HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

A Design Framework for identifying Optimum Services

using Choreography and Model Transformations

By
Saad Ali Alahmari

A thesis submitted for the degree of Doctor of Philosophy
In the
Faculty of Physical and Applied Science

Electronics and Computer Science

August, 2012

UNIVERSITY OF SOUTHAMPTON

ABSTRACT
FACULTY OF PHYSICAL & APPLIED SCIENCES
ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

A Design Framework for identifying Optimum Services using Choreography and

Model Transformations

by Saad Ali Alahmari

Service Oriented Architecture (SOA) has become an effective approach for
implementing loosely-coupled and flexible systems based on a set of services. However,

despite the increasing popularity of the SOA approach, no comprehensive methodology
is currently available to identify “optimum” services. Difficulties include the
abstraction gap between the business process model and service interface design as well
as service quality trade-offs that affect the identification of the “optimum” services.

The selection of these “optimum” services implies that SOA implementation should be
driven by the business model and should also consider the appropriate level of
granularity. The objective of this thesis is to identify the optimum service interface
designs by bridging the abstraction gap and balancing the trade-offs between service
quality attributes.

This thesis proposes a framework using the choreography concept to bridge the
abstraction gap between the business process model and service interface design
together with service quality metrics to evaluate service quality attributes. The
framework generates the service interface design automatically based on a chain of
model transformations from a business process model through the use of the
choreography concept (service choreography model). The framework also develops a
service quality model to measure service granularity and service quality attributes of
complexity, cohesion and coupling. These measurements aim to evaluate service
interface designs and then select the optimum service interface design. Throughout this
thesis, a pragmatic approach is used to validate the transformation models applying
three application scenarios and evaluating consistency. The service quality model will
be evaluated empirically using the generated service interface designs.

Despite several remaining challenges for service-oriented systems to identify

“optimum” services, this thesis demonstrates that optimum services can be effectively

identified using the new framework, as explained herein.

Contents

CHAPTER 1 INTRODUGTION t.uiuinininittetetetetetetetenenenenenenenanananenenenenenenenes 1
1.1 RESEARCH HYPOTHESIS ...tuttinititiietetiteteienteeeeeeeeeeeenaeneenaens 3

1.2 RESEARCH CONTRIBUTIONS .. .iuiutuintnininttetetetetenenenenenenenenananenans 5}

1.3 THESIS STRUCTURE ...ttt et eteeeteteee e eeeeeeeneeneenaens 6

1.4 PUBLICATIONS ..ttt ettt et e e te et e e e e e eeeneneaens 8
CHAPTER 2 SOA AND MDA .o 11
2.1 SERVICE MODELLING .euttntnttitttinenateieenenete e eeteteeeneneeaenenanns 12
2.1.1 SERVICE ORIENTED ARCHITECTURE (SOA)cccooeeennnnee. 13

2.1.2 THE DEFINITION OF SERVICE ..c.ouitiiniiiiiiiiineneieinenananannn. 16

2.2 SERVICE-ORIENTED ARCHITECTURE DECOMPOSITION................ 18
2.2.1 SERVICE IDENTIFICATION ...ovutuinitiiiininaneteienenaneeenananennens 19

2.2.2 SERVICE GRANULARITY tuiuittninineneieinineneteiaeeneneaeeenenennens 22

2.2.3 SERVICE QUALITY MODELS «.ututuitiiiinieieieiieeieiianeneanen, 24

2.2.4 SERVICE CHOREOGRAPHY WS-CDLooooiiiiiiiin, 25

2.3 BUSINESS PROCESS MODELLING ..ututitinttetentntenenteneneneenenenaananans 28
2.3.1 BUSINESS PROCESS MODEL NOTATION (BPMN)............. 29

2.4 MODEL-DRIVEN TRANSFORMATIONiuttiiiniitininieneneneeneneneenanans 31
2.4.1 MODEL DRIVEN ARCHITECTURE (MDA)..................l. 32

2.4.2 META-MODELLING SUPPORTED STANDARDS.......ccvevunen... 34

2.4.3 MODEL TRANSFORMATIONS ...uutiuttitinintinenieneneneeienennanenens 35

2.4.4 ATLAS TRANSFORMATION LANGUAGE (ATL)................ 37

2.5 SUMMARY 1ttt e ettt e et et e et et e et et e e te it e e anaaaas 38
CHAPTER 3 SERVICE IDENTIFICATION CURRENT APPROACHES 40
3.1 SERVICE IDENTIFICATION METHODOLOGIESovvvnininiiiinininannnnnn. 40
3.1.1 BUSINESS-DRIVEN SERVICE IDENTIFICATIONccccuvn.n... 41

3.1.2 ONTOLOGY-DRIVEN SERVICE IDENTIFICATION................. 45

3.1.3 LEGACY SYSTEM-DRIVEN SERVICE IDENTIFICATION......... 46

3.2 QUALITY OF SERVICE (QOS)..ciiiiiiiiiiiiiiiieiie e 48

3.3 ANALYSIS COMPARISON OF EXISTING APPROACHESc.c....... 50

B 1 51 0.7 0. 5 61

CHAPTER 4 CHOREOGRAPHY AND MODEL TRANSFORMATION DESIGN...62
4.1 INTRODUGTION .iutitinitinintettntetetetetentat et eneaeatenaaeenenearenaneanens 62
4.1.1 SERVICE META-MODELcuiuititititininineiieeneaeasasasesanananns 65

4.2 WHY CHOREOGRAPHY 7 . nininiiiieieietetet et eeteeeeeeeeeeenenenes 67

4.3 BUSINESS MODEL VERSUS CHOREOGRAPHY ..couviiiiniiniianiianinnnns 68
4.3.1 PRELIMINARY: BPMN CHOREOGRAPHIES AND BPs

MODELLING68
4.4 CHOREOGRAPHY VERSUS SERVICE CHOREOGRAPHIES 73
4.4.1 PRELIMINARY: THE SERVICE CHOREOGRAPHY CONCEPT
AND WS- DLl o e e 73
4.5 CHOREOGRAPHY REQUIREMENTS ...uvttiitiitintintineinieriineneineeneenensn 77
4.6 SERVICE INTERFACE IN WSDL ..o, 81
S 10151 7N 2 P 83
CHAPTER 5 SERVICE QUALITY MODEL ..utuitiiiiiiieiiiiieeeie e eeneaeen 85
5.1 SERVICE GRANULARITY QUALITY MODEL.....ccotiuiiiiiiiiiininennnnn. 85
5.2 BASIC METRICS OF SERVICE GRANULARITY ..uvuvviviininininininennnnn. 87
5.2.1 METRICS FOR THE DATA GRANULARITY SCORE.............. 87
5.2.2 METRICS FOR THE FUNCTIONALITY GRANULARITY SCORE

89
5.2.3 METRICS FOR SERVICE OPERATIONS GRANULARITY SCORE

90
5.3 THE IMPACT OF SERVICE OPERATION GRANULARITY 91
5.3.1 SERVICE OPERATION COMPLEXITY ..evvverirerereninanenanananannn. 92
5.3.2 SERVICE OPERATION COHESIONccoviiiieiiienenenenanenananannn. 93
5.3.3 SERVICE OPERATION COUPLING ..uvviieierererereienenenenananannns 94
5.4 METRICS VALIDATION . ..tttttititititateteteteneneneeeneeneaaeteaeaeeeaeaeaans 95
D.5 SUMMARY « ettt e et e e et e e et e e e et e e e et e te e e e aeaans 102
CHAPTER 6 SERVICE IDENTIFICATION IMPLEMENTATIONcc.cvuvnenn.... 104
6.1 FRAMEWORK ARCHITECTURE ...outtitninitiiiiinineteieineeneieeneneneann 105
6.2 CHOREOGRAPHY AND MODEL TRANSFORMATION......cccvuvnenenen.. 106
6.2.1 BUSINESS PROCESS CHOREOGRAPHY MODELLING 106
6.2.2 SERVICE CHOREOGRAPHIES ...c.cutuiiiiiiieianeienenenenenenenennns 107
6.2.3 SERVICE INTERFACE DESIGN ...vuiuiiiiiieieieienerenenananananannns 109
6.3 SEMANTIC TRANSFORMATION IMPLEMENTATIONcovvvinininnen.. 110
6.3.1 BPMN-TO-WS-CDL TRANSFORMATION.......cvevevirannnnnnn. 110
6.3.2 WS-CDL-TO-WSDL TRANSFORMATIONcvovivivinannnnnnn. 117
6.3.3 WSDL TRANSFORMATION (RE-FACTORING)......c...uueeunn.. 120
6.4 TRANSFORMATION CHAIN ...uuintitinititenieteteeeteneneeneeasenaneanananens 123
6.5 SERVICE QUALITY MODEL....iitiutintiniitiitiitieinteneineeninteneaneineanens 125
L T 6151 7. 5 0 N 127
CHAPTER 7 PRAGMATIC EVALUATION .0ttt eeeeeeeenes 129

7.1 INTRODUGTION ettt ettt ettt ettt ettt ettt rareeeeeanaees 130

7.2 HYPOTHESES .ttt ettt eeaeaas 130
7.3 PRAGMATIC VALIDATION t.iutiiintitinintttetatenenteieneeteeneeieneneenanens 131
7.3.1 SERVICE CHOREOGRAPHIES (WS-CDL)coooee. 131
7.3.2 DESIGN OF SERVICE INTERFACES (WSDL) 133

7.4 APPLICATION EXAMPLES .. .c.ttuitititiiiieieiieeteieeeerereeanenennans 135
7.4.1 INCIDENT MANAGEMENT EXAMPLEccocvviiiiiiininianennnn. 135
7.4.2 NOBEL PRIZE EXAMPLE ...ootiiiiiiiiiiiiiiieiieieeieeeeeeae 142
7.4.3 CUSTOMER ORDER EXAMPLE ...ccoiviiiiiiiiiiiiiieeieeenanen 147

7.5 LIMITATIONS OF PRAGMATIC EVALUATIONcoeviiinininiiianannn. 152
7.5.1 SEMANTIC ELEMENTS .\tuiutuitiiintnanetinenateneeeneneenananannns 152
7.5.2 ABSTRACTION GAP ceuiuitiiinineteieieet et ee e eee e aenaaens 152

7.6 REFLECTION ON RESEARCH HYPOTHESES ...ccvtviiiiiiiniiinienannns 153
T T SUMMARY « ettt ittt ettt et e et e e et e e e e e e aaeaeanens 154
CHAPTER 8 EMPIRICAL EVALUATION ...ouiiitiiiiii et eeeeie e 156
8.1 AN EMPIRICAL EVALUATIONouitiiiiiiiiiiiie e e 157
8.2 HYPOTHESES ..uintttitiititiet et et et ettt ea e e e neaaenanans 157
8.3 STUDY DESIGN ..ttt e eenenes 159
8.4 VARIABLES AND MEASURESttttutitttiiitetttetenenteteeneeneneananenans 159
8.4.1 INDEPENDENT VARIABLES ...totiuiiitinintiteieteeneenenenaenanans 160
8.4.2 DEPENDENT VARIABLES ..cututitiiiiiiiiinteenieieeneenenennenanans 160

8.5 RESEARCH DATA .ottt e 161
8.6 THE DATA ANALYSIS . iuiuiuitiiiniieteieieeie i eet et aeeereeeneneanans 162
8.6.1 DESCRIPTIVE STATISTICS .vutuininiteininenereiineneneneenanenaanans 162
8.6.2 STATISTICAL TESTING ..eutuininiiiieieieieieieieieieeeeeenenen 163
8.6.3 REGRESSION ANALYSIS ciuiuittininiteteiiniiereieenenaneneenaneneanans 163

8.7 RESULTS AND DISCUSSION ...ututtitintitiintiteient ettt eeenaenenans 165
8.7.1 SERVICE GRANULARITY VERSUS INDIVIDUAL QUALITY
ATTRIBUTES (H2) .oiiiiiiiii e 166
8.7.2 RELATIONSHIPS BETWEEN QUALITY ATTRIBUTES (H3)...170

8.8 REFLECTION ON RESEARCH HYPOTHESES ...c.ovvviiiiiniiiiennanannns 173
8.8.1 IMPACT OF GRANULARITY ON QUALITY ATTRIBUTES (H2)

174

8.8.2 DEPENDENCIES BETWEEN QUALITY ATTRIBUTES (H3)...179

8.9 LIMITATIONS OF EMPIRICAL EVALUATIONccovviiiiiniiiiinnanannns 184
8.9.1 DATASET SIZE ..euiuitiuiniateneteteeataneieeteeneenaeneeeneanananans 184
.10 SUMMARY vttt et et e e et et et et et et e e e e e e e e eenenes 185
CHAPTER 9 CONCLUSIONS AND FUTURE WORK ...c.ovvviiiiiiiiiiinenene. 187
9.1 RESEARCH SUMMARY ..uintninininitetetetetetetetenenenenenenenenenenenenenenes 187

9.2 FUTURE WORK ...ttt e e e e et e 190

9.2.1 FINDING OPTIMUM SERVICE INTERFACE DESIGNS 190
9.2.2 AN INTELLIGENT DIGITAL DASHBOARDvevveiieeaneannann... 194
9.2.3 EXPAND THE DATASET OF THE STUDY .ettirviiiieiannennnnn.. 195

REFERENCES 196
APPENDIX A 208
APPENDIX B 213

APPENDIX C 215

List of Figures

Figure 1-1 Thesis StrUCtUTIe......cccoiiiiiiiiii s 10
Figure 2-1 Typical SOA Layers of AbStractionccccecvvvvviiiieiinnienninie e 14
Figure 2-2 Service Development Life-Cycle........ccccvviiiiiiiiiiiiiiiieicicc e 16
Figure 2-3 Service Elements.........cocoviiiiiiiiiiiiic i 18
Figure 2-4 SOA Product Measurementsccocerverienieneeneeneseeseesie e 25
Figure 2-5 A View of the WS-CDL Package Root Elementscccccoovvrvnnenne. 27
Figure 2-6 A Process Diagram Examplescccooiiiiiiiiiiiiiiiiee e 30
Figure 2-7 A Collaboration Diagram Exampleccccooeiiiiiiiiiiiiniiniic e 31
Figure 2-8 A Choreography Diagram Exampleccccooiiiniiininniciiece 31
Figure 2-9 A Conversation Diagram Example.........cccooviiiiiiiiiniiiceee, 31
Figure 2-10 MDE Architectural Abstraction Levelsccccoviiiiiniiiininnnn, 34
Figure 2-11 An Example of MOF Architecture.......c.ccocooviiiiniiiniiiiiniccee, 35
Figure 2-12 Model Transformation during System Development Life Cycle..... 36
Figure 2-13 General View of Model Transformationccccociviiiiiiiininininnnn, 38
Figure 4-1 The Conceptual Model of SOA Business Process Choreographies and

Service Choreographies........ccooiiiiiieiiiiiiie s 64
Figure 4-2 The Service Meta-model VIEW........cccoviriiiiiiiiiiiiiiiese e 66
Figure 4-3 BPMN Meta-model.........ccccoiiiiiiiiiiiie e 69
Figure 4-4 Message Types Extension Meta-model Class Diagram 71

Figure 4-5 New Attributes and Relationships Extension Meta-model Class

DIAGTAIN 1.ttt raeeanes 72
Figure 4-6 The WS-CDL Meta-model (Part 1)......ccccovviieiirnneiiiniecisenee 75
Figure 4-7 The WS-CDL Meta-model (Part 2).......ccccovveerirnneiiiniecenseens 77
Figure 4-8 WSDL 2.0 Meta-model.........ccccooiiiiiiiiiiieiieecieeeseeseee e 83
Figure 5-1 The Service Granularity Quality Model............ccooviiiiiniinee 87
5-2 ASOG metrics evaluation using the properties of lengthcccccoovviiiinnn, 98
Figure 6-1 Overall Architecture of Service Identification Framework 105
Figure 6-2 Implementation of the transformation chainc.ccoovvniiiiien 123
Figure 6-3 Implementation of the architecture of service quality model.......... 126

Figure 7-1 Incident Management Process Choreography.........cccccvvviiiiiiniennn, 135

Figure 7-2 Nobel Prize Process Choreography.........cccocevviiiiiiiiiiiniiinienieiesenns 142
Figure 7-3 Customer Order Process Choreography.........cccccvovviiiiiniieninninniennns 147
Figure 8-1 Linear regression results of ASOM and ASOG variables from the
framework datasetccoovieiiiiiiie 167
Figure 8-2 Nonlinear regression results of ASOC and ASOG variables using the
Cubic regression model for the framework datasetcccocvvviniiiiininnnn, 169
Figure 8-3 Linear regression chart of ASOU and ASOG variables on the
framework datasetccuviiiiie i 170

Figure 8-4 The relationship between Granularity (ASOG) and Complexity

(ASOM) ittt 175
Figure 8-5 The relationship between Granularity (ASOG) and Cohesion
(ASOCQC) VATIADIES ..o 177

Figure 8-6 The relationship between Granularity (ASOG) and Coupling
(ASOU) Variablescccoiiviiciiiiiriecces s 179
Figure 8-7 The relationship between Complexity (ASOM) versus Cohesion

Figure 9-1 Graph of three linear/nonlinear equations: Complexity, Coupling,
P28 Lo B 0 VT3 (o) o USRS 191
Figure 9-2 Graph of three linear/nonlinear equations: Complexity and Cohesion
AEETIDULES .evveie e 192
Figure 9-3 intersected points of three linear/nonlinear equations: Complexity,

cohesion and coupling attributes.........ccccvviiiiiiiiiii 193

List of Tables

Table 3-1 Comparison of Service Identification Approaches.........c.cceevrvvrivenennne. 58
Table 3-2 Comparison of Service Identification Approaches........cc.cceevrvvrivennnnne. 59
Table 3-3 Comparison of Service Identification Approaches..........ccceevrvivrinnnnnn. 59
Table 3-4 Comparison of Service Identification Approaches..........cccceevrvvninnnnnn. 60
Table 3-5 Comparison of Service Identification Approaches..........ccccccvvivrinnnnnn. 60

Table 4-1 Assessment of BPMN 2.0 and WS-CDL Support for Choreography
ReQUITEMENTS ..ei it 80
Table 5-1 Evaluation of the Granularity Level for a Service Operation............. 91
Table 7-1 Summary of mapping between BPMN elements and WS-CDL code for
Incident Management SCENAIIOccveiveieeriieiesieeste et 137
Table 7-2 Summary of mapping between WS-CDL code and WSDL for Incident
Management SCEINMATIO ... uuiiiriiiiiieiiiieiieeesieeesbee e sbe e sbe e sbe e e e sreesnbaeeaseeeas 140
Table 7-3 Summary of mapping between BPMN elements and WS-CDL code
for the Nobel Prize SCENario........cccuviiiiiiiiie i 143
Table 7-4 Summary of mapping between WS-CDL code and WSDL for the
Nobel Prize SCeNATio......c.ciiiiiiiiiiiiieiie e 145
Table 7-5 Summary of mapping between BPMN elements and WS-CDL code
for the Customer Order SCENATIO.......ccoueiiiiiiieii et 148
Table 7-6 Summary of mapping between WS-CDL code and WSDL for the
Customer Order SCENATIO........ciiiiiiieie ittt 150
Table 8-1 Metric Results for Framework Datasetcccoooviiiiiiiiiiniicine, 162
Table 8-2 Descriptive statistics - ASOG, ASOM, ASOC and ASOU metrics . 165
Table 8-3 Simple linear regression coefficients for ASOG dependent and ASOM
independent variables for the framework dataset........cccccoooiiiiniiiinninnnn. 167
Table 8-4 Nonlinear regression model summary using cubic test for ASOC and
ASOG variables on the framework datasetcccoevviiiiiiiiiiiiiicn, 168
Table 8-5 Linear regression model summary for ASOU and ASOG variables on
the framework datasetccooiiiiiiiii 170
Table 8-6 The Spearman’s rho for ASOM and ASOC variables from the

TramMEWOTK AABASEE covvvveee ettt ettt s e e e e e e et e r e e e e e e e eesbea s 171

Table 87 The Pearson (r) test for ASOM and ASOU variables from the
framework dataset ... 172
Table 8-8 The Spearman’s rho for ASOC and ASOU variables from the
framework dataset ..o 173
Table 9-1 Generated datasets for different scenarios of an OMG example based

on the qUality METTICS . iiiiiiiiiiiiiiii 194

Declaration of Authorship

I, Saad Ali Alahmari, declare that the thesis entitled “A Design Framework for

Identifying Optimum Services using Choreography and Model Transformations”
and the work presented in the thesis are both my own, and have been

generated by me as the result of my own original research. I confirm that:

e this work was done wholly or mainly while in candidature for a research

degree at this University;

e where any part of this thesis has previously been submitted for a degree
or any other qualification at this University or any other institution, this

has been clearly stated;

e where I have consulted the published work of others, this is always

clearly attributed;
e where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own

work;
e I have acknowledged all main sources of help;

e where the thesis is based on work done by myself jointly with others, I
have made clear exactly what was done by others and what I have

contributed myself;

e Parts of this work have been published in a number of conference and

journal papers (see Section 1.4 for a detailed list).

Acknowledgements

Throughout the past four years, I was given a privileged opportunity to work
with Ed Zaluska, David de Roure and Dave Millard. All of them provide

invaluable and unlimited support and guidance.

I cannot thank Ed enough for the outstanding support you showed throughout
the years. Your constant detailed comments, encouragements and personal
guidance were very essential to present this thesis. David De Roure, thanks for
the confidence you gave me from the first day I met you. Your remarkable
discussions and suggestions have shaped my research and helped me to be a
researcher. I appreciate your continues support that you offered me after
joining the Oxford University. Dave Millard, although you joined the
supervisory team on my fourth year, your criticisms and excellent advices

influence my research and direct me to solve hard research problems.

I would also like to thank Prof. Peter Henderson for his comments and
guidance at early stage of my research. I also highly acknowledge effective
meetings and helpful discussions with Rob Phippen and Kim Clark (IBM
Hursley Park, UK).

I would also like to thank my friends and colleagues in the WAIS group, for
their great support I received during my PhD at University of Southampton.

Finally, I would like to thank all my family members for their support, patient
enthusiastic encouragement not only throughout my PhD, but also throughout
my life. I would like to thank my father and mother and pray for them, who
had provided me with endless care and love. I would also thank my oldest

brother, Abdulrhman, who would always encourage and support me.

Definitions and Abbreviations Used

ARIS Architecture of Integrated Information Systems
ASOC Average Service Operation Cohesion

ASOG Average Service Operation Granularity
ASOM Average Service Operation Complexity

ASOU Average Service Operation Coupling

ATL ATLAS Transformation Language

BPEL Business Process Execution Language
BPEL4Chor Business Process Execution Language for Choreography
BPM Business Process Management

BPMN Business Process Modeling Notation

BPMS Business Process Management System

BPSS Business Process Specification Schema

CBD Component Based Design

CIM Computation-Independent Model

CORBA Common Object Request Broker Architecture
CRM Customer Relationship Management

CRUD Create-Retrieve-Update-Delete

CXML Commerce eXtensible Markup Language
DCOM Distributed Component Object Model

ebXML Electronic Business Extensible Markup Language
EDOC Enterprise Distributed Object Computing
EMF Eclipse Modelling Framework

ERP Enterprise Resource Planning

IDE Integrated Development Environment

IEC International Electrotechnical Commission
ISO International Organization for Standardization
JNI Java Native Interface

M2M Model-to-Model

MDA Model-driven Architecture

MDE Model-driven Engineering

MEP Message Exchange Pattern

MOF Meta-Object Facility

OCL Object Constraint Language

ODG Operation Data Granularity

OFG Operation Function Granularity

OMG Object Management Group

00 Object Oriented

00D Object-Oriented Design

OWL-S Ontology Web Language for Services

PCD Process Chain Diagram

http://www.pera.net/Methodologies/ARIS/ARIS_Paper_by_Ted_Williams.html

PIM
PSM
QoS
QVT
REST
RUP
SDE
SDLC
SLA
SOA
SOC
SOG
UDDI
UML
URI
USM
W3C
WS
WSBPEL
WS-CDL
WSDL
XMI
XPDL
XSLT

Platform Independent Model

Platform Specific Model

Quality of Service

Query/Views/Transformation

Representational State Transfer

Rational Unified Process

Software Development Environment

System Development Life Cycle

Service Level Agreement

Service-Oriented Computing

Service Operation Cohesion

Service Operation Granularity

Universal Description, Discovery and Integration
Unified Modelling Language

Universal Resource Identifier

Unified Service Model

World Wide Web Consortium

Web service

Web Services Business Process Execution Language
Web Services Choreography Description Language
Web Services Description Language

XML Metadata Interchange

XML Process Definition Language

XML Stylesheet Language Transformation

CHAPTER 1 INTRODUCTION

Service-Oriented Computing (SOC) is a cross-disciplinary paradigm for
principles, technologies, and methods, and is based on software services that use
its core architectural style, Service-Oriented Architecture (SOA). Organisations
have increasingly shifted software development to SOA-based systems in order
to improve interoperability, flexibility, and reusability. A software service
presents a coherent set of functionality that is exposed via a standardised
interface. The implementation of a software service is separated into the service
implementation aspects and its interface. However, a key part of developing
service-based systems is to break required functionalities down into a set of
services, and a key challenge is to find an appropriate breakdown method to
identify the “optimum” services. Because the business modelling and service
interface designing are disconnected, developed services do not always meet the
user requirements and specifications that satisfy software quality attributes.
Moreover, its design and implementation suffer from not taking appropriate
service granularity into account which results in low aspects of service quality.

In this thesis, “optimum” services refer to identified services that consider
three challenges: the purpose of the service, the level of service granularity and
the balance between trade-offs of the service quality attributes.

Firstly, the purpose of the service refers to the functionalities offered by
the service in terms of service types, e.g., a service that provides Create, Read,
Update and Delete functions (CRUD) is different from that one that provides
infrastructure functions. The definitions of these functionalities can be derived
from business processes in a process-oriented system. The service identification
process is an initial step in service modelling for transforming business
processes/requirements to candidate services. With the business processes and
services residing on different architectural layers, the abstraction gap is the first
challenge. We refer to the abstraction gap as the separation between the

definitions of business models and the descriptions of service interface designs.

Chapter 1 Introduction

The existing methodologies of such authors as Kohlborn and Arsanjani have
failed to bridge this gap (Arsanjani, Ghosh et al. 2008; Kohlborn, Korthaus et
al. 2009). As a result, these contributions can be viewed as conceptual
frameworks and general guidance. This thesis uses the choreography concept to
bridge the semantic gap between the business process model and service
interface design. The choreography concept appears at business process level
and the service composition. At the business process level, the choreography
concept describes an observable behaviour of a participant (e.g., a company) or
participant’s role (e.g., a buyer or seller) in an interaction. In service
composition, the service choreography refers to a peer-to-peer description of the
global observable interactions between aggregated services. As a result, bridging
the abstraction gap should enable the automatic generation of service interface
designs according to corresponding defined business process models.

Secondly, Service designers do not agree on when services should be
coarse-grained or fine-grained. A recent study by industry experts that
evaluated different SOA development processes concluded that service
granularity is a key issue in the design phase (Haines and Rothenberger 2010),
to a certain extent there is some agreement on the importance of the
granularity concept for service-based systems (Haesen, Snoeck et al. 2008;
Rosen, Lublinsky et al. 2008; Haines and Rothenberger 2010; Sweeney 2010). It
is difficult to specify heuristic rules for defining the appropriate level of
granularity that can be applied in all circumstances. But, the quantification of
service granularity using the proposed service quality model can assist selecting
the appropriate level of granularity for a given service interfaces. This
quantification allows the service designer to evaluate the service granularity for
the service interface design in accordance with the service quality attributes of
complexity, cohesion and coupling.

Finally, balancing the trade-offs between the service quality attributes
that affect identifying the “optimum” services is essential. The level of the
service granularity influences the service quality attributes. For example,
implementing a system with a number of fine-grained services can result in a
negative effect such as poor performance because of increasing communication
trips but offer good reusability (as smaller services are more loosely-coupled).
Thus, we define a service quality model that defines the properties required to

measure service granularity and the service quality attributes of complexity,

Chapter 1 Introduction

cohesion and coupling; employing the software quality attributes for SOA can
assist in the achievement of “optimum” services.

This thesis explores the problem of identifying “optimum” service interface

design for process-oriented systems, and answers the following questions:

e Is it possible to generate service interface designs automatically from

business process models using the choreography concept?

e What is the impact of a high level of service granularity on the
quality attributes of complexity, cohesion and coupling compared to a

service interface design with a low level of service granularity?

e What are the relationships between each of the service quality

attributes of complexity, cohesion and coupling?

In section 1.1, the research hypotheses and questions are discussed. In
section 1.2, an outline of the thesis contributions is given. The thesis structure

and publications are explained in sections 1.3 and 1.4 respectively.

1.1 Research Hypothesis

There is a need to develop a complete methodology for identifying optimum
services. Given the above challenges: the abstraction gap, the service
granularity and balancing service quality trade-offs, the hypotheses of this

thesis as follows:

H1: “It is possible to use service choreographies (WS-CDL) to derive the
automatic transformation of a business process choreography model (BPMN

2.0) into a service interface design (WSDL)".

e Automatic transformations. The transformation process should be
automated fully from the business process model to the service interface
designs. That is, no manual human intervention should be required to
determine the semantic elements that should be defined for a service
interface. This is because manual intervention decreases the robustness of
the service identification process and affects the level of detail, depending
on the human’s understanding of system requirements. In particular, it
increases the abstraction gap between the descriptions of the business

process model and the corresponding service interface design. With respect

3

Chapter 1 Introduction

to current intensive research and practice in service modelling
methodologies in various domains, a significant shift from human-based
decisions and manual architectural activities to a higher degree of

automation is needed.

Standardised mapping. The semantic mapping between different models
(e.g., business process models and service choreography models) needs to
be based on standard specifications and firm theoretical grounds. This is
particularly important for defining the meta-models for source and target
models and developing a theory to bridge the abstraction gaps. The
framework herein is based on a coherent series of transformed models that
achieve ultimately SOA benefits in heterogeneous development

environments.

Improve flexibility and accuracy. Implementing the transformation should
be flexible enough to generate a variety of service interface designs to
enable service designers to evaluate the impact of trade-offs on various
designs and selecting the optimum design. These service interfaces are
supported with benchmarks for service quality attributes to provide
accurate measurements. The time needed to generate the various service
interface designs automatically is more efficient compared to the manual

human process.

H2: “A set of services with a high value of service granularity would correspond

with a positive effect on the quality attributes of complexity and cohesion and

a negative effect on the quality attribute of coupling compared to services with

. . ”
a low value of service granularity”.

The relationships between quality attributes. The relationships between
service granularity and service quality attributes of complexity, cohesion
and coupling need to be analysed. The statistical method of
linear /nonlinear regression can be used to analyse the effect of service
granularity as an independent variable on service quality attributes as
dependent variables. Prior to the analysis, a quality model that quantifies
service granularity and the service quality attributes of complexity,

cohesion and coupling need to be developed.

Valid quality metrics. The quality model should provide theoretically and
empirically valid metrics. The theoretical validations can be based on

standard property definitions; empirical validations can use the dataset

4

Chapter 1 Introduction

H3:

generated from the service interface designs. The quality model should
provide key features of defined metrics and show how these metrics are
driven. This is important when the cause-effect relationship between
these attributes is investigated. The service quality model should assist
with the achievement of optimum service interface designs by providing

numerical results.

“The following architectural quality attributes are dependent on one

another, cohesion correlated with coupling, coupling correlated with complexity

and complexity correlated with cohesion”.

The correlated relationships. The results of correlation investigation will
be useful to understand the significant effects of these quality attributes
on each other which might provide an insight to the selection of optimum
service interface designs. The correlation relationships between service
quality attributes can be investigated statistically using the correlation
test. The correlation coefficient value can be interpreted into different
scale values. All data computations and extractions can be completed

using the proposed service quality model.

1.2 Research Contributions

As a summary, the main conceptual contributions of our research work are:

A method to generate a service interface design (WSDL) automatically
from the business process model (BPMN 2.0) using service choreography
(WS-CDL) thus enabling the choreography concept to bridge the
abstraction gap between a business model and service interface designs.
This method also supports seamless integration between SOA and MDA

and offers an application for such integration. (Explained in chapter
Chapter 4).

A service quality model was developed to provide metrics for measuring
the service granularity and SOA quality design attributes of complexity,
cohesion and coupling. The service quality model was also used to select
the optimum service interface design for a set of services. We developed
theories of these metrics based on our understanding and knowledge

together with existing literature on the topic of software quality

Chapter 1 Introduction

measurement. We provided a measurement for service granularity that

can be enhanced to include additional factors. (Explained in chapter

Chapter 5).

We offered an extension of the semantics of BPMN 2.0 specifications to

generate service choreographies (WS-CDL) and to facilitate

measurements of service quality attributes. (Explained in chapter 4.3).

The practical contributions of this thesis are as follows:

Implementation of a chain of transformation programs in ATL from the
business process model (BPMN 2.0) to service choreography (WS-CDL)

and then from service choreography (WS-CDL) to service interface design

(WSDL). (Explained in chapter 6.4).

Implementation of a Java-based application for the analysis and
computation of a set of metrics for service granularity and the service

quality attributes of complexity, cohesion and coupling. (Explained in

chapter 6.5).

A further contribution of this thesis is as follows:

The service granularity metrics (OFG, ODG, SOA and ASOG are
described in section 5.2) that are proposed in this thesis are recognized

and adapted by Prof. Cassio Prazeres at Department of Computer
Science (DCC) at Federal University of Bahia, Brazil. The metrics will be
implemented in a project to develop a test platform for evaluating service
compositions. The implementation will be published at the
14th International Conference on Information Integration and Web-based
Applications & Services (iiWAS2012).

1.3 Thesis structure

The remainder of this thesis is structured as follows:

Chapter 2 presents the field disciplines of SOA and MDA that are
relevant to this thesis. The service development cycle for SOA is
described, focussing on service modelling. We provide an overview of the
service definitions and elements used in this thesis and phases of service

identification showing the currently used strategies for identifying

Chapter 1 Introduction

services. We explain the concept of service granularity and how quality
attributes fit in SOA. We then introduce the basic concept of the
modelling language BPMN 2.0 and the choreography language WS-CDL.
After that, a general review of the model-driven approaches is provided
along with supported technology standards, model transformations and

languages (in particular, ATL is reviewed).

Chapter 3 discusses current research in the area of service identification
by classifying current research efforts into three views: business-driven,
ontology-driven and legacy system-driven. We also investigate current
approaches concerning service quality attributes and metrics. A
comparative analysis is conducted based on a number of criteria for
current research efforts, as explained at the beginning of this Chapter.
Important challenges of service identification are bridging the abstraction
gap between business models and service implementation, and measuring
quality attributes. These two challenges are discussed in Chapters 4 and

5 which form the initial framework design.

Chapter 4 presents choreography concepts, which are important for
bridging the abstraction gap and transforming models. We discuss why
and how the choreography concepts are applicable for use in the research
hypotheses. An analogy is developed between business process
choreography and service choreographies. To realise the model-driven
approach, we defined the meta-models that are required for the model
transformations using BPMN 2.0, WS-CDL and WSDL. We attempt to
adapt available meta-models in literature and standard specifications,
rather than define meta-models from scratch. We also evaluate the
suitability of the choreography specifications in BPMN 2.0 and WS-CDL

against a number of choreography requirements.

Chapter 5 introduces a service quality model that is developed based on
the service granularity definitions. We present the basic definitions for
service granularity metrics. After investigating the impact of service
operation granularity on architectural quality attributes, metrics for the
service quality attributes of complexity, cohesion and coupling are
defined. These metrics are validated theoretically using a number of
mathematical property definitions.

Based on the choreography concept (chapter 4) and the service quality

models (chapter 5), the framework architecture and detailed

7

Chapter 1 Introduction

implementations are described in chapter 6. The framework architecture
is presented in two architectural parts: model transformations using
choreography and a service quality model. The implementation of each
part is individually explained in detail. First, the technical
implementations and transformation rules are explained for each model
transformation. Second, the implementation of the service quality model

is described.

To evaluate and analyse our framework, we decided to conduct two types
of evaluation using different scales: pragmatic and empirical. In Chapter
7, we validate the consistency of the modelling behaviour between inputs
and outputs during the transformations. Three application scenarios are

used to demonstrate the pragmatic approach.

In chapter 8, after the computation of quality metrics using the service
quality model, we empirically evaluate the generated service interface
designs. The analysis and findings of the research results are discussed.

Chapter 9 concludes the thesis with a review of its contributions to the
field of “service modelling” and a presentation of extensions for future

work.

1.4 Publications

During the research, the following peer-reviewed papers have been published:

S. Alahmari, Ed. Zaluska, D. De Roure (2011). A Metrics Framework for
Evaluating SOA Service Granularity. In, The 8th IEEE 2011
International Conference on Services Computing (SCC
2011), Washington, D.C, USA, 04 - 09 Jul 2011. IEEE Computer Society

Press.

S. Alahmari, D. De Roure, Ed. Zaluska (2010). A Model-Driven
Architecture Approach to the Efficient Identification of Services on
Service-oriented Enterprise Architecture. At The Second Workshop on
Service oriented Enterprise Architecture for Enterprise Engineering in
conjunction with the 14th IEEE International Enterprise Distributed
Object Computing Conference, Vitéria, Brazil. IEEE Computer Society

Press.

http://eprints.soton.ac.uk/272219/
http://eprints.soton.ac.uk/272219/
http://eprints.soton.ac.uk/271359/
http://eprints.soton.ac.uk/271359/
http://eprints.soton.ac.uk/271359/

Chapter 1 Introduction

S. Alahmari, Ed. Zaluska, D. De Roure (2010). Migrating Legacy Systems
to a Service-Oriented Architecture with Optimal Granularity. ICEIS 2010
- Proceedings of the 12th International Conference on Enterprise

Information Systems, Volume 1, DISI, Funchal, Madeira, Portugal, June
8 - 12, 2010.

S. Alahmari, Ed. Zaluska, D. De Roure (2010). A Service Identification
Framework for Legacy System Migration into SOA. In, IEEE SCC 2010

-7th International Conference on Services Computing, Miami, Florida,
USA, 05 - 10 Jul 2010. IEEE Computer Society Press.

http://eprints.soton.ac.uk/271008/
http://eprints.soton.ac.uk/271008/
http://eprints.soton.ac.uk/271009/
http://eprints.soton.ac.uk/271009/

Chapter 1 Introduction

' — broad problems
) and background
Literature
review and "
comparative__| 3
analysis
_
Main
Contributions
_
—
_
" Thesis
Evaluation
_
_
Referenced by
A Example Codes “—chapter 6
Examples Hierarchal Referenced by
B Mapping “—chapter 7
‘ o Referenced by
o Statistical Data “—chapter 8

Figure 1-1 Thesis structure

10

CHAPTER 2 SOA AND
MDA

The need for a complete methodology to identify optimum services in the
context of business process has been intensively discussed (Zdun and Dustdar
2007). In Chapter 1, we described the challenges that face the service
identification process. In this chapter we provide an overview of the field, and
the technologies that are particularly important and relevant for understanding
the context of the thesis. The overview is important to define the two major
fields of SOA and MDA. These technologies are used in current approaches for
the service identification process which will be explained in Chapter 3.

This chapter is structured as follows: Section 2.1 introduces the field of
Service modelling in the service development cycle. In particular, an overview is
given which explores the service identification process within the service
modelling and the definitions of a term “service”. Section 2.2 discuses service
oriented decomposition as one of the modelling strategies used to identify
services in enterprise architecture. Service designers do not know the size of
functionalities a service should offer nor when a service can be called
‘optimum”. The size of a service is presented through the discussion of the
service design issues related to granularity with considerations of the
importance of having an appropriate level of granularity, where employing the
software quality attributes for SOA can assist to achieve the “optimum”
services. During the service identification process, they may be composable and
described by the choreography languages from a global viewpoint.

Section 2.3 describes business process modelling with a focus on Business
Process Model Notation (BPMN) representations. Section 2.4 explores the field
of Model Driven Architecture (MDA) and the concept of model transformation,

Chapter 2 SOA & MDA

using relevant technologies and methods. These show techniques and

technologies of MDA can be used to identify potentially “optimum” services.

2.1 Service Modelling

Service-Oriented Architecture (SOA) is a modern approach to implementing
(re-implementing) a system as a set of interoperable services. Service-oriented
analysis, design, and architectural disciplines all contribute to the service
modelling approach (Bell 2008). Within the development life cycle, the term
“modelling” denotes what was previously referred to as “analysis and design” in
previous design methodologies (Bieberstein, Bose et al. 2005). These
methodologies of modelling service-oriented systems are built on theoretical
foundations, adopting a variety of effective approaches such as Model Driven
Architecture (MDA). Service modelling considers the process of service delivery
within an interoperable environment, beginning with a model representing real
business requirements and includes the construction of a code skeleton to assist
the implementation of these requirements. The software is required to conform
to key design characteristics such as flexibility and reusability because these
characteristics are important to decide whether the service design is
appropriate. These might be fundamental non-functional requirements for the
system.

The notion of modelling has received significant attention within SOA. A
reference model has been proposed to formalize the underlying aspects of SOA
(Haesen, Snoeck et al. 2008). This proposal is intended to cover the significant
entities and properties of SOA, as well as their relationships, although the
proposed model is limited in its description of advanced service interaction
scenarios and therefore not comprehensive. In industry, development activities
that relate to the design phase are almost invariably different from one
organization to another because of the absence of development standards
(Haines and Rothenberger 2010). With more general views comparing to the
‘reference model’, Dijkman and Dumas propose a core model for
service-oriented design, based on multi-viewpoints of choreography,
orchestration and provider behaviour, as well as interface behaviour with
specific characteristics such as high autonomy, and low level of granularity
(Dijkman and Dumas 2004). In fact, currently there are neither clear

characteristics nor a formal approach that might guide modelling services.

12

Chapter 2 SOA & MDA

2.1.1 Service Oriented Architecture (SOA)

Accommodating technological evolution and rapid business changes is a
significant problem with current software systems. Current software systems
were typically developed with embedded business rules and logic, scattered and
duplicated code, wunstructured modules and tightly-coupled functions.
Furthermore, external changes in business and application requirements are
introduced (e.g., the recent emphasis on governance), emphasising the
requirement for a modern architectural style such as SOA. A design
methodology based on SOA provides a standardized way to improve both
efficiency and flexibility because SOA enables transformation of the logic and
views of business applications to a number of reusable services (Sweeney 2010).
It provides a mechanism to incorporate the business strategies, implementation
methodologies and operational aspects of the service-oriented system. SOA is
not a new concept, having evolved from previous module-based development

methodologies such as modular programming, software component and O-O

design (Endrei, Ang et al. 2004). In fact, the term “SOA” has traditionally been
defined from a number of different perspectives, for example; its functional
aspects as being layered-enterprise based (Rosen, Lublinsky et al. 2008),
usefulness in achieving business and solution strategies (Rosen, Lublinsky et al.
2008), and from a technical or business aspect (Bieberstein, Bose et al. 2005).
This breadth illustrates that SOA can be presented and discussed from various
different viewpoints. With this in mind, the level of abstraction provides an
effective technique to study software architecture(Bieberstein, Bose et al. 2005).
Figure 2-1 shows SOA layers of abstraction, as typically presented in the
literature (Erradi, Anand et al. 2006; Rosen, Lublinsky et al. 2008) which

partitions the architecture into six specific layers as follows:

e Presentation layer. this layer provides users with specific applications or

alternatively a mechanism for interaction with business processes.

e Business process layer: this layer represents workflows (business processes)
which are uniquely defined as sequences of activities responding to a
business function or functions. A business process is often implemented as a
service or a composite of services, and executed as part of a Business

Process Management System (BPMS).

e Business services layer: this layer provides a number of services that respond

to the business process layer, presenting coherent business functionalities.

13

Chapter 2 SOA & MDA

Typical services are coarse-grained, though every service can be
implemented with a number of fine-grained services. A Service Level
Agreement (SLA) can be specified to govern and manage the quality of

service provided to the service consumer.

Infrastructure service layer: this layer provides a number of services
supporting shared functions (e.g., to implement authorization or perform
performance tuning) and also can support other enterprise services such as

data services and integration services.

Service Component layer: this layer typically comprises a block of services
designed specifically to meet a potential future requirement (e.g., future re-

use or an anticipated new requirement).

Operational and resources layer: this layer usually represents existing
applications (i.e., legacy systems and custom applications). These
applications provide operational functionalities for underlying service
components (e.g., existing systems Enterprise Resource Planning (ERP) and

Customer Relationship Management (CRM) or custom application J2EE).

e I S L O

Business

G == =
—osssscssees

S
I
|
Infrastructure
Services

Service
Components %
Operational

and i
Resources S

Layer

T ¢
[
L

Figure 2-1 Typical SOA Layers of Abstraction

Chapter 2 SOA & MDA

Each level of abstraction can however be further divided into finer detail.
In addition, business and infrastructure service layers in particular will often be
consolidated which narrows the abstraction gaps between the SOA layers and
facilitates the service identification process.

The service development life cycle is an incremental process with multiple
phases (Papazoglou and Van 2006). Different research methodologies propose
different service development cycles. A “traditional” service development cycle
consists of six phases: planning, service analysis, service design, service
development, service testing, service deployment and service administration
(Erl 2005), figure 2-2. The planning phase creates business and IT strategies
that assist in achieving the benefits of an SOA implementation, studying the
feasibility of the proposed system. It can also ease the transformation from
traditional architectural and development practices towards a robust, flexible
development environment within a service-oriented approach. The service
analysis phase gathers business and software requirements, defines constraints,
and identifies candidate business services using a specific modelling strategy.
For example, a policy to re-use valuable existing components using a re-
engineering method (e.g., the use of web-service wrappers).

The service design phase defines the specifications and features of services
within the service boundaries in order to allow tracing of service specifications
between requirements. The service development phase transforms service
elements into executable software which operates using appropriate
technologies. The service-testing phase comprises verification and validation of
service code using rigorous testing techniques and is intended to ensure that the
service implementation satisfies the functions and proprieties defined at the
design stage. The service deployment phase carries out the configuration and
advertising of services in a repository enterprise, i.e., installing and integrating
middleware software. The service administration phase manages service issues
such as monitoring, versioning, and maintenance, through, for example,

defining ways to enhance and monitor performance.

15

Chapter 2 SOA & MDA

Service Identification

\

\

Planning >[

Development) Testing Deploymen> Administration)

Figure 2-2 Service Development Life-cycle

The disciplines of analysis and design are embodied in the service-oriented
modelling paradigm (Bell 2008). The service identification process aims to
transform a description of a service (in either text or model form), and will
move typically from business application requirements at the planning phase to
more detailed formal specifications with a mapping technique (such as top-
down mapping). The final result of the process is a skeleton containing a full
specification of the service elements in the design phase. This transformation is
an iterative process, based on the state of the service during the life cycle, and
correspondingly it leads to a service-modelling discipline (Bell 2008). Essential
challenges addressed are the ways in which services are identified, described,
and realized to deliver maximum flexibility, agility and reusability (Arsanjani
2004; Erradi, Anand et al. 2006; Dwivedi and Kulkarni 2008; Bell 2010). Service
identification is one of the most important tasks in defining the optimum set of
services, as any ill-advised modelling decision can result in compromises that

will affect the entire service-oriented enterprise. We would argue that the
‘optimum” services are those that correspond to the requirements of business

applications and consider trade-offs between service quality attributes according

to the system/user requirements.

2.1.2 The Definition of Service

The service is the core element of any SOA implementation. The term service is
used generally across a wide spectrum of different computer science areas, with
many different specific meanings. Study of the literature in service design and
modelling will reveal a number of different service definitions, based on (for
example) the analysis techniques used in modelling, the potential benefits of
adopting SOA, and an understanding of the guiding principles of SOA. From a
business perspective, a service can be defined as a discrete unit of business

functionality (Rosen, Lublinsky et al. 2008). Technically a service can be
16

Chapter 2 SOA & MDA

defined as a software resource exposed and discovered via an interface, with
policies to facilitate different configurations (Arsanjani, Ghosh et al. 2008). A
number of other service definitions can be found in (Wiersma 2010).

For the purposes of this thesis, it is essential to have a clear
understanding of the term “service” (Bell 2010). We have adopted the W3C

definition for a service, “an abstract resource that represents a capability of
performing tasks that represents a coherent functionality from the point of view
of provider entities and requester entities” (W3C 2004). The capability offered
depends on the level of abstraction and the type of service. For example, data
services residing in the data layer will typically support data access and
manipulation. Unlike other service definitions, the W3C definition emphasises
that (functionally speaking) the service always offers benefits as a resource in a
self-contained representation between a service provider and a service recipient.
It is worth noting that with this definition, the W3C attempts also to link

service definition with a web service (WS) definition (service implementation)
by means of the term “resource”. According to W3C (W3C 2004), the service

also embodies the properties of the definition of the term “resource” such as
an identifier in service definition. Although the W3C definition of a service
(Funk, Kuhmunch et al. 2005) is general, it also addresses the key
characteristics necessary to call a software unit a service.

The design of a service can be defined conceptually according to three
elements: the contract, the interface and the implementation (as shown in
Figure 2-3). The service contract provides informal specifications of the
purpose, message types, functionality, constraints, and usage of services which
are published as documents. The service interface exposes the service
functionalities to the representation layer through a set of operations. The
design of an interface is isolated from the design of the software system in most
modern software approaches (Berners-Lee 2003), with the service

implementation encapsulating both business logic and related data.

17

http://www.w3.org/TR/ws-arch/#provider_entity
http://www.w3.org/TR/ws-arch/#requester_entity
http://www.w3.org/TR/ws-arch/#identifier

Chapter 2 SOA & MDA

[<Policy>
<All>
Assertions..

</Al>
</Po

</Type>
</Definitions>

Figure 2-3 Service Elements

2.2 Service-Oriented Architecture Decomposition

Service-oriented decomposition is one of the modelling strategies used to
identify services in enterprise architecture, describing the way in which a
business-domain model is partitioned into services. In the literature, the term
‘composition” is often used in conjunction with the word “service” to refer to a
combination of services to provide new functionality (Rosen, Lublinsky et al.
2008). As software complexity has increased, the technique of decomposition
has become more important and is intended to separate entire applications into
a number of separate programs (Rosen, Lublinsky et al. 2008) .

In the context of SOA, decomposition is the breaking down of hierarchical
business domains into business processes or functions using a top-down analysis
technique. A considerable number of existing methodologies are available to
define services based on decomposition of business processes models (Zhang and
Yang 2004; Zhang, Liu et al. 2005; Jamshidi, Sharifi et al. 2008) (these
methodologies are explained in section 3.1). Each business process is
decomposed into activities (a set of tasks) which can be realized as either a
candidate service (or a set of services), and consideration of the appropriate
level of service granularity by the service identification process is the main task
of the service-oriented decomposition process (Erradi, Kulkarni et al. 2009).
The underlying technique of service identification affects both the service
features and also the level of granularity. The key issue here is that it is
important to find a methodology to identify the optimum services. The
methodology should consider service quality attributes and the design issue of

service granularity.

18

Chapter 2 SOA & MDA

2.2.1 Service Identification

As explained above, service identification is the key issue when identifying
business services in service-oriented systems (Endrei, Ang et al. 2004 ; Rosen,
Lublinsky et al. 2008). The service identification process is part of both the
analysis and design phases of the SOA development cycle and denotes the
process of generating definitions of an appropriate set of services in a service-
oriented project. Indeed, the service identification process is based on analysis
techniques that depend on the available resources and project constraints, e.g.,
migrating legacy code by simply wrapping the code as one or more web services
because budget constrains prevent a more comprehensive review.

Although there are a number of approaches for service identification in
SOA, identifying the optimum services for a service-oriented system remains a
significant challenge. A number of possible approaches have been delivered from
a variety of different perspectives, including business process driven, tool-based
MDA, wrap legacy, developing legacy code as components, data-driven, and
message-driven approaches (Arsanjani 2005). Further classification of SOA
developmental approaches is possible, based on the delivery strategy, lifecycle
coverage, degree of prescription, target availability, process agility, and planned
retention of existing processes, techniques and notation (Ramollari, Dranidis et
al. 2007). However, the SOA paradigm has the potential to address distinctive
features and requirements, which requires a comprehensive methodology in
order to provide sufficient guidance for every phase of the service development
cycle. (A full review of the literature will be provided in chapter 3).

The service identification phase is crucial because mistakes made at this
stage can lead to overall failure of the resulting SOA-based systems. The set of
services defined at this stage needs to be of an appropriate size for the required
system and we believe that service granularity is one of the key architectural
issues affecting service identification process to achieve the optimum service
interface design. In fact, SOA has inherited important architectural
considerations (such as software size (Costagliola, Ferrucci et al. 2005)) from
former architectural approaches (e.g., O-O (Booch, Maksimchuk et al. 2007),
CORBA (Mowbray and Malveau 1997)). Success is critically dependent on the

correct identification, presentation and definition of key services at the “right”

level of granularity since the exposed functionalities in a service define its

granularity. It is important to appreciate that achieving an appropriate level of

19

Chapter 2 SOA & MDA

service granularity inevitably requires a compromise between many elements,
both technical and non-technical. In particular, the optimal granularity of key
services can be expected to vary in different layers with different service types
(Kohlmann and Alt 2007) and layers (Reldin and Sundling 2007; Kulkarni and
Dwivedi 2008).

Despite these requirements, there is an increasing acceptance of the SOA
based design approach for developing large-scale systems, despite there being no

standardised methodology. The typical strategies for SOA development are
referred to as “top-down”, “bottom-up” and “meet-in-the-middle”

(Perepletchikov, Ryan et al. 2005). In this thesis, we will focus on these

strategies, because most of the available published work has used these terms:

Top-down strategy: This strategy identifies business services from a business
perspective, by (for example) mapping products, business processes or use cases
onto a set of business services (Galster and Bucherer 2008), and decomposing
business domains into functional areas and components (Perepletchikov, Ryan
et al. 2005). SOA can be specifically differentiated from other software
methodologies because it is explicitly intended to be strategically aligned with
the underlying business vision (Arsanjani and Allam 2006). It is particularly
relevant in business models which must respond to business transactions using
a set of sequenced activities or tasks. This strategy makes use of domain
analysis, which itself requires use of specific analysis methods. Chen et al.
suggest a feature analysis method that can be used to identify, model, locate,
and then aggregate system features, and also assist in the conceptual
classification of legacy system granularity (Chen, Li et al. 2005). Zhang and
Yang (Zhang and Yang 2004) apply clustering analysis methods together with
human supervision to specify acceptable levels of granularity and service loose
coupling for the migrated code (Fraley and Raftery 1998). Although the
top-down strategy defines service with improved quality attributes, in practice

some migration of existing infrastructures is always required.

Bottom-up strategy: This strategy deliberately works ‘backward’ from the
technical basis to the system requirements based on existing technologies, i.e.,
legacy-system components are grouped into services on the basis of existing
system functionalities. This strategy particularly advocates the migration of
legacy systems into services (Krafzig, Banke et al. 2005). It requires an analysis

of the business requirements in order to define service functionalities, and
20

Chapter 2 SOA & MDA

integrates appropriate functions of the legacy systems into independent
components based on the validity of the business logic. Adaptors can then be

created which shield the legacy systems from the web service interface; this

strategy is sometimes referred to as the “black-box” approach (Sneed 2001). It
might also develop web services to implement the key business logic of the
existing code (Zou and Kontogiannis 2001). Jianzhi, Zhuopeng et al use a
reverse engineering technique on a component-based approach using a Java
Native Interface (JNI) wrapper to encapsulate code, and the Commerce
eXtensible Markup Language (CXML) to describe specifications for

communication within a workflow (Jianzhi, Zhuopeng et al. 2005).

Meet-in-the-middle: This strategy combines both the bottom-up and top-
down approaches, with an emphasis on migrating valuable components from
the legacy system. Software designers start by deciding what existing software
assets should be migrated and the best way to migrate them without losing
significant system functionalities. It is an iterative process; along with
integration of available software assets (by defining web service wrappers for
legacy functionality), high-level business activities are decomposed into business
services. Defined services from both approaches are validated iteratively against
the software requirements. Erradi et al. (Erradi, Anand et al. 2006) advocate a
hybrid approach, incorporating a top-down approach for domain decomposition
and a bottom-up approach for application portfolio analysis, using a variety of
manual techniques (e.g., interviews and questionnaires) together with
automation tools. Other design and development approaches are also available
(such as Middle-Out, and Front-to-Back (Shirazi, Fareghzadeh et al. 2009; Bell
2010), but these alternatives are less well accepted than the strategies discussed
above. Middle-out models services based on defined goals as goal-service
modelling, Front-to-Back tracks calls for the user interface and presentation
layer logic.

In summary, there is no comprehensive strategy that guides the analysis
and design phases of service identification for a complex system. Furthermore,
ambiguity in the definition of major enterprise business processes is a common
issue with all of these strategies (top-down, bottom-up and meet-in-the-middle)
when applied to the development of business scenarios (Papazoglou and Van

2006). Nonetheless, a number of approaches assert that the meet-in-the-middle

21

Chapter 2 SOA & MDA

approach combines the advantages of the other strategies (Erradi, Anand et al.
2006; Arsanjani, Ghosh et al. 2008; Kohlborn, Korthaus et al. 2009).

2.2.2 Service Granularity

The term granularity is defined as “the scale or level of details in a set of data”,
according to the Oxford dictionary'. Granularity reflects the degree of system
complexity in software design, and is thus a key design factor in defining
software units for software development methods, irrespective of whether the
software unit is a module, object, component, or service. Indeed, this increasing
level of modularity and abstraction is designed to solve issues related to
granularity (Brereton and Budgen 2000), e.g., objects in object-oriented
programming were intended to represent real-world concepts. In the context of
SOA, service granularity refers to the complexity of the functionality offered by
a service . Granularity refers to the functional capabilities offered by a service,
or the number of business transactions/processes implemented by a service.
Coarser-grained services include large numbers of operations and exchange
larger amounts of data.

To a certain extent there is some agreement on the importance of the
granularity concept for service-based systems (Kohlborn, Korthaus et al. 2009).
A recent study by industry experts which evaluated SOA development
processes concluded that service granularity is one of the key issues in the
design phase (Haines and Rothenberger 2010). Nonetheless, the definition of
this property is still not fully agreed, due to the subjectivity of the relative
aspects and a lack of any theoretical grounding (Haesen, Snoeck et al. 2008).
Architectural layering of services in the SOA is used to classify services and
then define levels of granularity based on different service types (figure 2-1).
Dwivedi and Kulkarni define in broad terms eight hierarchical service types:
process service, business service, composite service, informational service, data
service, utility service, infrastructure service, and partner service (Dwivedi and
Kulkarni 2008) (more classifications can be found in (Erl 2005; Papazoglou and
Van 2006)). Service granularity is evaluated based on the type and definition of
every service. For example, a business service is coarse grained compared to an

infrastructure service due to a higher level of abstraction, and vice versa.

! (2011) Granularity: Compact Oxford English Dictionary Online http://oxforddictionaries.com/.
22

http://oxforddictionaries.com/

Chapter 2 SOA & MDA

The concept of granularity applies to different levels of abstraction, i.e.,
the functionality offered by an operation in a particular service interface is
different from the functionality that is offered by a service implementation. It is
important that we differentiate between different types of granularity in order
to analyse the relative quality attributes. Erl et al. propose four types of service
granularity (Erl, Karmarkar et al. 2008). The first is service granularity, which
indicates the functional scope of the overall service context. The second is
capability granularity, which focuses on the functional scope at an individual
service level. The third is constraint granularity, which aims to quantify the
level of validation logic detailed. Finally, data granularity refers to the size of
the exposed data. In a more structural classification, Haesen et al (Haesen,
Snoeck et al. 2008) classify three types of service granularity: functionality
granularity, which refers to the size of functionalities offered by a service, data
granularity, which is the size of data exchange within a service, and business
value granularity, which refers to the business value added by a service. These
service types and levels of abstraction are also used together to assist with the
definition of the various types of service granularity. A number of resources
have discussed granularity from the perspective of development strategies,
including top-down and bottom-up, focusing on the impact of development
strategies on the correct definition (Perepletchikov, Ryan et al. 2005; Boerner
and Goeken 2009; Ma, Zhou et al. 2009). According to these classifications,
functionality, data, and level of abstractions are the most important elements
in the classification of granularity. Further analysis of these elements would
assist in providing better decisions regarding the service design.

The underlying service identification process in SOA specifically depends
on defining the right services with a proper level of granularity. A considerable
amount of literature has proposed methodologies for identification of the right
services with appropriate granularity (Papazoglou and Van 2006; Dwivedi and
Kulkarni 2008; Kim, Kim et al. 2008; Kulkarni and Dwivedi 2008; Zhang, Zhou
et al. 2008) (these references will be explained later in chapter 3, section 3.1).
Although these approaches have used a variety of different techniques, they
have not agreed on how to define the correct level of granularity effectively,
agreeing instead on the difficulty of delivering a set of services with appropriate
granularity. Furthermore, when designing the services, the impact of
granularity on quality of service (QoS) aspects must also be considered.

Identification of services with an appropriate level of granularity has the

23

Chapter 2 SOA & MDA

potential to provide other potential benefits of SOA such as flexibility,

reusability, and functionality.

2.2.3 Service Quality Models

Evaluation and enhancement of software quality is a key objective of software
engineering. The definition of the important software qualities are always
different from one stakeholder to another, e.g., do we require a flexible set of
services with high reusability standards or alternatively low complexity service
components with high agility? In literature, a number of quality models have
been suggested to evaluate various quality attributes within different
applications. The concept of such models was established by McCall for quality
investigation in development processes (McCall, Richards et al. 1977), with
additional models (such as the models published by Boehm and Deutsch
(Boehm 1976; Deutsch and Willis 1988)) appearing later. A quality model
defines characteristics and properties that need to be measured, enabling the
use of software metrics to measure such. Software quality metrics (essentially a
subset of software metrics with special focus on quality) have been classified
into product metrics, process metrics and project metrics (Kan and Jones
2004). The first attempt to use metrics for software quality prediction was by
Akiyama (Akiyama 1972) in a simple regression-based model (Fenton and Neil
1999).

SOA is an approach, not a product (Rud, Schmietendorf et al. 2006). It
does not follow a specific development methodology process and furthermore
SOA implementation can be achieved by a variety of different technologies,
e.g., Representational State Transfer (REST), Web service (WS) and
Distributed Component Object Models (DCOM). We believe that focusing on
the implementation of services means that product metrics are more
appropriate to SOA than project or process metrics. The features and
properties of a product (service) represent software quality attributes
(Perepletchikov, Ryan et al. 2005); typically classified as external and internal
attributes (Costagliola, Ferrucci et al. 2005). The external attributes, called
characteristics, relate to the product environment, for example, the ISO/TEC
9126-1:2001 standard defines external software quality attributes as usability,
maintainability, efficiency, portability, functionality, and reliability (ISO/IEC
2001). The internal attributes are related to the product itself, for example,

measuring the software size, coupling, cohesion, and complexity, and such an
24

Chapter 2 SOA & MDA

attribute might impact one or more external attributes. At the enterprise level,
quality-in-use can be used to measure specific needs in order to achieve specific
goals effectively, productively, safely and satisfactorily in specific contexts of
use, according to the ISO/IEC 25020 (ISO/IEC 2007). Fig. 2-4 shows the
relationships between different quality attributes in the context of an enterprise

system adopting SOA.

’External Quality Attributes‘

HeneTe S Il WHWHH Use Measures |
p 1 @?MMMM MMHI
] J (‘Serw‘cés \ :

__~ System infrastructures
and Resources A

WMHMM T,

Figure 2-4 SOA Product Measurements

a)

(72}

Currently, SOA is emerging as an innovative approach with considerable
promise for improving common software quality concerns such as unacceptable
inflexibility and complexity. Despite the extensive amount of research within
the area of service quality (QoS), no agreed standards are currently available to
evaluate the implementation quality of service-based systems. Indeed, the
existing SOA quality models focus on broad measurements of external
structural software service attributes (such as complexity, reusability and
performance), neglecting the impact from internal structural software

attributes, and in particular from service granularity.

2.2.4 Service Choreography WS-CDL

Web Services (WS) are currently a widely adopted implementation method for
SOA (Barker, Walton et al. 2009). Web services can be composable and
described by choreography languages from a global viewpoint. The
choreography languages describe rules of collaborations between participants
and help to ensure service interoperability between services. Despite the large
number of existing choreography languages such as Web Services Choreography

Description Language (WS-CDL), BPEL4Chor (Decker, Kopp et al. 2007),
25

Chapter 2 SOA & MDA

Ontology Web Language for Services (OWL-S) (Martin, Burstein et al. 2004)
and Let’s Dance (Taylor, Shields et al. 2003), none has achieved acceptance as
a de facto standard for describing WS composition (Cambronero, Diacuteaz et
al. 2009). Nonetheless, the drivers of these choreography languages have been
developed and refined based on various requirements For example, a detailed
comparison of the existing literature on choreography languages can be found in
(Bucchiarone and Gnesi 2006; Cambronero, Diacuteaz et al. 2009), giving a full
semantic descriptions for all stages of the web service lifecycle. Based on our
problem space, we found WS-CDL to be the most suitable choreography
language because it is designed for describing abstract business processes and
focuses on web service architecture (Bucchiarone and Gnesi 2006). Indeed, it
concentrates on role representations that can be used to simulate roles in
business processes for description of participant behaviour in a collaboration of

services. Moreover, the WS-CDL is based on a formal language (derived from

the m-calculus) which allows us to ensure the correctness of service behaviour
based on behavioural type checking (Ross-Talbot 2004; Li and Miao 2008).

An overview of the elements and structure of WS-CDL, as described in
the WS-CDL v1.0 specification (dated 9 November 2005), is at the W3C

candidate recommendation stage (W3C 2005). WS-CDL is an XML-based

language that describes the observable behaviour of peer-to-peer collaborations
(i.e., multiple services), using message exchanges to accomplish a common
business goal (Bordbar and Staikopoulos 2004). It defines the relationships
among activities through executed interactions by means of message exchanges
among web services described in WSDL. It is also an independent platform and
business process implementation language, specifically designed for composing.
Figure 2-5 shows an overview of the WS-CDL package in a set of type
definitions, and it can be seen that the WS-CDL code consists conceptually of
two parts: the package root elements, and the choreography definition.

The package root elements define both the exchanged messages and
collaborating participants responsible for the observed behaviour. An
informationType element specifies the type of exchanged messages and
variables (e.g., capturing the state of a purchase order during the order creation
routine of a business process). The token and tokenLokator elements refer
respectively to relevant data pertaining to variable values, and how to access
the token information in other resources. The roleType element represents the

behaviour of the collaborating participant. It refers to one or more exhibited
26

Chapter 2 SOA & MDA

behaviours (e.g., operations in WSDL file) and optionally identifies associates if
the implementation supports web service interfaces. The relationType element
consists of two roles (roleType), optionally including a subset of their
collaborative behaviours. The participantType element groups roles (roleType)
to which they will be executed by the same participant. The ChannelType
element describes behaviours of a participant as a message recipient (rather
than a requestor of messages) in order to specify both how exchanged
information is passed and the target destination. Figure 2-5 illustrates a view of

package root elements.

_
Information Type

Token

Token Locator

Choreography— Role Type
Faslge Relationship Type

Chanel Type Relationship Type

Choreography___Variable Definitions ..
— Participate
Interaction
Exchange

Figure 2-5 A View of the WS-CDL Package Root Elements

One or more choreographic definitions are included in every package. The
choreographic definitions can be globally defined without the root package and
other choreographies can invoke it when needed. The choreography section
defines collaboration rules between two or more participants, and Alistair et al.
(Alistair, Dumas et al. 2005) summarise activities in WS-CDL into three
categories: control-flow activities, workunit notation, and basic activities. The
first category can be subdivided into sequence, parallel, and choice elements,
with these elements expressing the ordering structure by which interactions are
executed. The second category, the workunit element, describes required
conditions for successful execution of collaborations and synchronisation among
activities. These conditions might include activity looping, guarding, exception

handling, and coordination. Finally, basic activities include the following
elements: interaction, perform, assign, noAction, silentAction and finalize. These

27

Chapter 2 SOA & MDA

describe the lowest level actions performed within a choreography definition.

Figure 2-5 illustrates a view of choreography definitions.

The W3C has promoted the suitability and stability of WS-CDL as a
choreography language, based on web services from a global viewpoint (W3C
2005; Decker, Overdick et al. 2006), however there are some specific criticisms
of the current version that could affect the definition of corresponding
modelling notations in the context of SOA (Alistair, Dumas et al. 2005). An
example is the integration of the XML syntax and semantic (meta-model) of
service choreography into one specification, which affects the definition of an
interchange format and modelling constructs (Alistair, Dumas et al. 2005). In
addition, WS-CDL is bound to the WSDL interface with limited
implementation (ISO/IEC 2007).

2.3 Business Process Modelling

A Business Process (BP) is a set of tasks or activities which is performed
collaboratively to realize an overall business objectives (Medjahed, Benatallah
et al. 2003). These objectives are achieved by using services which can adapt to
requirements changes rapidly. Business Process Management (BPM) governs
and controls BP in workflows, in order to improve agility and integrity.
Business process modelling is the activity of representing and analysing business
processes (Luo and Tung 1999), and a number of business modelling languages
and tools have been proposed to model, implement, and execute these models.
Among these modelling languages are the UML EDOC Business Processes, the
PCD (Process Chain Diagram) of ARIS, and the activity diagram of UML
(Unified Modelling Language). There are also ebXML BPSS and BPMN which
are intended to be mapped to execution languages such as Business Process
Execution Language (BPEL), XML Process Definition Language (XPDL)
(Coalition 2008) and Web Services Business Process Execution Language
(WSBPEL) (OASIS Standard 2007). A model in BPMN can be executed in a
process-executable environment on a process engine (Genon, Heymans et al.
2011). The adoption of process modelling using BPMN 2.0 as the modelling

language in this research is motivated by several factors:

28

Chapter 2 SOA & MDA

e Relevant research has confirmed that process-oriented modelling
provides a good basis for SOA (Rolland and CentreKaabi 2007;
Jamshidi, Sharifi et al. 2008).

e BPMN 2.0 supports rich constructers. There are limitations when
modelling related resources and representing various types of control-
flow constructs using other modelling languages such as UML 2.0
Activity Diagrams for business process modelling (introduced by
OMG) (Decker, Overdick et al. 2006).

e BPMN 2.0 focuses on extensibility in choreography descriptions.

2.3.1 Business Process Model Notation (BPMN)

BPMN is the leading standard among modelling languages for business
processes and workflows (Chinosi and Trombetta 2011). BPMN is an OMG
specification, which was initiated by a working group within the Business
Process Management Initiative (BPMI), and then completed and published by
OMG in February 2006 (version 1.0) (Recker, zur Muehlen et al. 2009). The
initial goal of BPMN was to provide a standardized graphical notation that is
comprehensible by business analysts and developers, without a native
serialization format. The updated specification of BPMN was released in
January 2008 and January 2009 as versions 1.1 and 1.2 respectively. These
updates included better-defined semantics, such as various types of events
(OMG 2008; OMG 2009). The most recent specification is BPMN 2.0, in which
the focus and capabilities from previous versions have apparently been changed
and extended (OMG 2011). This version formalizes the execution semantic for
BPMN elements, provides extensibility capacity for processing models and
graphical data, refines event composition and correlation, enables mapping of
business process models in BPMN to other models, updates the semantic and
definitions of human interactions, and extends its scope to define choreography
and conversation models (OMG 2011). It also resolves some of issues with
previous versions such inconsistencies and ambiguities. Moreover, it defines a
meta-model and a schema for diagram interchanges, unlike previous versions
that failed to provide an official meta-model (List and Korherr 2006; Debnath,
Zorzan et al. 2007; Korherr and List 2007; Recker, zur Muehlen et al. 2009).
According to the BPMN 2.0 specification (OMG 2011), diagram types include:

29

Chapter 2 SOA & MDA

1. Process Diagrams: these contain description of flow elements and attributes
used in a stand-alone business processes (orchestration), private non-
executable processes for documentation, private executable processes for
modelling and execution, and public processes for describing interactions
between a private business process and another process or participant (see
an example in figure 2-6).

2. Collaboration Diagrams: these consist of two or more participants
communicating via a communication route known as a message flow, which
considers the internal behaviour within business processes. Participants
representing other business processes are assigned a role in a business
interaction. These diagrams are designed to show the relationship between
choreography and orchestration processes (see an example in figure 2-7).

3. Choreography Diagrams: these define interactions and communication
protocols among participants using sequences of message exchanges. In
contrast to orchestration concepts, this interaction description is based on
Message Exchange Patterns (MEPs - see an example in figure 2-8).

4. Conversation Diagrams: an informal description of a collaboration diagram
focusing on a logical grouping of message exchanges based on a correlation
key, e.g., grouping of message exchanges for a specific object. (See an

example in figure 2-9).

&Determine 693 Check %Determine Approve r\:;t;fzt of
O—> Order is Record of Premium of or Reject PP
Complete Applicant Policy Policy Approval or
L Rejection

Example of a private Business Process

Patient

T ? 1 'eeTsick Elclup.yot madicine T Here is yo#r medicine

and you n leave
I want to Tae dostor 4 R I l need my Inedicine I

Recenve Réceive Send Recelve Send
Doctor Send Appt. Prescription Medicine
Request Symploms Pickup Request Medicing

Example of a public Process

Figure 2-6 A Process Diagram Examples

30

Chapter 2 SOA & MDA

s = Receive Send =

S

3 Saod Dodkrl,.. Wiciitn Syiime [={Prosciion || moGcine =SS

o liness . Pickup Request

Occurs = =
1 wa"-l to 1 leel sick Bidic J ik 1 need mJ medicine I
see doctor G ickup yodr medicine
10 seel doctor: and you Pan leave Here is yo‘r medicine
=
B
= =
S S Reoelve Receive Send Recelve Send
=28 Doctor Send Appt. Prescription Medicine
o 8 ().l H
§ a Request Symptoms Pickup Request Medicine
o
An example of a Collaborative Process

Figure 2-7 A Collaboration Diagram Example

I want to see
the Doctor

I feel sick 7]

I need my
medicine

Doctor

medicine, then E

leave

Here is your
medicine

Patient Patient Patient Patient
:) Doctor Sl Handle | Handle 2 _ Handle
Request = Symptoms == Prescription T Medicine - o
Dr_Office Dr. Office Dr. Office r. ce
Go see the Pickup your

An example of a Choreography

Figure 2-8 A Choreography Diagram Example

Truck

Delivery Supplier
Retailer Negotiations.
\B/
Delivery / Dispatch Consignee Shipment Schedule
Plan
; £
Delivery / Dispatch]]
Delivery / Dispatch -
Consolidator Plan Carrior Planning Shipper
N Carrier ™\
N/ (Land, Sea, Rail, or Air) N/
c Pre- Coverage
P Notification Insurance
Q TR N
A n e
Breakdown Locative Service
Service

P Traffic Of

Confs

An example of a Conversation diagram

Figure 2-9 A Conversation Diagram Example

2.4 Model-Driven Transformation

The model-driven transformation (MDT) technique in MDA is used to develop

a software program which can transform abstract models to code. Thus, the

MDT can be used for SOA to generate service implementations from abstract

models such as business process models. Although

31

Software Development

Chapter 2 SOA & MDA

Environments (SDE) (e.g., the integrated development environment (IDE))
have greatly improved in the past twenty years, software complexity and
development costs continue to rise (Mellor, Scott et al. 2004). In order to

develop software systems efficiently, the Object Management Group (OMG)
has supported and defined the (MDA) as “software development processes
based on a model” (OMG 2003). MDA is “an evolutionary step that consolidates

a number of trends that have gradually improved the way we produce
software” (Frankel 2003). To support a chain process of transformation, MDA

requires the compliance and portability of standards such as Meta-Object
Facility (MOF), Unified Modelling Language (UML) and XML Metadata

Interchange (XMI) (OMG 2003).

2.4.1 Model Driven Architecture (MDA)

MDA is based on models that are defined using meta-meta-models, with every
model based on a unique meta-model possessing precise vocabularies and
auxiliary properties (Bezivin, Hammoudi et al. 2004). A model, as a primary
artefact, presents statements about a system for a specific goal (Bezivin and
Gerb 2001; Seidewitz 2003). Different forms can be used to describe a model,
such as a general-purpose modelling language (which is a specific meta-model
dependent) e.g., using a UML class model to describe detailed design of
software systems. The aim is to have a model presenting a system, and defined
according to a recognized standard. Models are transformed to other models,
executable code or text using transformation languages.

An MDA increases the level of abstraction by separating the specification
and business logic of a system from its software platform (Kleppe, Warmer et al.

2003). Conceptually, the level of abstraction in an MDA is designed according
to three levels: the Computation Independent Model (CIM), the Platform
Independent Model (PIM), and the Platform Specific Model (PSM) (OMG
2003). Models defined on the level of CIM correspond to business models in
that they have a pure business specification; the focus is on the system
environment, with little relevance afforded to how the software system is built.
The PIM describes a system from a platform independent viewpoint, showing
that the model description is sufficient to define system behaviour, e.g., a class

diagram presenting the structure of a system. If the CIM separates business

32

http://en.wikipedia.org/wiki/Integrated_development_environment

Chapter 2 SOA & MDA

specification from the design, the PIM separates the design of the system from
implementation. The modelling languages used (e.g., plain UML, Executable
UML (Mellor and Balcer 2002) combining UML with OCL) are an important
factor in the quality of PIM models, however, the model must also have a high

level of completeness and consistency (Kleppe, Warmer et al. 2003). The PSM

describes a software system from a specific platform (OMG 2003), combining
the PIM specifications with additional information about a specific platform,
i.e., information about a specific operating system that impacts software
systems.

A meta-model describes the properties and constructs of every model
precisely. For the definition of such concepts, the OMG determines a
meta-model architecture definition based on four layers of abstraction: M0, M1,
M2, and M3. Figure 2-10 shows classical metadata for a (place order) business
process modelled in BPMN. According to the definitions of these levels, M0
presents runtime-environment instances (e.g., a Customer with id=AAA places
order_id=10 into a shopping cart_id=AAA100), M1 presents the model (e.g., a
business process defined using a BPMN model), and the meta-model resides on

level M2 where the transformation rules are defined, i.e., rules defined using

OVT (OMG 2002) or OCL (OMG 2006). Those meta-models are always

dependent on a common meta-meta-model (MOF') which is represented at level
M3 (OMG 2008). Any meta-model frameworks of MOF dependent comprises of

the four meta-layers.

33

Chapter 2 SOA & MDA

M3
Model
Embedded
Owner pr 1 Process
M2 -
{BPDM) l =
Processor Role =
i Activity
<<instance of>>
<<insmnoe_of>"; i
<<ins-:l§anoe of>> <<in512rt9_gdf>>

Ml = [

Crealea
3
s .

Mo <<insf2_moe of>> or
|{Runtime Cesss Hems # 1A, 2A
environm :;:e d 3""";_? Place Order # 111

orders Shopping Cart #2227
ent)

Figure 2-10 MDE Architectural Abstraction Levels
2.4.2 Meta-Modelling Supported Standards

MOF represents a set of modelling elements used in the specification and
development of meta-models in a domain-specific modelling environment, and
exists at level M3 (Frankel 2003). The definitions of the meta-meta-models are
MOF dependent, and MOF can be also used to define non-Object-Oriented
using meta-meta-models (Frankel 2003), i.e., using the Rational Unified software
development Process (RUP). It supports the metadata management which

binds a model to its meta-model (OMG 2002). UML is aligned with MOF and

based on a four-layer meta-model architecture (Frankel 2003). As a graphical
modelling language, UML provides MOF with the basic constructs to define
and visualize meta-models. XML based Meta-data Interchange (XMI) is a
specification language that defines rules for exchanging interchange format
(e.g., metadata). Figure 2-11 shows the MOF architecture in an example of

definitions of a business process in BPDM.

34

Chapter 2 SOA & MDA

M3
{MOF)
A
T
Behaviour
Model \
Embedded
M2 Owner pri 1 Process
*
{(BPDM) l F3
Processor Role =
i Activity
<<instarnice of>>
B { T B
; <<instanoeof'>"; T

Figure 2-11 An Example of MOF Architecture
2.4.3 Model Transformations

The foundations for transformation in MDA come from theoretical computer
science and practices within software engineering such as rewrite systems and
complier construction (Davis, Sigal et al. 1994; Biehl 2010). In the context of
the model-driven architecture (MDA), the Object Management Group (OMG)

defines model transformation as “the process of converting a model into another

model of the same system”. Model transformations are a core element in Model
Driven Engineering (MDE), providing a seamless way to process source models
in order to generate, filter, and update target models. The transformation
modelling languages achieve different types of transformation such as
Model-To-Model or Model-To-Code. The transformation always depends on a
model, to which it presents a set of statements about some particular systems.
The representation of these statements can be achieved graphically
(Hidaka, Hu et al. 2009) e.g., a model might represent different level of
abstractions of systems as views. A modelling transformation can be achieved
either through a rule-based transformation (Debnath, Zorzan et al. 2007;
Benaben, Touzi et al. 2008) or by the use of parameterized patterns (Brahe and
Bordbar 2006; Delessy and Fernandez 2008). The transformation mechanism
can be used in different phases of the software development cycle, for example,
in development of a transformation program for software quality control to
detect bugs (Bezivin, Bruneliere et al. 2005). Figure 2-12 shows some examples
of model-transformation-mechanism use during different phases of a general

System Development Life Cycle (SDLC) (e.g., transformation of functional

35

http://en.wikipedia.org/wiki/Theoretical_computer_science
http://en.wikipedia.org/wiki/Theoretical_computer_science

Chapter 2 SOA & MDA

requirements to UML class diagrams, and then to Java skeleton code using

model-to-code method transformation).

Faslty |4 System Development Life
j R’ Cycle (SDLC)

Reg. Defintion ‘*‘\\
. |

trarctorm o " o ySystem Design ‘_\\

¥ Implementation .
Aiansorm o g—<_|and Unit Testing <
Code 9
. Generation ' % Integration & |4
I 4" | System Testing \

(Worm for Qualitg~. - - <4
A measurements ;
v e Operation
[&~ | &Maintenance
,//T?ansform for ¢~
Control

Figure 2-12 Model Transformation during System Development Life Cycle

As the applicability of model transformation has grown, a number of
transformation languages offering many features have been proposed, under
both open source and commercial licenses (Czarnecki and Helsen 2006;

Milanovic 2007). These underlying transformation languages and approaches
include Query/Views/Transformations (QVT) (OMG 2002), ATL (ATLAS
Transformation Language) (Jouault and Kurtev 2006), Extensible Platform of

Integrated Languages for model management (Epsilon (Kolovos, Rose et al.
2012), KerMeta (Moha, Sen et al. 2010), and XML Stylesheet Language
Transformations (XSLT) (W3C 1999). The evaluation of different
transformation languages and tools can be found in references (Czarnecki and
Helsen 2006; Biehl 2010). In this thesis, we have adopted the ATL
transformation language in an exogenous transformation (a type of
transformation when source and target models are defined in different

languages), for of the following reasons:
e ATL is described by an abstract syntax (MOF meta-meta-model).

e ATL provides a complete transformation model and supports several
advanced features and complex transformations, e.g., it supports a

number of source pattern elements.

36

Chapter 2 SOA & MDA

e ATL has gained extensive support for development from the user
community via discussion and available projects have been implemented

in ATL for various examples and case studies.

2.4.4 ATLAS Transformation Language (ATL)

ATL (ATLAS Transformation Language) was first proposed by the Atlas
Group and the TNI-Valisos Company as a model transformation language in
response to the MOF/QVT for transformation implementation (BEzivin,
Jouault et al. 2003). It also provides a modelling transformation platform to
transform a set of source models into a set of target models (the semantics of
involved models are defined in MOF meta-models or meta-meta-models.) It is a
hybrid language supported by declarative constructs for less complex mappings,
imperative constructs for advanced mappings, and offers the capacity to handle
queries, views and transformations. In the context of model transformation, it
consists of different rule styles (e.g., called rule and matched rules) dependent
on the invocation method and targeted results, supported by concepts of
polymorphism and inheritance. The “helper” construct defines global variables
and functions expressed in the Object Constraint Language (OCL) standard.
ATL is developed on top of the Eclipse environment as an Integrated
Development Environment (IDE) supported with development tools (e.g.,
compiler and debugger, etc.), and an ATL transformation engine is used to
compile and execute ATL programs. Figure 2-13 shows an overview of
transformation models using ATL. A source model conforms to a specific
meta-model, whereas a target model conforms additionally to a meta-model.
The source meta-model and target meta-model conform to a standardised
meta-meta-model (such as MOF or Ecore). The ATL program defines the
transformation rules that enable generation of the target model based on the

source model input.

37

Chapter 2 SOA & MDA

MOF
(Meta-Meta-Model)
/V h -
Conforms To] _— Conforms To \\\\ Conforms To
e T
Source ‘s Meta-Model | Target ‘s Meta-Model
A A rL A
Engine
Conforms To
Conforms To Conforms To
ATL program
Source Model +—-————————— - Target Model
Transformation

Figure 2-13 General View of Model Transformation

2.5 Summary

This chapter introduced the research fields of service modelling for service-
oriented systems and MDA. We gave an overview of SOA, and showed how
SOA covers a wide spectrum of enterprise architecture, as well as providing an
illustration of the SOA hierarchical layers. We explained the traditional
lifecycle phases of SOA development, focusing on service modelling that aims to
use theoretical foundations to model service-oriented systems. Ambiguity
remains about a universal-accepted definition for a service, however we adopted
the service definition by W3C because it defines the key characteristics of a
service (such as being self-contained). Then, we described the strategy of
service-oriented decomposition process with elaboration on a service
identification process to define the ‘right’ services with the appropriate level of
granularity.

Service granularity might impact other software quality attributes, service
granularity being classified into different types based on amount of exchanged
data, functionality, and the level of abstraction. Software product metrics are
possible methods to measure service granularity. WS-CDL is a suitable
choreography language to bridge the gap between business process models and
web service architecture. We also discussed the concept of business process
modelling and introduced BPMN as a suitable business modelling language to
depict business processes complex scenarios for service-oriented systems. We

introduced the MDA approach and described the architectural aspects behind
38

http://www.eetimes.com/design/automotive-design/4027657/Using-Autosar-s-hierarchical-software-architecture-to-diagnose-CAN-apps

Chapter 2 SOA & MDA

it. We used a metadata example to demonstrate the model-driven engineering
(MDE) four-layer of abstractions. We described the model transformation
method that converts models of different types to new models or source code.
Finally we introduced ATL as the adopted transformation language and
implementation framework for this thesis.

The next chapter will focus mainly on current research approaches in
service identification and will contain a comprehensive literature summary. We
will also discuss how to measure service quality attributes and how these

measurements can be used within the service identification process.

39

CHAPTER 3 SERVICE
IDENTIFICATION CURRENT
APPROACHES

In Chapter 2, we gave an overview about the research areas of SOA and MDA.
In this Chapter, we provide an overview of current literature in the area of
service identification and highlight the limitations of existing approaches.

This literature review is divided into three main sections. In Section 3.1,
we discuss the area of service identification and classify existing approaches into
three sub-sections: business-driven, ontology-driven and legacy system-driven.
In Section 3.2, we briefly cover research into quality of service (QoS) in the
context of service identification. In section 3.3, we evaluate the approaches
identified in section 3.1 using a number of criteria. Finally, Section 3.4

concludes by summarizing the main findings.

3.1 Service Identification Methodologies

A considerable amount of literature has been published in the area of service
modelling covering various different contexts. Although service modelling covers
both the analysis and design phases, most of the current research focuses on
either the analysis or design aspects individually. A number of systematic
literature reviews and surveys have been undertaken on service modelling
issues, mainly concentrating on service identification (Papazoglou and Van
2006; Bianchini, Cappiello et al. 2009; Kohlborn, Korthaus et al. 2009). The
research methods of these reviews were based on predefining a set of SOA
characterises or aspects to evaluate and then comparing the results, e.g.,

comparing supported phases of SOA life cycle and targeted types of service.

Chapter 3 Service Identification Current Approaches

The important result for this research is to investigate these different delivery
strategies and select a suitable strategy for service identification. The design

strategy of service-based systems is generally classified into top-down, bottom-

up and meet-in-the-middle approaches (further details in section 2.2.1). We can
classify the research conducted in service identification for service-based
systems into: business-driven, ontology-driven and legacy system-driven. Each

of these approaches will be considered in the next sections.

3.1.1 Business-Driven Service Identification

A rapid response to changing business requirements is one of the important
objectives of the SOA approach. Thus, some researchers argue that SOA does
not merely integrate an IT infrastructure, it must also fully take into account
the underlying business models (e.g., business process, use case, and activity
diagrams) (Papazoglou and Van 2006; Kim and Doh 2007). A top-down
analysis technique might identify services seamlessly mapping from business
processes or use cases (Galster and Bucherer 2008). SOA can be specifically
differentiated from other software methodologies because it is explicitly
intended to be strategically aligned with the underlying business vision. The
decomposition of business processes or business functions is a key technique to
drive a top-down strategy.

Galsters and Bucherer propose a graph-based framework that discovers
service granularity according to specified business goals during the design phase
(Galster and Bucherer 2008). However, this approach does not define fine-
grained services and only quantifies coarse-grained services using a non-
technical description. Kim et al (Kim, Kim et al. 2008) focus mainly on how to
define the right services in the analysis phase in respect of business change
factors and goals. Rolland and CentreKaabi (Rolland and CentreKaabi 2007)
introduce an approach that depends on exploring the purposes of a business
process in order to identify a service. As a result, this approach defines a new
type of service called an “Intentional Service” which considers business goals,
pre- and post-conditions, and different interpretations instead of the technical
aspects of interfaces, behaviour and composition of services respectively. Nayak
et al. attempt to solve the gap between service provider and requester regarding
the service agreements (Nayak, Nigam et al. 2006). A Unified Service Model

(USM) is proposed along with a service operational model to specify business

41

Chapter 3 Service Identification Current Approaches

services from a business perspective. Although the authors of this approach
claim that the USM defines business services at multiple levels of granularity,
no metrics or guidelines are provided to identify the service granularity.

Arsanjani and Allam (Arsanjani and Allam 2006) outline a set of activities
in the analysis phase that lead to an adequate broad foundation for service
identification. The authors classify service types into three layers; orchestration
layer (process service), business layer (task and entity service) and application
service layer. Even though the author emphasizes the importance of the key
principles of service-oriented, no details have been provided as to how those
principles can be applied to guarantee optimised services. Boerner and Goeken
(Boerner and Goeken 2009) provide a general approach to identify services
including economic aspects, e.g., service robustness decreases operations costs
and SOA governance, e.g., considering SOA lifecycle to prevent service
redundancy. It also emphasizes the importance of BPM as foundation for
service identification concerning appropriate standards. The authors of this
approach mention broad aspects implicitly with neither practical guidelines nor
specific process details. Shirazi et al. (Shirazi, Fareghzadeh et al. 2009) attempt
to categorize services based on the operational state of services and logical
presentations, i.e., differentiating between applications and business services.
Then they use this classification to build their method that consists of several
instructional steps to identify services. However, the approach is incomplete
because the authors did not consider important elements that affect the service
identification phase such as granularity and complexity.

Nuffel (Van Nuffel 2007) focuses on deriving guidelines for service
identification from business requirements by means of a BPM language
definition and an analysis of relative artefacts. Stewart and Chakraborty
(Stewart and Chakraborty 2010) use the value chain and prioritization analysis
technique to model business service and software services from business
strategies and a business process model respectively. Kim and Doh (Kim and
Doh 2009) define a formal method using graph clustering techniques. Cost
metrics are used to evaluate interaction patterns between activities; a UML
activity diagram represents the business model as input of the method. Dwivedi
and Kulkarni (Dwivedi and Kulkarni 2008) introduce a semi-automated
approach to identify services in process-oriented systems. It converts
UML-based business process models into XMI. The XMI reader (NSUML) is
used to produce the MOF (Meta Object Facility) for mapping XMI

42

http://www.google.co.uk/url?q=http://catb.org/~esr/jargon/html/S/semi-automated.html&ei=9PqPSoDnLo2NjAfkw9D2DQ&sa=X&oi=spellmeleon_result&resnum=2&ct=result&usg=AFQjCNFcaevJ7jviMz4WMU9T-pmkWVmppw

Chapter 3 Service Identification Current Approaches

meta-model. The algorithm used runs over an XMI meta-model developed using
a statistically-based approach which is used to create APIs to query candidate
services. Although this approach provides a good definition of the service
identification issues and presents an interesting tool, it fails to demonstrate how
the tool will integrate the service hierarchy layers and properties.

In order to realize the potential of SOA and address the lack of detailed
approaches, researchers have sometimes considered full-cycle approaches for
SOA development and design. The objective of this approach is to support
various phases of service-based system and resolve the issues related to the
internal activities of every phase of the SOA development cycle, e.g., issues
related to service identification process in the service modelling phase.
Papazoglou and Van (Papazoglou and Van 2006) suggest a full cycle
development methodology for web services, based on other development models
such as Rational Unified Process (RUP), Component-based Development and
Business Process Modelling. It is an iterative and incremental methodology
with six phases: planning, Analysis and Design (A&D), construction and
testing, provisioning, deployment, execution and monitoring. It also discuses
characterises and principles of service-oriented design and development.

Erradi et al. (Erradi, Anand et al. 2006) introduce the Service Oriented
Architecture framework (SOAF) approach with five conceptual levels:
information elicitation, service identification, service definition, service
realization and roadmap with planning. Each level requires inputs to proceed
with a set of activities that deliver outputs as inputs for the next layer. It
captures the “As-is” and “To-be” business models to identify business services
and then maps the captured business processes of existing applications to
determine potential functionalities within the candidate business services. To
identify the optimal services, it capitalizes on the top-down approach for
domain decomposition and the bottom-up approach for application portfolio
analysis using manual techniques (e.g., interviews and questionnaires) and also
uses automation tools (e.g., IBM’s Asset Analyser). For service identification, it
defines the design tasks to be performed (e.g., by specifying a service policy). It
also scales service granularity levels by means of grouping the number of
invoked components or services via one operation on a service interface and
number of updated sources. Transformation strategies are defined along with

the plan for service implementation. The SOAF illustrates merely these steps at

43

Chapter 3 Service Identification Current Approaches

conceptual level, which neglects explaining details of relevant design issues of
every level.

Evaluation and validation play an important role in the applicability of
the proposed methodology, especially with significant differences between SOA
development compared to formal software development approaches (Haines and
Rothenberger 2010). Erradi et al. (Erradi, Kulkarni et al. 2009) extend the
service design concepts of the SOAF framework (Erradi, Anand et al. 2006)
with a business-driven approach built on top of a meta-model based on a
practical service design process from a real case study. It highlights broad
guidelines for enhancing the service granularity such as reusability, business
alignment, designing for assembly, and reducing the ripple effects of application
changes.

From experience with industry practices and implementation of several
real projects, IBM (Arsanjani 2004) introduced Service-Oriented Modelling and
Architecture (SOMA) as a service-oriented modelling methodology. For
modelling services, it defines three steps: identification, specification, and
realization, and includes flows and composition of services. Although SOMA
was successful in highlighting the broad architectural aspects, it could not
provide detailed implementation guidance. This methodology explains how to
identify the important aspects of service modelling, not how to implement
them. However, we believe that SOMA has gained acceptance in industry (Lane
and Richardson 2011) because it is driven from real case studies, which
increases its validity and applicability (in contrast to many other
methodologies) (Rolland and CentreKaabi 2007; Galster and Bucherer 2008;
Kim, Kim et al. 2008). Moreover, at the time that SOMA was published there
was very little available research in the area of service modelling. Further
research based on the SOMA methodology was conducted to enhance SOMA
by learning from its adoption and past usages which have turned it into a
“fractal model” for service-oriented software development (Arsanjani, Ghosh et
al. 2008). The fractal model refers to enablement of the SOMA method to
evolve in an approach as needed during different phases of the software
development life cycle. Recent work advances SOMA usage to leverage method
components and patterns. Zhang et al. (Zhang, Zhou et al. 2008) also extend
SOMA to providing SOMA-ME as a platform for model-driven design to

provide tools and design and development environment for SOA solutions. This

44

Chapter 3 Service Identification Current Approaches

is an integrated development environment (IDE) which facilitates the

evaluation, design, and validation of service models.

3.1.2 Ontology-Driven Service Identification

The service identification process always concurs with decomposition
mechanism between architectural layers which results in model (semantic)
transformations. During the transformations of models, semantic inconsistency
might occur. To cope with semantic inconsistency, some researchers have used
ontology-based approaches to identify services (Klose, Knackstedt et al. 2007).

Semantic web concepts, standards and technologies (such as the Web
Ontology Language OWL) have wider applicability in the world-wide web and
can also be used for model automation and validation (Tetlow, Pan et al.
2006). Several research projects have utilised the concept of ontologies in the
service identification process to build quality models as well as understand and
capture essential elements from legacy systems (Yang, Cui et al. 1999; Dobson,
Lock et al. 2005). Yousef et al. (Yousef, Odeh et al. 2009) propose a framework
called “BPAOntoSOA” which defines a service-oriented model from a Business
Process Architecture (BPA) based on two ontologies: BPAOnt (semantic
definitions of business processes and candidate services) and QoSOnt (defining
an ontology for quality of service) (Dobson, Lock et al. 2005). This framework
has been developed for a specific domain (healthcare systems) and does not
provide comprehensive supports for other domains. DongSu et al. propose a
method to identify services based on semantic relationships derived from
mapping an ontology and feature model (DongSu, Chee-yang et al. 2008). The
tree-like structure that the feature model depends on does not clearly show the
level of granularity, e.g., services that reside at similar level of granularity in
the tree could offer different level of functionalities which means the granularity
varies on one level.

Feng et al. (Chen, Zhang et al. 2009) use three different ontologies: the
Domain Concept Ontology (DCO) provides knowledge about an application
domain, the Functionality Ontology (FO) describes the functionalities of
applications and the Software Component Ontology (SCO) describes software
design patterns developed in the approach. These ontologies attempt to bridge
the gap between the traditional technologies in legacy systems, and software

and service-oriented technologies. Bianchini et al. capitalise on annotating

45

Chapter 3 Service Identification Current Approaches

business processes to identify functionalities suitable to become candidate
services semantically (Bianchini, Cappiello et al. 2009). A reference ontology
that consists of atomic concepts and a set of semantic relationships between
those concepts with a weight factor (assessing the degree of relationship)
evaluates business process elements. However, this approach ignores a very

important aspect of service identification which is granularity.

3.1.3 Legacy system-Driven Service Identification

In SOA, a green-field case often does not exist in software practices. Often a
legacy system exists as a valuable asset that can be exposed and integrated
with new developed services. There is a number of ways that such a legacy
system can be used in SOA, e.g., developing a wrapper to shield legacy code.
Zhang and Yang (Zhang and Yang 2004) propose a hierarchical clustering
algorithm to extract independent services from procedural software systems
into an object-oriented (OO) models. This approach uses a grey-box strategy
which is a combination of system wrapping together with the key business
logic. It starts by first identifying services using domain analysis and then
builds a domain model. The next stage is to build a process model after
completing the assessment using a dendrogram to visualize results. A clustering
technique is used to transfer procedural code to an object-oriented model,
mapping between similar entities based on the underlying concepts. Finally, the
candidate services from the Object-Oriented (OO) model and targeted
constructed services are packaged with code refinements. Chen et al. (Chen, Li
et al. 2005) discuss the transformation of legacy systems developed with
Object-Oriented Design (OOD) or Component Based Design (CBD) into SOA
applications using feature analysis. The feature analysis approach consists of
three stages: identifying the system features, constructing feature models and
tracing the relationship between the defined service operations and the source
code using a feature location technique. To locate a specific feature in the
source code, a re-engineering technology is required. The located source code is
aggregated into a united module and the key features are associated with one or
more services, as coarse-grained as possible. The identified service operations
are exposed by class delegations using a tool called a Web Service Wrapper.
Klose et al. propose a selective method which based on evaluation of methods
from a business and technical perspective (Klose, Knackstedt et al. 2007). It

defines a procedural model for service identification with three phases:
46

Chapter 3 Service Identification Current Approaches

preparation, service analysis and service categorization. Each phase consists of
tasks and related documents, integrating the aspect of stakeholders in the
business process model to derive candidate business services at the service
analysis phase.

Zou and Kontogiannis (Zou and Kontogiannis 2001) provide a framework
to transform legacy systems into a web-enabled environment by means of a
CORBA wrapper (consisting of a CORBA IDL, SOAP, WSDL, and UDDI).
This approach is accomplished in three stages. Firstly, legacy code is
decomposed based on application functionality. Secondly, the decomposed code
is migrated using wrappers into CORBA distributed objects. Finally,
SOAP/CORBA IDL is defined to unify the services. It suggests that legacy
systems can be divided into four layers: standards and guidelines, basic
common services, value-added functional services, and mission-specific services.
This research does not provide enough detail on how to identify services along
with the new business requirements and the targeted service characteristics.
Jianzhi et al. (Jianzhi, Zhuopeng et al. 2005) develop a framework ICENI
(Imperial College e-Science Network Infrastructure) to leverage the components
of legacy systems into a grid environment. It then applies reverse engineering
techniques to components using a Java Native Interface (JNI) wrapper to
encapsulate code and the Commerce eXtensible Markup Language (CXML) to
describe specifications for communication with the ICENI workflow.

Zhang et al. propose an architecture-based service-oriented reengineering
approach that uses a hierarchical clustering method to identify services from
legacy systems based on mapped requirements derived from UML models
(Zhang, Liu et al. 2005). This approach requires human supervision to assist in
determining the optimal service granularity along with the clustering technique.
Aversano et al. suggest a approach that extracts description of services
(WSDL) from legacy code as features (Aversano, Cerulo et al. 2008). An
Information-Retrieval (IR) algorithm (Baeza-Yates and Ribeiro-Neto 1999) and
matching algorithm (Kokash 2006) are used to evaluate candidate services. The
IR algorithm is used to match the intended goal from the service to the
extracted candidate features, whereas the matching algorithm calculates the
lexical similarities and assesses the similarities between service elements. An
extractor was developed that maps elements between source code and WSDL

elements (class-to-service, method-to-operation and parameter-to-Message) and

47

Chapter 3 Service Identification Current Approaches

textual documentation. An obvious drawback of this approach is neglecting
important service designs aspects in service identification such as granularity.
Because of the complexity of most software systems, researchers often
propose abstract models to simplify the descriptions of legacy systems.
However, conceptual models describe only high-level activities in the core
business processes (i.e., the business logic and rules are not included). As result,
the resulting services are coarse-grained and have redundant functions. In a
real-world project in Energy Management System (ESM), Wang et al. utilise
specific enterprise service hierarchy patterns for selected business processes to
determine the service granularity (Wang, HU. et al. 2007). This method
focuses on a high level architecture which consists of four main service patterns:
an execute pattern (i.e., a coordinating services), a broadcast pattern (i.e., to
alert the enterprise when a business object is changed), a receive pattern (i.e.,
applying changes to a business object), and a retrieve pattern (i.e., responding
to the consumer and returning data). Because of the simplicity of the
implementation, only the broadcast and receive patterns were implemented.
These patterns failed to provide effective guidelines to enhance the service

granularity.

3.2 Quality of Service (QoS)

Most SOA researchers agree on the importance of software metrics to improve
the quality of service—based systems. While the relative relationship between
granularity and other SOA quality attributes has been discussed in recent
research, few researchers have focused on measuring granularity as an
independent factor which affects internal SOA structural attributes such as
coupling and cohesion. ‘Service granularity’ is a measure of the exposed
functionality of services. The service granularity of any service-oriented system
indirectly affects typical SOA design qualities such as flexibility, reusability and
performance. The granularity of service operations plays a key role in SOA
quality attributes (Shim, Choue et al. 2008). This impact can be either positive
or negative based on the tradeoffs adopted by the service provider.
Coarse-grained services are usually advantageous because they improve overall
performance, at the expense of reducing system flexibility. It is important that
we differentiate between different types of granularity in order to analyse

relative quality attributes. Haesen et al. and Karmarkar et al. (Erl, Karmarkar

48

Chapter 3 Service Identification Current Approaches

et al. 2008; Haesen, Snoeck et al. 2008) propose different types of granularity

which require different measurements (explained previously in section 2.2.2).
The service types and the architectural level at which a service resides together
can be used to define types of service granularity.

Shim et al. (Shim, Choue et al. 2008) propose a set of metrics for general
SOA design including service and parameter granularity. In this research paper
the service granularity metric is based on the number of operations and
similarity between operations in a service. Parameter granularity is used to
evaluate the ratio of operations with fine-grained parameters to the total
service operations. However, these measurements lack any precise definitions for
fine and coarse parameters in addition to any mechanism to define similar
messages. Sindhgatta et al. (Sindhgatta, Sengupta et al. 2009) suggest a metrics
suite for measuring the SOA quality attributes of service cohesion, coupling,
reusability, composability and granularity supported with two real-life SOA
design models. The proposed granularity metric counts number of services,
operations, and messages, but is not particularly designed to quantify the
granularity of a specific service. Senivongse et al. (Senivongse,
Phacharintanakul et al. 2010) focus on the capability granularity which is the
functional scope of a service. It traces fine-grained capabilities through web
service invocations using association rules and the “Apriori” algorithm to guide
a service designer to an appropriate implementation. Although invocation
methods (synchronous and synchronous) play an important role in web service
design, they are not specifically considered.

Measuring service granularity is also used as an indicator of SOA quality
attributes such as complexity in compound services by counting the number of
services in every individual component node (Zhang and Li 2009). Xiao-jun uses
information theoretic principles to propose SOA metrics for coupling and
well-chosen granularity (Xiao-jun 2009). The granularity metric in this case is
based on the mutual information content of relative service operations and their
usage occurrences. This metric groups operations that are used together into a
single service. However, the metric does not provide any clarification of the
appropriate information content it considers which could refer to several
different aspects of SOA quality (e.g., dependencies between service, shared
messages and invocation methods). Dobson et al. (Dobson, Lock et al. 2005)
suggest a set of ontologies about QoS vocabularies, relative concepts, metrics,

quality attributes (e.g., dependability, performance). To leverage QoSOnt

49

Chapter 3 Service Identification Current Approaches

approach, the authors propose a prototype tool, called the Service QoS
Requirements Matcher (SQRM), which is demonstrated with synthetic
scenarios. QoSOnt develops a single ontology for every quality attribute aiming

for extensibility and generality.

3.3 Analysis Comparison of Existing Approaches

In order to compare the methodologies that are proposed for service modelling
(and in particular for service identification), specific criteria can be adapted
from the relevant literature. Klose et al. (Klose, Knackstedt et al. 2007) provide
criteria relating to the business-driven perspective using general SOA design
principles, e.g., the starting point of the modelling such as business process
model or software components. Kohlborn et al. (Kohlborn, Korthaus et al.
2009) suggest some criteria that suited mostly service analysis (rather than
identification), although the number of approaches considered was significantly
larger than similar reviews in (Klose, Knackstedt et al. 2007; Ramollari,
Dranidis et al. 2007; Boerner and Goeken 2009). Gu, et al. (Gu and Lago 2010)
(a more detailed review of service identification methods) define several
classifications for methods, techniques, process, input, and outputs of service
identification methodologies from a range of literature, providing a holistic
overview. Classification types for every criterion are defined and applied for
thirty collected heterogeneous approaches and with different scope. However,
the criteria used when comparing service identification methods needs to be
more focused on the way that services are actually delivered.

We defined a number of criteria: the criterion for delivery strategy,
technique, lifecycle coverage, service types, quality aspects and granularity. In
addition, we adopted the criteria of input and output of the modelling phase
used by Gu et al in reference (Gu and Lago 2010). The descriptions and
analysis of each criterion as follows:

Delivery strategy criterion: This is an important aspect of service
analysis and design. This strategy is primarily used in the existing literature
that applies comparative analysis. The three key strategies for SOA
development mentioned detailed in section 2.2.1. The top-down strategy begins
with a business analysis of requirements and business processes which can be
implemented as business services. In contrast a bottom-up strategy analyses

existing legacy systems and then defines technical services (Rosen, Lublinsky et

50

Chapter 3 Service Identification Current Approaches

al. 2008), while the meet-in the-middle strategy combines both approaches.
From these criteria, we can show the impact of every strategy on the process of

service modelling. As a matter of fact there is no particular de facto strategy

that can identify the “optimum” services in all possible application domains
with all possible requirements. We found that two attributes affect the decision
about which delivery strategy the enterprise should adopt: the status of the
resources and the targeted service types.

Firstly, the “green field” (i.e., develop software from scratch) case does not
usually exist in SOA, thus making effective use of existing assets such as legacy
code has become an important part of the service development process. Erradi
et al. (Erradi, Anand et al. 2006) classify approaches in integrating legacy
systems as services into two broad categories: legacy integration (non-invasive)
and legacy transformation (invasive). Legacy integration is a cost-effective and
short-term solution (i.e., the business logic wrapping approach). The legacy
transformation approach is more modular and typically uses an incremental
migration process with both refactoring and consolidation of the business logic.

Secondly, consideration of the functional scope of different services is a
key element required to construct a service taxonomy (Braunwarth and Friedl
2010). It is not about developing monolithic services; in contrast a service
should accomplish certain goals that can be quantified and that correspond to a
specific business or technical requirement. The top-down approach reflects
business requirements and enterprise goals but will frequently deliver
coarse-grained business services (Nayak, Nigam et al. 2006; Galster and
Bucherer 2008; Kim, Kim et al. 2008). This approach is dependent on the
representation and decomposition of business models which lacks the ability to
capture the full requirements that can be seamlessly transformed to software
artefacts. In other words, most authors agree that using the top-down strategy
to transform business models directly to candidate services does not provide
usable explicit service definitions. The decomposition can be achieved based on
domains, processes, goals and requirements, and make use of particular analysis
techniques. DongSu et al.; Yousef et al. (DongSu, Chee-yang et al. 2008;
Yousef, Odeh et al. 2009) employ ontology approaches to business processes to
conceptualise the requirements and relevant architectural aspects into one
model of knowledge representation. Analysis techniques (such as clustering
suggested in references (Zou and Kontogiannis 2001; Zhang and Yang 2004;
Kim and Doh 2009) and feature extraction in (Chen, Li et al. 2005; Aversano,

51

Chapter 3 Service Identification Current Approaches

Cerulo et al. 2008)) are also used to support the top-down strategy to achieve
the final identification of candidate services along with decomposition of
business models. In contrast, the bottom up strategy uses the existing legacy
systems to define IT services (finely-grained services) (Braunwarth and Friedl
2010). The integration of existing legacy code into SOA can be achieved by

integrating via adapters, which shields the legacy systems from the web service

interface; this is sometimes called the “black-box” approach (Zou and
Kontogiannis 2001; Zhang and Yang 2004; Chen, Li et al. 2005). Where
appropriate, the important business logic of the existing code will be
implemented as WS (Arsanjani, Ghosh et al. 2008; Aversano, Cerulo et al.
2008). A combination of a WS wrapping technique and the development of key
business logic is widely adopted in the meet-in-the-middle strategy (Erradi,
Anand et al. 2006; Papazoglou and Van 2006; Shirazi, Fareghzadeh et al. 2009).
Meet-in-the-middle, as a hybrid approach, is the strategy most often suggested
in the references (Kohlborn, Korthaus et al. 2009). The focus of approaches
based on meet-in-the-middle is to deliver both business services and IT services
(Brereton and Budgen 2000; Papazoglou and Van 2006; Arsanjani, Ghosh et al.
2008; Erradi, Kulkarni et al. 2009). The IT services require to combine outputs
of both strategies top-down and bottom-up in order to enable service integrity
by means of specific algorithms application (Zhang and Yang 2004) portfolio
analysis (Dwivedi and Kulkarni 2008; Jamshidi, Sharifi et al. 2008).
Decomposing the enterprise architecture of a system into different hierarchical
level of abstractions defines various level of granularity (Erradi, Anand et al.
2006; Dwivedi and Kulkarni 2008). It is an approach to consider the scope of
different services, e.g., the scope of utility services residing on an infrastructure
layer, which responds robustly to provide specific granular functional scope to
composite services rather than in business services.

Technique criterion: This describes the method that is used to
implement the selected strategy. There are various techniques that could be
adopted e.g., an approach using a top-down strategy might use a formal
method and a graph clustering technique (Kim and Doh 2009) or components
and RUP models (Papazoglou and Van 2006). Some approaches start from an

enterprise perspective to achieve a set of strategic goals (often described as
‘goal-driven’) (Erl 2005; Galster and Bucherer 2008; Kim, Kim et al. 2008).

According to Gu et al (Gu and Lago 2010), existing techniques for service

identification approaches can be classified into six distinct types: algorithm,

52

Chapter 3 Service Identification Current Approaches

guidelines, analysis, ontology, patterns and information manipulation. This
classification is ambiguous because these types of techniques are sometimes
combined and used at various phases of SOA development cycle, e.g., analysis
techniques (such as clustering and features), performed to define business goals
and processes repositories, are used initially at an early stage of several
proposed approaches (Erradi, Anand et al. 2006; Klose, Knackstedt et al. 2007;
Stewart and Chakraborty 2010) along with other techniques such as developing
algorithms (Dwivedi and Kulkarni 2008) or guidelines (Van Nuffel 2007). As
shown in the literature review, the majority of research is based on the use of
business models to represent software requirements and understand the key
business requirements. Furthermore, service properties and SOA design
principles are already defined by SOA practices. Although the separation of
modelling details from implementation is a key design principle, the current
proposed SOA modelling approaches suffer from a rigorous separation of
concerns (Haeng-Kon 2008) which increases the abstraction gap between the
models represented and their implementation. Therefore, a successful technique
should be able to transform a business model to a set of service with
appropriate implementation and integrate the two phases seamlessly. MDA
appears to be the appropriate technique to maintain the balance between levels
of details in the different level of abstractions.

Lifecycle coverage criterion: To a limited extent this approach covers

the complete SOA development lifecycle (discussed in section 2.1.1). This
criterion is primarily defined in the literature of service analysis and expressed
using different terms by different authors (Klose, Knackstedt et al. 2007; Kim
and Doh 2009; Kohlborn, Korthaus et al. 2009). It is noticeable that some
approaches limit their scope to specific phases (such as modelling) (Arsanjani
and Allam 2006; Boerner and Goeken 2009; Chen, Zhang et al. 2009), while
very few approaches attempt to fulfil all potential SOA lifecycle (e.g., references
(Papazoglou and Van 2006; Arsanjani, Ghosh et al. 2008)). With reference to
the modelling phase, because there are no standardised approaches, typical
activities depend on the focus of the approach adopted and the specific
technique used. Klose et al. (Klose, Knackstedt et al. 2007) make use of this
approach by identifying business services from a business perspective using a
manual stakeholder in three phases: preparation, service analysis and service
categorization. One mature approach proposed by industry is based on

extensive empirical evidence and defines three main phases for service-oriented

53

Chapter 3 Service Identification Current Approaches

modelling : 1) service identification (this identifies candidate services based on
goal-service modelling, domain-decomposition or existing asset analysis; 2)
service specification which constructs service elements specifications (both
interface and message) together with service dependencies and interactions; 3)
service realization which implements details specifications of service elements
and components. These phases are widely adopted by later approaches
according to a recent systemic literature review on process models for
service-based application (Lane and Richardson 2011). Whether or not
proposed approaches consider the SOA lifecycle fully or partially, it is
important to bridge the gap between the modelling phase and other SOA
lifecycle phases in order to identify the right candidate services.

Service Types criterion: Achieving the definitions of the candidate
services is the goal of the modelling phase. There are several different
classifications proposed to define service types from various viewpoints. The
service classification is often defined based on the added value of the service
from the business or IT perspective (Gu and Lago 2010) or alternatively by
layering the enterprise architecture into hierarchical levels (Erradi, Anand et al.
2006; Rosen, Lublinsky et al. 2008). While process services are derived
depending on the collaboration of several business services, IT services are

required to support the operational goals of business services. Kohlborn et al.
refer to this criterion as the “SOA Concept” which indicates whether the focus

of an approach is the business services or the software services or both (in this

context ‘software services’ refers to the execution of business services). In other
words, software services represent all service types apart from business services
(despite the different levels of abstraction among software services such as data
services, infrastructure services, etc.). Gu and Lago (Gu and Lago 2010) define
four types of services, whereas Kulkarni and Dwivedi (Kulkarni and Dwivedi
2008) classify services into seven types. This difference in definitions of service
types deduces the architectural layering adopted in the approach. In a more
business-goal-oriented interpretation of the service type, Rolland and
CentreKaabi (Rolland and CentreKaabi 2007) define a new type of service
called an “Intentional Services” which ignores completely the functionality
provided by the service. A comprehensive classification for service types in
terms of properties and characterises is required rather than a modification of

an existing architectural layering with the addition of special-purpose services.

54

Chapter 3 Service Identification Current Approaches

The existing classifications are misleading because they are based on the level
of decomposition that has already been adopted in an enterprise.

Design Input criterion: the type of resources available affects the
decision about which strategy to use, e.g., legacy code sometimes represents a
valuable asset for enterprises and this needs to be taken into account. Thus, the
process of service identification needs to start with detailed analysis techniques
(Chen, Li et al. 2005; Wang, HU. et al. 2007; Aversano, Cerulo et al. 2008) or
reengineering methods (Jianzhi, Zhuopeng et al. 2005; Arsanjani and Allam
2006; Papazoglou and Van 2006; Erradi, Kulkarni et al. 2009) or both of these
techniques used together (Zou and Kontogiannis 2001; Zhang and Yang 2004;
Erradi, Anand et al. 2006; Arsanjani, Ghosh et al. 2008) to extract valuable
code. Using the same strategy does not imply identical inputs, i.e., different
types of representations and semantic of business models will provide different
level of detail. For example, some researchers use a top-down strategy with
similar types of input (intended requirements and goals) and they all result in
different types of outputs - from a very abstract description (a list of services)
to complete service profiles (detailed descriptions of services) (Rolland and
CentreKaabi 2007; Galster and Bucherer 2008; Kim, Kim et al. 2008). In the

case of a “green-field” SOA project (i.e., completely from scratch), the goals and
business requirements in the form of business models are used to provide
structural (Kim and Doh 2007; Rolland and CentreKaabi 2007; Kim, Kim et al.
2008; Stewart and Chakraborty 2010) and behavioural descriptions (Rabhi, Yu
et al. 2006; Kim and Doh 2009) of software systems (e.g., standards for business
process modelling often used are Petri-Net, UML 2.0 activity diagrams and
BPMN). However, there is a wide acceptance of business process representation
for modelling service-oriented systems (Linthicum 2003; Zhang and Yang 2004;
Chen, Li et al. 2005; Jamshidi, Sharifi et al. 2008) to describe behavioural
descriptions. It seems that the adoption of behavioural descriptions in
modelling is not only to depict business requirements but also to assist with
bridging the gap between business models and the service implementation.
However, the model languages currently available are not yet capable enough to
provide a complete representation for modelling business functions and
requirements into suitable models to facilitate service implementation for
service-oriented systems.

Design Output criterion: Service identification approaches typically

intend to identify candidate services at the end of the modelling phase.

55

Chapter 3 Service Identification Current Approaches

However, the final context and details of the identified services are essential for
the efficiency and completeness of any proposed design approaches. The
detailed outputs of the different approaches vary considerably, i.e., approaches
that result in a formal service specifications (Arsanjani and Allam 2006; Rabhi,
Yu et al. 2006; Dwivedi and Kulkarni 2008) are more detailed than those that
simply list potential candidate services (Rolland and CentreKaabi 2007; Galster
and Bucherer 2008; Kim and Doh 2009; Shirazi, Fareghzadeh et al. 2009) or
just provide an explanation of the challenges and guidelines (Arsanjani 2004;
Van Nuffel 2007; Boerner and Goeken 2009). The outputs of these design
approaches are affected by the techniques used more than any other defined
criteria; even a similar type of input might not result in a similar type of
outputs. For example, approaches that start the process of service identification
with a business process can generate results in several different outputs: a
service profile, service implementation and a list of candidate service
respectively (Arsanjani and Allam 2006; Shirazi, Fareghzadeh et al. 2009). The
strategy adopted also affects the output criterion, e.g., a bottom-up strategy
eventually results in web services (WS) (Zhang and Yang 2004; Chen, Li et al.
2005; Jianzhi, Zhuopeng et al. 2005; Aversano, Cerulo et al. 2008). In contrast,
approaches that use a meet-in-the-middle strategy advocate service specification
and models (Arsanjani and Allam 2006; Rabhi, Yu et al. 2006; Klose,
Knackstedt et al. 2007; Arsanjani, Ghosh et al. 2008). In case of adopting the
meet-in-the-middle strategy, the feasibility of outputs of this strategy needs to
be assessed.

Quality of Service (QoS) criterion: quality aspects such as flexibility
and reusability are important factors that support the use of SOA in preference
to other development styles. In fact, it is not always possible to meet the
desired quality aspects for SOA projects because there are inevitable trade-offs
in any implementation. However, specifying quality aspects that are essential to
meet for such system precisely helps to achieve SOA benefits. Furthermore,
quality attributes should be considered and specified at an early stage of the
modelling process. There is a wide variation in meeting the desired software
quality attributes in the published literature. There are existing approaches
that do not cover the quality aspects (Arsanjani and Allam 2006; Dwivedi and
Kulkarni 2008; Kim, Kim et al. 2008; Ma, Zhou et al. 2009; Shirazi,
Fareghzadeh et al. 2009) and others that explicitly investigate external

architectural — quality attributes (e.g., performance, flexibility, and

56

Chapter 3 Service Identification Current Approaches

interoperability) (Wang, HU. et al. 2007; DongSu, Chee-yang et al. 2008; Kim
and Doh 2009). Others focus on one particular attribute of QoS, e.g., DongSu
et al. (DongSu, Chee-yang et al. 2008) attempt to depict the level of reusability
using a range of semantic distance measurements within the service
identification process. Wang et al. (Wang, HU. et al. 2007) stress the impact of
performance in legacy systems integration with SOA in data translation and
payload transportation and suggest possible design criteria to be considered.
Loose coupling and high cohesion as primary characteristics of SOA are
recommended without clear directions on how to achieve them (Papazoglou and
Van 2006; Dwivedi and Kulkarni 2008; Erradi, Kulkarni et al. 2009). What
seems missing in many current approaches is a failure to consider the main
SOA quality attributes that affect the service identification process. They also
fail to define service quality measurements that can be used to determine the
quality of candidate services.

Granularity criterion: The granularity of the services implemented is
always a design issue, whatever the design approach adopted. Achieving the
appropriate level of granularity is very challenging; services are often either
coarse-grained or fine-grained. With no explanations as to how service

granularity is being assessed, Boerner and Goeken (Boerner and Goeken 2009)

add also “middle grained” as an additional granularity type. Furthermore, it is
not clear what the best assessment method for assessing the service granularity
should be. Classifying various types for service using a hierarchical architecture
is one mechanism to assess candidate services individually (Dwivedi and
Kulkarni 2008) (e.g., the granularity of business services is coarser than that in
infrastructure services because business services reside at higher level of
enterprise architecture layers). A granularity metrics tool is being used to
quantify service granularity factors to decide appropriate service
implementation (Bell 2008). We found that the granularity for defined services
varies considerably from one approach to another, even though different
approaches have used the same delivery strategy. For example, approaches that
use a top-down strategy, but the proposed services have very different
granularity levels (varying from coarse-grained to multiple levels of
granularity), which demonstrates that multiple criteria affect granularity
decisions (Nayak, Nigam et al. 2006; Dwivedi and Kulkarni 2008; Galster and

Bucherer 2008). The wunderlying service identification process in SOA

specifically depends on defining the “right” services with an appropriate level of

57

Chapter 3 Service Identification Current Approaches

granularity. A considerable amount of literature has proposed methodologies for
identification of such services with the appropriate granularity (Erradi, Anand
et al. 2006; Papazoglou and Van 2006; Kim, Kim et al. 2008; Kulkarni and
Dwivedi 2008; Zhang, Zhou et al. 2008). Although these approaches have all
used different techniques, none of them has achieved a perfect design, agreeing
instead on the difficulty of delivering a set of services with appropriate
granularity. Furthermore, in service design, the impact of granularity on
quality of service (QoS) aspects must also be considered. The candidate services
with appropriate level of granularity that are identified should not interfere
with the potential benefits of SOA such as flexibility, reusability, and
functionality.

In conclusion, although a lot of research has been conducted in service
modelling in particular in the service identification, the real design challenges of
the service identification phase such as granularity and the abstraction gap
between the business models and service implementations have not been solved.
The proposed criteria are used to analyse current literature and to address the
research gap in the service identification problem. Tables 3-(1, 2, 3, 4, and 5)

provide an analysed summary of current approaches using the criteria above.

Table 3-1 Comparison of Service Identification Approaches

CRITERIA (Galster (Kim, Kim (Rolland and (Nayak, (Arsanjani
and et al. 2008) CentreKaabi Nigam et and Allam
Bucherer 2007) al. 2006) 2006)
2008)
Delivery Top-down Top-down Top-down Top-down Meet-in-the-
strategy middle
Technique Goal-driven | Goal-driven | Goal-driven Goal-driven | Business
using a using a goal- | using a map- process
graph-based | scenario based modelling decompositi
method modelling on
Lifecycle Modelling Analysis Modelling and Modelling Modelling
Converge Discovery
Service Types Business Business Business services | Business Business
services services services Services
Modelling Requiremen | Requirement | Requirements Service Business
Input ts and goals | s and goals and goals agreement processes
Modelling Service Service Composite A service Service
Output capabilities | Profile services model implementat
ion
Quality Aspects none none none none none
Granularity Coarse- Coarse- Coarse-grained Multiple Coarse-
grained grained granularity | grained

58

Chapter 3 Service Identification Current Approaches

Table 3-2 Comparison of Service Identification Approaches

CRITERIA (Boerner and | (Shirazi, (Kim and | (Dwivedi (Papazoglou
Goeken 2009) Fareghzadeh | Doh 2009) and and Van
et al. 2009) Kulkarni 2006)
2008)
Delivery Top-down Meet-in-the- | Top-down Top-down Meet-in-the-
strategy middle middle and
bottom up
Technique Business Business clustering An RUP, CBD,
process functions, using cost Algorithm BPM
decomposition goals metric
Lifecycle Modelling Analysis Analysis Modelling Full SOA
Converge cycle
Service Types | Business Business and | Business and | Business Business and
services IT services IT services and IT IT services
services
Modelling Business Business UML activity | Business Business
Input processes processes diagram processes processes
Modelling Guidelines A Tlist of A Tist of Service Service
Output services services profile profile
Quality none none Coupling and | none Coupling and
Aspects cohesion cohesion
Granularity Coarse-grained | Coarse- Multiple Multiple Coarse-
grained granularity granularity | grained
Table 3-3 Comparison of Service Identification Approaches
CRITERIA (Jianzhi, (Erradi, (Erradi, (Arsanjani (Arsanjani,
Zhuopeng et | Anand et al. | Kulkarni et | 2004) Ghosh et al.
al. 2005) 2006) al. 2009) 2008)
Delivery Bottom-up Meet-in-the- Meet-in-the- | Meet-in-the- | Meet-in-the-
strategy middle and middle middle middle with
bottom-up focus on top
down
Technique Component- Process Domain Goal-service | Goal-
Functional decomposition | decompositio | modelling modelling and
decompositio | and analysis n process
n decomposition
Lifecycle Analysis and | Modelling Design Modelling Modelling
Converge Development | and
Development
Service Types | IT services Business and | Business and | Business and | Business
IT services IT services IT services services
Modelling Legacy code | Requirements | Business Business Business
Input , goals, process and process and | domain and
existing existing processes
assets assets
Modelling Service Technology Service Guidelines Service
Output interface architecture architecture architecture
(WS) and and guidelines
guidelines
Quality none none Coupling none none
Aspects and cohesion
Granularity none Multiple Coarse- none Coarse-grained
granularity grained

59

Chapter 3 Service Identification Current Approaches

Table 3-4 Comparison of Service Identification Approaches

CRITERIA (Yousef, (DongSu, (Zhang and | (Chen, Li | (Zou and
Odeh et al. | Chee-yang et | Yang 2004) et al. | Kontogiannis
2009) al. 2008) 2005) 2001)
Delivery Top-down Top-down Bottom-up Bottom-up | Bottom-up
strategy
Technique Ontology Ontology- business Feature Component
driven / driven/ functions and | analysis decomposition
process business existing assets using
decompositio | decomposition | decomposition Clustering
n techniques
Lifecycle Modelling Modelling Modelling Modelling | Modelling and
Converge development
Service Types | Business and | Business Not clear Not clear Not clear
IT services services
Modelling Business Service Legacy code Legacy Legacy code
Input process features code
model
Modelling Service Service profile | Service Service Service
Output model interface (WS) | interface interface (WS)
(WS
Quality NFR Reusability Coupling none none
Aspects
Granularity none Multiple Coarse-grained | Coarse- Coarse-grained
granularity grained
Table 3-5 Comparison of Service Identification Approaches
CRITERIA (Aversano, (Wang, HU. | (Klose, (Van (Stewart and
Cerulo et al. | et al. 2007) Knackstedt et | Nuffel Chakraborty
2008) al. 2007) 2007) 2010)
Delivery Bottom-up Bottom-up Meet-in-the- Top-down | Top-down
strategy middle
Technique Feature Goal and Clustering Analysis of | value chain
analysis requirements analysis using | business and
using driven within a profound requireme | prioritization
information | a prioritization nts analysis
retrieval transformation technique
technique method
Lifecycle Modelling Modelling Modelling Analysis Modelling
Converge
Service Types | Not clear IT services Business and Business Business and
process service IT services
services
Modelling Legacy code | Proprietary Business Business Business
Input data processes processes strategies
Modelling Service SOPA Service profile A list of
Output interface messages Guidelines | services
(WS)
Quality none Performance none none none
Aspects
Granularity Coarse- Coarse- Coarse- Coarse- Coarse-
grained grained grained grained grained

60

Chapter 3 Service Identification Current Approaches

3.4 Summary

In this chapter, we have discussed the different methodologies available for the
identification of suitable services during the modelling phase of the SOA
development life cycle. We have shown that current methodologies suffer from
key limitations, such as a gap between business model and service design and
do not consider internal quality aspects that affect the overall quality of service
(QoS). These limitations contribute to the failure of the current approaches to
identify the “optimum” services, in terms of when services should be coarse
grained or fine grained. Although the approaches investigated usually conclude
with several service design principles, they do not provide well-defined and
effective steps to achieve these principles. From evaluating the relevant design
criteria, we can see that a meet-in-the-middle strategy using a business process
decomposition technique leads to a detailed service specification which assists
considerably in the construction of better candidate services. In addition,
service granularity is a key architectural attribute of the service design that will
inevitably affect important external architecture attributes of quality of service
(QoS) such as reusability, maintainability, performance and flexibility. Indeed,
establishing appropriate measurements for service quality is still not present in
almost all current approaches. However, these approaches have nevertheless
agreed on the complexity of considering all applicable factors to fulfil both the
business and the technical aspects (Papazoglou, Traverso et al. 2007).

Against this background, Chapter 4 presents a potential architectural
design using the choreography concept and model transformations that can be
used to bridge the abstraction gap between business process models and service
interface designs. The Chapter also explains the underlying meta-models for
source and target models used in the model transformation development which

can be used to generate service interface designs automatically.

61

CHAPTER 4 CHOREOGRAPHY
AND MODEL
TRANSFORMATION DESIGN

Having introduced the existing methodologies for service identification and the
importance of achieving service quality in Chapter 3, we now present the first
part of our framework design for optimum service identification. This Chapter
develops a theoretical base of using the choreography concept to bridge the
abstraction gap between the business process model and service interface
design. Based on the choreography concept, the underlying meta-models used
for the model transformation are constructed.

In section 4.1, we formalise the choreography concepts between the
business process model and service interface design. This is followed by a
discussion of the choreography concept in section 4.2. In section 4.3, we explain
the architectural analogy between business process modelling and the
choreography concept, and propose an extension to the BPMN 2.0 standard. In
section 4.4, we describe the architectural analogy between service
choreographies and service implementation and describe the semantics of
service choreographies WS-CDL. In section 4.5, general choreography
requirements are introduced. In section 4.6, we cover the semantic of service
interface in WSDL wused during the transformation model. The framework

design is summarised in section 4.7.

4.1 Introduction

In the service-oriented computing environment, the concept of choreography

appears at two different levels of the SOA development lifecycle: service

Chapter 4 Choreography And Model Transformation Design

modelling and service composition. Firstly, to explain the concept of
choreography in service modelling, note that the developers start with a model
that is often expressed as collaborative business processes that will eventually
be implemented as a service-oriented system. These business processes must

work collaboratively in a number of complex interactions to achieve the

required business goals. The “Business process choreography” describes and
formalises these interactions between the business processes (participants). In
business process modelling, a choreography model describes an observable
behaviour of a participant (e.g., a company) or participant’s role (e.g., a buyer
or seller) in an interaction.

Secondly, the concept of choreography in service composition refers to the
aggregation of services to achieve new functionalities (Rosen, Lublinsky et al.
2008), assuming identified candidate services are appropriate services that meet
user business requirements. A peer-to-peer description of the global of

observable interactions between aggregated services is called a “Service

b

Choreography.” Complex conversations between peer-to-peer services are

described with interactions using messages that conform to behavioural
specifications.

Fig. 4-1 illustrates the conceptual model of SOA business process
choreographies and service choreographies. Business processes (BPs) capture
business and user requirements, which are subsequently implemented as
candidate services. These business processes describe a flow of internally

sequenced activities within control flows to achieve a business goal, i.e.,
“business process orchestration.” In Fig. 4-1 there are four BPs, each of which is
a representation of business process orchestration. On the other hand, “business

process choreographies,” which describe the external behaviour of BPs based on
interactions, concentrates on interactions between BPs (as participants) from a
global point of view are shown as a green-curved with double-headed arrows.
After identifying candidate services, service interactions can be further broken
down into concepts: service choreographies and service orchestrations. Service
choreographies describe interactions between different services (participants)
using exchanged messages, whereas service orchestrations describe the internal

actions and interactions from the point of view of a single service (participant).

63

Chapter 4 Choreography And Model Transformation Design

i

Bp | e

e | E 7’¢ = | i
oo |Fal === |
. = |-e
=] =
BP | | B
2|

- Candidate Services
et > Business Process Choreographies <«——> Service Choreographies
<——— Business Process Orchestrations <«——— Service Orchestrations

Figure 4-1 The Conceptual Model of SOA Business Process Choreographies and

Service Choreographies

There are two main modelling approaches for choreographies: interaction
models and interconnected interface models (Decker, Kopp et al. 2008). These
approaches are used to describe choreographies at both levels of business
processes modelling and service composition. Interaction models describe

primary specifications of interactions and are supported by BPMN 2.0
choreography diagrams (OMG 2011), Let’s Dance (Zaha, Barros et al. 2006)

and the Business Process Schema Specification (BPSS) (Clark, Casanave et al.
2001) choreography languages, e.g., a request-response message is exchanged
between two participants. The interconnected interface model describes the
internal behaviour of choreography elements and is supported by WS-CDL
(W3C 2005), BPEL4Chor (Decker, Kopp et al. 2007) and BPMN 2.0
collaboration diagrams (OMG 2011) as choreography languages, (e.g., a
complex interaction between participants that requires a control flow to
evaluate outcomes of other interactions to decide next steps). Decker et al.
(Decker, Kopp et al. 2008) also consider implementation-independent and
specific levels besides the two main paradigms of choreography modelling to
distinguish between choreography languages. However, there is still debate
about clearly distinguishing between these two approaches and whether they
overlap in certain circumstances (Kopp, Leymann et al. 2010).

Both choreography modelling approaches can be supported by one

choreography language, such as BPMN 2.0 (i.e., it provides representation as a

64

Chapter 4 Choreography And Model Transformation Design

collaboration and also a choreography diagram) and WS-CDL (Kopp and
Leymann 2009). To evaluate the suitability of a modelling language to model
an efficient service composition approach, a number of service interaction
patterns are proposed in (Alistair, Dumas et al. 2005); these patterns are
derived from the existing literature, relative standard activities (e.g., BPEL and
WS-CDL), and “use case” scenarios. According to these patterns, Decker et al.
establish key requirements of service choreographies that can be used to
evaluate choreography languages (Decker, Kopp et al. 2009). After applying the
patterns suggested in (Decker, Kopp et al. 2009) against WS-CDL and in
reference (Kopp, Leymann et al. 2011) against BPMN 2.0 collaboration and
choreography diagrams, the results suggest that collaboration and choreography
diagrams of BPMN 2.0 and WS-CDL as choreography languages fulfil similar
requirements. As a result, transformation between these different choreography
languages appears to be feasible. This feasibility motivates us to draw a
theoretical grounding for using the choreography concept to fill the abstraction
gap between business process modelling and service implementations.
Choreography languages have the common goal of describing interactions
between participants. Thus, they depend on definitions of the two underlying
elements, interactions and participants. Interactions can be represented in a set
of patterns that are defined from classic scenarios, such as service patterns
(Alistair, Dumas et al. 2005). The way the choreography described is semantic-

dependent of the selected choreography languages, i.e., collaborating parties
“participants” perform interactions; there are different viewpoints for
participants. For example, “Participant” element in WS-CDL includes different

types, such as “Role Type.” Although the modelling of business processes is an
isolated task from service implementation, business processes will eventually the

implemented as services.

4.1.1 Service Meta-model

To assist the bridge of the abstraction gap between the definitions of business
processes and the description of service interface, a service meta-model was
proposed (Fig. 4-2). The service meta-model represents the relationship between
BP characteristics and different service types. The model provides a
comprehensive understanding of two major concepts: BP modelling and service

modelling. Each BP consists of one or more activities. A BP may also be

65

Chapter 4 Choreography And Model Transformation Design

composed of other BPs (or activities). Each activity either has one or more
atomic activities, or is a compound activity that can be broken down to one or
more tasks. A compound activity includes an atomic activity that is described
by several operations. One or more activities belong to a role, which could be a
person or organization. One or more activities use one or more data entities,
which could be a transitional data entity or a master data entity. On the other
hand, a service includes one or more operations, which will be implemented as
either business logic or a as CRUD function (Create, Read, Update, and
Delete). In the context of SOA, business logic and CRUD functions can be
defined as services with specific types that reside in particular architectural
layers (section 2.1.1). Furthermore, CRUD operations can process data entities
of BPs as transactional or master data, each of which would have different level

of granularity.

Task

J

described by Process
Compound Atomic Servie."
Activity Actlvny Business invoke 1
= Logic
0.1
5] n
Decom ose by , J enca W/ Bsusin.ess
- ervice
Business 0) ; 0.1
Activity Process [1.7 Service <|— Operation ‘
Utility
0.. Service «[! Composite
encapsulate Service
_| Transactio 1. Infrastructur y 1
1.* nal Data e Service
CRUD
Role Data Entity .| Functions [\; ke
" Transactiona

Master I service

Data

invoke

Master
Service

Figure 4-2 The Service Meta-model View

Two essential issues must be considered to identify the correct services for a

process-oriented system:

e The abstraction gap between the BP model and service implementation
causes separation between the way the business model is described and
the way services are implemented. In this context, we can bridge this
gap using the choreography concept at two different levels: the BP
modelling level and the service modelling level. An explicit

representation of these two levels is required to assist with the

66

Chapter 4 Choreography And Model Transformation Design

implementations of the business process and service choreographies

transformations. (Note: this issue will be discussed in this chapter.)

e The service quality attributes (e.g., interoperability, flexibility and
agility) are important principles in service-oriented systems. Considering
and quantifying these service quality attributes early in the design phase

will assist with implementing the optimal set of services in the service
domain. The term “quality of service” (QoS) is used here to refer to the

internal service quality attributes applied to web services. (Note: this

issue will be discussed in chapter 5.)

4.2 Why Choreography?

The majority of research in service composition in particular choreography
languages has focused on designing and evaluating semantic and syntax issues.
Here, we focus on choreography at two different levels of abstraction: the BP
model and service choreographies. That is, we use the choreography concept
not only to bridge the abstraction gap between a business model and a service
interface, but also as a mediator to implement service interfaces, e.g., a skeleton
through which web services or orchestration can be generated. The description
of choreographies can be also considered as an initial basis for implementing
orchestrations (Decker, Kopp et al. 2008; Hwang, Liao et al. 2010; Kamari and
Khayyambashi 2010). However, this view is implicitly supported by a number
of studies (Alistair, Dumas et al. 2005), i.e., BPMN 2.0 specifications isolate the
definitions of service interface from other choreography modelling conformances.
At the service choreography level, achieving interoperability for services can be
ensured through choreography by the conforming behaviour of multiple
participants (services). Furthermore, it enables validation of services
statistically and during run-time in accordance with the description of
choreographies in the WS-CDL code. Although, WS-CDL and pi-calculus share
a number of elements and pi-calculus can be used to validate WS-CDL code
(Decker, Overdick et al. 2006), the WS-CDL must be based on formal language
principles to enable proper validations for choreographies (Alistair, Dumas et
al. 2005).

The nature of being stateless presents an interesting analogy between BP
choreographies and a service interface (WS), both are always in favour of being

stateless (Mendling and Hafner 2008). When service requesters invoke services,
67

Chapter 4 Choreography And Model Transformation Design

the state is persevered, i.e., services do not differentiate between service
requestors (clients). While the control of choreography is decentralized and
exchanged messages are accomplished thoroughly in multi-part collaborations,
the service interface specifies an input and output message for every operation.
Therefore, we can theoretically say that using the choreography concept is

essential for facilitating the service interface that is driven from a BP model.

4.3 Business Model versus Choreography

This chapter revolves around two key concepts: BP choreography and service
choreography. The objective of this section is to define these concepts and their
relationships as well as their meta-model. BP modelling languages, such as
BPMN, can be used to depict choreographies graphically by linking BPs via
message flows (Decker, Kopp et al. 2009). The specifications of these
choreographies will describe the behaviour of participants (e.g., business
partners). Support of choreography concepts in BP modelling was somewhat
limited until BPMN 2.0 emerged (OMG 2011). Support has developed from a
simple depiction of basic interactions between participants using BPs and
message flows in BPMN 1.x (OMG 2008; OMG 2009) to rich semantics of
choreography and collaboration diagrams in BPMN 2.0 (OMG 2011). BPMN
2.0 supports interaction models and introduces choreography diagrams that
define a flowchart as sequenced activities of interactions between participants
based on message exchanges (Kopp, Leymann et al. 2011). Where choreography
is an extended type of collaboration (OMG 2011), collaboration diagrams define
interactions between different participants (e.g., Pools and Processes elements),
which ultimately support the interconnection of interface models (see section
2.3.1). Unlike the current BPMN 2.0, in order to cover both interaction models
and interconnected interface models, we consider choreography and
collaboration diagrams that are include all explanations of choreographies in
BP modelling.

4.3.1 Preliminary: BPNMIN Choreographies and BPs Modelling

BP modelling choreographies revolve around key BPMN 2.0 artefacts:
collaboration diagrams, choreography diagram, participants, message flows, and
pools. The collaboration diagram is the core diagram that includes

specifications for all interaction patterns between all participants in one or

68

Chapter 4 Choreography And Model Transformation Design

more choreography diagrams. In general, the choreography diagram defines an
interaction between two participants using sequences of message flows. The
participant element represents a specific logic or physical entity involved in an
interaction. The message flow element connects different participants and
defines the transferred data in an interaction. The pool element presents a
participant in an interaction that is represented in a collaboration diagram. Fig.
4-3 shows part of a collaboration diagram as a comprehensive diagram

integrating collaboration and choreography definitions according to BPMN 2.0

specifications.
& Collaboration
1 + collaboration
+ collaboration 1
* participant + MessageFlow
(@ Participant (& Choreography (& MessageFlow
+ messageFlow
+ processRef
0.1 0.1 + messageRef
(@ Process (& Message

Figure 4-3 BPMN Meta-model

Although BPMN 2.0 has significantly emerged with new capabilities in
choreography semantics, processing models, and graphical data, it still lacks
important aspects for modelling choreographies, e.g., limited modularity and
decomposition capabilities, incompatible control flow dependencies (Decker and
Weske 2011), and lacks interchangeability of technical configurations (Kopp,
Leymann et al. 2011). For example, for limited interchangeability, interface
elements (which have no graphical representation) use associated choreography
semantics with the attribute “portType,” which must be changed based on the
technical aspects of service implementation (Kopp, Leymann et al. 2011). While
the aim of the BPMN 2.0 choreography diagram is to implement independent
and interchangeable models (Decker, Kopp et al. 2008), we have extended
BPMN 2.0 to enhance the interchangeability of choreography semantics from
the BP modelling level to the service choreography level. In fact, the BPMN 2.0

standard provides a robust extensibility mechanism that permits users to

69

Chapter 4 Choreography And Model Transformation Design

extend the standards by creating new attributes and elements. We can classify
our extensions into views.

Extending current BPMN 2.0 elements: Current elements are
essential for completing the semantics of choreographies and are linked to
specific existing constructors. This thesis adopts the extension mechanism
available in BPMN 2.0 that allows users to construct new meta-model classes
as formal specifications. The BPMN extension mechanism consists of four
elements: Extension, ExtensionDefinition, ExtensionAttributesDefinition, and
ExtensionAttributesValue. The FExtension element connects the new
ExtensionDefinition element with the main BPMN model definition through the
Definition element. The ExtensionDefinition element defines and groups the
extension attributes, while the ExtensionAttributesDefinition element contains
newly defined attributes. Finally, ExtensionAttributesValue holds the values of
the new attributes. The Message element in BPMN 2.0 specifications is created
mainly to show a graphical representation. To define the direction of exchanged
messages at the BP modelling level and to enable the correct tracing of
exchange messages at the service choreography level, we added a new
enumerated class construct that presents three enumeration expressions
(Request, Response, and Request-Response). These enumerated expressions
correspond to the types of actions associated with exchanged messages. The
association relationship between the message flow element and the message
element must be changed to one-to-many because a message flow element

might have more than one message depending on the action type. For example,

29

a message for an action type “request’” will have one message, whereas an
action type “request-respond” has two messages.
Fig. 4-4 shows the new extension of message types within the BPMN 2.0

meta-model using the available extension mechanism. Three new elements,
“MessageTypesDefintion,” “MessageTypesAttributes-Definition,” and
“MessageTypesAttributesValue” extend the existing “Message” elements. The
“MessageTypesDefintion” element defines new types of message elements that
group definitions of the new attribute, the “actionID” of the enumerated class of
data exchanged methods (e.g., Request, Response, Request-Response) using a
composite relationship. The “MessageTypesAttributes-Definition” element
contains the new attribute definitions, such as the attribute “attributeKind”

that refers to the XML schema type (i.e., complex, simple, and driven). The

70

Chapter 4 Choreography And Model Transformation Design

“MessageTypesAttributesValue” contains values and types that correspond to

extended attributes. These new elements are linked to the “BaseElement”

element using a new composite relationship to provide values and model

assoclations.
M Definiti Extensi
(© Message (® Definitions + extension (@ Extension
1
+ messageRef 0.1 1
* + messagefFlow 0.1 | + definition
(€] MessageFlow () BaseFlement
(O MessageTypesDefinition (O Message
o name: String
1
+ messaget)t;:lest:lefinit\Dn1
+ messagetypesattributesvalue
(c] MessageTypesAttributes (c] MessageTypesAttributesD
Value + messagetypesattributesdefinition 0.1 efinition
© name: String
o action : ActienType
o isReference: Boolean
«Enumerations
‘= ActionType

o Request
o Respond
o Request-Respond

Figure 4-4 Message Types Extension Meta-model Class Diagram

New relationships and attributes for current BPMN 2.0
elements: New relationships are required for connecting new elements to the
existing BPMN 2.0 elements. The attributes are defined as specific elements
that are required to complete the transformation from the BP modelling level
to the service choreography level. This enhances scalability for interchanging
BPMN 2.0 choreography representations due to limitations in the semantics of

elements and is also required to cope with the representation of early
specifications of BPMN 1.x. For example, the element “Pool” in BPMN 1.2
represents participants, whereas the element “MessageFlow” connects
boundaries of the element “Pool.” There are no connections between the

elements “Pool” and “MessageFlow” in the XMI schema interchange, so we

2

construct the composite relationship “PoolMessageFlow” to capture an
interaction of a particular message flow involved in the case of missing
participant schema. BPMN 2.0 depicts interactions explicitly in a choreography
diagram using the “choreography activity” element, which is an abstract

71

Chapter 4 Choreography And Model Transformation Design

element and represents the point where an interaction occurs in a choreography
flow. In the case of the choreography within a collaboration diagram, semantics
of participants and message flow elements connect interactions in the
choreography within a collaboration diagram. According to BPMN 2.0
standard, an interaction is created when a message flow initiates, thus there is
an interaction for every message flow. However, this design might cause
redundancy when a message flow occurs twice to initiate a request and then the
response to the particular request between interconnected models in one

interface . This thesis links the message flow element with the message type

element via the attribute “messageRef’, where the “actionID’ attribute is
associated with the Messageflow element specifying the appropriate data
exchanged method. This new relationship allows us to minimize redundancy by
creating a message flow element in response to one interaction. Fig. 4-5 shows

the new relationships in the context of the BPMN 2.0 meta-model.

M Definiti Extensi
(9 Message (3 Definitions + extension (3 Extension
1 .
+ messageRef 0.1 1
*+ messageFlow 0.1 | + definition
(2 MessageFlow (3 BaseElement
(9 MessageTypesDefinition (3 Message
o name: String
* 1 1
+ PoclMessageflow + messagetypesdefinition
1 4 messagetypesattributesvalue *
v MessageTypesAttributes MessageTypesAttributesD
(3 Participant (€] Value * (€] efinition I«Enum.eration»
0.1 | o isReference: Boolean = ActionType
. o name: ActionType © Request
o type: String o Respond
o Request-Respond
«EnUmerations
‘= messagetype

o XMLSchemaType
o WSDL 2.05chema

Figure 4-5 New Attributes and Relationships Extension Meta-model Class Diagram

72

Chapter 4 Choreography And Model Transformation Design

4.4 Choreography versus Service Choreographies

Service composition can be described in the rules of service interactions as
orchestration or choreography (Peltz 2003). Orchestrations are descriptions of
interactions that occur by one party (web service), including orders of
interactions (Rosen, Lublinsky et al. 2008). Choreography is a specification for
conversations between different parties (web services) from a global viewpoint
(Decker, Kopp et al. 2008). A service is always driven from a BP or function.
This means that it is appropriate for the BP definitions and design to be used
in the process of service identification. Choreography defines the externally
observable behaviours of a BP (Fischer 2005). We have adopted the WS-CDL

specification standards for the description of service choreographies.
4.4.1 Preliminary: The Service Choreography Concept and WS-CDL

The WS-CDL code can be conceptually categorized into parts: the package root
elements and the choreography definition. We select elements and attributes in
WS-CDL that are capable of capturing the semantics of BP models, in
particular in BPMN 2.0 models. A brief description of WS-CDL has been

provided in section 2.2.4. Alistair et al. (Alistair, Dumas et al. 2005) propose
WS-CDL meta-model designed in UML class diagrams that covers the concepts
of package and choreography. The focus of our research is not to construct a
complete design of WS-CDL meta-model. Rather, it is to demonstrate the
ability of WS-CDL to respond to the semantics of BPs. Hence, we illustrate in
the detailed WS-CDL meta-model that is implemented in the transformation
from the BP modelling level to the service choreography level. Alistair et al.
(Alistair, Dumas et al. 2005) define the comprehensive WS-CDL meta-model
which we adopted in this thesis. The package elements provide descriptions of
participants and captured data within interactions of the observed behaviour.
The description of the WS-CDL meta-model is presented in the main package
depicted in Fig. 4-6 and the choreography is shown in Fig.4-7.
The main WS-CDL elements (i.e., the un-highlighted elements in Fig. 4-6)
of package definitions that are used in the implementation are as follows:
e InformationType: This element defines the data types used within defined
choreographies and activities, types of exchanged messages, and variables to
which schema it uses, i.e., “xsd:name” is used to refer to the XML schema.

Further descriptions of the exchanged information can be defined in the
73

Chapter 4 Choreography And Model Transformation Design

“Variables” element (e.g., capturing the state of a purchase order during the
order creation routine of a BP). There is a composition relationship between
the element “InformationType” and package definitions. This element is
essential as the container of the exchanged data when participants interact.
In particular, it includes the definition of a new attribute defined as
“attributeKind,” in addition to the default attributes of name and element.
The value of “attributeKind” refers to the weight of exhibit data granularity

of exchanged messages, which is used for deciding service quality.

RoleType: The RoleType element represents collaborating participants as
roles, every role associated with observable behaviour is linked to a specific
WSDL interface type. This element will eventually refer to a logical
representation of a service; similarly, the representation of a participant

(role) in BPs might envisage a process interface.

RelationshipType: This element combines two roles into a specific
behaviour or relationship; defined relationships will be further described

through an interaction definition within choreography.

Choreography: The Choreography element represents the core of a
collaboration, which defines rules that manage the sequence of a message
exchange. The Choreography definition can be set locally within a root
choreography package definition or globally as a separate top-level element
specified in a different choreography package (see Fig. 4-7). It defines a

unique name for the choreography within a package.

74

Chapter 4 Choreography And Model Transformation Design

InformationType

+name[1]

+exceplionType[1] = false

,) - [+type{1] = XMLSchemaType OR WSDL1.1 MessageType
informationTypes slemant{1] = XMLSchemaElement OR WSDL2.0 SchemaElement

. 1
[Token 3lﬂmamlvie Variable

[+rame[1] 1 +name(1]

+mutable[1] = true
— +free[1] = false
TokenLocator +silentAction[1] = false
+ofType[1] = InformationType|ChannelType

token lo " [+tokenName([1]
+query:XPathExpr(1] locates
Package resic |
+name[1] 1.7 o
; . viour
+duih_or[1] role types RoleType
+version[1] -name(1] 5
+largetNamespace[1] - 1 Behaviour
+importDefinitions[0..*]) +name(1]
takeq ParicipantType +interface[0..”
participants * 1)
RelationshipType_| ' 1
namel1] role 2
relationship types *
ralationships
variableDefinitions
choreographies - Choreography I
+namal1]
+complete[1] activty 1| Activity |
+root[1] = false L
+isolation[1] = dirty-write|dirty-read|serializable [ﬁ
chorecgraphies . Lﬁammmﬁ— [WerkUnit
zer 1t 1
channel types i ElmnnelTypc : :

Figure 4-6 The WS-CDL Meta-model (part 1) (Alistair, Dumas et al. 2005)

Fig. 4-7 shows the detailed description of the choreography element

(un-highlighted elements in Fig. 4-7) of package definitions that are used in the

implementation as follows:

Interaction: The Interaction element is the most important element of
choreography languages. It constructs descriptions of the exchanged
messages between services. It defines the default attributes of name and
operation that specify a unique name for the interaction and its invoked
operation. The new attribute “actionType” defines a weight for exhibiting
functional granularity of the operation, which is used for deciding service
quality. Interaction includes further definitions through linkages to the

Exchange and Participate elements.

Variable: The Variable element declares an object’s information, such as
the state of capturing object and capturing channels. In particular, we use
this element to prescribe the definitions of the InformationType element

within a specific choreography.

75

Chapter 4 Choreography And Model Transformation Design

Activity: The Activity element explains the actions carried out within a
choreography activity. It is like an abstract class for different activity types
of ordering structure, work-unit, and basic activity; each type is covered

individually.

Sequence: The Sequence element (ordering structure type) enables
sequential definition of the activity notations. It is essential when there is

more than one activity notation to control the flow.

Parallel and Choice: The Parallel and Choice elements (ordering
structure types) enable concurrent and implicit selection of one or more
activity notations within a choreography. According to the WS-CDL
specifications, no attributes are defined for these two elements. However, we
add a name attribute for readability and keep consistency of the

transformation within different models.

WorkUnit: The WorkUnit element prescribes the conditional execution
within a choreography, defining a unique attribute name for the element
within the choreography element. It checks a conditional statement using
the attribute guard and based on the evaluation of the guard condition (i.e.,
true or false), the next execution is performed. The attribute repeat specifics

the repetition of the execution within the WorkUnit element.

Exchange: The Exchange element provides more detailed information
about the operation attribute of the Interaction element. It prescribes the
definitions of the type of action used via the action attribute and the
exchange of messages (i.e., send and receive attributes), which are essential

when specifying the granularity of every operation in a service.

Participate: The Participate element defines the sender and receiver roles
based on the defined RoleType element and the name of the associated
relationship. It shows the source and is responsible for the operations via

three attributes, RelationshipType, fromRoleTypeRef, and toRoleTypeRef.

We did not cover every element in the WS-CDL specification because some

elements have semantics that are irrelevant for the transformed model within

our framework. In this thesis, the WS-CDL meta-model was defined according

76

Chapter 4 Choreography And Model Transformation Design

to the semantics of the choreography requirements and the requirements in

selected application scenarios.

Choice .
— __ISilentAction
activity I roleMName |
Parallel
activity ‘| 1 NoAction
roleMName
Activity 1
Sequence <|— ——
|| Assign |copy source 3
[Lactivity] T4 FroleName |
- [1 1 identifies
WorkUnit Tbind this 1 - r
hame : stringlidl) Perform VariableRef
+guard : boolean(idl) —choreographyMNamg ping free 1 [tvariable: XPathExp
+repeat - boolean(idl}f activity =
+block - boolean(idl) 1 1 1
Interaction variable souUrce targe
+name — " -
Exchange " Record
+initiate : boolean(idl) = false P— g LEF’ie_l.‘\-r'a:rlﬂIJIeF!.Bc:‘ordea —
. - * +|+name
+§|I|gn . bomean{ld_” - fal.se +action = request|respon Tecord [+when = before|aftet
+time-to-complete:Duration send i {
+operationName
exchange

reference (identifies recipient)

ChannelType

channglVariable 1| 7%M< ; session (chor. id) 1| Token
+ Qe = oncejuniimitec

= request|respond|requestResponi

dentity (for correlation)

participate 1

1
[fromRole

relationship 4

Figure 4-7 The WS-CDL Meta-model (part 2)(Alistair, Dumas et al. 2005)

4.5 Choreography Requirements

To evaluate the capabilities of choreography languages, Decker et al. (Decker,
Kopp et al. 2009) provide a set of requirements that can be used to asses both
BPMN 2.0 and the WS-CDL language. Their assessment investigated the
capabilities of both languages to describe choreographies at their own level of
abstractions. In addition, it sought to find similar transformation patterns
between the two languages by evaluating them against similar requirements.
When we discuss the capabilities of BPMN 2.0, we will consider the
interchangeability between choreography and collaboration diagrams, where
they support different interactions, paradigm interactions, and interconnections
respectively. The requirements of choreography languages are as follows:
e Multi-lateral interactions (RQ1): This is the capability to handle the
descriptions of more than two participants that interact in more than one

interaction. This requirement is fully met in both languages. In BPMN 2.0,
77

Chapter 4 Choreography And Model Transformation Design

the choreography diagram supports multi-lateral interactions through the
definitions of the behaviour of two or more participants in collaboration; the
interactions between participants are shown in a number of choreography
tasks. In collaboration diagrams, the Pool element represents participants
and the Message Flow element shows interactions. A participant can
interact with more than one participant using message flows. In the case of
WS-CDL, a choreography description enables a definition of several

scenarios of interactions using one or more RelationshipType elements.

Service (participant) topology (RQ2): Having a structural vision of
how different services (participants) collaborate and the types of services
(participants) that exist is an important choreography requirement that is
supported fully in BPMN 2.0 but only partially in WS-CDL. In BPMN 2.0,
a choreography diagram provides a choreography activity element, which
supports the definition of the interactions of different participants; each
interaction is presented as a ChoreographyTask element. The types of
services (participants) can be defined using the PartnerEntity element. The
ParticipantMultiplicity element defines the maximum and minimum number
of participants. In the BPMN 2.0 collaboration diagram (Figure 2-7 A
Collaboration Diagram Example), the pool element represents participant
types. In WS-CDL, the Roletype elements can be counted, which represents
service topology. However, the enumeration relationship between the
Roletype element and service participant is not clear because a role-type can

be defined for one or more services.

Service sets (RQ3): Supporting several services that are defined with the
same type of participant is a requirement that is met fully in BPMN 2.0 and
partially in WS-CDL. In BPMN 2.0, there is a graphical sign (three black
parallel lines) that indicates that a participant has multiple instances. The
WS-CDL specification does not support multiple executions to priori

runtime, but it is possible to provide support during design time only.

Selection of services and reference passing (RQ4): All services are
made aware of the selection during the design time and runtime. This
requirement is partially supported in BPMN 2.0 and WS-CDL. In BPMN

2.0, the messageRef attribute is defined for tasks type receivers, which

78

Chapter 4 Choreography And Model Transformation Design

indicate there is an incoming message. The exchanged messages (data)

mechanism between participants makes a service aware of the selection.

Message formats (RQ5): Exchanged messages that are wused to
communicate between participants must be in the same formats, e.g.,
XML-based messages. BPMN 2.0 offers the ability to define message
formats in the XML scheme using a specific attribute with the message
element and thus supports this requirement. The WS-CDL also fully
supports this requirement since it uses the standard WSDL message

formats.

Interchangeability of technical configuration (RQ6): Using WSDL as
the structural interface description with message definitions that influences
the choreography language, e.g., changes in the port types or binding should
not cause significant changes in the choreography descriptions. Neither
BPMN 2.0 nor WS-CDL supports this requirement. The BPMN 2.0
specification states that the structural interface description must be in
WSDL. WS-CDL binds to the WSDL configuration, which makes changes in
WSDL document that causes changes in WS-CDL.

Time constraints (RQ7): It is important to control the time of
exchanged messages, e.g., to allow timeouts to be specified as a type of
request-responding message. BPMN 2.0 fully supports this requirement by

means of the multiple-event element with the attribute
“TimerEventDefinition.” The Interaction element in WS-CDL allows the

specification of the time taken to complete the interaction.

Exception handling (RQ8): It is possible to halt collaboration of
participants under defined constraints. This requirement is met partially in
BPMN 2.0 and fully in WS-CDL. Within the interconnection models
(collaboration diagrams) of BPMN 2.0, exception handling can disrupt the
flow of a process by using intermediate or error events. In a choreography
diagram in BPMN 2.0, the exceptions increase based on individual
participants, which means other participants remain un-notified. There are
various types of exception handlers in the WS-CDL, such as interaction

failures, validation errors, and protocol-based exchange failures.

79

Chapter 4 Choreography And Model Transformation Design

e Correlation (RQ9): Different conversations between participants must be

uniquely identified by identifiers. This requirement is met fully in BPMN

2.0 and WS-CDL by means of a correlation key element and the token

element (respectively).

e Integration with service orchestration languages (RQ10): The

ability to integrate a standard language for BPs, such as BPEL, is partially
supported only in BPMN 2.0; WS-CDL has no such support. However, the

support of BPMN 2.0 does not cover all patterns of the orchestration and

choreography languages.

Table 4-1 provides a comparison of BPMN 2.0 and WS-CDL. In addition to the
results of the comparison of relevant research conducted in (Decker, Kopp et al.
2009; Kopp, Leymann et al. 2011), we found that both BPMN and WS-CDL
satisfy most choreography requirements, except RQ6 and RQ10. However, RQ6

is currently difficult to satisfy because of the integration with WSDL.

Regarding RQ10, the maturity of BPEL as an orchestration language is still

undetermined.

Table 4-1 Assessment of BPMN 2.0 and WS-CDL Support for Choreography

Requirements
Items Requirements BPMN 2.0 | WS-CDL
RQ1 | Multi-lateral interactions + +
RQ2 | Service (participant) topology + -+
RQ3 | Service sets + -/+
RQ4 | Selection of services and reference passing -/+ -/+
RQb5 | Message formats. + +
RQ6 | Interchangeability of technical configurations - -
RQ7 | Time constraints + +
RQ8 | Exception handling -/+ +
RQ9 | Correlation + +
RQ10 | Integration = with service orchestration -/+ -
languages

+ fully supported, -/+ partially supported, - not supported

80

Chapter 4 Choreography And Model Transformation Design

4.6 Service Interface in WSDL

WS-CDL specifications include a reference to the service definitions in WSDL
code. This reference is the name of the interface which defines messages,
operations, binding styles and services. The definitions required to construct
WSDL code can be derived from the WS-CDL (see Chapter 6).

WSDL is an XML-based language to describe web services. A web service
is the service implementation, an application programming interface (API)
invoked over a protocol. We selected WSDL 2.0 standards over the former
specifications 1.2 and 1.1 because of the new features, including the interface
inheritance feature that results in high reusability and an extensibility
capability for Message FExchange Patterns (MEPs). In particular, the
extensibility of MEPs is essential for specifications such as WS-CDL and
WSDL that use messages exchanged for communication. However, the support
of WSDL 2.0 is still limited in regard of tools. A WSDL service interface
description document consists of two main components: abstract and concrete.
The abstract component defines relevant elements of a service, e.g., definitions
of exchanged messages and associated operations. The concrete component
defines how and where the service is accessed. Fig. 4-8 shows the incomplete
WSDL 2.0 meta-model that includes the main elements of a service interface as

follows:

e Description: The Description element is a container of the document
declarations and WSDL 2.0 elements, such as types, interface, bindings, and
services. It defines definitions of the target namespaces that include

declarations for semantics of all components.

e Types: The Types element defines data types using Input and Output
elements in the meta-model that describes the XML schema definitions of
all messages (parameters) accessed by operations defined in the WSDL
document. Current XML schema in element types used in WSDL 2.0 defines
two data types: complexType or simpleType. According to XML schema
data types (Biron, Permanente et al. 2004), the simple type can be further
classified as either a primitive or derived type, each with different
constraining facets, such as length and pattern. We applied this

classification to layer new levels of data granularity used in message

exchanged (for further details see section 5.2.1).

81

Chapter 4 Choreography And Model Transformation Design

Interface: The Interface element defines a set of performed operations,
specifying the messages that are accessed. As a new feature in WSDL 2.0,
an interface can be optionally extended and derived from one or more
interfaces. Along with this feature, the property attribute defines the

behaviour control of the features.

Operation: The Operation element defines actions performed by a service,
accessing definitions through a sequence of input and output messages
(parameters) used in the operations and the defined types element. We
extended the semantics of the operation definition through the ActionType

element that refers to the purpose of the operation and functional

granularity (for further details see section 5.2.2).

Binding: The Binding element defines the underlying protocol, associated
operations and message format, e.g., SOAP and HTTP. Every binding links

to an interface.

Service: The Service element specifies one or more end points that define
the network address where the service can be invoked. A service definition
can have one or more interfaces; an interface might have one or more

bindings.

82

Chapter 4 Choreography And Model Transformation Design

<<enumeration> >
€ ActionType
CRUD

EexcuteBL
CRUD&EexcuteBL
EEnumLiteral0

H nput
T messagelabel : String 0.~

B Fault
T elementNs : String input = name : Strin
= elements : String = . ?

T elementNs : String

B cperation

B output T name : String [
o . St T pattern : MEP .
T messagelabel : String p, : faul
=) c = = style : OperationStyle 1 fau
T elementMS : String output o o r———
= elements : String G EETIE B L T faul

&% actionType : EString
operation™Ns ‘T
\ 1 0.
H BindingCperation operafion

= wsoap_mep : SOAPMEP

= whit thod : HTTPMethod

= gpefa_tzgi '(;tring o H BindingFault =] Inter‘face.

:) = wsoap_code : FaultCodeEnum T name : String

- - T faultNs : String
bindingOpgration T
interfacp 1
2" 0.r inferfaceNs H schema
=] .
H Binding bindingFault T language : String
T name : String ;

T type : MessageFormat 0.

= wsoap_protocol : String —
= wsoap_version : Integer binding elementType
= whttp_methodDefault : String

4
3=
T interface : String H Description E EIementTy.pe
3 T name : String types | T name : String
binding/NS T servife 1.*
0.*
El Endpoint B Service
2 IR e S L T name : String
z ::jn;;:sgssst{;;gg endpoint T interface : String
T :

Figure 4-8 WSDL 2.0 Meta-model

4.7 Summary

This Chapter presented the choreography concept within the context of
business process modelling and service choreography, which form the basis of
the implementations of the transformation model in our framework. The
discussion covered the semantics of business process choreography in BPMN
2.0, service choreographies in WS-CDL and service interface design in WSDL.
We concentrated on bridging the abstraction gap between a business
processes model and the implementations as set of services. We formalised new
extensions within the BPMN 2.0 choreography model for underlying BPMN 2.0
meta-models. The proposed BPMN 2.0 extensions provide missing properties
that are mandatory for facilitating the transformation from a business process
choreography model to the service choreography semantics in WS-CDL. It will
be also used to define the quality attributes. The extension consists of new

relationships between current elements of the choreography model in BPMN 2.0
and new elements such as “attributeKind” and “actionID”.

We represented the WS-CDL meta-model, focusing on the main elements

that enhance interchangeability between the BP choreography model in BPMN
83

Chapter 4 Choreography And Model Transformation Design

2.0 and service interface in WSDL 2.0. A list of requirements for choreography
languages in the literature shows the suitability of using the semantics of the
choreography model in BPMN 2.0 and WS-CDL for choreography modelling.
To a great extent, they cover similar choreography patterns as described in the
choreography requirements, either fully or partially. We represented an
incomplete meta-model of the service interface in WSDL 2.0 that will be used
in the transformation of the implementation between WS-CDL and the service
interface in WSDL 2.0.

In Chapter 5, we will present the service quality model, which is the
second essential aspect of service identification process. The Chapter also
discusses the software metrics that can be used to evaluate service interface

designs.

84

CHAPTER 5 SERVICE QUALITY
MODEL

Chapter 4 introduced the concept of choreography to bridge the abstraction
gap between the business process models and the implementation of the service
interface design. Chapter 4 presented the first part of the framework design.
This Chapter explains the second part of the framework design proposing a
service quality model that can assist in selecting the “optimum” services. The
selection will be based on computations of service metrics of service granularity
and service quality attributes of complexity, cohesion and coupling.

In section 5.1, we explain the underlying theory of the service quality
model. This is followed, in section 5.2, by a description of the basic metrics of
service data granularity and functional service granularity that comprise the
granularity metrics of the average service operation, and which provide a
measurement for service granularity. In section 5.3, we introduce three metrics
for the architectural quality attributes of complexity, cohesion and coupling
that are based on the service quality model and show the impact of service
granularity on other architectural attributes. In section 5.4, we conduct a
theoretical validation for the proposed metrics against mathematical properties.
This chapter concludes with a summary of the service quality model in section
5.5.

5.1 Service Granularity Quality Model

It is essential to identify the appropriate level of granularity of services in the
early phases of SOA quality design as well as the identification of service
quality attributes for a set of services. While a key objective of software

engineering is the enhancement of software quality, the focus of the SOA

Chapter 5 Service Quality Model

quality metrics that currently exist is on the broad measurements of external
structural software service attributes (e.g., complexity, reusability, and
performance). They neglect the impact from internal structural software
attributes, in particular from service granularity. Although several researchers
have attempted to develop an assessment of SOA quality attributes, very few
provide specific details in terms of service granularity metrics. Our goal is to
analyse the granularity of service operations for service-oriented systems from
the perspective of a service provider. We have developed syntactic metrics that

are driven by the service code syntax.

“Service granularity” is a measure of the exposed functionality of services.
The service granularity of any service-oriented system indirectly affects typical
SOA design qualities such as flexibility, reusability, and performance. The
granularity of service operations plays a key role in SOA quality attributes
(Shim, Choue et al. 2008). This impact can be positive or negative, based on
the trade-offs adopted by the service provider. Coarse-grained services are
usually advantageous because they improve overall performance, but they do so
at the expense of reducing system flexibility. SOA designs a set of services that
communicate with each other, each service having a number of specific
operations that each contribute to the definition of the functional scope of the
service (Erl, Karmarkar et al. 2008).

In order to measure the granularity of a service, we analyse the
component service elements, using the definitions of granularity types proposed
by Haesen et al. (Haesen, Snoeck et al. 2008). A service granularity quality
model is proposed in this thesis with an explanation of how our definitions are
driven by levels of granularity in a service-oriented system (see Fig. 5-1). Our
quality model has two levels, the service level and the operations level. The
service level always favours coarse-grained services. We ignore any service type
classifications because the objective is to measure the granularity of operations
for that particular service. At the operations level, we consider the purpose of
the operation as well as the amount of data exchanged to define the operation
and data types respectively. Here, we propose a set of metrics for measuring the
internal structural attribute of service granularity in service-oriented systems.
We also attempt to measure the impact of service granularity on other internal

attributes of complexity, cohesion and coupling.

86

Chapter 5 Service Quality Model

\
l |

Data Types Operation Types
*Simple type. *CRUD operations.
*User-define type. *Execute logic operations
*Complex type. *Both.

Figure 5-1 The Service Granularity Quality Model

5.2 Basic Metrics of Service Granularity

The metrics proposed have been devised to address the key aspects of a service
business functionality and data manipulation. These aspects are considered
individually, together with metrics derived from the service interface. The
definitions that will be used for the proposed metrics are set out below:

e /N —the domain of services.

e S[n] — the set of services in the domain n € .

Ols] — the set of service operations in the service s € S.

M[s] — the set of messages in the service s € S.

Po] — the set of parameters in service operations o € O.

5.2.1 Metrics for the Data Granularity Score

The type and size of data elements manipulated by service operations can
impact several internal structural software attributes: complexity, coupling, and
cohesion; some researchers refer to this effect as “data granularity” (Haesen,
Snoeck et al. 2008). In coarse-grained data, such as a structure data type,
passing such data types minimizes communication overhead and improves
performance. On the other hand, passing fined-grained data elements as

individual parameters (i.e., primitive types such as string, integer, long,

87

Chapter 5 Service Quality Model

decimal, etc.) might require additional work to complete all of the necessary
computations. Of course, the use of elements with high-granularity improves
overall system flexibility because each data element can be manipulated
individually as required. The data granularity adopted as part of the service

operations indirectly affects the service qualities. For example, the data size of

a customer’s record is more coarse-grained than that of a customer’s
identification element.

Previous research in SOA metrics has considered different ways to
evaluate input and output parameters, depending on coarse-grained parameters
(Shim, Choue et al. 2008). Dmytro et al. (Rud, Schmietendorf et al. 2006)
suggest using the absolute size in bytes to measure the size of elements. This is
unsatisfactory because the size of the service refers to self-contained
functionality. Type definitions of data elements can be defined as complex

types or simple types based on the XML schema for data types as well as
user-defined data types (Biron, Permanente et al. 2004). A “complex type”
parameter has attributes presented as a data structure or objects. A “simple

type” parameter refers to a built-in type as defined in the XML specification,
and can be either a primitive type (i.e., one that holds a single value, e.g., a
float, string or double) or a derived type (e.g., a token, entity, unsigned long).
User-defined data types are defined by individual schema designers. We define
three different weights for these three data parameter types based on a
comparative scale, these difference weights can be defined for input and output

parameters, where:

= 1 if parameter is a simple type of parameter
(primitive type or derived)
FPW (p,) or CPW (p,) = 5 if parameter is a user - defined data

type
L = 10 if parameter is a complex type

The given weights 1, 5 and 10 are alternatively selected; however these
weights must have a consistent difference between them. We propose that
complex data types should be assigned a heavier weight because they result in
additional communication overhead compared to primitive and derived data
types. Some user-defined data types might have a heavier weight than simple
data types such as a primitive type because they can require additional

computation. The data granularity score (DGS) measures the degree to which

88

http://www.stylusstudio.com/w3c/schema2/datatype-dichotomies.htm#dt-derived
http://www.w3.org/TR/xmlschema-2/#token

Chapter 5 Service Quality Model

an operation uses “excessive” data. The definition of DGS is based on fine-
grained and coarse-grained parameters. To measure the data granularity of
input and output parameters in an operation of a service, we define the

operation data granularity (ODG) metric as follows:

0DG(0,) = <FPW(po) CPW(m))

+
* FP; *,CP;

e FPW is the weight value assigned for an input parameter (FPW > 0).
e CPW is the weight value assigned for an output parameter (CPW > 0).

e FP is a function to sum the total weight of all input parameters of a

service.

e (P is a function to sum the total weight of all output parameters of a

service.

The valid range of ODG is between zero and unity because the value of the

numerator (e.g., FPW(p,) or CPW (p,)) is a fraction of the total of denominator

i, FP; for each data element. A value close to unity indicates a low
granularity (i.e., the data granularity of the operation service is coarse-grained)

and a value close to zero indicates fine granularity.

5.2.2 Metrics for the Functionality Granularity Score

The functionality granularity of an operation service refers to the logic
encapsulated by an operation or operations within a service. Various operations
offer various levels of logic, which can be described as the “capability” of the
operation (Hirzalla, Cleland-Huang et al. 2009). The functionality of a service
consists of both business logic and CRUD functions. The CRUD functions can
be implemented within service areas or separately within specific services.
Operation services executing business logic can also be implemented separately
or implicitly with CRUD functions. In this context, other researchers have
suggested entity-centric business services called “entity services” to support the
CRUD function interface and manage business entities (Cohen 2007; Hirzalla,
Cleland-Huang et al. 2009). Thus, we define three different weights for the three
different types of operations with different levels of granularity, using a

comparative scale where:

89

Chapter 5 Service Quality Model

(=1if a service operation has CRUD operations

| =5 if a service operation executes business logic

OT (o) 4 =10 if a service operation executes business logic

and has CRUD operations

We propose that service operations that execute business logic and CRUD
functions have the heaviest weight because they result in additional
computation overhead compared to those execute business logic or CRUD. A
service that implements only CRUD functions has a lower granularity than that
of a service that executes both business logic and CRUD functions (Erl,
Karmarkar et al. 2008). We assume that the weight of service operations is
based on both the value and scope offered by the service operations. To
measure the granularity of the functionality of a service operation, we define

the operation function granularity (OFG) metric as follows:

OFG(0s) = O,?LOS?
i=1Yi
e OT is the scale weight value for functionalities in a service operation
(OT > 0).
e O is a function that sums the total weights of functionalities for all

operations in a service.
5.2.3 Metrics for Service Operations Granularity Score

A service consists of a set of operations that provide the self-contained
functionality of the service. In order to estimate an accurate measurement for
the service granularity, we begin by measuring the size of an operation service
based on the ODG and OFG metrics for each service operation. We then define
a metric to measure the total granularity of a service operation. We define the

service operation granularity (SOG) as follows:

n
S0G(05) = Z(ODG(i) X OFG (1))
i=1
Where ODG and OFG # 0, and n is the number of operations in a service

(n >1). We can also evaluate the granularity of every service operation

individually based on our proposed scale definitions: low/average/high as shown

90

Chapter 5 Service Quality Model

in Table 5-1. This table shows three arbitrary ranges: 0.00 < value < 0.33,

0.33 < wvalue < 0.66, 0.66 > value. This table is used to evaluate the data
and functional granularity for a specific service operation. Thus, the level of the
granularity considers both data and functional granularity together to define an

appropriate scale for service operations in a service-oriented system.

Table 5-1 Evaluation of the Granularity Level for a Service Operation

0.00<0DG < 033 | 033<0DG < 066 |0.66<0DG
0.00 < OFG < 0.33 Low Low Average
0.33 < OFG < 0.66 Low Average High
0.66 < OFG Average High High

To measure the service granularity for all services in a service-based
system, an average is calculated based on SOG, where SOG > 0 and VS is the

number of services in a domain (NS > 0), we define the Average Service

Operation Granularity (ASOG) metric as follows:

. (506())
NS
e SOG is the value of service granularity of an operation in a service.

ASOG =

e ASOG is the cumulative total for the size of granularity of all services in

a service domain.

5.3 The Impact of Service Operation Granularity

Service granularity influences a number of different internal and external
structural software attributes (Perepletchikov, Ryan et al. 2005). We analyse
the internal structural software attributes of complexity, cohesion and coupling
that are influenced by service granularity. These internal attributes will
eventually be used to analyse the external software attributes of reusability,
flexibility, and portability. To achieve the key features of SOA in a particular
domain, we need to derive a balance between several different quality attributes
of the service implementation; in other words, we need to establish “trade-offs”.
The measurement of granularity has been extensively discussed in the context
of Object-Oriented (OO) development. Many existing SOA metrics have been

derived from former research into both OO and procedural programming

91

Chapter 5 Service Quality Model

(Perepletchikov, Ryan et al. 2007; Perepletchikov, Ryan et al. 2007). In this
section, we will analyse the SOA internal structural quality attributes that are
affected directly by service granularity. These attributes are the complexity,
cohesion and coupling that are essential for the service quality and need to be

considered during the service implementations.

5.3.1 Service Operation Complexity

Service complexity refers to the effort required to maintain and to comprehend
the implementation of a service or set of services. Although complexity metrics
for service-based systems typically have four dimensions (i.e., data complexity,
system complexity, service complexity and process complexity (Zheng and
Keung 2010)), metrics derived from the concept of service granularity are our
main concern. Complexity levels in SOA are a result of key design decisions
that are directly related to service granularity (Fenton and Neil 1999). For
example, developing many fine-grained services might increase the complexity
of service governance. We define complexity as a dependent variable of the
independent variable, service granularity. In other words, any changes in
service granularity will impact the overall degree of complexity.

In a composite service, the average number of dependency relationships
per atomic service might be considered (Liu and Traore 2007). Here, network
cohesion among system nodes that have services, the number of services in
composite services, and the count of dependent service pairs are proposed to
quantify the complexity of an SOA infrastructure (Rud, Schmietendorf et al.
2006). Simply, the number of operations and messages in a service interface can
also be used as indicators for complexity (Sindhgatta, Sengupta et al. 2009).
Those metrics are broadly correlated to the size of service operations and
complexity; they are essentially adaptations of the classic fan-out complexity
metric.

We will focus on the aspects of functional complexity that are directly
related to service granularity (SOG). We suggest that an appropriate measure

of the effort required to comprehend a service implementation would be a
metric based on the exponentiation of SOG as a™, where the base a = SOG and

the exponent n= 2. NS is the number of services in a domain (NS > 0), we

define the Average Service Operation Complexity (ASOM) metric as follows:

92

Chapter 5 Service Quality Model

(2. (s06(H)%)

ASOM =
NS

5.3.2 Service Operation Cohesion

The degree to which service elements are related to functionality expressed in a
service is an important measure that is needed to demonstrate the complexity
of service levels and eventually of the overall system. Unlike fine-grained
services, coarse-grained services have a significantly higher probability of being
cohesive with a larger number of service operations. We define service cohesion
as service operations that have similar types of exchanged messages (e.g.,
complex type) and operations (e.g., CRUD operations). The higher the
cohesion, the less maintainability effort that will typically be required during
service development (Perepletchikov, Ryan et al. 2007). The service functional
cohesion index (SFCI) metric is used to express the commonality of the key
message(s) to define the cohesion of the operations of services (Sindhgatta,
Sengupta et al. 2009). Our metric considers the size of data and the operation
types mentioned previously. However, the size of data is more accurate than
particular occurrences of a specific message and this presents a challenge. If the

number of operations with a specific type o using a specific size of input/output

data (ODG) and operations (OFG) is H(OFG, ODG) where: 0 € Os) OFG > 0,

ODG > 0,and NOg is the number of service operations in a service NOg > 0

then we define the service operation cohesion (SOC) metric as follows:

max(u(OFG,0DG))

S0C(s) = 0
S

The SOC value indicates cohesion of a service operation with a range of
zero to unity. If the SOC value is equal to zero, there is no cohesion among
service operations in the service, implying high complexity. The closer the value
of SOC is to unity, the lower the complexity. We assume that input and output
messages have the same weight. Where there is more than one value that
corresponds to the maximum function, we do not consider their service
operations in NS. To measure service cohesion for service-based systems, the
Average Service Operation Cohesion (ASOC) is calculated based on SOC(s) as

follows:

93

Chapter 5 Service Quality Model

?:1 SOCl
NS
NS is the number of services in the domain (NS > 0), while SOC;is the

ASOC =

number of cohesive values in individual services. If NS is unity, this means that
all service operations are implemented in one monolithic service. Additional
factors relative to cohesion can also be considered to measure the overall

cohesion of a service-based system.
5.3.3 Service Operation Coupling

High coupling between services is a result of many different aspects:
independency, stateless, and self-contained (Qian, Jigang et al. 2006). From an
architectural perspective, coupling can be measured at several different levels of
abstraction, ranging from high-level design through to executable
implementations (Perepletchikov, Ryan et al. 2007). Each aspect of coupling
can also be affected by a number of different factors such as service types,
innovation methods, and direct/indirect relationships. There are several
alternative approaches to measure coupling. For example, one straightforward
method is to determine the number of messages exchanged between services
and clients (Xiao-jun 2009).

In the service operation coupling metric, we focus on measuring
dependency between service operations through invocation methods because of
the strong impact of the service size. Fine-grained services will have greater
dependency issues than coarse-grained services because they offer less
functionality. Thus, in order to accommodate the overall system requirements,
fine-grained services might require additional collaboration efforts and
orchestrating services. The greater the number of service operations in a
service, the greater the number of invocation calls that might be expected. The
assumption allows us to identify service dependency between services by means
of invocation operations. Qian et al. (Qian, Jigang et al. 2006) depend on
service components to show dependencies by counting asynchronous and
synchronous invocations with different weights for each. In contrast, we
measure the average number of direct invocations at a service level regardless of
service types for both synchronous and asynchronous invocations based on the
classical fan-out concept. Although the asynchronous invocation method has a

lower coupling effect (Qian, Jigang et al. 2006) and is the most common

94

Chapter 5 Service Quality Model

mechanism (Rud, Schmietendorf et al. 2006), allocation of different weights for
different invocation types is not appropriate because we believe there is no
reliable relationship between the size of service and type of invocation. We

define the Average Service Operation Coupling (ASOU) metric as follows:

?:1 (Si,sync + S i,async)

ASOU =
NS

NS is the number of services in the domain (NS> 0), S; syn. is the number

of synchronous invocations in a service operation and S ; 4syn. is the number of

asynchronous invocations in a service operation. The lower the ASOU, the
higher the external attributes of performance and maintainability will be. If the
service granularity is higher, more invocation operations can be expected. When
ASOU is equal to zero, service operations can be implemented in a single

coarse-grained service.

5.4 Metrics Validation

When considering metrics as software measurements of the quality attribute,
metrics need to be validated rigorously. There are two main ways to validate
metrics, empirically or theoretically. In this section, we concentrate on the
theoretical validation framework based on the measurement theory suggested
by Briand et al. (Briand, Morasca et al. 1996). This framework proposes
instinctive properties that are defined mathematically for a number of
internal-structural attributes such as size, length, complexity, cohesion and
coupling. This framework has also been successfully adopted for use in metrics
validation research (Rossi and Fernandez 2003; Costagliola, Ferrucci et al.
2005; Perepletchikov, Ryan et al. 2007; Basci and Misra 2009; Perepletchikov,
Ryan et al. 2010). In the following, we perform the theoretical validation to
evaluate our metrics (ASOG, ASOM, ASOC, and ASOU) against the properties
proposed by Briand et al. (Briand, Morasca et al. 1996), such as length,
complexity, cohesion and coupling measurements.

Prior to defining properties, we need to define the basic representations
used in patterns similar to that defined in (Briand, Morasca et al. 1996). The

representation needs to be modified to represent our problem space. For
example, the term “module” needs to be replaced with the term “service”

because the service-oriented system is not based on modules; rather, it is based

95

Chapter 5 Service Quality Model

on service compositions. Due to the fact that the service composition refers to a
set of services that we have already represented as being in the service domain,
we replaced the term module with the term service. In fact, a service itself
might be a coarse-grained service with large functionalities that can be

re-factored into a set of services. The basic definitions as follow:

Definition_1: Representation of systems and modules. A service domain
(consisting of one or more services) S will be represented as a pair <E,R>,
where E represents the set of elements of S, and R is a binary realization on E

(R € E X E) representing the relationships between S’s elements.

Definition_2: Given a service domain S = <E, R>, a service s = < Eg,Rg > is

a service of S, if and only if E¢ € E,Rg € Eg X Eg, and Rg € R.

Definition_3: Representation of service composition. The 2-tuple

SC =< E,R,s > represents a service composition if S = <E, R> is a service
domain that consists of a set of services according to definition’l and s is a

collection of service operations.

A) Average Service Operation Granularity (ASOG)

With respect to the general definition of the service granularity as software size,
the size property appears to be suitable for validating the average service

operation granularity (ASOG) metric. However, the ASOG metric does not
satisfy the size measurement according to the third property of “module
additivity,” which states, “the size of services in a service domain S = <FE, R>,
is equal to the sum of the sizes of two of its services s; =< Eg;,Rg; > and
s, =< Eg; ,Rs; > such that any element of S is an element of either s; ors,.”
Indeed, the calculated value of ASOG is always different because we eventually
calculate the average of all services in a service domain to reach the overall
value of granularity of all services in a service domain. Therefore, the length
measurement is selected, since it considers more than one aspect of calculating

a metric. The ASOG metric is based on the calculation of two aspects, the
OFG and ODG. The ASOG is evaluated against five properties of the length

measurement as follows:

96

Chapter 5 Service Quality Model

Non-negativity: The ASOG value has a non-negativity property. The
ASOG value of a set of services S = <E, R> is non-negative in all cases,

ASOG (S) = 0.

Null Value: The ASOG value satisfies the null value property. The
ASOG value of a set of services S = <F, B> is null when F is empty,

E=0 = (ASOG (S) = 0).

Non-increasing Monotonicity: The ASOG value satisfies the
non-increasing monotonicity property. If S is a set of services and s is a

service of S such that s is represented by a linked component of the

graph representing .S. Appending new (R) relationships between elements
of s does not increase the ASOG value of S. For example, decomposing a
service s with a number of operations O(s) into fine-grained services will

not increase the overall size of functionality (ASOG) in S.

(S=<E,R>ands =<Eg;,Rg> ands SS and s “is a Ilinked

component of S” and

S'"=<E,R"> and R' =R U{<e;,e, >} and <e;,e; > ¢
Rand e; € Eyy)

= ASOG(S) = ASOG(S")

Non-decreasing Monotonicity (non-linked services): The ASOG

value satisfies the non-decreasing monotonicity property. If S'is a set of
services and s; and s, are two services of S such that s; ands, are
represented by two unlinked components of the graph representing .
Appending new (R) relationships between elements of s; to elements of

s; does not decrease the ASOG value of S.

(S=<ER>and s; =<Eg;,Rsy > and s, =< Es, Ry, > and s;

C Sand
s, € §" are unlinked services of S and
S"=<E,R"> andR' =R U{<e;,e, >}and <e;,e, >&R

97

Chapter 5 Service Quality Model

and e; € E;; and e, € Eg,)
= ASOG(S) < ASOG(S")

¢ Disjoint Services (modules): The ASOG value satisfies the disjoint

services property. The ASOG value of a set of services S =<E,R >
decomposed into two disjointed services s; and s, is equal to the

maximum of the ASOG value of s;and s,. For example,
(S=s,Usyand s; N s, = Qand E = E; U Ey)

= ASOG(S) = max {ASOG (s,),ASOG(s;)}

= I = \ 4 Sz

; \ (‘c)sﬁ Sy \‘, (o2 - 01\)
Sy \ (=4 l)] | \
I ; > ,) Lo N oz] CosD I ,I
oz \ S . ~(oa)

e 7 w s \ -

SI /,,f = S5 X =2 3
\ £ Co=)
/ (o2 W \ Cos - \\ Ao2)—~(oz \
= | s :
\ Co3) = | H 2Y
\ (o ¥} (o=2) }}‘ : (o=) =)/
/
(oD / \\ — Y \“\ "

T sz 3 N
x \)
S 4 \ / Coa) /
S ’\,_ — (o5 \ (o2)r—(C(o2)
= 21l > | J
2 | Cosz) > | e
‘[(o) / ~ K222 / o= & ~(oa)
; £ o

(K== / v - b4
% y S

5-2 ASOG metrics evaluation using the properties of length

Fig. 5-2 demonstrates the three length properties: non-increasing
monotonicity, non-decreasing monotonicity and disjoint services. Every s
consists of £ (elements), which represents a number of operations (o). The

length of the service domain S is the maximum value among the lengths of
S1,S3 and s3 which are services linked to .S. The length of the service domain S’
is not greater than that of service domainS, where a new relationship <
05,05 > (represented by dashed arrow) links two elements of S, s3. The length
of the service domain S” is not less than that of service domain S, where a new
relationship < 0,,05 > (represented by dashed arrow) links two elements of .5,

s, and s,.

98

Chapter 5 Service Quality Model

B) Average Service Operation Complexity (ASOM):

The ASOM is evaluated against five properties of the complexity measurement

as follows:

e Non-negativity: The ASOM value satisfies the non-negativity property.
The ASOM value of a service domain 5 = <F, R> is non-negative in all

cases,
= ASOM (S) =0
e Null Value: The ASOM value satisfies the null value property. The
ASOM value of a service domain S = <F, B> is null when R= @
= (ASOM (S) = 0)

e Symmetry: The ASOM value satisfies the symmetry property. The
ASOM value of a service domain S = <F, R> is flexible to select

representation conventions between E of S. (S=<E,R>and S71 =<

£ R—1>,

= ASOM (S) = ASOM (571)

e Service (module) Monotonicity: The ASOM value satisfies the
service monotonicity property. The ASOM value of a service domain .5 =
<F, R> is greater or equal to the sum of the values of ASOM of any two

of its services that have no relationships in common.
(S=<ER>and s; =<Ey;,Rs1 > and s, =< E;, ,R;; > and
s Us, SSandR;; N Ry, =0)

= ASOM (§) = ASOM (s,) + ASOM(s,)

e Disjoint Services (module) Additivity: The ASOM value satisfies

the disjoint services property. The ASOM value of a set of services
S =< E,R > composed of two disjointed services s; and s, is equal to

the sum of the values of ASOM of s; and s,
(S=<ER>and S=s;Usy,and s; Ns, = Q)

= ASOM (S) = ASOM (s,) + ASOM (s,)
99

Chapter 5 Service Quality Model

C) Average Service Operation Cohesion (ASOC):

Since cohesion refers to the degree to which service elements are related to
functionality expressed in a service, the concept of cohesion is examined at the

level of services. To cover the validity on the service level as well as the a set of
services (service compositions), we used a alternation symbol as “ | “ e.g., the

notation (S| SC), where S and SC present a cohesion for service and a service
composition, respectively (Briand, Morasca et al. 1996). The ASOC is evaluated

against four properties of the cohesion measurement:

e Non-negativity and Normalization: The ASOC value satisfies the

non-negativity and normalization property. The value of ASOC where
[service s = < Eg, R; > of a service composition SC =< E,R,s >

| service composition SC < E,R,s >] will fall within the interval between
zero and unity. The ASOC meets the normalization property since the

ASOC values of all services are comparable to the equivalent interval.

= [ASOC (s) € [0,Max] | ASOC(SC) € [0, max]]
e Null Value: The value of ASOC satisfies the null value property. The
ASOC value of [service s = < Eg, Rg > of a service composition SC= <
E,R,s > | service composition SC =< E,R,s >] is null when [R | CE],

where CE refers to common data and functional elements of exposed

operations in a service.
[Rs = @ = ASOC(s)=0|CE = @ = ASOC (SC) = 0]

e Monotonicity: The ASOC value satisfies the monotonicity property.
The ASOC value for a service s; will not decrease when a new data or

function element is added to operations of that service. In fact, the

addition may increase the value of ASOC.

e Cohesive Modules: The ASOC value satisfies the cohesive modules

property. If there are two unrelated (i.e., they share no common data or
function types), services s, and sy, are integrated into sy, =s, U s, , and
the value of the ASOC for s, is not greater than the maximum value of

the ASOC for s, and s, .

= ASOC (S) < max(ASOC (s;) + ASOC (s1))

100

Chapter 5 Service Quality Model

D) Average Service Operation Coupling (ASOU):

Measurement of coupling (ASOU) focuses on the invocation methods
(synchronous and asynchronous) between service operations in terms of
dependency. The ASOU is evaluated at the level of services and against four

properties of the cohesion measurement as follows:

e Non-negativity: The ASOU value satisfies the non-negativity property.
The ASOU value of a service [s = <Es, Rg> of a service composition SC'|
S| is non-negative in all cases where there is no dependency between

service operations nor eventually between services.
= [ASOU (s) = 0| ASOU(SC) = 0]

e Null Value: The value of ASOU satisfies the null value property. The
ASOU value of a service [s = <Es, Rg> of a service composition SC = <E,
R, s»] is null in cases where there is no dependency between service

operations nor eventually between services.

e Monotonicity: The ASOU value satisfies the monotonicity property.
The ASOU value for a service s; or a service composition SC will not

decrease when a new data or function element is added to operations of

that service. In fact, this addition may result in an increase in the value
of ASOU.

® Merging of a Service or Service Composition. The ASOU value

satisfies the merging of a service or service composition property. The
value of ASOU for a set of services S =< E,R > will decrease when a

pair of services is merged because relationships may exist between those

services, thereby causing those relationships to disappear.

¢ Disjoint Services (module) Additivity: The ASOU value satisfies the

disjoint services additivity property. The ASOU value of a set of services
S =< E,R > composed of two disjointed services s; and s, is equal to

the sum of the value of ASOU of s, and s,
(S=<ER>and S=s;Usy,and s; Ns, = Q)

= ASOU (S) = ASOU (s,) + ASOU (s,)

101

Chapter 5 Service Quality Model

We can state that our proposed ASOG, ASOM, ASOC, and ASOU
metrics used the mathematical properties of length, complexity, cohesion and
coupling, as suggested in reference (Briand, Morasca et al. 1996). Therefore, our
metrics are applicable and can provide ratio scale measurements. It is
important to state that our metrics satisfy the specific properties noted in each
metrics proposed. However, an empirical validation will also be conducted as

part of the framework validation (later in the thesis in chapter 8).

5.5 Summary

In this chapter, we proposed a service quality model that aims to provide a
grounding theory to quantify service granularity. We focused on the concept of
service granularity in service designs, using service and service operations as the
key design constructs for analysing and deriving complexity, cohesion and
coupling. We began by defining metrics for the service granularity based on two
aspects of the service model, e.g., data and functional granularity. The purpose
of the suggested metrics is twofold. First, the proposed metrics ASOG, ASOM,
ASOC, and ASOU aim to quantify service granularity, complexity, cohesion
and coupling for a given service interface. Second, and more significantly in the
context of this thesis, the service metrics need to be applied at an early phase
of SOA development to guide the service identification process effectively.

All metrics proposed, except coupling (ASOU), were described explicitly
in an unambiguous way using the definitions of the service granularity quality
model. The ASOU metric is based on measuring dependency between service
operations through invocation methods because of the strong impact of the
service granularity. The defined metrics were evaluated using the mathematical
properties of length, complexity, cohesion and coupling as defined by Briand et
al. (Briand, Morasca et al. 1996), and can therefore be considered to be
theoretically valid measures. Furthermore, the metrics will be evaluated
empirically when investigating the relationship between service granularity as
an independent variable and the architectural quality attributes of complexity,
cohesion and coupling used in the study (the empirical evaluation will be
discussed in chapter 8).

After describing the framework design of the model transformation and
service quality model in chapter 4 and 5. In chapter 6, we will explain the

overall implementations of the framework of the service identification process

102

Chapter 5 Service Quality Model

presenting into the choreography and model transformation and the service

quality model.

103

CHAPTER 6 SERVICE
IDENTIFICATION
IMPLEMENTATION

Chapter 4 discussed the design aspects of the concept of choreography and
model transformation and Chapter 5 proposed a service quality model. Both
Chapters 4 and 5 represent the foundation necessary to implement the
framework to deliver the optimum service interface designs. This Chapter
discusses the implementation from the perspective of the research question: is it
possible to generate service interface designs automatically from business
process model using service choreography?

This chapter presents details of the implementation of the model
transformation (model-to-model) that is based on the choreography concept
and the service quality metrics. Although there are a number of approaches
stated the importance of using MDA in SOA approaches, most of them do not
provide implementation of MDA principles. The service identification process
can be defined (as a model-driven) a separate a model for every architectural
layer. These models are representative of the semantics defined in accordance
with MOF specifications. Furthermore, we demonstrate how the service quality
model can be implemented based on a number of service quality metrics. The
implementation of the service quality model is essential to evaluate the service
quality attributes for the service interface designs and to select the optimum
service interface design.

In section 6.1, we begin by presenting the overall architecture of the
implementation, which is divided into two architectural parts: model
transformation and service quality model. Following this, section 6.2 gives a

brief review of implementation issues related to model transformations. In

Chapter 6 Service Identification Implementation

section 6.3, we introduce the semantic mapping between the business process
choreography model, service choreographies and the service interface design; in
addition, we present an algorithm for re-factoring WS-CDL code to several
service interface designs in WSDL. In section 6.4, we explain the technical
implementations of the transformation chain from BPMN 2.0 to WS-CDL and
from WS-CDL to WSDL 2.0 using the Atlas Transformation Language (ATL).
In section 6.5, we describe the detailed implementation of the second key
principle of the framework architecture, which is service quality. The core
component of this implementation is a parser that consists of three Java
packages: service element extractor, syntax analyser and metrics calculator.
This chapter concludes in section 6.6 with a summary of the important points

and characteristics of the implementation.

6.1 Framework Architecture

The aim of this framework implementation is to demonstrate the possibilities of
using the WS-CDL specification to enable an automated transition from a
business process choreography model in BPMN 2.0 to a service interface design
in WSDL. The objective is to automate the development process to the extent
that it can generate the optimum service interface designs. Figure 6-1 below
shows the overall implementation, which consists of two main parts: the model
transformation and service quality model. These are implemented in three main
phases. The implementation of the model transformation is based on the
choreography and model transformation concepts as discussed in Chapter 4 and
the service quality model implementation depends on the service quality
attributes introduced in Chapter 5. We discuss each architectural part

separately below.

Choreography &Model Transformation : Service Quality
| Il |
2 Phase 1 Phase 2 = : Phase 3
é ;_ S S : e
Business Process Service Service Inteface : Service Quality
Choreography Choreographies Design Model
Modelling >
BPMN2.0 &> wscpL =2 wsoL => WSDL
Legends: £~ manual, =¥ automatic, = semi-automatic

Figure 6-1 Overall Architecture of Service Identification Framework

105

Chapter 6 Service Identification Implementation

6.2 Choreography and model transformation

In this section, we discuss the three models defined in different representations
at three levels of abstraction, as well as the model representations and related
issues that were considered during the implementation. This discussion is
important for the underlying construction of the semantic mappings and

eventually to the final technical implementation.
6.2.1 Business process choreography modelling

At an early stage of the software development cycle, business analysts construct
a Business Process (BP) model corresponding to functional requirements. This
model is constructed manually and independent of later development phases. In
other words, the design of the BPs cannot be validated against service
implementations. Furthermore, the BP design depends on a business analyst’s
expertise and detailed understanding of the functional requirements. Whether
the design of the BP meets the functional requirements or the design of BP is
completed, the representation and semantics of the design of BP in BPMN 2.0
standards cannot adequately be transformed to the next level of abstraction. As
a result, in the semantics of BPMN 2.0 and the existing BPMN tools for
modifying the interchange format of the BPMN diagram, we manually modified
the BP diagrams (in the XMI format adapted for this thesis using the Altova
XMLSPY tool). The mandatory modifications essentially covered the three

elements shown in listing 6-1 and can be explained as follows:

1. The semantic of the Message element was modified through two

attributes: the messageTypedefinition and attributekind. These attributes
are explained in the BPMN 2.0 extension (section 4.3.1). It is important to
know the schema type (e.g., XML schema, WSDL 1.1 and WSDL 2.0)
used for selecting the proper interchange format when we need to define

data types. In this particular case, the value assigned for the
messagelypedefinition is “WSDL 2.0 schema”, which is applied to element
types in this case. The attributeKind attribute’s value holds a weight
value assigned based on proposed service quality model in (section
5.25.2.1). It shows the level of granularity of data exchanged and

eventually allows quantification of the data granularity in a service, e.g., a

106

Chapter 6 Service Identification Implementation

Message element with the value of attributekind element equals to “3”
refers to the complex data type.

The semantic of the MessageFlow element is modified with the attribute
“actionID’, which is added through the BPMN 2.0 extension outlined in
(section 4.3.1). This attribute helps to specify the appropriate data-

exchange methods, such as request and respond. A given value is assigned

for different data-exchange methods; in this case the value of the
“actionID” equals “3”, referring to request-respond. Although the attribute
“messageRef” is already defined for several elements in BPMN 2.0 such as
MessageFlow, the feature to associate the Message and MessageFlow

through elements “messageRef” is not implemented. Therefore, we added
this attribute manually.

The semantic of the Choregraphytask element was modified with the
attribute “actionType”, referring to the functional type of an operation,
e.g., CRUD or executing business logic or CRUD and executing business
logic. Every functional type has a different corresponding weight, as

explained in section 5.2.2.

<?xml version="1.0" encoding="1SO-8859-1"?>

<xmi:XMI xmi:version="2.0"ccccccerrerierrrrreneecs >
-- Message
<bpmn:Message xmi:id="...._3159F957F4D6" name="Request Form" element
messageTypesdefintions="tns:WSDL2.0Schema" attributeKind="3"/> modifications
<bpmn:MessageFlow xmi:id="_6-1033" name="Request Form" MessageFlow
messageRef="...._3159F957F4D6" actionID="1" sourceRef="....." element
targetRef="......"/> modifications

<bpmn:ChoreographyTask xmi:id="........ " name="Order Request"” Choreography
initiatingParticipantRef="...... " actionType="1" MessageFlowRef="_6-1033"] Task element
ParticipantRef=".... / " incoming=".......... " outgoing=""........ Wi modifications

Listing 6-1 An Example of XMI Schema with BPMN 2.0 Extension Modifications

6.2.2 Service choreographies

Although the premise of service choreography is well discussed in relation to

service composition, implementation of the choreography concept is still at an

early stage. Because of this lack of implementation expertise and support, we

developed a transformation to generate service choreographies automatically

from a higher abstraction (the business process level) using simple ATL

107

Chapter 6 Service Identification Implementation

transformation rules. At this stage, the code of the service choreography is
generated from the business process choreography (in BPMN 2.0) and then it is
used to derive the designs of service interfaces (i.e., potential service
implementations) confirming consistency between different models. In this way,
conformance between service implementation and design is guaranteed in
regard to the collaborative behaviour described in the WS-CDL code. The
WS-CDL meta-model used includes semantic definitions of all the WS-CDL

elements introduced in the W3C specification (W3C 2005), where the
implementation of WS-CDL is presented as a mediator between the BPMN 2.0
(semantic of business process) and WSDL (service interface). There are a
number of design decisions that we took in the transformation to and from
WS-CDL as follows:

1. Every business process choreography process was transformed to piece of
WS-CDL code, in particular to one choreography package.

2. Finding the appropriate mapping of choreography actions based on the
WS-CDL specifications among the various semantic levels of business
process and in regard to the design of service interfaces is essential
because this is at the core of the choreography process. Generally
speaking, a choreography process defines a sequence of choreography
tasks, which can each be considered as an interaction block. When the
semantic of the choreography task is not defined explicitly in a
collaboration diagram, we consider the semantic of a message flow as an

interaction block.

It is worth noting that there are some WS-CDL elements for activities
notation that cannot be semantically transformed into service interfaces, such
as Parallel, WorkUnit, and Sequence. In general, their behaviour is not relevant
to the service interface. These elements are mainly used in the previous phase
to express the behaviour of participants and activities as gateways with
constraint conditions. For example, the BPMN ExclusiveGateway element was
transformed to the WorkUnit element at the service choreography level, where
the activities of the WorkUnit element were then transformed into basic
activities (elements) at the service interface level. There are also other general
elements in WS-CDL that are not especially considered in the transformation
implementation between WS-CDL to WSDL, such as Participate and
RelationsType element. These elements might not be applicable to service
interface transformation, but they may be used in indirect service design

108

Chapter 6 Service Identification Implementation

decisions, e.g., in developing heuristic rules for service modelling based on those
services that shared the same participants (e.g., aggregating those services that

are offered by one responsible participant department in an organisation).

6.2.3 Service interface design

It is difficult to design one service interface that implements the optimal
functionalities of the service(s) and also satisfies the service design quality
attributes. This is because considering and defining all the heuristic rules in the
transformation implementation that can solve all problems is not often possible.
In fact, the defined service quality attributes that are used to design a number
of optimal service interfaces can be changed from time to time according to
user requirements. Therefore, we developed an algorithm that generates a
number of potential designs for service interfaces of service operations defined
in the WS-CDL code. The number of all possible designs of service interfaces
depends on the number of choreography tasks defined in the WS-CDL

document, where in WSDL it is the number of service operations. This number

can be calculated using the Bell number (B,), which counts the number of all
possible partitions (sub-sets) of a set with n members, where the n can be
represented as the number of choreography tasks (Klazar 2003). For example, a
choreography process consists of nine choreography tasks that are transformed
to nine operation services in WSDL, (By) =[1; 2; 5; 15; 52; 203; 21140] =
21140. This means that there are 27,7140 possible service interface designs for a
service that consists of nine service operations. However, having the service
interface generated automatically from the WS-CDL code, we need to consider
the behaviour specifications defined for service choreographies in the generation
process of all possible service interfaces. We developed an algorithm that
generates five re-factored designs for service interfaces in WSDL based on the
WS-CDL code. Currently, the number of generated service interfaces is limited
to five re-factored designs.

As discussed previously, however, the optimum service interface design
was not achieved with this transformation, although being able to measure the
service quality attributes of service interface design is essential in designing the
optimum service interface within specific requirements. The optimum service

interface design was thus identified semi-automatically because service quality

109

http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Element_(mathematics)

Chapter 6 Service Identification Implementation

metrics are developed as an independent application and has not fully been

integrated with the implementations of model transformations.

6.3 Semantic transformation implementation

In this section, we present the semantic mapping of the two transformation
phases: BPMN-to-WS-CDL and WS-CDL-to-WSDL (Figure 6-1). We also show
the re-factoring algorithm that uses the semantic of WS-CDL to generate

various service interface designs in WSDL. These transformation rules are

implemented using ATL (ATL is explained in 2.4.4).

6.3.1 BPNMN-to-WS-CDL transformation

We represent the transformation mapping from BPMN to WS-CDL in natural
language. The respective transformation specification for this phase
transformation was discussed in section 4.3. The transformation rules define

how business process choreography in BPMN 2.0 is transformed into a service
choreographies document in WS-CDL (the relevant meta-models of BPMN 2.0

and WS-CDL used in the implementation were introduced in sections 4.3 and
4.4). The implementation mapping can be described as follows:

e Core element mapping.

e Specific element mapping.

6.3.1..1 Core element mapping
The core element mapping represents the mapping of the main elements that
are mandatory for establishing business process choreography between one or

more participants. The elements mapping is discussed below:

e BPMN: Definitions
The BPMN Definitions element is an abstract class that defines the scope of

the state and the namespace for all contained elements. It is a root element for
diagram models; one or more definition elements are defined for the interchange
of BPMN files. In WS-CDL, the Package element holds WS-CDL type
definitions (e.g., informationtype and roletype elements) and namespace. Thus,
we generated a WS-CDL:Package element for each instance of
BPMN:Definitions and map the value of name and targetNamespace attributes

of BPMN:Definitions to similar attributes in WS-CDL:Package. Concurrently,

110

Chapter 6 Service Identification Implementation

we created initial instances for Roletype, Relationshiptype, Choreography and
Informationtype elements to append their potential definitions within the
elemnt WS-CDL:Package. These instances correspond to the elements of
Participant, Messageflow, Choreography and Message respectively, as seen in
the BPMN diagram.

1. For each BPMN ELEMENT _BPMN_Defintions : D

1.1 Read D.name, D. targetNamespace.

1.2 Create WSCDL:Package : P where
P.name = D.name , P. targetNamespace = D. targetNamespace

1.3 Collect all D instances of ELEMENT BPMN_(Participant,
MessageFlow, Choreography, Message)

1.4 Create P instances of ELEMENT_WSCDL (roletypes,

relationshiptype, Choreoaraphy, informationtypes)

e BPMN: Message
The BPMN Message element is the way that participants communicate. We

generated an Informationtype element in WS-CDL for every instance of the
element Message and mapped the name and id attributes of the Message
element to those in the Informationtype element. Furthermore, we define the

appropriate data type of exchanged data based on the value of attribute

“attributekind”. The data schema also can be inferred from the attribute of
messageTypedefinitions for communication. The definitions of the MessageFlow
element were also used within the definitions of the Choreography elements in
WS-CDL in order to define the Variable element.

2. For each BPMN ELEMENT_BPMN_Message : M
2.1 Read M.name, M.id.
2.2 Create WSCDL:InformationType | WHERE l.name = M.name ,l. id= M.id
2.3 Collect all S instances of ELEMENT_BPMN_ (messageTypesdefinitions)
3. Create | instance of ELEMENT_WSCDL (element)
3.1 Create WSCDL:Variable VA WHERE VA.name = M.name ,
3.2 VA.informationType= (messageTypesdefinitions) + M.name ,

e BPMN: Participant
The BPMN Participant element represents the role in the collaboration or

choreography model. We generated the RoleType element in WS-CDL for every
instance of element Participant and mapped the name and id attributes of the
Participant element to that in the RoleType element. This is because the
execution of the process is often the responsibility of the participant, which
specifies the observable behaviour of the participant. To expose the behaviour

via the WDSL interface, the interface attribute is required. Hence, we also

111

Chapter 6 Service Identification Implementation

copied the name attribute of the Participant element to the attributes of

behaviour and interface of the RoleType element.

4. For each BPMN ELEMENT_BPMN _ Participant : PA
4.1 Read PA.name , PA.id
4.2 Create WSCDL:RoleType RY WHERE RY.name = PA.name, RY.id = PA.id.
4.3 Create WSCDL:Behavior BH WHERE BH.name = PA.name and
BH.interface =PA.name + ‘Interface’

e BPMN:MessageFlow
The BPMN MessageFlow element demonstrates the flow of messages between

participants. We generated the RelationType element in WS-CDL for every
instance of the element MessageFlow. The two parties of the MessageFlow are
defined within the attributes sourceRef and targetRef of MessageFlow, which
are mapped to roletypel and roletype2 respectively. These attribute together

identify a mutual relationship between two participants.

5. For each BPMN ELEMENT_BPMN _ MessageFlow : MF
5.1 Read MF. id,
5.2 Create WSCDL:RelationType RT WHERE RT.id = MF.id.
5.3 RT .Roletypel = MF. SourceRef + RT. Roletype2 = MF. targetRef.

In cases where there is a collaboration diagram, the attributes of the
MessageFlow element can be used to define the Interaction element within the

WS-CDL, specifically the name attribute.

a. For each BPMN ELEMENT BPMN_ MessageFlow : MF
a.1 Read MF. id ,
a.2 Create WSCDL:Interaction IT where IT.name = MF.name, IT.operation =
MF.name.

e BPMN: Choreography
The BPMN Choreography element defines how participants interact; the

interactions between participants are performed in collaboration or
choreography diagrams. In WS-CDL, the choreography element defines
collaborative behaviour between the interacting participants, encapsulating
choreography definitions locally or globally. We generated a Choreography
element in WS-CDL for the instance of the Choreography element in BPMN. In
WS-CDL, the Choreography element encapsulates definitions of all activity
notations (e.g., basic activity of Interactions, Order-Structures,
VariableDefinition and ExceptionBlock) and these elements were defined

concurrently in different transformation rules on the following defections:

112

Chapter 6 Service Identification Implementation

6. For each BPMN ELEMENT_BPMN_ Choreography : CH
6.1 Read CH.na, CH.id
6.2 Create WSCDL:Choreography CY where CY.name = CH.name, CY.id = CH.id
6.3 Collect all CH instances of ELEMENT_BPMN (MessageFlows).
6.4 Create CY instances of ELEMENT_WSCDL (interactions).
6.5 Create CY instances of ELEMENT_WSCDL (variable).

e BPMN: ChoreographyTask
The BPMN ChoreographyTask element presents an interaction which results

from a message being exchanged between two participants; the message
exchanged is depicted as a MessageFlow element. We can consider the
ChoreographyTask element to be a basic block of a choreography process,
similar to that in the Interaction element in WS-CDL. Hence, we generated an
Interaction element in WS-CDL for every instance of the Choreographytask
element in BPMN. Since the Interaction element defines one operation and
both attributes share similar behaviour, we mapped the attribute name of
ChoreographyTask element to the attributes name and operation of the
Interaction element. The value of the attribute actionType that refers to the
operation type (e.g., CRUD) is transformed into a new similar attribute to the
WS-CDL.

In fact, the Interaction element contains a number of references to the
WS-CDL elements such as Roletype and InformationType. These references
depend on the definitions of BPMN elements that are already defined above. In
this thesis, we focused on two essential elements within the Interaction element
in WS-CDL: Participate and Exchange. Firstly, the definitions of the
Participate element were mapped directly from the ParticipantRef attribute of
Choreographytask. In cases where the Choregraphytask element is not defined,
the sourceRef and targetRef attributes of the MessageFlow element can be used
to show the participants collaborating in an interaction. Secondly, the
definitions of the Exchange element, which specifies exchanged data within an
interaction, are transformed from Message and MessageFlow elements in
BPMN. In this transformation, the data are specified using two definitions of
two BPMN elements; we mapped the values of the attributes name from

Message and actionID from MessageFlow elements.

113

Chapter 6 Service Identification Implementation

7. For each BPMN ELEMENT_BPMN_ Choreographytask : CT
7.1 Read CT.name, CT.id, CT. actionType
7.2 Create WSCDL:Interaction IT where IT.name = CT.name, IT.id =CT.id,
7.3 IT. actionType = CT. actionType
7.4 Read BPMN ELEMENT_BPMN_ Message:ME
7.5 Read BPMN ELEMENT_BPMN_ MessageFlow:MF
7.6 Create WSCDL: Participate PR WHERE PR.name = CT. ParticipantRef,
7.7 Create WSCDL:Exchange EX WHERE EX.name = ME.name ,
and EX.informationType = MF.messageRef.
1.1 Create EX.action WHERE:
If MF.id = I then EXaction =’Request’
Else if MF.id = 2 then EX.action ='Respond’
Else MF.id = 3 then EX.action =’Request-Respond’

e BPMN: EndEvent
The BPMN Endevent element shows where a choreography process can end.

WS-CDL has presented the element finalizerblock that defines confirmation of
finalisation actions. Although, different patterns of the finalizerblock element
can be used (i.e., the choreography may have one or more finalizerBlock) we
focused on a simple pattern to indicate the completeness of the choreography

process.

8. For each BPMN ELEMENT _BPMN __EndEvent: ENE
8.1 Read ENE.name,
8.2 Create WSCDL: Finalizerblock WR where WT.name = ENE.name,

6.3.1..2 Specific element mapping
The specific element mapping represents the mapping of the elements that
might not occur with every choreography process. The elements mapping is

discussed below:

e BPMN: ExclusiveGateway
The BPMN ExclusiveGateway element defines alternative paths within a

Process flow where only one path is eventually executed, in which one condition
expression is evaluated (associated with the outgoing sequence flow). We
generated the WorkUnit element in WS-CDL for every instance of the
ExclusiveGateway element, with the name attribute of the ExclusiveGateway
element mapped to that in the WorkUnit element. The outgoing sequence flow
of the ExclusiveGateway element holds the expressions which can be mapped to
the guard attribute of the element WorkUnit. The outgoing sequence flow of
the ExclusiveGateway element points to the Choreographytask elements, which

are defined explicitly within the definitions of the ExclusiveGateway element.

114

Chapter 6 Service Identification Implementation

9. For each BPMN ELEMENT_BPMN_ ExclusiveGateway: EXG
9.1 Read EXG.name, EXG. outgoing
9.2 Create WSCDL:WorkUnit WR where WT.name = EXG.name,
9.3 Read WSCDL:SequenceFlow SF where (SF.name = EXG.Outgoing &
SF.conditionExpression = ()
9.4 EXG.guard = SF.conditionExpression
9.5 Create CY instances of ELEMENT_WSCDL_linteractions: IN where
IN.name= SF.name

e BPMN: EventBasedGateway
The BPMN EventBasedGateway element defines a branching point in the

process triggered by an event; the trigger is based on the receipt of a message
from a participant (in greater detail, the gateways can be defined as parallel or
exclusive). We generated a WorkUnit element in WS-CDL for every instance of
the EventBasedGateway element, with the name attribute of
EventBasedGateway element mapped to that in the WorkUnit element. When
the event gateway is used to instantiate (with the instantiate attribute set as a
true value) the EventBasedGateway might transform to Parallel or Exclusive

elements depending on the value of the attribute eventGatewayType.

10. For each BPMN ELEMENT BPMN__ EventBasedGateway: EBG

10.1 Read EBG.name, EBG. instantiate, EBG. eventGatewayType

10.2 Create WSCDL:WorkUnit WR where WT.name = EXG.name &
EBG. instantiate = false.

10.3 Create WSCDL:Parallel PR where PR.name = EBG.name &
EBG. Instantiate = true & EBG. eventGatewayType = parallel

10.4 Create WSCDL:Exclusive EX where EX.name = EBG.name &
EBG. Instantiate = true & EBG. eventGatewayType = exclusive

e BPMN: InclusiveGateway
The BPMN InclusiveGateway element defines alternative and parallel paths

within a process flow, where all condition expressions are evaluated. There are
three potential elements in WS-CDL that can be used to correspond to
InclusiveGateway based on the evaluation of the conditional expression:
Sequence, Parallel and Choice. The outgoing sequence flow of the
InclusiveGateway element points to the Choreographytask elements, which are

defined explicitly within the definitions of the InclusiveGateway element.

115

Chapter 6 Service Identification Implementation

11. For each BPMN ELEMENT_BPMN_ InclusiveGateway: IXG
11.1 Read IXG.name, IXG. outgoing
11.2 Read WSCDL:SequenceFlow SF where (SF.name = IXG. Outgoing)
If Evaluate (SF.conditionExpreseion)= SE then
Create WSCDL:Sequence SQ where SQ.name = IXG.name
elself Evaluate (SF.conditionExpreseion)= PA then
Create WSCDL: Parallel PA where PA.name = IXG.name
elself Evaluate (SF.conditionExpreseion)= CH then
Create WSCDL:Choice CH where CH.name = IXG.name
11.3 Create CY instances of ELEMENT_WSCDL _linteractions: IN where
11.4 IN.name= SF.name

e BPMN: ParallelGateway
The BPMN ParallelGateway element defines synchronised parallel paths within

a process flow. We generated a Parallel element in WS-CDL for every instance
of the ParallelGateway element, with the name attribute of ParallelGateway
element mapped to that in the Parallel element. The outgoing sequence flow of
the ParallelGateway element points to the Choreographytask elements, which

are defined explicitly within the definitions of the ParallelGateway element.

12. For each BPMN ELEMENT _BPMN_ ParallelGateway: PA
12.1 Read PA.name, PA. outgoing
12.2 Create WSCDL.: Parallel PAW where PAW.name = EXG.name,
12.3 Read WSCDL.:SequenceFlow SF where (SF.name = EXG.Outgoing)
12.4 Create CY instances of ELEMENT _WSCDL _ linteractions: IN where
IN.name= SF.name

e BPMN: IntermediateEvent
The BPMN IntermediateEvent element shows an event that happens during

the process flow. This element has 12 types of intermediate events with
different behaviour, especially when it has Intermediate Event as an output
direction. Consequently, mapping this element directly to a specific WS-CDL
element is not possible. One of these types is the IntermediateThrowEvent
element, with one event definition which occurs at most once. We mapped the
Choreographytask that the IntermediateThrowEvent element intends to trigger
to the Interaction element in WS-CDL within the definitions of the generated
order structure elements (Choice or Sequence or Parallel). Although repetition
of a task might occur semantically in the WS-CDL specification, the task will
be executed in the right order because of the sequential capability.

13. For each BPMN ELEMENT_BPMN _ IntermediateThrowEvent: ITE
13.1 Read ITE. outgoing
13.2 Read WSCDL:SequenceFlow SF where (SF.name = ITE.Outgoing)
13.3 Create CY instances of ELEMENT_WSCDL_ linteractions: IN where
IN.name= SF.name

116

Chapter 6 Service Identification Implementation

6.3.2 WS-CDL-to-WSDL transformation

In this section, we present the transformation mapping from WS-CDL to
WSDL in natural language. The respective transformation specifications for this
phase transformation are discussed in section 4.4. The transformation rules
define how the service choreographies in the WS-CDL code are transformed
into service interface designs in WSDL. The relevant meta-models of WS-CDL
and WSDL used in the implementation are introduced in sections 4.4 and 4.6.

The implementation mapping can be described as follows:

e WS-CDL: Package
The WS-CDL Package element defines the WS-CDL different type definitions

(e.g., informationtype and roletype elements) and namespace. We generated a
WSDL:Description element for the instance of WS-CDL:Package and mapped
the value of the name and targetNamespace attributes of the WS-CDL:Package
to similar attributes in the WSDL:Description. At this level, we also generated
the instances of abstract definitions of Types and Interface elements
corresponding to Informationtype and Choreography elements in WS-CDL,
respectively. On the other hand, the concrete definitions of the Binding and
Service elements were introduced individually.

1. For each WS-CDL ELELMENT_WS-CDL_Package: WSP
1.1.Read WSP.name, WSP.targetnamespace
1.2. Create WSDL:Description: DS where
DS.name = WSP.name, DS. targetnamespace = WSP.targetnamespace
1.3. Collect all Instances of ELMENT _WS-CDL(InformationType, Choreography)
1.4.Create all instance of ELEMENT WSDL (Tvpes. Interface)

e WS-CDL: InformationType
The WS-CDL InformationType element defines the data types of exchanged

messages in the WS-CDL code. We generated an ElementType element in
WSDL for every instance of the InformationType. To guarantee the right
hierarchical structure for the XML schema definitions, we created schema and
elementDeclarations attributes on the fly. We mapped seamlessly the value of
the name attribute of InformationType to that in the ElementType, where the
value of the attribute attributeKind defines the data types (e.g., simpleType,

complexType or userDefined).

117

Chapter 6 Service Identification Implementation

2. For each WS-CDL ELELMENT_WS-CDL_ InformationType: IT
2.1.Read IT.name, IT.attributeKind
2.2.Create WSDL:ElementType: ET where ET.name = IT.name, ET,
2.3. If IT. attributeKind = 1 then ET. attributeKind =’ simpleType’
Else if IT. attributeKind = 2 then ET. attributeKind =’ userDefined’
Else IT. attributeKind = 3 then ET. attributeKind =’ complexType’

e WS-CDL: Choreography
The WS-CDL Choreography presents the definitions of collaborations that

can be used to deliver the definitions of Interface, Binding and Services
elements in WSDL. We generated an Interface and Service elements for the
instances of the Choreography element as well as the required SOAP binding
details via the Binding element. We mapped the name attribute of the
Choreography element to name attribute of Interface element in WSDL. The
details of the Interface element were derived from further transformations of
the Interaction element to the Operation element, which we define below. We
limited the generation of one interface for every service to maintain the
definitions of choreographies consistent between the level of business process
and service implementation.

The definitions of the Service element refer to the network addresses
defined and the definitions of the Binding element including the value of the
name attribute of the Choreography element mapped to the name attribute of
the Service element, with the suffix “service” at the end. The definition of the
Binding element is independent of the transformation process; it takes the

operation attribute defined in the interface and specifies the required SOAP
and HTTP binding style.

3. For each WS-CDL ELELMENT_ WS-CDL_ Choreography: CH
3.1 Read CH.name, IT.attributeKind
3.2 Create WSDL:Interface: IN where IN.name = CH.name + 'Interface’,
Collect all Instances of ELMENT_WS-CDL (Interaction)
Create all instances of ELEMENT_WSDL (Operation)
3.3 Create WSDL:Binding: Bl where
Bl.name = CH.name + 'Binding', Bl.interface = CH.name + ‘Interface’,
Bl.wsoap_protocol = “”,
Bl. whttp_methodDefault ="
Collect all Instances of ELMENT_WS-CDL (Interaction),
Create all instances of ELEMENT_WSDL (Operation),
3.4 Create WSDL:Service: SE where
SE.name = CH.name + 'Service', SE.interface = CH.name + 'Interface’,
SE.endpoint = Collect all Instances of ELMENT_WS-CDL (Interaction),

118

Chapter 6 Service Identification Implementation

e WS-CDL: Interaction
The WS-CDL Interaction element is at the core of the exchange of information

between different services. We generated an Operation element in WSDL for
every instance of the Interaction element and the values of the name and
actionType attributes of Interaction are mapped to that in the Operation
element. Within the interaction block, every operation processes the data
exchanged (Input/Output), which is defined through the Exchange element.
When Interactions are enclosed within an activity notation such as WorkUnit
element, we were supposed to evaluate the guard condition to select the
appropriate interaction. However, since we argue that filling the gap
abstractions through transformation is not enough by itself to provide the
optimal set of services, evaluating the service quality attributes is essential for
delivering optimal service interface designs. Furthermore, given that we are
showing how the transformation was implemented, in the next stage we will

show the generation of various service interfaces with different designs.

4. For each WS-CDL ELELMENT_WS-CDL_ Interaction: IN
4.1 Read IN.name, IN. actionType
4.2 Create WSDL:Operation: OP where OP.name = IN.name,
OP. actionType =IN. actionType
Collect all Instances of ELMENT_WS-CDL (Eexchange).
Create instances of ELEMENT_WSDL (Operation).Output()
Create instances of ELEMENT_WSDL (Operation).Input()

e WS-CDL: Exchange
The WS-CDL Exchange element defines the data to be exchanged throughout

an interaction; the exchanged data are then processed as input or output. We
generated an Input or Output element in WSDL for every instance of the
Exchange element. The value of the name attribute of Exchange is mapped to
that in the Operation element, where the value of the action attribute is used

to decide the input and output parameters of operations. For example, when
the value of action is equal to “respond”, the operation has an output

parameter. Below we show how the input and output are implemented

separately.

5. For each WS-CDL ELELMENT_WS-CDL_ Exchange: EX
5.1 Read EX.name, EX. action
5.2 Create WSDL:Input: INP where INP.name = EX.name,
If EX. action = “request” or “request-respond”
INP.messageLabel ="In",
INP.elements = EX.informationType,

119

Chapter 6 Service Identification Implementation

6. Foreach WS-CDL ELELMENT_WS-CDL_ Exchange: EX
6.1 Read EX.name, EX. action
6.2 Create WSDL.:Output: OUT where OUT.name = EX.name,
If EX. action = “respond” or “request-respond”
OUT.messagelLabel ="Out”,
OUT .elements = EX.informationType,

6.3.3 WSDL transformation (re-factoring)

We show below how the algorithm that develops five re-factored cases of
service interface designs depends on the generated WS-CDL code. The five
cases can be explained as follows:

First case: We created a monolithic service for all operations in a service
domain. We generated a Service element with one Interface for every
Choreography element in WS-CDL. Each Interaction element in WS-CDL
defined within the Choreography element is mapped to an Operation element in

the Interface and Binding elements. Relevant exchanged messages (parameters)
are defined in the Types element.

lint case = 5;

2SWITCH (Scenarios)

J3<<Case One>>

4 case 1: Scenario = "17

5 FOR each Chorography Elelement WSCDL {

] CREAT Service WSDL

7 CREAT Interface WSDL

8 FOR each Interaction_EIe]ement_WSCDL {

3 DEFINE Operation WSDL INTO Interface WSDL

10 DEFINE Operation WSDL INTO Binding WSDL
11 DEFINE MESSAGE WSDL INTO Types WSDL

12 }//END FOR

13 } //END FOR

14

Second case: We created an initial Service with one Interface and then
created an Operation element in the Interface and the Binding element. This
had the required binding definitions for every Interaction element in the
WS-CDL. Again, relevant exchanged messages (parameters) are defined in the
Types element. When a WorkUnit element or ordering structure elements (e.g.,
Choice or Parallel) element exists, a new service was created with one Interface
and Binding element. The Interaction elements were defined within those
ordering structure elements in the WS-CDL as operation elements in an
Interface. The required binding definitions are defined for the operations and

relevant messages exchanged are also defined within Types elements. Those

120

http://www.w3.org/TR/ws-cdl-10/#Ordering-Structures
http://www.w3.org/TR/ws-cdl-10/#Ordering-Structures

Chapter 6 Service Identification Implementation

Interaction elements that reside outside the ordering structures elements are

defined as Operation elements, and added to the initial service interface.

15<<Case Two>>

16 case 2: Scenario = "2"

17 FOR each Chorography Elelement WSCDL {

18 CREAT Service WSDL 1

19 CREAT Interface WSDL 1

20 FOR each Interaction Elelement WSCDL {

21 DEFINE Operation WSDL INTQ Interface WSDL 1

22 DEFINE Operation WSDL INTO Binding WSDL

23 DEFINE MESSAGE WSDL INTO Types WSDL

24 IF Exist (WorkUnit Elelement WSCDL OR ParallelElelement WSCDL){
25 CREAT New_Service WSDL

26 CREAT Interface WSDL

27 IF each Interaction Elelement WSCDL Input =

28 WorkUnit Elelement WSCDL Output OR

29 ParallelElelement WSCDL Output{

30 DEFINE Operation WSDL INTQ Interface WSDL
31 DEFINE Operation WSDL INTO Binding WSDL
32 DEFINE MESSAGE WSDL INTO Types WSDL
33 }// END IF

34 else Exit

35 }//END else/IF

36 }//END FOR

37 }END// FOR -Case

38

Third case: This is similar to the second case, except that those
Interaction elements residing outside of the ordering structures elements are
defined as Operation elements within a new Service with one Interface element.

39<<Case Three>>

40 case 3: Scenario = "37

41 FOR each Chorography Elelement WSCDL

42 CREAT Service WSDL 1

43 CREAT Interface WSDL 1

44 CREAT Service WSDL 2

45 CREAT Interface WSDL 2

46 FOR each Interaction Elelement WSCDL

47 DEFINE COperation WSDL INTO Interface WSDL 1

48 DEFINE Operation WSDL INTO Binding WSDL

49 DEFINE MESSAGE WSDL INTO Types WSDL

50 TF Exist(WorkUnit Elelement WSCDL OR ParallelElelement WSCDL){
51 CREAT New _Service

52 CREAT Interface WSDL

53 IF each Interaction Elelement WSCDL Input =

54 WorkUnit Elelement WSCDL Output OR

55 FaraIIeIElelement_WSCDL Output{

56 DEFINE Operation WSDL INTO Interface WSDL
57 DEFINE Operation WSDL INTO Binding WSDL
58 DEFINE MESSAGE WSDL INTO Types_WSDL
59 }// END IF

60 else

61 DEFINE Operation WSDL INTQ Interface WSDL 2

62 DEFINE Operation WSDL INTO Binding WSDL

63 DEFINE MESSAGE WSDL INTO Types WSDL

64 }//END else/IF

65 Exit For}//END FOR

66 JEND FOR -Case

67

121

Chapter 6 Service Identification Implementation

Fourth case: We created an initial service and then created an operation
for every interaction by mapping its exchange messages. It is similar to the
third case when a WorkUnite element or ordering structure element (e.g.,
Choice or Parallel) exists. We created new services elements with relevant
Interface, Binding, Operation and Types elements after the evaluation of the

conditional expression defined in the guard attribute of the WorkUnit element.

68<<Case Four>>

69 case 4: Scenario = “47

70 FOR each Chorography Elelement WSCDL

71 CREAT Service WSDL 1

72 CREAT Interface WSDL 1

73 FOR each Interaction Elelement WSCDL

74 DEFINE Operation WSDL INTO Interface WSDL 1

75 DEFINE Operation_WSDL INTO Bindiﬂg_WSDL

76 DEFINE MESSAGE WSDL INTO Types WSDL

77 IF Exist rWOrkUhit_EIelement_WSCDL OR ParallelEIeIement_WSCDL) {
78 IF each Interaction_EIelement_WSCDL && Value = "FALSE"{
73 CREAT New_Service

80 CREAT Interface WSDL

81 DEFINE Operation WSDL INTO Interface WSDL
82 DEFINE Operation_WSDL INTO EJ'_nding’_WSDL
83 DEFINE MESSAGE WSDL INTO Types WSDL

84 }// END IF

85 else

86 CREAT New Service

87 CREAT Interface WSDL

88 DEFINE Operation WSDL INTO Interface WSDL

89 DEFINE Operation_WSDL INTO BJ'_nd_l'_ng_WSDL

0 DEFINE MESSAGE WSDL INTO Types WSDL

91 }//END else/IF

92 Exit For}//END FOR

93 }END// FOR =-Case

94

Fifth case: we created a Service element with one Interface and Binding
element. Every Interaction element in WS-CDL is defined as an Operation
element within the Interface element. Its required definitions for binding and
exchanging messages are defined in Binding and Types element respectively, by
mapping its exchange messages.

95<<Case Fivex»
9 case 5: Scenario = "57

97 FOR each Chorography Elelement WSCDL

9% FOR each Interaction Elelement WSCDL

99 CREAT Service WSDL

100 CREAT Interface WSDL

101 DEFINE Operation WSDL INTO Interface WSDL
102 DEFINE Operation_WSDL INTO Einding_WSDL
103 DEFINE MESSAGE WSDL INTO Types WSDL

104 }//END FOR

105 }JEND// FOR =Case

122

http://www.w3.org/TR/ws-cdl-10/#Ordering-Structures

Chapter 6 Service Identification Implementation

6.4 Transformation chain

In this section, we briefly describe how we automatically developed the
transformation from business process choreography in BPMN to WS-CDL and
then from WS-CDL to WSDL. In Figure 6-2, we describe the transformation
chain architecture that is based on the Model Driven Engineering introduced in
section 2.4.3, where we described the underlying four layers of abstraction: MO,
M1, M2, and M3. After discussing the M3 level, which represents the common
meta-meta-model (MOF), in section 2.4.1, and presenting the M2 level as the
specific meta-models for BPMN 2.0, WS-CDL and WSDL in Chapter 4, we

explained the transformation rules developed in ATL at level M1.

M3
MOF (Meta-metamodel (Ecore))
T T A T A
M2 C onfnl‘m to Con RIrm to Confdrm to C 0nf1rm to Confdrm to
BPMN 2.0 ATL WS-DCL ATL WSDL 2.0
Metamodel Metamodel Metamodel
r s A Ar
Confgrm to Confofm to Confgrm to Confgrm to onf
M1 . 1 Confgrm to
B ATL Engine - ATL Engirj; N
e [—\ Lot I &
' Input 48 3 ,) OutEut |__Input ~). 3 B Ouln_ ut
BPMN.xmi 3«." v } WS-CDL.xmi ‘*’: v }
h WSDL.xmi
e BPMNtoWS-CDL.atl << WS-CDLtoWSDL.atl E 4
-~ - ~
e SR - et e Ty - i
Transformation 1 Transformation 2

Figure 6-2 Implementation of the transformation chain

Prior to developing transformation rules in ATL, the input and target
models in every transformation stage model must be confirmed to the relevant
meta-models of BPMN 2.0, WS-CDL and WSDL. These defined meta-models
must be confirmed to the meta-meta-model of MOF and they are developed as
Ecore models based on the Eclipse Modelling Framework (EMF) (EMF was
selected because the ATL integrated development environment is also built on
top of the Eclipse platform). With the EMF, source and target models have to
be in XMI 2.0 format. We used the Enterprise Architect (EA)* tool to model

2 Enterprise Architect Case Tool by Sparx Systems Ltd available at

http://www.sparxsystems.com/products/ea/index.html
123

Chapter 6 Service Identification Implementation

the business process choreography diagrams using the BPMN 2.0 specification.
The EA tool provides the capability to generate the diagrams in different
formats, such as XMI and XML. All input and output models were in XMI
format, as deploying the WSDL would require the conversion of WSDL (XMI)
to WSDL (XML), which can be achieved using a number of available plug-ins
such as ATLAS MegaModel Management (AMS3). The ATL implementation

consists of two transformations:

e Transformation 1: BPMN-to-WS-CDL

We developed ATL rules based on the semantic transformation of the first

transformation BPMN-to-WS-CDL defined in (section 6.3.1) and transformed
the business process choreography model in BPMN 2.0 (XMI) to service the
choreographies specification in WS-CDL (XMI). The transformation rules were
developed in a vertical model transformation, which means the business process
choreography model (source model) and the WS-CDL (target model) exist at
two different levels of abstraction. The transformation implementation

developed accordingly to the choreography requirements introduced in section

4.5 (see Appendix A for an example of developed code).

e Transformation 2: WS-CDL-to-WSDL

We developed ATL rules based on the semantic transformation of the second
transformation WS-CDL-to-WSDL defined in (section 6.3.2) and transformed
the service choreographies specification in WS-CDL (XMI) to service interface
design WSDL in (XMI). The transformation rules were developed in a
horizontal model transformation, which means the WS-CDL specifications
(source model) and the service interface design WSDL (target model) reside at
the same level of abstraction. This transformation also included the
implementation of the algorithm that re-factors the WS-CDL code to several
service interface designs, as addressed in section 6.3.3 (see Appendix A for an
example of developed code).

A number of patterns were used in the semantic transformation between
the different models. The purpose of these patterns is to define the relationship
between these elements in order to develop the transformation rules. These

patterns are as follows:

124

Chapter 6 Service Identification Implementation

One-to-One pattern: mapping a source element to another element of
another model, the source and target elements must have similar direct
correspondent semantics and behaviour. An example would be the mapping
of the Participant element in BPMN 2.0 to the RoleType element in
WS-CDL.

One-to-many pattern: an element is mapped to several elements of
another model. In this pattern, the source element might have similar direct
correspondent semantics and behaviour to one or more target elements
collaboratively. An example would be the mapping of the Message element
in BPMN 2.0 to the InformationType, Variable and Exchange elements in
WS-CDL.

Many-to-one pattern: several elements are mapped to one element of
another model, where the source elements must collaboratively have similar
behaviour to the target element. For example, the definitions of the
Exchange element, which specifies exchanged data within an interaction, are
transformed from Message and MessageFlow elements in BPMN. In
particular, we mapped the values of the attributes name from Message and

actionID from MessageFlow elements.

One-to-null pattern: mapping a source element which does not have a
corresponding target element on another model. Mapping such a source
element is essential when constructing a new behaviour that does not exist
within the new model, which entails an extension of the target meta-model.
For example, adding the attribute attributekind to the InformationType
and Variable elements in WS-CDL shows the data types later used for
calculating the service quality attributes.

Null-to-one pattern: creating a target element in a model which does not
have a corresponding source element. The aim of creating this new element

is to accomplish certain behaviour, for example defining a Sequence element
within the Choreography element’s definitions in order to direct the flow

interaction execution.

6.5 Service quality model

The service quality model is implemented based on analysing syntax structures

and the metrics of service quality attributes discussed in Chapter 5. The core

component of our parser consists of two packages: the syntax analyser and the

125

Chapter 6 Service Identification Implementation

metrics calculator, the two Java packages developed as a parser in Java
Standard Edition (SE). Figure 6-3 shows the architecture of the parser which

can be described as follows:

Multiple criteria

weight 4
ﬁ :l Parser
Onfine WSDL X! | ’:] — —
ekmazon Ybs) Bepyice Riement Syntax Analyser Metric Caleulator
extractor
L A p.l

write

Local WSDL

Data file Data file Data file

Figure 6-3 Implementation of the architecture of service quality model

e Service Element Extractor: the service element parser is developed to
capture service elements such as messages types, operations and services; it
can be used to process online web services such as Amazon WSs and
internal web services. It counts the number of service elements which are

then assigned their proper weight. The parser is developed on top of an
open source SOA tool provided by a company called “Predic8” (see
Appendix A for an example code).

e Syntax Analyser: this package analyses and quantifies the elements of
service interfaces in WSDL and quantifies syntax elements based on
multiple criteria decision weights, defined as a library (see section 5.2). The
output of this package is a data file for every service, which consists of four
numerical lines defining properties of input messages, output messages,
operation types, and number of invocations, respectively. The values of the
properties defined for every data field are 1 or 5 or 10 based on the property
types of the weight factor defined previously (again, see Appendix A for an

example code).

% Predic8, available at http://predic8.com/

126

http://predic8.com/

Chapter 6 Service Identification Implementation

e Metric Calculator: this package calculates the metrics of ASOG ASOM,
ASOC and ASOU, as defined in section 5.3. We calculated the underlying

SOG metric using the service granularity quality described in section 5.2. A
text file is generated for every WSDL file, which consists of the results of
the four metrics mentioned previously (see Appendix A for an example
code).

6.6 Summary

In this chapter, we presented the automatic generation of the service interface
designs from a business process model. As Figure 6-1 shows, the framework
architecture is composed of two architectural parts: the choreography and
model transformation and the service quality model.

The model transformation implementation allows the service identification
process to be efficiently automated, generating service interface designs. The
effectiveness of this stage can be compared and evaluated against the human
driven manual process, which can be expected to contain inconsistencies. We
developed two transformation programs in ATL to transform business process
elements in BPMN 2.0 into a service interface design via an intermediate
choreography-based design; this concept is the cornerstone of model
transformation. The completeness of the semantic definitions of meta-models
between different models was essential to achieve the seamless transformation
between source and target models. The transformations between these different
abstractions required extending the semantics of BPMN 2.0 and WS-CDL to
bridge any semantic gaps in the abstractions (such as message types). Although
we focused on the choreography concept, our implementation also covered the
collaboration model in BPMN 2.0 because of the overlap between these two
concepts (a number of researchers have described collaboration as a form of
interconnected choreography). The model transformation implementation is
based on emerging technologies, such as the EMF and the ATL.

The current model transformation showed that it is possible to deliver
service interface design automatically from a business process model. However,
one fundamental drawback of this transformation must be noted, which is the
dependency on the semantic completeness of the business process modelling.
Current business process modelling languages such as BPMN 2.0 separate

entirely the definitions of business process modelling and any potential

127

Chapter 6 Service Identification Implementation

implementations of the business process. As a result, a complete and deployable
service interface in WSDL cannot be automatically generated because there are
missing semantics. For example, complete definitions for messages exchanged

(attributes) in the business process choreography models (necessary for an

automatic transformation to complete the definitions of the “Types” elements in
WSDL).

The service quality model is developed in the Java SE environment using
the service quality metrics defined previously. The implementation consists of
three packages: the service element extractor, the syntax analyser and the
metric calculator. We were able to quantify the service elements and to provide
measurements for service granularity which potentially impact the internal
service quality attributes of complexity, cohesion and coupling. This
implementation allows us to evaluate different service interface designs and
then decide on the most optimal service design in such cases. The level of
integration with the ATL model transformation is the most severe limitation of
the existing service quality model.

In Chapter 7, we will discuss the pragmatic evaluation of the model

transformation implementation using three application scenarios.

128

CHAPTER 7 PRAGMATIC
EVALUATION

In Chapter 6, we discussed the implementations of the transformation models
to generate a number of re-factored designs automatically of a service interface
at different levels of granularity. The implementations are concerned with the
solutions to the research question: it is possible to generate automatically
service interface designs? Chapter 6 also described the implementation of the
service quality model used to compute service quality attributes.

This Chapter focuses on evaluating the transformation models which the
first part of the architectural part of the implementations proposed in Chapter
6; the evaluation is based on a pragmatic approach. For demonstrating the
validation, three application scenarios are discussed. In section 7.1, we
introduce briefly the pragmatic approach. In section 7.2, we discuss the
hypothesis that is related to the scope of the model transformation
implementation. Following, in section 7.3, we explain how the service
choreographies in WS-CDL and the WSDL document are validated. In section
7.4, we use three application examples to demonstrate the use of the pragmatic
approach to evaluate the framework. There are two application examples from
the BPMN 2.0 OMG specification and one example from an industrial technical
review of the BPMN 2.0 standard. In section 7.5, we show the limitations faced
during the evaluation of research hypothesis studies in this Chapter. Finally, in
section 7.6 and 7.7, we discuss reflection of research hypothesis and summarise
the Chapter.

Chapter 7 Pragmatic Evaluation

7.1 Introduction

In chapter 6, we described how model transformations can be implemented
using the MDE approach. The implementation showed how we can use the
choreography concept to transform a business process choreography model
automatically to a service interface design. Generally speaking, there are several
methods that can be used to evaluate the generation of software code from
models compared to the human-manual way of doing this, these include
measuring the time taken for automated transformation compared to the
manual process, checking the readability of the generated code and defining
benchmarks based on software quality attributes. However, it is important to
track the behaviour consistency between transformed models in order to ensure
the validity of the transformation.

This Chapter begins with a brief introduction of the service
choreographies in WS-CDL and the design of service interfaces in WSDL.
Before generating the service interface designs, the transformation process
generates service choreographies in WS-CDL, which indicates how the service
choreography concepts can facilitate the generation of service interfaces. The
aim is to check the behavioural elements of the transformation from the
business process choreography in BPMN 2.0 to the service choreographies in
WS-CDL. Subsequently, the behavioural elements are traced into the WSDL
documents generated to ensure that the right service behaviour is implemented.
Thus, we need a pragmatic evaluation to ensure consistency between the
semantics of the models generated of WS-CDL and WSDL.

7.2 Hypotheses

In this chapter, we are interested in the first hypothesis which considers
consistency between the business process choreography model and the WS-CDL
code and then between the WS-CDL code and service interface design in
WSDL. We need to evaluate consistency to ensures that any change in the
source model results in a corresponding consistent change in the target model

(Mohagheghi and Dehlen 2008), the research hypothesis as follows:

H1: is it possible to use service choreographies (WS-CDL) to derive
the automatic transformation of business process choreography
model (BPMN 2.0) into a service interface design (WSDL)?

130

Chapter 7 Pragmatic Evaluation

In the following sections, we explain how a pragmatic approach is used to
evaluate consistency in the generated models of service choreography (WS-CDL
code) and service interface (WSDL). We use three application scenarios to
demonstrate that consistency is satisfied in each scenario. Ensuring the
consistency between transformed models provides evidence that the
choreography concept adapted in this thesis successfully bridge the abstraction

gap between the business process modelling level and service interface design.

7.3 Pragmatic Validation

In this section, we use a pragmatic approach to validate the consistency of
modelling behaviour which transforms the business process choreography
models into service choreographies models. It shows how the definitions and
properties of business processes choreographies are mapped to elements of
service choreographies in WS-CDL. We will use examples to demonstrate the
mapping and then ensure that the service choreographies generated provide

complete service design interfaces in WSDL.
7.3.1 Service Choreographies (WS-CDL)

The evaluation of WS-CDL is based on two steps: validating the semantics of
the XML schema and then checking the consistency of the mapping between
the business process choreography model and the WS-CDL code. We first
validate the WS-CDL document as XML-based language against the XML

schema using a tool called “Altova XMLSpy®’. Secondly, we ensure the
transformation process has mapped all distinct elements between the BPMN
2.0 choreography process and the WS-CDL document models, while retaining
the required behaviour.

The focus on the BPMN choreography process is to formalise interactions
between business participants based on exchanged messages. In a pragmatic
way, we validate the transferred behaviour between the input choreography
process models in BPMN and the output of the service choreographies
(WS-CDL). Given the specification of the choreography model from BPMN 2.0,

we can construct corresponding WS-CDL elements. First, we first construct the

* Altova XMLSpy is an industry XML editor available at http://www.altova.com/xml-editor/
131

http://www.altova.com/xml-editor/

Chapter 7 Pragmatic Evaluation

WS-CDL package corresponding to the BPMN definition, and then transform
the process choreography elements.

Based on BPMN 2.0 the choreography model encapsulates the definitions
of the BPMN:Message as a reference in the BPMN:ChoregraphyTask element,
where each BPMN:ChoregraphyTask element might process messages as input
and output. Hence, the complete definition of BPMN:Message is added to the

semantics of our choreography model. This message element is essential for the

extension proposed in section 4.3.1. The name and attributedkind attributes of
every BPMN:Message element are translated to similar attributes of a
corresponding WS-CDL:Informationtype element based one-to-one mapping
pattern, where a new element attribute is created in WS-CDL:Informationtype
corresponding to the messageTypesdefintions attribute which refers to the type
of schema required. The element BPMN:Message is also translated to
WS-CDL:Variable element-based one-one mapping pattern as definitions of
variables are derived using WS-CDL:InformationType. The BPMN:Participant
is translated to the WS-CDL:RoleType to exhibit the definitions of the
behaviour and interface, and the name attribute of every BPMN:Participant is
translated to name, behaviour and interface attributes of WS-CDL:RoleType
based on the many-to-one pattern. From the BPMN:MessageFlow, we can
derive definitions for WS-CDL:RelationshipType by joining the attributes of
sourceRef and targetRef. We also wuse the attribute actionID of
BPMN:MessageFlow to refer to the type of information exchanged when the
message is exchanged as part of an interaction.

The WS-CDL:Choreography element encapsulates the definitions of
choreography activities and collaborative = behaviour = where the
BPMN:Choreography element refers merely to the start and end of the
choreography semantics. The BPMN:ChoreographyTask element is the core
element of the BPMN choreography model; it links interconnected participants
through the BPMN:Participant and the Messageflow elements besides including
the extension of operation type (e.g., the actionType attribute). The attributes
name and actionType of the BPMN:ChoreographyTask element are translated
to similar attributes of a WS-CDL:Interaction based one-to-one mapping
pattern which represents a basic activity. The WS-CDL:Interaction element
defines the details of interaction, i.e., the participants involved in the
interaction using the reference of the attribute participate and the exchanged

messages and their types using an exchange reference. Different BPMN getaway

132

Chapter 7 Pragmatic Evaluation

elements such as Exclusive, Inclusive and Event-based elements are translated
to WS-CDL:WorkUnite or to one of the element of the ordering structure such
as the WS-CDL:Choice, WS-CDL:Parallel and WS-CDL:Sequence elements.
The BPMN:Endevent states the completeness of the choreography process
which translates to the WS-CDL:FinalizerBlock element. In order to specify the
effect that needs to be applied by WS-CDL:FinalizerBlock element, we need to
show different effects of BPMN:Endevent into semantic, .e.g., the
BPMN:EndEvent of type cancel needs to be semantically translated to a
specific numerical value.

First, in order to check the validation of WS-CDL codes as valid XML
schema, we used the (Altova XMLspy tool). The (Altova XMLspy tool)
provides support to XML-based languages’ validation against XML schema. We
imported the WS-CDL code for every scenario and ran the XML validation.
Secondly, we ensured the consistency of behaviour across the business process
choreography and the WS-CDL code. We used generated WS-CDL and WSDL
documents and the hierarchical structure document to show graphically the
results of mapping between BPMN 2.0 and WS-CDL and then the WSDL. The
hierarchical structures demonstrate whether or not the behaviour is correctly

transformed among models (An example of the hierarchical structure for the
WS-CDL code is shown in Appendix B).

7.3.2 Design of Service Interfaces (WSDL)

The evaluation of the design of the service interfaces was completed in two
steps: validating the semantics of the XML schema and checking the
consistency of the mapping between the WS-CDL code and design of the
service interface in WSDL. We first validated the WSDL document against the

XML schema, as XML-based language using the (Altova XMLspy tool). Second,
we ensured the WS-CDL code has been transformed into a different service
interface design in the WSDL 2.0 standards and the behaviour of the WSDL
document is consistent with that in the WS-CDL.

This thesis initially supports the WSDL 2.0 standard, the document
structure of the WSDL 2.0 is obviously different from that in the former
versions of the WSDL standards such as 1.2 and 1.1. WSDL 2.0 consists mainly
of four elements: the description, interface, binding and service. Our arbitrary
design of service interfaces is concerned specifically with definitions and models

of data types, interface (operations) and service. As a result, our transformation

133

Chapter 7 Pragmatic Evaluation

does not support the generation of the client stub and the HTTP bindings.
Given WS-CDL code, we can generate a number of service interface designs in
WSDL 2.0. First, we constructed the WSDL description corresponding to the
package element definitions in WS-CDL, e.g., targetNamespace and the
location of XSD (XML Schema). The name and attributekind attributes of
WSCDL:InformationType are transformed into the WSDL:Types for XML data
types, and the corresponding data type definitions computed based on the

numerical value of the attribute “attributekind” in WS-CDL. The attribute
“attributekind” in WS-CDL supports the proposed extension of the message

types (see section 4.3.1) according to the W3C XML schema data types. The
transformed definitions of WSDL:types are limited to the name and types of
the data which are implicit for deriving operation definitions. It is worth noting
that the level of semantic detailed in the Types element is limited because the
original source of the semantic transforms from the business process
choreography diagram lacks such details.

The WS-CDL:Choreography element provides the collaborative behaviour
which governs the interactions via WSDL:Interaction element and order
structure elements such as WSDL:WorkUnit and WSDL:Choice. The
WSDL:Interface describes the operations defined by the service corresponding
to the behaviour of the WS-CDL:Choreography. Although WSDL permits more
than one interface element, we decided to generate one Interface element for
every WSDL corresponding to the Choreography element in WS-CDL. While
the WSDL:Operation is the method, the WS-CDL:Interaction element is the
basic block of choreography. Both define similar behaviours by describing and
processing exchanged messages (data). Thus, the WS-CDL:Interaction element
is transformed to WS-CDL:Interaction with details of the attributes name and
actionType to show the operation behaviour, (i.e., what operation implements
CRUD function or business logic).

The data exchanged through interactions are defined in
WS-CDL:Exchange which is transformed to Input/Output attributes of the
WS-DL:Operation according to the value of the action attribute in the
WS-CDL:Exchange. If the action value is “response”, that means that the
operation has an output value. The binding describes the accessibility of the
web service over the protocol (currently not considered because the binding
style is irrelevant to the modelling of appropriate service design). Finally, the

service element is defined via the name and interface attributes as well as the
134

Chapter 7 Pragmatic Evaluation

endpoint which represents eventual the service domain. In order to demonstrate
our evaluation method, we will use two BPMN 2.0 scenarios for business
process choreography published by OMG (OMG 2010) and one scenario
published by experts from industry (Benedicto, Rosenberg et al. 2010),(the
hierarchical structure for WSDL is shown in Appendix B).

7.4 Application Examples

In this section, in order to validate the transformation implementations, we
apply the pragmatic evaluation on three different application scenarios. We
validated the WS-CDL and WSDL documents for every example.

7.4.1 Incident Management Example

We assume that this scenario is comprehensive and representative for the
choreography business process because it is published by OMG in the BPMN
2.0 specification. Figure 7-1 shows the choreography process of the Incident
Management scenario which consists of nine choreography-tasks and depicts the
behaviour of five participants who interact to perform business functions using

seven exchanged messages. Below we evaluated the WS-CDL code and then the
WSDL for this scenario.

[prtiem [arsvers
VIR customer VIeusoner | can handz mysair? L
CUsomer Kas 2 (el pruden R
O—i [™ P y Expiain souon —IO
-
Ky Accoumtamagen | | ey Acoount Manager m [T ey Account Manager
Eqnemrs ™[Key Accaunt Manager Recul ey acoount manager Emm
Provide feadback for
sk 15t i suppart Issle t
vl) ANt manage
isleveluppotagent | Id e 15t evel supgort agent
- ssue El‘“u" —
—_— v
IRl | Unars? 5t v sigpont aget [e
; v etz o st |)
| Ask 2nd level suppart ~i<> j P
f

2 e supgort agent ™ E Bsle Ind e supgon agent

0 e support agent 2nd evel suppot agert E teedtack

) Provide eecach for 2nd
M AstdeEipe M el st -

Sohware deioper Somware deiioper

E Tesdback

Figure 7-1 Incident Management Process Choreography

135

Chapter 7 Pragmatic Evaluation

7.4.1..1 WS-CDL Validation

Listing 7-1 shows the definitions of seven WS-CDL:InformationType elements
for five WS-CDL:RoleType elements that interacted through ten
WS-CDL:relationshipType elements. This behaviour is the same as that of the
behaviour present in the business process choreography diagram which has six
BPMN:Message elements in addition to a hidden message that triggered the
start event of the process choreography defined for five BPMN:Participant
elements communicated through ten WS-CDL:MessageFlow elements. After
defining seven possible WS-CDL:Variable elements based on existing
WS-CDL:InformationType elements to capture information about objects, the
choreography definition starts with a WS-CDL:Sequence element to be enabled
sequentially for the defined internal activities. Three WS-CDL:WorkUnit
elements are defined; each WS-CDL:WorkUnit defines internally two
WS-CDL:Interaction elements, where each WS-CDL:WorkUnit element behaves
similarly to the definition of three BPMN:ExclusiveGateway elements that have
two outgoing paths for two BPMN:ChoreographyTask elements. The guard
attribute of the WS-CDL:WorkUnit describes the constraints in similar way to
the condition expressions in the BPMN:ExclusiveGateway element. Hence, the
execution of the interactions element depends on the evaluation of the guard
condition.

Because the WS-CDL specification does not allow internal looping
WS-CDL:WorkUnit elements in a defined WS-CDL:WorkUnit element similar
to that in the BPMN:ExclusiveGateway elemement, some WS-CDL:Interaction

elements are defined more than once; e.g., the “Provide feedback for 1st level
support” interaction is defined twice in the WS-CDL code: as part of the
“Unsure” WS-CDL:WorkUnit element when the guard condition equals to “No”

and as part of the standalone interactions within the WS-CDL:Sequence
element. The WS-CDL:Interaction element also consists of the Exchange and
Participate sub-elements which hold the semantics of the exchanged messages
and participant for that particular interaction, e.g., the action required for a
message such as “response”. Finally, the WS-CDL:finalizerBlock confirms the
completion of the choreography definition in the WS-CDL code. We can state
that these behaviours described in the “IncidentMangment.cdl” are in
accordance with those behaviours defined in the OMG Incident Management
choreography diagram in BPMN 2.0. Table 7-1 summarises the mapping

described above between BPMN elements and WS-CDL elements for this
136

Chapter 7 Pragmatic Evaluation

particular scenario. The WS-CDL behaviour of the Incident Management

scenario is shown in the hierarchical structure appendix B.

Table 7-1 Summary of mapping between BPMN elements and WS-CDL code for Incident

Management scenario

BPMN Elements | Mapping Pattern WS-CDL Line of Code
Message One-to-many Information Type 7-13
Variable 43-49
Participant One-to-many Role Type 15-29
Participate 53,57,62,66,72,76,
81,86,90,95,99,103
Message Flow One-to-one Relationship Type 31-40
Choreography One-to-one Choreography 40
Choreography One-to-one Interaction 51-b4, 55-58, 79-82,
Task 93-96, 97-100, 101-
104.
Exclusive One-to-many Work Unit 59-68,69-78,83-92
Gateway
End Event One-to-one FinalizerBlock 105
Message and Many-to-one Exchange 52, 56, 61, 65 71, 75,
MessageFlow 80, 85, 89, 94, 98,
102.
- null-to-one Sequence 50-106

137

Chapter 7 Pragmatic Evaluation

Listing 7-1 IncidentManagment.cdl Shown with XML Schema Validation Result

1 <?xml version="1.0" encoding= UTF-8 2=
= <Package version="1.0" xxrmlns="http-/fwww_w3_org/2005/10/cdl"
3 xmins xsi="http://www.w3.org/2001/XMLSchema-instance”
4 xsischemal ocation="http-//mmw w3_org/2005/10/cdl IncidentManagmentExample xsd"”
s sxmins tns="http:/fwww_example_com/incidentManagmentExample >
6 <!—Information Type Definitions—>
T <informationType "Message_1" element ‘Message_1" attributekind
8 <informationType ‘Message_2" ‘Message_2" attributekind
] <informationType "Message 3" ‘Message_3" attributekind
10 <informationType ‘Message_4" :Message_4" attributelkind
11 <informationType "Message_5"
12 <informationType "Message 6" o
13 <informationType "Message_7" elemeant ‘Message_7" attributekind="3"/>
14 <l-Role definitions-->
15 <roletypes name="VIPcustomer_Rols >
16 { <behavior name="VIPcustomer_Behavior” interface="VIPcustomer_Behavior_Interface"/>
17 <froletypes>
18 <roletypes name="KeyAccountManager_Role"=
19 i <=behavior name="KeyAccountManager_Behavior” interface="KeyAccountManager_Behavior_Interface"/>
20 <froletypes>
21 == <roletypes name="1stlevelsupportagent_Role">
22 ! <behavior name="1stlevelsupportagent_Behavior” interfface="1stlevelsupportagent_Behavior_Interface />
23 [<froletypes>
24 = =roletypes name="2Zndlevelsupportagent_Role">
25 ! <behavior name="2ndlevelsupportagent_Behavior” intarface="2ndlevelsupportagent_Behavior_Interface"/>
26 F <froletypes>
27 c» =roletypes name="Softwaredeveloper_Role =
28 ! <behavior name="Softwaredeveloper_Behavior” interface="Softwaredeveloper_Behavior_Interface"/>
29 F <froletypes>
30 <I- Relationship definitions —>
31 <relationshiptype "Key Account Manager-VIP customer”/>
32 <relationshiptype “WIP customer-kKey Account Manager'/=
33 <relationshiptype "Key Account Manager-VIP customer’/>
34 <relationshiptype “Key Account Manager-1st level support agent™/>
35 <relationshiptype "1st level support agent-2nd level support agent”/>
36 <relationshiptype “Znd level support agent-Software developer”/>
37 <relationshiptype "Znd level support agent-1st level support agent”/>
38 <relationshiptype "1st level support agent-Key Account Manager”/>
39 <relationshiptype "Software developer-2nd level support agent”™/=
40 <relationshiptype "WIP customer-Key Account Manager'/>
a1 <l-- Ch v
az =1 =Choreography name="IncidentManagement” root="false” coordination
a3 | =<variable -="MMessage_1" element="tns:Message_1
aa <variable "Message 2 Message_2
as <variable Message_3° ‘Message_3
a6 <variable "Message_4" element="tns Message_4" attributekind=
a7 <variable ‘Message_5" elemen ‘Message_5" attributel<ind
a8 <variable ‘Message_6" elemen Message_6" attributekind
49 <variable name="Message_7" element="tns Message_7" attributekind=
50 =sequence>
51 <interactions nar “CustomerHasaProblem” operation="CustomerHasaProblem” actionType="1"=
52 exchanges name="CustomerHasaProblemRequest” action="request” informationType="tns.Message_5"/=
53 i | | =panicipate relationshipType="tns VIPcustomarzKeyAccountManager” fromRole="tns VIPcustomer” toRols
tns KeyAccountManager /=
54 <finteractions=>
55 @ <interactions name="Getproblemdescription” operation="Getproblemdescription” actionType="3">
56 { | | =exchanges name="GetproblemdescriptionRequest” action="request-respond” informationType="tns:Meassage_4
tns Message_ &7/
57 i | | <paricipate relationshipType="tns:VIPcu 24 ger” fromRole="tns:VIPcustomer” toRal
tns KeyAccountManager /=
58 =finteractions>
59 workunit name ="Canhandlemyself?" guard="false" repea alse’ =
60 nteractions name="Explainsolution” operation="Explainsolution” actionType="3"=
61 =exchanges name="ExplainsolutionRequest” action="response” informationType="tns:Message_3"/>
62 i =participate relationshipType="tns WIPcustomer2iKeyAccountManager” framRole="tns VIPcustomer’ taRole="
tns KeyAccountManager'/=
63 =fimeractions=
54 =interactions name="Ask1stlevelsupport” operation="Ask1stlevelsupport” acti
65 <exchanges name="Ask1stlevelsupponRequest” action="request” informatic
66 =participate relationshipType="tns: KeyAccountManager21stlevelsupportagent
tns KeyAccounthv ger’ t .="tns:1 Ippatagent’ i
67 | =finteractions=>
G8 <fworkunit>=
69 E <waorkunit name="Result?" guard="false” repeat="false"=
70 &= | <interactions name="AskZndlevelsupport” operation="AskZndlevelsupport” actionTyp "o
71 <exchanges name="AskZndlevelsupportRequest” action="request” informationTyp: ns Message_6"/=
T2 <participate relationshipType="tns 1stlevelsupportagent22ndlevelsupportagent” fromRole="
tns:1stlevelsupportagent” tolRole="tns:Zndlevelsupportagent”/>
73 | | =finteractions=
74 =interactions name="Providefesdbackforaccountmanager” operation="Providefesdbackforaccountmanager”
actionType="1">
75 <exchanges name="ProvidefeedbackforaccountmanagerRequest” action="response” informationType="tns-Message_7"
>
76 <participate relationshipType="tns:KeyAccountManager21stlevelsupportagent” fromRole="tns:KeyAccountManager”
toRole="tns:1stlevelsupportagent /=
T r i </interactions>
78 F </workunit=
79 = <interactions name="Explainsolution” operation="Explainsolution” actionType="3">
80 <exchanges name="ExplainsolutionRequest” action="response” informationType="tns-Message_3"/>
81 <participate relationshipType="tns VIPcustomer2KeyAccountManager” fromRole="tns:VIPcustomer” toRole
eyAccounthManager’i>
82 - </interactions>
83 8 <workunit name="Unsure?" guard="false" repeat="false">
84 | <interactions name="Providefeedbackforstlevelsupport” operation="Providefeedbackfor1stlevelsupport” actionType="1">
a5 <exchanges name="Providefeedbackfor1stlevelsupportRequest” action="response” informationType="tns:Message_7"/>
a6 <participate relationshipType="tns:1stlevelsupportagent22ndlevelsupportagent” fromRole="tns-1stlevelsupportagent”
toRole="tns:2ndlevelsupportagent”/>
a7 - ! <finteractions>
a8 = | <interactions name="Askdeveloper” operation="Askdeveloper” actionType="2">
a9 | | =exchanges name="AskdeveloperRequest” action="request” informationTyp ns:Message_6"/>
20 <participate relationshipType="tns:2ndlevelsupportagent2Softwaredeveloper” fromRole="tns:2ndlevelsupportagent”
toRole="tns:Softwaredeveloper/>
91 - <finteractions>
92 F </workunit=
23 = <interactions name="Providefeedbackfor2ndlevelsupport” operation="Providefeedbackfor2ndlevelsupport” actionType="1">
94 | <exchanges name="Providefeedbackfor2ndlevelsupportRequest” action="response” informationType="tns:Msssage_1"/>
a5 | <participate relationshipType="tns:2ndlevelsupportagent2Softwaredeveloper” fromRole="tns:2ndlevelsupportagent” toRale
tns-Softwaredeveloper”/=
96 - <finteractions>
a7 = <interactions name="Pro kfor stlevel ort” operation="Pro kfortstlevel ort” actionType "
ag | <exchanges name="ProvidefeedbackforstlevelsupportRequest” action="response” informationType="tns:Message_7"/>
a9 <participate relationshipType="tns:1stlevelsupportagent22ndlevelsupportagent” fromRole="tns:1stlevelsupportagent”
toR ns:2ndlevelsupportagent”/>
100 - <linteractions>
101 = <interactions name="Providefeedbackforaccountmanager” operation="Providefeedbackforaccountmanager” actionType=
102 "ProvidefeedbackforaccountmanagerRequest” action="response” informationType="tns:Message_.
103 <participate relationshipType="tns KeyAccounthManager21stlevelsupportagent” fromRole="tns-KeyAccountManager”
tns:1stlevelsupportagent /=
104 1 | <finteractions>
108 { | <finalizeChore name="EndChore"/>
106 - <fsequence>
107 F =/Choreography>
108 - </Package>
| Tesxt Grid Schema WSDL XBRL Authertic Browser
i CusormterOrderProc CusomterOrderProcess |EmhIncidentManagmentExample * IncidentManagmentExample a4 b
Messages =
= T miwE 2]]
@ File C:\L DL =d is valid. -

138

Chapter 7 Pragmatic Evaluation

7.4.1..2 WSDL Validation
From the IncidentManagment.cdl (WS-CDL code) we generated five different

designs of service interfaces in WSDL format which consist of one or more
services. We validated every WSDL-document using the “Altova XMLspy tool”.
Five WSDL files for the Incident Management scenarios are imported and run
for the WSDL validation. For brevity, we will show and discuss the results of
the first re-factored scenario. Listing 7-2 represents the design of one
coarse-grained service and shows that this WSDL is valid.

Here we want to check consistency of the behaviour of three main
elements of any service interface design in WSDL 2.0 which are WSDL:Types,
WSDL:Interface (operations) and WSDL:Service. In listing 7-2, the description
of the WSDL:Types element holds the name and message-type definition of the
exchanged messages (parameters), e.g., UserdefinedDefinition,
SimpleTypeDefinition and ComplexTypeDefinition. The WSDL:Types element
transforms the behaviour of messages resulting from interactions between
participants into messages that can be used to define parameters of the
Operation element; in this scenario all three data types are defined. These

message types are part of the BPMN extension for XML schema-type

introduced in section 4.3.1.

Although there were duplicate definitions of WS-CDL:Interaction
elements in the IncidentManagement.cdl, the definition of WS-CDL:Operation
elements describes concisely the behaviour based on the re-factoring algorithm.
The WSDL:Interface element defines a number of operations (nine) in this
particular case, which conforms to the same number of interactions in the
example IncidentManagement.cdl. It concentrates on linking every Operation
element with its input/output parameters through using WS-CDL:Exchange
element that was previously defined in the WS-CDL:Interaction element, where
its actionType is immediately transformed with its numerical value. The
input/output values correspond to pre-defined schema for messages in the
WSDL:Types element. The service element shows the given name of the service
similar to the choreography name “IncidentManagement” and refers to the
defined interface element and the address URI of the service. Table 7-2
summarises the mapping described above between WS-CDL code and WSDL
document for this particular scenario. The WSDL behaviour of the Incident

Management scenario is shown in the hierarchical structure appendix B.

139

Chapter 7 Pragmatic Evaluation

Table 7-2 Summary of mapping between WS-CDL code and WSDL for Incident

Management scenario

BPMN Elements | Mapping Pattern WS-CDL Line of Code
Information Type One-to-one Types (schema | 4-19
XSD
Choreography One-to-one Interface 20-67
Interaction One-to-many Operation 22-26, 27-31, 32-36,

37-41, 42-46, 47-51,
52-56, 57-61, 62-66
Exchange One-to-many Input/output | 23-24

Package One-to-one Service 81-83

140

Chapter 7 Pragmatic Evaluation

Listing 7-2 IncidentManagment.wsdl Shown with XML Schema Validation Result

1 =?xml version="1.0" encoding="150-8859-1"?>
2 [Fl=description targetllamespace="http:/fwww tmsws_comiwsdl20sample” xmins="http-//www w3_org/ns/wsdl” xmlns-tns="
http:/fwaw tmsws_comdwsdl20sample” xmins whttp="http://schemas xmlsoap.orgwsdl/http/” xmins wsoap="
http://schemas.xmlsoap.org/wsdl/soap/ >

5 <I- Types definitions —>

4 = <types>

= <xs:elementDeclarations name="Message_1"/=>

6 =xs typeDefinition name="_1:XsUserDefinedDefinition"/=

T <xs:elementDeclarations name="Message_2"/>

8 <xs-typeDefinition name="_1:XsSimpleTypeDefinition"/=

9 =xs-elementDeclarations name="Message_3"/>

10 =xs:typeDefinition name="_1:XsUserDefinedDefinition"/=
i <xs:elementDeclarations name="Message_4"/>

12 <xs:typeDefinition name="_1:XsComplexTypeDefinition"/>
13 <xs:elementDeclarations name="Message_5"/>

14 =xs:typeDefinition name="_1:XsSimpleTypeDefinition"/=
15 <xs:elementDeclarations name="Message_§"/>

16 <xs-typeDefinition name="_1:XsComplexTypeDefinition"/=
17 <xs:elementDeclarations name="Message_7"/=

18 =xs typeDefinition name="_1:XsComplexTypeDefinition"/=
19 o <ftypes=
20 <l Interface definitions —>

<interface name="IncidentManagementinterface”>
<operation name="CustomerHasaProblem">

NN
[\
-

23 <gutput messagelLabel="0Out"/>

24 <input messagelLabel="In" elements="tns:Message_5"/>

25 <actionType>=1=</actionType=

26 r </operation=

27 = <operation name="Getproblemdescription"=

28 =gutput messagelabel="0ut” elements="tns:Message_4 tns:Message_5"/>

29 <input messagelLabel="In" elements="tns:Message_4 tns:Message 5"/>

30 <actionType>3</actionType>

31 r </operation=

32 = <Operation name="ProvidefeedbackforZndlevelsupport”=

33 <gutput messagelLabel="0Out" elements="tns:Message_1"/>

34 <input messagelabel="In"{>

35 <actionType=1</actionType>=

36 r </Operation=

37 =) =Operation name="Providefeedbackforistlevelsupport”=

38 =putput messagelabel="0ut” elements="tns:Message_7"/=

39 <input messagelabel="In"/>

40 <actionType=1<factionType>

41 r =/Operation>

42 = =Operation name="Providefeedbackforaccountmanager'>

43 <output messagel abel="0Out" elements="tns-Message_7"/>

44 <input messagelabel="In"/=

45 =actionType=1</actionType=

45 o </Operation=

a7 = =Operation name="Explainsolution”=

48 =output messagelabel="0Out" elements="tns:Message_3"/=>

49 <input messagelabel="In"/>

50 =actionType=>=3=</actionType=

51 r =fOperation=

52 = =Operation name="Ask1stlevelsupport™=

53 ! <output messagelabal="Out"/>

54 i <input messagelabel="In" elements="tns:Message_2"/>

55 i =actionType=2=/actionType=

56 r =fOperation=

57 = <Operation name="Ask2ndlevelsupport™=

58 =<putput messagelabe Dut"s=

59 ! <input messagelabal="In" elements="tns:Message_B"/>

60 { <actionType=>2</actionType>

B1 r ={Operation>

62 = =Operation name="Askdevelopar™=

63 ! <output messagelabel="Out"/>

64 ! <input messagel abel="In" elements="tns-Message_B"/>

65 { <actionType=2<factionType>

66 r =/Operation>

67 r <finterface:>

68 <I- Binding definitions —>

69 = =Binding name="IncidentManagementBinding” wsoap_protocol="http-/fwww w3 _org/2003/05/s0ap/bindings/HT TR/
whttp_methodDefault="http:/fwww w3 _org/2003/058/soap/mep/request-response” interfface="tns:IncidentManagementinterface">

70 <bindingOperation operation="Customer Has a Problem"/>

71 <bindingOperation operation="Get problem description"/=

72 <bindingOperation operation="Explain solution"/>

73 <bindingOperation operation="Provide feedback for 2nd level support"/=

74 =bindingOperation operation="Provide feedback for 1st level support”/=

75 <bindingOperation operation="Provide feedback for account manager"/=

76 <bindingOperation operation="Ask developer”/>

Ti <bindingOperation operation="Ask 2nd level support”/=

78 <bindingOperation operation="Ask 1st level support"/=

79 r =/Binding>

80 <l- Semice definitions —

81 = =Semrvice name="IncidentManagementSemnice” interface="tns:IncidentManagementinterface”=
82 =<endpoint name="IncidentManagementSericeHttpEndpoint” address="http-/fwww_IncidentManagement.com/rest/" binding
ns:IncidentManagementinterffaceHttpBinding /=
83 r =/Service>
84 - =/description=
Text Grid Schema WSDL XBRL Authentic Browser
ffh TestforWsDL Customer Scil_Oper 6 | @ MobelPrize | i IncidentManagement q
Messages

T el mn@E 8] X

D File Ch\Users\Saad\Desktop\BPMNWYSDL FILES\IncidentManagement. wsdl is valid

141

Chapter 7 Pragmatic Evaluation

7.4.2 Nobel Prize Example

This is the second example published by OMG in the BPMN 2.0 specification.
Fig. 7-2 shows the choreography process of the Nobel Prize which consists of
five choreography tasks and shows the behaviour of five participants who

interact to solve business issues using seven exchanged messages. Below we

evaluated the WS-CDL code and then the WSDL for this scenario.

Reppt with Recomm. Apnouncement
| |
| |

5 - = T - | F—Iﬁ
Nobel Commitee For Nominator Nobel Committee For Nobel Assembly

HhedTome Heditine
O—. Send Nomination Form Send Nominee Completed| I f Bubmit Report with Recom. Announce Nobel Prize _J >
StartEvent! Fosmg ————» Laureates

Requireg Annousncement
Nomintor Nobel Commitee for Nobel Assembly Nobe! Prize Laureale Made
3

M ™

Nomination Form

Expert
T
Nobel Committee For y

Nomination Invitstion

-
SendLisofSeeled [— P " “;”d'“‘%"
Preliminary Candidates i

= Nobel Comnitee Fr
I
| ~
List of Candidates Assessment

Figure 7-2 Nobel Prize Process Choreography

7.4.2..1 WS-CDL Validation

Listing 7-3 shows the definition of six WS-CDL:InformationType elements for
five =~ WS-CDL:RoleType elements that interacted through ten
WS-CDL:relationshipType elements. This behaviour is same as that of the
behaviour present in the business process choreography diagram which has six
BPMN:Message elements for five BPMN:Participant elements communicated
through six BPMN:MessageFlow elements. Six WS-CDL:Variable defined
elements based on existing WS-CDL:InformationType elements are followed by
WS-CDL:Sequence element. One WS-CDL:WorkUnit element is defined; each
includes definitions of two WS-CDL:Interaction elements, corresponding to one
BPMN:ExclusiveGateway element in BPMN that has two alternative outgoing
paths. The guard condition of the WS-CDL:WorkUnit “Expert Assistance

Required?” element constrains the order sequence of selecting interactions, e.g.,

142

Chapter 7 Pragmatic Evaluation

if the evaluation of the guard condition equals “false”, the “Submit Report with
Recom” WS-CDL:Interaction will be executed and followed by the last

WS-CDL:Interaction, “Announce Nobel Prize Laureates”. The use of the guard
condition in the WS-CDL:WorkUnit element guarantees similar behaviour,
particularly with controlling order structure by Gateway elements in the
business process design. Seven WS-CDL:Interaction elements were defined for
this case; the Interaction element “Submit Report with Recom” was defined
twice because it appears as an alternative path of the WS-CDL:WorkUnit
follows the WS-CDL:Interaction

element, and it element

“SendCandidatesAss.Report” in structure order.

Finally, the WS-CDL:finalizerBlock of “AnnouncementMade” ends the
choreography definition in the WS-CDL code. We note that these behaviours
described in the NobelPrze.cdl are in accordance with those behaviours defined
in the OMG Nobel Prize choreography diagram in BPMN 2.0. Table 7-3
summarises the above described mapping between BPMN elements and

WS-CDL element for this particular scenario.

Table 7-3 Summary of mapping between BPMN elements and WS-CDL code

for the Nobel Prize scenario

BPMN Elements | Mapping Pattern WS-CDL Line of Code
Message One-to-many Information Type 8-13
Variable 40-45
Exchange 47, 51, 56, 60,56,
69,73
Participant One-to-many Role Type 15-29
Participate 48, b2, 57, 61,57,
70,74
Message Flow One-to-one Relationship Type | 31-36
Choreography One-to-one Choreography 37
Choreography One-to-one Interaction 51-54, 55-58, 79-82,
Task 93-96, 97-100, 101-
104.
Exclusive One-to-many Work Unit 54-63
Gateway
End Event One-to-one FinalizerBlock 76
— Null-to-one Sequence 39-77

143

Chapte

r 7 Pragmatic Evaluation

Listing 7-3 NobelPrize.cdl Shown with XML Schema Validation Result

1 =?xml version="1.0" encoding="UTF-8"7>
2 El<Package version="1.0"
5 xmins="http:/fwww.w3.org/2005/10/cdl"
4 xminsxsi="http/fwww. w3 org/2001/XMLSchema-instance”
5 xsi-schemalocation="http:/fwww w3 _org/2005/10/cdl MobelPrize_xsd”
6 xmins:tns="http:/fwww_example_ com/MNobelPrize"=
T <I-Information Type Definitions—=
8 <informationType name="Announcement” element="tns:Announcement” attributekind="1"/>
9 <informationType name="Assessment” element="tns:Assessment” attributeKind="3"/=
10 <informationType name="ListofCandidates” element="tns:ListofCandidates” attributekin 3=
11 <informationType name="NominationForm"” element="tns:NominationForm" attributeKind="3"/=
12 <informationType name="Mominationlnvitation” elemen ns:Mominationinvitation™ attributekind="3"/>
13 <informationType name="ReportwithRecomm." element="tns:ReportwithRecomm_" attributekind="3"/=
14 <l-Role definitions—
15 = <roletypes name="MNobelCommitteeforMedicine_Role"=
16 ! <behavior name="MNobslCommitteeforMedicine_Behavior” interface="NobelCommitteeforMedicine_Behavior_Interface"/>
17 =/roletypes=
18 <roletypes name="Mominator_Role"=
19 ! <behavior name="Nominator_Behavior" interface="Mominator_Behavior_Interface"/>
20 <froletypes>
2 =roletypes name="Expert_Role">
22 i <behavior name="Expert_Behavior” intarface="Expert_Behavior_Interface"/>
23 </roletypes=
24 =roletypes name="MobelAssembly_Role">
25 i <behavior name="MobelAssembly Behavior” interfface="Nobel Assembly Behavior_Interface"/>
26 =</roletypes>=
27 > <roletypes name="MNobelPrizeLaureate_Role">
28 ! <behavior name="MobelPrizeLaureate_Behavior” interface="Nobel Prize Laureate_Behavior_Interface"/>
29 r <froletypes=
30 <l- Relationship definitions —>
31 <relationshiptype name="NobelCommitteeforMedicine-Nominator"/=
32 <relationshiptype Mominator-MobelCommittesforMedicine”/=
33 <relationshiptype NobelCommitteeforMedicine-Expert”/=
34 <relationshiptype Expert-NobelCommitteeforMedicine”/=
35 <relationshiptype MNobelAssembly-MobelPrizeLaureate"/=
L sralatinnchintune nama="hNnhal~nmmittaafarlladicina_Mahal Accambhf~
37 <l—- Choreography—>
38 = <Choreography name="MNobel" root="false" coordination="true">
39 = <sequence:>
40 =variable name="Announcement” element="tns-Announcement” attributekin 1=
41 =variable Assessment” element="tns_Assessment” attributekind="3"/>
42 =variable ListofCandidates” element="tns:ListofCandidates" attributekin 3=
43 <variable MominationForm” element="tns:Momination Form” attributekind="3"/=
44 <variable Momination Invitation” element="tns:Mominationlnvitation” attributekind=
45 =variable name="RepontwithRecomm."” element="tns:ReportwithRecomm." attributekind="3"/>
46 = <interactions name="SendMomineeCompletedForms” operation="SendMominesCompletedForms" actionTyp: 1=
47 <exchanges name="SendMomineeCompletedFormsRequest” action="request-respond"/=
48 <participate relationshipType="tns-Mominator2MobelCommitteeforMedicine” fromRole="tns:Mominator” toRole="
tns:MNobelCommitteeforMedicine”/=
49 r <finteractions=
a0 & <interactions name="SendMominationForm” operation="SendMominationForm"” actionType="1"=
a1 =exchanges name="SendMominationFormRequest” action="respond”/=
52 <participate relationshipType="tns:NominatorZMobelCommitteeforMedicine” fromRole="tns:Nominator” toRole="
tns:MNobelCommitteeforMedicine”/>
53 r =finteractions>
54 = =workunit name="ExpertAssistanceRequired ?" repeat="false">
55 g <interactions name="SubmitReportwithRecom." operation="SubmitReportwithRecom_" actionType="3">
56 <exchanges name="SubmitReportwithRecom.Request” action="request"/>
57 <participate relationshipType="tns:MobelCommitteeforMedicine2MobelAssembly” fromRole="tns:MobelCommitteeforMedicine
toRole="tns:MobelAssembly"/>
58 r <finteractions=
59 = <interactions name="SendListofSelelctedPreliminaryCandidates” operation="SendListofSelelctedPreliminaryCandidates”
actionType="1">
60 <exchanges name="SendListofSelelctedPreliminaryCandidatesRequest” action="request-respond"/>
61 <participate relationshipType="tns MobelCommitteeforMedicine2Expert” fromRole="tns-:NobelCommitteeforMedicine” toRole=
tns:Expert"/=
62 r <finteractions=
63 r <fworkunit=
64 & <interactions name="SubmitReportwithRecom.” cperation="SubmitReportwithRecom.” actionType="3">
65 <exchanges name="SubmitReportwithRecom Request” action="respond"/=
66 <participate relationshipType="tns-MobelCommitteeforMedicine2MobelAssembly” fromRole="tns MNobelCommitteeforhMedicine”
toRole="tns:MobelAssembly"/>
BT - =fintaractinns=
638 = <interactions name="SendCandidatesAss_Report” operation="SendCandidatesAss.Report" actionType="
69 <exchanges nam SendCandidatesAss ReportRequest” action="respond"/>
70 <participate relationshipType="tns:Expert2NobelCommitteeforMedicine” fromRole="tns:Expert” toRole="
tns-MobelCommitteeforMedicine />
71 r =finteractionsx
72 = <interactions name="AnnounceMobelPrizelLaureates” operation="AnnounceMobelPrizeLaureates” actionType="1">
73 =exchanges name="AnnounceMobelPrizeLaureatesRequest” action="respond"/=
74 <participate relationshipType="tns-MobelAssembly2MobelPrizelLaureate” fromRole="tns - MobelAssembly” toRole="
tns:MobelPrizeLaureate”/>
75 r =finteractions>
76 =finalizeChore name="AnnouancementMade"/>
7 r <fsequence>
78 r =f/Choreography>
79 - =/Package=
Text Grid Schema WSDL XBRL Authentic Browser
usomterOrderProcess CusomterOrderProcess | fEghIncidentManagmentExample * IncidentManagmentExample |z MobelPrize MobelPrize
vlessages
e mmE s X
E\‘:‘ @ File C\User: P DL ize.xml is valid.
-

144

Chapter 7 Pragmatic Evaluation

7.4.2..2 WSDL Validation
Listing 7-4 represents one of the validated cases for the OMG Nobel Prize

scenarios, a design of a service interfaces as one coarse-grained service in WSDL
document. All six messages defined previously in the WS-CDL code were
transformed to six data types with their appropriate message-type classification
as introduced within the message-type extension. Compared with the previous
scenario, all data types of this scenario are defined as a complex type, which
means they have similar data granularity weight. In the WSDL:Interface
element, six WSDL: Operation elements are defined which conform to the same
number as the interactions in NobelPrize.cdl with similar data exchanged and
similar value for the actionType element. Finally, the WSDL:Service element
definitions were completed as coarse-grained service with reference to the
interface and the URI address. Table 7-4 summarises the above described
mapping between WS-CDL code and WSDL document for this particular

scenario.

Table 7-4 Summary of mapping between WS-CDL code and WSDL for the

Nobel Prize scenario

BPMN Elements | Mapping Pattern WS-CDL Line of Code
Information Type One-to-one Types (schema | 4-17
XSD
Choreography One-to-one Interface 19-50
Interaction One-to-many Operation 20-24, 25-29, 30-34,
35-39, 40-44, 45-49
Exchange One-to-many Input/output | 21-22, 26-27, 31-32,
36-37, 41-42, 46-47
Package One-to-one Service 61-63

145

Chapter 7 Pragmatic Evaluation

Listing 7-4 NobelPrize.wsdl Shown with XML Schema Validation Result

1 <?xml version="1.0" encoding="1S0-8859-1"?>

2 [H=description targetMamespace="http:/fwww tmsws.com/wsdl20sample” xmins="http:/faww w3 .org/ns/wsdl" xmins:tns="
http:/fwww_tmsws .comiwsdl20sample” xmins:whttp="http://schemas_xmlsoap.org/wsd/http/" xmins:wsoap="
http://schemas.xmlsoap.org/wsdl/soap/=

3 <l- Types definitions —=

4 o <types>

5 =xs:elementDeclarations name="Announcement"/=

G <xs:typeDefinition name="_1:XsSimpleTypeDefinition"/>

7 <xs:elementDeclarations name="Assessment"/>

g <xs:typeDefinition name="_1:XsComplexTypeDefinition"/=

9 <xs:elementDeclarations name="ListofCandidates"/>
10 <xs-typeDefinition name="_1:XsComplexTypeDefinition"/>
" <xs:elementDeclarations name="NominationForm"/=
12 <xs:typeDefinition name="_1:XsComplexTypeDefinition"/>
13 <xs:elementDeclarations name="Nominationlnvitation"/>=
14 <xs-typeDefinition name="_1:XsComplexTypeDefinition"/>
15 <xs:elementDeclarations name="ReportwithRecomm"/>
16 <xs:typeDefinition name="_1:XsComplexTypeDefinition"/>
7 r <ltypes=
18 <l Interface definitions —»
19 = <interface name="NobelPrizelnterface"=
20 g <operation name="SendNomineeCompletedForms"=
21 <output messagelabel="0ut" elements="tns:Nominationlnvitation"/=
22 <input messageLabel="In"f>
23 <actionType=1</actionType=
24 r </operation=
25 = <0Operation name="SendMominationForm"=
26 <gutput messageLabel="0ut" elements="tns:NominationForm"/=
27 <input messagelabel="In" elements="tns:Nominationlnvitation"/=
28 <actionType=1</actionType=
29 r </Operation=
30 = <Operation name="SubmitReportwithRecom."=
kil <output messagelabel="0ut" elements="tns:ReportwithRecomm."/=
32 <input messagelabel="In" elements="tns:Assessment"/>
33 <actionType=3</actionType>
u r iMnaratinn=
35 = <COperation name="SendCandidatesAss Report"=
36 <output messagelabel="0ut" elements="tns:Assessment"/>
37 <input messagelLabel="In" elements="tns:ListofCandidates"/>
38 <actionType=1</actionType>
39 r </Operation=
40 = <0Operation name="AnnounceMobelPrizeLaureates"=
| <output messagelabel="0ut" elements="tns:Announcement"/=
42 <input messagelabel="In" elements="tns:ReportwithRecomm."/>
43 <actionType=1</actionType>
44 r </Operation=
45 = <Operation name="SendListofSelelctedPreliminaryCandidates"=
46 <output messagelabel="0ut" elements="tns:ListofCandidates"/>
47 <input messagelabel="In" elements="tns:NominationForm"/=
48 <actionType=1</actionType>
49 r </Operation=
50 r o <finterface=

51 <l Binding definitions —>

52 & «Binding name="NobelPrizeBinding" wsoap_protocol="http:/faww.w3. org1’20031’05fsoapfbindingsfHTI'Pf"

v\http methodDefault="http:/fwww.w3.org/2003/05/s0ap/mep/request-response” interface="tns:NobelPrizelnterface"=

53 i <hindingOperation operation="SendNomineeCompletedForms"/=

54 . <hindingOperation operation="SendNominationForm"/=

55 <bindingOperation operation="SubmitReportwitRecom."/=

56 <bindingOperation operation="SendCandidatesAss Report"/=

57 i <hindingOperation operation="AnnounceNobelPrizel aureates"/>

58 . <hindingOperation operation="SendListofSelelctedPreliminaryCandidates"/=
59 r <I’Elmdmg>

60 <l-- Senvice definitions —>

61 = «Service name="NobelService" interface="tns:NobelPrizelnterface">
62 <endpoint name="NobelSeniceHttpEndpoint” address="http://www NobelPrize_com/rest/" binding="

tns:NobelinterfaceHttpBinding"/=
63 F =/Senice=
64 - </description=

Text Grid Schema WSDL XBRL Authentic Browser

@Te"tfc:r'"SDLCu:tcmer_Scil_Oper_G @NohelPrize @Incwclentl‘ﬂanagement

Messages

C sl BB 4[58 X

o File C:\Uzers\Saad\Deskiop\BPMNWVYSDL FILES\IncidentManagement. wsdl iz valid.

146

Chapter 7 Pragmatic Evaluation

7.4.3 Customer Order Example

This is third example was selected from a technical report because it represents
a new BPMN 2.0 semantic that is not covered in the other two OMG scenarios,
ie., BPMN:IntermediateThrowEvent ~and BPMN:EventBasedGateway
elements. Fig. 7-3 shows the choreography process of the Customer Order
which consists of five choreography tasks and shows the behaviour of four
participants who interact to solve business issues using four exchanged
messages. Below we evaluated the WS-CDL code and then the WSDL for this

scenario.

Manufacturer [Manufacturer

A —

Order Confi Deliver Order

Customer Customer
= =

Reject MS |

Customer
Manufacturer

/ Confirmation MS
O_. Order Request Order Rejection

Start Event Can FulFill EndEvent
Order?

ufe
Manufacturer e

|
Manufacturer

Request Form —_’
Procure Parts

ocur
Capacity Ok, Parts must
be Ordered

Supplier

Manufacturer

Part Auction —}

Bidder All Parts Obtained

Figure 7-3 Customer Order Process Choreography

7.4.3..1 WS-CDL Validation

Listing 7-5 shows that the definitions of four WS-CDL:InformationType
elements for four WS-CDL:RoleType elements who interacted through six
WS-CDL:relationshipType elements. This behaviour is same as the behaviour
represented in the business process choreography diagram which has four
BPMN:Message elements for four BPMN:Participant elements communicated
through six BPMN:MessageFlow elements. Four WS-CDL:Variable elements
were defined based on existing WS-CDL:InformationType elements. The
EventBasedGateway element is mapped to the WS-CDL:Choice elements in
WS-CDL because the semantic of EventBasedGateway is exclusive. Three
WS-CDL:Choice elements were defined including two or more Interaction

elements. One of the Interaction elements will be performed, e.g., the

147

Chapter 7 Pragmatic Evaluation

WS-CDL:Choice element “All Part Available” has two WS-CDL:Interaction

elements, “Part Auction” and “Order Confirmation”.

Since there is no element in WS-CDL that behaves similarly to the
BPMN:IntermediateThrowEvent element, we consider the BPMN element that
the BPMN:IntermediateThrowEvent links to. In this
BPMN:IntermediateThrowEvent
BPMN:ChoreographyTask
WS-CDL:Interaction

scenario, the
attempts to link to the
which

e.g., an

element transforms eventually to

elements, BPMN:IntermediateThrowEvent

element “A” throws an event in the process which links to the Interaction
element “Order Confirmation”. As a result, the WS-CDL:Interaction element

“Order Confirmation” was redefined three times and the total number of
WS-CDL:Interaction elements for this case then becomes nine compared to six
BPMN:ChoreographyTask Finally, the WS-CDL:finalizerBlock
similar to that in “BPMN:Endevent” shows the end of the choreography
definition in the WS-CDL code. We can note that these behaviours described in
the CustomerOrder.cdl are in accordance with those behaviours defined in the
OMG Customer Order choreography diagram in BPMN 2.0. Table 7-5

summarises the above described mapping between the BPMN elements and the

elements.

WS-CDL element for this particular scenario.

Table 7-5 Summary of mapping between BPMN elements and WS-CDL code

for the Customer Order scenario

BPMN Elements Mapping Pattern WS-CDL Line of Code
Message One-to-many InformationType 4-7
Variable 30-33
Exchange
Participant One-to-many RoleType 9-20
Participate
MessageFlow One-to-one RelationshipType 22-27
Choreography One-to-one Choreography 29-77
ChoreographyTask One-to-one Interaction 34-37, 39-42, 43-
46-47-50, 53-56,
57-60,63-66,67-70,
72-75
EventBasedGatew One-to-many Choice 38-51, 52-61, 62-
ay 71.
IntermediateThro One-to-one Interaction 57-60, 67-70
wEvent
End Event One-to-one FinalizerBlock 76

148

Chapter 7 Pragmatic Evaluation

Listing 7-5 CustomerOrder.cdl Shown with XML Schema Validation Result

»

x

1 =?xml version="1.0" encoding="UTF-8"7=
2 [Fl=Package version="1.0" xmlns="http:/fmww w3.org/2005/10/cdl” xmins:xsi="http/fwww. w3 org/2001/XMLSchema-instance”
xsi:schemalocation="http://www w3.org/2005/10/cdl CusomterOrderProcess. xsd” xmins:tns="
http:/fwww_example.com/CusomterOrderProcess”™
3 <l-Information Type Definitions—>
4 <informationType name="AskMoreParts" element="tns:AskMoreParts" attributeKind="3"/=
5 <informationType name="ConfirmationMS" element="tns:ConfirmationMS" attributekind="3"/>
6 <informationType name ejectMS" element="tns:RejectMS3" attributeKind="3"/>
7 <informationType name="RequestForm" element="tns:RequestForm" attributekind="3"/=
8 <l-Role definitions-—=
9 - =roletypes name="Manufacture_Role"=
10 <behavior name="Manufacture_Behavior" interface="Manufacture_Behavior_Interface"/>
1 " =/roletypes=
12 o =roletypes name="Customer_Role">
13 <behavior name="Customer_Behavior" interface="Customer_Behavior_Interface"/>
14 r </roletypes=
15 — <roletypes name="Supplier_Role">
16 i =behavior name="Supplier_Behavior” interface="Supplier_Behavior_Interface"/>
17 r <froletypes>
18 > <roletypes name="Bidder_Role">
19 | <behaviar name="Bidder_Behavior" interface="Bidder_Behavior_Interface"/=
20 r <froletypes>
al <l—- Relationship definitions —=
22 <relationshiptype name="Customer2Manufacture"/=
23 <relationshiptype name="Manufacture2Customer"/=
24 <relationshiptype name anufacture2Supplier'/=
25 =<relationshiptype name="Manufacture2Customer"/=
26 <relationshiptype name="Manufacture2Bidder"/>
27 <relationshiptype name="Manufacture2Customer"/>
28 <l Choreography—>
29 > <Choreography name="CustomerOrder” root="false" coordination="true">
30 <variable name="AskMoreParts" element="tns-AskMoreParts" attributeKind="3"/>
KNl <variable nam ConfirmationMS" element="tns:ConfirmationMS" attributekind=
32 <variable name="RejectMS" element="tns:RejectMS" attributeKind="3"/>
33 <variable name="RequestForm” element="tns:RequestForm" attributekind="3"/>
34 = <interactions name="OrderRequest” operation="0OrderRequest” actionType="1">
35 ¢ =exchanges name="OrderRequestRequest” action="request-respond"/>
36 ; <participate relationshipType="tns:Customer2Manufacture” fromRole="tns:Customer" toRole="tns:Manufacture"/>
37 r <finteractions=
38 = =choice name="CanFulFillOrder?">
39 g ! <interactions name="OrderConfirmation” operation="0rder Confirmation” actionType="1">
40 <exchanges name="0rderConfirmationRequest” action="respond"/=
41 i =participate relationshipType="tns:Manufacture2Customer” fromRole="tns:Manufacture” toRole="tns:Customer"/>
42 r <finteractions=
43 = <interactions name="0rderRejection” operation="0OrderRejection” actionType="3"=
44 ! <exchanges name="OrderRejectionRequest” action="respond"/>
45 <participate relationshipType="tns:Manufacture2Customer” fromRuole="tns-Manufacture” toRole="tns-Customer"/>
46 r =finteractions>
A7 = <interactions name="ProcureParts"” operation="ProcureParts" actionType="2">
48 <exchanges name="ProcurePartsRequest” action="request-respond"/>
49 i <participate relationshipType="tns:Manufacture2Supplier” fromRole="tns:Manufacture” toRole="tns:Supplier"/=
50 r <finteractions=
51 r =/choice=
52 g =choice name="AllPartsObtained"=
53 = <interactions name="PartAuction” cperation="PartAuction” actionType="2">
54 i «<exchanges name="PartAuctionRequest” action="request-respond”/>
55 <participate relationshipType="tns - Manufacture2Bidder” fromRole="tns-Manufacture” toRole="tns Bidder"/>
56 r =finteractions>
57 = <interactions name="0OrderConfirmation” operation="0OrderConfirmation” actionType="1">
58 =<exchanges name="0OrderConfirmationRequest” action="respond"/>
59 <participate relationshipType="tns:Manufacture2Customer” fromRuole="tns-Manufacture” toRole="tns-Customer"/>
60 r =f{interactions>
61 r =/choice=
62 g =choice name="AllPartsAvaliable?">
63 = <interactions name="0rderRejection” operation="0OrderRejection” actionType="3"=
64 =<exchanges name="0rderRejectionRequest” action="respond”/=
65 <participate relationshipType="tns:Manufacture2Customer” fromRole="tns:Manufacture” toRole="tns:Customer"/>
66 r =finteractions>
67 = <interactions name="0OrderConfirmation” operation="0OrderConfirmation” actionType="1">
68 =<exchanges name="0OrderConfirmationRequest” action="respond"/>
69 <participate relationshipType="tns:Manufacture2Customer” fromRuole="tns-Manufacture” toRole="tns-Customer"/>
70 r =finteractions>
71 r =/choice=
72 = <interactions name="DeliverOrder” operation="DeliverOrder” actionType="1">
73 i <=ewxchanges name="DeliverOrderRequest” action="respond"/=
74 =participate relationshipType="tns:ManufactureZCustomer” fromRole="tns:Manufacture” toRole="tns:Customer"/=
75 r =<finteractions=
76 =finalizeChaore name="EndEvent"/>
7 r =/Choreography>
78 L </Package=
| Text | Grd Schema WSDL XBRL Authentic Browser
i CusomterOrderProcess Inciclentl‘ﬂanagment IncidentManagmentExample IncidentManagmentExample CusomterOrderProc 4
Messages -
L za/BBE 88 s X
== @ File C:\Users\Saad\Desktop\BPMNWISCDL files\CusomterOrderProcess xml is valid.

149

Chapter 7 Pragmatic Evaluation

7.4.3..2 WSDL Validation
Listing 7-6 represents one of the validated cases, for the OMG Customer Order

scenarios, which is the design of one coarse-grained service in the WSDL
document. All four messages defined previously in the WS-CDL code were
transformed to four data types with their right message-type classification as
introduced on the message-type extension. These data types of this scenario are
defined as a complex type. In the WSDL:Interface element, WSDL: Operation
elements are defined which conform to the same number as the number of
interactions in the CustomerOrder.cdl, regardless of the reparation of
definitions of the WS-CDL:Interaction element “Order Confirmation”, and the
numerical value of WS-CDL:actionType element for every Operation matches
correctly the same element in the CustomerOrder.cdl. Finally, the
WSDL:Service element definitions were completed as coarse-grained service
with all operations. Table 7-6 summarises the above described mapping

between WS-CDL code and WSDL document for this particular scenario.

Table 7-6 Summary of mapping between WS-CDL code and WSDL for the

Customer Order scenario

BPMN Elements | Mapping Pattern | WS-CDL Line of Code
Information Type One-to-one Types (schema | 5-14
XSD)
Choreography One-to-one Interface 16-47
Interaction One-to-many Operation 17-21, 22,26, 27-31,
32-36, 37-41, 42-46
Exchange One-to-many Input/output | 18-19, 23-24, 28-29,
33-34, 38-39, 43-44
Package One-to-one Service 58-60

150

Chapter 7 Pragmatic Evaluation

Listing 7-6 CustomerOrder.wsdl Shown with XML Schema Validation Result

1 <?xml version="1.0" encoding="1S0-8859-1"?=

2 <l edited with XMLSpy v2012 rel. 2 (x64) (http:/ v.altova.com) by S Alah (Univeristy of Southampton) —»

3 [-]<description targetNamespace="http:/fwww tmsws.comiwsdl20sample” xmins="http://www w3 org/nsfwsdl” xmins:tns="
http:/fwww tmsws.comfwsdl20sample” xmins:whttp="http://schemas.xmlsoap.org/wsdl/http/” xmins:wsoap="
http:/fschemas.xmlsoap.org/wsdl/soap/"=

4 <l Types definitions —>
5 = <types>
6 <xs:elementDeclarations name="Ask More Parts"/>
7 =xs:typeDefinition name="_1:XsComplexTypeDefinition"/=
8 <xs:elementDeclarations name="Confirmation MS"/=
9 =xs:typeDefinition name="_1:XsComplexTypeDefinition"/=
10 <xs:elementDeclarations name="Reject MS"/>
1" =xs:typeDefinition name="_1:XsComplexTypeDefinition"/=
12 <xs:elementDeclarations name="Request Form"/=
13 =xs:typeDefinition name="_1:XsComplexTypeDefinition"/=
14 o <ftypes>
15 <l-- Interface definitions —»
16 = <interface name="CustomerOrderinterface”=
17 g <operation name="0OrderRequest"=
18 <output messagelabel="0ut" elements="tns:RequestForm"/=
19 <input messagelLabel="In"/=
20 <actionType=1</actionType>
21 r </operation>
22 = <operation name="DeliverOrder"=
23 <output messagelabel="0ut" elements="tns:ConfirmationMS"/>
24 <input messagelabel="In" elements="tns:RequestForm"/=
25 <actionType=1</actionType>
26 r </operation=
27 = <0 peration name="0rderConfirmation”=
28 <putput messagelabel="0ut" elements="tns:ConfirmationMS"/=
29 <input messagelabel="In" elements="tns:RequestForm"/=
30 <actionType=1</actionType=
kil r </Operation=
32 = =0peration name="0rderRejection”>
33 <output messagelabel="0ut" elements="tns:RejectMS"/>
34 <input messagelabel="In" elements="tns:RequestForm"/=
35 <actionType=3</actionType=
36 r </Operation=
T <Operation name="ProcureParts">
38 <output messagelLabel="0ut" elements="tns:AskMoreParts"/>
39 <input messagelLabel="In" elements="tns:RequestForm"/=
40 <actionType=2</actionType>
4 r </Operationz
42 = <Operation name="Part Auction"=
43 <putput messagelabel="0ut"/=
44 <input messagelLabel="In" elements="tns:AskMoreParts"/>
45 <actionType=2</actionType>=
46 r =/Operation
47 r <finterface=
43 <l Binding definitions —=
43 = <Binding name="Customer OrderBinding” wsoap_protocol="http:/fwww.w3. orQI’EUUSFUSI’Soap.l"bindings.fH'I_I'F'.l""

v'\http methodDefault="http:/fwww.w3.0rg/2003/05/s0ap/meplrequest-response” interface="tns:CustomerOrderinterface”>

50 <bindingOperation operation="Crder Request"/=

51 =bindingOperation operation="Deliver Order"/>

52 ¢ <bindingOperation operation="Order Confirmation"/>

53 <bindingOperation operation="Order Rejection"/>

54 <bindingOperation operation="Procure Parts"/>

55 <bindingOperation operation="Part Auction"/>

56 r <FEI|nd|ng:=

57 <l Senice definitions —=

58 = <Senice name="Customer OrderService” interface="tns:CustomerOrderinterface">

59 <endpoint name="CustomerOrderSeniceHttpEndpoint” address="http://wmw.Customer Order.com/rest/” binding="
tns:Customer OrderinterfaceHttpBinding"/=

60 r </Senices

61 - </description=

Text Grid Schema WSDL XBRL Authertic Browser

@Testforws DLCustomer_Scil_Oper_6 @ NebelPrize @ IncidentManagement

Messages

£ o/ ninlE 8|2 X

° File C:\Users\Saad\Desktop\BPMNWVSDL FILES\IncidentManagement. wsdl is valid.

151

Chapter 7 Pragmatic Evaluation

7.5 Limitations of Pragmatic Evaluation

7.5.1 Semantic elements

Not all elements of the BPMN 2.0 choreography modelling conformance were
covered in the transformation process, in that our mapping between BPMN 2.0
and WS-CDL is presently done on the basis of core behavioural elements of a
choreography process. Our meta-models initially supported definitions of
elements that appear in BPMN 2.0 examples (OMG 2010). A choreography
diagram with compound activities such as sub-choreographies that contain
more than two participants in a choreography task is not currently supported.
Such elements cannot be mapped directly to the WS-CDL; it would require a
normalisation stage, i.e., define a choreography composition in WS-CDL and
refer to the BPMN sub-choreography as an enclosed choreography. However,
there remain cases where normalisation cannot fill the gap between the
choreography definitions in BPMN 2.0 and WS-CDL.

Currently, in order to bridge the semantics gap between BPMN 2.0
choreography specification for the business process model and the descriptions

of service choreographies in WS-CDL, we extend the definitions of message

element in BPMN 2.0 (as discussed in section 4.3.1). The aim of the extension
is to facilitate the transformation process and apply the quality metrics rather
than address those shortcomings of the BPMN 2.0 choreography modelling
specification. We note that no implementation for the BPMN 2.0 choreography

model is currently available (even a partial implementation).

7.5.2 Abstraction gap

Business process choreography diagrams are designed by a business analyst,
who is usually not aware of the implementation details and not interested in
knowing how business processes will be implemented. This problem refers to the
abstraction gap between the level of details defined in the business model
compared to the generated code (Haeng-Kon 2008). It is essential that such a
level of implementation details is defined during the early stages in order to
enhance the design and implementation phases for MDA approaches; e.g.,

defining the types of data (parameters) by the business analyst at early stage of

business process design. This lack in a parameter’s (messages) definitions of the

152

Chapter 7 Pragmatic Evaluation

business process model is moved to the implementation phase where it requires
intervention from the developer. As a result of this problem, the service
interface generated by our transformation process lacks complete definitions of
XML-schema for element types in WSDL.

As future work, in order to overcome this issue, we propose to extend the
BPMN 2.0 definition messages/data-object within the process choreography
model. The extension should include numerical types for different types of
attributes in XML-schema in such a way that a business analyst can seamlessly
interact with them. However, the abstraction gap is a common issue, not only
with SOA but also with other software architecture, and thus the premise of

MDE is to fill this gap by narrowing the problem space (Kim and Lee 2008).

7.6 Reflection on Research Hypotheses

(H1): it is possible to generate service interface designs (WSDL)
automatically from business process choreography (BPMN 2.0) using service
choreographies (WS-CDL).

To evaluate this, we traced representative modelling elements mapped using
the transformation rules between source and target models. We ensured the
behaviour was consistently transformed by checking the correct mapping of
elements of source elements to correspondent elements in the target elements.
Three application scenarios were used to evaluate transformation rules.

For each scenario, we evaluated the first phase of the transformation
(BPMN-to-WS-CDL) and the second phase of the transformation
(WS-CDL-to-WSDL). For the first phase, listing 7-1, 7-3 and 7-5 showed that
the generated WS-CDL codes are consistent semantically with definitions of
service process choreography diagrams (fig. 7-1, 7-2 and 7-3 respectively) and
valid XML-based language according to the XML schema. The generation of
WS-CDL code in Incident Management and Customer Order examples (fig. 7-1
and 7-3) showed that the more the business process choreography model
contains gateways (event elements); the more complex are the choreography
definitions. In contrast, the Nobel Prize scenario can be directly mapped with
less complexity as it has only one gateway.

In the second phase, listing 7-2, 7-4 and 7-6 showed that the WSDL

documents generated are consistent semantically with the definitions of

153

Chapter 7 Pragmatic Evaluation

WS-CDL codes (listing 7-1, 7-2 and 7-3 respectively) and valid XML-based
language according to the XML schema. The consistency of behaviour between

WS-CDL and WSDL is evaluated through the correct mapping of the essential
WS-CDL elements (choreography-tasks and message types) to “Operation” and

passed “Types” definitions. This transformation of WS-CDL to WSDL is more
syntactically oriented than that in BPMN to WS-CDL. This is because level of
abstraction is closer between WS-CDL and WSDL more than that in BPMN to
WS-CDL. In the other words, the specifications WS-CDL and WSDL are based

on the same term “service’.

7.7 Summary

In this chapter, we evaluated our framework with a pragmatic approach. The
pragmatic evaluation shows that it is possible to derive a valid service interface
design in WSDL based on the choreography model in WS-CDL from a business
process choreography model. We used three different examples in the
demonstration: the two OMG business process choreography examples from the
BPMN 2.0 specification and one example from a technical report. We
successfully traced elements defined in the source models through the
transformation process to correspondent semantically elements in the target
models. The three scenarios showed that the choreography semantic can be a
mediator as it shields the complexity of business process definitions and defines
the service interface seamlessly.

Furthermore, we checked these scenarios manually to establish that a
similar behaviour is consistent during the transformation process, thus ensuring
behavioural elements are mapped correctly. The validation is completed using
the “Altova XMLspy tool”. Finally, the proposed transformation is a reasonable
application for the automated transformation from the business process
choreography model to service interface design comparing to manual-human
process. However, a drawback of the proposed transformation process is the
current lack of a capability to create client stubs for generated service
interfaces.

In Chapter 8, we will conduct an empirical evaluation using the service
interface designs generated from these three application examples. The datasets

will be processed and computed using the implementation of software quality

154

Chapter 7 Pragmatic Evaluation

model design in section 6.5. The evaluation will test statistically the second and

the third research hypotheses proposed in Chapter 1.

155

CHAPTER 8 EMPIRICAL
EVALUATION

In Chapter 7, we presented a successful pragmatic evaluation of the generation
of service interface designs automatically using transformation models (the first
part of the framework architecture fig. 6-1). This chapter focuses on evaluating
the implementations of the service quality model (the second part of the
framework architecture fig. 6-1). It evaluates the service quality model from the
perspective of the research question: what is the impact of a high level of
service granularity on the quality attributes of complexity and cohesion and
compared to a service interface design with a low level of service granularity? It
also investigates the final research question: what are the relationships between
attributes of service quality?

In section 8.1, we introduce the empirical evaluation approach. This is
followed, in section 8.2, by layout of the details of the second and third research
hypotheses which were based on the proposed service quality model. The study
design and explanations of the research variables (dependent and independent)
are described in section 8.3 and 8.4, respectively. Then, in section 8.5, the
descriptions of the method of data collections that supports the answer to the
research hypotheses. In section 8.6, we present the statistical tests that are
applied in the research and in the following section 8.7 we present the results of
investigating the relationships between defined study variables. Section 8.8
presents our analysis of the study results against the details of the research
hypotheses; while in section 8.9 the limitation of the empirical evaluation is
discussed. Finally, in section 8.10, we summarise the results of the statistical

tests.

Chapter 8 Service Identification Implementation

8.1 An Empirical Evaluation

In this section, we evaluate empirically the service quality attributes of the
experimental service identification process based on the service quality model
defined in Chapter 5. The implementation of the service quality model showed
that the service quality attributes provide benchmarks for the quality attributes
of different service interface designs. The framework implementation is
enhanced using benchmarks for the quality attributes of service interfaces
designs generated. The aim of integrating the service quality attributes in our
framework is to guide and to evaluate the service interface designs generated.
In particular, the service quality attributes evaluation is conducted after
re-factoring several service interface designs of a scenario.

The scope of this part of our work is to investigate the impact of service
granularity on the other architectural quality attributes of complexity, cohesion
and coupling using quality metrics when there is a given set of services. We also
examine the dependencies between different internal architectural quality
attributes. The experimental study has been conducted to show that the factors
that affect a particular scenario in practice can be different compared with
other scenarios. This supports our framework theoretically by studying
statistically the relationships between service granularity and the other
architectural attributes of complexity, cohesion and coupling.

The size of software system has often been used for measuring the
development effort and cost (e.g., (Costagliola, Ferrucci et al. 2005; Nguyen
2010; Alba and Gil 2011)). In this thesis, we proposed a measurement for
selecting the service granularity (software size) in the context of
service-oriented architecture. This measurement is for service granularity which
we validated theoretically using mathematical properties for size measurements
in section 5.4. We then employed the metric of the service granularity to guide
the service identification phase of the software development cycle. Here we use
the empirical evaluation to verify the predicative power of our proposed service
quality metrics in chapter 5. We used a dataset that is generated from the

three application scenarios used for pragmatic evaluation in chapter 7.

8.2 Hypotheses

During our empirical investigation, we are interested in the second and third

research hypotheses. These two research hypotheses are concerned with the
157

Chapter 8 Service Identification Implementation

investigation of the suitability of using service quality measurements to assist
the process of identifying the optimum services. Firstly, we study the second
hypothesis that investigates the effect of the service granularity on the other
service quality attributes of complexity, cohesion and coupling. The aim of this
study is twofold: quantifying the service quality attributes to enable reasonable
measurements which can be used to select the optimum services and also
evaluating the implementation of the service quality model. The quality
attributes are calculated based on the service quality metrics proposed in
Chapter 5. The positive and negative effects are implied the direction of the
relationships between the variables and degree of effects (e.g., the increase of
service granularity would result in increases in service complexity which refers
to a positive effect on the same direction).

Secondly, we study the third hypothesis that investigates statistically the
relationships between the architectural attributes of complexity, cohesion and
coupling. This study aims to examine any significant effect of these quality
attributes on each other which might provide an insight to the results of the

testing of the second hypothesis:

H2: a set of services with a high value of service granularity (ASOG)
would correspond with a positive effect on the quality attributes of
complexity (ASOM) and cohesion (ASOC) and a negative effect on
the quality attribute of coupling (ASOU) compared to services with

a low value of service granularity (ASOG).

To simplify the hypothesis analysis, the second hypothesis (H2) can be written
as three sub- hypotheses as follows:
H2:A: A high value of service granularity (ASOG) corresponds with a
positive effect on the complexity quality attribute (ASOM).

H2:B: A high value of service granularity (ASOG) corresponds with a
positive effect on the cohesion quality attribute (ASOC).

H2:C: high value of service granularity (ASOG) corresponds with a
negative effect on the coupling quality attribute (ASOU).

158

Chapter 8 Service Identification Implementation

H3: the following architectural quality attributes are dependent on
one another; cohesion is correlated with (ASOU) coupling, coupling
is correlated with complexity (ASOM) and complexity (ASOM) is
correlated with cohesion (ASOC).

The third hypothesis (H3) can be written as three sub- hypotheses as follows:
H3:A: The architectural quality attributes of complexity (ASOM) and
cohesion (ASOCQC) are correlated.

H3:B: The architectural quality attributes of complexity (ASOM) and
coupling (ASOU) are correlated.

H3:C: The architectural quality attributes of cohesion (ASOC) and
coupling (ASOU) are correlated.

8.3 Study Design

Collecting data for metrics measurements is often a difficult task (Pandian
2003). The process needs to be developed in an evolutionary development style
that considers a heterogeneous change in models and metric measurements. The
goal of this study is to determine whether our framework can assist in
developing the appropriate service interface designs to provide the appropriate
level of service granularity. After generating several service interface designs
using the modelling transformation, the service quality model is used not only
to evaluate the service quality attributes but also to select the optimum service
interface design for a given set of services. The framework provides a
methodology to guide the service modelling phase, considering the impact of
service granularity on architectural quality attributes. It suggests various
measurements for quality attributes for a set of services in a given service

domain.

8.4 Variables and Measures

To assess the feasibility of using our framework to deriving different service
designs and to quantify the impact of the service granularity concept on other
SOA internal architectural attributes, we then applied metrics defined in
section 5.2 and 5.3 using the framework’s dataset (collected from our framework

scenarios)

159

Chapter 8 Service Identification Implementation

8.4.1 Independent Variables

There is one independent variable that might have a significant influence on
the final result of the experiment. In the context of appropriate service design,
the service granularity reflects the independent variable as the service
granularity which has been represented here by the metric Average Service
Operation Granularity (ASOG). The ASOG metric defined is based on the

quality model introduced in (section 5.2.3) and it quantifies the service

granularity for all services in a given service domain.

(s06 (D)
NS

ASOG =

To be able to quantify ASOG, we develop a new quality model that
provides a measurement method for Service Operation Granularity (SOG). The
service granularity was firstly calculated for the operations level of a service
and then for the services level of a service domain. The ASOG was then
calculated for three examples (two from OMG, and one from a published

academic report); and each example was re-factored to provide several service

design cases.

8.4.2 Dependent Variables

There are three dependent variables defined that could have been affected by
the independent variable of service granularity (ASOG) as follows:
1. The average service operation complexity (ASOM) metric focuses on the
functionality aspect of the complexity quality attribute (defined as part of
service operation granularity (SOG)). The ASOM is a metric defined based

on the quality model introduced in (section 5.3.1):

~(s06(®)°)
NS

ASOM = (

2. The average service operation cohesion (ASOC) metric considers the

occurrence of similar size of data and the operation types of service
operations based on the service operation cohesion SOC(S) metric

previously defined. Thus, the cohesion metric is initially calculated on a

160

Chapter 8 Service Identification Implementation

service level then applied to all services on a service domain. The ASOC
metric is defined (using the quality metrics explained in section 5.3.2) as

follows:

Z?zl SOCI

ASOC = NS

3. The average service operation coupling (ASOU) metric measures
dependency between service operations through invocation methods
(synchronous and asynchronous) to take account of the strong impact of

service size. The ASOC metrics is defined (using the quality metric

explained in section 5.3.3) as follows:

Z?—1 (Sisync+ S iasync)
ASOU = ——— :
NS

8.5 Research Data

This section describes how the dataset was collected and used to describe and
explore the research study. The dataset was generated from our experimental
framework. The dataset extraction and processing are completed using a parser
which was developed as part our framework (the parser implementation was
explained in section6.5).

The dataset was collected based on the WS-CDL document (XML format)
produced automatically from the three scenarios used to demonstrate the
BPMN to WS-CDL transformation (these are defined in section 6.3.1). We
generated five re-factored designs of service interfaces for each application
examples using the algorithm which we discussed in section 6.3.3. As result, five
cases (in the form of the WSDL documents generated for every example) were

processed through the syntax analyser in text data to produce the four metrics
of ASOG, ASOM, ASOC and ASOU. Table 8-1 shows the computation of the

four metrics for the dataset.

161

Chapter 8 Service Identification Implementation

Table 8-1 Metric Results for Framework Dataset

Example Scenario ASOG ASOM ASOC ASOU
OMG Tncident 1 0.722 0.076 0 0
Management 2 1.087 1.204 0 D)
NO =9 3 1.148 1.408 0 1.6
1 1.106 1.201 0.142 1
5 1111 1.333 0 T
OMG Nobel Prize 1 0.629 0.395 0.5 0
NO =5 7 0.75 0.625 0.5 1
3 1 i 0 0
1 0.850 0.767 0.166 0.333
5 0.875 0.916 0 1
Procurement 1 0.653 0.426 0.333 0
NO =5) 0.833 0.722 0 0.25
3 0.8 0.666 0 0.4
7 1 1 0.1 0.6
5 1 1 0 0.5

8.6 The Data Analysis

The dataset was generated from our parser as text files. SPSS® (a statistical
analysis tool) is used to analyse our data and conduct descriptive and statistical
testing. The SPSS tool was selected because it is a well-accepted and widely

used.

8.6.1 Descriptive Statistics

Descriptive statistics are used in different ways to present different
characteristics of dataset graphs and statistical techniques. We will use graphs
to show how our framework might assist in deciding which service design
models best meet the given design requirements.

In order to check the normality of the datasets and to decide appropriate
statistical tests, we use the Shapiro-Wilk test. This tests a composite hypothesis
and is suitable for a small number of samples (less than 50 samples); a Sig
(P-value) of the Shapiro-Wilk greater than 0.05 indicates that the data are
normally distributed (Shapiro and Wilk 1965) (it measures the skewness of the
data distribution (referred to the asymmetry). We also wuse the

quantile-quantile (Q-Q plot) as graphical tests that examine whether or not the

® http://www-01.ibm.com/software/analytics/spss/downloads/

162

http://www.omg.org/spec/BPMN/20100602/2010-06-03/Incident%20Management/
http://www.omg.org/spec/BPMN/20100602/2010-06-03/Incident%20Management/
http://www.omg.org/spec/BPMN/20100602/2010-06-03/Nobel%20Prize/

Chapter 8 Service Identification Implementation

data is normal. Data appears as a linear line suggests a normal distribution,
where data appears as a nonlinear line suggests a distribution that is not

normal.

8.6.2 Statistical Testing

The relationships between bivariate or multivariate data can be effectively
defined and the degree and direction can be measured by using statistical tests
such as correlation (Johnson and Bhattacharyya 1986). It is important to
analyse the nature of the relationships between variables to find out if one
manipulates the other to apply the appropriate test types. In our study, we will
apply correlation tests using Pearson’s (r) technique because our data are based

on the ratio-type when the data are normally distributed. Otherwise,
Spearman’s correlation coefficient (rs) will be used. The Pearson’s technique is
also called the linear or product-moment correlation and is intended to be used
to describe the association between continuous variables. The value of a
correlation coefficient varies between -1 and +1. For further analysis, the
correlation coefficient value can be interpreted within different scales (strong,
moderate or weak); for instance, r = *.70 represents a very strong relationship,
from £.40 to +.69 represents a strong relationship, from £.30 to +.39 represents

a moderate relationship, from *.20 to *.29 represents a weak relationship and

from *.01 to *.19 represents no or negligible relationship (Cohen 1988).
Pearson’s test assumes the variables are normally distributed and there are no
outliers (Kowalski 1972). If any skewed data are very small, outliers can be
removed from the data after scanning the data using the scatter-plot chart.
However, the Spearman’s correlation coefficient rs is also a correlation test

which can be used when the data are not normally distributed, and with all

types of scale measurements.

8.6.3 Regression Analysis

In order to analyse existing relationships between different dependent and
independent variables, we apply regression analysis. Regression analysis is a
method to discover the relationship between one or more dependent variables

and independent variables (Yan and Su 2009). The casual relationship between

163

Chapter 8 Service Identification Implementation

two quantitative variables can be measured using regression analysis (Johnson

and Bhattacharyya 1986) (this is also called the “line of best fit”).

There are three types of regression; simple linear, multiple linear and
nonlinear regressions. Simple linear regression studies the linear relationship
between two variables and assumes that one variable (independent) controls
the other one (dependent). In other words, linear regression represents the
equation y= a + bx, where y is the predictor (dependent) variable and x is the
response (independent) variable, where the value of a is constant and b is the
slope of the linear equation. The relationship can be demonstrated graphically
as a straight line where the independent variable is multiplied by the slope
coefficient and a constant is added. When there are more than one independent
variables and one dependent, multiple linear regression is applied. Multiple
regression studies the linear relationship between one dependent variable and
several independent variables. It assumes that the response variable has a linear
relationship in a model with several predictor variables (Yan and Su 2009). The

formula of the multiple regression models is:

y=B0+PBlx+ -+ Ppxp+ ¢

Where 0,1,2,....p are regression coefficients, X4, X,, X3,,X, are independent

variables, y is the dependent variable and € is an error value. Finally, nonlinear
regression studies any kind of relationship between dependent and independent
variables that is not linear. It is also called “nonlinear least squares fittings”,
and always assumes that there is a nonlinear relationship depending on one or
more undefined parameters. There are two main types of nonlinear models;
polynomial models and alternate nonlinear models (Munson 2003). We tested
several nonlinear regression models such as Cubic, Exponential, Quadratic and
Power. Finally, we found that the Cubic model behaves better and gives
usually practical results with a quality of fit corresponding to a high R%. The
Cubic model represents a nonlinear regression polynomial degree-three equation
of “best fit”. The formula of the equation of cubic regression is

y=ax3+ bx?+cx+d, a+0,
Where a, b and c are regression coefficients, d is a fixed value (the dependent

variable), x is an independent variable and y is a dependent variable.

164

Chapter 8 Service Identification Implementation

8.7 Results and Discussion

The descriptive statistics in this section present the values for computed
metrics of ASOG, ASOM, ASOC and ASOU for the research datasets. In
particular, table 8-3 shows the descriptive summaries of the minimum and
maximum values, as well as the values of central tendency (mean and median),
dispersion (standard deviation and variance) for the first dataset which was
generated from our transformation experimental process. The following
observations can be made from table 8-2:

For the results reported for ASOG, ASOM and ASOU, apart from the
ASOC, the standard deviation is small relative to the value of the mean;

therefore the mean is a good representation of the data.

e The ASOC has a relatively low mean value and standard deviation. As we
have seen in table 8-1 (section 8.5), several cases in the demonstrated
scenarios do not have any significant cohesion, which explains why the

ASOC metric has low value and variance.

e The ASOU has the largest maximum, which could be due to large
dependencies between services with very low levels of granularity. The
ASOU also has the largest standard deviation, which confirms there is a

wide range of values among cases.

e There are cases of the service design interfaces with no cohesion and
coupling among services (ASOC and ASOU have zero minimum). This
may reflect having one monolithic service in a service domain with a
minimum value of zero in coupling (ASOU), it alternatively refers to lack

of cohesion (ASOC) for other cases in a scenario.

Table 8-2 Descriptive statistics - ASOG, ASOM, ASOC and ASOU metrics

Descriptive Statistics

N Minimum | Maximum Mean | Std. Deviation | Variance
ASOG 15 277 1.148 .874 .234 .055
ASOM 15 .076 1.408 .855 .380 .145
ASOC 15 .000 .500 .090 .155 .024
ASOU 15 .000 1.600 .680 .508 .258
Valid N (listwise) | 15

165

Chapter 8 Service Identification Implementation

8.7.1 Service granularity versus individual quality attributes (H2)

In this section, we investigate the second hypothesis that is concerned with the
relationships between the service granularity variable (ASOG) and other
internal architectural service quality attributes such as complexity (ASOM),
cohesion (ASOC) and coupling (ASOU). We wused linear and nonlinear
regression analysis to investigate the relationship between ASOG as the
dependent variable and all quality attributes as independent variables (ASOM,
ASOC and ASOU). The study uses statistical tests with the dataset from our
framework. For this study, the ASOG presents the independent variable and
the ASOM, ASOC and ASOU are independent variables.

8.7.1..1 Service Granularity versus Complexity (H2:A)

To test the sub-hypothesis that high value of service granularity (ASOG) would
correspond with positive effect on the complexity quality attribute (ASOM) a
simple linear regression was performed. Tests indicated that a linear
relationship between service granularity (ASOG) and service complexity
(ASOM) for our framework’s dataset. The coefficient table is shown for the
dataset below (related statistical tables are provided in appendix C).

Using the framework dataset: the dataset is normally distributed

according to the Shapiro-Wilk’s test and the Q-Q plot. Fig. 8-1 shows the best-

fit line equation and table 8-3 illustrates the linear regression results as follow:
ASOM = (—.534) + 1.588 * ASOG

R? = 0.953, R%; =0.950 ,F, ;= 266.375,P — vaule < 0.05

e The R? = 0.953 indicates that with probability of about 95%,
knowing ASOG would predict ASOM.

e The constant’s value a = -0.534 estimates the value of service
complexity (ASOM) with a zero value of service granularity (ASOG).
The interpretation of this particular constant variable with negative
value (-.534) is not meaningful since the complexity attribute does not
have a negative value. However, this negative value refers to the
relationship between the ASOG and ASOM and can still be used for
computations with the value of the ASOG variable.

e The regression coefficient’s value is 1.588, which represents changes in
the value of ASOM when a change taken place in the value of ASOG.

In other words, the average level of service complexity increases by
166

Chapter 8 Service Identification Implementation

1.588 corresponding to an increase of 1.00 in the value of average level
of service granularity. It indicates that there is a positive effect based
on intercept = 1.588, thus ASOG has a positive effect on ASOM.

Table 8-3 Simple linear regression coefficients for ASOG dependent and ASOM

independent variables for the framework dataset

Coefficients®
Unstandardised Standardised
Model Coefficients Coefficients
B Std. Error Beta t Sig.
1 (Constant) -.534 .088 -6.069 .000
ASOG 1.588 .097 976 16.321 .000

a. Dependent Variable: ASOM

Y = 1.588 * x i+ - .534

1. 400000

R2 Lihear+ 0 963 =
1. 200000 r - /{f
Upper|boundary fof 95% 7 | =
1.000000 T T = -
confidenceg interyal 4 =
= ALY
.B00000 n
o = -
2 s _-7 Line of hest fit
=<)
500000 © -
-7 [) =7
400000 - - \
-=200000 w ~- Lower|boundary fof 95%
= T corffidencg interjal
000000 =
200000 400000 600000 800000 1 .000000 1.200000
ASOG

Figure 8-1 Linear regression results of ASOM and ASOG variables from the framework

dataset

8.7.1..2 Service Granularity versus Cohesion (H2:B)
To test the sub-hypothesis that a high value of service granularity (ASOG)
would correspond with positive effect on the cohesion quality attribute (ASOC)
simple linear regression was performed. Tests indicated a nonlinear relationship
between service granularity (ASOG) and service complexity (ASOC) using the
cubic regression model for our framework’s dataset. The coefficient table is
shown for the dataset below (related statistical tables are provided in appendix
C).

Using the framework dataset: the dataset is not normally distributed

poor fit for the current data according to Shapiro-Wilk’s test and the Q-Q plot,
167

Chapter 8 Service Identification Implementation

ASOCQC’s P-value = .000 < 0.05. The cubic test was selected because it showed a

higher (R?* = 0.741) value and gave closest data points to the regression
equation. Fig. 8-2 shows the nonlinear equation and table 8-4 illustrates the

nonlinear regression results using a cubic model as follows:
ASOC = —2.0573 + 11.566 * ASOG + —16.810 * ASOG * ASOG +
7.267 * ASOG * ASOG * ASOG
R?* =0.741, ,Fy 13 = 10.48,P —vaule < 0.05

e The R? = (. 741 indicate that there is probability of 74% that
knowing ASOG would predict ASOC.

e The constant’s value a = —2.0573 estimates that the value of service
cohesion (ASOC) with zero value of service granularity (ASOG). This

can be used for computations with the value of the ASOG variable.

With two bends on the figure 8-2, we can conclude that there is a
positive effect based on f1 = 11.566 (a positive value), thus ASOG
has a positive effect on ASOC.

e The F test indicates that the variability between ASOC and ASOG is

statistically significant with F; 13 = 10.48 , P-value < 0.05.

Table 8-4 Nonlinear regression model summary using cubic test for ASOC and ASOG

variables on the framework dataset

Model Summary Parameter Estimates

Equation R F dft df2 Sig. Const. bl b2 b3
Square

Cubic

0.741 10.48 3 11 .001 -2.057 11.566 -16.810 7.267

168

Chapter 8 Service Identification Implementation

ASOC
-500 : - 2 Cubic =0.741
200 . b y =|-2.057 + 11.566 [* X + |
V4 %16.810 * xfx + 7.267 t x*xFx
i RERENEENR
i - &y
2300 f.f ~ LY I'n'nt:\r bound ry for 859%
. i = N a A
L 'J‘ //\/\'\ . confidence|interva f
5 - 5
f Line|of best fit \ jf
200 ‘; Ilf rJ ~ _\ f IIr
] 1|l :‘ /’\\ = JJ
’ / N \\\ ’!J f
100 1 J—tHower-founda yfuljﬁ"u N 7
h
fa' : conffdence |nterv. BN \ . i/
[= -
JiF e
Kalals}
200 400 .B00 B0oo 1 .000 1.200
ASOG

< Observed
Cubic

Figure 8-2 Nonlinear regression results of ASOC and ASOG variables using the Cubic

regression model for the framework dataset

8.7.1..3 Service Granularity versus Coupling (H2:C)

To test the sub-hypothesis that a high value of service granularity (ASOG)
would correspond with negative effect on the coupling quality attribute
(ASOU) simple linear regression was performed. Tests indicated that a linear
relationship between service granularity (ASOG) and coupling (ASOU) for the

framework dataset. The coefficient table is shown for the dataset below (related

statistical tables are provided in appendix C).

Using the framework dataset: the dataset is normally distributed on
the basis of the Shapiro-Wilk’s test and the Q-Q plot. Fig. 8-3 shows the best-

fit line equation and table 8-5 illustrates the linear regression results as follow:

ASOU = (—.906) + (1.813) * ASOG

R? = 0.697, R%;; = 0.673 ,F, .3 = 29.854,P — vaule < 0.05

adj

e The R? = 0.697 indicates that there is probability of 70% that

knowing ASOG would predict ASOU.

e The constant’s value a = -0.906 estimates that the value of ASOU
with a zero value of ASOG. The interpretation of this particular

constant variable with negative value (-.0.906) is not meaningful since

the coupling attribute does not have a negative value.

e The regression coefficient’s value is 1.813, which represents changes in
the value of ASOU when a change is accounted in ASOG. In other

words, the average level of ASOU increases by 1.588 corresponding to

169

Chapter 8 Service Identification Implementation

an increase of 1.00 in the value of average level of ASOG. It indicates
that there is a positive effect based on intercept = 1.813, thus ASOG
has a positive effect on ASOU.

Table 8-5 Linear regression model summary for ASOU and ASOG variables on the

framework dataset

Coefficients®
Standardised
Unstandardised Coefficients Coefficients
Model B Std. Error Beta t Sig.
(Constant) -.906 .300 -3.022 .010
ASOG 1.813 332 .835 5.464 .000

a. Dependent Variable: ASOU

2.000r

RZ|Linear = 0.697

Y = 1.813 * x +[-.906

1.500r

Line of best fit s
& i -
- -~

r/ i/
= 1 A
2 1000 2 SN

< Upper Qoundary for 95% ¢ ="

= . -
confidence interva - - -

- o~ ,"1:
- ~ |- 4
500 =

=T - d Lower| boundary for|95%
-~ - - corffidency interval
0o = =
200 A0D 500 |00 1.000 1.200
ASOG

Figure 8-3 Linear regression chart of ASOU and ASOG variables on the framework
dataset

8.7.2 Relationships between quality attributes (H3)

In this section, we investigated the third hypothesis that is concerned with the
relationships between the service qualities of different attributes such as
complexity (ASOM), cohesion (ASOC) and coupling (ASOU). We used
correlation coefficient to investigate the relationship between the (ASOM),
(ASOC) and (ASOU), two variables at time. The investigation is based on

statistical tests using the dataset from our framework. The classifications of the

170

Chapter 8 Service Identification Implementation

relationships (e.g., strong positive, weak positive) between variables are defined

based on the definitions in section 8.6.2.

8.7.2..1 Complexity versus Cohesion (H3:A)

A correlation test was performed to test the sub-hypothesis that the
architectural quality attributes of complexity (ASOM) and cohesion (ASOC)
are correlated. Spearman’s correlation coefficient (rs) or Pearson’s correlation
coefficient (r) tests are conducted depending on the normality of the dataset.

The correlations coefficient table is shown below for the dataset as follows:

Using the framework dataset: the dataset is not normally distributed
on the basis of the Shapiro-Wilk’s test and the Q-Q plot, thus Pearson’s
correlation coefficient (r) test was conducted. Table 8-6 illustrates the
correlation coefficient results as follow:

e The correlation coefficient (rs = -0.533) showed that the relationship

between ASOM and ASOC is a strong negative relationship and is
statistically significant (P-value = 0.041 < .05). The result of (rs)

suggests that an increase in ASOM results in a large decrease in the

value of ASOC, and vice versa.

Table 8-6 The Spearman’s rho for ASOM and ASOC variables from the framework

dataset
ASOM ASOC
Spearman’s ASOM Correlation Coefficient 1.000 -.533
rho Sig. (2-tailed) . 041
N 15 15
ASOC Correlation Coefficient -.b33 1.000
Sig. (2-tailed) 041 .
N 15 15

*_ Correlation Is significant at the 0.05 level (2-tailed).

8.7.2..2 Complexity versus Coupling (H3:B)

A correlation test was performed to test the sub-hypothesis that the
architectural quality attributes of complexity (ASOM) and coupling (ASOU)

are correlated. Spearman’s correlation coefficient (rs) or Pearson’s correlation

coefficient (r) tests are conducted depend on the normality of the dataset. The

correlations coefficient table is shown below for the dataset as follows:

171

Chapter 8 Service Identification Implementation

Using the framework dataset: the dataset is normally distributed on
the basis of the Shapiro-Wilk’s test and the Q-Q plot, thus Pearson’s
correlation coefficient (r) test was conducted. Table 8-7 illustrates the
correlation coefficient results as follow:

e The Pearson correlation coefficient (r =0.895) showed that the
relationship between ASOM and ASOU is a very strong positive
relationship and is statistically significant (P-value = 0.000 < .05). The
result of (r) suggests that the increase in ASOM might also cause a

large increase in the value of ASOU, and vice versa.

Table 8-7 The Pearson (r) test for ASOM and ASOU variables from the framework

dataset
ASOM ASOU

ASOM Pearson Correlation 1 .895%*

Sig. (2-tailed) .000

N 15 15
ASOU Pearson Correlation .895%* 1

Sig. (2-tailed) .000

N 15 15

¥*_ Correlation is significant at the 0.01 level (2-tailed).

8.7.2..3 Coupling versus Cohesion (H3:C)
A correlation test was performed to test the sub-hypothesis that the
architectural quality attributes of coupling (ASOU) and cohesion (ASOC) are

correlated. Spearman’s correlation coefficient (rs) or Pearson’s correlation

coefficient (r) tests are conducted depend on the normality of the dataset. The
correlations coefficient table is shown below for the dataset as follows:

Using the framework dataset: the dataset is not normally distributed
on the basis of the Shapiro-Wilk’s test and the Q-Q plot, thus the Spearman’s
correlation coefficient (rs) test was conducted test was conducted. Table 8-8
illustrates the correlation coefficient results as follow:

e The correlation coefficient (rs = -0.525) showed that the relationship

between ASOC and ASOU is a strong negative relationship and is
statistically significant (P-value = 0.044). The result of (rs) suggests

that the increase in ASOC might cause a large decrease in the value of
ASOU, and vice versa.

172

Chapter 8 Service Identification Implementation

Table 8-8 The Spearman’s rho for ASOC and ASOU variables from the framework

dataset
Variable Test ASOC ASOU
ASOC Spearman’srho Correlation Coefficient 1.000 -.525
Sig. (2-tailed) .044
N 15 15
ASOU Spearman stho Correlation Coelficient -.525 1.000
Sig. (2-tailed) 044
N 15 15

8.8 Reflection on Research Hypotheses

In this section, we will conduct an analysis of the results from the empirical

evaluation to accept or reject the second (H2) and third (H3) research

hypotheses addressed in (section 8.7). During our empirical evaluation, we are
interested in the second and the third hypotheses as follows:

In order to accept or reject the hypotheses, we define a preselected
significance level equal to .05 and consider the following elements in selecting
the testing methods:

1. With Pearson (r) and Spearman Rho correlation relationships, we

calculated the test statistic using this formula, T = r/lil—;i , and observed

the T-critical value using the t-table distribution. When T value > T-

critical value, we reject the null hypothesis(Hy), otherwise, the (Hy) is
accepted.

2. With linear regression models, we used the t-test to investigate whether
the slope B1 (regression coefficient) of the regression line differs
significantly from zero. The t-score is used to compensate for standard
error because our sample data size (n) is less than 30 samples.

3. With nonlinear regression (polynomial), we used the F-test to test the
null hypothesis fI= 2= 3= 0 and to investigate the significance of
relationships between independent and dependent variables. The F-test is

used to check the significance of the regression within preselected a

significance level alpha (1 — o).

173

Chapter 8 Service Identification Implementation

8.8.1 Impact of granularity on quality attributes (H2)

In this section, we discuss the analysis results of the second hypothesis
concerned with the impact of service granularity on the other quality attributes
of complexity, cohesion and coupling. This presents the impact based on the
dataset generated from our framework using regression analyses. The second
hypothesis discussion is divided into three sub-hypotheses, as follows:
H2:A: the impact of service granularity (ASOG) on complexity (ASOM).
H2:B: the impact of service granularity (ASOG) on cohesion (ASOC).
H2:C: the impact of service granularity (ASOG) on coupling (ASOU).

8.8.1..1 Impact of Service Granularity on Complexity (H2:A)

Null Hypothesis (Hy):a high value of ASOG has no ef fect on ASOM.
Alternative Hypothesis (H,): a high value of ASOG has a positive ef fect
on ASOM.

Using the framework dataset: the null hypothesis (Hg) is rejected because
we noticed that there is a statistically significant difference in the
distributions F; ;3 = 266.375, P —vaule < 0.05. Thus, this linear equation
can assist in predicting the service complexity (ASOM). A high value of service
granularity (ASOG) would correspond with effect on the complexity quality
attribute (ASOM).

We calculated the t-score in order to check the credibility of our model
and derived the T-score =16.37 (t=B1/SE = 1.588/0. 097) (based on the slope

Bl being equal to 1.588, the standard error (SE) = .097, and the degree of
freedom (df) =14 (based on our dataset df = n - 15) (table 12)). We used the
t-table distribution to determine the two-tailed P-value (t > 16.37) = 0.0001.
By conventional criteria, this difference is considered to be statistically
significant. Thus, the P-value (0.0001) is less than the significance level (0.05);
so we can reject the null hypothesis. That is, at 95% confidence interval of this
difference is from 1.379 to 1.796.

The alternative hypothesis (H,) is accepted. The linear equation shows a
positive value for the regression coefficient (intercept), this means a positive
effect and confirms our hypothesis (H2.A) that states ASOG has a positive
effect on ASOM.

174

Chapter 8 Service Identification Implementation

Figure 8-4 shows three examples with different numbers of service
operations and granularity scales; we note that the overall number of
operations in all services in the domain affects the relationship between the
average service granularity and complexity of domain services. For example,
the increase of service granularity (ASOG) in figure 8-4.A, B and C (with low
numbers of service operations 9, 5 and 5, respectively) causes a slight
decrease/increase in the complexity. This result may also occur because the
ASOM and ASOG metrics were driven based on the calculated value of Service
Operation Granularity (SOG).

EI OMG Example 1

16
14
1.2 |

1 |}
0.8 —e—ASOM
06 —m—ASOG
04 |
0.2

o

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

OMG Example 2

AX
=2

0.8

0.6 —o— ASOM

- ASOG
0.4 =

0.2

o
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Example3

1.2

1
0.8
0.6 —t— ASOM
—i— ASOG
0.4

0.2

o

Scenariol Scenario 2 Scenario 3 Scenario 4 Scenario 5

Figure 8-4 The relationship between Granularity (ASOG) and Complexity (ASOM)

8.8.1..2 Impact of Service Granularity on Cohesion (H2:B)

Null Hypothesis (Hy): a high value of ASOG has no ef fect on ASOC.
Alternative Hypothesis (H,): a high value of ASOG has a positive ef fect
on ASOC.

Using the framework dataset: The null hypothesis (Hg) is that 7=

B 2= B3= 0 is rejected because we noticed that there is a statistically significant

175

Chapter 8 Service Identification Implementation

difference in the distributions F; ;3 = 10.48,P — vaule < 0.05. Thus, the
nonlinear equation can assist in predicting the service cohesion (ASOC). A high
value of service granularity (ASOG) would correspond with effect on the
cohesion quality attributes (ASOC).

The computed F value = 10.48, which gives a P-value of 0.001. This
means that there is a 99.9% chance that there is a significant difference in the

data. From the F distribution table, we can see the critical point value with 3
degrees of freedom, error at 11 degrees of freedom and o = 0.05 is 3.59
(F =pq,U4y o =3,11, .05 =3.59), so we reject the null hypothesis because

computed F > critical point F and the result we derived based on the

framework dataset is significant. We are 95% confident that there is significant
variance between both ASOG and ASOC variables.

The alternative hypothesis (H,) is accepted. The nonlinear equation

shows a positive value for the F1 value, this means a positive effect and
confirms our hypothesis (H2.B) that states ASOG has a positive effect on
ASOC.

The relationship patterns that can be defined between ASOC and ASOG
in the small-scale service domain are that the increase of service granularity
(ASOG) will result either in decrease or no change in cohesion (ASOC). For
example, figure 8-5.B and C indicated that the increase in the value of ASOG
results in a decrease in ASOC at different level of granularity; when the ASOG
value increases by 0.224, the ASOC value decreases by 0.123. Although we were
able to find a mathematical relationship between ASOG and ASOC, we found
that there are other factors that might affect the cohesion measurement more
than the granularity factor. When there is no cohesion among operations or
exchanged messages in a set of services, re-factoring the service to produce a
different service granularity will have no effect. For example, in figure 8-5.A,
the value of ASOC (cohesion) was equal to zero regardless of the change of the
level of granularity, while the value of ASOG fluctuated between 0.27 and 1.14.
We can conclude that the result of the F-test and the graphical chart is that
the ASOG variable can be used to predict the level of cohesion in a set of

services.

176

Chapter 8 Service Identification Implementation

A OMG Example 1
1.4
E) —— =
1 / —
0.8 7 —W—ASOG
0.6
- / == ASOC
0.2 {
0 L 4 . 4) 4) 4) 4
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

OMG Example 2

1.2
L
0.8 -/./-\-'——_—-
0.6 —e—ASOC
- —=— ASOG
0.2
)

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenarios

Example3

1.2

1
0.8
0.6 —p— ASOC

0.4 il ASOG

- \—/‘\
0

Scenario 1 Scenario 2 Scenario3 Scenario4 Scenario 5

Figure 8-5 The relationship between Granularity (ASOG) and Cohesion (ASOC)

variables

8.8.1..3 Impact of Service Granularity on Coupling (H2:C)

Null Hypothesis (Hy): high value of ASOG has no ef fect on ASOU
Alternative Hypothesis (H,): high value of ASOG has a negative ef fect
on ASOU.

Using the framework dataset: The null hypothesis (Hy) is rejected
because we noticed that there is statistically a significant difference in the
distributions F; 13 = 29.854, P —vaule < 0.05. Thus, this linear equation can
assist in predicting the service coupling (ASOU). A high value of service
granularity (ASOG) would correspond with effect on the quality attributes
coupling (ASOU).

The t-score computed value is 5.46 (t=p1/SE = 1.813/0.332), based on
the slope Bl being equal to 1.813, the standard error (SE) = .332, and the
degree of freedom (df) =14 (based on our dataset df = n -15) (table 13). We
used the t-table distribution to determine the two-tailed P-value (t > 5.46) =

177

Chapter 8 Service Identification Implementation

0.0001. Based on conventional criteria, this difference is considered to be
statistically significant. Thus, the P-value (.0001) is less than the significance
level (0.05); so we can reject the null hypothesis. (At 95% confidence interval of
this difference is from 1.10093 to 2.52507).

The alternative hypothesis (H,) is rejected. The linear equation shows a
positive value for the regression coefficient (intercept), this means a positive
effect and disconfirms our hypothesis (H2.C) that states ASOG has a negative
effect on ASOU.

The increase in the level of service domain granularity (ASOG) might
increase the value of coupling (ASOU) among services with different degrees. In
figure 8-6.B, the value of coupling increases from zero to 0.5 unit corresponds to
the increase in granularity by 0 .12 unit in scenario 2, where it increases to 1
unit corresponding to the increase in granularity by 0.25 unit in scenario 3.
However, we found that operations with similar behaviour that re-factored
within new services processing different data size and types minimized the
dependencies among services because reduce invocation of other services. The
dependencies among services might reach a point where further granularity has
no effect; for example, in figure 8-6.A (scenarios 3 and4) the coupling value did

not change despite the increase in the granularity value.

178

Chapter 8 Service Identification Implementation

A OMG Example 1

15
- —o—ASOU
——ASOG

05

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

OMG Example 2

|
0.6 ‘ —p ASO U
; —i— ASOG

Scenariol Scenario 2 Scenario 3 Scenario 4 Scenarios

Cc Example3

132

1
08 7 /
0.6 — —e—ASOU
0.4 / —@—ASOG
o) /

0 /

v

Scenariol Scenario 2 Scenario3 Scenario 4 Scenario 5

Figure 8-6 The relationship between Granularity (ASOG) and Coupling (ASOU)

variables
8.8.2 Dependencies between Quality attributes (H3)

In this section, we discuss the analysis results of the third hypothesis concerned
with dependencies between quality attributes of complexity, cohesion and
coupling. This presents relationships between attributes using correlation
coefficient on the dataset generated from our framework. The third hypothesis
discussion can be divided into three sub-hypotheses, as follows:
H3:A: the architectural quality attributes of complexity (ASOM)
and cohesion (ASOC) are correlated.

H3:B: the architectural quality attributes of complexity (ASOM)
and coupling (ASOU) are correlated.

H3:C: the architectural quality attributes of cohesion (ASOC) and
coupling (ASOU) are correlated.

179

Chapter 8 Service Identification Implementation

8.8.2..1 Correlation of Complexity and Cohesion (H3:A)

Null Hypothesis (Hy): ASOM and ASOC has no association.
Alternative Hypothesis (Hg): ASOM and ASOC are correlated.

Using the framework dataset: the null hypothesis (Hg) is rejected because
we observed that the T = 2.271 which is greater than the T-critical value of
2.160, thus there is a statistically small significant association between service
complexity (ASOM) and service cohesion (ASOC). The statistic is computed as
follow:

rhovn-2 _ -0.533v15-2 2.971

Vi-rho? [J1-(-0533)2

» T-critical value = 2.160 , at o =.05(2 —tailed) , df =n—2=15—
2 =13,

> T =

The alternative hypothesis (H,) is accepted, because the null hypothesis is
rejected and there is a significant association between ASOM and ASOC. The
difference between the observed T and T-critical value is 0.1. This difference is
low which means the association might be an indirect association. This is

confirmed by the fact that the p-value equal .041 (close to 0.05) andr =

—0.533. Nevertheless one of the selected OMG examples has no cohesion among
services in the proposed scenarios (figure 8-7 A, B and C).

It is clear that there is a negative relationship between ASOM and ASOC,
as an increase in ASOC causes a decrease in ASOM (figure 8-7.A, B and C).
Thus, this means there is a correlation between ASOM and ASOC and confirms
our hypothesis (H3.A) that states ASOM and ASOC are correlated.

180

Chapter 8 Service Identification Implementation

E OMG Example 1

15

i]
/ == ASOM
0.5 === ASOC
" / - 2 " -

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

B OMG Example 2

2

1)

os8

0.6 —e—ASOC

—i— ASOM
oa

0.2
: \/\

Scenario 1 Scenario2 Scenario3 Scenario4 Scenario5

C Example3
oe /\- —e—ASOC
—— ASOM
0.4 —

Scenario 1 Scenario 2 Scenario3 Scenario 4 Scenario s

Figure 8-7 The relationship between Complexity (ASOM) versus Cohesion (ASOC)

8.8.2..2 Correlation of Complexity and Coupling (H3:B)

Null Hypothesis (Hy): ASOM and ASOU has no association.
Alternative Hypothesis (H,): ASOM and ASOU are correlated.

Using the framework dataset: the null hypothesis (Hg) is rejected because
we observed that the T = 7.234 which is greater than the T-critical value of
2.160, thus there is a statistically highly significant association between service
complexity (ASOM) and service coupling (ASOU). The statistic is computed as

follows:

> T = rvn-2 _ —0.895v15-2 _ 7934

vi-rZ [1-(-0895)2

» T-critical value= 2.160 , at a=.05(2 —tailed), df=n—-2=15-
2=13.

The alternative hypothesis (H,) is accepted, because the null hypothesis is
rejected and there is a significant association. The difference between the

observed T and T-critical value is 5.1 which more likely significant. This is

confirmed by the fact that the p-value is very small (close to 0.) and r =

181

Chapter 8 Service Identification Implementation

0.895. Thus, this means there is a correlation between ASOM and ASOU and
confirms our hypothesis (H3.B) that states ASOM and ASOU are correlated.
Based on the P-value, the association is a very strong positive
relationship, so high coupling among services seemingly increases the overall
complexity. In a service domain with a coarser-grained service, the coupling
value will always be zero. In contrast, in a fine-grained set of services, the
coupling value will be maximum unless overall complexity is decreased, which
implies that there are factors that might affect coupling besides complexity (see
figure 8-8.A, B and C). Since coupling and complexity metrics were driven
based on different concepts, such a strong relationship implies that controlling

coupling is a very important factor to reduce complexity.

A OMG Example 1
35
3 ﬁl\
A R == ASOM
li y&yel \ " ——ASOU
o /
o L&
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
B OMG Example 2

12

1 M
038
o6 v ——ASOU

04 .//‘/ = ASOM
0.2 /

o

Scenariol Scenario 2 Scenario 3 Scenario 4 Scenario 5

C Example 3
= /.—-
08

06 —e—ASOU
——ASOM
04
02
o /

Scenariol Scenario 2 Scenario 3 Scenario 4 Scenario 5

Figure 8-8 The relationship between Complexity (ASOM) versus Coupling (ASOU)

8.8.2..3 Correlation Association of Coupling and Cohesion (H3:C)

Null Hypothesis (Hy): ASOU and ASOC has no association.
Alternative Hypothesis (H,): ASOU and ASOC are correlated.

182

Chapter 8 Service Identification Implementation

Using the framework dataset: the null hypothesis (Hg) is rejected because
we observed that the T = 3.607 which is greater than the T-critical value of

2.160, thus there is a statistically significant association between service

coupling (ASOU) and service cohesion (ASOC). The statistic is computed as

follows:

rvyn-2 _ -0.525v15-2

Vi—rZ [1-(-0525)2

» T-critical value= 2.160 , at a =.05(2 —tailed) , df =n—-2=15-
2 =13,

> T = 3.607

The alternative hypothesis (H,) is accepted, because the null hypothesis is
rejected and there is a significant association. However, this accepting result is
weak since rs = —0.525 , with p-value = .044 (close to 0.05). However, this
means there is a correlation between ASOU and ASOC and confirms our
hypothesis (H3.C) that states ASOU and ASOC are correlated.

We confirm that the relationship between coupling and cohesion is an
inverse one. The main difference between the values of coupling and cohesion is
that cohesion might always occur among services regardless of the level of
granularity, whereas coupling does not occur in a service domain consisting of a

coarse-grained service (see scenario 1 in figure 8-9.A, B and C).

183

Chapter 8 Service Identification Implementation

A] OMG Example 1

2

s / —m
1 \- = O
/ —&— ASOC
05

0 / 2 4 2 4 A g 2 4

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

OMG Example 2
1.2
. |
0.8 ‘
0.6 ‘
i |
0.2 ‘
0!

/-\/-

\-/ -—— ASOC
il ASOU
Scenario 1 Scenario 2 Scenario3 Scenario4 Scenarios
Example3
0.8
0.6
0.4 —®— ASOC

\ ——ASOU
0.2

Scenario 1 Scenario 2 Scenario3 Scenario4 Scenario 5

Figure 8-9 The relationship between Cohesion (ASOC) versus Coupling (ASOU)

8.9 Limitations of Empirical Evaluation

8.9.1 Dataset size

The size of the dataset is a limitation on the validity of our study results. To
increase the reliability and accuracy of the results of the study, the sample size
needs to be sufficiently large. The framework dataset that was collected from
the syntax elements of service interfaces and generated using the algorithm
described in section 6.3.3. The defined algorithm generates five cases (five
different designs of service interfaces) for every WS-CDL document generated
from the model transformation. The algorithm could generate 15 cases for our
framework’s dataset from the three application scenarios, as every case is
considered to be as autonomous. We consider these cases as variances of
potential service interfaces. In a perfect dataset, these cases might be
representing all possible re-factored designs of service interfaces for one

scenario, and through the evaluations of all these cases, we are guided to the

184

Chapter 8 Service Identification Implementation

most optimal case. The number of all possible cases for a scenario can be

calculated by for all possible combinations of choreography tasks in a scenario.
The number of all possible combinations can be calculated using the “Bell

number”, which is the number of possible partitions of a set with n numbers
(Yang 1996). For example, for the Incident Management scenario that has nine
choreography tasks, thus n = 9, and all possible combinations equal results in
21140 subsets. The implementation of such a large number of service interfaces
is difficult, and not feasible with the current methodology.

With respect to this issue, we applied non-parametric methods such as
Shapiro-Wilk (test normality) and Spearman’s correlation coefficient (correction
test) whenever possible because they are usually more suitable and effective for
a small sample size. Removing potential outliers can increase the accuracy of
the result but the existing number of outliers is high particularly in a small
data set (15 pair of values). In fact, the focus of the current study is on the
relationships and the impact of service granularity (independent) on other
architectural attributes (dependent), not to draw conclusions about those
particular scenarios. This means that it is reasonable to address this limitation

when we tested the second and third research hypotheses.

8.10 Summary

In this chapter, we evaluated empirically the second part of the
implementations of our framework which is the service quality model. This
study used datasets generated from our framework for the empirical evaluation.

Using regression analysis we were able to find linear/nonlinear
relationships between service granularity (ASOG) and other architectural
quality attributes of complexity (ASOM), cohesion (ASOC) and coupling
(ASOU) within the dataset. For the dataset the relationships were described as
three mathematical equations for every dependent variable of ASOM, ASOC
and ASOU that can assist in predicting the value of ASOG. The nature of the
regression relationship (linear or nonlinear) between ASOG and other quality
attributes is variable and depends on the data distribution (normal or
non-normal). We found that statistically there are significant variances between
ASOG and ASOM, ASOC and ASOU at a 95% confidence interval. It can be
observed that the values for all dependent variables (ASOM, ASOC and
ASOU) supported the proposed research hypotheses. The dataset confirms

185

http://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

Chapter 8 Service Identification Implementation

clearly the same trend toward positive and negative directions, apart from the
relationship between ASOG and ASOU. The results fall into a relatively close
scale; e.g., the relationship between cohesion (ASOC) and complexity (ASOM)
within the framework dataset is a strong negative. This supports the second
research hypothesis in which the ASOG impacts positively the service quality
attributes of ASOM and ASOC and contradicts ASOG has a negative effect on
ASOU.

We used correlation analysis to investigate in detail the relationships
between the different service quality attributes of ASOM, ASOC and ASOU.
This analysis showed that all correlations are statistically significant between
these ASOM, ASOC and ASOU attributes with various degrees. These findings
emphasise the importance of being able to measure service quality attributes
and select trade-offs that suit the underlying requirements of the business. This
supports the third research hypothesis in which there are correlated
relationships between ASOM, ASOC and ASOU.

In conclusion, the service quality model provides significant evidence with
respect to the effect of service granularity on other service quality attributes
and confirms previous findings of the relationships between the different
attributes of service quality. The model also contributes to the field of service
computing and can be used to evaluate the service quality aspects of any
service interface design. While, the service quality model has been successfully
supporting our hypotheses and the model transformation architecture,
identifying the most optimum service interface design is still not possible
currently. However, in section 9.2.1, we propose a solution that defines
successfully a range of values with optimum values for a service interface
design.

Chapter 9 will summarise the research and discuses the potential future

work that can be used to extend contributes of this thesis.

186

CHAPTER 9 (CONCLUSIONS
AND FUTURE WORK

This final Chapter concludes the thesis with a review of its contributions to the
field of service computing and a presentation of extensions for future work. This
Chapter is structured as follows: section 9.1 summarises the details of our
research findings and scientific contributions and Section 9.2 explains a number

of potential extensions for development based on the framework developed.

9.1 Research Summary

The main objective of this thesis was to identify the optimum services for a
service-oriented system. In this thesis, the appropriate (optimum) services refer
to services with the precise level of granularity that balances the trade-off
between service quality attributes according to the user-system requirements.
While there has been intensive research in service-oriented systems, the service
identification process is still implicit in the service development cycle, with no
solid methodology or service quality measurements. The definitions of a service
need to consider different architectural levels, which results in an abstraction
gap. One feasible solution is to develop a methodology that identifies services
using a model-driven approach (MDA) with a special focus on service
granularity and service quality attributes.

The integration of SOA and MAD enables us to establish a new
theoretical base of the choreography concept for generating service interface
designs from a business process model. In order to bridge the abstraction gap,
several challenges need to be resolved. An analysis of the current research in
this field determined that most of the current approaches focus on analysis

techniques (such as clustering) to fill the abstraction gap. This isolates services

Chapter 9 Future Work And Conclusions

implementation from the business process modelling and does not consider the
importance of measuring service quality attributes and granularity. In our
thesis, we bridged the gap by automatically transforming the business process
choreography to service choreographies and then generated the service interface
designs (potential service implementations), using the service choreography
code to generate the service interface that contrasts the traditional practice of
generating service choreography from service interfaces in WSDL.

The chain of transformation programs in ATL used the semantics of the
service choreographies (WS-CDL) as a mediator to link the semantics of the
business process models (BPMN 2.0) and the service interface design (WSDL)
chain to automatically generate service interface designs (WSDL) from a
business process model (BPMN 2.0) using the service choreographies. To realise
this chain of transformation, the semantics of source and target models must be
compatible. In Chapter 4, we introduced a new extension for BPMN 2.0
specifications to facilitate the mapping between BPMN 2.0 and WS-CDL, the
extension was used in the BPMN meta-model for modelling transformation and
in the service quality model for metrics computations. The meta-models of
WS-CDL and WSDL are defined and supported by developing the theory of
potential usage of choreography in model transformation. We demonstrated the
transformation implementation using three application examples that showed
service choreography (WS-CDL) can be used to enable the transformation from
BPMN 2.0 standards to WSDL. In chapter seven, we showed pragmatically
that the transformation between source and target models generated are valid
XML files and that the consistency of semantics and behaviour was satisfied
throughout the transformation chain.

It is worth noting that our vision (in 2009, at the early stage of the PhD
research) of the importance of choreography in the context of business process
modelling was confirmed when OMG BPMN 2.0 included choreography
specifications as a new element in the BPMN 2.0 standard (BPMN 2.0 was
released in January 2011).

The service quality model is essential for quantifying the service
granularity and quality attributes that affect the selection of the optimum
service interface design. Existing research in service quality models ignores the
measurements for service granularity; despite the importance of the service
granularity issue in service design being addressed. In Chapter 5, we developed

a service quality model based on a definition of service granularity as a metric,

188

Chapter 9 Future Work And Conclusions

by which three metrics for internal service quality attributes of complexity,
cohesion and coupling are derived. In Chapter 8, the metrics were computed
using a generated dataset from our three application examples. We found that
there is a relationship between service granularity and other internal
architectural quality attributes of complexity, cohesion and coupling for both
datasets and there are statistically significant correlations between these
ASOM, ASOC and ASOU attributes. The empirical findings in this thesis
provide the ability to quantify important factors in service design, such as
service granularity, and confirm our understanding of the relationships between
attributes of service quality.

As a summary, the main contributions of our research work include:

e Model transformation software was developed to generate a service
interface design (WSDL) automatically from business process model
(BPMN 2.0) using service choreographies (WS-CDL). Required meta-

models to bridge the semantic gaps are described.

e A service quality model was developed to provide metrics for
measuring the service granularity and service quality attributes of
complexity, cohesion and coupling. The service quality model can be
used to select an optimum service interface design for a set of
services. We developed theories of these metrics based on our
understanding and existing literature in software quality
measurements. We provided a measurement for service granularity

that can be enhanced to include additional factors in the future.

e The integration of the implementations of model transformation and

service quality model can be used to deliver an optimum service

interface designs as shown in future work 9.2.1

In conclusion, this thesis discusses a framework that automatically
generates an optimum service interface design from a business process model
based on service choreography using model-driven technology and provides a
quality model for quantifying service quality attributes to reach the optimum
service interface design at an early stage, and in this way, contributes to the
field of the model-driven development of service modelling. We found that
identifying one optimum service interface design is not possible. However we
were successful in defining a range of values mathematically that generate
optimum values for a service interface design. This framework improves the

productivity of SOA development by automating traditional service-oriented
189

Chapter 9 Future Work And Conclusions

development, integrating the service quality assurance within the development
cycle, and increasing the robustness of developing service interface concerning
service granularity. Although some limitations remain before the framework
can be applied generally to Service Computing applications, we believe the
framework proposed, designed, implemented, and evaluated in this thesis

presents an important step in the modelling of service-oriented systems.

9.2 Future Work

This thesis can be extended in a variety of ways. The primary extension of this
work would be to identify the optimum service interface designs accurately
using the mathematical equations generated via the service quality model.
Another extension would be to develop a robustness digital dashboard that
integrates the chain of transformation programs with the service quality model.
A third extension would be having access to a large-size of data by enhancing

the extraction mechanism and re-factoring algorithm.

9.2.1 Finding Optimum Service Interface Designs

The optimum service design with the appropriate level of granularity that
balances trade-offs between the service quality attributes of complexity,
cohesion and coupling can be achieved using mathematical relationships. Since
we derived the mathematical relationships between the service granularity
factor and each service quality attribute individually, it is possible to find an
intersection point that satisfies different linear and nonlinear equations of the
quality attributes. The graphical method is used to specify the pair of points
where those simultaneous equations intersect and are satisfied. We assume that
the derived mathematical linear and nonlinear equations in the previous
chapter are valid equations and the best fit for one example.

Figure 9-1 shows three mathematical relationships for a particular service
interface of a set of services. The X-axis represents the values of the service
granularity and the Y-axis represents the values of the service quality
attributes. The intersection points between the equations presented coordinates
that correspond to a unique pair of values through a point (x, y). We have the
three equations, two linear and one nonlinear, with four unknown variables:
ASOG, ASOM, ASOC and ASOU. The optimum service design with the

appropriate level of granularity (ASOG) should have high cohesion (ASOC),
190

Chapter 9 Future Work And Conclusions

low coupling (ASOC), and low complexity (ASOM). In figure 9-1, the three
nonlinear /linear equations do not intersect at a unique point; therefore, no pair
of values (x, y) exists that might satisfy all three equations simultaneously.
According to our problem space, we only consider the pair of points located in
the top right quadrant, where both x and y are positive values because our
quality attributes always must have positive values. In earlier Chapter 8, we

derived the three equations for complexity, cohesion and coupling as follows:
e Complexity (ASOM) = (-0.534) + 1.588 * ASOG

e Cohesion (ASOC) = (-2.0573) + (11.5661) * ASOG + (-16.81) *
ASOG * ASOG + (7.2671) * ASOG * ASOG * ASOG

e Coupling (ASOU) = (-0.906) + (1.813) * ASOG

Complexity: ASOM, Coupling: ASOU, Cohesion: ASOC

Figure 9-1 Graph of three linear /nonlinear equations: Complexity, Coupling, and
Cohesion

The appropriate values for different quality attributes compared to the
service granularity values are defined as important pairs of coordinates. It is
not possible to find one point where all three equations intersect. Nevertheless,
good service design ideally aims to minimize the values of complexity and
coupling and maximize the value of cohesion. To simplify the demonstration,
we will present firstly complexity and cohesion attributes against the service
granularity and then add the coupling attribute to the chart.

Figure 9-2 shows two intersecting points (dots-line) between the linear
complexity equation and nonlinear cohesion equation. The first point (1.48,
1.82) shows that the level of service granularity (1.48) is where we can achieve
maximum values for complexity and cohesion at 1.82. In contrast, the second
point (0.59, 0.41) shows that the level of service granularity that is equal to

191

Chapter 9 Future Work And Conclusions

0.59 is where we can reduce values of complexity and cohesion to 0.41. In order
to select the optimum level of service granularity, we need to either select
between high cohesion and a high level of complexity at the first point, or else

accept a low level of cohesion with low complexity.

y

225 1+
sedl
175 +
15+
125 +
il

075 +

05+

-
/ '

i

[

1(0.59,0.41) /[i

025 + $ \\ 5
£ N i

i \ i

/

+ + + + t + + + N2 L i + + t + + +
175 15 125 -1 075 -05 -025 of6 05 075 1 125 15 175 2 225 25 275 3%
025 + /](024,-0.15)
o5y |

|
by
|

Complexity: ASOM, Cohesion: ASOC

Figure 9-2 Graph of three linear /nonlinear equations: Complexity and Cohesion
attributes

To complete the study of all intersected points by adding the coupling
attribute to the coordinates, there are three new intersecting points (blue dots)
between couplings, cohesion, and complexity on the y-axis, and service
granularity on the x-axis (Figure 9-3). Point (1.65, 2.09) represents the worst
service design scenario: high values of coupling and complexity equal to 1.65 at
the fine-grained level of service granularity at 2.09. Point (1.48, 1.82) shows
that at the level of service granularity that is equal to 1.48 we can achieve high
values of coupling where coupling is equal to 1.82. However, at the same level
of service granularity (1.48), the intersection of cohesion and complexity also
shows high complexity. Finally, point (0.68, 0.32) represents the service level of
service granularity equal to 0.32 where we can obtain minimum values of
coupling and cohesion. Consequently, we can infer from figure 9-3 that the
optimum service interface design is located in the grey area, representing the
values of the best levels of service granularity (between 0.59 and 1.48) and

quality attributes (between 0.32 and 1.82).

192

Chapter 9 Future Work And Conclusions

2 75y—-

25+
225 +
2+
175 +
15+
125 +

1 4+

05

025 +

N\

075 + //
(0.59,0.41) / /

/

+ + + 1 t +
75 -15 -125 -1 -075 -05 -025

(0.68,0.32) |
N

1 125 15 175

-0.25 +

Complexity: ASOM, Coupling: ASOU, Cohesion: ASOC

Figure 9-3 intersected points of three linear /nonlinear equations: Complexity, cohesion

and coupling attributes

We will assume that the 15 design scenarios generated for different OMG
examples represent the service interface design for a similar set of services.
Now, we can use these intersected points to evaluate scenarios of the service
interface design generated based on our metric models table (Table 1). As
shown in Table 1, scenario 6 reports the optimum service interface design result
that balances quality attributes of complexity, cohesion and coupling. This
provides the ideal solution for this example even with the value of coupling
equal to zero, suggesting that the right level of granularity for that service set
is 0.62906. In general, the results presented in this section further highlight the
promise of integrating quality metrics at the service modelling phase and shows

our experimental process can provide accurate results.

193

Chapter 9 Future Work And Conclusions

Table 9-1 Generated datasets for different scenarios of an OMG example based on the

quality metrics

Scenarios ASOG ASOM ASOC ASOU
1 0.722 0.076 0 0
2 1.087 1.204 0 2
3 1.148 1.408 0 1.6
4 1.106 1.291 0.142 1
5 1.111 1.333 0 1
6 0.629 0.395 0.5 0
7 0.75 0.625 0.25 1
8 1 1 0 0
9 0.850 0.767 0.166 0.333
10 0.875 0.916 0 1
11 0.653 0.426 0.333 0
12 0.833 0.722 0 0.25
13 0.8 0.666 0 04
14 1 1 0.1 0.6
15 1 1 0 0.5

9.2.2 An Intelligent Digital Dashboard

The objective of developing an intelligent digital dashboard is to provide a
robust interface for designers of service-oriented systems. The interface allows a
system designer to upload a service interface design in WSDL. The system
computes the service granularity value of the current service interface design
and internal quality attributes. When the system designer is able to define the
targeted values of complexity, cohesion and coupling, the system should provide
the range of values required to achieve the appropriate service interface design
that balances the trade-off between the service quality attributes. This

extension depends on the completeness of the extension proposed in section

9.2.1. The dashboard should provide functionalities in two ways:

e Complete service identification process. With a given a business
process model, the system designer can upload the business process
model and generate the service interface designs. The metrics would
then be calculated to generate the wunderlying mathematical
equations. The normalisation of the intersecting points will generate
the area of the optimum range of values that can be used to select

the appropriate service interface design.

194

Chapter 9 Future Work And Conclusions

e Partial service identification process. This assumes that service
interface designs (WSDL) already exist that can be processed for

metric calculations to attain the appropriate service interface design.

9.2.3 Expand the Dataset of the Study

The dataset size in this thesis was limited and this factor inevitably affect the
reliability of the research findings, especially in the results generated from
studying the relationships between the service quality attributes. Access to an
large sized database could be achieved by first improving the extraction

mechanism for online web services (such as Amazon Web Services (AWS)) that

was introduced in section 6.5, and second, enhancing the suggested algorithm

to generate more than five service-interface designs for each service
choreography file (WS-CDL code).

195

References

Akiyama, F. (1972). “An Example of Software System Debugging.” Information
Processing 71 Proceedings of the IFIP Congress 1.

Alba, M. and S. Gil (2011). Validation and Calibration of Quantitative Models
for Software Development Effort and Size Estimation. Computing Congress
(CCC), 6th Colombian.

Alistair, B., M. Dumas, et al. (2005) “A Critical Overview of the Web Services
Choreography Description Language (WS-CDL).” BPTrends Newsletter

Alistair, B., M. Dumas, et al. (2005). Service Interaction Patterns, Springer
Berlin / Heidelberg. 3649: 302-318.

Arsanjani, A. (2004) “Service-Oriented Modeling and Architecture How to
Identify, Specify, and Realize Services for your SOA.”

Arsanjani, A. (2005) “Toward A Pattern Language for Service-Oriented
Architecture and Integration, Part 1: Build a service eco-system.”

Arsanjani, A. and A. Allam (2006). Service-Oriented Modeling and
Architecture for Realization of an SOA. The IEEE International Conference on
Services Computing, SCC ’06. .

Arsanjani, A., S. Ghosh, et al. (2008). “SOMA: A Method for Developing
Service-oriented Solutions.” IBM Systems Journal 47(3): 377-396.

Aversano, L., L. Cerulo, et al. (2008). Mining Candidate Web Services from
Legacy Code. The 10th International Symposium on Web Site Evolution, 2008.
WSE 2008. .

Baeza-Yates, R. and B. Ribeiro-Neto (1999). Modern Information Retrieval,
Addison-Wesley-Longman.

Barker, A., C. Walton, et al. (2009). “Choreographing Web Services.” IEEE
Transactions on Services Computing 2(2).

Basci, D. and S. Misra (2009). “Measuring and Evaluating a Design Complexity
Metric for XML Schema Documents.” Journal of Information Science and
Engineering 25(5): 1405-1425.

196

Bell, M. (2008). Service-Oriented Modeling : Service Analysis, Design, and
Architecture. Hoboken, NJ, USA, John Wiley & Sons.

Bell, M. (2010). SOA Modeling Patterns for Service Oriented Discovery and
Analysis. New Jersey, John Wiley & Sons, Inc.

Benaben, F., J. Touzi, et al. (2008). Mediation Information System Design in a
Collaborative SOA Context through a MDD Approach. The First International
Workshop on Model Driven Interoperability for Sustainable Information Systems
(MDISIS'08). Montpellier, France.

Benedicto, J., I. Rosenberg, et al. (2010). Analysis of Standard Process
Models:D6.3-C, EDIANA Consortium.

Berners-Lee, T. (2003). Web Services Program Integration across Application
and Organization Boundaries, W3C.

Bezivin, J., H. Bruneliere, et al. (2005). Model Engineering Support for Tool
Interoperability. The 4th Workshop in Software Model Engineering (WiSME
2005). Montego Bay, Jamaica.

Bezivin, J. and O. Gerb (2001). Towards a Precise Definition of the
OMG/MDA Framework. The 16th Annual International Conference on
Automated Software Engineering. Los Alamitos, IEEE Computer Soc: 273-280.

Bezivin, J., S. Hammoudi, et al. (2004). Applying MDA approach for Web
service platform. Los Alamitos, IEEE Computer Soc.

BEzivin, J., F. Jouault, et al. (2003). “First Experiments with the ATL Model
Transformation Language: Transforming XSLT into XQuery.” Conference on
Object-Oriented Programming Systems, Languages, and Applications.

Bianchini, D., C. Cappiello, et al. (2009). “P2S: A Methodology to Enable Inter-
organizational Process Design through Web Services.” Conference on Advanced
Information Systems Engineering: 334-348.

Bieberstein, N., S. Bose, et al. (2005). Service-Oriented Architecture Compass:
Business Value, Planning, and Enterprise Roadmap, IBM Press.

Biehl, M. (2010). Literature Study on Model Transformations. Stockholm,
Sweden, , Technical Report, Royal Institute of Technology.

Biron, P., K. Permanente, et al. (2004). “XML Schema Part 2: Datatypes
Second Edition, W3C Recommendation.” from
http://www.w3.org/TR/xmlschema-2/.

Boehm, B. W. (1976). “Software Engineering.” Computers, IEEE Transactions
on C-25(12): 1226-1241.

Boerner, R. and M. Goeken (2009). Identification of Business Services
Literature Review and Lessons Learned. AMCIS 2009 Proceedings.

Boerner, R. and M. Goeken (2009). Service Identification in SOA Governance
Literature Review and Implications for a New Method. The 3rd IEEE
International Conference on Digital Ecosystems and Technologies, 2009. DEST

’09. 2009.

197

http://www.w3.org/TR/xmlschema-2/

Booch, G., R. Maksimchuk, et al. (2007). Object-Oriented Analysis and Design
with Applications, Pearson Education.

Bordbar, B. and A. Staikopoulos (2004). Modelling and Transforming the
Behavioural Aspects of Web Services. The 3rd Workshop in Software Model
Engineering (WiSME@UML 2004) at The 7th IEEE International Conference on the
UML 2004. Lisbon, Portugal.

Brahe, S. and B. Bordbar (2006). “A Pattern-Based Approach to Business
Process Modeling and Implementation in Web Services.” International
Conference on Service Oriented Computing: 166-177.

Braunwarth, K. and B. Friedl (2010). Towards a Financially Optimal Design of
IT Services. The 2010 International Conference on Information Systems (ICIS).

Brereton, P. and D. Budgen (2000). “Component-Based Systems: a
Classification of Issues.” Computer 33(11): 54-62.

Briand, L., S. Morasca, et al. (1996). “Property-Based Software Engineering
Measurement.” IEEE Trans. Softw. Eng. 22(1): 68-86.

Bucchiarone, A. and S. Gnesi (2006). A Survey on Services Composition
Languages and Models. The International Workshop on Web Services Modeling
and Testing (WS-MaTe2006), Palermo, Sicily, ITALY.

Cambronero, M. E., G. Diacuteaz, et al. (2009). “A Comparative Study
Between WSCI, WS-CDL, and OWL-S.” The 2009 IEEE International
Conference on e-Business Engineering. ICEBE 2009.

Chen, F., S. Y. Li, et al. (2005). Feature Analysis for Service-Oriented
Reengineering.

Chen, F., Z. Zhang, et al. (2009). Service Identification via Ontology Mapping.

The 3rd Annual IEEE International Computer Software and Applications
Conference, 2009. COMPSAC ’09. .

Chinosi, M. and A. Trombetta (2011). “BPMN: An Introduction to the
Standard.” Computer Standards & Interfaces 34(1): 124-134.

Clark, J., C. Casanave, et al. (2001) “The ebXML Business Process
Specification Schema Version 1.01.”

Coalition, W. M. (2008) “XML Process Definition Language, version 2.1.”

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences.
Hillsdale, N.J., L. Erlbaum Associates.

Cohen, S. (2007). “Ontology and Taxonomy of Services in a Service-Oriented
Architecture.” Microsoft. Architecture Journal 11.

Costagliola, G., F. Ferrucci, et al. (2005). “Class Point: An Aapproach for the

Size Estimation of Object-Oriented Systems.” IEEE Transactions on Software
Engineering 31(1): 52-74.

198

Czarnecki, K. and S. Helsen (2006). “Feature-Based Survey of Model
Transformation Approaches.” Ibm Systems Journal 45(3): 621-645.

Davis, M., R. Sigal, et al. (1994). Computability, Complexity, and Languages :
Fundamentals of Theoretical Computer Science. Boston, Academic Press,
Harcourt, Brace.

Debnath, N., F. A. Zorzan, et al. (2007). “Transformation of BPMN
Subprocesses based in SPEM Using QVT.” The 2007 IEEE International
Conference on Electro/Information Technology: 170-175.

Decker, G., O. Kopp, et al. (2008). “An Introduction to Service
Choreographies.” IT - Information Technology 50(2): 122-127.

Decker, G., O. Kopp, et al. (2007). BPEL4Chor: Extending BPEL for Modeling
Choreographies.

Decker, G., O. Kopp, et al. (2009). “Interacting Services: From Specification To
Execution.” Data & Knowledge Engineering 68(10): 946-972.

Decker, G., H. Overdick, et al. (2006). On the Suitability of WS-CDL for
Choreography Modeling. In Proceedings of Methoden, Konzepte und
Technologien Fur die Entwicklung von dienstebasierten Informationssystemen
(EMISA 2006), Hamburg, Germany.

Decker, G. and M. Weske (2011). “Interaction-Centric Modeling of Process
Choreographies.” Inf. Syst. 36(2): 292-312.

Delessy, N. and E. Fernandez (2008). A Pattern-Driven Security Process for
SOA Applications. Los Alamitos, Ieee Computer Soc.

Deutsch, M. and R. Willis (1988). Software Quality Engineering: A Total
Technical and Management Approach, Prentice-Hall, Inc.

Dijkman, R. and M. Dumas (2004). “Service-oriented Design: A multi-viewpoint
Approach.” International Journal of Cooperative Information Systems 13(4):
337-368.

Dobson, G., R. Lock, et al. (2005). QoSOnt: a QoS Ontology for Service-centric
Systems. The 31st EUROMICRO Conference on Software Engineering and
Advanced Applications, 2005.

Dobson, G., R. Lock, et al. (2005). Quality of Service Requirement Specification

using an Ontology. The 13th Int'l Requirements Engineering Conf. (RE 05),
2005.. .

DongSu, K., S. Chee-yang, et al. (2008). A Method of Service Identification for
Product Line. The Third International Conference on Convergence and Hybrid
Information Technology, 2008. ICCIT 08, 2008.

Dwivedi, V. and N. Kulkarni (2008). A Model Driven Service Identification
Approach for Process Centric Systems. The SERVICES-2. IEEE Congress on
Services Part II, 2008,.

Endrei, M., J. Ang, et al. (2004). Patterns : Service-Oriented Architecture and
Web Services IBM Redbooks Durham, NC, USA, IBM.

199

Erl, T. (2005). Service-Oriented Architecture Concepts, Technology, and
Design. Crawfordsville, Indiana., Prentice Hall/PearsonPTR

Erl, T., A. Karmarkar, et al. (2008). Web Service Contract Design &
Versioning for SOA, Prentice Hall, 2008.

Erradi, A., S. Anand, et al. (2006). Evaluation of Strategies for Integrating
Legacy Applications as Services in a Service Oriented Architecture. The
Proceedings of the IEEE International Conference on Services Computing,
IEEE Computer Society.

Erradi, A., S. Anand, et al. (2006). SOAF: An Architectural Framework for
Service Definition and Realization. The IEEE International Conference on
Services Computing, 2006. SCC ’06.

Erradi, A., N. Kulkarni, et al. (2009). Service Design Process for Reusable
Services: Financial Services Case Study. Service-Oriented Computing, ICSOC
2007: 606-617.

Fenton, N. E. and M. Neil (1999). “Software Metrics: Successes, Failures and
New Directions.” Journal of Systems and Software 47(2-3): 149-157.

Fischer, L. (2005). Workflow Handbook, Layna Fischer.

Fraley, C. and A. E. Raftery (1998). “How Many Clusters? Which Clustering
Method? Answers Via Model-Based Cluster Analysis.” The Computer Journal
41(8): 578-588.

Frankel, D. (2003). Model Driven Architecture: Applying MDA to Enterprise
Computing, John Wiley & Sons.

Funk, C., C. Kuhmunch, et al. (2005). A Model of Pervasive Services for
Service Composition. On the Move to Meaningful Internet Systems 2005: Otm
2005 Workshops, Proceedings. 3762,: 215-224.

Galster, M. and E. Bucherer (2008). A Business-Goal-Service-Capability Graph
for the Alignment of Requirements and Services. IEEE Congress on Services
2008, Pt I, Proceedings: 399-406.

Genon, N., P. Heymans, et al. (2011). Analysing the Cognitive Effectiveness of
the BPMN 2.0 Visual Notation. Proceedings of the Third international
conference on Software language engineering. Eindhoven, The Netherlands,
Springer-Verlag.

Gu, Q. and P. Lago (2010). Service Identification Methods: A Systematic
Literature Review Towards a Service-Based Internet, Springer Berlin /
Heidelberg. 6481: 37-50.

Haeng-Kon, K. (2008). “Modeling of Distributed Systems with SOA & MDA.”
TIAENG International Journal of Computer Science 35(4).

Haesen, R., M. Snoeck, et al. (2008). On The Definition of Service Granularity

and its Architectural Impact. Advanced Information Systems Engineering,
Proceedings.

200

Haines, M. and M. Rothenberger (2010). “How a Service-Oriented Architecture
May Change the Software Development Process.” Communications of the ACM
53(8): 135-140.

Hidaka, S., Z. Hu, et al. (2009). Towards a Compositional Approach to Model
Transformation for Software Development. Proceedings of the 2009 ACM
symposium on Applied Computing. Honolulu, Hawaii, ACM.

Hirzalla, M., J. Cleland-Huang, et al. (2009). A Metrics Suite for Evaluating
Flexibility and Complexity in Service Oriented Architectures. Service-Oriented
Computing, ICSOC 2008 Workshops, Springer-Verlag: 41-52.

Hwang, S., W. Liao, et al. (2010). Web Services Selection in Support of Reliable
Web Service Choreography. The 2010 IEEE International Conference on Web
Services (ICWS), 2010.

ISO/IEC (2001). The ISO/IEC 9126-1:2001 Software Engineering: Product
quality-Quality model.

ISO/IEC (2007). ISO/IEC 25020:2007:Software Engineering - Software Product
Quality Requirements and Evaluation (SQuaRE) -Measurement Reference
Model and Guide.

Jamshidi, P., M. Sharifi, et al. (2008). To Establish Enterprise Service Model
from Enterprise Business Model. The IEEE International Conference on
Services Computing, 2008. SCC ’08.

Jianzhi, L., Z. Zhuopeng, et al. (2005). A Grid Oriented Approach to Reusing
Legacy Code in ICENI Framework. The IEEE International Conference on
Information Reuse and Integration, Conf, 2005. IRI -2005

Johnson, R. A. and G. Bhattacharyya (1986). Statistics: Principles and
Methods. New York, NY, USA, John Wiley& Sons, Inc.

Jouault, F. and I. Kurtev (2006). Transforming models with ATL. Satellite
Events at the Models 2005 Conference. J. M. Bruel. Berlin, Springer-Verlag
Berlin. 3844: 128-138.

Kamari, S. and M. Khayyambashi (2010). A Semantic Algorithm for Automatic
Interface Generation of Services Participating in Choreographies. The 2nd

International Conference on Education Technology and Computer (ICETC),
2010.

Kan, S. and C. Jones (2004). Metrics and Models in Software Quality
Engineering, Addison Wesley.

Kim, H. and R. Lee (2008). MS2Web: Applying MDA and SOA to Web
Services, Springer Berlin / Heidelberg. 149: 163-180.

Kim, S., M. Kim, et al. (2008). Service Identification Using Goal and Scenario
in Service Oriented Architecture. The 15th Asia-Pacific Software Engineering
Conference, 2008. APSEC ’08. .

Kim, Y. and K. Doh (2007). The Service Modeling Process Based on Use Case

Refactoring. Business Information Systems, Proceedings. W. Abramowicz. 4439:
108-120.

201

Kim, Y. and K. Doh (2009). Formal Identification of Right-Grained Services for
Service-Oriented Modeling. Proceedings of the 10th International Conference on
Web Information Systems Engineering. PoznaD, Poland, Springer-Verlag.

Klazar, M. (2003). “Bell Numbers, Their Relatives, and Algebraic Differential
Equations.” Journal of Combinatorial Theory, Series A 102(1): 63-87.

Kleppe, A., J. Warmer, et al. (2003). MDA Explained. The Model Driven
Architecture: Practice and Promise, Addison-Wesley.

Klose, K., R. Knackstedt, et al. (2007). Identification of Services — A
Stakeholder-Based Approach to SOA Development and its Application in the
Area of Production Planning. The 15th European Conference on Information
Systems. St. Gallen, Switzerland,2007.

Kohlborn, T., A. Korthaus, et al. (2009). “Identification and Analysis of
Business and Software Services : A Consolidated Approach.” IEEE
Transactions on Services Computing 2(1): 50-64.

Kohlborn, T., A. Korthaus, et al. (2009). Service Analysis - A Critical
Assessment of The State of the Art. The 17th European Conference on
Information Systems. Verona.

Kohlmann, F. and R. Alt (2007). Business-Driven Service Modelling - A
Methodological Approach from the Finance Industry. The First International
Working Conference on Business Process and Services Computing, 2007,,
Leipzig, Germany., GI.

Kokash, N. (2006). A Comparison of Web Service Interface Similarity
Measures. Proceeding of the 2006 conference on STAIRS 2006: Proceedings of
the Third Starting AI Researchers’ Symposium, IOS Press.

Kolovos, D., L. Rose, et al. (2012). The Epsilpon Book.

Kopp, O. and F. Leymann (2009) “Do we need internal behavior in
choreography models?” Proceedings of the 1st CentralEuropean Workshop on
Services and their Composition ZEUS 2009 438, 68-73.

Kopp, O., F. Leymann, et al. (2011). Modeling Choreographies: BPMN 2.0
Versus BPEL-based Approaches. Proceedings of the 4th International
Workshop on Enterprise Modelling and Information Systems Architectures,
EMISA 2011. Hamburg, Germany, GI. 190: 225-230.

Kopp, O., F. Leymann, et al. (2010) “Mapping Interconnection Choreography
Models to Interaction Choreography Models.” Proceedings of the 2nd
CentralEuropean Workshop on Services and their Composition ZEUS 2010
(2010), 81-88.

Korherr, B. and B. List (2007). Extending the EPC and the BPMN with
Business Process Goals and Performance Measures.

Kowalski, C. (1972). “On the Effects of Non-Normality on the Distribution of
the Sample Product-Moment Correlation Coefficient.” Journal of the Royal
Statistical Society. Series C (Applied Statistics) 21(1): 1-12.

Krafzig, D., K. Banke, et al. (2005). Enterprise SOA: Service Oriented
Architecture Best Practices. Upper Saddle River, NJ, Prentice Hall.

202

Kulkarni, N. and V. Dwivedi (2008). “The Role of Service Granularity in A
Successful SOA Realization A Case Study.” The 2008 IEEE Congress on
Services Part 1 (SERVICES-1).

Lane, S. and I. Richardson (2011). “Process Models for Service-Based
Applications: A Systematic Literature Review.” Information and Software
Technology 53(5): 424-439.

Li, S. and H. Miao (2008). “Modeling the Patterns of WS-CDL Interactions
Based on Process Algebra.” 2008 International Seminar on Future Information
Technology and Management Engineering.

Linthicum, D. (2003). Next Generation Application Integration: From Simple
Information to Web Services, Addison Wesley Press.

List, B. and B. Korherr (2006). “An Evaluation of Conceptual Business Process
Modelling Languages.” Applied Computing 2006. 21st Annual ACM
Symposium on Applied Computing.

Liu, Y. and I. Traore (2007). Complexity Measures for Secure Service-Oriented
Software Architectures. Proceedings of the Third International Workshop on
Predictor Models in Software Engineering, IEEE Computer Society.

Luo, W. H. and Y. A. Tung (1999). “A Framework for Selecting Business
Process Modeling Methods.” Industrial Management & Data Systems 99(7-8):
312-319.

Ma, Q., N. Zhou, et al. (2009). Evaluating Service Identification with Design
Metrics on Business Process Decomposition. The IEEE International
Conference on Services Computing, 2009. SCC ’09. .

Martin, D., M. Burstein, et al. (2004). OWL-S: Semantic Markup for Web
Services. 22 November 2004, W3C.

McCall, J., P. Richards, et al. (1977). “Factors in Software Quality.” Nat’l
Tech.Information. Service. 1, 2 and 3.

Medjahed, B., B. Benatallah, et al. (2003). “Business-to-Business Interactions:
Issues and Enabling Technologies.” The VLDB Journal 12(1): 59-85.

Mellor, J. and M. Balcer (2002). Executable UML: A Foundation for Model-
Driven Architecture, Addison-Wesley Professional.

Mellor, S., K. Scott, et al. (2004). MDA Distilled: Principles of Model-Driven
Architecture, Addison Wesley.

Mendling, J. and M. Hafner (2008). “From WS-CDL Choreography to BPEL
Process Orchestration.” Journal of Enterprise Information Management 21(5):
525 - 542.

Milanovic, M. (2007). Modeling Rules on the Semantic Web. Faculty of
Organizational Sciences. Belgrade, University of Belgrade. Master Thesis.

Moha, N., S. Sen, et al. (2010). “Evaluation of Kermeta for Solving Graph-
based Problems.” International Journal on Software Tools for Technology
Transfer (STTT) 12,(3): 273-285.

203

Mohagheghi, P. and V. Dehlen (2008). Developing a Quality Framework for
Model-Driven Engineering. Models in Software Engineering. G. Holger,
Springer-Verlag: 275-286.

Mowbray, T. and R. Malveau (1997). CORBA Design Patterns, John Wiley &
Sons.

Munson, J. (2003). Software Engineering Measurement, Auerbach Publications.
Nayak, N., A. Nigam, et al. (2006). Concepts for Service-Oriented Business
Thinking. The IEEE International Conference on Services Computing, 2006.
SCC ’06. 2006.

Nguyen, V. (2010). Improved Size and Effort Estimation Models for Software

Maintenance. The 2010 IEEE International Conference on Software
Maintenance (ICSM), 2010.

OASIS Standard (2007) “Web Services Business Process Execution Language
(WSBPEL) 2.0.”

OMG (2002). Meta Object Facility (MOF) Specification, OMG.
OMG (2002). OMG/RFP/QVT MOF, 2.0 Query/Views/Transformations, OMG.

OMG (2003). MDA Guide Version 1.0.1. Framingham, Massachusetts, OMG,
Tech.

OMG (2006). Object Constraint Language (OCL) Specification, OMG.

OMG (2008). Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification, OMG.

OMG (2008) “OMG Business Process Modeling Notation , V1.1.”

)
OMG (2009) “OMG Business Process Modeling Notation , V1.2.”
OMG (2010) “BPMN 2.0 by Example.”
)

OMG (2011) “Business Process Model and Notation (BPMN 2.0).”

Pandian, R. (2003). Software Metrics: A Guide to Planning, Analysis, and
Application, Taylor & Francis.

Papazoglou, M. and W. Van (2006). “Service-Oriented Design and Development
Methodology.” International Journal of Web Engineering and Technology 2(4).

Papazoglou, M. P., P. Traverso, et al. (2007). “Service-Oriented Computing:
State of the Art and Research Challenges.” Computer 40(11): 38-45.

Peltz, C. (2003). “Web Services Orchestration and Choreography.” Computer
36(10): 46-52.

Perepletchikov, M., C. Ryan, et al. (2007). Cohesion Metrics for Predicting
Maintainability of Service-Oriented Software. The Seventh International
Conference on Quality Software, 2007. QSIC ’07.2007.

204

Perepletchikov, M., C. Ryan, et al. (2007). Coupling Metrics for Predicting
Maintainability in Service-Oriented Designs. The 18th Australian Software
Engineering Conference, 2007. ASWEC 2007. .

Perepletchikov, M., C. Ryan, et al. (2005). The Impact of Software
Development Strategies on Project and Structural Software Attributes in SOA.
The OTM 2005 Workshops On the Move to Meaningful Internet Systems
2005,. Berlin, Germany, Springer. 3762: 442-451.

Perepletchikov, M., C. Ryan, et al. (2010). “The Impact of Service Cohesion on
the Analyzability of Service-Oriented Software.” IEEE Transactions on Services
Computing 3(2): 89-103.

Qian, K., L. Jigang, et al. (2006). Decoupling Metrics for Services Composition.
The 5th IEEE/ACIS International Conference on Computer Information
Science, Honolulu, HI,, IEEE Comput. Soc.

Rabhi, F., H. Yu, et al. (2006). A Service-Oriented Architecture for Financial
Business Processes: A Case Study in Trading Strategy Simulation. Information
Systems and e-Business Management, Springer-Verlag.

Ramollari, E., D. Dranidis, et al. (2007). A Survey of Service Oriented
Development Methodologies. The Second FEuropean Young Researchers
Workshop on Service Oriented Computing, Leicester, UK.

Recker, J., M. zur Muehlen, et al. (2009). Measuring method complexity: UML
versus BPMN. The 15th Americas Conference on Information Systems AMCIS
2009. San Francisco, California, Association for Information Systems.

Reldin, P. and P. Sundling (2007). Explaining SOA Service Granularity: How

IT-Strategy Shapes Services Institute of Technology Linkoping University. Master
Thesis.

Rolland, C. and R. CentreKaabi (2007). An Intentional Perspective to Service
Modeling and Discovery. The 31st Annual International Computer Software
and Applications Conference, 2007. COMPSAC 2007. .

Rosen, M., B. Lublinsky, et al. (2008). Applied SOA: Service-Oriented
Architecture and Design Strategies. New York, Wiley.

Ross-Talbot, S. (2004). Web Services Choreography and Process Algebra.
SWSL Meeting,2004.

Rossi, P. and G. Fernandez (2003). Definition and Validation of Design Metrics
for Distributed Applications. Proceedings of the 9th International Symposium
on Software Metrics, IEEE Computer Society.

Rud, D., A. Schmietendorf, et al. (2006). Product Metrics for Service Oriented
Infrastructures. The 6th International Workshop on Software Measurement and
DASMA Metrik Kongress (IWSM/MetriKon 2006). Potsdam, Germany:
161-174.

Seidewitz, E. (2003). “What models mean.” Software, IEEE 20(5): 26-32.

Senivongse, T., N. Phacharintanakul, et al. (2010). “A Capability Granularity
Analysis on Web Service Invocations.” Proceedings 2010 World Congress on
Engineering and Computer Science (WCECS 2010).

205

Shapiro, S. and M. Wilk (1965). “An Analysis of Variance Test for Normality.”
Biometrika 3,(52).

Shim, B., S. Choue, et al. (2008). A Design Quality Model for Service-Oriented
Architecture. The 15th Asia-Pacific Software Engineering Conference, 2008.
APSEC '08.

Shirazi, H. M., N. Fareghzadeh, et al. (2009). “A Combinational Approach to
Service Identification in SOA.” Journal of Applied Sciences Research 5(10):
1390-1397.

Sindhgatta, R., B. Sengupta, et al. (2009). Measuring the Quality of Service
Oriented Design. Proceedings of the 7th International Joint Conference on
Service-Oriented Computing. Stockholm, Springer-Verlag.

Sneed, H. M. (2001). Wrapping Legacy COBOL Programs Behind an XML-
interface. Reverse Engineering, 2001. Proceedings. Eighth Working Conference
on.

Stewart, G. and A. Chakraborty (2010). Service Identification Through Value
Chain Analysis and Prioritization. Proceedings of the 16th Americas Conference
on Information Systems : Sustainable IT Collaboration around the Globe. Lima,
Peru, Association for Information Systems (AIS).

Sweeney, R. (2010). Achieving Service-Oriented Architecture : Applying an
Enterprise Architecture Approach, Wiley.

Taylor, I., M. Shields, et al. (2003). “Distributed P2P computing within Triana:
a galaxy visualization test case.” Proceedings International Parallel and
Distributed Processing Symposium.

Tetlow, P., J. Pan, et al. (2006) “Ontology Driven Architectures and Potential
Uses of the Semantic Web in Systems and Software Engineering.”

Van Nuffel, D. (2007). “Towards a Service-Oriented Methodology: Business-
Driven Guidelines for Service Identification.” On the Move to Meaningful
Internet Systems 2007: OTM 2007 Workshops: 294-303.

W3C (1999). XSL Transformations (XSLT), W3C.
W3C (2004) “The W3C Web Services Architecture.”

W3C (2005). Web Services Choreography Description Language Version 1.0, W3C.

Wang, X., S. HU. , et al. (2007). Integrating Legacy Systems within The
Service-oriented Architecture. Power Engineering Society General Meeting,
2007. IEEE.

Wiersma, R. (2010). Finding an Optimum in Service Granularity, HU
University of Applied Sciences. Master Thesis.

Xiao-jun, W. (2009). “Metrics for Evaluating Coupling and Service Granularity
in Service Oriented Architecture.” The 2009 International Conference on
Information Engineering and Computer Science. ICTECS 2009.

Yan, X. and X. Su (2009). Linear Regression Analysis: Theory and Computing,
World Scientific Publishing Company.

206

Yang, H., Z. Cui, et al. (1999). Extracting Ontologies from Legacy Systems for
Understanding and Re-Engineering. The 23rd International Computer Software
and Applications Conference, IEEE Computer Society.

Yang, W. (1996). “Bell Numbers and K-Trees.” Discrete Mathematics 156: 247-
252.

Yousef, R., M. Odeh, et al. (2009). BPAOntoSOA: A Generic Framework to
Derive Software Service Oriented Models From Bsiness Process Architectures.
The Second International Conference on the Applications of Digital Information
and Web Technologies, 2009. ICADIWT °09.

Zaha, J., A. Barros, et al. (2006). Let’s Dance: A Language for Service Behavior
Modeling. On the Move to Meaningful Internet Systems 2006: CooplS, DOA,
GADA, and ODBASE, Springer Berlin / Heidelberg. 4275: 145-162-162.

Zdun, U. and S. Dustdar (2007). “Model-Driven and Pattern-Based Integration
of Process-Driven SOA Models.” International Journal of Business Process

Integration and Management (IJBPIM) 2(2): 109-119.

Zhang, L. J., N. Zhou, et al. (2008). “SOMA-ME: A platform for the model-
driven design of SOA solutions.” Ibm Systems Journal 47(3): 397-413.

Zhang, Q. and X. Li (2009). Complexity Metrics for Service-Oriented Systems.
The Second International Symposium on Knowledge Acquisition and Modeling,
2009. KAM ’09.

Zhang, Z., R. Liu, et al. (2005). Service Identification and Packaging in Service
Oriented Reengineering. The Conference of SEKE.

Zhang, Z. and H. Yang (2004). Incubating Services in Legacy Systems for
Architectural ~ Migration. The 11th Asia-PacificSoftware Engineering
Conference, 2004.

Zheng, L. and J. Keung (2010). Software Cost Estimation Framework for
Service-Oriented Architecture Systems Using Divide-and-Conquer Approach.
The 2010 Fifth IEEE International Symposium on Service Oriented System
Engineering (SOSE),.

Zou, Y. and K. Kontogiannis (2001). Towards a Web-centric Legacy System

Migration Framework. The IEEE Workshop on Network Centric, held in
conjunction with ICSE 2001, Toronto, ON.

207

Appendix A

A-1. An Example for BPMN-to-WS-CDL

Due to space limitations, we will give some example code of the code
transforming BPMN-to-WS-CDL. Listing A-1.1 shows the ATL rule
“ChoreProcess2Package” shows the creations of the basic elements of the code of
service choreography in WS-CDL. The meta-models “LCOMPBPMN” and WSCDL
provide properties and definitions of elements in BPMN and WS-CDL, respectively.
The rule creates an instance for elements of WS-CDL corresponding to matched
BPMN elements. These instances points to the definitions of these elements in next
rules. For example, every instance of the “LCOMPBPMN.Paticipant” element is

mapped to an instance called a “relationshiptype”.
Listing A-1.1 ATL rule for ChoreProecss2Package

L|(?ul version="1,0" encoding="10-8859-1"%

s elanent of a choreegraphy I<Rackage i :verstons"2.0" xalns:ut="hbtp: v, ong.ong/ " xalnse="HSCDL" mi:ide" 12

) J | <infornationype nane="Ask More Parts" element="tns:Ask More Parts" attributeKind="3"
{| <infomationfype nane"Confimation US* elenente"tns:Confimation MS" attributeKinde"
) <infornationtype nane="Reject MS" element="tns:Reject MS" attributeKind="3'/>
)| <infornationfype nane="Request Pom" elensnt="tns:Request Pom" attributeKind="3"/>
1, <coletypes nanes"Nanufacture Role">
<oehavior nane="Hanufacture Bebavior" interface="Manufacture Behavior Interface"/>
¢[roletypesy
<toletypes nane="Custoner Role"
<oehavior nane="Custoner Behavior" interface="Custoner Behavior Interface"/>
¢[roletypesy
<roletypes name="Supplier Role">
Coehavor nanen"Supplier Behavior" interfaces'Supplier Behavior Interface’/>
I ¢roletypesy
| <eoletypes nane="Bidder Role">
Coehavior nane="Bidder Behavior" interface="Bidder Behavior Interface"/>
1</ roletypes)
{Qelationshiptype nanes"Custoner Manufacture" />

process to a P: ent 1
5 rule ChoreProcass2Package
86 fron

§ © LoowPPN!Definitions in IN (s.oclIsTypeOf (LCOMPBPMN!Definitio
od o
89t WSCOLIPackage (
targetNanespace <- . targatNanespace,
91 roletypes < LOOMPBPMN!Participant.alllnstances()
L) Choreography <- LCONPBRMN!Choreoqraphy.allInstances() ,
X informationfype <-LCOMPBPMNIMessage,alllnstances() ,
relationshiptype <-LOONPBEMNIMessageFlow.allInstances

A <elationshiptype nave="HanufacturelCustoner" >

As an example, after creating the instance “relationshiptype”, we map the
definitions of BPMN:Messageflow element to WS-CDL:RolationsipType in ATL rule
“MessageFlowRelationshiptype”. The definitions of the RolationsipType element
include the name attributes. (At line 124) the name is defined based on invoking two

helpers (a function) shown in listing A-1.2, which are “get1” and “get2” helpers.

208

121 - elenent (D)

[0 mle Hessage?]

frm

§ ¢ LCORR MessageFlow in TN (5,00 IsKind0f (LOOMPRPAN MessagePlow

to

Listing A-1.2 ATL rule for MessageFlowRelationshiptype

i

uwRelationshiptype-l .

£ HSCILRelationshipType |

19)
1)

--Pnil--

nae {- Semence 5.getl), 5.0ed())

1€ <roletypes nane="idder Role"

£ nessageflov 17 <behavior nane="Bidder Behavior" interface="Ridder Behavior Tnterface"f’
in S-(IL 1§ ¢roletypes

b
?
?
b

i—relationshiptype nane="CustonerMiamnfactore”
| <relationshiptype name="ManufacturedCustomer”
[<relationshiptype nane="NanufzctureSupplisr”
1 <relationshiptype nane="ManufacturedCustoner”
3 <relationshiptype name="ManufacturelBidder />
M <relationshiptype nane="ManufactureCustoner® >
25 <Choreography nane="Custoner (rder” root="false" coordination="true">
<variable name="Ask Nors Parts" element="tns:Ask More Parts" attributeRind="3"/>
<variable name="Confimation MS" elawent="tns:Confimation 5" attributeKind="3"/>
<variable nane="Reject 15" elenent="tns:Reject MS" attributeRind="3"/>

Listing A-1.3 shows the “getl” and “get2” helpers which map the sourceRef and
targetRef attributes in MessageFlow element of BPMN into a combined name of the
relationshiptype element. At line 9, for the instance of Messageflow, map the value of

sourceRef when the name exits. At line 14 in “get2” helper, for the instance of

Messageflow, map the value of targetRef when the name exits.

10
11
12
13
14
15

Listing A-1.3 ATL helpers for getl and get

—— This helper map the name of the source intiates the interaction
helper context LCOMPBPMN!MessageFlow def : getl() : String =
self.sourceRef ->collect(e | e.name)->debug() ;

——end

—— This helper map the name of the receiver of the interaction
helper context LCOMPBPMN!MessageFlow def : get2() : String =
self.targetRef ->collect(e | e.name)->debug() ;

——end

A-2 An Example for WS-CDL-to-WSDL

Here is an ATL rule example for mapping WS-CDL to WSDL. Listing A-2.1
gives an example of matched rule which is “Package2Description” for the Package
element of WS-CDL!Package of the WS-CDL meta-model. It maps the Package of the
WS-CDL model into the Description element in the WSDL!Description meta-model. It
maps the attribute name of the package element and two instances of informationType
and Choreography elements in BPMN into Types and Interface elements in WSDL.
Line 104-106 shows the “do” statement invoked for code structure. Within the instance

informationTyep creating, we invoked a lazy rule “EXMessageTypes”.

209

Listing A-2.1 ATL rule for Package2Description

1<7ml version="1.0" encoding="150-8859-1"7>

93 -- This rule maps the defintions of the package element 0¢xmt XM i sversion="2.0" xmlns:xni="http:/ /v, ong.org/TMI" xnlns:xsi="htty
94 -- (BEMN) to Descirption element in WS-CDL i .

f) Lo RSP eleset & 3 <Description name="IncidentManagenent">

role PackagelDescription() bypes xsstype=" 1:isSchena

% from ' =

9 s : WSCDL!Package in IN (s.oclIsTypeOf (WSCDL!Package))

%8t 6| ¢/types>

9t : wsdlIDescription (1

00 nae < s.name + 'Service’ i

i1 types < s.infomationType ->collect(e| thisiodnle EiMessigeTypes(el), 9 <interface name="InoidentManagenentinterface"

i interface <- s.Choreography ->collect(e| thisModule.EXChorT0Interfacd\e)) 10 <operation name="Custoner Has a Problen>
103) |

100 dof .

5 thiskdlet < t; I foperation>

‘;\ B 15 \</interface)
6 ..
17¢/Description’

Listing A-2.2 shows the lazy rule EXMessageTypes that tranformd detailed
definitions of the InformationType of the WS-CDL meta-model into the XsSechmea
element within the Types element of the WSDL meta-model. It shows the mapping of
the name and attributekind attributes in WS-CDL into name and type in WSDL.

Listing A-2.2 ATL lazy rule for EXMessageTypes

147-1azy rule EXMessageTypes {
148 from s @ WSCDL!InformationType (s.oclIsTypeOf (WSCDL!InformationType))

149 tot: wsdll¥sSchema (

150 elementDeclarations <- elemdef

151),

152 elemdef : wsdl!XsElementDeclaration (
153 nane <- s.name,

154 typeDefinition <- if s.attributéRisd= '3' then 1¢mml version="1,0" encoding="ISO-8859-l"?>

155 complex \ , , , .
156 else if 5. attributekind = '2' then Do M1 i cversion="2. 0" xlns:xnd="http: /. ong. ozg/IMI" xnlns xsi="h
157 userDefined gscription name="TncidentManagenent”>

158 else if s.attributeKind = '1' then Loyl 10 "

o simple I <types g=' 1 XsSchena">

160 else OclUndefined endif endif endif b <elenentDeclaratiohh nane="Message 4"

1 b 6 <typeDefinition xsi:type=" 1:XsComplextypeDefinition"/>
162 simple @ wsdl!XsSimpleTypeDefinition (

163 contents <- con 1 $ 15

164 h b <ftypesy

165 complex : wsdl!XsComplexTypeDefinition (i "

166 sontent < oon b Ctypes xsi:type=" 1:sSchena">

167) 10 <elenentDeclarations nane="llessage 5"

168 userDefined : wsdl!¥sUserDefinedDefinition (L Lk et AT
I contents <- oo 1l <typeDef1n1t10nlx51.type LiIsSimlefypeDefinition'/>
170), 12 <[elenentDeclarationsy

17 con : wsdl!¥sParticle (13 </types>

172 term <- ter

173), 1

174 ter : wsdl!XsModelGroup (15</Description}

175 compositor <- fsequence

176)

177 }

210

A.3 Service Element Extractor

Listing A-3.1 shows the parser that is developed on top of an open source SOA

tool provided by a company called Predic8 (as mentioned previously). It extracts local

.wsdl files and can be used to extract online web services such as AWS.

Listing A-3.1 a sample code for service element extractor method

A43-private static wvoid ListWSDLElements () {

int Total Ser = 0;
int Total:pper = 0;
int Total_MEs = 0;
int Total Secms = 0;
WSDLParser parser = new WSDLParser() ;
// Definitions wsdl = parser.parse ("resources/CopyofSl.wsdl") ;
Definitions wsdl =
parser.parse ("http://mechanicalturk.amazonaws .com/AWSMechanicalTurk/AWSMechanical

for (Service service : wsdl.getServices()) {
System.ocut.println("Service:-" + service.getName () + ", "),
Total Ser++;
for (Port port : service.getPorts()) {
System.cut.println("Port:-" + port.getMName() + ", ");
}
System.cut.println("Total of Services: " + Total_sar);

for (Operation op : wsdl.getOperations()) {
System.cut.println("Operations:-" + op.getName() + " , ");
// System.out.println("Operations:-" + op.getTypeQName (s type) + ", ") ;
Total Oper++;
}
System.cut.println("Total of Operations: " + Total Oper);

for (Message ms : wsdl.getMessages()) {
System.cut.println("Messages:-" + ms.getName() + ", ");
Total Mes++;
}

System.ocut.println("Total of Messages: " + Total Mes);

}

A.4 Computation of Service quality metrics

Listing A-4.1 shows the main method for metres analyser and calculator

packages. We used the class Scanner for parsing elements from a txt files and then pass

syntax to private method for metrics computation. The calculation these metrics are

dependent on the calculation of service granularity which is presented in the
calculations of ODG and SOA.

211

Listing A-4.1 a sample code for main method for service metrics computation
18-public static void main(String[] args) throws ICException {

49 try {

50 Scanner scanner = new Scanner (new BufferedReader (new

51 FileReader ("resources/Amazon Fulfillment Web Service/Input/Sci3/Scienariod,27.txt")));
52 scanner.useDelimiter (System.getProperty("line.separater"));

53 PrintWriter MyOutput = new PrintWriter("resources/Amazon Fulfillment Web Service/Output/Sci3
b4 {

55 float[] Line one = ParselLinsOnz(scanner.nextLine());

56 float[] Line tow = ParseLinsTow(scanner.nextLine());

51 float[] Line thrid = ParsslLineThird(scanner.nextLine());

58 int Line fourth = ParsslinsFourth(scanner.nextLine());

59 float[] ODG = CalculateODG(Line one,Line tow); //Data Granularity Score:

60 float[] 80G = Caleulate50G{0ODG,0FG); //Functionality Granularity Score

61 float ASOG = CalculatedS0G(S0Gtotal,NS); [/Average Service Operations Granularity Score
62 float ASOM = CalculatedSOM(SOGtotal,NS); [/Average Service Operation Complexity (ASOM)
63 float SOCOFG = CaleulateModeQFG(OFG,NO); /[/mode of OFG

64 float S0C0DG = CaleulateModsODG(ODG,NO); //mode of DG

65 double SOCMax = CaleculateMax(OFG,0DG,SOCOFG,SOCODG) ; //Max mumber of occurrences of 27
66 double ASOC = CalculateASOC(S0CMax,Ns);

67 double ASQU = CalculateASOU{Line_fourth,KS);

68 }

69 MyOutput.println("This Service Amazon Fulfillment Service with Three web services");
70 MyOutput.println("final line of result should be (ASOG), (ASCM), (ASOC), (ASOU)as follow"
! Myoutput.print (" ("+ AS0G + ", " + ASOM + ", " + ASOC + ", " + ASOU + ")");

12 MyOutput. flush() ;

13 MyOutput.close() ;

14

15 scanner.close() ;

16 }

11 catch (FileNotFoundException e) {

18 e.printStackTrace();

79 System.err.println("Error:NUMBER 1"); }

80 catch (IOException e) {

81 e.printStackTrace(); System.err.println("Error:NUMBER 2");}

82 }

212

Appendix B

B.1 WS-CDL code for an Incident Management Scenario

In listing B-1.1, the hierarchical structure document shows the results of mapping
between BPMN 2.0 and WS-CDL graphically for Incident Management scenario. We
can see that transformed elements from BPMN diagram correctly transformed to

corresponding WS-CDL element based on the suggested mapping.

Listing B-1.1 The hierarchical structure of the IncidentMangment.cdl

= version
= mrmilns P e v S IO S 1 el
= wminsoosd DA e e v B B0 1ML S-Chema-nstanoe
= RGP AL T | PR e 3 SO0 A3 Incatentianagmentxacnpi. X
= mrra e i PR A e Tt L g
[r— NTormaton Type D fntons
- information Type
= rearTee = ebkerment = anribuateind
1 Message_1 s Message_1 F
2 Message_z e osnage_ v
3 Measage 3 v Mesaage_ 3 2
a4 Meassage_ 4 e Messege_ 3
5 Mosmage_= [ERN T ———
| Measage & e esssge 8 3
T Meassagpe 7 tna Messags_7T 3

Etoite defobon

e) Dehavior
R - Bmhaviar
= masme R
| ntertace WP Cs DB hanvor_intertace
2 HeyAccountlanasger_Role - Bmhaviar
= masme MeyAcoountlanager_Benavar
| = ntorface ey CoDunslanager_Benaveor_nberface
3 Imtevemupportagend_Fol - Behaviar
= masmne 1 ateveltuppomarent_Behaws
| = mtorface 1 stie et upportagent_Behawor_intertace
- - Bemhaviar
= masmne Znasewelupeonarent_Behaw s
| = mtorface ZndueceimupEonagent_Behavicr_interface
5 - Behaviar
= masmne Sofwaredevelper_Behawor
| = mtorface S fw aredewelsper_Behavorn_interface
O Sorramerst Felatco

- relationshiptyope
= narme

1 | ey A ccountil an s er- WP cust o
2 WEPCLomer- ey A cowntiana ger
B K C OO M A B e TR G
A Ry S S A e G T e e
5 1allevemuspportagent-Inde et uEoonagent
6| Dl et D GoTia gt S0 Mo e gy oo G
T Bndevelmupponsgent- latievelsupoortagent
B 1stlevemuspportagen-KeyAocoumtilanager
B Somwarsdeveoper-Zndevelsupportagent
10 WP cuatomer- Key A ccoantilaneger

Choreography

= name Incidentianagement

root talse
= coordination true
- wariable (7
= name |= "

Message_1 tns:Message_1 z
Message_2 tns:Message 2 1

Message_3 tns:Message_3 2
Message_4 tns:Message_4 3
Message_S tns:Message_S 1

Message_6 tns:Message_ & 3
Message_7 tns:Message 7 3

RIEIE IFSITIINIE

- sequence

- interactions (2
= name = operation = actio... {} exchanges £} participate

1 |CustomerHasaProb|CustomerHasaProblem |1 ~i exchanges ~i participate r
lem
2 |Getpr rip | Getpr ription |3 > exchanges i participate r=
_ tion
workunit (2
= name = guard = repeat {} interactions
1 |Canhandiemyself? false false ~i interactions (2
2 |Resut? false false ~i interactions (2
~f interactions
= name Explainsolution
= operation Explainsolution
= actionType 3
=i exchanges na
_ =i participate

« workunit

name Unsure?
= guara false
repeat false

_ =i interactions
- interactions (=
= name = operation = actio... |{} exchanges <3 participate
1 Providefesdbackfo Providefeedbackforzndie 1 =i exchanges =i participate r
r2ndlevelsupport velsupport

Pr Pr Astle 1 ~i exchanges ~i participate r
ristievelsupport velsupport
3 |Providefeedbackfo |Providefeedbackioracco 1 > exchanges
_ raccountmanager |untmanager

finalizeChore
] e cnachore

i participate

213

B.2 WSDL code for an Incident Management Scenario
Listing B-2.1 shows the results of mapping between WS-CDL and WSDL graphically

for Incident Management scenario.

Listing B-2.1 the hierarchical structure of the IncidentMangment.wsdl

i XML
- description
= targetNamespace http//www. .com/wsdi2
= xmins http://fwww.w3.org/nsi/vsdl
= xmins:tns http: /v ww. .com/wsdi20:
= xmins:whitp http://sc .org/ P/
= xrr hittp:// g/ /
{-- Comment Types definitions
- types
- De:
i xs-typeDefinition
vy
~ xs:typeDefinition «
~
> xs:typeDefinition
= D
i xs-typeDefinition
-l tDe:
> xs-typeDefinition ¢
=~
i xs:typeDefinition n
>~ De i name
Ly wi xs:-typeDefinition name=_1 XsComple
-~ Comment Interface definitions
- interface
= name incidentManagementinterface
> operation name=CustomerHasaProblem
- operation
= Getproblemdescription
~ sagelabet t ents=tns:Message_4 tns:Message_S
~ input messagelabe =tns:Message_4 tns:Message_S
5 {> actionType 3
- Operation
= name Providefeedbackfor2ndieveisupport
~ output messagelabel=0Out elements=tns:Message_1
> input messagelabe
Ll {) actionType 1
- Operation
= name Providefeedbackforistieveisupport
~ output messagelabel=0Out elements=tns:Message
>~ input messagelabel=In
- <) actionType 1
- Operation
= name
> output me
i input me«
€Y actionTvoe 1

- Operation

= name Explainsolution

> output messagel abel=0ut elements=tns:Message_3
i input messagelabe

2 {> actionType
- Operation

= name Ask1stievelsupport
i output messagelab
=i input messagelabel

- {> actionType 2

- Operation
= name Ask2ndieveisupport
> output messagelabel=Out
~ input m agelabe

) {> actionType
- Operation

= name
> output messag
~i input messagelabe

1 elements=tns:Message_6

=1 = {> actionType

{&-- Comment Binding definitions

- Binding

name Inci A indi

wsoap_protocol http://www.w3.0rg/2003/05/soap/bindings/HT TP/

whttp_methodD... http://w ww.w3.0org/2003/05.

interface tns:incidentManagementinterface

bindingOperation op

bindingOperation op

bindingOperation op

bindingOperation op

bindingOperation op
P
P
e

eration=Customer Has a Problem

problem description

bindingOperation o
bindingOperation o
bindingOperation o
bindingOperation o
{&- Comment Service definitions

- Service

L

name incidentManagementService
interface tns:inci A
= =3 > endpoint narn

IncidentiManagenm: fwewwe incidentMana

214

Appendix C

C.1 ASOG/ASOM Relationships Framework’s dataset

Table C-1.1: Tests of Normality

Kolmogorov-Smirnov* Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
ASOM 114 15 200" 966 15 799

a. Lilliefors Significance Correction

*. This is a lower bound of the true significance.

Model ‘ R ‘RSquare

Table C-1.2: Model Summary b

Adjusted R Square

Std. Error of the Estimate

1| 976 | 953 950 | 085198140 |
a. Predictors: (Constant), ASOG

b. Dependent Variable: ASOM

Table C-1.3: ANOVA®
Model Sum of Squares df | Mean Square F Sig.

1 Regression 1.934 1 1.934 266.375 .000a

Residual .094 13 .007

Total 2.028 14

d. Predictors: (Constant), ASOG
b. Dependent Variable: ASOM

C.2 ASOG/ASOC Relationships Framework’s dataset

Table C-2.1: Tests of Normality

Kolmogorov-Smirnov® Shapiro-Wilk
Statistic df Sig. | Statistic df Sig.
ASOC .385 15 .000| .664 15 .000

a. Lilliefors Significance Correction

215

C.3 ASOG/ASOU Relationships Framework’s dataset

Table C-3.1: Tests of Normality

Kolmogorov-Smirnov® Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
ASOU 135 15 200 935 15 322

a. Lilliefors Significance Correction

*. This is a lower bound of the true significance.

Table C-3.2: Model Summary
‘ Model ‘R ‘ R Square ‘ Adjusted R Square ‘Std. Error of the Estimate

1] 83 | 697 | 673 | 290553058
a. Predictors: (Constant), ASOG

Table C-3.3: ANOVA"

Maodel Sum of Squares df Mean Square F Sig.
1 Regression 2.520 1 2.520 | 29.854 .000°
Residual 1.097 13 .084
Total 3.618 14

a. Predictors: (Constant), ASOG
b. Dependent Variable: ASOU

216

