standards and technologies (such as the Web

Ontology Language OWL) have wider applicability in the world-wide web and

can also be used for model automation and validation (Tetlow, Pan et al.

2006). Several research projects have utilised the concept of ontologies in the

service identification process to build quality models as well as understand and

capture essential elements from legacy systems (Yang, Cui et al. 1999; Dobson,

Lock et al. 2005). Yousef et al. (Yousef, Odeh et al. 2009) propose a framework

called “BPAOntoSOA” which defines a service-oriented model from a Business

Process Architecture (BPA) based on two ontologies: BPAOnt (semantic

definitions of business processes and candidate services) and QoSOnt (defining

an ontology for quality of service) (Dobson, Lock et al. 2005). This framework

has been developed for a specific domain (healthcare systems) and does not

provide comprehensive supports for other domains. DongSu et al. propose a

method to identify services based on semantic relationships derived from

mapping an ontology and feature model (DongSu, Chee-yang et al. 2008). The

tree-like structure that the feature model depends on does not clearly show the

level of granularity, e.g., services that reside at similar level of granularity in

the tree could offer different level of functionalities which means the granularity

varies on one level.

Feng et al. (Chen, Zhang et al. 2009) use three different ontologies: the

Domain Concept Ontology (DCO) provides knowledge about an application

domain, the Functionality Ontology (FO) describes the functionalities of

applications and the Software Component Ontology (SCO) describes software

design patterns developed in the approach. These ontologies attempt to bridge

the gap between the traditional technologies in legacy systems, and software

and service-oriented technologies. Bianchini et al. capitalise on annotating

Chapter 3 Service Identification Current Approaches

46

business processes to identify functionalities suitable to become candidate

services semantically (Bianchini, Cappiello et al. 2009). A reference ontology

that consists of atomic concepts and a set of semantic relationships between

those concepts with a weight factor (assessing the degree of relationship)

evaluates business process elements. However, this approach ignores a very

important aspect of service identification which is granularity.

3.1.3 Legacy system-Driven Service Identification

In SOA, a green-field case often does not exist in software practices. Often a

legacy system exists as a valuable asset that can be exposed and integrated

with new developed services. There is a number of ways that such a legacy

system can be used in SOA, e.g., developing a wrapper to shield legacy code.

Zhang and Yang (Zhang and Yang 2004) propose a hierarchical clustering

algorithm to extract independent services from procedural software systems

into an object-oriented (OO) models. This approach uses a grey-box strategy

which is a combination of system wrapping together with the key business

logic. It starts by first identifying services using domain analysis and then

builds a domain model. The next stage is to build a process model after

completing the assessment using a dendrogram to visualize results. A clustering

technique is used to transfer procedural code to an object-oriented model,

mapping between similar entities based on the underlying concepts. Finally, the

candidate services from the Object-Oriented (OO) model and targeted

constructed services are packaged with code refinements. Chen et al. (Chen, Li

et al. 2005) discuss the transformation of legacy systems developed with

Object-Oriented Design (OOD) or Component Based Design (CBD) into SOA

applications using feature analysis. The feature analysis approach consists of

three stages: identifying the system features, constructing feature models and

tracing the relationship between the defined service operations and the source

code using a feature location technique. To locate a specific feature in the

source code, a re-engineering technology is required. The located source code is

aggregated into a united module and the key features are associated with one or

more services, as coarse-grained as possible. The identified service operations

are exposed by class delegations using a tool called a Web Service Wrapper.

Klose et al. propose a selective method which based on evaluation of methods

from a business and technical perspective (Klose, Knackstedt et al. 2007). It

defines a procedural model for service identification with three phases:

Chapter 3 Service Identification Current Approaches

47

preparation, service analysis and service categorization. Each phase consists of

tasks and related documents, integrating the aspect of stakeholders in the

business process model to derive candidate business services at the service

analysis phase.

Zou and Kontogiannis (Zou and Kontogiannis 2001) provide a framework

to transform legacy systems into a web-enabled environment by means of a

CORBA wrapper (consisting of a CORBA IDL, SOAP, WSDL, and UDDI).

This approach is accomplished in three stages. Firstly, legacy code is

decomposed based on application functionality. Secondly, the decomposed code

is migrated using wrappers into CORBA distributed objects. Finally,

SOAP/CORBA IDL is defined to unify the services. It suggests that legacy

systems can be divided into four layers: standards and guidelines, basic

common services, value-added functional services, and mission-specific services.

This research does not provide enough detail on how to identify services along

with the new business requirements and the targeted service characteristics.

Jianzhi et al. (Jianzhi, Zhuopeng et al. 2005) develop a framework ICENI

(Imperial College e-Science Network Infrastructure) to leverage the components

of legacy systems into a grid environment. It then applies reverse engineering

techniques to components using a Java Native Interface (JNI) wrapper to

encapsulate code and the Commerce eXtensible Markup Language (CXML) to

describe specifications for communication with the ICENI workflow.

Zhang et al. propose an architecture-based service-oriented reengineering

approach that uses a hierarchical clustering method to identify services from

legacy systems based on mapped requirements derived from UML models

(Zhang, Liu et al. 2005). This approach requires human supervision to assist in

determining the optimal service granularity along with the clustering technique.

Aversano et al. suggest a approach that extracts description of services

(WSDL) from legacy code as features (Aversano, Cerulo et al. 2008). An

Information-Retrieval (IR) algorithm (Baeza-Yates and Ribeiro-Neto 1999) and

matching algorithm (Kokash 2006) are used to evaluate candidate services. The

IR algorithm is used to match the intended goal from the service to the

extracted candidate features, whereas the matching algorithm calculates the

lexical similarities and assesses the similarities between service elements. An

extractor was developed that maps elements between source code and WSDL

elements (class-to-service, method-to-operation and parameter-to-Message) and

Chapter 3 Service Identification Current Approaches

48

textual documentation. An obvious drawback of this approach is neglecting

important service designs aspects in service identification such as granularity.

Because of the complexity of most software systems, researchers often

propose abstract models to simplify the descriptions of legacy systems.

However, conceptual models describe only high-level activities in the core

business processes (i.e., the business logic and rules are not included). As result,

the resulting services are coarse-grained and have redundant functions. In a

real-world project in Energy Management System (ESM), Wang et al. utilise

specific enterprise service hierarchy patterns for selected business processes to

determine the service granularity (Wang, HU. et al. 2007). This method

focuses on a high level architecture which consists of four main service patterns:

an execute pattern (i.e., a coordinating services), a broadcast pattern (i.e., to

alert the enterprise when a business object is changed), a receive pattern (i.e.,

applying changes to a business object), and a retrieve pattern (i.e., responding

to the consumer and returning data). Because of the simplicity of the

implementation, only the broadcast and receive patterns were implemented.

These patterns failed to provide effective guidelines to enhance the service

granularity.

3.2 Quality of Service (QoS)

Most SOA researchers agree on the importance of software metrics to improve

the quality of service–based systems. While the relative relationship between

granularity and other SOA quality attributes has been discussed in recent

research, few researchers have focused on measuring granularity as an

independent factor which affects internal SOA structural attributes such as

coupling and cohesion. ‘Service granularity’ is a measure of the exposed

functionality of services. The service granularity of any service-oriented system

indirectly affects typical SOA design qualities such as flexibility, reusability and

performance. The granularity of service operations plays a key role in SOA

quality attributes (Shim, Choue et al. 2008). This impact can be either positive

or negative based on the tradeoffs adopted by the service provider.

Coarse-grained services are usually advantageous because they improve overall

performance, at the expense of reducing system flexibility. It is important that

we differentiate between different types of granularity in order to analyse

relative quality attributes. Haesen et al. and Karmarkar et al. (Erl, Karmarkar

Chapter 3 Service Identification Current Approaches

49

et al. 2008; Haesen, Snoeck et al. 2008) propose different types of granularity

which require different measurements (explained previously in section ‎2.2.2).

The service types and the architectural level at which a service resides together

can be used to define types of service granularity.

Shim et al. (Shim, Choue et al. 2008) propose a set of metrics for general

SOA design including service and parameter granularity. In this research paper

the service granularity metric is based on the number of operations and

similarity between operations in a service. Parameter granularity is used to

evaluate the ratio of operations with fine-grained parameters to the total

service operations. However, these measurements lack any precise definitions for

fine and coarse parameters in addition to any mechanism to define similar

messages. Sindhgatta et al. (Sindhgatta, Sengupta et al. 2009) suggest a metrics

suite for measuring the SOA quality attributes of service cohesion, coupling,

reusability, composability and granularity supported with two real-life SOA

design models. The proposed granularity metric counts number of services,

operations, and messages, but is not particularly designed to quantify the

granularity of a specific service. Senivongse et al. (Senivongse,

Phacharintanakul et al. 2010) focus on the capability granularity which is the

functional scope of a service. It traces fine-grained capabilities through web

service invocations using association rules and the “Apriori” algorithm to guide

a service designer to an appropriate implementation. Although invocation

methods (synchronous and synchronous) play an important role in web service

design, they are not specifically considered.

Measuring service granularity is also used as an indicator of SOA quality

attributes such as complexity in compound services by counting the number of

services in every individual component node (Zhang and Li 2009). Xiao-jun uses

information theoretic principles to propose SOA metrics for coupling and

well-chosen granularity (Xiao-jun 2009). The granularity metric in this case is

based on the mutual information content of relative service operations and their

usage occurrences. This metric groups operations that are used together into a

single service. However, the metric does not provide any clarification of the

appropriate information content it considers which could refer to several

different aspects of SOA quality (e.g., dependencies between service, shared

messages and invocation methods). Dobson et al. (Dobson, Lock et al. 2005)

suggest a set of ontologies about QoS vocabularies, relative concepts, metrics,

quality attributes (e.g., dependability, performance). To leverage QoSOnt

Chapter 3 Service Identification Current Approaches

50

approach, the authors propose a prototype tool, called the Service QoS

Requirements Matcher (SQRM), which is demonstrated with synthetic

scenarios. QoSOnt develops a single ontology for every quality attribute aiming

for extensibility and generality.

3.3 Analysis Comparison of Existing Approaches

In order to compare the methodologies that are proposed for service modelling

(and in particular for service identification), specific criteria can be adapted

from the relevant literature. Klose et al. (Klose, Knackstedt et al. 2007) provide

criteria relating to the business-driven perspective using general SOA design

principles, e.g., the starting point of the modelling such as business process

model or software components. Kohlborn et al. (Kohlborn, Korthaus et al.

2009) suggest some criteria that suited mostly service analysis (rather than

identification), although the number of approaches considered was significantly

larger than similar reviews in (Klose, Knackstedt et al. 2007; Ramollari,

Dranidis et al. 2007; Boerner and Goeken 2009). Gu, et al. (Gu and Lago 2010)

(a more detailed review of service identification methods) define several

classifications for methods, techniques, process, input, and outputs of service

identification methodologies from a range of literature, providing a holistic

overview. Classification types for every criterion are defined and applied for

thirty collected heterogeneous approaches and with different scope. However,

the criteria used when comparing service identification methods needs to be

more focused on the way that services are actually delivered.

We defined a number of criteria: the criterion for delivery strategy,

technique, lifecycle coverage, service types, quality aspects and granularity. In

addition, we adopted the criteria of input and output of the modelling phase

used by Gu et al in reference (Gu and Lago 2010). The descriptions and

analysis of each criterion as follows:

Delivery strategy criterion: This is an important aspect of service

analysis and design. This strategy is primarily used in the existing literature

that applies comparative analysis. The three key strategies for SOA

development mentioned detailed in section ‎2.2.1. The top-down strategy begins

with a business analysis of requirements and business processes which can be

implemented as business services. In contrast a bottom-up strategy analyses

existing legacy systems and then defines technical services (Rosen, Lublinsky et

Chapter 3 Service Identification Current Approaches

51

al. 2008), while the meet-in the-middle strategy combines both approaches.

From these criteria, we can show the impact of every strategy on the process of

service modelling. As a matter of fact there is no particular de facto strategy

that can identify the “optimum” services in all possible application domains

with all possible requirements. We found that two attributes affect the decision

about which delivery strategy the enterprise should adopt: the status of the

resources and the targeted service types.

Firstly, the “green field” (i.e., develop software from scratch) case does not

usually exist in SOA, thus making effective use of existing assets such as legacy

code has become an important part of the service development process. Erradi

et al. (Erradi, Anand et al. 2006) classify approaches in integrating legacy

systems as services into two broad categories: legacy integration (non-invasive)

and legacy transformation (invasive). Legacy integration is a cost-effective and

short-term solution (i.e., the business logic wrapping approach). The legacy

transformation approach is more modular and typically uses an incremental

migration process with both refactoring and consolidation of the business logic.

Secondly, consideration of the functional scope of different services is a

key element required to construct a service taxonomy (Braunwarth and Friedl

2010). It is not about developing monolithic services; in contrast a service

should accomplish certain goals that can be quantified and that correspond to a

specific business or technical requirement. The top-down approach reflects

business requirements and enterprise goals but will frequently deliver

coarse-grained business services (Nayak, Nigam et al. 2006; Galster and

Bucherer 2008; Kim, Kim et al. 2008). This approach is dependent on the

representation and decomposition of business models which lacks the ability to

capture the full requirements that can be seamlessly transformed to software

artefacts. In other words, most authors agree that using the top-down strategy

to transform business models directly to candidate services does not provide

usable explicit service definitions. The decomposition can be achieved based on

domains, processes, goals and requirements, and make use of particular analysis

techniques. DongSu et al.; Yousef et al. (DongSu, Chee-yang et al. 2008;

Yousef, Odeh et al. 2009) employ ontology approaches to business processes to

conceptualise the requirements and relevant architectural aspects into one

model of knowledge representation. Analysis techniques (such as clustering

suggested in references (Zou and Kontogiannis 2001; Zhang and Yang 2004;

Kim and Doh 2009) and feature extraction in (Chen, Li et al. 2005; Aversano,

Chapter 3 Service Identification Current Approaches

52

Cerulo et al. 2008)) are also used to support the top-down strategy to achieve

the final identification of candidate services along with decomposition of

business models. In contrast, the bottom up strategy uses the existing legacy

systems to define IT services (finely-grained services) (Braunwarth and Friedl

2010). The integration of existing legacy code into SOA can be achieved by

integrating via adapters, which shields the legacy systems from the web service

interface; this is sometimes called the “black-box” approach (Zou and

Kontogiannis 2001; Zhang and Yang 2004; Chen, Li et al. 2005). Where

appropriate, the important business logic of the existing code will be

implemented as WS (Arsanjani, Ghosh et al. 2008; Aversano, Cerulo et al.

2008). A combination of a WS wrapping technique and the development of key

business logic is widely adopted in the meet-in-the-middle strategy (Erradi,

Anand et al. 2006; Papazoglou and Van 2006; Shirazi, Fareghzadeh et al. 2009).

Meet-in-the-middle, as a hybrid approach, is the strategy most often suggested

in the references (Kohlborn, Korthaus et al. 2009). The focus of approaches

based on meet-in-the-middle is to deliver both business services and IT services

(Brereton and Budgen 2000; Papazoglou and Van 2006; Arsanjani, Ghosh et al.

2008; Erradi, Kulkarni et al. 2009). The IT services require to combine outputs

of both strategies top-down and bottom-up in order to enable service integrity

by means of specific algorithms application (Zhang and Yang 2004) portfolio

analysis (Dwivedi and Kulkarni 2008; Jamshidi, Sharifi et al. 2008).

Decomposing the enterprise architecture of a system into different hierarchical

level of abstractions defines various level of granularity (Erradi, Anand et al.

2006; Dwivedi and Kulkarni 2008). It is an approach to consider the scope of

different services, e.g., the scope of utility services residing on an infrastructure

layer, which responds robustly to provide specific granular functional scope to

composite services rather than in business services.

Technique criterion: This describes the method that is used to

implement the selected strategy. There are various techniques that could be

adopted e.g., an approach using a top-down strategy might use a formal

method and a graph clustering technique (Kim and Doh 2009) or components

and RUP models (Papazoglou and Van 2006). Some approaches start from an

enterprise perspective to achieve a set of strategic goals (often described as

‘goal-driven’) (Erl 2005; Galster and Bucherer 2008; Kim, Kim et al. 2008).

According to Gu et al (Gu and Lago 2010), existing techniques for service

identification approaches can be classified into six distinct types: algorithm,

Chapter 3 Service Identification Current Approaches

53

guidelines, analysis, ontology, patterns and information manipulation. This

classification is ambiguous because these types of techniques are sometimes

combined and used at various phases of SOA development cycle, e.g., analysis

techniques (such as clustering and features), performed to define business goals

and processes repositories, are used initially at an early stage of several

proposed approaches (Erradi, Anand et al. 2006; Klose, Knackstedt et al. 2007;

Stewart and Chakraborty 2010) along with other techniques such as developing

algorithms (Dwivedi and Kulkarni 2008) or guidelines (Van Nuffel 2007). As

shown in the literature review, the majority of research is based on the use of

business models to represent software requirements and understand the key

business requirements. Furthermore, service properties and SOA design

principles are already defined by SOA practices. Although the separation of

modelling details from implementation is a key design principle, the current

proposed SOA modelling approaches suffer from a rigorous separation of

concerns (Haeng-Kon 2008) which increases the abstraction gap between the

models represented and their implementation. Therefore, a successful technique

should be able to transform a business model to a set of service with

appropriate implementation and integrate the two phases seamlessly. MDA

appears to be the appropriate technique to maintain the balance between levels

of details in the different level of abstractions.

Lifecycle coverage criterion: To a limited extent this approach covers

the complete SOA development lifecycle (discussed in section ‎2.1.1). This

criterion is primarily defined in the literature of service analysis and expressed

using different terms by different authors (Klose, Knackstedt et al. 2007; Kim

and Doh 2009; Kohlborn, Korthaus et al. 2009). It is noticeable that some

approaches limit their scope to specific phases (such as modelling) (Arsanjani

and Allam 2006; Boerner and Goeken 2009; Chen, Zhang et al. 2009), while

very few approaches attempt to fulfil all potential SOA lifecycle (e.g., references

(Papazoglou and Van 2006; Arsanjani, Ghosh et al. 2008)). With reference to

the modelling phase, because there are no standardised approaches, typical

activities depend on the focus of the approach adopted and the specific

technique used. Klose et al. (Klose, Knackstedt et al. 2007) make use of this

approach by identifying business services from a business perspective using a

manual stakeholder in three phases: preparation, service analysis and service

categorization. One mature approach proposed by industry is based on

extensive empirical evidence and defines three main phases for service-oriented

Chapter 3 Service Identification Current Approaches

54

modelling : 1) service identification (this identifies candidate services based on

goal-service modelling, domain-decomposition or existing asset analysis; 2)

service specification which constructs service elements specifications (both

interface and message) together with service dependencies and interactions; 3)

service realization which implements details specifications of service elements

and components. These phases are widely adopted by later approaches

according to a recent systemic literature review on process models for

service-based application (Lane and Richardson 2011). Whether or not

proposed approaches consider the SOA lifecycle fully or partially, it is

important to bridge the gap between the modelling phase and other SOA

lifecycle phases in order to identify the right candidate services.

Service Types criterion: Achieving the definitions of the candidate

services is the goal of the modelling phase. There are several different

classifications proposed to define service types from various viewpoints. The

service classification is often defined based on the added value of the service

from the business or IT perspective (Gu and Lago 2010) or alternatively by

layering the enterprise architecture into hierarchical levels (Erradi, Anand et al.

2006; Rosen, Lublinsky et al. 2008). While process services are derived

depending on the collaboration of several business services, IT services are

required to support the operational goals of business services. Kohlborn et al.

refer to this criterion as the “SOA Concept” which indicates whether the focus

of an approach is the business services or the software services or both (in this

context ‘software services’ refers to the execution of business services). In other

words, software services represent all service types apart from business services

(despite the different levels of abstraction among software services such as data

services, infrastructure services, etc.). Gu and Lago (Gu and Lago 2010) define

four types of services, whereas Kulkarni and Dwivedi (Kulkarni and Dwivedi

2008) classify services into seven types. This difference in definitions of service

types deduces the architectural layering adopted in the approach. In a more

business-goal-oriented interpretation of the service type, Rolland and

CentreKaabi (Rolland and CentreKaabi 2007) define a new type of service

called an “Intentional Services” which ignores completely the functionality

provided by the service. A comprehensive classification for service types in

terms of properties and characterises is required rather than a modification of

an existing architectural layering with the addition of special-purpose services.

Chapter 3 Service Identification Current Approaches

55

The existing classifications are misleading because they are based on the level

of decomposition that has already been adopted in an enterprise.

Design Input criterion: the type of resources available affects the

decision about which strategy to use, e.g., legacy code sometimes represents a

valuable asset for enterprises and this needs to be taken into account. Thus, the

process of service identification needs to start with detailed analysis techniques

(Chen, Li et al. 2005; Wang, HU. et al. 2007; Aversano, Cerulo et al. 2008) or

reengineering methods (Jianzhi, Zhuopeng et al. 2005; Arsanjani and Allam

2006; Papazoglou and Van 2006; Erradi, Kulkarni et al. 2009) or both of these

techniques used together (Zou and Kontogiannis 2001; Zhang and Yang 2004;

Erradi, Anand et al. 2006; Arsanjani, Ghosh et al. 2008) to extract valuable

code. Using the same strategy does not imply identical inputs, i.e., different

types of representations and semantic of business models will provide different

level of detail. For example, some researchers use a top-down strategy with

similar types of input (intended requirements and goals) and they all result in

different types of outputs - from a very abstract description (a list of services)

to complete service profiles (detailed descriptions of services) (Rolland and

CentreKaabi 2007; Galster and Bucherer 2008; Kim, Kim et al. 2008). In the

case of a “green-field” SOA project (i.e., completely from scratch), the goals and

business requirements in the form of business models are used to provide

structural (Kim and Doh 2007; Rolland and CentreKaabi 2007; Kim, Kim et al.

2008; Stewart and Chakraborty 2010) and behavioural descriptions (Rabhi, Yu

et al. 2006; Kim and Doh 2009) of software systems (e.g., standards for business

process modelling often used are Petri-Net, UML 2.0 activity diagrams and

BPMN). However, there is a wide acceptance of business process representation

for modelling service-oriented systems (Linthicum 2003; Zhang and Yang 2004;

Chen, Li et al. 2005; Jamshidi, Sharifi et al. 2008) to describe behavioural

descriptions. It seems that the adoption of behavioural descriptions in

modelling is not only to depict business requirements but also to assist with

bridging the gap between business models and the service implementation.

However, the model languages currently available are not yet capable enough to

provide a complete representation for modelling business functions and

requirements into suitable models to facilitate service implementation for

service-oriented systems.

Design Output criterion: Service identification approaches typically

intend to identify candidate services at the end of the modelling phase.

Chapter 3 Service Identification Current Approaches

56

However, the final context and details of the identified services are essential for

the efficiency and completeness of any proposed design approaches. The

detailed outputs of the different approaches vary considerably, i.e., approaches

that result in a formal service specifications (Arsanjani and Allam 2006; Rabhi,

Yu et al. 2006; Dwivedi and Kulkarni 2008) are more detailed than those that

simply list potential candidate services (Rolland and CentreKaabi 2007; Galster

and Bucherer 2008; Kim and Doh 2009; Shirazi, Fareghzadeh et al. 2009) or

just provide an explanation of the challenges and guidelines (Arsanjani 2004;

Van Nuffel 2007; Boerner and Goeken 2009). The outputs of these design

approaches are affected by the techniques used more than any other defined

criteria; even a similar type of input might not result in a similar type of

outputs. For example, approaches that start the process of service identification

with a business process can generate results in several different outputs: a

service profile, service implementation and a list of candidate service

respectively (Arsanjani and Allam 2006; Shirazi, Fareghzadeh et al. 2009). The

strategy adopted also affects the output criterion, e.g., a bottom-up strategy

eventually results in web services (WS) (Zhang and Yang 2004; Chen, Li et al.

2005; Jianzhi, Zhuopeng et al. 2005; Aversano, Cerulo et al. 2008). In contrast,

approaches that use a meet-in-the-middle strategy advocate service specification

and models (Arsanjani and Allam 2006; Rabhi, Yu et al. 2006; Klose,

Knackstedt et al. 2007; Arsanjani, Ghosh et al. 2008). In case of adopting the

meet-in-the-middle strategy, the feasibility of outputs of this strategy needs to

be assessed.

Quality of Service (QoS) criterion: quality aspects such as flexibility

and reusability are important factors that support the use of SOA in preference

to other development styles. In fact, it is not always possible to meet the

desired quality aspects for SOA projects because there are inevitable trade-offs

in any implementation. However, specifying quality aspects that are essential to

meet for such system precisely helps to achieve SOA benefits. Furthermore,

quality attributes should be considered and specified at an early stage of the

modelling process. There is a wide variation in meeting the desired software

quality attributes in the published literature. There are existing approaches

that do not cover the quality aspects (Arsanjani and Allam 2006; Dwivedi and

Kulkarni 2008; Kim, Kim et al. 2008; Ma, Zhou et al. 2009; Shirazi,

Fareghzadeh et al. 2009) and others that explicitly investigate external

architectural quality attributes (e.g., performance, flexibility, and

Chapter 3 Service Identification Current Approaches

57

interoperability) (Wang, HU. et al. 2007; DongSu, Chee-yang et al. 2008; Kim

and Doh 2009). Others focus on one particular attribute of QoS, e.g., DongSu

et al. (DongSu, Chee-yang et al. 2008) attempt to depict the level of reusability

using a range of semantic distance measurements within the service

identification process. Wang et al. (Wang, HU. et al. 2007) stress the impact of

performance in legacy systems integration with SOA in data translation and

payload transportation and suggest possible design criteria to be considered.

Loose coupling and high cohesion as primary characteristics of SOA are

recommended without clear directions on how to achieve them (Papazoglou and

Van 2006; Dwivedi and Kulkarni 2008; Erradi, Kulkarni et al. 2009). What

seems missing in many current approaches is a failure to consider the main

SOA quality attributes that affect the service identification process. They also

fail to define service quality measurements that can be used to determine the

quality of candidate services.

Granularity criterion: The granularity of the services implemented is

always a design issue, whatever the design approach adopted. Achieving the

appropriate level of granularity is very challenging; services are often either

coarse-grained or fine-grained. With no explanations as to how service

granularity is being assessed, Boerner and Goeken (Boerner and Goeken 2009)

add also “middle grained” as an additional granularity type. Furthermore, it is

not clear what the best assessment method for assessing the service granularity

should be. Classifying various types for service using a hierarchical architecture

is one mechanism to assess candidate services individually (Dwivedi and

Kulkarni 2008) (e.g., the granularity of business services is coarser than that in

infrastructure services because business services reside at higher level of

enterprise architecture layers). A granularity metrics tool is being used to

quantify service granularity factors to decide appropriate service

implementation (Bell 2008). We found that the granularity for defined services

varies considerably from one approach to another, even though different

approaches have used the same delivery strategy. For example, approaches that

use a top-down strategy, but the proposed services have very different

granularity levels (varying from coarse-grained to multiple levels of

granularity), which demonstrates that multiple criteria affect granularity

decisions (Nayak, Nigam et al. 2006; Dwivedi and Kulkarni 2008; Galster and

Bucherer 2008). The underlying service identification process in SOA

specifically depends on defining the “right” services with an appropriate level of

Chapter 3 Service Identification Current Approaches

58

granularity. A considerable amount of literature has proposed methodologies for

identification of such services with the appropriate granularity (Erradi, Anand

et al. 2006; Papazoglou and Van 2006; Kim, Kim et al. 2008; Kulkarni and

Dwivedi 2008; Zhang, Zhou et al. 2008). Although these approaches have all

used different techniques, none of them has achieved a perfect design, agreeing

instead on the difficulty of delivering a set of services with appropriate

granularity. Furthermore, in service design, the impact of granularity on

quality of service (QoS) aspects must also be considered. The candidate services

with appropriate level of granularity that are identified should not interfere

with the potential benefits of SOA such as flexibility, reusability, and

functionality.

In conclusion, although a lot of research has been conducted in service

modelling in particular in the service identification, the real design challenges of

the service identification phase such as granularity and the abstraction gap

between the business models and service implementations have not been solved.

The proposed criteria are used to analyse current literature and to address the

research gap in the service identification problem. Tables 3-(1, 2, 3, 4, and 5)

provide an analysed summary of current approaches using the criteria above.

Table ‎3-1 Comparison of Service Identification Approaches

CRITERIA (Galster

and

Bucherer

2008)

(Kim, Kim

et al. 2008)

(Rolland and

CentreKaabi

2007)

(Nayak,

Nigam et

al. 2006)

(Arsanjani

and Allam

2006)

Delivery

strategy

Top-down Top-down Top-down Top-down Meet-in-the-

middle

Technique Goal-driven

using a

graph-based

method

Goal-driven

using a goal-

scenario

modelling

Goal-driven

using a map-

based modelling

Goal-driven Business

process

decompositi

on

Lifecycle

Converge

Modelling Analysis Modelling and

Discovery

Modelling Modelling

Service Types Business

services

Business

services

Business services Business

services

Business

Services

Modelling

Input

Requiremen

ts and goals

Requirement

s and goals

Requirements

and goals

Service

agreement

Business

processes

Modelling

Output

Service

capabilities

Service

Profile

Composite

services

A service

model

Service

implementat

ion

Quality Aspects none none none none none

Granularity Coarse-

grained

Coarse-

grained

Coarse-grained Multiple

granularity

Coarse-

grained

Chapter 3 Service Identification Current Approaches

59

Table ‎3-2 Comparison of Service Identification Approaches

CRITERIA (Boerner and

Goeken 2009)

(Shirazi,

Fareghzadeh

et al. 2009)

(Kim and

Doh 2009)

(Dwivedi

and

Kulkarni

2008)

(Papazoglou

and Van

2006)

Delivery

strategy

Top-down Meet-in-the-

middle

Top-down Top-down Meet-in-the-

middle and

bottom up

Technique Business

process

decomposition

Business

functions,

goals

clustering

using cost

metric

An

Algorithm

RUP, CBD,

BPM

Lifecycle

Converge

Modelling Analysis Analysis Modelling Full SOA

cycle

Service Types Business

services

Business and

IT services

Business and

IT services

Business

and IT

services

Business and

IT services

Modelling

Input

Business

processes

Business

processes

UML activity

diagram

Business

processes

Business

processes

Modelling

Output

Guidelines A list of

services

A list of

services

Service

profile

Service

profile

Quality

Aspects

none none Coupling and

cohesion

none Coupling and

cohesion

Granularity Coarse-grained Coarse-

grained

Multiple

granularity

Multiple

granularity

Coarse-

grained

Table ‎3-3 Comparison of Service Identification Approaches

CRITERIA (Jianzhi,

Zhuopeng et

al. 2005)

(Erradi,

Anand et al.

2006)

(Erradi,

Kulkarni et

al. 2009)

(Arsanjani

2004)

(Arsanjani,

Ghosh et al.

2008)

Delivery

strategy

Bottom-up Meet-in-the-

middle and

bottom-up

Meet-in-the-

middle

Meet-in-the-

middle

Meet-in-the-

middle with

focus on top

down

Technique Component-

Functional

decompositio

n

Process

decomposition

and analysis

Domain

decompositio

n

Goal-service

modelling

Goal-

modelling and

process

decomposition

Lifecycle

Converge

Analysis and

Development

Modelling

and

Development

Design Modelling Modelling

Service Types IT services

Business and

IT services

Business and

IT services

Business and

IT services

Business

services

Modelling

Input

Legacy code Requirements

, goals,

Business

process and

existing

assets

Business

process and

existing

assets

Business

domain and

processes

Modelling

Output

Service

interface

(WS)

Technology

architecture

Service

architecture

and

guidelines

Guidelines Service

architecture

and guidelines

Quality

Aspects

none none Coupling

and cohesion

none none

Granularity none Multiple

granularity

Coarse-

grained

none Coarse-grained

Chapter 3 Service Identification Current Approaches

60

Table ‎3-4 Comparison of Service Identification Approaches

CRITERIA (Yousef,

Odeh et al.

2009)

(DongSu,

Chee-yang et

al. 2008)

(Zhang and

Yang 2004)

(Chen, Li

et al.

2005)

(Zou and

Kontogiannis

2001)

Delivery

strategy

Top-down Top-down Bottom-up Bottom-up Bottom-up

Technique Ontology

driven /

process

decompositio

n

Ontology-

driven/

business

decomposition

business

functions and

existing assets

decomposition

Feature

analysis

Component

decomposition

using

Clustering

techniques

Lifecycle

Converge

Modelling Modelling Modelling Modelling Modelling and

development

Service Types Business and

IT services

Business

services

Not clear Not clear Not clear

Modelling

Input

Business

process

Service

features

model

Legacy code Legacy

code

Legacy code

Modelling

Output

Service

model

Service profile Service

interface (WS)

Service

interface

(WS

Service

interface (WS)

Quality

Aspects

NFR Reusability Coupling none none

Granularity none Multiple

granularity

Coarse-grained Coarse-

grained

Coarse-grained

Table ‎3-5 Comparison of Service Identification Approaches

CRITERIA (Aversano,

Cerulo et al.

2008)

(Wang, HU.

et al. 2007)

(Klose,

Knackstedt et

al. 2007)

(Van

Nuffel

2007)

(Stewart and

Chakraborty

2010)

Delivery

strategy

 Bottom-up Bottom-up Meet-in-the-

middle

 Top-down Top-down

Technique Feature

analysis

using

information

retrieval

technique

Goal and

requirements

driven within

a

transformation

method

Clustering

analysis using

a profound

prioritization

Analysis of

business

requireme

nts

value chain

and

prioritization

analysis

technique

Lifecycle

Converge

Modelling Modelling Modelling Analysis Modelling

Service Types Not clear IT services Business and

process

services

Business

service

Business and

IT services

Modelling

Input

Legacy code Proprietary

data

Business

processes

Business

processes

Business

strategies

Modelling

Output

Service

interface

(WS)

SOPA

messages

Service profile

Guidelines

 A list of

services

Quality

Aspects

 none Performance none none none

Granularity Coarse-

grained

 Coarse-

grained

 Coarse-

grained

 Coarse-

grained

 Coarse-

grained

Chapter 3 Service Identification Current Approaches

61

3.4 Summary

In this chapter, we have discussed the different methodologies available for the

identification of suitable services during the modelling phase of the SOA

development life cycle. We have shown that current methodologies suffer from

key limitations, such as a gap between business model and service design and

do not consider internal quality aspects that affect the overall quality of service

(QoS). These limitations contribute to the failure of the current approaches to

identify the “optimum” services, in terms of when services should be coarse

grained or fine grained. Although the approaches investigated usually conclude

with several service design principles, they do not provide well-defined and

effective steps to achieve these principles. From evaluating the relevant design

criteria, we can see that a meet-in-the-middle strategy using a business process

decomposition technique leads to a detailed service specification which assists

considerably in the construction of better candidate services. In addition,

service granularity is a key architectural attribute of the service design that will

inevitably affect important external architecture attributes of quality of service

(QoS) such as reusability, maintainability, performance and flexibility. Indeed,

establishing appropriate measurements for service quality is still not present in

almost all current approaches. However, these approaches have nevertheless

agreed on the complexity of considering all applicable factors to fulfil both the

business and the technical aspects (Papazoglou, Traverso et al. 2007).

Against this background, Chapter 4 presents a potential architectural

design using the choreography concept and model transformations that can be

used to bridge the abstraction gap between business process models and service

interface designs. The Chapter also explains the underlying meta-models for

source and target models used in the model transformation development which

can be used to generate service interface designs automatically.

Chapter 4 Choreography

and Model

Transformation Design

Having introduced the existing methodologies for service identification and the

importance of achieving service quality in Chapter 3, we now present the first

part of our framework design for optimum service identification. This Chapter

develops a theoretical base of using the choreography concept to bridge the

abstraction gap between the business process model and service interface

design. Based on the choreography concept, the underlying meta-models used

for the model transformation are constructed.

In section 4.1, we formalise the choreography concepts between the

business process model and service interface design. This is followed by a

discussion of the choreography concept in section 4.2. In section 4.3, we explain

the architectural analogy between business process modelling and the

choreography concept, and propose an extension to the BPMN 2.0 standard. In

section 4.4, we describe the architectural analogy between service

choreographies and service implementation and describe the semantics of

service choreographies WS-CDL. In section 4.5, general choreography

requirements are introduced. In section 4.6, we cover the semantic of service

interface in WSDL used during the transformation model. The framework

design is summarised in section 4.7.

4.1 Introduction

In the service-oriented computing environment, the concept of choreography

appears at two different levels of the SOA development lifecycle: service

Chapter 4 Choreography And Model Transformation Design

63

modelling and service composition. Firstly, to explain the concept of

choreography in service modelling, note that the developers start with a model

that is often expressed as collaborative business processes that will eventually

be implemented as a service-oriented system. These business processes must

work collaboratively in a number of complex interactions to achieve the

required business goals. The “Business process choreography” describes and

formalises these interactions between the business processes (participants). In

business process modelling, a choreography model describes an observable

behaviour of a participant (e.g., a company) or participant’s role (e.g., a buyer

or seller) in an interaction.

Secondly, the concept of choreography in service composition refers to the

aggregation of services to achieve new functionalities (Rosen, Lublinsky et al.

2008), assuming identified candidate services are appropriate services that meet

user business requirements. A peer-to-peer description of the global of

observable interactions between aggregated services is called a “Service

Choreography.” Complex conversations between peer-to-peer services are

described with interactions using messages that conform to behavioural

specifications.

Fig. 4-1 illustrates the conceptual model of SOA business process

choreographies and service choreographies. Business processes (BPs) capture

business and user requirements, which are subsequently implemented as

candidate services. These business processes describe a flow of internally

sequenced activities within control flows to achieve a business goal, i.e.,

“business process orchestration.” In Fig. 4-1 there are four BPs, each of which is

a representation of business process orchestration. On the other hand, “business

process choreographies,” which describe the external behaviour of BPs based on

interactions, concentrates on interactions between BPs (as participants) from a

global point of view are shown as a green-curved with double-headed arrows.

After identifying candidate services, service interactions can be further broken

down into concepts: service choreographies and service orchestrations. Service

choreographies describe interactions between different services (participants)

using exchanged messages, whereas service orchestrations describe the internal

actions and interactions from the point of view of a single service (participant).

Chapter 4 Choreography And Model Transformation Design

64

Figure ‎4-1 The Conceptual Model of SOA Business Process Choreographies and

Service Choreographies

There are two main modelling approaches for choreographies: interaction

models and interconnected interface models (Decker, Kopp et al. 2008). These

approaches are used to describe choreographies at both levels of business

processes modelling and service composition. Interaction models describe

primary specifications of interactions and are supported by BPMN 2.0

choreography diagrams (OMG 2011), Let’s Dance (Zaha, Barros et al. 2006)

and the Business Process Schema Specification (BPSS) (Clark, Casanave et al.

2001) choreography languages, e.g., a request-response message is exchanged

between two participants. The interconnected interface model describes the

internal behaviour of choreography elements and is supported by WS-CDL

(W3C 2005), BPEL4Chor (Decker, Kopp et al. 2007) and BPMN 2.0

collaboration diagrams (OMG 2011) as choreography languages, (e.g., a

complex interaction between participants that requires a control flow to

evaluate outcomes of other interactions to decide next steps). Decker et al.

(Decker, Kopp et al. 2008) also consider implementation-independent and

specific levels besides the two main paradigms of choreography modelling to

distinguish between choreography languages. However, there is still debate

about clearly distinguishing between these two approaches and whether they

overlap in certain circumstances (Kopp, Leymann et al. 2010).

Both choreography modelling approaches can be supported by one

choreography language, such as BPMN 2.0 (i.e., it provides representation as a

Chapter 4 Choreography And Model Transformation Design

65

collaboration and also a choreography diagram) and WS-CDL (Kopp and

Leymann 2009). To evaluate the suitability of a modelling language to model

an efficient service composition approach, a number of service interaction

patterns are proposed in (Alistair, Dumas et al. 2005); these patterns are

derived from the existing literature, relative standard activities (e.g., BPEL and

WS-CDL), and “use case” scenarios. According to these patterns, Decker et al.

establish key requirements of service choreographies that can be used to

evaluate choreography languages (Decker, Kopp et al. 2009). After applying the

patterns suggested in (Decker, Kopp et al. 2009) against WS-CDL and in

reference (Kopp, Leymann et al. 2011) against BPMN 2.0 collaboration and

choreography diagrams, the results suggest that collaboration and choreography

diagrams of BPMN 2.0 and WS-CDL as choreography languages fulfil similar

requirements. As a result, transformation between these different choreography

languages appears to be feasible. This feasibility motivates us to draw a

theoretical grounding for using the choreography concept to fill the abstraction

gap between business process modelling and service implementations.

Choreography languages have the common goal of describing interactions

between participants. Thus, they depend on definitions of the two underlying

elements, interactions and participants. Interactions can be represented in a set

of patterns that are defined from classic scenarios, such as service patterns

(Alistair, Dumas et al. 2005). The way the choreography described is semantic-

dependent of the selected choreography languages, i.e., collaborating parties

“participants” perform interactions; there are different viewpoints for

participants. For example, “Participant” element in WS-CDL includes different

types, such as “Role Type.” Although the modelling of business processes is an

isolated task from service implementation, business processes will eventually the

implemented as services.

4.1.1 Service Meta-model

To assist the bridge of the abstraction gap between the definitions of business

processes and the description of service interface, a service meta-model was

proposed (Fig. 4-2). The service meta-model represents the relationship between

BP characteristics and different service types. The model provides a

comprehensive understanding of two major concepts: BP modelling and service

modelling. Each BP consists of one or more activities. A BP may also be

Chapter 4 Choreography And Model Transformation Design

66

composed of other BPs (or activities). Each activity either has one or more

atomic activities, or is a compound activity that can be broken down to one or

more tasks. A compound activity includes an atomic activity that is described

by several operations. One or more activities belong to a role, which could be a

person or organization. One or more activities use one or more data entities,

which could be a transitional data entity or a master data entity. On the other

hand, a service includes one or more operations, which will be implemented as

either business logic or a as CRUD function (Create, Read, Update, and

Delete). In the context of SOA, business logic and CRUD functions can be

defined as services with specific types that reside in particular architectural

layers (section 2.1.1). Furthermore, CRUD operations can process data entities

of BPs as transactional or master data, each of which would have different level

of granularity.

Figure ‎4-2 The Service Meta-model View

Two essential issues must be considered to identify the correct services for a

process-oriented system:

 The abstraction gap between the BP model and service implementation

causes separation between the way the business model is described and

the way services are implemented. In this context, we can bridge this

gap using the choreography concept at two different levels: the BP

modelling level and the service modelling level. An explicit

representation of these two levels is required to assist with the

Chapter 4 Choreography And Model Transformation Design

67

implementations of the business process and service choreographies

transformations. (Note: this issue will be discussed in this chapter.)

 The service quality attributes (e.g., interoperability, flexibility and

agility) are important principles in service-oriented systems. Considering

and quantifying these service quality attributes early in the design phase

will assist with implementing the optimal set of services in the service

domain. The term “quality of service” (QoS) is used here to refer to the

internal service quality attributes applied to web services. (Note: this

issue will be discussed in chapter 5.)

4.2 Why Choreography?

The majority of research in service composition in particular choreography

languages has focused on designing and evaluating semantic and syntax issues.

Here, we focus on choreography at two different levels of abstraction: the BP

model and service choreographies. That is, we use the choreography concept

not only to bridge the abstraction gap between a business model and a service

interface, but also as a mediator to implement service interfaces, e.g., a skeleton

through which web services or orchestration can be generated. The description

of choreographies can be also considered as an initial basis for implementing

orchestrations (Decker, Kopp et al. 2008; Hwang, Liao et al. 2010; Kamari and

Khayyambashi 2010). However, this view is implicitly supported by a number

of studies (Alistair, Dumas et al. 2005), i.e., BPMN 2.0 specifications isolate the

definitions of service interface from other choreography modelling conformances.

At the service choreography level, achieving interoperability for services can be

ensured through choreography by the conforming behaviour of multiple

participants (services). Furthermore, it enables validation of services

statistically and during run-time in accordance with the description of

choreographies in the WS-CDL code. Although, WS-CDL and pi-calculus share

a number of elements and pi-calculus can be used to validate WS-CDL code

(Decker, Overdick et al. 2006), the WS-CDL must be based on formal language

principles to enable proper validations for choreographies (Alistair, Dumas et

al. 2005).

The nature of being stateless presents an interesting analogy between BP

choreographies and a service interface (WS), both are always in favour of being

stateless (Mendling and Hafner 2008). When service requesters invoke services,

Chapter 4 Choreography And Model Transformation Design

68

the state is persevered, i.e., services do not differentiate between service

requestors (clients). While the control of choreography is decentralized and

exchanged messages are accomplished thoroughly in multi-part collaborations,

the service interface specifies an input and output message for every operation.

Therefore, we can theoretically say that using the choreography concept is

essential for facilitating the service interface that is driven from a BP model.

4.3 Business Model versus Choreography

This chapter revolves around two key concepts: BP choreography and service

choreography. The objective of this section is to define these concepts and their

relationships as well as their meta-model. BP modelling languages, such as

BPMN, can be used to depict choreographies graphically by linking BPs via

message flows (Decker, Kopp et al. 2009). The specifications of these

choreographies will describe the behaviour of participants (e.g., business

partners). Support of choreography concepts in BP modelling was somewhat

limited until BPMN 2.0 emerged (OMG 2011). Support has developed from a

simple depiction of basic interactions between participants using BPs and

message flows in BPMN 1.x (OMG 2008; OMG 2009) to rich semantics of

choreography and collaboration diagrams in BPMN 2.0 (OMG 2011). BPMN

2.0 supports interaction models and introduces choreography diagrams that

define a flowchart as sequenced activities of interactions between participants

based on message exchanges (Kopp, Leymann et al. 2011). Where choreography

is an extended type of collaboration (OMG 2011), collaboration diagrams define

interactions between different participants (e.g., Pools and Processes elements),

which ultimately support the interconnection of interface models (see section

2.3.1). Unlike the current BPMN 2.0, in order to cover both interaction models

and interconnected interface models, we consider choreography and

collaboration diagrams that are include all explanations of choreographies in

BP modelling.

4.3.1 Preliminary: BPMN Choreographies and BPs Modelling

BP modelling choreographies revolve around key BPMN 2.0 artefacts:

collaboration diagrams, choreography diagram, participants, message flows, and

pools. The collaboration diagram is the core diagram that includes

specifications for all interaction patterns between all participants in one or

Chapter 4 Choreography And Model Transformation Design

69

more choreography diagrams. In general, the choreography diagram defines an

interaction between two participants using sequences of message flows. The

participant element represents a specific logic or physical entity involved in an

interaction. The message flow element connects different participants and

defines the transferred data in an interaction. The pool element presents a

participant in an interaction that is represented in a collaboration diagram. Fig.

4-3 shows part of a collaboration diagram as a comprehensive diagram

integrating collaboration and choreography definitions according to BPMN 2.0

specifications.

Figure ‎4-3 BPMN Meta-model

Although BPMN 2.0 has significantly emerged with new capabilities in

choreography semantics, processing models, and graphical data, it still lacks

important aspects for modelling choreographies, e.g., limited modularity and

decomposition capabilities, incompatible control flow dependencies (Decker and

Weske 2011), and lacks interchangeability of technical configurations (Kopp,

Leymann et al. 2011). For example, for limited interchangeability, interface

elements (which have no graphical representation) use associated choreography

semantics with the attribute “portType,” which must be changed based on the

technical aspects of service implementation (Kopp, Leymann et al. 2011). While

the aim of the BPMN 2.0 choreography diagram is to implement independent

and interchangeable models (Decker, Kopp et al. 2008), we have extended

BPMN 2.0 to enhance the interchangeability of choreography semantics from

the BP modelling level to the service choreography level. In fact, the BPMN 2.0

standard provides a robust extensibility mechanism that permits users to

Chapter 4 Choreography And Model Transformation Design

70

extend the standards by creating new attributes and elements. We can classify

our extensions into views.

Extending current BPMN 2.0 elements: Current elements are

essential for completing the semantics of choreographies and are linked to

specific existing constructors. This thesis adopts the extension mechanism

available in BPMN 2.0 that allows users to construct new meta-model classes

as formal specifications. The BPMN extension mechanism consists of four

elements: Extension, ExtensionDefinition, ExtensionAttributesDefinition, and

ExtensionAttributesValue. The Extension element connects the new

ExtensionDefinition element with the main BPMN model definition through the

Definition element. The ExtensionDefinition element defines and groups the

extension attributes, while the ExtensionAttributesDefinition element contains

newly defined attributes. Finally, ExtensionAttributesValue holds the values of

the new attributes. The Message element in BPMN 2.0 specifications is created

mainly to show a graphical representation. To define the direction of exchanged

messages at the BP modelling level and to enable the correct tracing of

exchange messages at the service choreography level, we added a new

enumerated class construct that presents three enumeration expressions

(Request, Response, and Request-Response). These enumerated expressions

correspond to the types of actions associated with exchanged messages. The

association relationship between the message flow element and the message

element must be changed to one-to-many because a message flow element

might have more than one message depending on the action type. For example,

a message for an action type “request’” will have one message, whereas an

action type “‘request-respond” has two messages.

Fig. 4-4 shows the new extension of message types within the BPMN 2.0

meta-model using the available extension mechanism. Three new elements,

“MessageTypesDefintion,” “MessageTypesAttributes-Definition,” and

“MessageTypesAttributesValue” extend the existing “Message” elements. The

“MessageTypesDefintion” element defines new types of message elements that

group definitions of the new attribute, the “actionID” of the enumerated class of

data exchanged methods (e.g., Request, Response, Request-Response) using a

composite relationship. The “MessageTypesAttributes-Definition” element

contains the new attribute definitions, such as the attribute “attributeKind”

that refers to the XML schema type (i.e., complex, simple, and driven). The

Chapter 4 Choreography And Model Transformation Design

71

“MessageTypesAttributesValue” contains values and types that correspond to

extended attributes. These new elements are linked to the “BaseElement”

element using a new composite relationship to provide values and model

associations.

Figure ‎4-4 Message Types Extension Meta-model Class Diagram

New relationships and attributes for current BPMN 2.0

elements: New relationships are required for connecting new elements to the

existing BPMN 2.0 elements. The attributes are defined as specific elements

that are required to complete the transformation from the BP modelling level

to the service choreography level. This enhances scalability for interchanging

BPMN 2.0 choreography representations due to limitations in the semantics of

elements and is also required to cope with the representation of early

specifications of BPMN 1.x. For example, the element “Pool” in BPMN 1.2

represents participants, whereas the element “MessageFlow” connects

boundaries of the element “Pool.” There are no connections between the

elements “Pool” and “MessageFlow” in the XMI schema interchange, so we

construct the composite relationship “PoolMessageFlow” to capture an

interaction of a particular message flow involved in the case of missing

participant schema. BPMN 2.0 depicts interactions explicitly in a choreography

diagram using the “choreography activity” element, which is an abstract

Chapter 4 Choreography And Model Transformation Design

72

element and represents the point where an interaction occurs in a choreography

flow. In the case of the choreography within a collaboration diagram, semantics

of participants and message flow elements connect interactions in the

choreography within a collaboration diagram. According to BPMN 2.0

standard, an interaction is created when a message flow initiates, thus there is

an interaction for every message flow. However, this design might cause

redundancy when a message flow occurs twice to initiate a request and then the

response to the particular request between interconnected models in one

interface . This thesis links the message flow element with the message type

element via the attribute “messageRef”, where the “actionID” attribute is

associated with the Messageflow element specifying the appropriate data

exchanged method. This new relationship allows us to minimize redundancy by

creating a message flow element in response to one interaction. Fig. 4-5 shows

the new relationships in the context of the BPMN 2.0 meta-model.

Figure ‎4-5 New Attributes and Relationships Extension Meta-model Class Diagram

Chapter 4 Choreography And Model Transformation Design

73

4.4 Choreography versus Service Choreographies

Service composition can be described in the rules of service interactions as

orchestration or choreography (Peltz 2003). Orchestrations are descriptions of

interactions that occur by one party (web service), including orders of

interactions (Rosen, Lublinsky et al. 2008). Choreography is a specification for

conversations between different parties (web services) from a global viewpoint

(Decker, Kopp et al. 2008). A service is always driven from a BP or function.

This means that it is appropriate for the BP definitions and design to be used

in the process of service identification. Choreography defines the externally

observable behaviours of a BP (Fischer 2005). We have adopted the WS-CDL

specification standards for the description of service choreographies.

4.4.1 Preliminary: The Service Choreography Concept and WS-CDL

The WS-CDL code can be conceptually categorized into parts: the package root

elements and the choreography definition. We select elements and attributes in

WS-CDL that are capable of capturing the semantics of BP models, in

particular in BPMN 2.0 models. A brief description of WS-CDL has been

provided in section ‎2.2.4. Alistair et al. (Alistair, Dumas et al. 2005) propose

WS-CDL meta-model designed in UML class diagrams that covers the concepts

of package and choreography. The focus of our research is not to construct a

complete design of WS-CDL meta-model. Rather, it is to demonstrate the

ability of WS-CDL to respond to the semantics of BPs. Hence, we illustrate in

the detailed WS-CDL meta-model that is implemented in the transformation

from the BP modelling level to the service choreography level. Alistair et al.

(Alistair, Dumas et al. 2005) define the comprehensive WS-CDL meta-model

which we adopted in this thesis. The package elements provide descriptions of

participants and captured data within interactions of the observed behaviour.

The description of the WS-CDL meta-model is presented in the main package

depicted in Fig. 4-6 and the choreography is shown in Fig.4-7.

The main WS-CDL elements (i.e., the un-highlighted elements in Fig. 4-6)

of package definitions that are used in the implementation are as follows:

 InformationType: This element defines the data types used within defined

choreographies and activities, types of exchanged messages, and variables to

which schema it uses, i.e., “xsd:name” is used to refer to the XML schema.

Further descriptions of the exchanged information can be defined in the

Chapter 4 Choreography And Model Transformation Design

74

“Variables” element (e.g., capturing the state of a purchase order during the

order creation routine of a BP). There is a composition relationship between

the element “InformationType” and package definitions. This element is

essential as the container of the exchanged data when participants interact.

In particular, it includes the definition of a new attribute defined as

“attributeKind,” in addition to the default attributes of name and element.

The value of “attributeKind” refers to the weight of exhibit data granularity

of exchanged messages, which is used for deciding service quality.

 RoleType: The RoleType element represents collaborating participants as

roles, every role associated with observable behaviour is linked to a specific

WSDL interface type. This element will eventually refer to a logical

representation of a service; similarly, the representation of a participant

(role) in BPs might envisage a process interface.

 RelationshipType: This element combines two roles into a specific

behaviour or relationship; defined relationships will be further described

through an interaction definition within choreography.

 Choreography: The Choreography element represents the core of a

collaboration, which defines rules that manage the sequence of a message

exchange. The Choreography definition can be set locally within a root

choreography package definition or globally as a separate top-level element

specified in a different choreography package (see Fig. 4-7). It defines a

unique name for the choreography within a package.

Chapter 4 Choreography And Model Transformation Design

75

Figure ‎4-6 The WS-CDL Meta-model (part 1) (Alistair, Dumas et al. 2005)

Fig. 4-7 shows the detailed description of the choreography element

(un-highlighted elements in Fig. 4-7) of package definitions that are used in the

implementation as follows:

 Interaction: The Interaction element is the most important element of

choreography languages. It constructs descriptions of the exchanged

messages between services. It defines the default attributes of name and

operation that specify a unique name for the interaction and its invoked

operation. The new attribute “actionType” defines a weight for exhibiting

functional granularity of the operation, which is used for deciding service

quality. Interaction includes further definitions through linkages to the

Exchange and Participate elements.

 Variable: The Variable element declares an object’s information, such as

the state of capturing object and capturing channels. In particular, we use

this element to prescribe the definitions of the InformationType element

within a specific choreography.

Chapter 4 Choreography And Model Transformation Design

76

 Activity: The Activity element explains the actions carried out within a

choreography activity. It is like an abstract class for different activity types

of ordering structure, work-unit, and basic activity; each type is covered

individually.

 Sequence: The Sequence element (ordering structure type) enables

sequential definition of the activity notations. It is essential when there is

more than one activity notation to control the flow.

 Parallel and Choice: The Parallel and Choice elements (ordering

structure types) enable concurrent and implicit selection of one or more

activity notations within a choreography. According to the WS-CDL

specifications, no attributes are defined for these two elements. However, we

add a name attribute for readability and keep consistency of the

transformation within different models.

 WorkUnit: The WorkUnit element prescribes the conditional execution

within a choreography, defining a unique attribute name for the element

within the choreography element. It checks a conditional statement using

the attribute guard and based on the evaluation of the guard condition (i.e.,

true or false), the next execution is performed. The attribute repeat specifics

the repetition of the execution within the WorkUnit element.

 Exchange: The Exchange element provides more detailed information

about the operation attribute of the Interaction element. It prescribes the

definitions of the type of action used via the action attribute and the

exchange of messages (i.e., send and receive attributes), which are essential

when specifying the granularity of every operation in a service.

 Participate: The Participate element defines the sender and receiver roles

based on the defined RoleType element and the name of the associated

relationship. It shows the source and is responsible for the operations via

three attributes, RelationshipType, fromRoleTypeRef, and toRoleTypeRef.

We did not cover every element in the WS-CDL specification because some

elements have semantics that are irrelevant for the transformed model within

our framework. In this thesis, the WS-CDL meta-model was defined according

Chapter 4 Choreography And Model Transformation Design

77

to the semantics of the choreography requirements and the requirements in

selected application scenarios.

Figure ‎4-7 The WS-CDL Meta-model (part 2)(Alistair, Dumas et al. 2005)

4.5 Choreography Requirements

To evaluate the capabilities of choreography languages, Decker et al. (Decker,

Kopp et al. 2009) provide a set of requirements that can be used to asses both

BPMN 2.0 and the WS-CDL language. Their assessment investigated the

capabilities of both languages to describe choreographies at their own level of

abstractions. In addition, it sought to find similar transformation patterns

between the two languages by evaluating them against similar requirements.

When we discuss the capabilities of BPMN 2.0, we will consider the

interchangeability between choreography and collaboration diagrams, where

they support different interactions, paradigm interactions, and interconnections

respectively. The requirements of choreography languages are as follows:

 Multi-lateral interactions (RQ1): This is the capability to handle the

descriptions of more than two participants that interact in more than one

interaction. This requirement is fully met in both languages. In BPMN 2.0,

Chapter 4 Choreography And Model Transformation Design

78

the choreography diagram supports multi-lateral interactions through the

definitions of the behaviour of two or more participants in collaboration; the

interactions between participants are shown in a number of choreography

tasks. In collaboration diagrams, the Pool element represents participants

and the Message Flow element shows interactions. A participant can

interact with more than one participant using message flows. In the case of

WS-CDL, a choreography description enables a definition of several

scenarios of interactions using one or more RelationshipType elements.

 Service (participant) topology (RQ2): Having a structural vision of

how different services (participants) collaborate and the types of services

(participants) that exist is an important choreography requirement that is

supported fully in BPMN 2.0 but only partially in WS-CDL. In BPMN 2.0,

a choreography diagram provides a choreography activity element, which

supports the definition of the interactions of different participants; each

interaction is presented as a ChoreographyTask element. The types of

services (participants) can be defined using the PartnerEntity element. The

ParticipantMultiplicity element defines the maximum and minimum number

of participants. In the BPMN 2.0 collaboration diagram (Figure ‎2-7 A

Collaboration Diagram Example), the pool element represents participant

types. In WS-CDL, the Roletype elements can be counted, which represents

service topology. However, the enumeration relationship between the

Roletype element and service participant is not clear because a role-type can

be defined for one or more services.

 Service sets (RQ3): Supporting several services that are defined with the

same type of participant is a requirement that is met fully in BPMN 2.0 and

partially in WS-CDL. In BPMN 2.0, there is a graphical sign (three black

parallel lines) that indicates that a participant has multiple instances. The

WS-CDL specification does not support multiple executions to priori

runtime, but it is possible to provide support during design time only.

 Selection of services and reference passing (RQ4): All services are

made aware of the selection during the design time and runtime. This

requirement is partially supported in BPMN 2.0 and WS-CDL. In BPMN

2.0, the messageRef attribute is defined for tasks type receivers, which

Chapter 4 Choreography And Model Transformation Design

79

indicate there is an incoming message. The exchanged messages (data)

mechanism between participants makes a service aware of the selection.

 Message formats (RQ5): Exchanged messages that are used to

communicate between participants must be in the same formats, e.g.,

XML-based messages. BPMN 2.0 offers the ability to define message

formats in the XML scheme using a specific attribute with the message

element and thus supports this requirement. The WS-CDL also fully

supports this requirement since it uses the standard WSDL message

formats.

 Interchangeability of technical configuration (RQ6): Using WSDL as

the structural interface description with message definitions that influences

the choreography language, e.g., changes in the port types or binding should

not cause significant changes in the choreography descriptions. Neither

BPMN 2.0 nor WS-CDL supports this requirement. The BPMN 2.0

specification states that the structural interface description must be in

WSDL. WS-CDL binds to the WSDL configuration, which makes changes in

WSDL document that causes changes in WS-CDL.

 Time constraints (RQ7): It is important to control the time of

exchanged messages, e.g., to allow timeouts to be specified as a type of

request-responding message. BPMN 2.0 fully supports this requirement by

means of the multiple-event element with the attribute

“TimerEventDefinition.” The Interaction element in WS-CDL allows the

specification of the time taken to complete the interaction.

 Exception handling (RQ8): It is possible to halt collaboration of

participants under defined constraints. This requirement is met partially in

BPMN 2.0 and fully in WS-CDL. Within the interconnection models

(collaboration diagrams) of BPMN 2.0, exception handling can disrupt the

flow of a process by using intermediate or error events. In a choreography

diagram in BPMN 2.0, the exceptions increase based on individual

participants, which means other participants remain un-notified. There are

various types of exception handlers in the WS-CDL, such as interaction

failures, validation errors, and protocol-based exchange failures.

Chapter 4 Choreography And Model Transformation Design

80

 Correlation (RQ9): Different conversations between participants must be

uniquely identified by identifiers. This requirement is met fully in BPMN

2.0 and WS-CDL by means of a correlation key element and the token

element (respectively).

 Integration with service orchestration languages (RQ10): The

ability to integrate a standard language for BPs, such as BPEL, is partially

supported only in BPMN 2.0; WS-CDL has no such support. However, the

support of BPMN 2.0 does not cover all patterns of the orchestration and

choreography languages.

Table 4-1 provides a comparison of BPMN 2.0 and WS-CDL. In addition to the

results of the comparison of relevant research conducted in (Decker, Kopp et al.

2009; Kopp, Leymann et al. 2011), we found that both BPMN and WS-CDL

satisfy most choreography requirements, except RQ6 and RQ10. However, RQ6

is currently difficult to satisfy because of the integration with WSDL.

Regarding RQ10, the maturity of BPEL as an orchestration language is still

undetermined.

Table ‎4-1 Assessment of BPMN 2.0 and WS-CDL Support for Choreography

Requirements

Items Requirements BPMN 2.0 WS-CDL

RQ1 Multi-lateral interactions + +

RQ2 Service (participant) topology + -/+

RQ3 Service sets + -/+

RQ4 Selection of services and reference passing -/+ -/+

RQ5 Message formats. + +

RQ6 Interchangeability of technical configurations - -

RQ7 Time constraints + +

RQ8 Exception handling -/+ +

RQ9 Correlation + +

RQ10 Integration with service orchestration

languages

-/+ -

+ fully supported, -/+ partially supported, - not supported

Chapter 4 Choreography And Model Transformation Design

81

4.6 Service Interface in WSDL

WS-CDL specifications include a reference to the service definitions in WSDL

code. This reference is the name of the interface which defines messages,

operations, binding styles and services. The definitions required to construct

WSDL code can be derived from the WS-CDL (see Chapter 6).

WSDL is an XML-based language to describe web services. A web service

is the service implementation, an application programming interface (API)

invoked over a protocol. We selected WSDL 2.0 standards over the former

specifications 1.2 and 1.1 because of the new features, including the interface

inheritance feature that results in high reusability and an extensibility

capability for Message Exchange Patterns (MEPs). In particular, the

extensibility of MEPs is essential for specifications such as WS-CDL and

WSDL that use messages exchanged for communication. However, the support

of WSDL 2.0 is still limited in regard of tools. A WSDL service interface

description document consists of two main components: abstract and concrete.

The abstract component defines relevant elements of a service, e.g., definitions

of exchanged messages and associated operations. The concrete component

defines how and where the service is accessed. Fig. 4-8 shows the incomplete

WSDL 2.0 meta-model that includes the main elements of a service interface as

follows:

 Description: The Description element is a container of the document

declarations and WSDL 2.0 elements, such as types, interface, bindings, and

services. It defines definitions of the target namespaces that include

declarations for semantics of all components.

 Types: The Types element defines data types using Input and Output

elements in the meta-model that describes the XML schema definitions of

all messages (parameters) accessed by operations defined in the WSDL

document. Current XML schema in element types used in WSDL 2.0 defines

two data types: complexType or simpleType. According to XML schema

data types (Biron, Permanente et al. 2004), the simple type can be further

classified as either a primitive or derived type, each with different

constraining facets, such as length and pattern. We applied this

classification to layer new levels of data granularity used in message

exchanged (for further details see section ‎5.2.1).

Chapter 4 Choreography And Model Transformation Design

82

 Interface: The Interface element defines a set of performed operations,

specifying the messages that are accessed. As a new feature in WSDL 2.0,

an interface can be optionally extended and derived from one or more

interfaces. Along with this feature, the property attribute defines the

behaviour control of the features.

 Operation: The Operation element defines actions performed by a service,

accessing definitions through a sequence of input and output messages

(parameters) used in the operations and the defined types element. We

extended the semantics of the operation definition through the ActionType

element that refers to the purpose of the operation and functional

granularity (for further details see section ‎5.2.2).

 Binding: The Binding element defines the underlying protocol, associated

operations and message format, e.g., SOAP and HTTP. Every binding links

to an interface.

 Service: The Service element specifies one or more end points that define

the network address where the service can be invoked. A service definition

can have one or more interfaces; an interface might have one or more

bindings.

Chapter 4 Choreography And Model Transformation Design

83

Figure ‎4-8 WSDL 2.0 Meta-model

4.7 Summary

This Chapter presented the choreography concept within the context of

business process modelling and service choreography, which form the basis of

the implementations of the transformation model in our framework. The

discussion covered the semantics of business process choreography in BPMN

2.0, service choreographies in WS-CDL and service interface design in WSDL.

We concentrated on bridging the abstraction gap between a business

processes model and the implementations as set of services. We formalised new

extensions within the BPMN 2.0 choreography model for underlying BPMN 2.0

meta-models. The proposed BPMN 2.0 extensions provide missing properties

that are mandatory for facilitating the transformation from a business process

choreography model to the service choreography semantics in WS-CDL. It will

be also used to define the quality attributes. The extension consists of new

relationships between current elements of the choreography model in BPMN 2.0

and new elements such as “attributeKind” and “actionID”.

We represented the WS-CDL meta-model, focusing on the main elements

that enhance interchangeability between the BP choreography model in BPMN

Chapter 4 Choreography And Model Transformation Design

84

2.0 and service interface in WSDL 2.0. A list of requirements for choreography

languages in the literature shows the suitability of using the semantics of the

choreography model in BPMN 2.0 and WS-CDL for choreography modelling.

To a great extent, they cover similar choreography patterns as described in the

choreography requirements, either fully or partially. We represented an

incomplete meta-model of the service interface in WSDL 2.0 that will be used

in the transformation of the implementation between WS-CDL and the service

interface in WSDL 2.0.

In Chapter 5, we will present the service quality model, which is the

second essential aspect of service identification process. The Chapter also

discusses the software metrics that can be used to evaluate service interface

designs.

Chapter 5 Service Quality

Model

Chapter 4 introduced the concept of choreography to bridge the abstraction

gap between the business process models and the implementation of the service

interface design. Chapter 4 presented the first part of the framework design.

This Chapter explains the second part of the framework design proposing a

service quality model that can assist in selecting the “optimum” services. The

selection will be based on computations of service metrics of service granularity

and service quality attributes of complexity, cohesion and coupling.

In section 5.1, we explain the underlying theory of the service quality

model. This is followed, in section 5.2, by a description of the basic metrics of

service data granularity and functional service granularity that comprise the

granularity metrics of the average service operation, and which provide a

measurement for service granularity. In section 5.3, we introduce three metrics

for the architectural quality attributes of complexity, cohesion and coupling

that are based on the service quality model and show the impact of service

granularity on other architectural attributes. In section 5.4, we conduct a

theoretical validation for the proposed metrics against mathematical properties.

This chapter concludes with a summary of the service quality model in section

5.5.

5.1 Service Granularity Quality Model

It is essential to identify the appropriate level of granularity of services in the

early phases of SOA quality design as well as the identification of service

quality attributes for a set of services. While a key objective of software

engineering is the enhancement of software quality, the focus of the SOA

Chapter 5 Service Quality Model

86

quality metrics that currently exist is on the broad measurements of external

structural software service attributes (e.g., complexity, reusability, and

performance). They neglect the impact from internal structural software

attributes, in particular from service granularity. Although several researchers

have attempted to develop an assessment of SOA quality attributes, very few

provide specific details in terms of service granularity metrics. Our goal is to

analyse the granularity of service operations for service-oriented systems from

the perspective of a service provider. We have developed syntactic metrics that

are driven by the service code syntax.

“Service granularity” is a measure of the exposed functionality of services.

The service granularity of any service-oriented system indirectly affects typical

SOA design qualities such as flexibility, reusability, and performance. The

granularity of service operations plays a key role in SOA quality attributes

(Shim, Choue et al. 2008). This impact can be positive or negative, based on

the trade-offs adopted by the service provider. Coarse-grained services are

usually advantageous because they improve overall performance, but they do so

at the expense of reducing system flexibility. SOA designs a set of services that

communicate with each other, each service having a number of specific

operations that each contribute to the definition of the functional scope of the

service (Erl, Karmarkar et al. 2008).

In order to measure the granularity of a service, we analyse the

component service elements, using the definitions of granularity types proposed

by Haesen et al. (Haesen, Snoeck et al. 2008). A service granularity quality

model is proposed in this thesis with an explanation of how our definitions are

driven by levels of granularity in a service-oriented system (see Fig. 5-1). Our

quality model has two levels, the service level and the operations level. The

service level always favours coarse-grained services. We ignore any service type

classifications because the objective is to measure the granularity of operations

for that particular service. At the operations level, we consider the purpose of

the operation as well as the amount of data exchanged to define the operation

and data types respectively. Here, we propose a set of metrics for measuring the

internal structural attribute of service granularity in service-oriented systems.

We also attempt to measure the impact of service granularity on other internal

attributes of complexity, cohesion and coupling.

Chapter 5 Service Quality Model

87

Figure ‎5-1 The Service Granularity Quality Model

5.2 Basic Metrics of Service Granularity

The metrics proposed have been devised to address the key aspects of a service

business functionality and data manipulation. These aspects are considered

individually, together with metrics derived from the service interface. The

definitions that will be used for the proposed metrics are set out below:

 N –the domain of services.

 S[n] – the set of services in the domain n N.

 O[s] – the set of service operations in the service s S.

 M[s] – the set of messages in the service s S.

 P[o] – the set of parameters in service operations o O.

5.2.1 Metrics for the Data Granularity Score

The type and size of data elements manipulated by service operations can

impact several internal structural software attributes: complexity, coupling, and

cohesion; some researchers refer to this effect as “data granularity” (Haesen,

Snoeck et al. 2008). In coarse-grained data, such as a structure data type,

passing such data types minimizes communication overhead and improves

performance. On the other hand, passing fined-grained data elements as

individual parameters (i.e., primitive types such as string, integer, long,

Chapter 5 Service Quality Model

88

decimal, etc.) might require additional work to complete all of the necessary

computations. Of course, the use of elements with high-granularity improves

overall system flexibility because each data element can be manipulated

individually as required. The data granularity adopted as part of the service

operations indirectly affects the service qualities. For example, the data size of

a customer’s record is more coarse-grained than that of a customer’s

identification element.

Previous research in SOA metrics has considered different ways to

evaluate input and output parameters, depending on coarse-grained parameters

(Shim, Choue et al. 2008). Dmytro et al. (Rud, Schmietendorf et al. 2006)

suggest using the absolute size in bytes to measure the size of elements. This is

unsatisfactory because the size of the service refers to self-contained

functionality. Type definitions of data elements can be defined as complex

types or simple types based on the XML schema for data types as well as

user-defined data types (Biron, Permanente et al. 2004). A “complex type”

parameter has attributes presented as a data structure or objects. A “simple

type” parameter refers to a built-in type as defined in the XML specification,

and can be either a primitive type (i.e., one that holds a single value, e.g., a

float, string or double) or a derived type (e.g., a token, entity, unsigned long).

User-defined data types are defined by individual schema designers. We define

three different weights for these three data parameter types based on a

comparative scale, these difference weights can be defined for input and output

parameters, where:

The given weights 1, 5 and 10 are alternatively selected; however these

weights must have a consistent difference between them. We propose that

complex data types should be assigned a heavier weight because they result in

additional communication overhead compared to primitive and derived data

types. Some user-defined data types might have a heavier weight than simple

data types such as a primitive type because they can require additional

computation. The data granularity score (DGS) measures the degree to which

http://www.stylusstudio.com/w3c/schema2/datatype-dichotomies.htm#dt-derived
http://www.w3.org/TR/xmlschema-2/#token

Chapter 5 Service Quality Model

89

an operation uses “excessive” data. The definition of DGS is based on fine-

grained and coarse-grained parameters. To measure the data granularity of

input and output parameters in an operation of a service, we define the

operation data granularity (ODG) metric as follows:

 FPW is the weight value assigned for an input parameter (FPW > 0).

 CPW is the weight value assigned for an output parameter (CPW > 0).

 FP is a function to sum the total weight of all input parameters of a

service.

 CP is a function to sum the total weight of all output parameters of a

service.

The valid range of ODG is between zero and unity because the value of the

numerator (e.g.,) is a fraction of the total of denominator

 for each data element. A value close to unity indicates a low

granularity (i.e., the data granularity of the operation service is coarse-grained)

and a value close to zero indicates fine granularity.

5.2.2 Metrics for the Functionality Granularity Score

The functionality granularity of an operation service refers to the logic

encapsulated by an operation or operations within a service. Various operations

offer various levels of logic, which can be described as the “capability” of the

operation (Hirzalla, Cleland-Huang et al. 2009). The functionality of a service

consists of both business logic and CRUD functions. The CRUD functions can

be implemented within service areas or separately within specific services.

Operation services executing business logic can also be implemented separately

or implicitly with CRUD functions. In this context, other researchers have

suggested entity-centric business services called “entity services” to support the

CRUD function interface and manage business entities (Cohen 2007; Hirzalla,

Cleland-Huang et al. 2009). Thus, we define three different weights for the three

different types of operations with different levels of granularity, using a

comparative scale where:

Chapter 5 Service Quality Model

90

 ‎‎

‎

We propose that service operations that execute business logic and CRUD

functions have the heaviest weight because they result in additional

computation overhead compared to those execute business logic or CRUD. A

service that implements only CRUD functions has a lower granularity than that

of a service that executes both business logic and CRUD functions (Erl,

Karmarkar et al. 2008). We assume that the weight of service operations is

based on both the value and scope offered by the service operations. To

measure the granularity of the functionality of a service operation, we define

the operation function granularity (OFG) metric as follows:

 OT is the scale weight value for functionalities in a service operation

(OT > 0).

 O is a function that sums the total weights of functionalities for all

operations in a service.

5.2.3 Metrics for Service Operations Granularity Score

A service consists of a set of operations that provide the self-contained

functionality of the service. In order to estimate an accurate measurement for

the service granularity, we begin by measuring the size of an operation service

based on the ODG and OFG metrics for each service operation. We then define

a metric to measure the total granularity of a service operation. We define the

service operation granularity (SOG) as follows:

Where ODG and OFG 0, and n is the number of operations in a service

(n). We can also evaluate the granularity of every service operation

individually based on our proposed scale definitions: low/average/high as shown

Chapter 5 Service Quality Model

91

in Table 5-1. This table shows three arbitrary ranges:

 This table is used to evaluate the data

and functional granularity for a specific service operation. Thus, the level of the

granularity considers both data and functional granularity together to define an

appropriate scale for service operations in a service-oriented system.

Table ‎5-1 Evaluation of the Granularity Level for a Service Operation

 Low Low Average

 Low Average High

 Average High High

To measure the service granularity for all services in a service-based

system, an average is calculated based on SOG, where SOG > 0 and NS is the

number of services in a domain (NS > 0), we define the Average Service

Operation Granularity (ASOG) metric as follows:

 SOG is the value of service granularity of an operation in a service.

 ASOG is the cumulative total for the size of granularity of all services in

a service domain.

5.3 The Impact of Service Operation Granularity

Service granularity influences a number of different internal and external

structural software attributes (Perepletchikov, Ryan et al. 2005). We analyse

the internal structural software attributes of complexity, cohesion and coupling

that are influenced by service granularity. These internal attributes will

eventually be used to analyse the external software attributes of reusability,

flexibility, and portability. To achieve the key features of SOA in a particular

domain, we need to derive a balance between several different quality attributes

of the service implementation; in other words, we need to establish “trade-offs”.

The measurement of granularity has been extensively discussed in the context

of Object-Oriented (OO) development. Many existing SOA metrics have been

derived from former research into both OO and procedural programming

Chapter 5 Service Quality Model

92

(Perepletchikov, Ryan et al. 2007; Perepletchikov, Ryan et al. 2007). In this

section, we will analyse the SOA internal structural quality attributes that are

affected directly by service granularity. These attributes are the complexity,

cohesion and coupling that are essential for the service quality and need to be

considered during the service implementations.

5.3.1 Service Operation Complexity

Service complexity refers to the effort required to maintain and to comprehend

the implementation of a service or set of services. Although complexity metrics

for service-based systems typically have four dimensions (i.e., data complexity,

system complexity, service complexity and process complexity (Zheng and

Keung 2010)), metrics derived from the concept of service granularity are our

main concern. Complexity levels in SOA are a result of key design decisions

that are directly related to service granularity (Fenton and Neil 1999). For

example, developing many fine-grained services might increase the complexity

of service governance. We define complexity as a dependent variable of the

independent variable, service granularity. In other words, any changes in

service granularity will impact the overall degree of complexity.

In a composite service, the average number of dependency relationships

per atomic service might be considered (Liu and Traore 2007). Here, network

cohesion among system nodes that have services, the number of services in

composite services, and the count of dependent service pairs are proposed to

quantify the complexity of an SOA infrastructure (Rud, Schmietendorf et al.

2006). Simply, the number of operations and messages in a service interface can

also be used as indicators for complexity (Sindhgatta, Sengupta et al. 2009).

Those metrics are broadly correlated to the size of service operations and

complexity; they are essentially adaptations of the classic fan-out complexity

metric.

We will focus on the aspects of functional complexity that are directly

related to service granularity (SOG). We suggest that an appropriate measure

of the effort required to comprehend a service implementation would be a

metric based on the exponentiation of SOG as , where the base a = SOG and

the exponent n= 2. NS is the number of services in a domain (NS > 0), we

define the Average Service Operation Complexity (ASOM) metric as follows:

Chapter 5 Service Quality Model

93

5.3.2 Service Operation Cohesion

The degree to which service elements are related to functionality expressed in a

service is an important measure that is needed to demonstrate the complexity

of service levels and eventually of the overall system. Unlike fine-grained

services, coarse-grained services have a significantly higher probability of being

cohesive with a larger number of service operations. We define service cohesion

as service operations that have similar types of exchanged messages (e.g.,

complex type) and operations (e.g., CRUD operations). The higher the

cohesion, the less maintainability effort that will typically be required during

service development (Perepletchikov, Ryan et al. 2007). The service functional

cohesion index (SFCI) metric is used to express the commonality of the key

message(s) to define the cohesion of the operations of services (Sindhgatta,

Sengupta et al. 2009). Our metric considers the size of data and the operation

types mentioned previously. However, the size of data is more accurate than

particular occurrences of a specific message and this presents a challenge. If the

number of operations with a specific type o using a specific size of input/output

data (ODG) and operations (OFG) is µ(OFG, ODG) where:

 is the number of service operations in a service

then we define the service operation cohesion (SOC) metric as follows:

The SOC value indicates cohesion of a service operation with a range of

zero to unity. If the SOC value is equal to zero, there is no cohesion among

service operations in the service, implying high complexity. The closer the value

of SOC is to unity, the lower the complexity. We assume that input and output

messages have the same weight. Where there is more than one value that

corresponds to the maximum function, we do not consider their service

operations in NS. To measure service cohesion for service-based systems, the

Average Service Operation Cohesion (ASOC) is calculated based on SOC(s) as

follows:

Chapter 5 Service Quality Model

94

NS is the number of services in the domain (NS > 0), while is the

number of cohesive values in individual services. If NS is unity, this means that

all service operations are implemented in one monolithic service. Additional

factors relative to cohesion can also be considered to measure the overall

cohesion of a service-based system.

5.3.3 Service Operation Coupling

High coupling between services is a result of many different aspects:

independency, stateless, and self-contained (Qian, Jigang et al. 2006). From an

architectural perspective, coupling can be measured at several different levels of

abstraction, ranging from high-level design through to executable

implementations (Perepletchikov, Ryan et al. 2007). Each aspect of coupling

can also be affected by a number of different factors such as service types,

innovation methods, and direct/indirect relationships. There are several

alternative approaches to measure coupling. For example, one straightforward

method is to determine the number of messages exchanged between services

and clients (Xiao-jun 2009).

In the service operation coupling metric, we focus on measuring

dependency between service operations through invocation methods because of

the strong impact of the service size. Fine-grained services will have greater

dependency issues than coarse-grained services because they offer less

functionality. Thus, in order to accommodate the overall system requirements,

fine-grained services might require additional collaboration efforts and

orchestrating services. The greater the number of service operations in a

service, the greater the number of invocation calls that might be expected. The

assumption allows us to identify service dependency between services by means

of invocation operations. Qian et al. (Qian, Jigang et al. 2006) depend on

service components to show dependencies by counting asynchronous and

synchronous invocations with different weights for each. In contrast, we

measure the average number of direct invocations at a service level regardless of

service types for both synchronous and asynchronous invocations based on the

classical fan-out concept. Although the asynchronous invocation method has a

lower coupling effect (Qian, Jigang et al. 2006) and is the most common

Chapter 5 Service Quality Model

95

mechanism (Rud, Schmietendorf et al. 2006), allocation of different weights for

different invocation types is not appropriate because we believe there is no

reliable relationship between the size of service and type of invocation. We

define the Average Service Operation Coupling (ASOU) metric as follows:

NS is the number of services in the domain (NS > 0), is the number

of synchronous invocations in a service operation and is the number of

asynchronous invocations in a service operation. The lower the ASOU, the

higher the external attributes of performance and maintainability will be. If the

service granularity is higher, more invocation operations can be expected. When

ASOU is equal to zero, service operations can be implemented in a single

coarse-grained service.

5.4 Metrics Validation

When considering metrics as software measurements of the quality attribute,

metrics need to be validated rigorously. There are two main ways to validate

metrics, empirically or theoretically. In this section, we concentrate on the

theoretical validation framework based on the measurement theory suggested

by Briand et al. (Briand, Morasca et al. 1996). This framework proposes

instinctive properties that are defined mathematically for a number of

internal-structural attributes such as size, length, complexity, cohesion and

coupling. This framework has also been successfully adopted for use in metrics

validation research (Rossi and Fernandez 2003; Costagliola, Ferrucci et al.

2005; Perepletchikov, Ryan et al. 2007; Basci and Misra 2009; Perepletchikov,

Ryan et al. 2010). In the following, we perform the theoretical validation to

evaluate our metrics (ASOG, ASOM, ASOC, and ASOU) against the properties

proposed by Briand et al. (Briand, Morasca et al. 1996), such as length,

complexity, cohesion and coupling measurements.

Prior to defining properties, we need to define the basic representations

used in patterns similar to that defined in (Briand, Morasca et al. 1996). The

representation needs to be modified to represent our problem space. For

example, the term “module” needs to be replaced with the term “service”

because the service-oriented system is not based on modules; rather, it is based

Chapter 5 Service Quality Model

96

on service compositions. Due to the fact that the service composition refers to a

set of services that we have already represented as being in the service domain,

we replaced the term module with the term service. In fact, a service itself

might be a coarse-grained service with large functionalities that can be

re-factored into a set of services. The basic definitions as follow:

Definition_1: Representation of systems and modules. A service domain

(consisting of one or more services) S will be represented as a pair <E,R>,

where E represents the set of elements of S, and R is a binary realization on

() representing the relationships between S’s elements.

Definition_2: Given a service domain S = <E, R>, a service s = is

a service of S, if and only if , and .

Definition_3: Representation of service composition. The 2-tuple

 represents a service composition if S = <E, R> is a service

domain that consists of a set of services according to definition_1 and s is a

collection of service operations.

A) Average Service Operation Granularity (ASOG)

With respect to the general definition of the service granularity as software size,

the size property appears to be suitable for validating the average service

operation granularity (ASOG) metric. However, the ASOG metric does not

satisfy the size measurement according to the third property of “module

additivity,” which states, “the size of services in a service domain S = <E, R>,

is equal to the sum of the sizes of two of its services and

 such that any element of S is an element of either or ”

Indeed, the calculated value of ASOG is always different because we eventually

calculate the average of all services in a service domain to reach the overall

value of granularity of all services in a service domain. Therefore, the length

measurement is selected, since it considers more than one aspect of calculating

a metric. The ASOG metric is based on the calculation of two aspects, the

OFG and ODG. The ASOG is evaluated against five properties of the length

measurement as follows:

Chapter 5 Service Quality Model

97

 Non-negativity: The ASOG value has a non-negativity property. The

ASOG value of a set of services S = <E, R> is non-negative in all cases,

ASOG (S) .

 Null Value: The ASOG value satisfies the null value property. The

ASOG value of a set of services S = <E, R> is null when E is empty,

 ((S) = 0).

 Non-increasing Monotonicity: The ASOG value satisfies the

non-increasing monotonicity property. If S is a set of services and s is a

service of S such that s is represented by a linked component of the

graph representing S. Appending new relationships between elements

of s does not increase the ASOG value of S. For example, decomposing a

service s with a number of operations O(s) into fine-grained services will

not increase the overall size of functionality (ASOG) in S.

 and s “is a linked

component of S” and

 Non-decreasing Monotonicity (non-linked services): The ASOG

value satisfies the non-decreasing monotonicity property. If S is a set of

services and are two services of S such that are

represented by two unlinked components of the graph representing S.

Appending new relationships between elements of to elements of

 does not decrease the ASOG value of S.

Chapter 5 Service Quality Model

98

 Disjoint Services (modules): The ASOG value satisfies the disjoint

services property. The ASOG value of a set of services

decomposed into two disjointed services is equal to the

maximum of the ASOG value of . For example,

)

‎5-2 ASOG metrics evaluation using the properties of length

Fig. 5-2 demonstrates the three length properties: non-increasing

monotonicity, non-decreasing monotonicity and disjoint services. Every s

consists of E (elements), which represents a number of operations (o). The

length of the service domain S is the maximum value among the lengths of

 which are services linked to S. The length of the service domain

is not greater than that of service domain , where a new relationship

 (represented by dashed arrow) links two elements of S, . The length

of the service domain is not less than that of service domain where a new

relationship (represented by dashed arrow) links two elements of S,

Chapter 5 Service Quality Model

99

B) Average Service Operation Complexity (ASOM):

The ASOM is evaluated against five properties of the complexity measurement

as follows:

 Non-negativity: The ASOM value satisfies the non-negativity property.

The ASOM value of a service domain S = <E, R> is non-negative in all

cases,

 Null Value: The ASOM value satisfies the null value property. The

ASOM value of a service domain S = <E, R> is null when R

 Symmetry: The ASOM value satisfies the symmetry property. The

ASOM value of a service domain S = <E, R> is flexible to select

representation conventions between E of S.

 , −1>,

 Service (module) Monotonicity: The ASOM value satisfies the

service monotonicity property. The ASOM value of a service domain S =

<E, R> is greater or equal to the sum of the values of ASOM of any two

of its services that have no relationships in common.

)

 Disjoint Services (module) Additivity: The ASOM value satisfies

the disjoint services property. The ASOM value of a set of services

 composed of two disjointed services is equal to

the sum of the values of ASOM of

)

Chapter 5 Service Quality Model

100

C) Average Service Operation Cohesion (ASOC):

Since cohesion refers to the degree to which service elements are related to

functionality expressed in a service, the concept of cohesion is examined at the

level of services. To cover the validity on the service level as well as the a set of

services (service compositions), we used a alternation symbol as “ | “. e.g., the

notation , where S and SC present a cohesion for service and a service

composition, respectively (Briand, Morasca et al. 1996). The ASOC is evaluated

against four properties of the cohesion measurement:

 Non-negativity and Normalization: The ASOC value satisfies the

non-negativity and normalization property. The value of ASOC where

[service of a service

 will fall within the interval between

zero and unity. The ASOC meets the normalization property since the

ASOC values of all services are comparable to the equivalent interval.

 Null Value: The value of ASOC satisfies the null value property. The

ASOC value of [service of a service SC

 is null when [,

where refers to common data and functional elements of exposed

operations in a service.

[

 Monotonicity: The ASOC value satisfies the monotonicity property.

The ASOC value for a service will not decrease when a new data or

function element is added to operations of that service. In fact, the

addition may increase the value of ASOC.

 Cohesive Modules: The ASOC value satisfies the cohesive modules

property. If there are two unrelated (i.e., they share no common data or

function types), services are integrated into , and

the value of the ASOC for is not greater than the maximum value of

the ASOC for and .

Chapter 5 Service Quality Model

101

D) Average Service Operation Coupling (ASOU):

Measurement of coupling (ASOU) focuses on the invocation methods

(synchronous and asynchronous) between service operations in terms of

dependency. The ASOU is evaluated at the level of services and against four

properties of the cohesion measurement as follows:

 Non-negativity: The ASOU value satisfies the non-negativity property.

The ASOU value of a service [s = < , > of a service composition SC |

S] is non-negative in all cases where there is no dependency between

service operations nor eventually between services.

 Null Value: The value of ASOU satisfies the null value property. The

ASOU value of a service [s = < , > of a service composition SC = <E,

R, s>] is null in cases where there is no dependency between service

operations nor eventually between services.

 Monotonicity: The ASOU value satisfies the monotonicity property.

The ASOU value for a service or a service composition SC will not

decrease when a new data or function element is added to operations of

that service. In fact, this addition may result in an increase in the value

of ASOU.

 Merging of a Service or Service Composition. The ASOU value

satisfies the merging of a service or service composition property. The

value of ASOU for a set of services will decrease when a

pair of services is merged because relationships may exist between those

services, thereby causing those relationships to disappear.

 Disjoint Services (module) Additivity: The ASOU value satisfies the

disjoint services additivity property. The ASOU value of a set of services

 composed of two disjointed services is equal to

the sum of the value of ASOU of

)

Chapter 5 Service Quality Model

102

We can state that our proposed ASOG, ASOM, ASOC, and ASOU

metrics used the mathematical properties of length, complexity, cohesion and

coupling, as suggested in reference (Briand, Morasca et al. 1996). Therefore, our

metrics are applicable and can provide ratio scale measurements. It is

important to state that our metrics satisfy the specific properties noted in each

metrics proposed. However, an empirical validation will also be conducted as

part of the framework validation (later in the thesis in chapter 8).

5.5 Summary

In this chapter, we proposed a service quality model that aims to provide a

grounding theory to quantify service granularity. We focused on the concept of

service granularity in service designs, using service and service operations as the

key design constructs for analysing and deriving complexity, cohesion and

coupling. We began by defining metrics for the service granularity based on two

aspects of the service model, e.g., data and functional granularity. The purpose

of the suggested metrics is twofold. First, the proposed metrics ASOG, ASOM,

ASOC, and ASOU aim to quantify service granularity, complexity, cohesion

and coupling for a given service interface. Second, and more significantly in the

context of this thesis, the service metrics need to be applied at an early phase

of SOA development to guide the service identification process effectively.

All metrics proposed, except coupling (ASOU), were described explicitly

in an unambiguous way using the definitions of the service granularity quality

model. The ASOU metric is based on measuring dependency between service

operations through invocation methods because of the strong impact of the

service granularity. The defined metrics were evaluated using the mathematical

properties of length, complexity, cohesion and coupling as defined by Briand et

al. (Briand, Morasca et al. 1996), and can therefore be considered to be

theoretically valid measures. Furthermore, the metrics will be evaluated

empirically when investigating the relationship between service granularity as

an independent variable and the architectural quality attributes of complexity,

cohesion and coupling used in the study (the empirical evaluation will be

discussed in chapter 8).

After describing the framework design of the model transformation and

service quality model in chapter 4 and 5. In chapter 6, we will explain the

overall implementations of the framework of the service identification process

Chapter 5 Service Quality Model

103

presenting into the choreography and model transformation and the service

quality model.

Chapter 6 Service

Identification

implementation

Chapter 4 discussed the design aspects of the concept of choreography and

model transformation and Chapter 5 proposed a service quality model. Both

Chapters 4 and 5 represent the foundation necessary to implement the

framework to deliver the optimum service interface designs. This Chapter

discusses the implementation from the perspective of the research question: is it

possible to generate service interface designs automatically from business

process model using service choreography?

This chapter presents details of the implementation of the model

transformation (model-to-model) that is based on the choreography concept

and the service quality metrics. Although there are a number of approaches

stated the importance of using MDA in SOA approaches, most of them do not

provide implementation of MDA principles. The service identification process

can be defined (as a model-driven) a separate a model for every architectural

layer. These models are representative of the semantics defined in accordance

with MOF specifications. Furthermore, we demonstrate how the service quality

model can be implemented based on a number of service quality metrics. The

implementation of the service quality model is essential to evaluate the service

quality attributes for the service interface designs and to select the optimum

service interface design.

In section 6.1, we begin by presenting the overall architecture of the

implementation, which is divided into two architectural parts: model

transformation and service quality model. Following this, section 6.2 gives a

brief review of implementation issues related to model transformations. In

Chapter 6 Service Identification Implementation

105

section 6.3, we introduce the semantic mapping between the business process

choreography model, service choreographies and the service interface design; in

addition, we present an algorithm for re-factoring WS-CDL code to several

service interface designs in WSDL. In section 6.4, we explain the technical

implementations of the transformation chain from BPMN 2.0 to WS-CDL and

from WS-CDL to WSDL 2.0 using the Atlas Transformation Language (ATL).

In section 6.5, we describe the detailed implementation of the second key

principle of the framework architecture, which is service quality. The core

component of this implementation is a parser that consists of three Java

packages: service element extractor, syntax analyser and metrics calculator.

This chapter concludes in section 6.6 with a summary of the important points

and characteristics of the implementation.

6.1 Framework Architecture

The aim of this framework implementation is to demonstrate the possibilities of

using the WS-CDL specification to enable an automated transition from a

business process choreography model in BPMN 2.0 to a service interface design

in WSDL. The objective is to automate the development process to the extent

that it can generate the optimum service interface designs. Figure 6-1 below

shows the overall implementation, which consists of two main parts: the model

transformation and service quality model. These are implemented in three main

phases. The implementation of the model transformation is based on the

choreography and model transformation concepts as discussed in Chapter 4 and

the service quality model implementation depends on the service quality

attributes introduced in Chapter 5. We discuss each architectural part

separately below.

Figure ‎6-1 Overall Architecture of Service Identification Framework

Chapter 6 Service Identification Implementation

106

6.2 Choreography and model transformation

In this section, we discuss the three models defined in different representations

at three levels of abstraction, as well as the model representations and related

issues that were considered during the implementation. This discussion is

important for the underlying construction of the semantic mappings and

eventually to the final technical implementation.

6.2.1 Business process choreography modelling

At an early stage of the software development cycle, business analysts construct

a Business Process (BP) model corresponding to functional requirements. This

model is constructed manually and independent of later development phases. In

other words, the design of the BPs cannot be validated against service

implementations. Furthermore, the BP design depends on a business analyst’s

expertise and detailed understanding of the functional requirements. Whether

the design of the BP meets the functional requirements or the design of BP is

completed, the representation and semantics of the design of BP in BPMN 2.0

standards cannot adequately be transformed to the next level of abstraction. As

a result, in the semantics of BPMN 2.0 and the existing BPMN tools for

modifying the interchange format of the BPMN diagram, we manually modified

the BP diagrams (in the XMI format adapted for this thesis using the Altova

XMLSPY tool). The mandatory modifications essentially covered the three

elements shown in listing 6-1 and can be explained as follows:

1. The semantic of the Message element was modified through two

attributes: the messageTypedefinition and attributekind. These attributes

are explained in the BPMN 2.0 extension (section ‎4.3.1). It is important to

know the schema type (e.g., XML schema, WSDL 1.1 and WSDL 2.0)

used for selecting the proper interchange format when we need to define

data types. In this particular case, the value assigned for the

messageTypedefinition is “WSDL 2.0 schema”, which is applied to element

types in this case. The attributeKind attribute’s value holds a weight

value assigned based on proposed service quality model in (section

‎5.2‎5.2.1). It shows the level of granularity of data exchanged and

eventually allows quantification of the data granularity in a service, e.g., a

Chapter 6 Service Identification Implementation

107

Message element with the value of attributekind element equals to “3”

refers to the complex data type.

2. The semantic of the MessageFlow element is modified with the attribute

“actionID”, which is added through the BPMN 2.0 extension outlined in

(section ‎4.3.1). This attribute helps to specify the appropriate data-

exchange methods, such as request and respond. A given value is assigned

for different data-exchange methods; in this case the value of the

“actionID” equals “3”, referring to request-respond. Although the attribute

“messageRef” is already defined for several elements in BPMN 2.0 such as

MessageFlow, the feature to associate the Message and MessageFlow

through elements “messageRef” is not implemented. Therefore, we added

this attribute manually.

3. The semantic of the Choregraphytask element was modified with the

attribute “actionType”, referring to the functional type of an operation,

e.g., CRUD or executing business logic or CRUD and executing business

logic. Every functional type has a different corresponding weight, as

explained in section ‎5.2.2.

Listing ‎6-1 An Example of XMI Schema with BPMN 2.0 Extension Modifications

6.2.2 Service choreographies

Although the premise of service choreography is well discussed in relation to

service composition, implementation of the choreography concept is still at an

early stage. Because of this lack of implementation expertise and support, we

developed a transformation to generate service choreographies automatically

from a higher abstraction (the business process level) using simple ATL

Chapter 6 Service Identification Implementation

108

transformation rules. At this stage, the code of the service choreography is

generated from the business process choreography (in BPMN 2.0) and then it is

used to derive the designs of service interfaces (i.e., potential service

implementations) confirming consistency between different models. In this way,

conformance between service implementation and design is guaranteed in

regard to the collaborative behaviour described in the WS-CDL code. The

WS-CDL meta-model used includes semantic definitions of all the WS-CDL

elements introduced in the W3C specification (W3C 2005), where the

implementation of WS-CDL is presented as a mediator between the BPMN 2.0

(semantic of business process) and WSDL (service interface). There are a

number of design decisions that we took in the transformation to and from

WS-CDL as follows:

1. Every business process choreography process was transformed to piece of

WS-CDL code, in particular to one choreography package.

2. Finding the appropriate mapping of choreography actions based on the

WS-CDL specifications among the various semantic levels of business

process and in regard to the design of service interfaces is essential

because this is at the core of the choreography process. Generally

speaking, a choreography process defines a sequence of choreography

tasks, which can each be considered as an interaction block. When the

semantic of the choreography task is not defined explicitly in a

collaboration diagram, we consider the semantic of a message flow as an

interaction block.

It is worth noting that there are some WS-CDL elements for activities

notation that cannot be semantically transformed into service interfaces, such

as Parallel, WorkUnit, and Sequence. In general, their behaviour is not relevant

to the service interface. These elements are mainly used in the previous phase

to express the behaviour of participants and activities as gateways with

constraint conditions. For example, the BPMN ExclusiveGateway element was

transformed to the WorkUnit element at the service choreography level, where

the activities of the WorkUnit element were then transformed into basic

activities (elements) at the service interface level. There are also other general

elements in WS-CDL that are not especially considered in the transformation

implementation between WS-CDL to WSDL, such as Participate and

RelationsType element. These elements might not be applicable to service

interface transformation, but they may be used in indirect service design

Chapter 6 Service Identification Implementation

109

decisions, e.g., in developing heuristic rules for service modelling based on those

services that shared the same participants (e.g., aggregating those services that

are offered by one responsible participant department in an organisation).

6.2.3 Service interface design

It is difficult to design one service interface that implements the optimal

functionalities of the service(s) and also satisfies the service design quality

attributes. This is because considering and defining all the heuristic rules in the

transformation implementation that can solve all problems is not often possible.

In fact, the defined service quality attributes that are used to design a number

of optimal service interfaces can be changed from time to time according to

user requirements. Therefore, we developed an algorithm that generates a

number of potential designs for service interfaces of service operations defined

in the WS-CDL code. The number of all possible designs of service interfaces

depends on the number of choreography tasks defined in the WS-CDL

document, where in WSDL it is the number of service operations. This number

can be calculated using the Bell number , which counts the number of all

possible partitions (sub-sets) of a set with n members, where the n can be

represented as the number of choreography tasks (Klazar 2003). For example, a

choreography process consists of nine choreography tasks that are transformed

to nine operation services in WSDL,

 . This means that there are 21,140 possible service interface designs for a

service that consists of nine service operations. However, having the service

interface generated automatically from the WS-CDL code, we need to consider

the behaviour specifications defined for service choreographies in the generation

process of all possible service interfaces. We developed an algorithm that

generates five re-factored designs for service interfaces in WSDL based on the

WS-CDL code. Currently, the number of generated service interfaces is limited

to five re-factored designs.

As discussed previously, however, the optimum service interface design

was not achieved with this transformation, although being able to measure the

service quality attributes of service interface design is essential in designing the

optimum service interface within specific requirements. The optimum service

interface design was thus identified semi-automatically because service quality

http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Element_(mathematics)

Chapter 6 Service Identification Implementation

110

metrics are developed as an independent application and has not fully been

integrated with the implementations of model transformations.

6.3 Semantic transformation implementation

In this section, we present the semantic mapping of the two transformation

phases: BPMN-to-WS-CDL and WS-CDL-to-WSDL (Figure 6-1). We also show

the re-factoring algorithm that uses the semantic of WS-CDL to generate

various service interface designs in WSDL. These transformation rules are

implemented using ATL (ATL is explained in ‎2.4.4).

6.3.1 BPMN-to-WS-CDL transformation

We represent the transformation mapping from BPMN to WS-CDL in natural

language. The respective transformation specification for this phase

transformation was discussed in section ‎4.3. The transformation rules define

how business process choreography in BPMN 2.0 is transformed into a service

choreographies document in WS-CDL (the relevant meta-models of BPMN 2.0

and WS-CDL used in the implementation were introduced in sections ‎4.3 and

‎4.4). The implementation mapping can be described as follows:

 Core element mapping.

 Specific element mapping.

6.3.1..1 Core element mapping

The core element mapping represents the mapping of the main elements that

are mandatory for establishing business process choreography between one or

more participants. The elements mapping is discussed below:

 BPMN: Definitions

The BPMN Definitions element is an abstract class that defines the scope of

the state and the namespace for all contained elements. It is a root element for

diagram models; one or more definition elements are defined for the interchange

of BPMN files. In WS-CDL, the Package element holds WS-CDL type

definitions (e.g., informationtype and roletype elements) and namespace. Thus,

we generated a WS-CDL:Package element for each instance of

BPMN:Definitions and map the value of name and targetNamespace attributes

of BPMN:Definitions to similar attributes in WS-CDL:Package. Concurrently,

Chapter 6 Service Identification Implementation

111

we created initial instances for Roletype, Relationshiptype, Choreography and

Informationtype elements to append their potential definitions within the

elemnt WS-CDL:Package. These instances correspond to the elements of

Participant, Messageflow, Choreography and Message respectively, as seen in

the BPMN diagram.

 BPMN: Message

The BPMN Message element is the way that participants communicate. We

generated an Informationtype element in WS-CDL for every instance of the

element Message and mapped the name and id attributes of the Message

element to those in the Informationtype element. Furthermore, we define the

appropriate data type of exchanged data based on the value of attribute

“attributekind”. The data schema also can be inferred from the attribute of

messageTypedefinitions for communication. The definitions of the MessageFlow

element were also used within the definitions of the Choreography elements in

WS-CDL in order to define the Variable element.

 BPMN: Participant

The BPMN Participant element represents the role in the collaboration or

choreography model. We generated the RoleType element in WS-CDL for every

instance of element Participant and mapped the name and id attributes of the

Participant element to that in the RoleType element. This is because the

execution of the process is often the responsibility of the participant, which

specifies the observable behaviour of the participant. To expose the behaviour

via the WDSL interface, the interface attribute is required. Hence, we also

1. For each BPMN ELEMENT_BPMN_Defintions : D

1.1 Read D.name, D. targetNamespace.

1.2 Create WSCDL:Package : P where

 P.name = D.name , P. targetNamespace = D. targetNamespace

1.3 Collect all D instances of ELEMENT_BPMN_(Participant,

 MessageFlow, Choreography, Message)

1.4 Create P instances of ELEMENT_WSCDL (roletypes,

 relationshiptype, Choreography, informationtypes)

2. For each BPMN ELEMENT_BPMN_Message : M

2.1 Read M.name, M.id.

2.2 Create WSCDL:InformationType I WHERE I.name = M.name ,I. id= M.id

2.3 Collect all S instances of ELEMENT_BPMN_ (messageTypesdefinitions)

3. Create I instance of ELEMENT_WSCDL (element)

3.1 Create WSCDL:Variable VA WHERE VA.name = M.name ,

3.2 VA.informationType= (messageTypesdefinitions) + M.name ,

Chapter 6 Service Identification Implementation

112

copied the name attribute of the Participant element to the attributes of

behaviour and interface of the RoleType element.

 BPMN:MessageFlow

The BPMN MessageFlow element demonstrates the flow of messages between

participants. We generated the RelationType element in WS-CDL for every

instance of the element MessageFlow. The two parties of the MessageFlow are

defined within the attributes sourceRef and targetRef of MessageFlow, which

are mapped to roletype1 and roletype2 respectively. These attribute together

identify a mutual relationship between two participants.

In cases where there is a collaboration diagram, the attributes of the

MessageFlow element can be used to define the Interaction element within the

WS-CDL, specifically the name attribute.

 BPMN: Choreography

The BPMN Choreography element defines how participants interact; the

interactions between participants are performed in collaboration or

choreography diagrams. In WS-CDL, the choreography element defines

collaborative behaviour between the interacting participants, encapsulating

choreography definitions locally or globally. We generated a Choreography

element in WS-CDL for the instance of the Choreography element in BPMN. In

WS-CDL, the Choreography element encapsulates definitions of all activity

notations (e.g., basic activity of Interactions, Order-Structures,

VariableDefinition and ExceptionBlock) and these elements were defined

concurrently in different transformation rules on the following defections:

4. For each BPMN ELEMENT_BPMN_ Participant : PA

4.1 Read PA.name , PA.id

4.2 Create WSCDL:RoleType RY WHERE RY.name = PA.name, RY.id = PA.id.

4.3 Create WSCDL:Behavior BH WHERE BH.name = PA.name and

BH.interface =PA.name + ‘Interface’

5. For each BPMN ELEMENT_BPMN_ MessageFlow : MF

5.1 Read MF. id ,

5.2 Create WSCDL:RelationType RT WHERE RT.id = MF.id.

5.3 RT .Roletype1 = MF. SourceRef + RT. Roletype2 = MF. targetRef.

a. For each BPMN ELEMENT_BPMN_ MessageFlow : MF

a.1 Read MF. id ,

a.2 Create WSCDL:Interaction IT where IT.name = MF.name, IT.operation =

MF.name.

Chapter 6 Service Identification Implementation

113

 BPMN: ChoreographyTask

The BPMN ChoreographyTask element presents an interaction which results

from a message being exchanged between two participants; the message

exchanged is depicted as a MessageFlow element. We can consider the

ChoreographyTask element to be a basic block of a choreography process,

similar to that in the Interaction element in WS-CDL. Hence, we generated an

Interaction element in WS-CDL for every instance of the Choreographytask

element in BPMN. Since the Interaction element defines one operation and

both attributes share similar behaviour, we mapped the attribute name of

ChoreographyTask element to the attributes name and operation of the

Interaction element. The value of the attribute actionType that refers to the

operation type (e.g., CRUD) is transformed into a new similar attribute to the

WS-CDL.

In fact, the Interaction element contains a number of references to the

WS-CDL elements such as Roletype and InformationType. These references

depend on the definitions of BPMN elements that are already defined above. In

this thesis, we focused on two essential elements within the Interaction element

in WS-CDL: Participate and Exchange. Firstly, the definitions of the

Participate element were mapped directly from the ParticipantRef attribute of

Choreographytask. In cases where the Choregraphytask element is not defined,

the sourceRef and targetRef attributes of the MessageFlow element can be used

to show the participants collaborating in an interaction. Secondly, the

definitions of the Exchange element, which specifies exchanged data within an

interaction, are transformed from Message and MessageFlow elements in

BPMN. In this transformation, the data are specified using two definitions of

two BPMN elements; we mapped the values of the attributes name from

Message and actionID from MessageFlow elements.

6. For each BPMN ELEMENT_BPMN_ Choreography : CH

6.1 Read CH.na, CH.id

6.2 Create WSCDL:Choreography CY where CY.name = CH.name, CY.id = CH.id

6.3 Collect all CH instances of ELEMENT_BPMN (MessageFlows).

6.4 Create CY instances of ELEMENT_WSCDL (interactions).

6.5 Create CY instances of ELEMENT_WSCDL (variable).

Chapter 6 Service Identification Implementation

114

 BPMN: EndEvent

The BPMN Endevent element shows where a choreography process can end.

WS-CDL has presented the element finalizerblock that defines confirmation of

finalisation actions. Although, different patterns of the finalizerblock element

can be used (i.e., the choreography may have one or more finalizerBlock) we

focused on a simple pattern to indicate the completeness of the choreography

process.

6.3.1..2 Specific element mapping

The specific element mapping represents the mapping of the elements that

might not occur with every choreography process. The elements mapping is

discussed below:

 BPMN: ExclusiveGateway

The BPMN ExclusiveGateway element defines alternative paths within a

Process flow where only one path is eventually executed, in which one condition

expression is evaluated (associated with the outgoing sequence flow). We

generated the WorkUnit element in WS-CDL for every instance of the

ExclusiveGateway element, with the name attribute of the ExclusiveGateway

element mapped to that in the WorkUnit element. The outgoing sequence flow

of the ExclusiveGateway element holds the expressions which can be mapped to

the guard attribute of the element WorkUnit. The outgoing sequence flow of

the ExclusiveGateway element points to the Choreographytask elements, which

are defined explicitly within the definitions of the ExclusiveGateway element.

7. For each BPMN ELEMENT_BPMN_ Choreographytask : CT

7.1 Read CT.name, CT.id, CT. actionType

7.2 Create WSCDL:Interaction IT where IT.name = CT.name, IT.id = CT.id ,

7.3 IT. actionType = CT. actionType

7.4 Read BPMN ELEMENT_BPMN_ Message:ME

7.5 Read BPMN ELEMENT_BPMN_ MessageFlow:MF

7.6 Create WSCDL: Participate PR WHERE PR.name = CT. ParticipantRef ,

7.7 Create WSCDL:Exchange EX WHERE EX.name = ME.name ,

and EX.informationType = MF.messageRef.

1.1 Create EX.action WHERE:

If MF.id = then EX.action =’Request’

Else if MF.id = then EX.action =’Respond’

 Else MF.id = then EX.action =’Request-Respond’

8. For each BPMN ELEMENT_BPMN_ EndEvent: ENE

8.1 Read ENE.name,

8.2 Create WSCDL: Finalizerblock WR where WT.name = ENE.name,

Chapter 6 Service Identification Implementation

115

 BPMN: EventBasedGateway

The BPMN EventBasedGateway element defines a branching point in the

process triggered by an event; the trigger is based on the receipt of a message

from a participant (in greater detail, the gateways can be defined as parallel or

exclusive). We generated a WorkUnit element in WS-CDL for every instance of

the EventBasedGateway element, with the name attribute of

EventBasedGateway element mapped to that in the WorkUnit element. When

the event gateway is used to instantiate (with the instantiate attribute set as a

true value) the EventBasedGateway might transform to Parallel or Exclusive

elements depending on the value of the attribute eventGatewayType.

 BPMN: InclusiveGateway

The BPMN InclusiveGateway element defines alternative and parallel paths

within a process flow, where all condition expressions are evaluated. There are

three potential elements in WS-CDL that can be used to correspond to

InclusiveGateway based on the evaluation of the conditional expression:

Sequence, Parallel and Choice. The outgoing sequence flow of the

InclusiveGateway element points to the Choreographytask elements, which are

defined explicitly within the definitions of the InclusiveGateway element.

9. For each BPMN ELEMENT_BPMN_ ExclusiveGateway: EXG

9.1 Read EXG.name, EXG. outgoing

9.2 Create WSCDL:WorkUnit WR where WT.name = EXG.name,

9.3 Read WSCDL:SequenceFlow SF where (SF.name = EXG.Outgoing &

SF.conditionExpression)

9.4 EXG.guard = SF.conditionExpression

9.5 Create CY instances of ELEMENT_WSCDL_Iinteractions: IN where

 IN.name= SF.name

10. For each BPMN ELEMENT_BPMN_ EventBasedGateway: EBG

10.1 Read EBG.name, EBG. instantiate, EBG. eventGatewayType

10.2 Create WSCDL:WorkUnit WR where WT.name = EXG.name &

 EBG. instantiate .

10.3 Create WSCDL:Parallel PR where PR.name = EBG.name &

EBG. Instantiate & EBG. eventGatewayType

10.4 Create WSCDL:Exclusive EX where EX.name = EBG.name &

EBG. Instantiate & EBG. eventGatewayType

Chapter 6 Service Identification Implementation

116

 BPMN: ParallelGateway

The BPMN ParallelGateway element defines synchronised parallel paths within

a process flow. We generated a Parallel element in WS-CDL for every instance

of the ParallelGateway element, with the name attribute of ParallelGateway

element mapped to that in the Parallel element. The outgoing sequence flow of

the ParallelGateway element points to the Choreographytask elements, which

are defined explicitly within the definitions of the ParallelGateway element.

 BPMN: IntermediateEvent

The BPMN IntermediateEvent element shows an event that happens during

the process flow. This element has 12 types of intermediate events with

different behaviour, especially when it has Intermediate Event as an output

direction. Consequently, mapping this element directly to a specific WS-CDL

element is not possible. One of these types is the IntermediateThrowEvent

element, with one event definition which occurs at most once. We mapped the

Choreographytask that the IntermediateThrowEvent element intends to trigger

to the Interaction element in WS-CDL within the definitions of the generated

order structure elements (Choice or Sequence or Parallel). Although repetition

of a task might occur semantically in the WS-CDL specification, the task will

be executed in the right order because of the sequential capability.

11. For each BPMN ELEMENT_BPMN_ InclusiveGateway: IXG

11.1 Read IXG.name, IXG. outgoing

11.2 Read WSCDL:SequenceFlow SF where (SF.name = IXG. Outgoing)

If Evaluate (SF.conditionExpreseion)= SE then

Create WSCDL:Sequence SQ where SQ.name = IXG.name

elseIf Evaluate (SF.conditionExpreseion)= PA then

Create WSCDL: Parallel PA where PA.name = IXG.name

elseIf Evaluate (SF.conditionExpreseion)= CH then

Create WSCDL:Choice CH where CH.name = IXG.name

11.3 Create CY instances of ELEMENT_WSCDL_Iinteractions: IN where

11.4 IN.name= SF.name

12. For each BPMN ELEMENT_BPMN_ ParallelGateway: PA

12.1 Read PA.name, PA. outgoing

12.2 Create WSCDL: Parallel PAW where PAW.name = EXG.name,

12.3 Read WSCDL:SequenceFlow SF where (SF.name = EXG.Outgoing)

12.4 Create CY instances of ELEMENT_WSCDL_Iinteractions: IN where

 IN.name= SF.name

13. For each BPMN ELEMENT_BPMN_ IntermediateThrowEvent: ITE

13.1 Read ITE. outgoing

13.2 Read WSCDL:SequenceFlow SF where (SF.name = ITE.Outgoing)

13.3 Create CY instances of ELEMENT_WSCDL_Iinteractions: IN where

 IN.name= SF.name

Chapter 6 Service Identification Implementation

117

6.3.2 WS-CDL-to-WSDL transformation

In this section, we present the transformation mapping from WS-CDL to

WSDL in natural language. The respective transformation specifications for this

phase transformation are discussed in section 4.4. The transformation rules

define how the service choreographies in the WS-CDL code are transformed

into service interface designs in WSDL. The relevant meta-models of WS-CDL

and WSDL used in the implementation are introduced in sections 4.4 and 4.6.

The implementation mapping can be described as follows:

 WS-CDL: Package

The WS-CDL Package element defines the WS-CDL different type definitions

(e.g., informationtype and roletype elements) and namespace. We generated a

WSDL:Description element for the instance of WS-CDL:Package and mapped

the value of the name and targetNamespace attributes of the WS-CDL:Package

to similar attributes in the WSDL:Description. At this level, we also generated

the instances of abstract definitions of Types and Interface elements

corresponding to Informationtype and Choreography elements in WS-CDL,

respectively. On the other hand, the concrete definitions of the Binding and

Service elements were introduced individually.

 WS-CDL: InformationType

The WS-CDL InformationType element defines the data types of exchanged

messages in the WS-CDL code. We generated an ElementType element in

WSDL for every instance of the InformationType. To guarantee the right

hierarchical structure for the XML schema definitions, we created schema and

elementDeclarations attributes on the fly. We mapped seamlessly the value of

the name attribute of InformationType to that in the ElementType, where the

value of the attribute attributeKind defines the data types (e.g., simpleType,

complexType or userDefined).

1. For each WS-CDL ELELMENT_WS-CDL_Package: WSP

1.1. Read WSP.name, WSP.targetnamespace

1.2. Create WSDL:Description: DS where

DS.name = WSP.name, DS. targetnamespace = WSP.targetnamespace

1.3. Collect all Instances of ELMENT_WS-CDL(InformationType, Choreography)

1.4. Create all instance of ELEMENT_WSDL (Types, Interface)

Chapter 6 Service Identification Implementation

118

 WS-CDL: Choreography

The WS-CDL Choreography presents the definitions of collaborations that

can be used to deliver the definitions of Interface, Binding and Services

elements in WSDL. We generated an Interface and Service elements for the

instances of the Choreography element as well as the required SOAP binding

details via the Binding element. We mapped the name attribute of the

Choreography element to name attribute of Interface element in WSDL. The

details of the Interface element were derived from further transformations of

the Interaction element to the Operation element, which we define below. We

limited the generation of one interface for every service to maintain the

definitions of choreographies consistent between the level of business process

and service implementation.

The definitions of the Service element refer to the network addresses

defined and the definitions of the Binding element including the value of the

name attribute of the Choreography element mapped to the name attribute of

the Service element, with the suffix “service” at the end. The definition of the

Binding element is independent of the transformation process; it takes the

operation attribute defined in the interface and specifies the required SOAP

and HTTP binding style.

2. For each WS-CDL ELELMENT_WS-CDL_ InformationType: IT

2.1. Read IT.name, IT.attributeKind

2.2. Create WSDL:ElementType: ET where ET.name = IT.name, ET,

2.3. If IT. attributeKind = 1 then ET. attributeKind =’ simpleType’

Else if IT. attributeKind = 2 then ET. attributeKind =’ userDefined’

 Else IT. attributeKind = 3 then ET. attributeKind =’ complexType’

3. For each WS-CDL ELELMENT_WS-CDL_ Choreography: CH

3.1 Read CH.name, IT.attributeKind

3.2 Create WSDL:Interface: IN where IN.name = CH.name + 'Interface',

Collect all Instances of ELMENT_WS-CDL(Interaction)

Create all instances of ELEMENT_WSDL (Operation)

3.3 Create WSDL:Binding: BI where

BI.name = CH.name + 'Binding', BI.interface = CH.name + 'Interface',

BI.wsoap_protocol = “”,

BI. whttp_methodDefault =” “,

 Collect all Instances of ELMENT_WS-CDL(Interaction),

 Create all instances of ELEMENT_WSDL (Operation),

3.4 Create WSDL:Service: SE where

 SE.name = CH.name + 'Service', SE.interface = CH.name + 'Interface',

 SE.endpoint = Collect all Instances of ELMENT_WS-CDL(Interaction),

Chapter 6 Service Identification Implementation

119

 WS-CDL: Interaction

The WS-CDL Interaction element is at the core of the exchange of information

between different services. We generated an Operation element in WSDL for

every instance of the Interaction element and the values of the name and

actionType attributes of Interaction are mapped to that in the Operation

element. Within the interaction block, every operation processes the data

exchanged (Input/Output), which is defined through the Exchange element.

When Interactions are enclosed within an activity notation such as WorkUnit

element, we were supposed to evaluate the guard condition to select the

appropriate interaction. However, since we argue that filling the gap

abstractions through transformation is not enough by itself to provide the

optimal set of services, evaluating the service quality attributes is essential for

delivering optimal service interface designs. Furthermore, given that we are

showing how the transformation was implemented, in the next stage we will

show the generation of various service interfaces with different designs.

 WS-CDL: Exchange

The WS-CDL Exchange element defines the data to be exchanged throughout

an interaction; the exchanged data are then processed as input or output. We

generated an Input or Output element in WSDL for every instance of the

Exchange element. The value of the name attribute of Exchange is mapped to

that in the Operation element, where the value of the action attribute is used

to decide the input and output parameters of operations. For example, when

the value of action is equal to “respond”, the operation has an output

parameter. Below we show how the input and output are implemented

separately.

4. For each WS-CDL ELELMENT_WS-CDL_ Interaction: IN

4.1 Read IN.name, IN. actionType

4.2 Create WSDL:Operation: OP where OP.name = IN.name,

OP. actionType =IN. actionType

Collect all Instances of ELMENT_WS-CDL(Eexchange).

Create instances of ELEMENT_WSDL (Operation).Output()

Create instances of ELEMENT_WSDL (Operation).Input()

5. For each WS-CDL ELELMENT_WS-CDL_ Exchange: EX

5.1 Read EX.name, EX. action

5.2 Create WSDL:Input: INP where INP.name = EX.name,

If EX. action = “request” or “request-respond”

INP.messageLabel =”In”,

INP.elements = EX.informationType,

Chapter 6 Service Identification Implementation

120

6.3.3 WSDL transformation (re-factoring)

We show below how the algorithm that develops five re-factored cases of

service interface designs depends on the generated WS-CDL code. The five

cases can be explained as follows:

First case: We created a monolithic service for all operations in a service

domain. We generated a Service element with one Interface for every

Choreography element in WS-CDL. Each Interaction element in WS-CDL

defined within the Choreography element is mapped to an Operation element in

the Interface and Binding elements. Relevant exchanged messages (parameters)

are defined in the Types element.

Second case: We created an initial Service with one Interface and then

created an Operation element in the Interface and the Binding element. This

had the required binding definitions for every Interaction element in the

WS-CDL. Again, relevant exchanged messages (parameters) are defined in the

Types element. When a WorkUnit element or ordering structure elements (e.g.,

Choice or Parallel) element exists, a new service was created with one Interface

and Binding element. The Interaction elements were defined within those

ordering structure elements in the WS-CDL as operation elements in an

Interface. The required binding definitions are defined for the operations and

relevant messages exchanged are also defined within Types elements. Those

6. For each WS-CDL ELELMENT_WS-CDL_ Exchange: EX

6.1 Read EX.name, EX. action

6.2 Create WSDL:Output: OUT where OUT.name = EX.name,

 If EX. action = “respond” or “request-respond”

 OUT.messageLabel =”Out”,

 OUT.elements = EX.informationType,

http://www.w3.org/TR/ws-cdl-10/#Ordering-Structures
http://www.w3.org/TR/ws-cdl-10/#Ordering-Structures

Chapter 6 Service Identification Implementation

121

Interaction elements that reside outside the ordering structures elements are

defined as Operation elements, and added to the initial service interface.

Third case: This is similar to the second case, except that those

Interaction elements residing outside of the ordering structures elements are

defined as Operation elements within a new Service with one Interface element.

Chapter 6 Service Identification Implementation

122

Fourth case: We created an initial service and then created an operation

for every interaction by mapping its exchange messages. It is similar to the

third case when a WorkUnite element or ordering structure element (e.g.,

Choice or Parallel) exists. We created new services elements with relevant

Interface, Binding, Operation and Types elements after the evaluation of the

conditional expression defined in the guard attribute of the WorkUnit element.

Fifth case: we created a Service element with one Interface and Binding

element. Every Interaction element in WS-CDL is defined as an Operation

element within the Interface element. Its required definitions for binding and

exchanging messages are defined in Binding and Types element respectively, by

mapping its exchange messages.

http://www.w3.org/TR/ws-cdl-10/#Ordering-Structures

Chapter 6 Service Identification Implementation

123

6.4 Transformation chain

In this section, we briefly describe how we automatically developed the

transformation from business process choreography in BPMN to WS-CDL and

then from WS-CDL to WSDL. In Figure 6-2, we describe the transformation

chain architecture that is based on the Model Driven Engineering introduced in

section ‎2.4.3, where we described the underlying four layers of abstraction: M0,

M1, M2, and M3. After discussing the M3 level, which represents the common

meta-meta-model (MOF), in section ‎2.4.1, and presenting the M2 level as the

specific meta-models for BPMN 2.0, WS-CDL and WSDL in Chapter 4, we

explained the transformation rules developed in ATL at level M1.

Figure ‎6-2 Implementation of the transformation chain

Prior to developing transformation rules in ATL, the input and target

models in every transformation stage model must be confirmed to the relevant

meta-models of BPMN 2.0, WS-CDL and WSDL. These defined meta-models

must be confirmed to the meta-meta-model of MOF and they are developed as

Ecore models based on the Eclipse Modelling Framework (EMF) (EMF was

selected because the ATL integrated development environment is also built on

top of the Eclipse platform). With the EMF, source and target models have to

be in XMI 2.0 format. We used the Enterprise Architect (EA)2 tool to model

2
 Enterprise Architect Case Tool by Sparx Systems Ltd available at

http://www.sparxsystems.com/products/ea/index.html

Chapter 6 Service Identification Implementation

124

the business process choreography diagrams using the BPMN 2.0 specification.

The EA tool provides the capability to generate the diagrams in different

formats, such as XMI and XML. All input and output models were in XMI

format, as deploying the WSDL would require the conversion of WSDL (XMI)

to WSDL (XML), which can be achieved using a number of available plug-ins

such as ATLAS MegaModel Management (AM3). The ATL implementation

consists of two transformations:

 Transformation 1: BPMN-to-WS-CDL

We developed ATL rules based on the semantic transformation of the first

transformation BPMN-to-WS-CDL defined in (section ‎6.3.1) and transformed

the business process choreography model in BPMN 2.0 (XMI) to service the

choreographies specification in WS-CDL (XMI). The transformation rules were

developed in a vertical model transformation, which means the business process

choreography model (source model) and the WS-CDL (target model) exist at

two different levels of abstraction. The transformation implementation

developed accordingly to the choreography requirements introduced in section

‎4.5 (see Appendix A for an example of developed code).

 Transformation 2: WS-CDL-to-WSDL

We developed ATL rules based on the semantic transformation of the second

transformation WS-CDL-to-WSDL defined in (section ‎6.3.2) and transformed

the service choreographies specification in WS-CDL (XMI) to service interface

design WSDL in (XMI). The transformation rules were developed in a

horizontal model transformation, which means the WS-CDL specifications

(source model) and the service interface design WSDL (target model) reside at

the same level of abstraction. This transformation also included the

implementation of the algorithm that re-factors the WS-CDL code to several

service interface designs, as addressed in section ‎6.3.3 (see Appendix A for an

example of developed code).

A number of patterns were used in the semantic transformation between

the different models. The purpose of these patterns is to define the relationship

between these elements in order to develop the transformation rules. These

patterns are as follows:

Chapter 6 Service Identification Implementation

125

 One-to-One pattern: mapping a source element to another element of

another model, the source and target elements must have similar direct

correspondent semantics and behaviour. An example would be the mapping

of the Participant element in BPMN 2.0 to the RoleType element in

WS-CDL.

 One-to-many pattern: an element is mapped to several elements of

another model. In this pattern, the source element might have similar direct

correspondent semantics and behaviour to one or more target elements

collaboratively. An example would be the mapping of the Message element

in BPMN 2.0 to the InformationType, Variable and Exchange elements in

WS-CDL.

 Many-to-one pattern: several elements are mapped to one element of

another model, where the source elements must collaboratively have similar

behaviour to the target element. For example, the definitions of the

Exchange element, which specifies exchanged data within an interaction, are

transformed from Message and MessageFlow elements in BPMN. In

particular, we mapped the values of the attributes name from Message and

actionID from MessageFlow elements.

 One-to-null pattern: mapping a source element which does not have a

corresponding target element on another model. Mapping such a source

element is essential when constructing a new behaviour that does not exist

within the new model, which entails an extension of the target meta-model.

For example, adding the attribute attributekind to the InformationType

and Variable elements in WS-CDL shows the data types later used for

calculating the service quality attributes.

 Null-to-one pattern: creating a target element in a model which does not

have a corresponding source element. The aim of creating this new element

is to accomplish certain behaviour, for example defining a Sequence element

within the Choreography element’s definitions in order to direct the flow

interaction execution.

6.5 Service quality model

The service quality model is implemented based on analysing syntax structures

and the metrics of service quality attributes discussed in Chapter 5. The core

component of our parser consists of two packages: the syntax analyser and the

Chapter 6 Service Identification Implementation

126

metrics calculator, the two Java packages developed as a parser in Java

Standard Edition (SE). Figure 6-3 shows the architecture of the parser which

can be described as follows:

Figure ‎6-3 Implementation of the architecture of service quality model

 Service Element Extractor: the service element parser is developed to

capture service elements such as messages types, operations and services; it

can be used to process online web services such as Amazon WSs and

internal web services. It counts the number of service elements which are

then assigned their proper weight. The parser is developed on top of an

open source SOA tool provided by a company called “Predic83” (see

Appendix A for an example code).

 Syntax Analyser: this package analyses and quantifies the elements of

service interfaces in WSDL and quantifies syntax elements based on

multiple criteria decision weights, defined as a library (see section ‎5.2). The

output of this package is a data file for every service, which consists of four

numerical lines defining properties of input messages, output messages,

operation types, and number of invocations, respectively. The values of the

properties defined for every data field are 1 or 5 or 10 based on the property

types of the weight factor defined previously (again, see Appendix A for an

example code).

3
 Predic8, available at http://predic8.com/

http://predic8.com/

Chapter 6 Service Identification Implementation

127

 Metric Calculator: this package calculates the metrics of ASOG ASOM,

ASOC and ASOU, as defined in section ‎5.3. We calculated the underlying

SOG metric using the service granularity quality described in section ‎5.2. A

text file is generated for every WSDL file, which consists of the results of

the four metrics mentioned previously (see Appendix A for an example

code).

6.6 Summary

In this chapter, we presented the automatic generation of the service interface

designs from a business process model. As Figure 6-1 shows, the framework

architecture is composed of two architectural parts: the choreography and

model transformation and the service quality model.

The model transformation implementation allows the service identification

process to be efficiently automated, generating service interface designs. The

effectiveness of this stage can be compared and evaluated against the human

driven manual process, which can be expected to contain inconsistencies. We

developed two transformation programs in ATL to transform business process

elements in BPMN 2.0 into a service interface design via an intermediate

choreography-based design; this concept is the cornerstone of model

transformation. The completeness of the semantic definitions of meta-models

between different models was essential to achieve the seamless transformation

between source and target models. The transformations between these different

abstractions required extending the semantics of BPMN 2.0 and WS-CDL to

bridge any semantic gaps in the abstractions (such as message types). Although

we focused on the choreography concept, our implementation also covered the

collaboration model in BPMN 2.0 because of the overlap between these two

concepts (a number of researchers have described collaboration as a form of

interconnected choreography). The model transformation implementation is

based on emerging technologies, such as the EMF and the ATL.

The current model transformation showed that it is possible to deliver

service interface design automatically from a business process model. However,

one fundamental drawback of this transformation must be noted, which is the

dependency on the semantic completeness of the business process modelling.

Current business process modelling languages such as BPMN 2.0 separate

entirely the definitions of business process modelling and any potential

Chapter 6 Service Identification Implementation

128

implementations of the business process. As a result, a complete and deployable

service interface in WSDL cannot be automatically generated because there are

missing semantics. For example, complete definitions for messages exchanged

(attributes) in the business process choreography models (necessary for an

automatic transformation to complete the definitions of the “Types” elements in

WSDL).

The service quality model is developed in the Java SE environment using

the service quality metrics defined previously. The implementation consists of

three packages: the service element extractor, the syntax analyser and the

metric calculator. We were able to quantify the service elements and to provide

measurements for service granularity which potentially impact the internal

service quality attributes of complexity, cohesion and coupling. This

implementation allows us to evaluate different service interface designs and

then decide on the most optimal service design in such cases. The level of

integration with the ATL model transformation is the most severe limitation of

the existing service quality model.

In Chapter 7, we will discuss the pragmatic evaluation of the model

transformation implementation using three application scenarios.

Chapter 7 Pragmatic

Evaluation

In Chapter 6, we discussed the implementations of the transformation models

to generate a number of re-factored designs automatically of a service interface

at different levels of granularity. The implementations are concerned with the

solutions to the research question: it is possible to generate automatically

service interface designs? Chapter 6 also described the implementation of the

service quality model used to compute service quality attributes.

 This Chapter focuses on evaluating the transformation models which the

first part of the architectural part of the implementations proposed in Chapter

6; the evaluation is based on a pragmatic approach. For demonstrating the

validation, three application scenarios are discussed. In section 7.1, we

introduce briefly the pragmatic approach. In section 7.2, we discuss the

hypothesis that is related to the scope of the model transformation

implementation. Following, in section 7.3, we explain how the service

choreographies in WS-CDL and the WSDL document are validated. In section

7.4, we use three application examples to demonstrate the use of the pragmatic

approach to evaluate the framework. There are two application examples from

the BPMN 2.0 OMG specification and one example from an industrial technical

review of the BPMN 2.0 standard. In section 7.5, we show the limitations faced

during the evaluation of research hypothesis studies in this Chapter. Finally, in

section 7.6 and 7.7, we discuss reflection of research hypothesis and summarise

the Chapter.

Chapter 7 Pragmatic Evaluation

130

7.1 Introduction

In chapter 6, we described how model transformations can be implemented

using the MDE approach. The implementation showed how we can use the

choreography concept to transform a business process choreography model

automatically to a service interface design. Generally speaking, there are several

methods that can be used to evaluate the generation of software code from

models compared to the human-manual way of doing this, these include

measuring the time taken for automated transformation compared to the

manual process, checking the readability of the generated code and defining

benchmarks based on software quality attributes. However, it is important to

track the behaviour consistency between transformed models in order to ensure

the validity of the transformation.

This Chapter begins with a brief introduction of the service

choreographies in WS-CDL and the design of service interfaces in WSDL.

Before generating the service interface designs, the transformation process

generates service choreographies in WS-CDL, which indicates how the service

choreography concepts can facilitate the generation of service interfaces. The

aim is to check the behavioural elements of the transformation from the

business process choreography in BPMN 2.0 to the service choreographies in

WS-CDL. Subsequently, the behavioural elements are traced into the WSDL

documents generated to ensure that the right service behaviour is implemented.

Thus, we need a pragmatic evaluation to ensure consistency between the

semantics of the models generated of WS-CDL and WSDL.

7.2 Hypotheses

In this chapter, we are interested in the first hypothesis which considers

consistency between the business process choreography model and the WS-CDL

code and then between the WS-CDL code and service interface design in

WSDL. We need to evaluate consistency to ensures that any change in the

source model results in a corresponding consistent change in the target model

(Mohagheghi and Dehlen 2008), the research hypothesis as follows:

H1: is it possible to use service choreographies (WS-CDL) to derive

the automatic transformation of business process choreography

model (BPMN 2.0) into a service interface design (WSDL)?

Chapter 7 Pragmatic Evaluation

131

In the following sections, we explain how a pragmatic approach is used to

evaluate consistency in the generated models of service choreography (WS-CDL

code) and service interface (WSDL). We use three application scenarios to

demonstrate that consistency is satisfied in each scenario. Ensuring the

consistency between transformed models provides evidence that the

choreography concept adapted in this thesis successfully bridge the abstraction

gap between the business process modelling level and service interface design.

7.3 Pragmatic Validation

In this section, we use a pragmatic approach to validate the consistency of

modelling behaviour which transforms the business process choreography

models into service choreographies models. It shows how the definitions and

properties of business processes choreographies are mapped to elements of

service choreographies in WS-CDL. We will use examples to demonstrate the

mapping and then ensure that the service choreographies generated provide

complete service design interfaces in WSDL.

7.3.1 Service Choreographies (WS-CDL)

The evaluation of WS-CDL is based on two steps: validating the semantics of

the XML schema and then checking the consistency of the mapping between

the business process choreography model and the WS-CDL code. We first

validate the WS-CDL document as XML-based language against the XML

schema using a tool called “Altova XMLSpy
4
”. Secondly, we ensure the

transformation process has mapped all distinct elements between the BPMN

2.0 choreography process and the WS-CDL document models, while retaining

the required behaviour.

The focus on the BPMN choreography process is to formalise interactions

between business participants based on exchanged messages. In a pragmatic

way, we validate the transferred behaviour between the input choreography

process models in BPMN and the output of the service choreographies

(WS-CDL). Given the specification of the choreography model from BPMN 2.0,

we can construct corresponding WS-CDL elements. First, we first construct the

4
 Altova XMLSpy is an industry XML editor available at http://www.altova.com/xml-editor/

http://www.altova.com/xml-editor/

Chapter 7 Pragmatic Evaluation

132

WS-CDL package corresponding to the BPMN definition, and then transform

the process choreography elements.

Based on BPMN 2.0 the choreography model encapsulates the definitions

of the BPMN:Message as a reference in the BPMN:ChoregraphyTask element,

where each BPMN:ChoregraphyTask element might process messages as input

and output. Hence, the complete definition of BPMN:Message is added to the

semantics of our choreography model. This message element is essential for the

extension proposed in section ‎4.3.1. The name and attributedkind attributes of

every BPMN:Message element are translated to similar attributes of a

corresponding WS-CDL:Informationtype element based one-to-one mapping

pattern, where a new element attribute is created in WS-CDL:Informationtype

corresponding to the messageTypesdefintions attribute which refers to the type

of schema required. The element BPMN:Message is also translated to

WS-CDL:Variable element-based one-one mapping pattern as definitions of

variables are derived using WS-CDL:InformationType. The BPMN:Participant

is translated to the WS-CDL:RoleType to exhibit the definitions of the

behaviour and interface, and the name attribute of every BPMN:Participant is

translated to name, behaviour and interface attributes of WS-CDL:RoleType

based on the many-to-one pattern. From the BPMN:MessageFlow, we can

derive definitions for WS-CDL:RelationshipType by joining the attributes of

sourceRef and targetRef. We also use the attribute actionID of

BPMN:MessageFlow to refer to the type of information exchanged when the

message is exchanged as part of an interaction.

The WS-CDL:Choreography element encapsulates the definitions of

choreography activities and collaborative behaviour where the

BPMN:Choreography element refers merely to the start and end of the

choreography semantics. The BPMN:ChoreographyTask element is the core

element of the BPMN choreography model; it links interconnected participants

through the BPMN:Participant and the Messageflow elements besides including

the extension of operation type (e.g., the actionType attribute). The attributes

name and actionType of the BPMN:ChoreographyTask element are translated

to similar attributes of a WS-CDL:Interaction based one-to-one mapping

pattern which represents a basic activity. The WS-CDL:Interaction element

defines the details of interaction, i.e., the participants involved in the

interaction using the reference of the attribute participate and the exchanged

messages and their types using an exchange reference. Different BPMN getaway

Chapter 7 Pragmatic Evaluation

133

elements such as Exclusive, Inclusive and Event-based elements are translated

to WS-CDL:WorkUnite or to one of the element of the ordering structure such

as the WS-CDL:Choice, WS-CDL:Parallel and WS-CDL:Sequence elements.

The BPMN:Endevent states the completeness of the choreography process

which translates to the WS-CDL:FinalizerBlock element. In order to specify the

effect that needs to be applied by WS-CDL:FinalizerBlock element, we need to

show different effects of BPMN:Endevent into semantic, .e.g., the

BPMN:EndEvent of type cancel needs to be semantically translated to a

specific numerical value.

First, in order to check the validation of WS-CDL codes as valid XML

schema, we used the (Altova XMLspy tool). The (Altova XMLspy tool)

provides support to XML-based languages’ validation against XML schema. We

imported the WS-CDL code for every scenario and ran the XML validation.

Secondly, we ensured the consistency of behaviour across the business process

choreography and the WS-CDL code. We used generated WS-CDL and WSDL

documents and the hierarchical structure document to show graphically the

results of mapping between BPMN 2.0 and WS-CDL and then the WSDL. The

hierarchical structures demonstrate whether or not the behaviour is correctly

transformed among models (An example of the hierarchical structure for the

WS-CDL code is shown in Appendix B).

7.3.2 Design of Service Interfaces (WSDL)

The evaluation of the design of the service interfaces was completed in two

steps: validating the semantics of the XML schema and checking the

consistency of the mapping between the WS-CDL code and design of the

service interface in WSDL. We first validated the WSDL document against the

XML schema, as XML-based language using the (Altova XMLspy tool). Second,

we ensured the WS-CDL code has been transformed into a different service

interface design in the WSDL 2.0 standards and the behaviour of the WSDL

document is consistent with that in the WS-CDL.

This thesis initially supports the WSDL 2.0 standard, the document

structure of the WSDL 2.0 is obviously different from that in the former

versions of the WSDL standards such as 1.2 and 1.1. WSDL 2.0 consists mainly

of four elements: the description, interface, binding and service. Our arbitrary

design of service interfaces is concerned specifically with definitions and models

of data types, interface (operations) and service. As a result, our transformation

Chapter 7 Pragmatic Evaluation

134

does not support the generation of the client stub and the HTTP bindings.

Given WS-CDL code, we can generate a number of service interface designs in

WSDL 2.0. First, we constructed the WSDL description corresponding to the

package element definitions in WS-CDL, e.g., targetNamespace and the

location of XSD (XML Schema). The name and attributekind attributes of

WSCDL:InformationType are transformed into the WSDL:Types for XML data

types, and the corresponding data type definitions computed based on the

numerical value of the attribute “attributekind” in WS-CDL. The attribute

“attributekind” in WS-CDL supports the proposed extension of the message

types (see section ‎4.3.1) according to the W3C XML schema data types. The

transformed definitions of WSDL:types are limited to the name and types of

the data which are implicit for deriving operation definitions. It is worth noting

that the level of semantic detailed in the Types element is limited because the

original source of the semantic transforms from the business process

choreography diagram lacks such details.

The WS-CDL:Choreography element provides the collaborative behaviour

which governs the interactions via WSDL:Interaction element and order

structure elements such as WSDL:WorkUnit and WSDL:Choice. The

WSDL:Interface describes the operations defined by the service corresponding

to the behaviour of the WS-CDL:Choreography. Although WSDL permits more

than one interface element, we decided to generate one Interface element for

every WSDL corresponding to the Choreography element in WS-CDL. While

the WSDL:Operation is the method, the WS-CDL:Interaction element is the

basic block of choreography. Both define similar behaviours by describing and

processing exchanged messages (data). Thus, the WS-CDL:Interaction element

is transformed to WS-CDL:Interaction with details of the attributes name and

actionType to show the operation behaviour, (i.e., what operation implements

CRUD function or business logic).

The data exchanged through interactions are defined in

WS-CDL:Exchange which is transformed to Input/Output attributes of the

WS-DL:Operation according to the value of the action attribute in the

WS-CDL:Exchange. If the action value is “response”, that means that the

operation has an output value. The binding describes the accessibility of the

web service over the protocol (currently not considered because the binding

style is irrelevant to the modelling of appropriate service design). Finally, the

service element is defined via the name and interface attributes as well as the

Chapter 7 Pragmatic Evaluation

135

endpoint which represents eventual the service domain. In order to demonstrate

our evaluation method, we will use two BPMN 2.0 scenarios for business

process choreography published by OMG (OMG 2010) and one scenario

published by experts from industry (Benedicto, Rosenberg et al. 2010),(the

hierarchical structure for WSDL is shown in Appendix B).

7.4 Application Examples

In this section, in order to validate the transformation implementations, we

apply the pragmatic evaluation on three different application scenarios. We

validated the WS-CDL and WSDL documents for every example.

7.4.1 Incident Management Example

We assume that this scenario is comprehensive and representative for the

choreography business process because it is published by OMG in the BPMN

2.0 specification. Figure 7-1 shows the choreography process of the Incident

Management scenario which consists of nine choreography-tasks and depicts the

behaviour of five participants who interact to perform business functions using

seven exchanged messages. Below we evaluated the WS-CDL code and then the

WSDL for this scenario.

Figure ‎7-1 Incident Management Process Choreography

Chapter 7 Pragmatic Evaluation

136

7.4.1..1 WS-CDL Validation

Listing 7-1 shows the definitions of seven WS-CDL:InformationType elements

for five WS-CDL:RoleType elements that interacted through ten

WS-CDL:relationshipType elements. This behaviour is the same as that of the

behaviour present in the business process choreography diagram which has six

BPMN:Message elements in addition to a hidden message that triggered the

start event of the process choreography defined for five BPMN:Participant

elements communicated through ten WS-CDL:MessageFlow elements. After

defining seven possible WS-CDL:Variable elements based on existing

WS-CDL:InformationType elements to capture information about objects, the

choreography definition starts with a WS-CDL:Sequence element to be enabled

sequentially for the defined internal activities. Three WS-CDL:WorkUnit

elements are defined; each WS-CDL:WorkUnit defines internally two

WS-CDL:Interaction elements, where each WS-CDL:WorkUnit element behaves

similarly to the definition of three BPMN:ExclusiveGateway elements that have

two outgoing paths for two BPMN:ChoreographyTask elements. The guard

attribute of the WS-CDL:WorkUnit describes the constraints in similar way to

the condition expressions in the BPMN:ExclusiveGateway element. Hence, the

execution of the interactions element depends on the evaluation of the guard

condition.

Because the WS-CDL specification does not allow internal looping

WS-CDL:WorkUnit elements in a defined WS-CDL:WorkUnit element similar

to that in the BPMN:ExclusiveGateway elemement, some WS-CDL:Interaction

elements are defined more than once; e.g., the “Provide feedback for 1st level

support” interaction is defined twice in the WS-CDL code: as part of the

“Unsure” WS-CDL:WorkUnit element when the guard condition equals to “No”

and as part of the standalone interactions within the WS-CDL:Sequence

element. The WS-CDL:Interaction element also consists of the Exchange and

Participate sub-elements which hold the semantics of the exchanged messages

and participant for that particular interaction, e.g., the action required for a

message such as “response”. Finally, the WS-CDL:finalizerBlock confirms the

completion of the choreography definition in the WS-CDL code. We can state

that these behaviours described in the “IncidentMangment.cdl” are in

accordance with those behaviours defined in the OMG Incident Management

choreography diagram in BPMN 2.0. Table 7-1 summarises the mapping

described above between BPMN elements and WS-CDL elements for this

Chapter 7 Pragmatic Evaluation

137

particular scenario. The WS-CDL behaviour of the Incident Management

scenario is shown in the hierarchical structure appendix B.

Table ‎7-1 Summary of mapping between BPMN elements and WS-CDL code for Incident

Management scenario

BPMN Elements Mapping Pattern WS-CDL Line of Code

Message One-to-many Information Type 7-13
Variable 43-49

Participant One-to-many Role Type 15-29
Participate 53,57,62,66,72,76,

81,86,90,95,99,103
Message Flow One-to-one Relationship Type 31-40
Choreography One-to-one Choreography 40
Choreography

Task
One-to-one Interaction 51-54, 55-58, 79-82,

93-96, 97-100, 101-
104.

Exclusive
Gateway

One-to-many Work Unit 59-68,69-78,83-92

End Event One-to-one FinalizerBlock

105

Message and
MessageFlow

Many-to-one Exchange 52, 56, 61, 65 71, 75,
80, 85, 89, 94, 98,
102.

--- null-to-one Sequence 50-106

Chapter 7 Pragmatic Evaluation

138

Listing ‎7-1 IncidentManagment.cdl Shown with XML Schema Validation Result

Chapter 7 Pragmatic Evaluation

139

7.4.1..2 WSDL Validation

From the IncidentManagment.cdl (WS-CDL code) we generated five different

designs of service interfaces in WSDL format which consist of one or more

services. We validated every WSDL-document using the “Altova XMLspy tool”.

Five WSDL files for the Incident Management scenarios are imported and run

for the WSDL validation. For brevity, we will show and discuss the results of

the first re-factored scenario. Listing 7-2 represents the design of one

coarse-grained service and shows that this WSDL is valid.

Here we want to check consistency of the behaviour of three main

elements of any service interface design in WSDL 2.0 which are WSDL:Types,

WSDL:Interface (operations) and WSDL:Service. In listing 7-2, the description

of the WSDL:Types element holds the name and message-type definition of the

exchanged messages (parameters), e.g., UserdefinedDefinition,

SimpleTypeDefinition and ComplexTypeDefinition. The WSDL:Types element

transforms the behaviour of messages resulting from interactions between

participants into messages that can be used to define parameters of the

Operation element; in this scenario all three data types are defined. These

message types are part of the BPMN extension for XML schema-type

introduced in section ‎4.3.1.

Although there were duplicate definitions of WS-CDL:Interaction

elements in the IncidentManagement.cdl, the definition of WS-CDL:Operation

elements describes concisely the behaviour based on the re-factoring algorithm.

The WSDL:Interface element defines a number of operations (nine) in this

particular case, which conforms to the same number of interactions in the

example IncidentManagement.cdl. It concentrates on linking every Operation

element with its input/output parameters through using WS-CDL:Exchange

element that was previously defined in the WS-CDL:Interaction element, where

its actionType is immediately transformed with its numerical value. The

input/output values correspond to pre-defined schema for messages in the

WSDL:Types element. The service element shows the given name of the service

similar to the choreography name “IncidentManagement” and refers to the

defined interface element and the address URI of the service. Table 7-2

summarises the mapping described above between WS-CDL code and WSDL

document for this particular scenario. The WSDL behaviour of the Incident

Management scenario is shown in the hierarchical structure appendix B.

Chapter 7 Pragmatic Evaluation

140

Table ‎7-2 Summary of mapping between WS-CDL code and WSDL for Incident

Management scenario

BPMN Elements Mapping Pattern WS-CDL Line of Code

Information Type One-to-one Types (schema
XSD)

4-19

Choreography One-to-one Interface 20-67
Interaction One-to-many Operation 22-26, 27-31, 32-36,

37-41, 42-46, 47-51,
52-56, 57-61, 62-66

Exchange One-to-many Input/output 23-24
Package One-to-one Service 81-83

Chapter 7 Pragmatic Evaluation

141

Listing ‎7-2 IncidentManagment.wsdl Shown with XML Schema Validation Result

Chapter 7 Pragmatic Evaluation

142

7.4.2 Nobel Prize Example

This is the second example published by OMG in the BPMN 2.0 specification.

Fig. 7-2 shows the choreography process of the Nobel Prize which consists of

five choreography tasks and shows the behaviour of five participants who

interact to solve business issues using seven exchanged messages. Below we

evaluated the WS-CDL code and then the WSDL for this scenario.

Figure ‎7-2 Nobel Prize Process Choreography

7.4.2..1 WS-CDL Validation

Listing 7-3 shows the definition of six WS-CDL:InformationType elements for

five WS-CDL:RoleType elements that interacted through ten

WS-CDL:relationshipType elements. This behaviour is same as that of the

behaviour present in the business process choreography diagram which has six

BPMN:Message elements for five BPMN:Participant elements communicated

through six BPMN:MessageFlow elements. Six WS-CDL:Variable defined

elements based on existing WS-CDL:InformationType elements are followed by

WS-CDL:Sequence element. One WS-CDL:WorkUnit element is defined; each

includes definitions of two WS-CDL:Interaction elements, corresponding to one

BPMN:ExclusiveGateway element in BPMN that has two alternative outgoing

paths. The guard condition of the WS-CDL:WorkUnit “Expert Assistance

Required?” element constrains the order sequence of selecting interactions, e.g.,

Chapter 7 Pragmatic Evaluation

143

if the evaluation of the guard condition equals “false”, the “Submit Report with

Recom” WS-CDL:Interaction will be executed and followed by the last

WS-CDL:Interaction, “Announce Nobel Prize Laureates”. The use of the guard

condition in the WS-CDL:WorkUnit element guarantees similar behaviour,

particularly with controlling order structure by Gateway elements in the

business process design. Seven WS-CDL:Interaction elements were defined for

this case; the Interaction element “Submit Report with Recom” was defined

twice because it appears as an alternative path of the WS-CDL:WorkUnit

element, and it follows the WS-CDL:Interaction element

“SendCandidatesAss.Report” in structure order.

Finally, the WS-CDL:finalizerBlock of “AnnouncementMade” ends the

choreography definition in the WS-CDL code. We note that these behaviours

described in the NobelPrze.cdl are in accordance with those behaviours defined

in the OMG Nobel Prize choreography diagram in BPMN 2.0. Table 7-3

summarises the above described mapping between BPMN elements and

WS-CDL element for this particular scenario.

Table ‎7-3 Summary of mapping between BPMN elements and WS-CDL code

for the Nobel Prize scenario

BPMN Elements Mapping Pattern WS-CDL Line of Code

Message One-to-many Information Type 8-13
Variable 40-45
Exchange 47, 51, 56, 60,56,

69,73
Participant One-to-many Role Type 15-29

Participate 48, 52, 57, 61,57,
70,74

Message Flow One-to-one Relationship Type 31-36

Choreography One-to-one Choreography 37
Choreography

Task
One-to-one Interaction 51-54, 55-58, 79-82,

93-96, 97-100, 101-
104.

Exclusive
Gateway

One-to-many Work Unit 54-63

End Event One-to-one FinalizerBlock

76

--- Null-to-one Sequence 39-77

Chapter 7 Pragmatic Evaluation

144

Listing ‎7-3 NobelPrize.cdl Shown with XML Schema Validation Result

Chapter 7 Pragmatic Evaluation

145

7.4.2..2 WSDL Validation

Listing 7-4 represents one of the validated cases for the OMG Nobel Prize

scenarios, a design of a service interfaces as one coarse-grained service in WSDL

document. All six messages defined previously in the WS-CDL code were

transformed to six data types with their appropriate message-type classification

as introduced within the message-type extension. Compared with the previous

scenario, all data types of this scenario are defined as a complex type, which

means they have similar data granularity weight. In the WSDL:Interface

element, six WSDL:Operation elements are defined which conform to the same

number as the interactions in NobelPrize.cdl with similar data exchanged and

similar value for the actionType element. Finally, the WSDL:Service element

definitions were completed as coarse-grained service with reference to the

interface and the URI address. Table 7-4 summarises the above described

mapping between WS-CDL code and WSDL document for this particular

scenario.

Table ‎7-4 Summary of mapping between WS-CDL code and WSDL for the

Nobel Prize scenario

BPMN Elements Mapping Pattern WS-CDL Line of Code

Information Type One-to-one Types (schema
XSD)

4-17

Choreography One-to-one Interface 19-50
Interaction One-to-many Operation 20-24, 25-29, 30-34,

35-39, 40-44, 45-49
Exchange One-to-many Input/output 21-22, 26-27, 31-32,

36-37, 41-42, 46-47
Package One-to-one Service 61-63

Chapter 7 Pragmatic Evaluation

146

Listing ‎7-4 NobelPrize.wsdl Shown with XML Schema Validation Result

Chapter 7 Pragmatic Evaluation

147

7.4.3 Customer Order Example

This is third example was selected from a technical report because it represents

a new BPMN 2.0 semantic that is not covered in the other two OMG scenarios,

i.e., BPMN:IntermediateThrowEvent and BPMN:EventBasedGateway

elements. Fig. 7-3 shows the choreography process of the Customer Order

which consists of five choreography tasks and shows the behaviour of four

participants who interact to solve business issues using four exchanged

messages. Below we evaluated the WS-CDL code and then the WSDL for this

scenario.

Figure ‎7-3 Customer Order Process Choreography

7.4.3..1 WS-CDL Validation

Listing 7-5 shows that the definitions of four WS-CDL:InformationType

elements for four WS-CDL:RoleType elements who interacted through six

WS-CDL:relationshipType elements. This behaviour is same as the behaviour

represented in the business process choreography diagram which has four

BPMN:Message elements for four BPMN:Participant elements communicated

through six BPMN:MessageFlow elements. Four WS-CDL:Variable elements

were defined based on existing WS-CDL:InformationType elements. The

EventBasedGateway element is mapped to the WS-CDL:Choice elements in

WS-CDL because the semantic of EventBasedGateway is exclusive. Three

WS-CDL:Choice elements were defined including two or more Interaction

elements. One of the Interaction elements will be performed, e.g., the

Chapter 7 Pragmatic Evaluation

148

WS-CDL:Choice element “All Part Available” has two WS-CDL:Interaction

elements, “Part Auction” and “Order Confirmation”.

Since there is no element in WS-CDL that behaves similarly to the

BPMN:IntermediateThrowEvent element, we consider the BPMN element that

the BPMN:IntermediateThrowEvent links to. In this scenario, the

BPMN:IntermediateThrowEvent attempts to link to the

BPMN:ChoreographyTask element which transforms eventually to

WS-CDL:Interaction elements, e.g., an BPMN:IntermediateThrowEvent

element “A” throws an event in the process which links to the Interaction

element “Order Confirmation”. As a result, the WS-CDL:Interaction element

“Order Confirmation” was redefined three times and the total number of

WS-CDL:Interaction elements for this case then becomes nine compared to six

BPMN:ChoreographyTask elements. Finally, the WS-CDL:finalizerBlock

similar to that in “BPMN:Endevent” shows the end of the choreography

definition in the WS-CDL code. We can note that these behaviours described in

the CustomerOrder.cdl are in accordance with those behaviours defined in the

OMG Customer Order choreography diagram in BPMN 2.0. Table 7-5

summarises the above described mapping between the BPMN elements and the

WS-CDL element for this particular scenario.

Table ‎7-5 Summary of mapping between BPMN elements and WS-CDL code

for the Customer Order scenario

BPMN Elements Mapping Pattern WS-CDL Line of Code

Message One-to-many InformationType 4-7
Variable 30-33
Exchange

Participant One-to-many RoleType 9-20
Participate

MessageFlow One-to-one RelationshipType 22-27
Choreography One-to-one Choreography 29-77

ChoreographyTask One-to-one Interaction 34-37, 39-42, 43-
46-47-50, 53-56,
57-60,63-66,67-70,
72-75

EventBasedGatew
ay

One-to-many Choice 38-51, 52-61, 62-
71.

IntermediateThro
wEvent

One-to-one Interaction 57-60, 67-70

End Event One-to-one FinalizerBlock

76

Chapter 7 Pragmatic Evaluation

149

Listing ‎7-5 CustomerOrder.cdl Shown with XML Schema Validation Result

Chapter 7 Pragmatic Evaluation

150

7.4.3..2 WSDL Validation

Listing 7-6 represents one of the validated cases, for the OMG Customer Order

scenarios, which is the design of one coarse-grained service in the WSDL

document. All four messages defined previously in the WS-CDL code were

transformed to four data types with their right message-type classification as

introduced on the message-type extension. These data types of this scenario are

defined as a complex type. In the WSDL:Interface element, WSDL:Operation

elements are defined which conform to the same number as the number of

interactions in the CustomerOrder.cdl, regardless of the reparation of

definitions of the WS-CDL:Interaction element “Order Confirmation”, and the

numerical value of WS-CDL:actionType element for every Operation matches

correctly the same element in the CustomerOrder.cdl. Finally, the

WSDL:Service element definitions were completed as coarse-grained service

with all operations. Table 7-6 summarises the above described mapping

between WS-CDL code and WSDL document for this particular scenario.

Table ‎7-6 Summary of mapping between WS-CDL code and WSDL for the

Customer Order scenario

BPMN Elements Mapping Pattern WS-CDL Line of Code

Information Type One-to-one Types (schema
XSD)

5-14

Choreography One-to-one Interface 16-47
Interaction One-to-many Operation 17-21, 22,26, 27-31,

32-36, 37-41, 42-46
Exchange One-to-many Input/output 18-19, 23-24, 28-29,

33-34, 38-39, 43-44
Package One-to-one Service 58-60

Chapter 7 Pragmatic Evaluation

151

Listing ‎7-6 CustomerOrder.wsdl Shown with XML Schema Validation Result

Chapter 7 Pragmatic Evaluation

152

7.5 Limitations of Pragmatic Evaluation

7.5.1 Semantic elements

Not all elements of the BPMN 2.0 choreography modelling conformance were

covered in the transformation process, in that our mapping between BPMN 2.0

and WS-CDL is presently done on the basis of core behavioural elements of a

choreography process. Our meta-models initially supported definitions of

elements that appear in BPMN 2.0 examples (OMG 2010). A choreography

diagram with compound activities such as sub-choreographies that contain

more than two participants in a choreography task is not currently supported.

Such elements cannot be mapped directly to the WS-CDL; it would require a

normalisation stage, i.e., define a choreography composition in WS-CDL and

refer to the BPMN sub-choreography as an enclosed choreography. However,

there remain cases where normalisation cannot fill the gap between the

choreography definitions in BPMN 2.0 and WS-CDL.

Currently, in order to bridge the semantics gap between BPMN 2.0

choreography specification for the business process model and the descriptions

of service choreographies in WS-CDL, we extend the definitions of message

element in BPMN 2.0 (as discussed in section ‎4.3.1). The aim of the extension

is to facilitate the transformation process and apply the quality metrics rather

than address those shortcomings of the BPMN 2.0 choreography modelling

specification. We note that no implementation for the BPMN 2.0 choreography

model is currently available (even a partial implementation).

7.5.2 Abstraction gap

Business process choreography diagrams are designed by a business analyst,

who is usually not aware of the implementation details and not interested in

knowing how business processes will be implemented. This problem refers to the

abstraction gap between the level of details defined in the business model

compared to the generated code (Haeng-Kon 2008). It is essential that such a

level of implementation details is defined during the early stages in order to

enhance the design and implementation phases for MDA approaches; e.g.,

defining the types of data (parameters) by the business analyst at early stage of

business process design. This lack in a parameter’s (messages) definitions of the

Chapter 7 Pragmatic Evaluation

153

business process model is moved to the implementation phase where it requires

intervention from the developer. As a result of this problem, the service

interface generated by our transformation process lacks complete definitions of

XML-schema for element types in WSDL.

As future work, in order to overcome this issue, we propose to extend the

BPMN 2.0 definition messages/data-object within the process choreography

model. The extension should include numerical types for different types of

attributes in XML-schema in such a way that a business analyst can seamlessly

interact with them. However, the abstraction gap is a common issue, not only

with SOA but also with other software architecture, and thus the premise of

MDE is to fill this gap by narrowing the problem space (Kim and Lee 2008).

7.6 Reflection on Research Hypotheses

To evaluate this, we traced representative modelling elements mapped using

the transformation rules between source and target models. We ensured the

behaviour was consistently transformed by checking the correct mapping of

elements of source elements to correspondent elements in the target elements.

Three application scenarios were used to evaluate transformation rules.

For each scenario, we evaluated the first phase of the transformation

(BPMN-to-WS-CDL) and the second phase of the transformation

(WS-CDL-to-WSDL). For the first phase, listing 7-1, 7-3 and 7-5 showed that

the generated WS-CDL codes are consistent semantically with definitions of

service process choreography diagrams (fig. 7-1, 7-2 and 7-3 respectively) and

valid XML-based language according to the XML schema. The generation of

WS-CDL code in Incident Management and Customer Order examples (fig. 7-1

and 7-3) showed that the more the business process choreography model

contains gateways (event elements); the more complex are the choreography

definitions. In contrast, the Nobel Prize scenario can be directly mapped with

less complexity as it has only one gateway.

In the second phase, listing 7-2, 7-4 and 7-6 showed that the WSDL

documents generated are consistent semantically with the definitions of

(H1): it is possible to generate service interface designs (WSDL)

automatically from business process choreography (BPMN 2.0) using service

choreographies (WS-CDL).

Chapter 7 Pragmatic Evaluation

154

WS-CDL codes (listing 7-1, 7-2 and 7-3 respectively) and valid XML-based

language according to the XML schema. The consistency of behaviour between

WS-CDL and WSDL is evaluated through the correct mapping of the essential

WS-CDL elements (choreography-tasks and message types) to “Operation” and

passed “Types” definitions. This transformation of WS-CDL to WSDL is more

syntactically oriented than that in BPMN to WS-CDL. This is because level of

abstraction is closer between WS-CDL and WSDL more than that in BPMN to

WS-CDL. In the other words, the specifications WS-CDL and WSDL are based

on the same term “service”.

7.7 Summary

In this chapter, we evaluated our framework with a pragmatic approach. The

pragmatic evaluation shows that it is possible to derive a valid service interface

design in WSDL based on the choreography model in WS-CDL from a business

process choreography model. We used three different examples in the

demonstration: the two OMG business process choreography examples from the

BPMN 2.0 specification and one example from a technical report. We

successfully traced elements defined in the source models through the

transformation process to correspondent semantically elements in the target

models. The three scenarios showed that the choreography semantic can be a

mediator as it shields the complexity of business process definitions and defines

the service interface seamlessly.

Furthermore, we checked these scenarios manually to establish that a

similar behaviour is consistent during the transformation process, thus ensuring

behavioural elements are mapped correctly. The validation is completed using

the “Altova XMLspy tool”. Finally, the proposed transformation is a reasonable

application for the automated transformation from the business process

choreography model to service interface design comparing to manual-human

process. However, a drawback of the proposed transformation process is the

current lack of a capability to create client stubs for generated service

interfaces.

In Chapter 8, we will conduct an empirical evaluation using the service

interface designs generated from these three application examples. The datasets

will be processed and computed using the implementation of software quality

Chapter 7 Pragmatic Evaluation

155

model design in section ‎6.5. The evaluation will test statistically the second and

the third research hypotheses proposed in ‎Chapter 1.

Chapter 8 Empirical

Evaluation

In Chapter 7, we presented a successful pragmatic evaluation of the generation

of service interface designs automatically using transformation models (the first

part of the framework architecture fig. 6-1). This chapter focuses on evaluating

the implementations of the service quality model (the second part of the

framework architecture fig. 6-1). It evaluates the service quality model from the

perspective of the research question: what is the impact of a high level of

service granularity on the quality attributes of complexity and cohesion and

compared to a service interface design with a low level of service granularity? It

also investigates the final research question: what are the relationships between

attributes of service quality?

In section 8.1, we introduce the empirical evaluation approach. This is

followed, in section 8.2, by layout of the details of the second and third research

hypotheses which were based on the proposed service quality model. The study

design and explanations of the research variables (dependent and independent)

are described in section 8.3 and 8.4, respectively. Then, in section 8.5, the

descriptions of the method of data collections that supports the answer to the

research hypotheses. In section 8.6, we present the statistical tests that are

applied in the research and in the following section 8.7 we present the results of

investigating the relationships between defined study variables. Section 8.8

presents our analysis of the study results against the details of the research

hypotheses; while in section 8.9 the limitation of the empirical evaluation is

discussed. Finally, in section 8.10, we summarise the results of the statistical

tests.

Chapter 8 Service Identification Implementation

157

8.1 An Empirical Evaluation

In this section, we evaluate empirically the service quality attributes of the

experimental service identification process based on the service quality model

defined in Chapter 5. The implementation of the service quality model showed

that the service quality attributes provide benchmarks for the quality attributes

of different service interface designs. The framework implementation is

enhanced using benchmarks for the quality attributes of service interfaces

designs generated. The aim of integrating the service quality attributes in our

framework is to guide and to evaluate the service interface designs generated.

In particular, the service quality attributes evaluation is conducted after

re-factoring several service interface designs of a scenario.

The scope of this part of our work is to investigate the impact of service

granularity on the other architectural quality attributes of complexity, cohesion

and coupling using quality metrics when there is a given set of services. We also

examine the dependencies between different internal architectural quality

attributes. The experimental study has been conducted to show that the factors

that affect a particular scenario in practice can be different compared with

other scenarios. This supports our framework theoretically by studying

statistically the relationships between service granularity and the other

architectural attributes of complexity, cohesion and coupling.

The size of software system has often been used for measuring the

development effort and cost (e.g., (Costagliola, Ferrucci et al. 2005; Nguyen

2010; Alba and Gil 2011)). In this thesis, we proposed a measurement for

selecting the service granularity (software size) in the context of

service-oriented architecture. This measurement is for service granularity which

we validated theoretically using mathematical properties for size measurements

in section ‎5.4. We then employed the metric of the service granularity to guide

the service identification phase of the software development cycle. Here we use

the empirical evaluation to verify the predicative power of our proposed service

quality metrics in chapter 5. We used a dataset that is generated from the

three application scenarios used for pragmatic evaluation in chapter 7.

8.2 Hypotheses

During our empirical investigation, we are interested in the second and third

research hypotheses. These two research hypotheses are concerned with the

Chapter 8 Service Identification Implementation

158

investigation of the suitability of using service quality measurements to assist

the process of identifying the optimum services. Firstly, we study the second

hypothesis that investigates the effect of the service granularity on the other

service quality attributes of complexity, cohesion and coupling. The aim of this

study is twofold: quantifying the service quality attributes to enable reasonable

measurements which can be used to select the optimum services and also

evaluating the implementation of the service quality model. The quality

attributes are calculated based on the service quality metrics proposed in

Chapter 5. The positive and negative effects are implied the direction of the

relationships between the variables and degree of effects (e.g., the increase of

service granularity would result in increases in service complexity which refers

to a positive effect on the same direction).

Secondly, we study the third hypothesis that investigates statistically the

relationships between the architectural attributes of complexity, cohesion and

coupling. This study aims to examine any significant effect of these quality

attributes on each other which might provide an insight to the results of the

testing of the second hypothesis:

H2: a set of services with a high value of service granularity (ASOG)

would correspond with a positive effect on the quality attributes of

complexity (ASOM) and cohesion (ASOC) and a negative effect on

the quality attribute of coupling (ASOU) compared to services with

a low value of service granularity (ASOG).

To simplify the hypothesis analysis, the second hypothesis (H2) can be written

as three sub- hypotheses as follows:

H2:A: A high value of service granularity (ASOG) corresponds with a

positive effect on the complexity quality attribute (ASOM).

H2:B: A high value of service granularity (ASOG) corresponds with a

positive effect on the cohesion quality attribute (ASOC).

H2:C: high value of service granularity (ASOG) corresponds with a

negative effect on the coupling quality attribute (ASOU).

Chapter 8 Service Identification Implementation

159

H3: the following architectural quality attributes are dependent on

one another; cohesion is correlated with (ASOU) coupling, coupling

is correlated with complexity (ASOM) and complexity (ASOM) is

correlated with cohesion (ASOC).

The third hypothesis (H3) can be written as three sub- hypotheses as follows:

H3:A: The architectural quality attributes of complexity (ASOM) and

cohesion (ASOC) are correlated.

H3:B: The architectural quality attributes of complexity (ASOM) and

coupling (ASOU) are correlated.

H3:C: The architectural quality attributes of cohesion (ASOC) and

coupling (ASOU) are correlated.

8.3 Study Design

Collecting data for metrics measurements is often a difficult task (Pandian

2003). The process needs to be developed in an evolutionary development style

that considers a heterogeneous change in models and metric measurements. The

goal of this study is to determine whether our framework can assist in

developing the appropriate service interface designs to provide the appropriate

level of service granularity. After generating several service interface designs

using the modelling transformation, the service quality model is used not only

to evaluate the service quality attributes but also to select the optimum service

interface design for a given set of services. The framework provides a

methodology to guide the service modelling phase, considering the impact of

service granularity on architectural quality attributes. It suggests various

measurements for quality attributes for a set of services in a given service

domain.

8.4 Variables and Measures

To assess the feasibility of using our framework to deriving different service

designs and to quantify the impact of the service granularity concept on other

SOA internal architectural attributes, we then applied metrics defined in

section ‎5.2 and ‎5.3 using the framework’s dataset (collected from our framework

scenarios)

Chapter 8 Service Identification Implementation

160

8.4.1 Independent Variables

There is one independent variable that might have a significant influence on

the final result of the experiment. In the context of appropriate service design,

the service granularity reflects the independent variable as the service

granularity which has been represented here by the metric Average Service

Operation Granularity (ASOG). The ASOG metric defined is based on the

quality model introduced in (section ‎5.2.3) and it quantifies the service

granularity for all services in a given service domain.

To be able to quantify ASOG, we develop a new quality model that

provides a measurement method for Service Operation Granularity (SOG). The

service granularity was firstly calculated for the operations level of a service

and then for the services level of a service domain. The ASOG was then

calculated for three examples (two from OMG, and one from a published

academic report); and each example was re-factored to provide several service

design cases.

8.4.2 Dependent Variables

There are three dependent variables defined that could have been affected by

the independent variable of service granularity (ASOG) as follows:

1. The average service operation complexity (ASOM) metric focuses on the

functionality aspect of the complexity quality attribute (defined as part of

service operation granularity (SOG)). The ASOM is a metric defined based

on the quality model introduced in (section ‎5.3.1):

2. The average service operation cohesion (ASOC) metric considers the

occurrence of similar size of data and the operation types of service

operations based on the service operation cohesion metric

previously defined. Thus, the cohesion metric is initially calculated on a

Chapter 8 Service Identification Implementation

161

service level then applied to all services on a service domain. The ASOC

metric is defined (using the quality metrics explained in section ‎5.3.2) as

follows:

3. The average service operation coupling (ASOU) metric measures

dependency between service operations through invocation methods

(synchronous and asynchronous) to take account of the strong impact of

service size. The ASOC metrics is defined (using the quality metric

explained in section ‎5.3.3) as follows:

8.5 Research Data

This section describes how the dataset was collected and used to describe and

explore the research study. The dataset was generated from our experimental

framework. The dataset extraction and processing are completed using a parser

which was developed as part our framework (the parser implementation was

explained in section‎6.5).

The dataset was collected based on the WS-CDL document (XML format)

produced automatically from the three scenarios used to demonstrate the

BPMN to WS-CDL transformation (these are defined in section ‎6.3.1). We

generated five re-factored designs of service interfaces for each application

examples using the algorithm which we discussed in section ‎6.3.3. As result, five

cases (in the form of the WSDL documents generated for every example) were

processed through the syntax analyser in text data to produce the four metrics

of ASOG, ASOM, ASOC and ASOU. Table 8-1 shows the computation of the

four metrics for the dataset.

Chapter 8 Service Identification Implementation

162

Table ‎8-1 Metric Results for Framework Dataset

Example Scenario ASOG ASOM ASOC ASOU

OMG Incident
Management
NO = 9

1 0.722 0.076 0 0

2 1.087 1.204 0 2

3 1.148 1.408 0 1.6

4 1.106 1.291 0.142 1

5 1.111 1.333 0 1

OMG Nobel Prize
NO = 5

1 0.629 0.395 0.5 0

2 0.75 0.625 0.25 1

3 1 1 0 0

4 0.850 0.767 0.166 0.333

5 0.875 0.916 0 1

Procurement
NO = 5

1 0.653 0.426 0.333 0

2 0.833 0.722 0 0.25

3 0.8 0.666 0 0.4

4 1 1 0.1 0.6

5 1 1 0 0.5

8.6 The Data Analysis

The dataset was generated from our parser as text files. SPSS5 (a statistical

analysis tool) is used to analyse our data and conduct descriptive and statistical

testing. The SPSS tool was selected because it is a well-accepted and widely

used.

8.6.1 Descriptive Statistics

Descriptive statistics are used in different ways to present different

characteristics of dataset graphs and statistical techniques. We will use graphs

to show how our framework might assist in deciding which service design

models best meet the given design requirements.

In order to check the normality of the datasets and to decide appropriate

statistical tests, we use the Shapiro-Wilk test. This tests a composite hypothesis

and is suitable for a small number of samples (less than 50 samples); a Sig

(P-value) of the Shapiro-Wilk greater than 0.05 indicates that the data are

normally distributed (Shapiro and Wilk 1965) (it measures the skewness of the

data distribution (referred to the asymmetry). We also use the

quantile-quantile (Q-Q plot) as graphical tests that examine whether or not the

5
 http://www-01.ibm.com/software/analytics/spss/downloads/

http://www.omg.org/spec/BPMN/20100602/2010-06-03/Incident%20Management/
http://www.omg.org/spec/BPMN/20100602/2010-06-03/Incident%20Management/
http://www.omg.org/spec/BPMN/20100602/2010-06-03/Nobel%20Prize/

Chapter 8 Service Identification Implementation

163

data is normal. Data appears as a linear line suggests a normal distribution,

where data appears as a nonlinear line suggests a distribution that is not

normal.

8.6.2 Statistical Testing

The relationships between bivariate or multivariate data can be effectively

defined and the degree and direction can be measured by using statistical tests

such as correlation (Johnson and Bhattacharyya 1986). It is important to

analyse the nature of the relationships between variables to find out if one

manipulates the other to apply the appropriate test types. In our study, we will

apply correlation tests using Pearson's (r) technique because our data are based

on the ratio-type when the data are normally distributed. Otherwise,

Spearman’s correlation coefficient (rs) will be used. The Pearson's technique is

also called the linear or product-moment correlation and is intended to be used

to describe the association between continuous variables. The value of a

correlation coefficient varies between -1 and +1. For further analysis, the

correlation coefficient value can be interpreted within different scales (strong,

moderate or weak); for instance, r = ±.70 represents a very strong relationship,

from ±.40 to ±.69 represents a strong relationship, from ±.30 to ±.39 represents

a moderate relationship, from ±.20 to ±.29 represents a weak relationship and

from ±.01 to ±.19 represents no or negligible relationship (Cohen 1988).

Pearson's test assumes the variables are normally distributed and there are no

outliers (Kowalski 1972). If any skewed data are very small, outliers can be

removed from the data after scanning the data using the scatter-plot chart.

However, the Spearman’s correlation coefficient rs is also a correlation test

which can be used when the data are not normally distributed, and with all

types of scale measurements.

8.6.3 Regression Analysis

In order to analyse existing relationships between different dependent and

independent variables, we apply regression analysis. Regression analysis is a

method to discover the relationship between one or more dependent variables

and independent variables (Yan and Su 2009). The casual relationship between

Chapter 8 Service Identification Implementation

164

two quantitative variables can be measured using regression analysis (Johnson

and Bhattacharyya 1986) (this is also called the “line of best fit”).

There are three types of regression; simple linear, multiple linear and

nonlinear regressions. Simple linear regression studies the linear relationship

between two variables and assumes that one variable (independent) controls

the other one (dependent). In other words, linear regression represents the

equation y= a + bx, where y is the predictor (dependent) variable and x is the

response (independent) variable, where the value of a is constant and b is the

slope of the linear equation. The relationship can be demonstrated graphically

as a straight line where the independent variable is multiplied by the slope

coefficient and a constant is added. When there are more than one independent

variables and one dependent, multiple linear regression is applied. Multiple

regression studies the linear relationship between one dependent variable and

several independent variables. It assumes that the response variable has a linear

relationship in a model with several predictor variables (Yan and Su 2009). The

formula of the multiple regression models is:

Where are regression coefficients, are independent

variables, is the dependent variable and is an error value. Finally, nonlinear

regression studies any kind of relationship between dependent and independent

variables that is not linear. It is also called “nonlinear least squares fittings”,

and always assumes that there is a nonlinear relationship depending on one or

more undefined parameters. There are two main types of nonlinear models;

polynomial models and alternate nonlinear models (Munson 2003). We tested

several nonlinear regression models such as Cubic, Exponential, Quadratic and

Power. Finally, we found that the Cubic model behaves better and gives

usually practical results with a quality of fit corresponding to a high . The

Cubic model represents a nonlinear regression polynomial degree-three equation

of “best fit". The formula of the equation of cubic regression is

 ,

Where a, b and c are regression coefficients, d is a fixed value (the dependent

variable), x is an independent variable and y is a dependent variable.

Chapter 8 Service Identification Implementation

165

8.7 Results and Discussion

The descriptive statistics in this section present the values for computed

metrics of ASOG, ASOM, ASOC and ASOU for the research datasets. In

particular, table 8-3 shows the descriptive summaries of the minimum and

maximum values, as well as the values of central tendency (mean and median),

dispersion (standard deviation and variance) for the first dataset which was

generated from our transformation experimental process. The following

observations can be made from table 8-2:

 For the results reported for ASOG, ASOM and ASOU, apart from the

ASOC, the standard deviation is small relative to the value of the mean;

therefore the mean is a good representation of the data.

 The ASOC has a relatively low mean value and standard deviation. As we

have seen in table 8-1 (section 8.5), several cases in the demonstrated

scenarios do not have any significant cohesion, which explains why the

ASOC metric has low value and variance.

 The ASOU has the largest maximum, which could be due to large

dependencies between services with very low levels of granularity. The

ASOU also has the largest standard deviation, which confirms there is a

wide range of values among cases.

 There are cases of the service design interfaces with no cohesion and

coupling among services (ASOC and ASOU have zero minimum). This

may reflect having one monolithic service in a service domain with a

minimum value of zero in coupling (ASOU), it alternatively refers to lack

of cohesion (ASOC) for other cases in a scenario.

Table ‎8-2 Descriptive statistics - ASOG, ASOM, ASOC and ASOU metrics

Descriptive Statistics

 N Minimum Maximum Mean Std. Deviation Variance

ASOG 15 .277 1.148 .874 .234 .055

ASOM 15 .076 1.408 .855 .380 .145

ASOC 15 .000 .500 .090 .155 .024

ASOU 15 .000 1.600 .680 .508 .258

Valid N (listwise) 15

Chapter 8 Service Identification Implementation

166

8.7.1 Service granularity versus individual quality attributes (H2)

In this section, we investigate the second hypothesis that is concerned with the

relationships between the service granularity variable (ASOG) and other

internal architectural service quality attributes such as complexity (ASOM),

cohesion (ASOC) and coupling (ASOU). We used linear and nonlinear

regression analysis to investigate the relationship between ASOG as the

dependent variable and all quality attributes as independent variables (ASOM,

ASOC and ASOU). The study uses statistical tests with the dataset from our

framework. For this study, the ASOG presents the independent variable and

the ASOM, ASOC and ASOU are independent variables.

8.7.1..1 Service Granularity versus Complexity (H2:A)

To test the sub-hypothesis that high value of service granularity (ASOG) would

correspond with positive effect on the complexity quality attribute (ASOM) a

simple linear regression was performed. Tests indicated that a linear

relationship between service granularity (ASOG) and service complexity

(ASOM) for our framework’s dataset. The coefficient table is shown for the

dataset below (related statistical tables are provided in appendix C).

Using the framework dataset: the dataset is normally distributed

according to the Shapiro-Wilk’s test and the Q-Q plot. Fig. 8-1 shows the best-

fit line equation and table 8-3 illustrates the linear regression results as follow:

 −

 −

 The = 0.953 indicates that with probability of about 95%,

knowing ASOG would predict ASOM.

 The constant’s value a = -0.534 estimates the value of service

complexity (ASOM) with a zero value of service granularity (ASOG).

The interpretation of this particular constant variable with negative

value (-.534) is not meaningful since the complexity attribute does not

have a negative value. However, this negative value refers to the

relationship between the ASOG and ASOM and can still be used for

computations with the value of the ASOG variable.

 The regression coefficient’s value is 1.588, which represents changes in

the value of ASOM when a change taken place in the value of ASOG.

In other words, the average level of service complexity increases by

Chapter 8 Service Identification Implementation

167

1.588 corresponding to an increase of 1.00 in the value of average level

of service granularity. It indicates that there is a positive effect based

on intercept = 1.588, thus ASOG has a positive effect on ASOM.

Table ‎8-3 Simple linear regression coefficients for ASOG dependent and ASOM

independent variables for the framework dataset

Coefficientsa

Model

Unstandardised

Coefficients

Standardised

Coefficients

t Sig. B Std. Error Beta

1 (Constant) -.534 .088 -6.069 .000

ASOG 1.588 .097 .976 16.321 .000

a. Dependent Variable: ASOM

Upper boundary for 95%

confidence interval

Lower boundary for 95%

confidence interval

Y = 1.588 * x + - .534

Line of best fit

Figure ‎8-1 Linear regression results of ASOM and ASOG variables from the framework

dataset

8.7.1..2 Service Granularity versus Cohesion (H2:B)

To test the sub-hypothesis that a high value of service granularity (ASOG)

would correspond with positive effect on the cohesion quality attribute (ASOC)

simple linear regression was performed. Tests indicated a nonlinear relationship

between service granularity (ASOG) and service complexity (ASOC) using the

cubic regression model for our framework’s dataset. The coefficient table is

shown for the dataset below (related statistical tables are provided in appendix

C).

Using the framework dataset: the dataset is not normally distributed

poor fit for the current data according to Shapiro-Wilk’s test and the Q-Q plot,

Chapter 8 Service Identification Implementation

168

ASOC’s P-value = .000 < 0.05. The cubic test was selected because it showed a

higher (= 0.741) value and gave closest data points to the regression

equation. Fig. 8-2 shows the nonlinear equation and table 8-4 illustrates the

nonlinear regression results using a cubic model as follows:

 − −

 −

 The = 0. 741 indicate that there is probability of 74% that

knowing ASOG would predict ASOC.

 The constant’s value a = − estimates that the value of service

cohesion (ASOC) with zero value of service granularity (ASOG). This

can be used for computations with the value of the ASOG variable.

With two bends on the figure 8-2, we can conclude that there is a

positive effect based on (a positive value), thus ASOG

has a positive effect on ASOC.

 The F test indicates that the variability between ASOC and ASOG is

statistically significant with , P-value < 0.05.

Table ‎8-4 Nonlinear regression model summary using cubic test for ASOC and ASOG

variables on the framework dataset

Equation

Model Summary Parameter Estimates

R

Square

F df1 df2 Sig. Const. b1 b2 b3

Cubic
0.741 10.48 3 11 .001 -2.057 11.566 -16.810 7.267

Chapter 8 Service Identification Implementation

169

y = -2.057 + 11.566 * x + -

16.810 * x*x + 7.267 * x*x*x

Lower boundary for 95%

confidence interval

Upper boundary for 95%

confidence interval

Line of best fit

Figure ‎8-2 Nonlinear regression results of ASOC and ASOG variables using the Cubic

regression model for the framework dataset

8.7.1..3 Service Granularity versus Coupling (H2:C)

To test the sub-hypothesis that a high value of service granularity (ASOG)

would correspond with negative effect on the coupling quality attribute

(ASOU) simple linear regression was performed. Tests indicated that a linear

relationship between service granularity (ASOG) and coupling (ASOU) for the

framework dataset. The coefficient table is shown for the dataset below (related

statistical tables are provided in appendix C).

Using the framework dataset: the dataset is normally distributed on

the basis of the Shapiro-Wilk’s test and the Q-Q plot. Fig. 8-3 shows the best-

fit line equation and table 8-5 illustrates the linear regression results as follow:

 −

 −

 The = 0.697 indicates that there is probability of 70% that

knowing ASOG would predict ASOU.

 The constant’s value a = -0.906 estimates that the value of ASOU

with a zero value of ASOG. The interpretation of this particular

constant variable with negative value (-.0.906) is not meaningful since

the coupling attribute does not have a negative value.

 The regression coefficient’s value is 1.813, which represents changes in

the value of ASOU when a change is accounted in ASOG. In other

words, the average level of ASOU increases by 1.588 corresponding to

Chapter 8 Service Identification Implementation

170

an increase of 1.00 in the value of average level of ASOG. It indicates

that there is a positive effect based on intercept = 1.813, thus ASOG

has a positive effect on ASOU.

Table ‎8-5 Linear regression model summary for ASOU and ASOG variables on the

framework dataset

Coefficientsa

Model

Unstandardised Coefficients

Standardised

Coefficients

t Sig. B Std. Error Beta

(Constant) -.906 .300 -3.022 .010

ASOG 1.813 .332 .835 5.464 .000

a. Dependent Variable: ASOU

Figure ‎8-3 Linear regression chart of ASOU and ASOG variables on the framework

dataset

8.7.2 Relationships between quality attributes (H3)

In this section, we investigated the third hypothesis that is concerned with the

relationships between the service qualities of different attributes such as

complexity (ASOM), cohesion (ASOC) and coupling (ASOU). We used

correlation coefficient to investigate the relationship between the (ASOM),

(ASOC) and (ASOU), two variables at time. The investigation is based on

statistical tests using the dataset from our framework. The classifications of the

Chapter 8 Service Identification Implementation

171

relationships (e.g., strong positive, weak positive) between variables are defined

based on the definitions in section ‎8.6.2.

8.7.2..1 Complexity versus Cohesion (H3:A)

A correlation test was performed to test the sub-hypothesis that the

architectural quality attributes of complexity (ASOM) and cohesion (ASOC)

are correlated. Spearman’s correlation coefficient or Pearson's correlation

coefficient tests are conducted depending on the normality of the dataset.

The correlations coefficient table is shown below for the dataset as follows:

Using the framework dataset: the dataset is not normally distributed

on the basis of the Shapiro-Wilk’s test and the Q-Q plot, thus Pearson's

correlation coefficient test was conducted. Table 8-6 illustrates the

correlation coefficient results as follow:

 The correlation coefficient (rs = -0.533) showed that the relationship

between ASOM and ASOC is a strong negative relationship and is

statistically significant (P-value = 0.041 < .05). The result of (rs)

suggests that an increase in ASOM results in a large decrease in the

value of ASOC, and vice versa.

Table ‎8-6 The Spearman's rho for ASOM and ASOC variables from the framework

dataset

 ASOM ASOC

Spearman's

rho

ASOM Correlation Coefficient 1.000 -.533*

Sig. (2-tailed) . .041

N 15 15

ASOC Correlation Coefficient -.533* 1.000

Sig. (2-tailed) .041 .

N 15 15

*. Correlation is significant at the 0.05 level (2-tailed).

8.7.2..2 Complexity versus Coupling (H3:B)

A correlation test was performed to test the sub-hypothesis that the

architectural quality attributes of complexity (ASOM) and coupling (ASOU)

are correlated. Spearman’s correlation coefficient or Pearson's correlation

coefficient tests are conducted depend on the normality of the dataset. The

correlations coefficient table is shown below for the dataset as follows:

Chapter 8 Service Identification Implementation

172

Using the framework dataset: the dataset is normally distributed on

the basis of the Shapiro-Wilk’s test and the Q-Q plot, thus Pearson's

correlation coefficient test was conducted. Table 8-7 illustrates the

correlation coefficient results as follow:

 The Pearson correlation coefficient (r =0.895) showed that the

relationship between ASOM and ASOU is a very strong positive

relationship and is statistically significant (P-value = 0.000 < .05). The

result of (r) suggests that the increase in ASOM might also cause a

large increase in the value of ASOU, and vice versa.

Table ‎8-7 The Pearson (r) test for ASOM and ASOU variables from the framework

dataset

 ASOM ASOU

ASOM Pearson Correlation 1 .895**

Sig. (2-tailed) .000

N 15 15

ASOU Pearson Correlation .895** 1

Sig. (2-tailed) .000

N 15 15

**. Correlation is significant at the 0.01 level (2-tailed).

8.7.2..3 Coupling versus Cohesion (H3:C)

A correlation test was performed to test the sub-hypothesis that the

architectural quality attributes of coupling (ASOU) and cohesion (ASOC) are

correlated. Spearman’s correlation coefficient or Pearson's correlation

coefficient tests are conducted depend on the normality of the dataset. The

correlations coefficient table is shown below for the dataset as follows:

Using the framework dataset: the dataset is not normally distributed

on the basis of the Shapiro-Wilk’s test and the Q-Q plot, thus the Spearman’s

correlation coefficient (rs) test was conducted test was conducted. Table 8-8

illustrates the correlation coefficient results as follow:

 The correlation coefficient (= -0.525) showed that the relationship

between ASOC and ASOU is a strong negative relationship and is

statistically significant (P-value = 0.044). The result of suggests

that the increase in ASOC might cause a large decrease in the value of

ASOU, and vice versa.

Chapter 8 Service Identification Implementation

173

Table ‎8-8 The Spearman's rho for ASOC and ASOU variables from the framework

dataset

Variable Test ASOC ASOU

ASOC Spearman'srho Correlation Coefficient 1.000 -.525

Sig. (2-tailed) .044

N 15 15

ASOU Spearman'srho Correlation Coefficient -.525 1.000

Sig. (2-tailed) .044

N 15 15

8.8 Reflection on Research Hypotheses

In this section, we will conduct an analysis of the results from the empirical

evaluation to accept or reject the second (H2) and third (H3) research

hypotheses addressed in (section ‎8.7). During our empirical evaluation, we are

interested in the second and the third hypotheses as follows:

In order to accept or reject the hypotheses, we define a preselected

significance level equal to .05 and consider the following elements in selecting

the testing methods:

1. With Pearson and Spearman Rho correlation relationships, we

calculated the test statistic using this formula, T

 , and observed

the T-critical value using the t-table distribution. When T value > T-

critical value, we reject the null hypothesis , otherwise, the is

accepted.

2. With linear regression models, we used the t-test to investigate whether

the slope (regression coefficient) of the regression line differs

significantly from zero. The t-score is used to compensate for standard

error because our sample data size (n) is less than 30 samples.

3. With nonlinear regression (polynomial), we used the F-test to test the

null hypothesis 1= 2= 3= 0 and to investigate the significance of

relationships between independent and dependent variables. The F-test is

used to check the significance of the regression within preselected a

significance level alpha − .

Chapter 8 Service Identification Implementation

174

8.8.1 Impact of granularity on quality attributes (H2)

In this section, we discuss the analysis results of the second hypothesis

concerned with the impact of service granularity on the other quality attributes

of complexity, cohesion and coupling. This presents the impact based on the

dataset generated from our framework using regression analyses. The second

hypothesis discussion is divided into three sub-hypotheses, as follows:

H2:A: the impact of service granularity (ASOG) on complexity (ASOM).

H2:B: the impact of service granularity (ASOG) on cohesion (ASOC).

H2:C: the impact of service granularity (ASOG) on coupling (ASOU).

8.8.1..1 Impact of Service Granularity on Complexity (H2:A)

Using the framework dataset: the null hypothesis (is rejected because

we noticed that there is a statistically significant difference in the

distributions − . Thus, this linear equation

can assist in predicting the service complexity (ASOM). A high value of service

granularity (ASOG) would correspond with effect on the complexity quality

attribute (ASOM).

We calculated the t-score in order to check the credibility of our model

and derived the T-score =16.37 (t= 1/SE = 1.588/0. 097) (based on the slope

 1 being equal to 1.588, the standard error (SE) = .097, and the degree of

freedom (df) =14 (based on our dataset df = n - 15) (table 12)). We used the

t-table distribution to determine the two-tailed P-value (t > 16.37) = 0.0001.

By conventional criteria, this difference is considered to be statistically

significant. Thus, the P-value (0.0001) is less than the significance level (0.05);

so we can reject the null hypothesis. That is, at 95% confidence interval of this

difference is from 1.379 to 1.796.

The alternative hypothesis is accepted. The linear equation shows a

positive value for the regression coefficient (intercept), this means a positive

effect and confirms our hypothesis (H2.A) that states ASOG has a positive

effect on ASOM.

Chapter 8 Service Identification Implementation

175

Figure 8-4 shows three examples with different numbers of service

operations and granularity scales; we note that the overall number of

operations in all services in the domain affects the relationship between the

average service granularity and complexity of domain services. For example,

the increase of service granularity (ASOG) in figure 8-4.A, B and C (with low

numbers of service operations 9, 5 and 5, respectively) causes a slight

decrease/increase in the complexity. This result may also occur because the

ASOM and ASOG metrics were driven based on the calculated value of Service

Operation Granularity (SOG).

Figure ‎8-4 The relationship between Granularity (ASOG) and Complexity (ASOM)

8.8.1..2 Impact of Service Granularity on Cohesion (H2:B)

Using the framework dataset: The null hypothesis (is that 1=

 2= 3= 0 is rejected because we noticed that there is a statistically significant

Chapter 8 Service Identification Implementation

176

difference in the distributions − . Thus, the

nonlinear equation can assist in predicting the service cohesion (ASOC). A high

value of service granularity (ASOG) would correspond with effect on the

cohesion quality attributes (ASOC).

The computed F value = 10.48, which gives a P-value of 0.001. This

means that there is a 99.9% chance that there is a significant difference in the

data. From the F distribution table, we can see the critical point value with 3

degrees of freedom, error at 11 degrees of freedom and is 3.59

(, so we reject the null hypothesis because

computed F > critical point F and the result we derived based on the

framework dataset is significant. We are 95% confident that there is significant

variance between both ASOG and ASOC variables.

The alternative hypothesis is accepted. The nonlinear equation

shows a positive value for the value, this means a positive effect and

confirms our hypothesis (H2.B) that states ASOG has a positive effect on

ASOC.

The relationship patterns that can be defined between ASOC and ASOG

in the small-scale service domain are that the increase of service granularity

(ASOG) will result either in decrease or no change in cohesion (ASOC). For

example, figure 8-5.B and C indicated that the increase in the value of ASOG

results in a decrease in ASOC at different level of granularity; when the ASOG

value increases by 0.224, the ASOC value decreases by 0.123. Although we were

able to find a mathematical relationship between ASOG and ASOC, we found

that there are other factors that might affect the cohesion measurement more

than the granularity factor. When there is no cohesion among operations or

exchanged messages in a set of services, re-factoring the service to produce a

different service granularity will have no effect. For example, in figure 8-5.A,

the value of ASOC (cohesion) was equal to zero regardless of the change of the

level of granularity, while the value of ASOG fluctuated between 0.27 and 1.14.

We can conclude that the result of the F-test and the graphical chart is that

the ASOG variable can be used to predict the level of cohesion in a set of

services.

Chapter 8 Service Identification Implementation

177

Figure ‎8-5 The relationship between Granularity (ASOG) and Cohesion (ASOC)

variables

8.8.1..3 Impact of Service Granularity on Coupling (H2:C)

Using the framework dataset: The null hypothesis (is rejected

because we noticed that there is statistically a significant difference in the

distributions − . Thus, this linear equation can

assist in predicting the service coupling (ASOU). A high value of service

granularity (ASOG) would correspond with effect on the quality attributes

coupling (ASOU).

The t-score computed value is 5.46 (t= 1/SE = 1.813/0.332), based on

the slope 1 being equal to 1.813, the standard error (SE) = .332, and the

degree of freedom (df) =14 (based on our dataset df = n -15) (table 13). We

used the t-table distribution to determine the two-tailed P-value (t > 5.46) =

Chapter 8 Service Identification Implementation

178

0.0001. Based on conventional criteria, this difference is considered to be

statistically significant. Thus, the P-value (.0001) is less than the significance

level (0.05); so we can reject the null hypothesis. (At 95% confidence interval of

this difference is from 1.10093 to 2.52507).

The alternative hypothesis is rejected. The linear equation shows a

positive value for the regression coefficient (intercept), this means a positive

effect and disconfirms our hypothesis (H2.C) that states ASOG has a negative

effect on ASOU.

The increase in the level of service domain granularity (ASOG) might

increase the value of coupling (ASOU) among services with different degrees. In

figure 8-6.B, the value of coupling increases from zero to 0.5 unit corresponds to

the increase in granularity by 0 .12 unit in scenario 2, where it increases to 1

unit corresponding to the increase in granularity by 0.25 unit in scenario 3.

However, we found that operations with similar behaviour that re-factored

within new services processing different data size and types minimized the

dependencies among services because reduce invocation of other services. The

dependencies among services might reach a point where further granularity has

no effect; for example, in figure 8-6.A (scenarios 3 and4) the coupling value did

not change despite the increase in the granularity value.

Chapter 8 Service Identification Implementation

179

Figure ‎8-6 The relationship between Granularity (ASOG) and Coupling (ASOU)

variables

8.8.2 Dependencies between Quality attributes (H3)

In this section, we discuss the analysis results of the third hypothesis concerned

with dependencies between quality attributes of complexity, cohesion and

coupling. This presents relationships between attributes using correlation

coefficient on the dataset generated from our framework. The third hypothesis

discussion can be divided into three sub-hypotheses, as follows:

H3:A: the architectural quality attributes of complexity (ASOM)

and cohesion (ASOC) are correlated.

H3:B: the architectural quality attributes of complexity (ASOM)

and coupling (ASOU) are correlated.

H3:C: the architectural quality attributes of cohesion (ASOC) and

coupling (ASOU) are correlated.

Chapter 8 Service Identification Implementation

180

8.8.2..1 Correlation of Complexity and Cohesion (H3:A)

Using the framework dataset: the null hypothesis (is rejected because

we observed that the T = 2.271 which is greater than the T-critical value of

2.160, thus there is a statistically small significant association between service

complexity (ASOM) and service cohesion (ASOC). The statistic is computed as

follow:



 = 2.271

 T-critical value = 2.160 , at − − −

The alternative hypothesis is accepted, because the null hypothesis is

rejected and there is a significant association between ASOM and ASOC. The

difference between the observed T and T-critical value is 0.1. This difference is

low which means the association might be an indirect association. This is

confirmed by the fact that the p-value equal .041 (close to 0.05) and

− . Nevertheless one of the selected OMG examples has no cohesion among

services in the proposed scenarios (figure 8-7 A, B and C).

It is clear that there is a negative relationship between ASOM and ASOC,

as an increase in ASOC causes a decrease in ASOM (figure 8-7.A, B and C).

Thus, this means there is a correlation between ASOM and ASOC and confirms

our hypothesis (H3.A) that states ASOM and ASOC are correlated.

Chapter 8 Service Identification Implementation

181

Figure ‎8-7 The relationship between Complexity (ASOM) versus Cohesion (ASOC)

8.8.2..2 Correlation of Complexity and Coupling (H3:B)

Using the framework dataset: the null hypothesis (is rejected because

we observed that the T = 7.234 which is greater than the T-critical value of

2.160, thus there is a statistically highly significant association between service

complexity (ASOM) and service coupling (ASOU). The statistic is computed as

follows:



 = 7.234

 T-critical value= 2.160 , at − − −

The alternative hypothesis is accepted, because the null hypothesis is

rejected and there is a significant association. The difference between the

observed T and T-critical value is 5.1 which more likely significant. This is

confirmed by the fact that the p-value is very small (close to 0.) and

Chapter 8 Service Identification Implementation

182

 . Thus, this means there is a correlation between ASOM and ASOU and

confirms our hypothesis (H3.B) that states ASOM and ASOU are correlated.

Based on the P-value, the association is a very strong positive

relationship, so high coupling among services seemingly increases the overall

complexity. In a service domain with a coarser-grained service, the coupling

value will always be zero. In contrast, in a fine-grained set of services, the

coupling value will be maximum unless overall complexity is decreased, which

implies that there are factors that might affect coupling besides complexity (see

figure 8-8.A, B and C). Since coupling and complexity metrics were driven

based on different concepts, such a strong relationship implies that controlling

coupling is a very important factor to reduce complexity.

Figure ‎8-8 The relationship between Complexity (ASOM) versus Coupling (ASOU)

8.8.2..3 Correlation Association of Coupling and Cohesion (H3:C)

Chapter 8 Service Identification Implementation

183

Using the framework dataset: the null hypothesis (is rejected because

we observed that the T = 3.607 which is greater than the T-critical value of

2.160, thus there is a statistically significant association between service

coupling (ASOU) and service cohesion (ASOC). The statistic is computed as

follows:



 = 3.607

 T-critical value= 2.160 , at − − −

The alternative hypothesis is accepted, because the null hypothesis is

rejected and there is a significant association. However, this accepting result is

weak since − , with p-value = .044 (close to 0.05). However, this

means there is a correlation between ASOU and ASOC and confirms our

hypothesis (H3.C) that states ASOU and ASOC are correlated.

We confirm that the relationship between coupling and cohesion is an

inverse one. The main difference between the values of coupling and cohesion is

that cohesion might always occur among services regardless of the level of

granularity, whereas coupling does not occur in a service domain consisting of a

coarse-grained service (see scenario 1 in figure 8-9.A, B and C).

Chapter 8 Service Identification Implementation

184

Figure ‎8-9 The relationship between Cohesion (ASOC) versus Coupling (ASOU)

8.9 Limitations of Empirical Evaluation

8.9.1 Dataset size

The size of the dataset is a limitation on the validity of our study results. To

increase the reliability and accuracy of the results of the study, the sample size

needs to be sufficiently large. The framework dataset that was collected from

the syntax elements of service interfaces and generated using the algorithm

described in section ‎6.3.3. The defined algorithm generates five cases (five

different designs of service interfaces) for every WS-CDL document generated

from the model transformation. The algorithm could generate 15 cases for our

framework’s dataset from the three application scenarios, as every case is

considered to be as autonomous. We consider these cases as variances of

potential service interfaces. In a perfect dataset, these cases might be

representing all possible re-factored designs of service interfaces for one

scenario, and through the evaluations of all these cases, we are guided to the

Chapter 8 Service Identification Implementation

185

most optimal case. The number of all possible cases for a scenario can be

calculated by for all possible combinations of choreography tasks in a scenario.

The number of all possible combinations can be calculated using the “Bell

number”, which is the number of possible partitions of a set with n numbers

(Yang 1996). For example, for the Incident Management scenario that has nine

choreography tasks, thus n = 9, and all possible combinations equal results in

21140 subsets. The implementation of such a large number of service interfaces

is difficult, and not feasible with the current methodology.

With respect to this issue, we applied non-parametric methods such as

Shapiro-Wilk (test normality) and Spearman's correlation coefficient (correction

test) whenever possible because they are usually more suitable and effective for

a small sample size. Removing potential outliers can increase the accuracy of

the result but the existing number of outliers is high particularly in a small

data set (15 pair of values). In fact, the focus of the current study is on the

relationships and the impact of service granularity (independent) on other

architectural attributes (dependent), not to draw conclusions about those

particular scenarios. This means that it is reasonable to address this limitation

when we tested the second and third research hypotheses.

8.10 Summary

In this chapter, we evaluated empirically the second part of the

implementations of our framework which is the service quality model. This

study used datasets generated from our framework for the empirical evaluation.

Using regression analysis we were able to find linear/nonlinear

relationships between service granularity (ASOG) and other architectural

quality attributes of complexity (ASOM), cohesion (ASOC) and coupling

(ASOU) within the dataset. For the dataset the relationships were described as

three mathematical equations for every dependent variable of ASOM, ASOC

and ASOU that can assist in predicting the value of ASOG. The nature of the

regression relationship (linear or nonlinear) between ASOG and other quality

attributes is variable and depends on the data distribution (normal or

non-normal). We found that statistically there are significant variances between

ASOG and ASOM, ASOC and ASOU at a 95% confidence interval. It can be

observed that the values for all dependent variables (ASOM, ASOC and

ASOU) supported the proposed research hypotheses. The dataset confirms

http://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

Chapter 8 Service Identification Implementation

186

clearly the same trend toward positive and negative directions, apart from the

relationship between ASOG and ASOU. The results fall into a relatively close

scale; e.g., the relationship between cohesion (ASOC) and complexity (ASOM)

within the framework dataset is a strong negative. This supports the second

research hypothesis in which the ASOG impacts positively the service quality

attributes of ASOM and ASOC and contradicts ASOG has a negative effect on

ASOU.

We used correlation analysis to investigate in detail the relationships

between the different service quality attributes of ASOM, ASOC and ASOU.

This analysis showed that all correlations are statistically significant between

these ASOM, ASOC and ASOU attributes with various degrees. These findings

emphasise the importance of being able to measure service quality attributes

and select trade-offs that suit the underlying requirements of the business. This

supports the third research hypothesis in which there are correlated

relationships between ASOM, ASOC and ASOU.

In conclusion, the service quality model provides significant evidence with

respect to the effect of service granularity on other service quality attributes

and confirms previous findings of the relationships between the different

attributes of service quality. The model also contributes to the field of service

computing and can be used to evaluate the service quality aspects of any

service interface design. While, the service quality model has been successfully

supporting our hypotheses and the model transformation architecture,

identifying the most optimum service interface design is still not possible

currently. However, in section ‎9.2.1, we propose a solution that defines

successfully a range of values with optimum values for a service interface

design.

Chapter 9 will summarise the research and discuses the potential future

work that can be used to extend contributes of this thesis.

Chapter 9 Conclusions

and Future Work

This final Chapter concludes the thesis with a review of its contributions to the

field of service computing and a presentation of extensions for future work. This

Chapter is structured as follows: section 9.1 summarises the details of our

research findings and scientific contributions and Section 9.2 explains a number

of potential extensions for development based on the framework developed.

9.1 Research Summary

The main objective of this thesis was to identify the optimum services for a

service-oriented system. In this thesis, the appropriate (optimum) services refer

to services with the precise level of granularity that balances the trade-off

between service quality attributes according to the user-system requirements.

While there has been intensive research in service-oriented systems, the service

identification process is still implicit in the service development cycle, with no

solid methodology or service quality measurements. The definitions of a service

need to consider different architectural levels, which results in an abstraction

gap. One feasible solution is to develop a methodology that identifies services

using a model-driven approach (MDA) with a special focus on service

granularity and service quality attributes.

The integration of SOA and MAD enables us to establish a new

theoretical base of the choreography concept for generating service interface

designs from a business process model. In order to bridge the abstraction gap,

several challenges need to be resolved. An analysis of the current research in

this field determined that most of the current approaches focus on analysis

techniques (such as clustering) to fill the abstraction gap. This isolates services

Chapter 9 Future Work And Conclusions

188

implementation from the business process modelling and does not consider the

importance of measuring service quality attributes and granularity. In our

thesis, we bridged the gap by automatically transforming the business process

choreography to service choreographies and then generated the service interface

designs (potential service implementations), using the service choreography

code to generate the service interface that contrasts the traditional practice of

generating service choreography from service interfaces in WSDL.

The chain of transformation programs in ATL used the semantics of the

service choreographies (WS-CDL) as a mediator to link the semantics of the

business process models (BPMN 2.0) and the service interface design (WSDL)

chain to automatically generate service interface designs (WSDL) from a

business process model (BPMN 2.0) using the service choreographies. To realise

this chain of transformation, the semantics of source and target models must be

compatible. In Chapter 4, we introduced a new extension for BPMN 2.0

specifications to facilitate the mapping between BPMN 2.0 and WS-CDL, the

extension was used in the BPMN meta-model for modelling transformation and

in the service quality model for metrics computations. The meta-models of

WS-CDL and WSDL are defined and supported by developing the theory of

potential usage of choreography in model transformation. We demonstrated the

transformation implementation using three application examples that showed

service choreography (WS-CDL) can be used to enable the transformation from

BPMN 2.0 standards to WSDL. In chapter seven, we showed pragmatically

that the transformation between source and target models generated are valid

XML files and that the consistency of semantics and behaviour was satisfied

throughout the transformation chain.

It is worth noting that our vision (in 2009, at the early stage of the PhD

research) of the importance of choreography in the context of business process

modelling was confirmed when OMG BPMN 2.0 included choreography

specifications as a new element in the BPMN 2.0 standard (BPMN 2.0 was

released in January 2011).

The service quality model is essential for quantifying the service

granularity and quality attributes that affect the selection of the optimum

service interface design. Existing research in service quality models ignores the

measurements for service granularity; despite the importance of the service

granularity issue in service design being addressed. In Chapter 5, we developed

a service quality model based on a definition of service granularity as a metric,

Chapter 9 Future Work And Conclusions

189

by which three metrics for internal service quality attributes of complexity,

cohesion and coupling are derived. In Chapter 8, the metrics were computed

using a generated dataset from our three application examples. We found that

there is a relationship between service granularity and other internal

architectural quality attributes of complexity, cohesion and coupling for both

datasets and there are statistically significant correlations between these

ASOM, ASOC and ASOU attributes. The empirical findings in this thesis

provide the ability to quantify important factors in service design, such as

service granularity, and confirm our understanding of the relationships between

attributes of service quality.

As a summary, the main contributions of our research work include:

 Model transformation software was developed to generate a service

interface design (WSDL) automatically from business process model

(BPMN 2.0) using service choreographies (WS-CDL). Required meta-

models to bridge the semantic gaps are described.

 A service quality model was developed to provide metrics for

measuring the service granularity and service quality attributes of

complexity, cohesion and coupling. The service quality model can be

used to select an optimum service interface design for a set of

services. We developed theories of these metrics based on our

understanding and existing literature in software quality

measurements. We provided a measurement for service granularity

that can be enhanced to include additional factors in the future.

 The integration of the implementations of model transformation and

service quality model can be used to deliver an optimum service

interface designs as shown in future work ‎9.2.1

In conclusion, this thesis discusses a framework that automatically

generates an optimum service interface design from a business process model

based on service choreography using model-driven technology and provides a

quality model for quantifying service quality attributes to reach the optimum

service interface design at an early stage, and in this way, contributes to the

field of the model-driven development of service modelling. We found that

identifying one optimum service interface design is not possible. However we

were successful in defining a range of values mathematically that generate

optimum values for a service interface design. This framework improves the

productivity of SOA development by automating traditional service-oriented

Chapter 9 Future Work And Conclusions

190

development, integrating the service quality assurance within the development

cycle, and increasing the robustness of developing service interface concerning

service granularity. Although some limitations remain before the framework

can be applied generally to Service Computing applications, we believe the

framework proposed, designed, implemented, and evaluated in this thesis

presents an important step in the modelling of service-oriented systems.

9.2 Future Work

This thesis can be extended in a variety of ways. The primary extension of this

work would be to identify the optimum service interface designs accurately

using the mathematical equations generated via the service quality model.

Another extension would be to develop a robustness digital dashboard that

integrates the chain of transformation programs with the service quality model.

A third extension would be having access to a large-size of data by enhancing

the extraction mechanism and re-factoring algorithm.

9.2.1 Finding Optimum Service Interface Designs

The optimum service design with the appropriate level of granularity that

balances trade-offs between the service quality attributes of complexity,

cohesion and coupling can be achieved using mathematical relationships. Since

we derived the mathematical relationships between the service granularity

factor and each service quality attribute individually, it is possible to find an

intersection point that satisfies different linear and nonlinear equations of the

quality attributes. The graphical method is used to specify the pair of points

where those simultaneous equations intersect and are satisfied. We assume that

the derived mathematical linear and nonlinear equations in the previous

chapter are valid equations and the best fit for one example.

Figure 9-1 shows three mathematical relationships for a particular service

interface of a set of services. The X-axis represents the values of the service

granularity and the Y-axis represents the values of the service quality

attributes. The intersection points between the equations presented coordinates

that correspond to a unique pair of values through a point (x, y). We have the

three equations, two linear and one nonlinear, with four unknown variables:

ASOG, ASOM, ASOC and ASOU. The optimum service design with the

appropriate level of granularity (ASOG) should have high cohesion (ASOC),

Chapter 9 Future Work And Conclusions

191

low coupling (ASOC), and low complexity (ASOM). In figure 9-1, the three

nonlinear/linear equations do not intersect at a unique point; therefore, no pair

of values (x, y) exists that might satisfy all three equations simultaneously.

According to our problem space, we only consider the pair of points located in

the top right quadrant, where both x and y are positive values because our

quality attributes always must have positive values. In earlier ‎Chapter 8, we

derived the three equations for complexity, cohesion and coupling as follows:

 Complexity (ASOM) = (-0.534) + 1.588 * ASOG

 Cohesion (ASOC) = (-2.0573) + (11.5661) * ASOG + (-16.81) *

ASOG * ASOG + (7.2671) * ASOG * ASOG * ASOG

 Coupling (ASOU) = (-0.906) + (1.813) * ASOG

Figure ‎9-1 Graph of three linear/nonlinear equations: Complexity, Coupling, and

Cohesion

The appropriate values for different quality attributes compared to the

service granularity values are defined as important pairs of coordinates. It is

not possible to find one point where all three equations intersect. Nevertheless,

good service design ideally aims to minimize the values of complexity and

coupling and maximize the value of cohesion. To simplify the demonstration,

we will present firstly complexity and cohesion attributes against the service

granularity and then add the coupling attribute to the chart.

Figure 9-2 shows two intersecting points (dots-line) between the linear

complexity equation and nonlinear cohesion equation. The first point (1.48,

1.82) shows that the level of service granularity (1.48) is where we can achieve

maximum values for complexity and cohesion at 1.82. In contrast, the second

point (0.59, 0.41) shows that the level of service granularity that is equal to

Chapter 9 Future Work And Conclusions

192

0.59 is where we can reduce values of complexity and cohesion to 0.41. In order

to select the optimum level of service granularity, we need to either select

between high cohesion and a high level of complexity at the first point, or else

accept a low level of cohesion with low complexity.

Figure ‎9-2 Graph of three linear/nonlinear equations: Complexity and Cohesion

attributes

To complete the study of all intersected points by adding the coupling

attribute to the coordinates, there are three new intersecting points (blue dots)

between couplings, cohesion, and complexity on the y-axis, and service

granularity on the x-axis (Figure 9-3). Point (1.65, 2.09) represents the worst

service design scenario: high values of coupling and complexity equal to 1.65 at

the fine-grained level of service granularity at 2.09. Point (1.48, 1.82) shows

that at the level of service granularity that is equal to 1.48 we can achieve high

values of coupling where coupling is equal to 1.82. However, at the same level

of service granularity (1.48), the intersection of cohesion and complexity also

shows high complexity. Finally, point (0.68, 0.32) represents the service level of

service granularity equal to 0.32 where we can obtain minimum values of

coupling and cohesion. Consequently, we can infer from figure 9-3 that the

optimum service interface design is located in the grey area, representing the

values of the best levels of service granularity (between 0.59 and 1.48) and

quality attributes (between 0.32 and 1.82).

Chapter 9 Future Work And Conclusions

193

Figure ‎9-3 intersected points of three linear/nonlinear equations: Complexity, cohesion

and coupling attributes

We will assume that the 15 design scenarios generated for different OMG

examples represent the service interface design for a similar set of services.

Now, we can use these intersected points to evaluate scenarios of the service

interface design generated based on our metric models table (Table 1). As

shown in Table 1, scenario 6 reports the optimum service interface design result

that balances quality attributes of complexity, cohesion and coupling. This

provides the ideal solution for this example even with the value of coupling

equal to zero, suggesting that the right level of granularity for that service set

is 0.62906. In general, the results presented in this section further highlight the

promise of integrating quality metrics at the service modelling phase and shows

our experimental process can provide accurate results.

Chapter 9 Future Work And Conclusions

194

Table ‎9-1 Generated datasets for different scenarios of an OMG example based on the

quality metrics

Scenarios ASOG ASOM ASOC ASOU

1 0.722 0.076 0 0

2 1.087 1.204 0 2

3 1.148 1.408 0 1.6

4 1.106 1.291 0.142 1

5 1.111 1.333 0 1

6 0.629 0.395 0.5 0

7 0.75 0.625 0.25 1

8 1 1 0 0

9 0.850 0.767 0.166 0.333

10 0.875 0.916 0 1

11 0.653 0.426 0.333 0

12 0.833 0.722 0 0.25

13 0.8 0.666 0 0.4

14 1 1 0.1 0.6

15 1 1 0 0.5

9.2.2 An Intelligent Digital Dashboard

The objective of developing an intelligent digital dashboard is to provide a

robust interface for designers of service-oriented systems. The interface allows a

system designer to upload a service interface design in WSDL. The system

computes the service granularity value of the current service interface design

and internal quality attributes. When the system designer is able to define the

targeted values of complexity, cohesion and coupling, the system should provide

the range of values required to achieve the appropriate service interface design

that balances the trade-off between the service quality attributes. This

extension depends on the completeness of the extension proposed in section

‎9.2.1. The dashboard should provide functionalities in two ways:

 Complete service identification process. With a given a business

process model, the system designer can upload the business process

model and generate the service interface designs. The metrics would

then be calculated to generate the underlying mathematical

equations. The normalisation of the intersecting points will generate

the area of the optimum range of values that can be used to select

the appropriate service interface design.

Chapter 9 Future Work And Conclusions

195

 Partial service identification process. This assumes that service

interface designs (WSDL) already exist that can be processed for

metric calculations to attain the appropriate service interface design.

9.2.3 Expand the Dataset of the Study

The dataset size in this thesis was limited and this factor inevitably affect the

reliability of the research findings, especially in the results generated from

studying the relationships between the service quality attributes. Access to an

large sized database could be achieved by first improving the extraction

mechanism for online web services (such as Amazon Web Services (AWS)) that

was introduced in section ‎6.5, and second, enhancing the suggested algorithm

to generate more than five service-interface designs for each service

choreography file (WS-CDL code).

196

References

Akiyama, F. (1972). “An Example of Software System Debugging." Information
Processing 71 Proceedings of the IFIP Congress 1.

Alba, M. and S. Gil (2011). Validation and Calibration of Quantitative Models
for Software Development Effort and Size Estimation. Computing Congress
(CCC), 6th Colombian.

Alistair, B., M. Dumas, et al. (2005) “A Critical Overview of the Web Services
Choreography Description Language (WS-CDL)." BPTrends Newsletter

Alistair, B., M. Dumas, et al. (2005). Service Interaction Patterns, Springer
Berlin / Heidelberg. 3649: 302-318.

Arsanjani, A. (2004) “Service-Oriented Modeling and Architecture How to
Identify, Specify, and Realize Services for your SOA."

Arsanjani, A. (2005) “Toward A Pattern Language for Service-Oriented
Architecture and Integration, Part 1: Build a service eco-system."

Arsanjani, A. and A. Allam (2006). Service-Oriented Modeling and
Architecture for Realization of an SOA. The IEEE International Conference on
Services Computing, SCC '06. .

Arsanjani, A., S. Ghosh, et al. (2008). “SOMA: A Method for Developing
Service-oriented Solutions." IBM Systems Journal 47(3): 377-396.

Aversano, L., L. Cerulo, et al. (2008). Mining Candidate Web Services from
Legacy Code. The 10th International Symposium on Web Site Evolution, 2008.
WSE 2008. .

Baeza-Yates, R. and B. Ribeiro-Neto (1999). Modern Information Retrieval,
Addison-Wesley-Longman.

Barker, A., C. Walton, et al. (2009). “Choreographing Web Services." IEEE
Transactions on Services Computing 2(2).

Basci, D. and S. Misra (2009). “Measuring and Evaluating a Design Complexity
Metric for XML Schema Documents." Journal of Information Science and
Engineering 25(5): 1405-1425.

197

Bell, M. (2008). Service-Oriented Modeling : Service Analysis, Design, and
Architecture. Hoboken, NJ, USA, John Wiley & Sons.

Bell, M. (2010). SOA Modeling Patterns for Service Oriented Discovery and
Analysis. New Jersey, John Wiley & Sons, Inc.

Benaben, F., J. Touzi, et al. (2008). Mediation Information System Design in a

Collaborative SOA Context through a MDD Approach. The First International

Workshop on Model Driven Interoperability for Sustainable Information Systems

(MDISIS'08). Montpellier, France.

Benedicto, J., I. Rosenberg, et al. (2010). Analysis of Standard Process
Models:D6.3-C, EDIANA Consortium.

Berners-Lee, T. (2003). Web Services Program Integration across Application
and Organization Boundaries, W3C.

Bezivin, J., H. Bruneliere, et al. (2005). Model Engineering Support for Tool
Interoperability. The 4th Workshop in Software Model Engineering (WiSME
2005). Montego Bay, Jamaica.

Bezivin, J. and O. Gerb (2001). Towards a Precise Definition of the
OMG/MDA Framework. The 16th Annual International Conference on
Automated Software Engineering. Los Alamitos, IEEE Computer Soc: 273-280.

Bezivin, J., S. Hammoudi, et al. (2004). Applying MDA approach for Web
service platform. Los Alamitos, IEEE Computer Soc.

BEzivin, J., F. Jouault, et al. (2003). “First Experiments with the ATL Model
Transformation Language: Transforming XSLT into XQuery." Conference on
Object-Oriented Programming Systems, Languages, and Applications.

Bianchini, D., C. Cappiello, et al. (2009). “P2S: A Methodology to Enable Inter-
organizational Process Design through Web Services." Conference on Advanced
Information Systems Engineering: 334-348.

Bieberstein, N., S. Bose, et al. (2005). Service-Oriented Architecture Compass:
Business Value, Planning, and Enterprise Roadmap, IBM Press.

Biehl, M. (2010). Literature Study on Model Transformations. Stockholm,
Sweden, , Technical Report, Royal Institute of Technology.

Biron, P., K. Permanente, et al. (2004). “XML Schema Part 2: Datatypes
Second Edition, W3C Recommendation." from
http://www.w3.org/TR/xmlschema-2/.

Boehm, B. W. (1976). “Software Engineering." Computers, IEEE Transactions
on C-25(12): 1226-1241.

Boerner, R. and M. Goeken (2009). Identification of Business Services
Literature Review and Lessons Learned. AMCIS 2009 Proceedings.

Boerner, R. and M. Goeken (2009). Service Identification in SOA Governance
Literature Review and Implications for a New Method. The 3rd IEEE
International Conference on Digital Ecosystems and Technologies, 2009. DEST
'09. 2009.

http://www.w3.org/TR/xmlschema-2/

198

Booch, G., R. Maksimchuk, et al. (2007). Object-Oriented Analysis and Design
with Applications, Pearson Education.

Bordbar, B. and A. Staikopoulos (2004). Modelling and Transforming the

Behavioural Aspects of Web Services. The 3rd Workshop in Software Model

Engineering (WiSME@UML 2004) at The 7th IEEE International Conference on the

UML 2004. Lisbon, Portugal.

Brahe, S. and B. Bordbar (2006). “A Pattern-Based Approach to Business
Process Modeling and Implementation in Web Services." International
Conference on Service Oriented Computing: 166-177.

Braunwarth, K. and B. Friedl (2010). Towards a Financially Optimal Design of
IT Services. The 2010 International Conference on Information Systems (ICIS).

Brereton, P. and D. Budgen (2000). “Component-Based Systems: a
Classification of Issues." Computer 33(11): 54-62.

Briand, L., S. Morasca, et al. (1996). “Property-Based Software Engineering
Measurement." IEEE Trans. Softw. Eng. 22(1): 68-86.

Bucchiarone, A. and S. Gnesi (2006). A Survey on Services Composition
Languages and Models. The International Workshop on Web Services Modeling
and Testing (WS-MaTe2006), Palermo, Sicily, ITALY.

Cambronero, M. E., G. Diacuteaz, et al. (2009). “A Comparative Study
Between WSCI, WS-CDL, and OWL-S." The 2009 IEEE International
Conference on e-Business Engineering. ICEBE 2009.

Chen, F., S. Y. Li, et al. (2005). Feature Analysis for Service-Oriented
Reengineering.

Chen, F., Z. Zhang, et al. (2009). Service Identification via Ontology Mapping.
The 3rd Annual IEEE International Computer Software and Applications
Conference, 2009. COMPSAC '09. .

Chinosi, M. and A. Trombetta (2011). “BPMN: An Introduction to the
Standard." Computer Standards & Interfaces 34(1): 124-134.

Clark, J., C. Casanave, et al. (2001) “The ebXML Business Process
Specification Schema Version 1.01."

Coalition, W. M. (2008) “XML Process Definition Language, version 2.1."

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences.
Hillsdale, N.J., L. Erlbaum Associates.

Cohen, S. (2007). “Ontology and Taxonomy of Services in a Service-Oriented
Architecture." Microsoft. Architecture Journal 11.

Costagliola, G., F. Ferrucci, et al. (2005). “Class Point: An Aapproach for the
Size Estimation of Object-Oriented Systems." IEEE Transactions on Software
Engineering 31(1): 52-74.

199

Czarnecki, K. and S. Helsen (2006). “Feature-Based Survey of Model
Transformation Approaches." Ibm Systems Journal 45(3): 621-645.

Davis, M., R. Sigal, et al. (1994). Computability, Complexity, and Languages :
Fundamentals of Theoretical Computer Science. Boston, Academic Press,
Harcourt, Brace.

Debnath, N., F. A. Zorzan, et al. (2007). “Transformation of BPMN
Subprocesses based in SPEM Using QVT." The 2007 IEEE International
Conference on Electro/Information Technology: 170-175.

Decker, G., O. Kopp, et al. (2008). “An Introduction to Service
Choreographies." IT - Information Technology 50(2): 122-127.

Decker, G., O. Kopp, et al. (2007). BPEL4Chor: Extending BPEL for Modeling
Choreographies.

Decker, G., O. Kopp, et al. (2009). “Interacting Services: From Specification To
Execution." Data & Knowledge Engineering 68(10): 946-972.

Decker, G., H. Overdick, et al. (2006). On the Suitability of WS-CDL for
Choreography Modeling. In Proceedings of Methoden, Konzepte und
Technologien Fur die Entwicklung von dienstebasierten Informationssystemen
(EMISA 2006), Hamburg, Germany.

Decker, G. and M. Weske (2011). “Interaction-Centric Modeling of Process
Choreographies." Inf. Syst. 36(2): 292-312.

Delessy, N. and E. Fernandez (2008). A Pattern-Driven Security Process for
SOA Applications. Los Alamitos, Ieee Computer Soc.

Deutsch, M. and R. Willis (1988). Software Quality Engineering: A Total
Technical and Management Approach, Prentice-Hall, Inc.

Dijkman, R. and M. Dumas (2004). “Service-oriented Design: A multi-viewpoint
Approach." International Journal of Cooperative Information Systems 13(4):
337-368.

Dobson, G., R. Lock, et al. (2005). QoSOnt: a QoS Ontology for Service-centric
Systems. The 31st EUROMICRO Conference on Software Engineering and
Advanced Applications, 2005.

Dobson, G., R. Lock, et al. (2005). Quality of Service Requirement Specification

using an Ontology. The 13th Int’l Requirements Engineering Conf. (RE 05),
2005,. .

DongSu, K., S. Chee-yang, et al. (2008). A Method of Service Identification for
Product Line. The Third International Conference on Convergence and Hybrid
Information Technology, 2008. ICCIT '08, 2008.

Dwivedi, V. and N. Kulkarni (2008). A Model Driven Service Identification
Approach for Process Centric Systems. The SERVICES-2. IEEE Congress on
Services Part II, 2008,.

Endrei, M., J. Ang, et al. (2004). Patterns : Service-Oriented Architecture and
Web Services IBM Redbooks Durham, NC, USA, IBM.

200

Erl, T. (2005). Service-Oriented Architecture Concepts, Technology, and
Design. Crawfordsville, Indiana., Prentice Hall/PearsonPTR

Erl, T., A. Karmarkar, et al. (2008). Web Service Contract Design &
Versioning for SOA, Prentice Hall, 2008.

Erradi, A., S. Anand, et al. (2006). Evaluation of Strategies for Integrating
Legacy Applications as Services in a Service Oriented Architecture. The
Proceedings of the IEEE International Conference on Services Computing,
IEEE Computer Society.

Erradi, A., S. Anand, et al. (2006). SOAF: An Architectural Framework for
Service Definition and Realization. The IEEE International Conference on
Services Computing, 2006. SCC '06.

Erradi, A., N. Kulkarni, et al. (2009). Service Design Process for Reusable
Services: Financial Services Case Study. Service-Oriented Computing, ICSOC
2007: 606-617.

Fenton, N. E. and M. Neil (1999). “Software Metrics: Successes, Failures and
New Directions." Journal of Systems and Software 47(2-3): 149-157.

Fischer, L. (2005). Workflow Handbook, Layna Fischer.

Fraley, C. and A. E. Raftery (1998). “How Many Clusters? Which Clustering
Method? Answers Via Model-Based Cluster Analysis." The Computer Journal
41(8): 578-588.

Frankel, D. (2003). Model Driven Architecture: Applying MDA to Enterprise

Computing, John Wiley & Sons.

Funk, C., C. Kuhmunch, et al. (2005). A Model of Pervasive Services for
Service Composition. On the Move to Meaningful Internet Systems 2005: Otm
2005 Workshops, Proceedings. 3762,: 215-224.

Galster, M. and E. Bucherer (2008). A Business-Goal-Service-Capability Graph
for the Alignment of Requirements and Services. IEEE Congress on Services
2008, Pt I, Proceedings: 399-406.

Genon, N., P. Heymans, et al. (2011). Analysing the Cognitive Effectiveness of
the BPMN 2.0 Visual Notation. Proceedings of the Third international
conference on Software language engineering. Eindhoven, The Netherlands,
Springer-Verlag.

Gu, Q. and P. Lago (2010). Service Identification Methods: A Systematic
Literature Review Towards a Service-Based Internet, Springer Berlin /
Heidelberg. 6481: 37-50.

Haeng-Kon, K. (2008). “Modeling of Distributed Systems with SOA & MDA."
IAENG International Journal of Computer Science 35(4).

Haesen, R., M. Snoeck, et al. (2008). On The Definition of Service Granularity
and its Architectural Impact. Advanced Information Systems Engineering,
Proceedings.

201

Haines, M. and M. Rothenberger (2010). “How a Service-Oriented Architecture
May Change the Software Development Process." Communications of the ACM
53(8): 135-140.

Hidaka, S., Z. Hu, et al. (2009). Towards a Compositional Approach to Model
Transformation for Software Development. Proceedings of the 2009 ACM
symposium on Applied Computing. Honolulu, Hawaii, ACM.

Hirzalla, M., J. Cleland-Huang, et al. (2009). A Metrics Suite for Evaluating
Flexibility and Complexity in Service Oriented Architectures. Service-Oriented
Computing, ICSOC 2008 Workshops, Springer-Verlag: 41-52.

Hwang, S., W. Liao, et al. (2010). Web Services Selection in Support of Reliable
Web Service Choreography. The 2010 IEEE International Conference on Web
Services (ICWS), 2010.

ISO/IEC (2001). The ISO/IEC 9126-1:2001 Software Engineering: Product
quality-Quality model.

ISO/IEC (2007). ISO/IEC 25020:2007:Software Engineering - Software Product
Quality Requirements and Evaluation (SQuaRE) -Measurement Reference
Model and Guide.

Jamshidi, P., M. Sharifi, et al. (2008). To Establish Enterprise Service Model
from Enterprise Business Model. The IEEE International Conference on
Services Computing, 2008. SCC '08.

Jianzhi, L., Z. Zhuopeng, et al. (2005). A Grid Oriented Approach to Reusing
Legacy Code in ICENI Framework. The IEEE International Conference on
Information Reuse and Integration, Conf, 2005. IRI -2005

Johnson, R. A. and G. Bhattacharyya (1986). Statistics: Principles and
Methods. New York, NY, USA, John Wiley& Sons, Inc.

Jouault, F. and I. Kurtev (2006). Transforming models with ATL. Satellite
Events at the Models 2005 Conference. J. M. Bruel. Berlin, Springer-Verlag
Berlin. 3844: 128-138.

Kamari, S. and M. Khayyambashi (2010). A Semantic Algorithm for Automatic
Interface Generation of Services Participating in Choreographies. The 2nd
International Conference on Education Technology and Computer (ICETC),
2010.

Kan, S. and C. Jones (2004). Metrics and Models in Software Quality
Engineering, Addison Wesley.

Kim, H. and R. Lee (2008). MS2Web: Applying MDA and SOA to Web
Services, Springer Berlin / Heidelberg. 149: 163-180.

Kim, S., M. Kim, et al. (2008). Service Identification Using Goal and Scenario
in Service Oriented Architecture. The 15th Asia-Pacific Software Engineering
Conference, 2008. APSEC '08. .

Kim, Y. and K. Doh (2007). The Service Modeling Process Based on Use Case
Refactoring. Business Information Systems, Proceedings. W. Abramowicz. 4439:
108-120.

202

Kim, Y. and K. Doh (2009). Formal Identification of Right-Grained Services for
Service-Oriented Modeling. Proceedings of the 10th International Conference on
Web Information Systems Engineering. PoznaD, Poland, Springer-Verlag.

Klazar, M. (2003). “Bell Numbers, Their Relatives, and Algebraic Differential
Equations." Journal of Combinatorial Theory, Series A 102(1): 63-87.

Kleppe, A., J. Warmer, et al. (2003). MDA Explained. The Model Driven

Architecture: Practice and Promise, Addison-Wesley.

Klose, K., R. Knackstedt, et al. (2007). Identification of Services – A
Stakeholder-Based Approach to SOA Development and its Application in the
Area of Production Planning. The 15th European Conference on Information
Systems. St. Gallen, Switzerland,2007.

Kohlborn, T., A. Korthaus, et al. (2009). “Identification and Analysis of
Business and Software Services : A Consolidated Approach." IEEE
Transactions on Services Computing 2(1): 50-64.

Kohlborn, T., A. Korthaus, et al. (2009). Service Analysis - A Critical
Assessment of The State of the Art. The 17th European Conference on
Information Systems. Verona.

Kohlmann, F. and R. Alt (2007). Business-Driven Service Modelling - A
Methodological Approach from the Finance Industry. The First International
Working Conference on Business Process and Services Computing, 2007,,
Leipzig, Germany., GI.

Kokash, N. (2006). A Comparison of Web Service Interface Similarity
Measures. Proceeding of the 2006 conference on STAIRS 2006: Proceedings of
the Third Starting AI Researchers' Symposium, IOS Press.

Kolovos, D., L. Rose, et al. (2012). The Epsilpon Book.

Kopp, O. and F. Leymann (2009) “Do we need internal behavior in
choreography models?" Proceedings of the 1st CentralEuropean Workshop on
Services and their Composition ZEUS 2009 438, 68-73.

Kopp, O., F. Leymann, et al. (2011). Modeling Choreographies: BPMN 2.0
Versus BPEL-based Approaches. Proceedings of the 4th International
Workshop on Enterprise Modelling and Information Systems Architectures,
EMISA 2011. Hamburg, Germany, GI. 190: 225-230.

Kopp, O., F. Leymann, et al. (2010) “Mapping Interconnection Choreography
Models to Interaction Choreography Models." Proceedings of the 2nd
CentralEuropean Workshop on Services and their Composition ZEUS 2010
(2010), 81-88.

Korherr, B. and B. List (2007). Extending the EPC and the BPMN with
Business Process Goals and Performance Measures.

Kowalski, C. (1972). “On the Effects of Non-Normality on the Distribution of
the Sample Product-Moment Correlation Coefficient." Journal of the Royal
Statistical Society. Series C (Applied Statistics) 21(1): 1-12.

Krafzig, D., K. Banke, et al. (2005). Enterprise SOA: Service Oriented
Architecture Best Practices. Upper Saddle River, NJ, Prentice Hall.

203

Kulkarni, N. and V. Dwivedi (2008). “The Role of Service Granularity in A
Successful SOA Realization A Case Study." The 2008 IEEE Congress on
Services Part 1 (SERVICES-1).

Lane, S. and I. Richardson (2011). “Process Models for Service-Based
Applications: A Systematic Literature Review." Information and Software
Technology 53(5): 424-439.

Li, S. and H. Miao (2008). “Modeling the Patterns of WS-CDL Interactions
Based on Process Algebra." 2008 International Seminar on Future Information
Technology and Management Engineering.

Linthicum, D. (2003). Next Generation Application Integration: From Simple

Information to Web Services, Addison Wesley Press.

List, B. and B. Korherr (2006). “An Evaluation of Conceptual Business Process
Modelling Languages." Applied Computing 2006. 21st Annual ACM
Symposium on Applied Computing.

Liu, Y. and I. Traore (2007). Complexity Measures for Secure Service-Oriented
Software Architectures. Proceedings of the Third International Workshop on
Predictor Models in Software Engineering, IEEE Computer Society.

Luo, W. H. and Y. A. Tung (1999). “A Framework for Selecting Business
Process Modeling Methods." Industrial Management & Data Systems 99(7-8):
312-319.

Ma, Q., N. Zhou, et al. (2009). Evaluating Service Identification with Design
Metrics on Business Process Decomposition. The IEEE International
Conference on Services Computing, 2009. SCC '09. .

Martin, D., M. Burstein, et al. (2004). OWL-S: Semantic Markup for Web
Services. 22 November 2004, W3C.

McCall, J., P. Richards, et al. (1977). “Factors in Software Quality." Nat'l
Tech.Information. Service. 1, 2 and 3.

Medjahed, B., B. Benatallah, et al. (2003). “Business-to-Business Interactions:
Issues and Enabling Technologies." The VLDB Journal 12(1): 59-85.

Mellor, J. and M. Balcer (2002). Executable UML: A Foundation for Model-
Driven Architecture, Addison-Wesley Professional.

Mellor, S., K. Scott, et al. (2004). MDA Distilled: Principles of Model-Driven
Architecture, Addison Wesley.

Mendling, J. and M. Hafner (2008). “From WS-CDL Choreography to BPEL
Process Orchestration." Journal of Enterprise Information Management 21(5):
525 - 542.

Milanovic, M. (2007). Modeling Rules on the Semantic Web. Faculty of
Organizational Sciences. Belgrade, University of Belgrade. Master Thesis.

Moha, N., S. Sen, et al. (2010). “Evaluation of Kermeta for Solving Graph-
based Problems." International Journal on Software Tools for Technology
Transfer (STTT) 12,(3): 273-285.

204

Mohagheghi, P. and V. Dehlen (2008). Developing a Quality Framework for
Model-Driven Engineering. Models in Software Engineering. G. Holger,
Springer-Verlag: 275-286.

Mowbray, T. and R. Malveau (1997). CORBA Design Patterns, John Wiley &
Sons.

Munson, J. (2003). Software Engineering Measurement, Auerbach Publications.

Nayak, N., A. Nigam, et al. (2006). Concepts for Service-Oriented Business
Thinking. The IEEE International Conference on Services Computing, 2006.
SCC '06. 2006.

Nguyen, V. (2010). Improved Size and Effort Estimation Models for Software
Maintenance. The 2010 IEEE International Conference on Software
Maintenance (ICSM), 2010.

OASIS Standard (2007) “Web Services Business Process Execution Language
(WSBPEL) 2.0."

OMG (2002). Meta Object Facility (MOF) Specification, OMG.

OMG (2002). OMG/RFP/QVT MOF, 2.0 Query/Views/Transformations, OMG.

OMG (2003). MDA Guide Version 1.0.1. Framingham, Massachusetts, OMG,
Tech.

OMG (2006). Object Constraint Language (OCL) Specification, OMG.

OMG (2008). Meta Object Facility (MOF) 2.0 Query/View/Transformation

Specification, OMG.

OMG (2008) “OMG Business Process Modeling Notation , V1.1."

OMG (2009) “OMG Business Process Modeling Notation , V1.2."

OMG (2010) “BPMN 2.0 by Example."

OMG (2011) “Business Process Model and Notation (BPMN 2.0)."

Pandian, R. (2003). Software Metrics: A Guide to Planning, Analysis, and
Application, Taylor & Francis.

Papazoglou, M. and W. Van (2006). “Service-Oriented Design and Development
Methodology." International Journal of Web Engineering and Technology 2(4).

Papazoglou, M. P., P. Traverso, et al. (2007). “Service-Oriented Computing:
State of the Art and Research Challenges." Computer 40(11): 38-45.

Peltz, C. (2003). “Web Services Orchestration and Choreography." Computer
36(10): 46-52.

Perepletchikov, M., C. Ryan, et al. (2007). Cohesion Metrics for Predicting
Maintainability of Service-Oriented Software. The Seventh International
Conference on Quality Software, 2007. QSIC '07.2007.

205

Perepletchikov, M., C. Ryan, et al. (2007). Coupling Metrics for Predicting
Maintainability in Service-Oriented Designs. The 18th Australian Software
Engineering Conference, 2007. ASWEC 2007. .

Perepletchikov, M., C. Ryan, et al. (2005). The Impact of Software
Development Strategies on Project and Structural Software Attributes in SOA.
The OTM 2005 Workshops On the Move to Meaningful Internet Systems
2005,. Berlin, Germany, Springer. 3762: 442-451.

Perepletchikov, M., C. Ryan, et al. (2010). “The Impact of Service Cohesion on
the Analyzability of Service-Oriented Software." IEEE Transactions on Services
Computing 3(2): 89-103.

Qian, K., L. Jigang, et al. (2006). Decoupling Metrics for Services Composition.
The 5th IEEE/ACIS International Conference on Computer Information
Science, Honolulu, HI,, IEEE Comput. Soc.

Rabhi, F., H. Yu, et al. (2006). A Service-Oriented Architecture for Financial
Business Processes: A Case Study in Trading Strategy Simulation. Information
Systems and e-Business Management, Springer-Verlag.

Ramollari, E., D. Dranidis, et al. (2007). A Survey of Service Oriented
Development Methodologies. The Second European Young Researchers
Workshop on Service Oriented Computing, Leicester, UK.

Recker, J., M. zur Muehlen, et al. (2009). Measuring method complexity: UML
versus BPMN. The 15th Americas Conference on Information Systems AMCIS
2009. San Francisco, California, Association for Information Systems.

Reldin, P. and P. Sundling (2007). Explaining SOA Service Granularity: How

IT-Strategy Shapes Services Institute of Technology Linkoping University. Master
Thesis.

Rolland, C. and R. CentreKaabi (2007). An Intentional Perspective to Service
Modeling and Discovery. The 31st Annual International Computer Software
and Applications Conference, 2007. COMPSAC 2007. .

Rosen, M., B. Lublinsky, et al. (2008). Applied SOA: Service-Oriented
Architecture and Design Strategies. New York, Wiley.

Ross-Talbot, S. (2004). Web Services Choreography and Process Algebra.
SWSL Meeting,2004.

Rossi, P. and G. Fernandez (2003). Definition and Validation of Design Metrics
for Distributed Applications. Proceedings of the 9th International Symposium
on Software Metrics, IEEE Computer Society.

Rud, D., A. Schmietendorf, et al. (2006). Product Metrics for Service Oriented
Infrastructures. The 6th International Workshop on Software Measurement and
DASMA Metrik Kongress (IWSM/MetriKon 2006). Potsdam, Germany:
161-174.

Seidewitz, E. (2003). “What models mean." Software, IEEE 20(5): 26-32.

Senivongse, T., N. Phacharintanakul, et al. (2010). “A Capability Granularity
Analysis on Web Service Invocations." Proceedings 2010 World Congress on
Engineering and Computer Science (WCECS 2010).

206

Shapiro, S. and M. Wilk (1965). “An Analysis of Variance Test for Normality."
Biometrika 3,(52).

Shim, B., S. Choue, et al. (2008). A Design Quality Model for Service-Oriented
Architecture. The 15th Asia-Pacific Software Engineering Conference, 2008.
APSEC '08.

Shirazi, H. M., N. Fareghzadeh, et al. (2009). “A Combinational Approach to
Service Identification in SOA." Journal of Applied Sciences Research 5(10):
1390-1397.

Sindhgatta, R., B. Sengupta, et al. (2009). Measuring the Quality of Service
Oriented Design. Proceedings of the 7th International Joint Conference on
Service-Oriented Computing. Stockholm, Springer-Verlag.

Sneed, H. M. (2001). Wrapping Legacy COBOL Programs Behind an XML-
interface. Reverse Engineering, 2001. Proceedings. Eighth Working Conference
on.

Stewart, G. and A. Chakraborty (2010). Service Identification Through Value
Chain Analysis and Prioritization. Proceedings of the 16th Americas Conference
on Information Systems : Sustainable IT Collaboration around the Globe. Lima,
Peru, Association for Information Systems (AIS).

Sweeney, R. (2010). Achieving Service-Oriented Architecture : Applying an
Enterprise Architecture Approach, Wiley.

Taylor, I., M. Shields, et al. (2003). “Distributed P2P computing within Triana:
a galaxy visualization test case." Proceedings International Parallel and
Distributed Processing Symposium.

Tetlow, P., J. Pan, et al. (2006) “Ontology Driven Architectures and Potential
Uses of the Semantic Web in Systems and Software Engineering."

Van Nuffel, D. (2007). “Towards a Service-Oriented Methodology: Business-
Driven Guidelines for Service Identification." On the Move to Meaningful
Internet Systems 2007: OTM 2007 Workshops: 294-303.

W3C (1999). XSL Transformations (XSLT), W3C.

W3C (2004) “The W3C Web Services Architecture."

W3C (2005). Web Services Choreography Description Language Version 1.0, W3C.

Wang, X., S. HU. , et al. (2007). Integrating Legacy Systems within The
Service-oriented Architecture. Power Engineering Society General Meeting,
2007. IEEE.

Wiersma, R. (2010). Finding an Optimum in Service Granularity, HU
University of Applied Sciences. Master Thesis.

Xiao-jun, W. (2009). “Metrics for Evaluating Coupling and Service Granularity
in Service Oriented Architecture." The 2009 International Conference on
Information Engineering and Computer Science. ICIECS 2009.

Yan, X. and X. Su (2009). Linear Regression Analysis: Theory and Computing,
World Scientific Publishing Company.

207

Yang, H., Z. Cui, et al. (1999). Extracting Ontologies from Legacy Systems for
Understanding and Re-Engineering. The 23rd International Computer Software
and Applications Conference, IEEE Computer Society.

Yang, W. (1996). “Bell Numbers and K-Trees." Discrete Mathematics 156: 247-
252.

Yousef, R., M. Odeh, et al. (2009). BPAOntoSOA: A Generic Framework to
Derive Software Service Oriented Models From Bsiness Process Architectures.
The Second International Conference on the Applications of Digital Information
and Web Technologies, 2009. ICADIWT '09.

Zaha, J., A. Barros, et al. (2006). Let's Dance: A Language for Service Behavior
Modeling. On the Move to Meaningful Internet Systems 2006: CoopIS, DOA,
GADA, and ODBASE, Springer Berlin / Heidelberg. 4275: 145-162-162.

Zdun, U. and S. Dustdar (2007). “Model-Driven and Pattern-Based Integration
of Process-Driven SOA Models." International Journal of Business Process

Integration and Management (IJBPIM) 2(2): 109–119.

Zhang, L. J., N. Zhou, et al. (2008). “SOMA-ME: A platform for the model-
driven design of SOA solutions." Ibm Systems Journal 47(3): 397-413.

Zhang, Q. and X. Li (2009). Complexity Metrics for Service-Oriented Systems.
The Second International Symposium on Knowledge Acquisition and Modeling,
2009. KAM '09.

Zhang, Z., R. Liu, et al. (2005). Service Identification and Packaging in Service
Oriented Reengineering. The Conference of SEKE.

Zhang, Z. and H. Yang (2004). Incubating Services in Legacy Systems for
Architectural Migration. The 11th Asia-PacificSoftware Engineering
Conference, 2004.

Zheng, L. and J. Keung (2010). Software Cost Estimation Framework for
Service-Oriented Architecture Systems Using Divide-and-Conquer Approach.
The 2010 Fifth IEEE International Symposium on Service Oriented System
Engineering (SOSE),.

Zou, Y. and K. Kontogiannis (2001). Towards a Web-centric Legacy System

Migration Framework. The IEEE Workshop on Network Centric, held in
conjunction with ICSE 2001, Toronto, ON.

208

 Appendix A

A-1. An Example for BPMN-to-WS-CDL

Due to space limitations, we will give some example code of the code

transforming BPMN-to-WS-CDL. Listing A-1.1 shows the ATL rule

“ChoreProcess2Package” shows the creations of the basic elements of the code of

service choreography in WS-CDL. The meta-models “LCOMPBPMN” and WSCDL

provide properties and definitions of elements in BPMN and WS-CDL, respectively.

The rule creates an instance for elements of WS-CDL corresponding to matched

BPMN elements. These instances points to the definitions of these elements in next

rules. For example, every instance of the “LCOMPBPMN.Paticipant” element is

mapped to an instance called a “relationshiptype”.

Listing A-1.1 ATL rule for ChoreProecss2Package

As an example, after creating the instance “relationshiptype”, we map the

definitions of BPMN:Messageflow element to WS-CDL:RolationsipType in ATL rule

“MessageFlowRelationshiptype”. The definitions of the RolationsipType element

include the name attributes. (At line 124) the name is defined based on invoking two

helpers (a function) shown in listing A-1.2, which are “get1” and “get2” helpers.

209

Listing A-1.2 ATL rule for MessageFlowRelationshiptype

Listing A-1.3 shows the “get1” and “get2” helpers which map the sourceRef and

targetRef attributes in MessageFlow element of BPMN into a combined name of the

relationshiptype element. At line 9, for the instance of Messageflow, map the value of

sourceRef when the name exits. At line 14 in “get2” helper, for the instance of

Messageflow, map the value of targetRef when the name exits.

Listing A-1.3 ATL helpers for get1 and get

A-2 An Example for WS-CDL-to-WSDL

Here is an ATL rule example for mapping WS-CDL to WSDL. Listing A-2.1

gives an example of matched rule which is “Package2Description” for the Package

element of WS-CDL!Package of the WS-CDL meta-model. It maps the Package of the

WS-CDL model into the Description element in the WSDL!Description meta-model. It

maps the attribute name of the package element and two instances of informationType

and Choreography elements in BPMN into Types and Interface elements in WSDL.

Line 104-106 shows the “do” statement invoked for code structure. Within the instance

informationTyep creating, we invoked a lazy rule “EXMessageTypes”.

210

Listing A-2.1 ATL rule for Package2Description

Listing A-2.2 shows the lazy rule EXMessageTypes that tranformd detailed

definitions of the InformationType of the WS-CDL meta-model into the XsSechmea

element within the Types element of the WSDL meta-model. It shows the mapping of

the name and attributekind attributes in WS-CDL into name and type in WSDL.

Listing A-2.2 ATL lazy rule for EXMessageTypes

211

A.3 Service Element Extractor

Listing A-3.1 shows the parser that is developed on top of an open source SOA

tool provided by a company called Predic8 (as mentioned previously). It extracts local

.wsdl files and can be used to extract online web services such as AWS.

Listing A-3.1 a sample code for service element extractor method

A.4 Computation of Service quality metrics

Listing A-4.1 shows the main method for metres analyser and calculator

packages. We used the class Scanner for parsing elements from a txt files and then pass

syntax to private method for metrics computation. The calculation these metrics are

dependent on the calculation of service granularity which is presented in the

calculations of ODG and SOA.

212

Listing A-4.1 a sample code for main method for service metrics computation

213

Appendix B

B.1 WS-CDL code for an Incident Management Scenario

In listing B-1.1, the hierarchical structure document shows the results of mapping

between BPMN 2.0 and WS-CDL graphically for Incident Management scenario. We

can see that transformed elements from BPMN diagram correctly transformed to

corresponding WS-CDL element based on the suggested mapping.

Listing B-1.1 The hierarchical structure of the IncidentMangment.cdl

214

B.2 WSDL code for an Incident Management Scenario

Listing B-2.1 shows the results of mapping between WS-CDL and WSDL graphically

for Incident Management scenario.

Listing B-2.1 the hierarchical structure of the IncidentMangment.wsdl

215

Appendix C

C.1 ASOG/ASOM Relationships Framework’s dataset

Table C-1.1: Tests of Normality

Kolmogorov-Smirnov

a
 Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

ASOM .114 15 .200* .966 15 .799

a. Lilliefors Significance Correction

*. This is a lower bound of the true significance.

Table C-1.2: Model Summary b

Model R R Square Adjusted R Square Std. Error of the Estimate

1 .976
a
 .953 .950 .085198140

a. Predictors: (Constant), ASOG

b. Dependent Variable: ASOM

Table C-1.3: ANOVA
b

Model Sum of Squares df Mean Square F Sig.

1 Regression 1.934 1 1.934 266.375 .000a

Residual .094 13 .007

 Total 2.028 14

a. Predictors: (Constant), ASOG

b. Dependent Variable: ASOM

C.2 ASOG/ASOC Relationships Framework’s dataset

Table C-2.1: Tests of Normality

Kolmogorov-Smirnov

a
 Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

ASOC .385 15 .000 .664 15 .000

a. Lilliefors Significance Correction

216

C.3 ASOG/ASOU Relationships Framework’s dataset

Table C-3.1: Tests of Normality

Kolmogorov-Smirnov

a
 Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

ASOU .135 15 .200
*
 .935 15 .322

a. Lilliefors Significance Correction

*. This is a lower bound of the true significance.

Table C-3.2: Model Summary

Model R R Square Adjusted R Square Std. Error of the Estimate

1 .835
a
 .697 .673 .290553058

a. Predictors: (Constant), ASOG

Table C-3.3: ANOVA
b

Model Sum of Squares df Mean Square F Sig.

1 Regression 2.520 1 2.520 29.854 .000
a

Residual 1.097 13 .084

Total 3.618 14

a. Predictors: (Constant), ASOG

b. Dependent Variable: ASOU

