
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


UNIVERSITY OF SOUTHAMPTON

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

End-to-End Solutions for a Droplet Microfluidic

Autonomous Experimentation System

by

Gareth Lyle Jones

A thesis submitted in partial fulfillment for the degree of Doctor of

Philosophy

November 2012

http://www.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:gj07r@ecs.soton.ac.uk




UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Doctor of Philosophy

END-TO-END SOLUTIONS FOR A DROPLET MICROFLUIDIC

AUTONOMOUS EXPERIMENTATION SYSTEM

by Gareth Lyle Jones

Scientific discovery is limited by finite experimental resources. Therefore, careful

strategic planning is required when committing resources to an experiment.

Often the decision to commit resources is based upon observations made from

previous experiments. However real-world data is inherently noisy and often

follows an underlying nonlinear trend. In such circumstances the decision to

commit resources is unclear. Autonomous experimentation, where machine

learning algorithms control an experimentation platform, is one approach that

has the potential to deal with these issues and consequently could help drive

scientific discoveries. In the context of applying autonomous experimentation to

identify new behaviours from chemical or biological systems, the machine learning

algorithms are limited by the capability of the hardware technology to generate on-

demand, complex mixtures from a wide range of chemicals. This limitation forms

the basis for the work described in this thesis. Specifically this thesis documents

the development of a hardware system which is designed to support scalability, is

capable of automating processes, and is built from technology readily accessible

to other researchers. The hardware system is derived from droplet microfluidic

technology and allows for microscale biochemical samples of varying composition

to be automatically created. During the development of the hardware system,

technical challenges in fabrication, sensor system development, microfluidic design

and mixing were encountered. Solutions to address these challenges were found and

are presented as, fabrication techniques that enable integrated valve microfluidic

devices to be created in a standard chemistry laboratory environment without

need for sophisticated equipment, a compact UV photometer system built using

optical semiconductor components, and a novel mixing strategy that increased the

mixing efficiency of large droplets. Having addressed these technical challenges and

in fulfilling the aims set out above, the work in this thesis has sufficiently improved

hardware technology to free the machine learning algorithms from the constraint

of working with just a few experimental variables.
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Chapter 1

Introduction

Scientific discovery, whether it be in the chemistry laboratory or on the surface

of Mars, is ultimately constrained by the availability of experimental resources.

Given finite resources there is a requirement for experimental strategies to consider

the most effective use of resources; are resources committed to a wide survey or

invested in fully characterising one small region of interest? Making a decision from

previously collected data is often difficult, particularly when dealing with data

that contains nonlinear behaviours that are not easily appreciated. One means by

which these issues can be addressed is to utilise an autonomous experimentation

approach.

Autonomous experimentation (Plouvier et al., 1992; Du and Lindsey, 2002;

Matsumaru et al., 2004) is an approach that uses a system that automatically

plans and conducts experiments. An autonomous experimentation system consists

of machine learning algorithms that drive experimenting apparatus. Autonomous

experimentation can be considered to belong to the field of computational scientific

discovery, which is in itself is a branch of artificial intelligence. Early work

in computational scientific discovery focused on model scenarios where historic

discoveries from several disciplines including biology, chemistry, physics, and

mathematics were at first replicated using a variety of computer algorithms

(these are reviewed by Langley et al. 1987). The field progressed towards using

algorithms to support discovery of new scientific knowledge, mostly through

finding patterns in data (Langley, 2000). A recent trend has been towards using the

machine learning algorithms to both analyse data and drive the experimentation

process (Matsumaru et al., 2002; King et al., 2004; Whelan and King, 2004) in an

effort to conduct more effective experiments.

1
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However a major limiting factor to autonomous experimentation systems, particu-

larly in biological and chemistry disciplines, is the experimental apparatus. Taking

for example the exploration of the response of a biological system to predetermined

chemical environments, the scope for the composition of the chemical environment

is large in terms of the number of individual chemicals that could be used and in

the potential combinations of chemicals. To achieve the production of complex

chemical environments requires that the experimental apparatus be capable of

handling numerous chemical inputs. Often researchers are reliant upon existing

technology offerings such as the robotic laboratory systems employed by King

et al. (2004). Existing systems are unlikely to be a feasible approach for many

researches as existing systems are not necessarily, efficient at handling resources,

easily integrated, or scalable due to component costs. One technology that has

the potential to address these issues specifically in the biological and chemical

disciplines is microfluidic technology.

Microfluidic technology enables fluid manipulation at the microscale. Conse-

quently typical fluid volumes can be as low as atto-litres (10−18) (Whitesides,

2006) therefore offering substantial chemical resource savings over conventional

macroscale equipment. Multiple laboratory processes can be incorporated into a

single microfluidic device no larger than a few centimetres square. The term lab-

on-chip is used as a general description of such devices. Automated microfluidic

devices can be created through utilising microvalves (see Oh and Ahn 2006 for

a review) making possible the creation of complex devices such as that shown in

Figure 1.1.

The aim of the work documented in this thesis is to investigate microfluidic

technology for autonomous experimentation in an effort to address the issues

highlighted above. Specifically the objectives of the work are to demonstrate a

system that, supports scalability in its design, is capable of automating processes,

and is built from technology readily accessible to other researchers.

As a starting point for the work, the problem of investigating the computational

properties of enzymes was selected as it is an example of where autonomous

experimentation is thought to be particularly useful. The complex functionality

of an enzyme can be explored by monitoring the often nonlinear response of an

enzyme to chemical signals, such as the addition of ions (Zauner and Conrad, 2001;

Matsumaru et al., 2002). From the review on basic enzyme theory in chapter 2,

it can be seen that the functions of creating dilutions, mixing, and performing

measurements are required to be integrated into the microfluidic device design. It
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Figure 1.1: A microfluidic comparator used to test bacteria protein
expression. Experiments are conducted in parallel. There are 256 reaction
chambers and 2056 integrated microvalves. Image modified from (Thorsen
et al., 2002)

should be noted that these functions are also common to many other biological

and chemical experiments.

Adopting microfluidic technology for autonomous experimentation is challenging

with no standardised approach to solving issues such as mixing, dilution,

automation, and sensor interfacing, in existence. Consequently as highlighted in

Figure 1.2 many different aspects of microfluidic research were covered during

this work. While the author had developed a new electrohydraulic interface

(appendix E) as well as a new out-of-plane detection channel (appendix F), this

thesis concentrates on where the author had advanced the state-of-the-art the

most, specifically in fabrication, sensing, automation and design.

Following the conceptual device design in Figure 1.3, integrating the functions of

mixing and diluting, as well as providing automated sample handling required the

inclusion of on-chip membrane valves (see section 3.4) in the device design. While

there are common processes to the fabricating devices containing membrane valves

(section 3.5), two issues were encountered. Current fabrication methods reported
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Figure 1.2: A research map summary of the work reported in this thesis.

in the literature tend to rely upon cleanroom environments, sophisticated equip-

ment and costly materials. In chapter 4 it is demonstrated that valved technology

can be implemented using alternate materials and fabrication techniques suitable

for a standard chemistry laboratory, thus improving the accessibility to valved

technology. Second the bonding and alignment of multiple device layers to create

three-dimensional microfluidic devices is problematic. Although there are many

potential solutions in the literature, not one solution is sufficiently reliable to

become the standard approach. Using water as a lubricant as a potential solution

to alignment and bonding is explored in detail in chapter 5, and it is found that by

appropriate modification of the alignment and bonding process, reliable bonding

and accurate alignment can be achieved, which is crucial in the production of

valved devices.

Before designing and implementing a particular microfluidic design, consideration

has to be given to the physics of fluids at the microscale. In chapter 3 it will be

seen that fluid behaviour at the microscale is easily more predictable and linear

in nature than what is normally experienced at the macroscale. This allows for

microfluidic networks to be treated in analogous fashion to electrically resistive

networks thus simplifying the design of device functionality, and it is the same

approach that was used to ensure scalability in the device design in chapter 7.

The linear nature of microscale flow however, poses a significant problem to the

mixing of fluids. Chaotic flow, which is largely missing from microscale flow,

is required for rapid mixing. There is no general solution to improve mixing
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Figure 1.3: Conceptual design of the autonomous experimentation
system. Machine learning algorithms drive the automated experimentation
platform based on observations made from past experiments. In the
context of enzyme assays the functions, dilution, mixing and measurement
are required on a microfluidic chip.

times in microfluidic devices and as such there exist numerous passive and active

methods in the literature, several of which are reviewed in section 3.2. Particularly

interesting are the mixing methods available in the droplet microfluidics approach

(section 3.3), where discrete aqueous samples are suspended as droplets in a bulk

organic flow. Rapid mixing can be achieved far more simply with droplets than in

microfluidic devices that manipulate solely aqueous flows.

A droplet microfluidics approach to the design of the microfluidic device was chosen

as it was also the most appropriate means to obtaining dilution functionality.

However mixing in droplets was actually found to be particularly difficult,

particularly when sample volumes were increased to obtain a wider range of

dilutions. Both passive (appendix D.3) and active mixer designs were trialled

in this work, with the mixing problem overcome by using the novel active mixing

solution presented in chapter 7.

In the context of the autonomous experimentation system (Figure 1.3), the UV

photometer provides the machine learning algorithms the necessary capability

to observe experiments in order to drive the automated hardware. Chapter 6

documents the development of a photometer system suitable for spectroscopic

monitoring (c.f. chapter 2) of enzyme reactions. The photometer system

features ultraviolet optical semiconductor components, that are low-cost yet offer
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sufficient performance to enable the system to be comparable to a commercial

spectrophotometer.

As shown in the conclusions (chapter 8), the aims of demonstrating a system

that, supports scalability in its design, is capable of automating processes, and is

built from technology readily accessible to other researchers, has been achieved.

Consequently the previous limits of the experimental apparatus specifically for

chemical and biological studies, have now been overcome. Machine learning

algorithms for autonomous experimentation are no longer constrained to working

with just a few experimental variables.



Chapter 2

Theory: Enzymes

This chapter describes basic enzyme theory and forms part of the background

to this thesis. The topics covered include, enzyme structure, function, kinetics,

factors affecting enzyme catalysis, and the absorption spectroscopy method to

monitoring enzymatic catalysed reactions. It will be seen that enzymes are

complex molecules with a functionality that is capable of being modulated by

many factors.

2.1 Enzyme structure

The building blocks of enzymes are amino acid molecules. There are twenty

different types of amino acid common to all enzymes. As seen from Figure 2.1a,

amino acids have a general structure that consists of an amine group (NH2)

covalently bonded to a carbon atom (α carbon), which in turn is covalently

bonded to a carboxyl group (COOH). Side chain groups covalently bond to the

α carbon and it is from the composition of the side chain groups of an amino

acid (denoted R), distinctions between amino acids are made. The side chains

vary both physically (e.g. mass and length) and chemically. The side chains can

be polar either exhibiting either positive, negative or neutral charge, or they can

be non-polar. Amino acids covalently bond together via a condensation reaction

between the carboxyl group of amino acid and amine group of another amino

acid. The bond between amino acids is referred to as a peptide bond. Ribosomes

synthesize the peptide bonds between amino acids allowing for polymer chains to

be constructed. The polymer chains of amino acids are referred to as polypeptides.

Each polypeptide chain contains a free amine group and a free carboxyl group,

7
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Figure 2.1: The building blocks of an enzyme are the amino acids. The
general structure of an α amino acid molecule (a). The central carbon
atom, conventionally known as the α carbon, is covalently bonded to
an amine group (left) and a carboxyl group (right). The R represents
a side chain. Two amino acids form a peptide bond (C-N) through a
condensation reaction (b). The peptide bond provides structural rigidity,
while the N-Cα and Cα-N bonds are free to rotate.

referred to as the N-terminus and C-terminus respectively. The sequence of amino

acids within a polypeptide chain is specific, which gives an enzyme its unique

properties. The sequence of amino acids within a polypeptide chain is referred

to as the primary structure of an enzyme. Enzymes can contain one or more

polypeptide chains in their structure. A enzyme containing only one chain is

referred to as monomeric, while an enzyme containing multiple polypeptide chains

is referred to as oligomeric (Nelson and Cox, 2005).

The peptide bond between amino acids has partial double bond character,

which restricts rotation between the amino acids. However the N-Cα and Cα-

N bonds are free to rotate. This allows for the amide (N-H) and carboxyl

(C=O) groups between different amino acids to interact and form hydrogen bonds.

Given favourable structural (steric) arrangements and environmental conditions,

the hydrogen bonding causes a polypeptide chain to distort and fold yielding

characteristic three-dimensional structures. These folded structures are referred

to as the secondary structures of an enzyme and can be further stabilised by

disulphide bonds forming between Cysteine amino acids. Common forms of

secondary structure are α helices, β conformations and β turns, two examples

are shown in Figure 2.2.

α helices resemble a spring with the amino acid sidegroups oriented outwards

from the centre of the structure. They are rigid and insoluble compared to β

conformations, which are soft and flexible. β conformations take on a planar form,

from which they too orient their amino acid sidegroups outwards away from the

plane on both sides. The planar form can resemble a pleated sheet or instead take
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Figure 2.2: Structural elements of an enzyme. The primary structure (left)
is formed by the sequence of amino acids, which bond yielding polypeptide
chains. With interactions between the individual amino acids, a chain folds
into characteristic three-dimensional secondary structures. The secondary
structures continue to fold and stack into a functional tertiary structure.
An enzyme may consist of multiple subunits that are not necessarily alike.

on the form of loops or turns. The loops and turns allow for a folded polypeptide

chain to be stacked resulting in an overall compact three-dimensional shape or

subunit referred to as the tertiary structure of an enzyme (Nelson and Cox, 2005).

Within the tertiary structure hydrophobic amino acid side chains orient themselves

towards the interior of the structure forming a distinctive cleft or pocket. The

cleft or pocket is called the active site and is where reactions are catalysed. The

arrangement of the amino acid sidegroups within the active site provides the

enzyme with the feature of specificity. Enzymes are capable of discriminating

between molecules based on a the combination of shape, charge, and hydropho-

bic/hydrophilic characteristics. The specificity of an enzyme can be absolute,

therefore only catalysing the reaction of one particular substrate molecule. Or

the specificity of an enzyme can be group specific, where several different but

closely related substrate molecules can be catalysed by the same enzyme. Multiple

folded polypeptide chains (or subunits) can link together through non-covalent

interactions forming an overall quarternary structure. Linked subunits can be

identical or different, and can provide either regulatory or catalytic functions.

Next the enzyme catalytic process is discussed.



10 Chapter 2 Theory: Enzymes

2.2 Enzyme catalysis

Consider a reactant (or substrate) S that proceeds in a spontaneous (δG <

0) chemical reaction to transform into a product P, represented graphically in

Figure 2.3. Energy is required in the transformation of the reactant to product.

The energy requirement increases and peaks as the reaction progresses. At the

peak, which is known as the transition state, the substrate exists in a different

unstable chemical form that is equally likely to yield a product or return back

towards its original form. The energy required to reach the transition state of

a molecule is known as the activation energy (G+
+). By exceeding the activation

energy product molecules are formed (Palmer, 1981).

Large activation energy peaks indicate a greater energy requirement to obtain a

product molecule, and therefore a slower reaction. The rate of a reaction can be

increased by either supplying more energy to the reactant molecules (e.g. through

heating) or by using catalysts. A catalyst lowers the activation energy of a reaction.

Therefore at an equivalent temperature, a catalysed reaction proceeds more

quickly than the same uncatalysed reaction. In an enzyme-catalysed reaction,

catalysis takes place when the enzyme and substrate molecule bind and form an

enzyme-substrate (ES) complex. Within the ES complex a number of catalytic

mechanisms can take effect. The catalytic mechanism include: general acid-base

catalysis, covalent catalysis, metal ion catalysis and non-covalent interactions such

as proximity and orientation effects (Nelson and Cox, 2005).

In general acid-base catalysis protons are removed and supplied to a substrate,

which allows for the transition state to be stabilised and thus increasing the

likelihood of product formation. Amino acids in the active site with sidegroups

that act as proton donors or acceptors participate in general acid-base catalysis.

Example amino acids that participate in general-acid base catalysis include:

Arginine, Tyrosine and Cysteine.

In covalent catalysis, an amino acid within the active site containing a nucleophilic

group donates an electron pair to an electrophilic chemical species in the substrate.

This results in a covalent bond forming between amino acid residue and substrate.

The covalent bond acts to stabilise the transition state and therefore increase the

likelihood of product formation. Amino acids that participate in covalent catalysis

include: Lysine, Serine and Aspartic acid. Before a product is released from the

enzyme, the covalent bond is broken returning the enzyme to its original form.
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Figure 2.3: Reaction coordinate example of an uncatalysed (upper curve)
and an enzyme-catalysed (lower curve) reaction. The reaction begins at the
substrate (S) and progresses towards the product (P). In the uncatalysed
case there is a large energy barrier known as the transition state that
requires a certain amount of activation energy G+

+. Using a catalyst such
as enzyme lowers the activation energy required and speeds up the reaction.
The enzyme is not used up in catalysis and may in some cases catalyse the
reverse reaction from P to S.

Metal ion cofactors can either be tightly bound to an enzyme or taken up from

solution. Metal ions can participate either in a catalytic role or structural role.

Those that participate in catalysis tend to be tightly bound to an enzyme,

examples include: Fe+2 , Fe+3 , Cu+
2 , Mn+

2 and Co+
2 . In catalysis, metal ions can

form ionic bonds with, and therefore stabilise, a negatively charged intermediate

molecule. Metal ions that have a structural role such as, Na+
2 , K+ and Ca+

2 ,

can activate an enzyme by modifying its structure. Similarly metal ions can also

reduce enzymatic activity as will be discussed later. Ions such as Mg+
2 and Zn+

2

can be found participating in both catalytic and structural roles.

Additional molecules other than the metal ion cofactors are required by some

enzymes for catalysis. These can exist in the form of complex organic or

metalloorganic molecules known as a coenzymes, which as in the case of pyridoxal

phosphate act as transient carriers of specific functional groups.

Non-covalent interactions include electrostatic interactions (i.e. forces between

ions) and van der Waals interactions (i.e. forces between dipoles). These are

relatively weak when compared individually to covalent interactions (Berg et al.,

2002). In combination the non-covalent interactions assist with stabilising the

transition state and therefore lower activation energy. The enzyme is capable of

arranging itself around a substrate therefore promoting interactions between it and
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the substrate. This is known as induced fit and can either involve small movements

near the active site or the movement of entire domains (Nelson and Cox, 2005).

Both covalent and non-covalent interactions can be found working in concert

during catalysis hence why enzymes are such effective catalysts. There are however

a number of factors that can interrupt these mechanisms and slow down catalysis.

Investigating the effect of these factors is achieved through kinetic studies.

2.3 Enzyme kinetics

Enzyme concentration, substrate concentration, the presence of inhibitor and

activator molecules, temperature, pressure and pH all have an effect on enzyme

catalysis. The rate constant (or turnover number) of an enzyme is used as a

measure of the rate (velocity) of a reaction. The discussion starts with the

Michaelis-Menten model.

2.3.1 The Michaelis-Menten model

A frequently used model to describe the kinetics of an enzymatic reaction with

change in substrate concentration is the Michaelis-Menten model (Tipton, 2002).

This model assumes simple kinetics with the following to be taken into account in

its use,

• The reaction has only one substrate

• The molar concentration of the substrate is much higher than that of the

enzyme

• The initial reaction rate is considered when the product concentration is so

low that the reverse reaction is negligible

The Michaelis-Menten model is described mathematically:

Vo =
Vmax[S]

Km + [S]
(2.1)

where Km is the Michaelis constant specific to the enzyme, [12S] the substrate

concentration in Moles, Vo the velocity of the reaction and Vmax the maximum
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Figure 2.4: Typical enzyme kinetic plots. A Michaelis-Menten plot is
shown in (a) and a Lineweaver-Burke plot is shown in (b).

velocity of the reaction. The Michaelis-Menten equation yields a hyperbolic plot

(see Figure 2.4a) of initial velocity vs substrate concentration. Km is equal to

one-half the theoretical maximum velocity Vmax. A small value of Km therefore

indicates an enzyme that only requires a small concentration of substrate to

achieve maximum velocity. Likewise a large value of Km indicates an enzyme that

requires a large concentration of substrate to achieve maximum velocity. Vmax and

hence Km are difficult to determine from the Michaelis-Menten plot. By inverting

the Michaelis-Menten equation, a double-reciprocal, Lineweaver-Burk plot (see

Figure 2.4b) can be constructed from which Km and Vmax can be determined

graphically. Knowing Vmax the rate constant of the enzymatic reaction, kcat can

be found by dividing Vmax by the enzyme concentration. The constants kcat and

Km by themselves provide little information when comparing different enzymes.

For example two enzymes that catalyse different reactions may have the same

values of kcat but not Km. To compare the efficiency of enzymes the specificity

constant (the ratio of kcat to Km) is often used (Tipton, 2002).

The Michaelis-Menten model does not describe the behaviour of all enzymes.

However the parameters Vmax and Km are still used in their comparison.

Deviations from Michaelis-Menten behaviour are considered next beginning with

allosteric enzymes.

2.3.2 Allosteric enzymes

Allosteric enzymes do not follow Michaelis-Menten kinetics. Plotting the reaction

velocity against substrate concentration for an allosteric enzyme generally yields a
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Figure 2.5: A typical response of an allosteric enzyme to increasing
substrate concentration.

sigmoidal curve (Figure 2.5) rather than the Michaelis-Menten hyperbolic curve.

The quarternary structure of allosteric enzymes tend to consist of several subunits

with multiple active sites (allosteric sites) in addition to a main active site.

Small molecules (effectors) bind to the allosteric sites altering the quarternary

structure of an enzyme and therefore causing it to become either more or less

catalytically active. The effectors may be the substrate itself in which case they are

called homotropic effectors, or some other small molecules in which case they are

called heterotropic effectors. Homotropic effectors tend to interact cooperatively

with the binding of one molecule enhancing the binding of additional molecules.

Heterotropic effectors are often end products from a metabolic pathway that

tend to inhibit enzyme activity thus providing a means of feedback inhibition

or regulation (Nelson and Cox, 2005).

2.3.3 Inhibition

Enzyme catalysis can be slowed or halted by molecules known as inhibitors. There

are two broad categories of enzyme inhibitors: (1) irreversible where the enzyme

is completely inactivated, and (2) reversible where the enzyme activity is slowed.

Reversible inhibitors can act in one of four different ways: (i) competitive, (ii)

uncompetitive, (iii) mixed, and (iv) non-competitive (Nelson and Cox, 2005).

Competitive inhibitors compete with the substrate for the enzyme active site.

Structurally competitive inhibitors are similar to the substrates with which they

are competing. Competitive inhibition results in a lower Km value while Vmax

remains unaffected. This type of inhibition can be overcome through increasing

substrate concentration. Uncompetitive inhibitors bind only to an enzyme-

substrate complex at a site distinct to the active site. Uncompetitive inhibitors
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reduce the speed at which products are released from an enzyme therefore resulting

in lower Km and Vmax values. In mixed inhibition an inhibitor binds either to

an enzyme or enzyme-substrate complex. As in uncompetitive inhibition, the

inhibitors bind at a site distinct to the active site. The effect of mixed inhibition

is to lower both Km and Vmax values. Non-competitive inhibition is a form of

mixed inhibition, but instead only Km is affected (Nelson and Cox, 2005).

Example inhibitors include, the products of an enzymatic reaction which gives rise

to negative feedback control. This is known as product inhibition and is usually

competitive with respect to one of the substrates of the reaction. Another example

is substrate inhibition where the velocity of the reaction decreases at high substrate

concentrations. Substrate inhibition may indicate the existence of two substrate

binding sites on the enzyme. This again allows for negative feedback control. In

addition to inhibitor molecules there are also physical and chemical factors that

are capable of affecting enzymatic activity (Nelson and Cox, 2005).

2.3.4 Physical and other chemical factors that affect struc-

ture

Enzyme activity is affected by physical factors such as pressure, temperature and

chemical factors such as, pH and ionic strength. Pressure affects the overall volume

of an enzyme and when increased brings subunits closer together. This has been

found to have both activating and inhibitory effects (Ohmae et al., 2007).

A typical response of an enzyme to increasing temperature is shown in Figure 2.6a.

The effect of raising temperature will speed up reactions as the increased thermal

energy drives collisions between molecules. However given a sufficient increase

in temperature, hydrogen bonds are sufficiently agitated to become disrupted

leading to denaturing of an enzyme. Once denatured enzyme catalytic activity

is lost (Nelson and Cox, 2005).

The ionic composition of the solution in which an enzyme resides affects the

conformation of the enzyme. Specifically pH changes ionise the amino acid residues

of an enzyme and can lead to the disruption of hydrogen bonds. As a result the

enzyme structure becomes destabilised and eventually denatures if pH is adjusted

beyond the optimal range for an enzyme (Figure 2.6b). Salt ionises amino acids

and affects the solubility of an enzyme. The solubility of enzyme can be enhanced

(salting-in) by adding salt, in which case the salt acts to increase the interactions
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Figure 2.6: The effects of temperature and pH on catalytic activity. The
rate of the reaction increases with increasing temperature as more energy is
provided to the system. Given sufficient heating, the enzyme succumbs to
thermal agitation and denatures (a). Adjusting the pH to either side of an
optimal pH range will ionise amino acid sidegroups, resulting in increases
or decreases in enzyme catalytic activity (b).

between water and enzymes. Sufficiently high salt concentrations added to the

solution will interfere with the interactions between water and enzyme, resulting

in the enzyme being precipitated from solution (salting-out) (Stevens, 1989).

2.4 Absorption spectroscopy

Measuring the rate of product formation from an enzymatic assay can either be

performed directly or indirectly. Direct measurements are obtained by measuring

the concentration of a molecule that participates in the enzyme catalysed

reaction. Indirect measurements are obtained by measuring the concentration

of another chemical species that forms on reacting with a product of the enzyme

catalysed reaction. Measuring the concentration can be achieved using absorption

spectroscopy. The underlying principle is that molecules absorb light at distinct

wavelengths. Increasing concentrations of a light absorbing molecule will result in

increased light absorbance. This is described by the Beer-Lambert law (Jaffé and

Orchin, 1962; Pavia et al., 2001):

A = ε · c · l (2.2)
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Figure 2.7: Basic components used in a spectrophotometer

where A is the absorbance in dimensionless units, ε is the molar extinction

coefficient (l mol−1 cm−1) of the absorbing species, c is the concentration of that

species and l is the path length of the sample. The molar extinction coefficient

varies from species to species and is a function of wavelength. Absorbance is

defined as:

A = −log10
(
I

I0

)
(2.3)

where I0 is the light transmitted by solution in absence of the absorbing species

(i.e. before the reaction) and I is the light transmitted by solution in presence

of the absorbing species (i.e. during the reaction). Through rearrangement of

equations 2.2 and 2.3, setting the path length to 1 cm, the concentration of the

absorbing species can be obtained:

c =
A

ε
(2.4)

Recording these measurements is achieved by using an instrument known as a

spectrophotometer. Four essential components comprise a spectrophotometer

(Figure 2.7), a light source, a monochromator, the absorption cell assembly, and

the photometer.

Summarised in Table 2.1 are data from enzymatic computing studies reported in

the literature. The data collated from studies that used absorption spectroscopy

as the measurement method. The study reported by Zauner and Conrad (2001)

(first line of the table) serves as a starting point for development of the autonomous

experimentation system described in this thesis.
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Table 2.1: Enzymatic computers

Enzyme E.C. Number Substrate Input Signals Measurement Measurement Measurement Functions Reference
Species Wavelength Time

MDH 1.1.1.37 L-malate Ca+
2 , Mg+

2 NADH 339 nm 5 min. AND Zauner and Conrad (2001)
OR

NOR
NAND
NXOR

10 s XOR

GDH coupled to 1.1.1.47 Glucose Glucose NADH 340 nm 20 min. inhibAND Baron et al. (2006c)
HRP 1.11.1.7 H2O2 H2O2

Hydroxamate– 500 nm 5 min. AND
Fe(III)

All in series Niazov et al. (2006)
AChE 3.1.1.7 Acetylcholine Acetylcholine - - - OR

Butyrylcholine Butyrylcholine - - -
ChOx 1.1.3.17 Choline O2 - - - AND

MP-11 coupled to H2O2 -
GDH 1.1.1.47 Glucose Glucose NADH 340 nm 20 min. XOR

GDH coupled to 1.1.1.47 Glucose Glucose NADH 340 nm 20 min. Inhibit A Baron et al. (2006b,a)
HRP 1.11.1.7 H2O2 H2O2 Inhibit B

XOR

GOx coupled to 1.1.3.4 Glucose Glucose
Cat 1.11.1.6 H2O2 H2O2 Hydroxamate– 500 nm 20 min. AND

Fe(III)
GOx coupled to 1.1.3.4 Glucose Glucose

HRP 1.11.1.7 H2O2 H2O2 NADH 340 nm 20 min. OR

GOx coupled to 1.1.3.4 Glucose Glucose
FDH 1.2.1.46 Formaldehyde H2O2 NADH 340 nm 20 min. NOR

FDH 1.2.1.46 Formaldehyde H2O2 NADH 340 nm 20 min. NOT

GOx 1.1.3.4 Glucose Glucose Hydroxamate– 500 nm 20 min. Identity
Fe(III)

GDH coupled to 1.1.1.47 Glucose Glucose NADH 340 nm 10 min. Half Adder Baron et al. (2006a)
HRP in parallel 1.11.1.7 H2O2 H2O2 (XOR in
GOx coupled to 1.1.3.4 Gluconic Acid parallel to

Cat 1.11.1.6 H2O2 Hydroxamate– 500 nm 5 min. AND)
Fe(III)



Chapter 3

Theory: Microfluidics

This chapter discusses basic microfluidic theory and reviews the microfluidic

literature. Topics covered include, microfluidic flow, mixing, droplets, automation,

and fabrication. The information contained within this chapter serves as

background to the work reported in chapters 4, 5 and 7.

3.1 Laminar flow

The behaviour of fluids flowing in microscale channels is markedly different to the

familiar behaviour of fluids at the macroscale. At the macroscale, fluids tend to

flow turbulently and mix readily whereas microscale flows do not. This difference

arises from a shift in the competition between the inertial and viscous forces

that act on a flowing fluid. This competition is represented by the dimensionless

Reynolds number (Re):

Re =
Inertial Forces

V iscous Forces
=

ρUDH

η
=

UDH

ν
=

QDH

νA
(3.1)

where ρ is the fluid density, U the mean flow velocity, η the absolute (or dynamic)

viscosity, DH the characteristic length scale of the system (sometimes hydraulic

diameter is used (Stone et al., 2004); equal to 4 × cross-sectional area divided by

wetted perimeter), ν the kinematic viscosity, Q the volumetric flow rate and A

the cross-sectional area. As Equation 3.1 indicates, decreasing channel dimensions

or reducing the average flow velocity will result in a lower Reynolds number.

19
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Typically systems exhibiting Re less than 2300 are considered to be laminar (Beebe

et al., 2002) despite non-linearities in the flow present from Re ≥ 1.

Because of the linear and predictable nature of laminar flow, under particular

conditions it has been possible in the design process to treat microfluidic networks

as analogous to electrical resistive networks. This in turn has allowed for the

creation of microfluidic devices containing passive fluidic networks capable of

producing chemical concentration gradients (Jeon et al., 2000), linear (Walker

et al., 2007) and/or logarithmic (Kim et al., 2006b, 2008) dilutions. The conditions

necessary to obtaining electrically equivalent models of microfluidic channels begin

with the Navier-Stokes equations.

3.1.1 Electrical equivalence model

The nonlinear partial differential Navier-Stokes equations describe the motion of

fluids. In the case of an incompressible fluid driven through a microchannel by

an externally applied pressure with characteristic laminar flow, the Navier-Stokes

equations can be solved to relate the pressure-drop along the channel to the velocity

field of the fluid. By integrating the velocity field of the fluid over a cross-section of

the channel, the volumetric flow rate Q can be determined. If the flow is laminar,

the Hagen-Poisseuille law can then be applied and thus the volumetric flow rate

Q can be related to the pressure drop ∆P by way of a fluidic resistance term

R. Thus an electrically equivalent model can be obtained. As an example of this

process, first consider the Navier-Stokes equations:

ρ

[
∂u

∂t
+ (u · ∇)u

]
︸ ︷︷ ︸

inertia

= −∇p + η∇2u︸ ︷︷ ︸
viscosity

+ f (3.2)

with ρ the density of the fluid, u the velocity field of the fluid, f the body

force and ∇p representing the pressure drop along the channel. From the left-

hand side of Equation 3.2 there are two acceleration terms. The first temporal

acceleration term, ∂u
∂t

, arises from time-varying flow. The second nonlinear

convective acceleration term, (u·∇)u, arises from changes in velocity with position

such as experienced in diffusers or nozzles. On the right-hand side of Equation 3.2

the three terms represent stresses arising from application of external pressure,

viscosity (friction) and body force (gravity or electric forces).
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Figure 3.1: Parabolic fluid velocity profile across the y-axis of a
microchannel arising from the flow in the x-direction.

Given a flow with a low Reynolds number, viscosity dominates and the inertial

terms above can be considered negligible. Assuming an insignificant effect from

body forces, Equation 3.2 simplifies to the Stokes equations:

∇p = η∇2u (3.3)

yielding the relationship between pressure and viscosity. If the fluid is treated

as flowing along the channel length (x-axis) only and velocity varying in one-

dimension across the channel (y-axis) as depicted in Figure 3.1, Equation 3.3

becomes:

∂2ux
∂y2

=
−∆p

ηL
(3.4)

with ∆p the pressure drop along the channel and L the length of the channel.

The velocity profile can then be derived through integration and application of

the no-slip boundary condition, i.e. the fluid velocity is zero at the channel walls

(when y = ±w):

ux =
∆p

2ηL
(w2 − y2) (3.5)

which gives the parabolic flow profile depicted in Figure 3.1. The volumetric

flow rate (Q) can then obtained by integrating the velocity over the cross-section

(between +w and -w),
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Q =

∫ +w

−w
uxdy =

2d3

3ηL
∆p (3.6)

From the Hagen–Poiseuille law the reciprocal of 2d3

3ηL
is called the fluidic resistance

R, which makes Equation 3.6 analogous to Ohm’s law. It must be noted that

the Hagen–Poiseuille law holds true when the flow is laminar, deviations can be

expected if the flow is turbulent and non-linear.

The one-dimension example described here is a simple illustration. A more realistic

scenario is to consider the flow velocity varying in two-dimensions along both the

y and z-axes. The fluidic resistance for two-dimensional flow can be obtained from

the analytical solution reported by Kovacs (1998) for channels of width w, height

h and length L:

R =
12ηL

wh3

[
1− h

w

(192

π5

∞∑
n= 1,3,5

1

n5
tanh(

nπw

2h
)
)]−1

(3.7)

which for square cross-sections of side a approximates to:

R =
28.545ηL

a4
(3.8)

or rectangular cross-sections with high-aspect ratios (w � h) approximates to:

R =
12ηL

wh3
(3.9)

By fixing the channel width and height, it is then possible to create channels

of lengths proportional to their fluidic resistances. Therefore as illustrated in

Figure 3.2 networks of varying resistances can be created that divide fluid flow

accordingly to allow for in this case, gradient generation devices.
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Figure 3.2: Chemical gradient generator. The gradient generator device
design (left) is obtained from an electrical equivalence model. The
microfluidic device sits on top of a SiO2 coated silicon wafer. Hydrogen
fluoride (HF) 5% in water is flowed through one input of the gradient
generator, and water through the other. The different concentrations of HF
in the microfluidic device result in the oxide film being etched at different
depths. The colour of the oxide film changes with etch depth and therefore
indicates the concentration of HF (right). Image reproduced from (Jeon
et al., 2000).
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3.2 Mixing

3.2.1 Diffusion and convection

Mixing on both the macro and microscale ultimately relies upon molecular

diffusion, but the time required for complete mixing can be significantly longer

at the microscale. An explanation for this begins with considering Fick’s first law

of diffusion, where the diffusion flux J is a product of the diffusion coefficient D

of a molecule and concentration gradient over a distance ∂φ
∂x

:

J = −D∂φ
∂x

(3.10)

The change in the concentration of molecules in time (t) is described by Fick’s

second law, which in one dimension (x) is (Geschke et al. 2004):

∂φ

∂x
= D

∂2φ

∂x2
(3.11)

Solving Equation 3.11 yields the average diffusion time (t) for a molecule over

distance (x) as (Beebe et al. 2002):

t =
x2

2D
(3.12)

It can be seen that the time taken for a molecule to diffuse is approximately

dependent on the square power of distance to be travelled. On the macroscale

the diffusion distances are reduced as the distribution of molecules is subjected

to varying pressure and velocity fields, which are more extreme when the

flow is turbulent. In microfluidic devices the flow is laminar, which yields

relatively fixed diffusion distances and thus mixing is time-consuming. For

example the enzyme malate dehydrogenase (MDH) has a diffusion coefficient of

6.45× 10−7 cm2/s (Englard and Siegel, 1969) or 64.5 µm2/s. From Equation 3.12

to diffuse across a microchannel of width 200 µm starting from oneside would take

the enzyme approximately 310 s.

Above the fluid was considered as motionless. If the fluid is flowing, the molecules

within the fluid will also experience transport (convection) along the direction of

the flow in addition to diffusion (see Figure 3.3). The convection has little impact
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Figure 3.3: Molecules in a channel are subjected to a flow (U) in the z-axis
direction. Complete mixing occurs further downstream at distance L.

on the mixing time but a certain channel length L is then required to obtain

complete mixing. This is calculated from:

L ≈ Uw2

D
(3.13)

where U is the mean flow velocity. Given the same enzyme and channel

width parameters used above, and a mean flow velocity U of 100 µm/s, from

Equation 3.13 the required channel length is approximated to be 6.2 cm. An

alternate method to estimating the channel length can be found in using the

dimensionless Péclet number (Pe), which relates the rate of convection of a flow

to its rate of diffusion (Squires and Quake, 2005). The Péclet number is defined

as:

Pe =
Uw

D
(3.14)

with Pe = 310 for the same values used previously. Taking the Pe and multiplying

it by the channel width, here 200 µm, an estimate of the channel length can be

obtained, 6.2 cm as before. Reflecting on Equations and 3.6–3.9 it is important

to remember that the channel length is proportional to the fluidic resistance.

Consequently the channel length required to achieve complete mixing in some

cases may impose pressure requirements too large to practically implement. In

addition to estimating the channel length required for complete mixing, the Péclet

number can also provide an indication of whether the phenomena known as Taylor

dispersion may be observed.
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3.2.2 Taylor Dispersion

P

Figure 3.4: Taylor dispersion. A homogeneous plug of molecules is
stretched axially due to the pressure driven flow. Because the flow is
pressure driven, the plug takes on a parabolic profile that through diffusion
becomes smeared into a wider plug.

Following Figure 3.4 a microchannel contains a fluid with a plug of molecules

homogeneously distributed across the width of the channel (i.e. completely mixed).

The fluid is pressurised and flows with a parabolic flow profile. The parabolic flow

profile causes the convective stretching of the molecules in the direction of the flow,

which results in concentration gradients at both the front and rear of the stretched

plug. Diffusion set-up by the concentration gradient acts to smear the parabolic

plug into a plug wider than before. Thus the plug cannot stretch indefinitely. This

process is repeated continually resulting in a plug with a longitudinal concentration

profile following a Gaussian distribution. This process of molecules diffusing

axially in the direction of the flow is known as Taylor dispersion and is described

by an associated diffusivity: Dz (Squires and Quake, 2005):

Dz ≈
U2w2

D
≈ Pe2 ·D (3.15)

where U is the flow velocity, w the channel width and D the diffusion coefficient

of the molecular species. Taylor dispersion occurs only when molecules have

completely mixed across the width of a microchannel. This corresponds to a

time scale t � w2

D
or a downstream distance of L � Pe·w - from the previous

examples above, 620 s and 6.2 cm respectively. The effect of Taylor dispersion can

be problematic when measuring the concentration of a chemical species due to the

Gaussian spreading of molecules axially. Taylor dispersion can be prevented by

either adopting an oil phase in the flow or by switching from pressure-driven flow

to electroosmotic flow, i.e. flow that arises from the movement of ions due to an

applied electric field.
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3.2.3 Mixer designs

To improve mixing between two co-flowing fluids the distance over which molecules

have to diffuse has to be reduced. This can be achieved by introducing additional

flows, time-variations in the overall flow, or by increasing interfacial area between

the flows (Ottino and Wiggins, 2004). Here three passive mixers from the literature

are described that implement one of the aforementioned approaches to improve

mixing.

The F-mixer shown in Figure 3.5 acts to reduce the diffusion distance through

increasing interfacial area. It takes two parallel flowing fluids, splits them

into multiple smaller segments and then laminates the segments on top of one

other (Kim et al., 2004). The SLM was able to achieve complete mixing of fluids

in a distance 20× shorter than a T-junction mixer of similar dimensions, and at

low Reynolds numbers (0.44–12.28).

The mixer in Figure 3.6 introduces additional flows by splitting off a part of

the flowing fluid. The split part is then reintroduced into the bulk flow further

downstream. The split flow is arranged to meet the bulk flow at an angle, thus

providing additional transverse flows (Hong et al., 2004a). This type of mixer was

found to operate consistently over a wider range of flow rates when compared to a

T-junction, which had experienced a decline in performance with increasing flow

rate.

Figure 3.5: Mixing in a T-junction versus mixing in a serpentine lamination
mixer. The mixing of phenolphthalein and NaOH results in a dark coloured
fluid. The T-junction (top) mixes poorly with only a thin mixed region
visible. Over the same distance the serpentine lamination mixer (bottom)
exhibits far more efficient mixing. Image adapted from Kim et al. (2004).
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Figure 3.6: A mixer that splits and recombines flow to reduce mixing
time. The principle of the mixer is shown on the left. On the right two
streams of food dye can be seen to flow through the mixer. Images adapted
from Hong et al. (2004a)

The staggered herringbone mixer (SHM) in Figure 3.7 creates time-varying flow by

using a series of asymmetric grooves patterned in a channel. The grooves cause two

co-flowing fluids to be stirred axially as they progress longitudinally through the

channel (Stroock et al., 2002). It was found that for Pe = 104, the SHM would be

capable of mixing a protein molecule within 1 cm. A significant improvement over

the 100 cm required for a simple channel relying on only diffusion for mixing. This

last strategy to mixing is particularly effective as diffusion distances are reduced

exponentially with time. This exponential decrease in diffusion distance is known

as chaotic mixing and can also be observed to occur in water droplets flowing

within an oil stream (Bringer et al., 2004).

The mixer examples described above are all passive requiring no moving elements.

Integrated microvalves can be used to create a rotary mixer to enable active mixing

of solutions (Chou et al., 2001). In the operation of a rotary mixer solutions are

confined to a circular channel. The circular channel contains three valves that are

activated in a peristaltic pumping sequence during mixing. The pumping sequence

drives the confined solutions around the circular channel causing their mixing.

Mixing by this approach is not as rapid as chaotic mixing, but this approach does

allow for mixing of discrete segments of fluid whereas the other require continuous

flows.
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Figure 3.7: Chaotic mixing with a staggered herringbone mixer. Two
fluorescent streams are injected either side of a stream of clear fluid.
Cross-section images obtained by confocal microscopy show stirring of the
streams as they progress downstream. Images adapted from Stroock et al.
(2002).
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3.3 Droplet-based microfluidics

Droplet-based microfluidics involves the formation and manipulation of individual

droplets inside a microchannels. To obtain the droplets, two immiscible fluids (or

phases) are used. For example water droplets can be created in air (Burns et al.,

1998) or in oil (Thorsen et al., 2001). Manipulation of droplets can be achieved

through exploiting the Marangoni effect induced by localised laser heating (Kotz

et al., 2004), by optical trapping (Lorenz et al., 2007), through utilizing electric

fields (Pollack et al., 2002; Srinivasan et al., 2004) or by viscous flow (Tice et al.,

2003).

Droplet-based microfluidics holds several advantages over single-phase microflu-

idics. Through employing droplets, it is possible to reduce reagent volumes further

without resorting to nanoscale channels. Because of reagent confinement to within

a droplet, the effect of Taylor dispersion is eliminated (Song et al., 2003b). Rapid

(chaotic) mixing can be achieved in droplets through simple channel design (Song

et al., 2003a). Multiple droplets can be formed in a single channel, thus reactions

can be performed in parallel without the need for complex devices. Dilutions too

can be performed without requiring complex microchannel networks (Song and

Ismagilov, 2003).

Thus droplet-based microfluidic technology has been adopted in a range of

applications that include, nanoparticle synthesis (Shestopalov et al., 2004),

directed evolution experiments on proteins (Agresti et al., 2010) and enzymatic

assays (Song and Ismagilov, 2003). To realise devices for these and other example

applications, functions that include sorting (Agresti et al., 2010), fision (Link et al.,

2004), fusion (Tan et al., 2007), mixing (Song et al., 2003a) and encapsulation of

droplets (double emulsions) (Nisisako et al., 2005) have had to be implemented.

With the application of enzymatic assays in mind, the discussion here will be

limited to aspects of droplet generation, mixing and fusion. More complete reviews

on droplet microfluidics can be found by Song et al. (2006); Chiu et al. (2009);

Baroud et al. (2010); Huebner et al. (2008); Theberge et al. (2010); Teh et al.

(2008). Before discussing the different strategies to implement the functions

of droplet generation, mixing, and fusion, the basic theory underlying droplet

microfluidics first requires consideration. For clarity in the forthcoming discussion,

the term continuous phase refers to the stream in which droplets are generated,

and the term disperse phase refers to the stream from which droplets are created.
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3.3.1 Interfacial tension

γ θ
sl

 la
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γ

Figure 3.8: The sessile-drop technique. A drop of water is placed on the
surface of a material. Due to the balance between adhesive and cohesive
forces, the drop takes on a characteristic shape. Measuring the angle (θ)
at the periphery of the drop provides an indication of whether the material
surface is hydrophilic (θ < 90o) or hydrophobic (θ > 90o).

When two immiscible fluids are brought into contact the cohesion of like molecules

in each fluid gives rise to forces that pull at the interface between the two fluids.

These competing forces act in a way as to minimise the interfacial area of contact

between the two fluids, thus resulting in droplets being formed. Quantification of

the cohesive forces between two liquids is achieved through the property of surface

or interfacial tension γ [N/m]. Acquiring a value for surface tension between

two liquids is possible through the sessile-drop technique illustrated in Figure 3.8

with the relationship between the different surface tensions given by the Young

equation:

γsl = γsa − γla cos θ (3.16)

where γsa represents the surface tension between the solid and air, γla the surface

tension between the liquid and air, (θ) the contact angle and γsl the surface tension

between the solid and liquid. The successful implementation of a microfluidic

droplet device requires knowing the surface tensions between fluids and the

material from which device has been constructed.

To create droplets in an immiscible flow within a microfluidic channel requires

several criteria be satisfied. Consider the production of water droplets in a

continuous oil stream. Adhesion of the water droplets to the microfluidic channel

has to be prevented in order to form well defined water droplets within the oil.

This is achieved by ensuring the following two criteria are satisfied. First the oil

must preferentially wet the microfluidic channel, i.e. the oil-solid interfacial tension
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must be lower than the aqueous-solid interfacial tension. Second, the aqueous-oil

interfacial tension must be lower than the aqueous-solid interfacial tension (Tice

et al., 2003). With these two criteria fulfilled, even large droplets will be separated

from channel walls by a thin layer of oil. There are circumstances where these

criteria may not be met, but remedial actions can be taken. For example if

hexadecane is used as carrier fluid in a PDMS microchannel, following the values

summarised in Table 3.1 a drop of hexadecane exhibits a 40o contact angle when

placed on PDMS (Chaudhury and Whitesides, 1991). This indicates that in

comparison to water, hexadecane will preferentially wet a PDMS microchannel.

However the interfacial tension between hexadecane and water is 53.3 mN/m which

is higher than the intefacial tension between PDMS and water. But by adding the

surfactant Span 80 to hexadecane, the interfacial tension can be lowered sufficiently

to meet the criteria set above, and thus prevent the adhesion of water droplets to

channel walls.
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Table 3.1: Interfacial tension and contact angle data. The interfacial tensions and contact angles are listed for interactions
between water and immiscible fluids or solid materials

Interfacial Tension Contact Angle Viscosity Reference
[mN/m] [Degrees] [mPa.s]

Air 72.8 - - (Reiter et al., 2000)
Water - - 0.894 (Tice et al., 2003)
Cured PDMS ≈38 104 - (Reiter et al., 2000)
Plasma-treated PDMS - <5 - (Bhattacharya et al., 2005)
Glass - 20 - (Bhattacharya et al., 2005)
PMMA - 67.8 - (Ma et al., 2007)
Teflon R© - 114 - (Sandison et al., 2007)
Hexadecane 53.3 - 8 (Aveyard and Haydon, 1965; Lin and Su, 2008)
Hexadecane/Span 80 5 - - (Link et al., 2004)
Mineral Oil 38 - 30 (Malloggi et al., 2008)
Mineral Oil/Span 80 5 - - (Malloggi et al., 2008)
Mineral Oil/Triton X-100 3.1 - - (Malloggi et al., 2008)
PFD ≈55 - 5.1 (Tice et al., 2003)
PFO/PFD 12–14 - - (Tice et al., 2003)
Oleic Acid 15.6 - 27.64 (Tan et al., 2007)
Silicone Oil 38 - - (Binks and Clint, 2002)
Silicone Oil/SDS 4 - - (Utada et al., 2007)
Silicone Oil/Span 80 3.4 - 10 (Jiao et al., 2007)

PDMS - polydimethylsiloxane; PMMA - poly(methyl methacrylate); SDS - sodium dodecyl sulfate; PFD - Perfluorodecaline;
PFO/PFD - 1H,1H,2H,2H-perfluorooctanol/PFD mixture
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3.3.2 The Capillary number

Earlier the concept of the dimensionless Reynolds number was introduced that

serves as an indication of the degree of nonlinear behaviour of a flow. In two phase

flows, distinct behaviours arise from the competition between viscous forces and

interfacial tension. Similarly the competition is associated with a dimensionless

number, the Capillary number (Ca):

Ca =
ηU

γ
(3.17)

where η is the dynamic viscosity of the continuous oil phase, U the velocity of the

oil phase and γ the interfacial tension between the oil and aqueous phases. The

Capillary number is used in descriptions of both droplet fission (e.g. Link et al.

2004) and generation (e.g. Thorsen et al. 2001).

3.3.3 Generating droplets

Droplets can be generated in microfluidic devices through designs that utilise flow

focusing (Anna et al., 2003), coflowing streams (Umbanhowar et al., 2000; Utada

et al., 2007) or T-junction (Thorsen et al., 2001) configurations. Typically in

coflowing designs (Figure 3.9), a channel (or capillary) is positioned coaxially

within another channel (or capillary). The continuous and disperse phases are

flowed through the outer and inner channels respectively. Droplet formation in

coflowing fluids has been characterised as either dripping or jetting. In the former,

droplets develop close to the orifice of the inner channel. In the latter, a liquid

jet extends downstream where it then breaks up in droplets. The mechanisms

underlying the different flow patterns are described by Cramer et al. (2004).

Following Figure 3.9, flow focussing designs see the continuous phase flow through

the two opposing channels meeting at a point that intersects with the disperse

phase. The continuous phase acts to squeeze the disperse phase through the

orifice where it then breaks into droplets. As in coflowing stream designs, flow

focusing is capable of exhibiting different droplet formation patterns that include

dripping, jetting, squeezing and threading by adjusting the continuous phase flow

rate relative to the disperse phase. The role of geometry and fluid properties on

these patterns are discussed in (Lee et al., 2009).
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Oil Flow Aqueous Flow

(a) (b)

Figure 3.9: Droplet production by coflowing and flow-focusing. Droplets
are produced from a channel containing aqueous solution that is positioned
coaxially within a larger channel containing oil (a). An oil stream is focused
to pinch off an aqueous stream to create droplets (b).

Both coflowing and flow focusing configurations allow for the continuous generation

of monodisperse (equal-sized) droplets at a rate of several kilohertz (Cramer et al.,

2004; Ahn et al., 2006b). A capability very much desirable for high throughput

screening (Abate et al., 2009). In applications where throughput is less critical

but rather the control of individual drop sizes and their fusion is essential, designs

that allow for the generation of droplets on demand are more interesting.

Drop on demand systems are based on the popular T-junction channel config-

uration first introduced by Thorsen et al. (2001). Following Figure 3.10 the T-

junction configuration consists of a main channel and up to several perpendicularly

intersecting side channels. The continuous phase is flowed through the main

channel while the disperse phase is introduced through a side channel. Some

designs use branched side channels as depicted in Figure 3.10 allowing for multiple

reagents to be introduced as a single droplet in the main channel (Zheng et al.,

2003). The advantage of using a branched T-junction design is that dilutions

are possible through balancing the relative flow rate of the different reagents.

T-junction configurations have largely been operated with droplets generated

continuously. Once more as for coflowing and flow focusing designs, there exist

different droplet formation regimes for T-junctions. These are treated in-depth

by de Menech et al. (2008). The inclusion of active valves in T-junction designs

as depicted in Figure 3.11 have been show capable of producing different sized
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droplets on demand (Willaime et al., 2006; Zeng et al., 2009). This is particularly

interesting in the context of this work as dilutions of reagents could conceivably

be achieved by creating different sized droplets and then mixing them into one

larger droplet.

Oil Flow Aqueous Flow

(a) (b)

Figure 3.10: Droplet production using T-junctions. A single T-junction is
used to generate aqueous droplets in an oil stream (a). Multiple aqueous
streams are combined in a branched T-junction to generate droplets
containing multiple chemicals (b).

Oil Flow Aqueous Flow

Valve Closed Valve Open

Figure 3.11: A valved T-junction allows for on-demand droplet generation.
Pulsing the valve between open and closed allows a predefined amount of
aqueous solution to be injected into the oil stream.
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3.3.4 Mixing within droplets

Mixing within droplets is normally achieved passively, by relying on the recircu-

lation flows internal to a droplet travelling downstream to stir the contents of

a droplet (Hosokawa et al., 1999; Handique and Burns, 2001; Kinoshita et al.,

2007). However droplets do require some amount of reorientation once generated

to support mixing. For example Tice et al. (2003) found that droplets generated

with contents localised in each half of the droplet as depicted in Figure 3.12

would not easily mix. But through the use of winding microchannels alternating

asymmetric time-periodic flow patterns could be created within droplets (Song

et al., 2003a), which induced exponential thinning of the mixing distance within a

droplet (Bringer et al., 2004). In particular the winding serpentine channel design

illustrated in Figure 3.13 was found capable of mixing dilute solutions within

milliseconds (Song et al., 2003b; Sarrazin et al., 2007).

However winding channels are not always capable of inducing rapid mixing in

droplets. For example in the case of mixing highly viscous solutions containing

high concentrations of macromolecules, the serpentine design was found to

be ineffective. The winding channel design had to be modified to include

protrusions along the channel walls (see Figure 3.14), which enhanced internal

circulation within droplets sufficiently to enable rapid mixing of concentrated

protein solutions (Liau et al., 2005). Rapid mixing in droplets can therefore be

achieved using fairly simply channel designs. The mixing or fusion of different

droplets however requires potentially far more elaborate schemes.

Oil Flow

Internal 
Recirculation

Figure 3.12: A generated droplet composed of two halves. Internal
recirculation flows occur as the droplet moves downstream through a
channel. The flows do not cross and therefore the contents of the droplet
do not easily mix.
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Oil Flow

Figure 3.13: A serpentine channel to induce rapid mixing within droplets.
The drop contents are reoriented as the drop passes through the corners.
The recirculation flows are then able to mix the drop contents.

Oil Flow

Figure 3.14: A bumpy serpentine channel to induce rapid mixing of
viscous solutions contained within droplets. The bumps induce stress
concentrations within the droplet that induce circulations that facilitate
mixing.
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3.3.5 Droplet Fusion

The fusion of droplets faces several challenges. First the distance between droplets

to be fused has to be reduced and sufficient time allowed for droplets to coalesce.

This can be achieved by for example creating a hydrophilic patch within a

hydrophobic microchannel. As described by Fidalgo et al. (2007) the patch acts to

trap aqueous droplets bringing them into close proximity and providing sufficient

drainage time necessary for fusion.

An alternate method to bringing droplets into close proximity can be achieved

through exploiting the mismatch in velocities between different sized droplets

within the same flow. For example Song et al. (2003b) introduced small droplets

into a channel in front of large droplets. The large droplets travelled more quickly

catching up with the small droplets. Contact was made between the droplets

and eventually they fused. In the case of equal-sized droplets, the difference in

velocity is negligible and therefore can no longer be exploited to obtain fusion. Here

designs such as tapered expansions (or diffusers) (Hung et al., 2006), trifurcating

channels (Tan et al., 2004, 2007) and diffuser-nozzle chambers (Bremond et al.,

2008) can be used to obtain fusion between equal-sized droplets. Such designs

slow the droplet at the front allowing the droplet at the rear to catch up and make

contact, then fuse.

Surfactants present in the oil stream to prevent droplets sticking to channel walls,

also act to stabilise droplets against coalescence. The use of surfactants can lead

to droplets even in close proximity remaining completely separate. To overcome

the effect of the surfactants and in doing so induce fusion, the local concentration

of surfactants at the interface between droplets must be depleted. This can be

achieved by using the design reported by Bremond et al. (2008). As depicted

in Figure 3.15 the design consists of a rectangular chamber sandwiched between

a diverging inlet (or diffuser) and a converging outlet (or nozzle). Two droplets

would enter the chamber, collide and then settle side-by-side without coalescing.

Then as the front droplet approached the nozzle it would compress and separate

slightly from the rear droplet. This induces two small local points on each droplet,

which were interpreted as being regions depleted of surfactant molecules (Bremond

et al., 2008). After the formation of the two points on each droplet, fusion would

occur.

The methods to droplet fusion discussed so far do not address the challenge of

periodicity. For example if droplets to be fused are generated too far apart,
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Oil Flow

Figure 3.15: Droplet fusion within an expansion channel. Two droplets
separated by oil enter the expansion chamber. The front droplet slows
allowing the rear droplet to catch up. The two droplets collide then relax.
After relaxing the two droplets separate slightly, which causes two points
to appear on each droplet (inset). The points are regions of depleted
surfactant that lead to the droplets to fusing.

coalescence will not be achieved. Rather the more elaborate design depicted

in Figure 3.16 is required to fuse droplets independently of periodicity. The

design was introduced by Niu et al. (2008) and consists of a large tapered

chamber containing a series of pillars arranged in pairs of varying size. The pillars

acted to trap droplets within a specific size range while still allowing the oil to

continue flowing. Droplets could be trapped and effectively made to wait for

another to arrive. The arrival of another droplet would see it collide with the

trapped droplet. Fusion would initiate and provided the fused droplet volume

was large enough (related to chamber volume) it would be released from the trap.

This design is more complicated and due to the dependence of trapping on the

geometric configuration of the pillars, likely to be sensitive to variations arising

from fabrication. Here active fusion designs may provide an advantage as the

channel designs typically used are simpler.
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Oil Flow

Figure 3.16: Droplet fusion within a pillar trap. The pillar trap is designed
to capture droplets of specific size. A droplet is trapped and waits for a
second droplet to arrive. The second droplet arrives and fuses with the
first droplet. Their combined size causes the fused droplet to be released
from the trap.

The active fusion of droplets in continuous flows has been performed electrostati-

cally or through using on-chip valves. In electrostatic approaches, an electric field

is applied to droplets which has the effects of redistributing surfactant molecules

at the droplet interface as well as charging the droplets. These effects have

been harnessed to fuse pairs of unequally sized droplets (Ahn et al., 2006a) as

well as trains of equally sized droplets (Priest et al., 2006; Zagnoni et al., 2009).

Link et al. (2006) used an electric field to both dispense and fuse two oppositely

charged droplets. The voltages required to set up electric fields capable of fusing

droplets range from a few tens (Priest et al., 2006; Zagnoni et al., 2009) to

hundreds (Link et al., 2006; Ahn et al., 2006a) of volts depending on the distance

between electrodes. All of the channel designs in these examples consisted of

simple straight channels. However all of the designs appear to be incapable of

dealing with periodicity. Certainly the designs could fuse droplets generated out

of phase but once again if the phase is too large, droplets would not be in close

enough proximity for fusion. The best active approach to fusion may therefore be
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Oil Flow Valve Closed Valve Open

Figure 3.17: Droplet fusion within a valved trap. With the valve closed
a droplet is trapped and waits for a second droplet to arrive. The bypass
channels either side of the trap ensure that the oil continues flowing during
trapping. A second droplet arrives and comes into contact with the first
droplet. Fusion proceeds when the valve opens.

the integrated valve trap. Following Figure 3.17, the design reported by Lin and

Su (2008) consisted of a channel that was blocked by the actuation of a single on-

chip valve. Smaller bypass channels connecting both upstream and downstream

from the valve ensured that oil could continually flow when the valve was actuated.

On actuation of the valve, droplets are trapped and the bypass channels allow the

oil between droplets to drain bringing them into close proximity. On release of

the valve the droplets separate slightly before fusing as described above. Droplet

fusion by using an integrated valve design has advantages over other techniques

that include, the ability to fuse independently of periodicity, and no apparent

restriction in droplet sizes that can be fused.
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3.4 Automating microfluidic devices

In recent years, the field of microfluidics has moved beyond designing and testing

individual components towards the design and application of integrated systems,

capable of automating entire laboratory processes (Whitesides, 2006; Haeberle and

Zengerle, 2007). Key to automation of microfludic devices was the development

of the pneumatically actuated integrated microvalve components, in particular

membrane or in-line valves in normally-closed (Hosokawa and Maeda, 2000;

Lagally et al., 2000) and normally-open (Unger et al., 2000) configurations. The

reason why these particular valve types have made automation more amenable

is because multiple microvalves can be packed in close proximity. For example

within 50 µm of each other as reported in (Thorsen et al., 2002). This

packing density has been achieved by moving the relatively bulky valve driving

component (e.g. the pressure or vacuum source) away from the microvalve. Instead

control microchannels are created that link the on-chip microvalve to the driving

component at the periphery of the chip. By contrast other active microvalves have

the external work source directly acting on a fluidic channel (Weibel et al., 2005).

Following Figure 3.18, both normally-open and normally-closed membrane valves

are formed by sandwiching a membrane between two patterned device layers. The

one layer contains microfluidic channels and is known as the fluidic layer, while the

other layer contains the control channels. Where the fluidic and control channels

intersect constitutes a valve. By supplying external pressure or vacuum to control

channels, the membrane between intersecting fluidic and control channels is either

deflected into or pulled away from the fluidic channels. Typically in the case of a

normally-closed valve, a seat is included in the design onto which the membrane

rests thereby restricting flow. On application of a vacuum to the control channel

the membrane is deflected away from the seat allowing fluid to flow.

Pressurising normally-open valves causes the membranes to be deflected into the

fluidic channel thereby restricting flow. There are two configurations of normally-

open valve determined by orientation between fluidic and control channels. Fluidic

channels can be assembled on top of control channels therefore the membrane is

pushed upwards on actuation. Similarly control channels can be assembled on top

of fluidic channels and the membrane is then pushed downwards on actuation.

These two arrangements have different pressure requirements in closing a valve,

the push up type is reported to require less pressure (Studer et al., 2004).
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Control 
channels

Fluidic 
channels

P > 0

P = 0

P < 0

P = 0
(a) (b) (c)

 Glass  Fluid PDMS Flow Inlet/outlet

Figure 3.18: The concept of normally-open and normally-closed integrated
valves. A normally-open valve when pressurised restricts flow as the
membrane is deflected into the fluidic channel (a). A vacuum applied
to a normally-closed valve pulls the membrane away from a seat allowing
flow in the fluidic channel (b).

Summarised for comparison in Table 3.2 are data from normally-open and

normally-closed valves reported in the literature. The fabrication of normally-

open valves is easier than normally-closed valves, particularly where irreversible

sealing is required between control and fluidic device layers. Normally-open valves

have been shown to enable construction of on-chip components such as peristaltic

pumps and rotary mixers (Chou et al., 2001). Normally-open valves have also been

multiplexed so that large numbers of fluidic channels can be controlled with fewer

control channels; one example demonstrated 20 control channels addressing 1024

fluidic channels (Thorsen et al., 2002). Such microfluidic large-scale integrated

(mLSI) schemes in combination with pumping and mixing components have

allowed for complex devices to be created capable of performing parallel operations

on a single chip (Hong et al., 2004b; Jambovane et al., 2009). The device

complexity that can be achieved and the rapid prototyping techniques available

(soft lithography; discussed next) to the creation of normally-open valves, makes

attractive their use in the design of the autonomous experimentation system.
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Table 3.2: Summarised membrane valve data

Reference Valve Type Valve Action Fluidic Channel Valve Membrane Actuation Flow Dead Volume Valve Actuation Material Bonding
Dimensions Dimensions Thickness Pressure Pressure Time Method Method
(w x d µm) (w x d µm) (µm) (kPa) (kPa) (on/off)

Hosokawa and Maeda (2000) NC Pull Up 100 x 25 450(l) x 200 x 70 25 -60 -30 6.3 nl - Pneumatic PDMS Reversible
Unger et al. (2000) NO Push Down 100 x 10 100 / 50 x 10 30 40–50 - 0–100 pl 13 ms Pneumatic PDMS Part-ratio
Studer et al. (2004) NO Push Up 300 x 54 300 x 50 ≈ 3–16 ≈ 5–15 - - - Pneumatic PDMS Part-ratio

NO Push Up 300 x 54 100–600 x 10 - 15–5 - - - Pneumatic PDMS Part-ratio
Hong et al. (2004b) NO Push Up 100 x 50 100 x 50 5 ≈35 55–104 - - Pneumatic PDMS Part-ratio

NO Push Down 100 x 10 200 x 15 - - 3.4–13.8 - - Pneumatic PDMS Part-ratio
Grover et al. (2006) NC Pull Down 50 (d) 50 (d) 254 -85 / 40 17 10 nl 120 ms Pneumatic Glass/PDMS O2 Plasma
Go and Shoji (2004) NO Push Up 200 x 55 2.5 mm dia x 247 30 10 1 0 500 ms Pneumatic PDMS Part-cure
Urbanski et al. (2006) NO Push Up 60 x 20 150 / 100 x 20 - 82–104 41–62 - 14 ms Pneumatic PDMS Part-ratio
van Noort and Zhang (2005) NO Push Down 300 x 10 100 x 10 40 104 / 207 - - - Pneumatic PDMS Part-ratio
Wang et al. (2004) NO Push Down 150 x 12 300 x 50 58 551 413 0.1 nl - Pneumatic PDMS O2 Plasma
Gu et al. (2007) NO Push Down 100 x 9 100 x 16 - ≈217 - - 300 ms Piezoelectric PDMS O2 Plasma

NO – normally-open; NC – normally-closed
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3.5 Microfluidic device fabrication

Microfluidic channels can be patterned in substrate materials that include

glass (Lin et al., 2001), silicon (Harris et al., 2003) and polymeric materials

in the forms of elastomers and thermoplastics (Becker and Gärtner, 2008).

There are many fabrication techniques associated with the different substrate

materials. Some examples include, injection moulding (Kim et al., 2006a) and

hot embossing (Becker and Heim, 2000) of plastics, chemical (wet) etching of

glass (Stjernström and Roeraade, 1998), plasma (dry) etching of silicon (Losey

et al., 2002) and laser machining of plastics (Klank et al., 2002). But out

of the available substrate materials and associated fabrication techniques, soft

lithography with the silicone elastomer polydimethyl(siloxane), or PDMS, is

arguably the most widely employed method to prototype microfluidic device

creation.

Reasons for the widespread adoption of soft lithography with PDMS are two-

fold. First the technique of soft lithography (Duffy et al., 1998) is in itself

relatively quick and simple. Second, PDMS has several attractive properties

that include the ability to support the creation of high density integrated valved

devices (Thorsen et al., 2002), little optical absorbance in the range of wavelengths

between 230 nm and 700 nm (Fujii, 2002), tunable optical properties through

dye-doping (Hofmann et al., 2006), biocompatibility (Folch and Toner, 1998),

modifiable surface wettability (Bhattacharya et al., 2005) and reasonable solvent

compatibility (Lee et al., 2003).

Prototyping microfluidic devices in PDMS involves three major steps, the

fabrication of a replication master, the processing of PDMS, and finally alignment

and bonding. These three steps are discussed in more detail next.

3.5.1 Replication master fabrication

Prototyping with PDMS first requires the creation of a master that is patterned

with the desired microchannel design. The fidelity of resulting microstructures in

PDMS is dependent on the replication master. Therefore replication master fab-

rication tends to be the most time-consuming and expensive step in prototyping.

Typically silicon wafers are used to create replication masters and thus many of

the techniques used for replication master fabrication have been borrowed from

the integrated circuit industry. Similarly replication master fabrication is often
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 (a)

(b)

(c)

(d)

 Substrate  Resist

Figure 3.19: Summary of the master fabrication process. A silicon wafer
is cleaned and dehydrated before photoresist is applied (a). The clean
silicon wafer is coated with photoresist of uniform thickness (b). The
photoresist is selectively exposed to UV light through a photomask (c).
The photoresist is developed leaving behind features that constitute the
pattern to be replicated in PDMS (d).

performed in specialist cleanroom environments using sophisticated equipment

(e.g. Standford Microfluidic Foundry and Southampton Nanofabrication Centre).

Creating patterns on a silicon substrate can be achieved either through bulk or

surface micromachining. Bulk micromachining involves the selective removal of

material from the substrate, while surface micromachining involves the selective

deposition of materials on to the substrate. In microfluidics, one of the most

popular methods to patterning silicon wafers is photolithography, which is a surface

micromachining technique.

Following Figure 3.19, typically liquid photoresists are deposited on to a silicon

wafer by spin coating. In spin coating the substrate is loaded on to a vacuum chuck

that is in turn coupled to an electric motor. An excess amount of photoresist

is dispensed on to the substrate. The substrate is then spun to obtain a

predefined thickness of photoresist. Both positive (e.g. AZ series, MicroChemicals

GmbH, Germany) and negative (e.g. SU-8 series, MicroChem Corp., USA) tone

photoresists are used in microfluidic master fabrication. After deposition, the

photoresist is patterned by selective exposure to ultraviolet (UV) light through
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a photomask. The UV exposure is typically performed within a mask-aligner

containing a collimated UV light source. The exposure to UV light causes negative

tone resists to become insoluble to developer solution, while in positive tone resists

UV exposure causes the resist to become more soluble to developer solution. Thus

during development excess material can be removed leaving behind a pattern.

After development, the patterned silicon wafer is normally subjected to a surface

treatment (silanization) to render it non-stick to PDMS, which aids separation of

cured PDMS from the wafer without causing damage to the master or PDMS.

3.5.2 Processing PDMS

Two commercially available types of PDMS are used in microfluidics, Sylgard 184

made by Dow Corning, and RTV 615 made by GE Bayer. Both types of PDMS

are supplied as two components, a base polymer and a curing agent. The two

components are mixed together normally at the manufacturers’ specified ratio of

10:1 (w/w) base to curing agent. The mix is then degassed and deposited on to

a replication master. The method of deposition depends on the desired thickness

of the PDMS layer. For thick layers, as depicted in Figure 3.20, PDMS is simply

poured on to the replication master and then degassed to remove any air bubbles

that are introduced during pouring.

To obtain thin (� 1 mm) device layers, the approaches of either spin coating or

sandwich moulding can be used. Spin coating allows for the deposition of material

(PDMS) of uniform thickness, which is determined by the spin coating speed (see

for example (Zhang et al., 2004)). In the sandwich mould approach (Jo et al.,

2000) PDMS is first poured on to a master. The PDMS-covered master is placed

on top of a rubber sheet that has already been put on of an aluminium plate. A

transparency film is then placed on top of the PDMS-covered naster. A Pyrex

wafer is put on top of the transparency film, and a rubber sheet is placed on top

of the Pyrex wafer. Finally a second aluminium plate is put on top of the upper

rubber sheet to complete the sandwich. A C-clamp is used to apply pressure to

the sandwich and the entire assembly is then baked. After baking the sandwich

is disassembled to reveal a thin PDMS film. The thickness of the film is altered

by adjusting the clamp pressure prior to baking. Hard stops can be incorporated

into the replication master to provide further control over PDMS thickness during

clamping.
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 (a)

 (b)

 (c)

 (d)

 Substrate  PDMS
 Resist

Figure 3.20: Processing PDMS. First PDMS is poured on to a replication
master (a). The PDMS is cured in place (b) and afterwards released from
the replication master (c). The microchannels contained with the cured
PDMS layer are then sealed by bonding to another substrate (d).

Once deposited PDMS is cured in place over the replication master. This can

take as long as 48 hours at room temperature. Curing can be accelerated through

baking, however PDMS does experience temperature-dependent shrinkage during

curing (Lee and Lee, 2008). The shrinkage can be accounted for by scaling

photomask designs so that the resulting replication master features are slightly

larger (Marcus et al., 2006). A selection of photomask scale values used to offset

the baking induced shrinkage of PDMS is summarised from Lee and Lee (2008)

in Table 3.3.

Once cured, the PDMS is released from the replication master. Fluid access holes

are then made in the cured PDMS using a coring tool, biopsy punch, drill or by

punching with a needle. The PDMS is then ready to be bonded.
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Table 3.3: Photomask feature scale values to account for PDMS shrinkage
during curing

Temperature Cure Time Scale Value
(oC) (hours) (%)

65 4 +1.07
80 2 +1.54
100 1 +1.98

3.5.3 Bonding

PDMS can bond reversibly by simply bringing it into conformal contact with a

substrate such as glass, silicon or another piece of PDMS, provided all mating

surfaces are clean. For applications that involve higher operating pressures, such

as valved devices, irreversible bonding of PDMS is required. Irreversible bonding

techniques in general either involve surface treatments (Haubert et al., 2006),

adhesives in the form of uncured PDMS or curing agent (Satyanarayana et al.,

2005; Samel et al., 2007) or variation of the PDMS processing parameters, for

example temperature or ratio of curing agent (Unger et al., 2000; Go and Shoji,

2004). A particularly popular and effective method of bonding involves treating

PDMS with an O2 plasma generated by a plasma cleaning machine. Plasma

treatment can be used to irreversibly bond pieces of PDMS to one another and

glass provided that both the PDMS and glass are exposed to the O2 plasma.
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Accessible prototyping of

integrated valve microfluidic

devices

4.1 Introduction

A bespoke microfluidic design containing integrated valves is required for enzy-

matic computing studies with an autonomous experimentation system. Potentially

many prototyping cycles are required to obtain a suitable microfluidic design

for the autonomous experimentation system. In soft lithography (Duffy et al.,

1998), associated with each prototyping cycle is the fabrication of replication

masters from which devices are constructed. Creating replication masters can

be costly, particularly when specialist processing environments and sophisticated

equipment are used (e.g. the Stanford Microfluidic Foundry and Southampton

Nanofabrication Centre). One means by which the cost of prototyping can be

reduced is to switch photoresist material used in creating microfluidic replication

masters, from a liquid to a dry film type.

Dry film resists are supplied as thin polymer sheets of pre-defined thickness, which

are then laminated onto a substrate. A liquid photoresist is instead spin coated

onto a substrate, where the spin speed and repeated coatings determine photoresist

thickness. There are several advantages to using dry film resists (DFRs) over liquid

resists. These include: easier handling and processing of coated substrates, no edge

beading, good uniformity and a requirement for simpler processing equipment.

Moreover DFRs are substantially cheaper than liquid photoresists (e.g. order of
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magnitude between AM150 and SU8). Dry film resists can be either fabricated in-

house from SU-8 liquid photoresist (Abgrall et al., 2008) or obtained commercially.

Some commercially available DFRs include: Ordyl (Elga Europe S.r.l., Italy),

Riston/MX (DuPont, USA), Etertec (Eternal Chemical Co. Ltd., Taiwan) and

TMMF (Tokyo Ohka Kogyo Co. Ltd., Japan).

Dry film photoresists were originally intended for patterning printed circuit boards,

but have been used in microdevice fabrication since the mid 1990s (Lorenz

et al., 1996). Vulto and co-workers demonstrated dry film resists used as

part of the structural elements of microfluidic devices (Vulto et al., 2005).

Other examples of devices made in a similar manner include: an electrowetting

immunoassay device (Nashida et al., 2007), a capillary electrophoresis device

to separate and detect dopamine and catechol (Tsai et al., 2006), a device for

dielectrophoretic separation of colloidal particles (Yunus and Green, 2010) and

a normally closed microvalve actuator (Lemke et al., 2011). Dry film resists

can also be used to create hot embossing masters. For example Sandison and

Morgan used dry film resist laminated on to glass slides to hot emboss patterns

into the thermoplastics poly(methylmethacrylate) (PMMA) and poly(ethylene

terephthalate) (PET) (Sandison and Morgan, 2005). More recently it has been

shown that PDMS replication masters can be created from dry film resists

laminated on to silicon and glass substrates (Stephan et al., 2007; Thomas et al.,

2010).

Dry film replication masters are not fully capable of supporting the creation of

normally-open integrated valve microfluidic devices such as the so-called Quake

variety (Unger et al., 2000). For normally-open integrated valves to close fully,

channels with rounded cross-sections are required. Fabricating replication masters

containing rounded features is in theory far simpler to achieve with liquid resists

than with dry film resists. An additional bake cycle causes some liquid resists to

reflow resulting in a rounded profile as described by Unger et al. (2000). Dry film

resists do not reflow and rounded channels can only be obtained by mechanical

modification. Methods for obtaining rounded replication masters without using

liquid resists do exist. Examples include, aluminium foil shaped over wire (Graf

and Bowser, 2008), and vacuum moulds constructed in PDMS which are used

to shape UV curable glue (Kang et al., 2010). Conceivably by combining an

alternate method of obtaining rounded masters with dry film resist masters, the

cost of prototyping could be significantly reduced and therefore the accessibility

to integrated valve microfluidic technology could be greatly improved.
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Presented in this chapter are fabrication methods that enable the construction

of integrated valved microfluidic device within a standard chemistry laboratory

and without the need for sophisticated processing equipment. Replication masters

are obtained by laminating dry film photoresists onto glass microscope slides. To

create patterns within laminated dry film resists, a hand-held UV lamp is used.

With this set-up, features smaller than 100 µm can be obtained. Vacuum moulds

are used to create replication masters containing rounded features. Previously

replication masters had been fabricated with liquid resists and silicon wafers were

used to obtain vacuum moulds (Jeong et al., 2006; Kang et al., 2010). Instead DFR

replication masters are used here to create vacuum moulds in PDMS. Hot glue is

deposited on to the vacuum mould and a glass microscope slide placed on top of

the hot glue, thereby yielding a rounded master. The rounded master can be used

immediately after cooling. The applicability of the fabrication methods reported

here for creating integrated valve devices, is demonstrated by the implementation

of a peristaltic pump device.
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4.2 Experimental methods

4.2.1 Replication masters with rectangular features

4.2.1.1 Photomasks

Photomasks were designed using AutoCAD software (Autodesk, USA) and sent

for printing at a resolution of 20,000 dpi to Micro Lithography Services Ltd.

(Chelmsford, UK).

4.2.1.2 Glass slide preparation

Standard borosilicate glass microscope slides were used as replication master

substrates on to which dry films were laminated. The glass microscope slides (76

mm by 38 mm by 1.2 mm) were obtained from Fisher Scientific (Loughborough,

UK). Before lamination, the slides were washed with dishwashing liquid and water,

and rinsed under acetone, methanol and isopropyl alcohol. Afterwards the slides

were dried with nitrogen gas and baked for 10 minutes on a hot plate set to 110
oC. The slides were left on the hot plate until required for lamination.

4.2.1.3 Dry film lamination

Rolls of 50 and 75 µm thick negative dry film resist (Ordyl AM150 and AM175)

were purchased from Elga Europe (Daventry, UK). An A3 hot roll laminator (GMP

Photonex 325) was used to laminate the dry film resist on to glass slides. A sheet

of 200 gsm card was cut into pieces of width 60 mm and length 220 mm. Each

piece of card was folded in half across its length. Ordyl dry film resist was cut

into several pieces with dimensions slightly less than the card pieces (typically 100

mm long by 50 mm wide).

For lamination, the hot roll laminator was set to a temperature of 110 oC and speed

2. The folded pieces of card were fed through the laminator. Following Figure 4.1,

lamination of the dry film resist (DFR) onto glass proceeded as follows: (1) the

protective film covering the bottom of the DFR was peeled back by approximately

10 mm from one of the short edges. The unprotected laminate edge was pressed

against a short edge of the card. The laminate and card were then fed through the

laminator by approximately 8 mm before reversing the feed. (2) The remainder
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of the DFR bottom protective film was then peeled off completely. A heated glass

slide was removed from the hot plate and placed onto the partially laminated card.

The slide and partially laminated card were fed through the laminator. During

lamination the DFR was kept taut and angled at approximately 20 to 30 degrees

above the surface of the glass slide. At the same time pressure was applied to

the glass slide to prevent slipping during the initial feed into the laminator. (3)

After lamination the glass slide was cut free from the card with a scalpel and left

to cool to room temperature for 10 minutes. Exposure of the laminated slide to

ultraviolet light could then be performed.

Protective film

DFR underside

(a)

Card

Laminated section

(b)

Laminated slide

(c)

Figure 4.1: Dry film resist lamination. The protective film is removed
from the underside of the dry film before lamination (a). The dry film is
partially laminated on to card to ease handling during lamination (b). A
laminated microscope slide (c).

4.2.1.4 UV exposure

Laminated slides were exposed to ultraviolet (UV) light within a custom exposure

box that had been fabricated in-house (Figure 4.2). Integrated into the box was

a sliding metal screen that provided exposure control, and a movable shelf that

provided intensity control. The UV light source used was a high intensity UV

lamp (100 W, 365 nm, Black-Ray B-100AP).

For exposure, the UV lamp was turned on for at least 10 minutes to warm up. The

following steps were performed: (1) a laminated slide was placed laminate side up

on top of a piece of black card, which had been put on the exposure box shelf. (2)

A photomask was put on top of the laminated slide. (3) A cleaned non-laminated

microscope slide was then put on top of the photomask. (4) Two small 20 gram

masses were placed at opposite ends on top of the cleaned non-laminated slide.

(5) The shelf was then loaded into the light box at the uppermost level (70 mm

from the lamp). (6) The metal screen was then moved to expose the laminated

slide to UV light. After 10 seconds (≈ 115 mJ dose - see appendix A.1) the metal
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UV lamp

Exposure
box

Shelf
levels

Figure 4.2: Handheld UV lamp and exposure box. The box has three shelf
levels allowing for different intensities of exposure.

screen was moved to block the UV light. (7) After exposure, the laminated slide

was put on a hot plate set to 65 oC and baked for a duration of 10 minutes. (8)

The slide was removed from the hot plate and left to cool to room temperature.

4.2.1.5 Developing

(a) (b)

Figure 4.3: Laminated slides before and after developing. A UV exposed
laminated slide showing cross-linked patterns surrounded by uncross-
linked resist (a). A developed slide devoid of uncross-linked resist (b).



Chapter 4 Accessible prototyping of integrated valve microfluidic devices 57

Developer solution was prepared by dissolving sodium carbonate (Sigma Aldrich,

UK) 0.8% w/v in deionised water. The developer solution was poured into a Petri

dish which had been placed within an ultrasonic cleaner (Ultra 6000, Maplin UK).

Development of a laminated slide was performed as follows: (1) a laminated slide

was put laminate side (face) down into the Petri dish and the ultrasonic cleaner

switched on. The slide was left face down for 40–60 s. (2) The laminated slide

was then flipped face up and left for 30–50 s. (3) The ultrasonic cleaner was then

turned off. The laminated slide was gently rubbed by hand for 30–45 s. (5) The

slide was removed from the Petri dish and rinsed thoroughly under a water tap. (6)

The slide was visually inspected to determine if further development was required.

If further development was required, the process was repeated but with shorter

time intervals to prevent over-developing (see workflow diagram in Appendix A.2).

Once fully developed (e.g. Figure 4.3), a slide was cleaned with dishwashing liquid

and deionized water, rinsed with water and then dried with nitrogen. The cleaned

slide (replication master) was then silanized.

4.2.1.6 Silanization

Figure 4.4: A silanized replication master. A drop of water placed takes
on a spherical shape indicative of a hydrophobic surface.

Silanization was performed in a vacuum desiccator similar to the method

described by Sandison et al. (2007). Briefly a drop of trichloro(1H,1H–2H,2H–

perfluorooctyl)silane 97% (Sigma Aldrich, UK) was pipetted on to a coverslip

which had been put inside a vacuum desiccator. Replication masters were placed

within the desiccator and positioned around the coverslip. A vacuum was applied

to the desiccator for 30 minutes. The vacuum pump was turned off and the

desiccator left sealed for an additional 30 minutes. Afterwards the desiccator was
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vented to atmosphere. Replication masters were removed from the desiccator

and then baked at 120 oC for 20 minutes. From this process the replication

masters were rendered hydrophobic (Figure 4.4) exhibiting a contact angle with

water of approximately 103o (see appendix A.3). Rendering replication masters

hydrophobic was essential to aid the release of cured PDMS from replication

masters without damage either to PDMS structures, or to replication master

features.

4.2.2 PDMS processing

4.2.2.1 Casting PDMS

PDMS (Dow Corning Sylgard R©184) was purchased from Farnell (Leeds, UK). The

PDMS was prepared by mixing base polymer with catalyst at the manufacturer’s

standard ratio of 10:1. The PDMS mixture was then degassed for 30 minutes

in a vacuum desiccator. Using the technique described by O’Neill et al. (2006),

aluminium foil was folded and shaped around replication masters to contain poured

PDMS. PDMS was poured on to replication masters. Air bubbles introduced

into the PDMS mixture during pouring, were burst or moved to the periphery of

the replication master using a scalpel blade. Persistent bubbles were removed by

simply allowing the poured PDMS to stand for several minutes before baking. The

poured PDMS was cured by baking for 1 hour on a hot plate set to a temperature

of 100 oC. After curing, the hardened PDMS was separated from the replication

master. Fluid access holes were cored through the cured PDMS using a 1 mm

biopsy punch.

4.2.2.2 Spin coating PDMS films

PDMS was mixed and prepared as described above. Replication masters were

loaded in turn onto a vacuum chuck within a spin coater (Model 4000, Electronic

Microsystems Ltd., UK). PDMS was poured onto the replication master. Using

spin coater operating parameters modified from (Zhang et al., 2004), the spin

coater was programmed to: (1) spin at 500 RPM for 15 s. (2) Ramp the spin

speed up to a final spin speed with an acceleration of 20 RPM/s. (3) Maintain the

final speed for 60 s before decelerating to a standstill. The PDMS coated master

was then removed and placed on a hot plate set to 100 oC and left to cure for 1

hour.
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4.2.2.3 Oxygen plasma bonding

Figure 4.5: Glass and PDMS samples undergoing oxygen plasma exposure.

A Diener Femto RF oxygen plasma system (Henniker Scientific, Cheshire, UK) was

used to bond PDMS either to PDMS or to glass microscope slides. The plasma

system was operated with RF power set to 50 W, an input oxygen flow rate of

between 70 to 80% of 90 sccm/min and exposure time of 30 s, which resulted in

a blue-white plasma (see Figure 4.5). After exposure the bonding process was

performed by: (1) bringing plasma exposed samples into conformal contact, (2)

applying pressure by hand to force out trapped air from between the contacted

samples, (3) leaving the samples to stand for 10 minutes and (4) baking the samples

for 10 minutes on a hot plate set to 70 oC. After baking, the bonded layers were

left to cool to room temperature before carrying out any further processing.

4.2.3 Fabrication of rounded channel devices

Replication masters for rounded channels were fabricated by first creating a PDMS

vacuum mould, which involved: (1) creating a rectangular replication master in

dry film resist. (2) Pouring and curing PDMS on top of the rectangular replication

master. (3) Spinning a thin 40 µm PDMS film on to a featureless silanized glass

slide. (4) Oxygen plasma bonding the bottom of the patterned PDMS to the

PDMS film.
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Following Figure 4.6, a diaphragm pump was connected to the PDMS vacuum

mould. The diaphragm pump (Air Admiral, Cole-Palmer UK) was set to deliver

600 mbar (gauge pressure) of vacuum. Hot glue was dispensed using a hot glue

gun (Tec 150, RS Components) on to the PDMS vacuum mould. A clean glass

slide was pressed firmly against the dispensed hot glue and left to cool for 10

minutes. The vacuum supply to the PDMS vacuum mould was interrupted and

the glue master released from the vacuum mould.

The glue master did not require silanization. PDMS was mixed and degassed as

described previously but with a base to curing agent ratio of 5:1. The 5:1 ratio

PDMS was poured on to the glue master and cured on a hot plate set to 50 oC for

5 hours. Afterwards the cured PDMS was released from the glue master where it

could then be further processed.

(a)

(b)  (e)

Glass

 PDMS

 Glue(c)

(d)

P < 0

Figure 4.6: The fabrication of replication masters containing rounded
features. A vacuum mould is constructed by bonding a patterned PDMS
layer to a thin PDMS film (a). Vacuum is applied to the mould causing
the membrane to be pulled inwards (b). Hot glue is dispensed on to the
vacuum mould (c). A glass microscope slide is pressed firmly on top of
the dispensed hot glue (d). After cooling the replication master is released
and ready to be used (e).
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Figure 4.7: Test patterns used to evaluate DFR performance. The patterns
were duplicated with both dark (a)-(c) and bright (d)-(f) fields. Line
patterns (a) & (d) varied both in thickness and spacing. The numbers
to the left of each line indicate their thickness in micrometres. Starting
from the top lines in (a) and (d), the spacing between each line increases
in 10 µm steps from 40 µm up to 100 µm. Circular (b) & (e) and semi-
circular (c) & (f) patterns. The values above each pattern indicate the
inner diameter and channel width of each pattern.

4.2.4 Characterisation of the dry film resist

Experiments were conducted to evaluate the performance of the photoresist and to

optimise the fabrication process. The patterns shown in Figure 4.7 were replicated

in dry film resist laminated on to glass slides. The patterns were designed to

evaluate the ability of the DFR to resolve typical channel design elements. The

design elements included channels of varying size in close proximity (Figure 4.7a

& 4.7d), circular channels (Figure 4.7b & 4.7e) and corners (Figure 4.7c & 4.7f).

Developed slides containing the test patterns were inspected under a Nikon LV-

UDM optical microscope equipped with a DS-Fi CCD camera.

4.2.5 Cross-section profiling

Cross-sectioned samples were mounted on to a microscope slide. The microscope

slide was oriented on its side and held in position on a microscope stage with a

document clip. Cross-section profiles were recorded with a Nikon LV-UDM optical

microscope equipped with a DS-Fi CCD camera.
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4.2.6 Demonstration device: peristaltic pump

The three-valve peristaltic pump design shown in Figure 4.8 was used to test

the suitability of dry film resists in the creation of valved devices. The device

was constructed by bonding a layer containing a fluidic channel on top of a layer

containing valve channels. The valve layer was then irreversibly sealed by bonding

with a glass microscope slide. The fluidic channel layer was created by pouring

PDMS on to a rounded master, which had been created from dispensing hot glue

on to a vacuum mould as described above. A rectangular master patterned with 50

µm tall features was used to obtain the vacuum mould. The layer containing valve

channels was created by spin coating PDMS onto a rectangular master patterned

with 75 µm high features. The spin coating speed was selected to result in a PDMS

film taller than the replication master features. By this method the membrane

required between valve and fluidic channels was directly integrated into the valve

layer.
2
6
 m

m

200 µm

2
0
0
 µ
m

Fluid 
channel

Control 
channel

Figure 4.8: A three-valve peristaltic pump. The control channels (red)
used in this design are configured as normally-open, push-up valves. The
valve channel dimensions are: 200 µm wide by × 75 µm deep.
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4.2.7 Demonstration device: testing

Regulated positive pressure was supplied from an air compressor (Thorlabs

PTA511, Thorlabs UK) to the inputs of 3 way normally closed solenoid valves

(Clippard Minimatic Mouse Series, The West Group, Hampshire, UK). Tygon R© tub-

ing was used to connect the outputs of the solenoid valves to the control channels of

the peristaltic pump. The solenoid valves were powered with 6 Vdc from converting

the output of a 15 Vdc 5 A rated switched-mode power supply. Switching of the

solenoid valves was controlled by a USB interface (Phidget interfacekit 0/16/16,

Active Robots UK) and custom software (see Appendix B).

Control channels of the peristaltic pump were filled with an aqueous solution using

the channel outgas technique described by Monahan et al. (2001). The resistance of

closed on-chip valves to pressurised flow was determined by measuring the pressure

delivered to the valve and flow channels. This was achieved by first priming the

fluidic channel of a pump with deionised water. Food colourant was then injected

into one inlet of the pump, which allowed for visual determination of valve leakage.

A valve was closed and the food colourant pressurised. Pressure readings were

obtained with pressure transducers (PX40 100 PSI 0 to 4.5 Vdc output, Omega

Engineering UK). Measurements were recorded from the pressure transducers

using a National Instruments USB DAQ 6008 and Labview software. Pumping

experiments were recorded under a stereo zoom microscope (Zeiss Discovery V8)

with video captured using a Zeiss Axiocam ICc1 camera and Axiovision software.
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4.3 Results and discussion

4.3.1 Resist processing and characterisation

Processing both types of resist took approximately 40 minutes to complete, which

is comparable to the time required to process a 50 µm layer of SU-8 (see Table 4.1).

It was found that due to the regular 10 minute intervals between processing steps

for the DFR, up to four microscope slides measuring up to 75 mm × 50 mm in

size could be processed in 2 minute staggered intervals by one person in under an

hour. Developing time varied but generally did not exceed more than 6 minutes.

The variation experienced during developing was dependent on the thickness of

the resist being developed, with thicker films taking longer.

Table 4.1: Comparison of SU-8 50 and AM 150 Processing Times

SU-8 50 AM 150
50 µm 50 µm

Spin 30 s Prebake 10 min (110 oC)
Soft Bake 3 min (65 oC) Laminate 20 s

6 min (95 oC) Cool 10 min
Exposure 17 s Exposure 10 s
Post-Exposure 1 min (65 oC) PEB 10 min (65 oC)
Bake (PEB) 6 min (95 oC) Cool 2 min
Develop 6 min 30 s Develop < 6 min
Hard Bake 10 min

Total 33 min 17 s Total 38 min 30 s

Vulto et al. (2005) experienced cracking in the laminate of a laminated slide if it

was cooled too quickly after a post exposure bake, and the cracking was found to

occur independent of substrate. The cracking problem was not experienced here

even when placing a slide on an aluminium heat sink. The absence of cracking

could be due to the linear thermal expansion coefficients of the laminate and glass

slides being similar enough to cause minimal thermal stress during cooling.

The test pattern characterisation results are shown in Figure 4.9. The patterns

obtained in the DFR from the dark field mask (Figure 4.9a–4.9e) were capable

of being reproduced close to their designed sizes. The dry film was capable of

resolving the smallest of the line patterns. The width of the smallest reproduced

line pattern was measured to be 41.84 µm. At this width the aspect ratio was

calculated to be 1.20:1 for the 50 µm thick resist. The smaller width line patterns
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exhibited more pronounced rounding at their ends when compared to the larger

width line patterns. As larger lines were found to take longer to develop than

smaller lines, the rounding effect is thought to be due to overdeveloping. In the

circle patterns (Figure 4.9c) measurements revealed features below 40 µm were

significantly larger than their targets, ranging from 11% larger at 35 µm up to 44%

larger at 20 µm. Similar results were obtained for the corner patterns (Figure 4.9e);

corners below 25 µm were however completely etched away. Rounding was again

more pronounced at smaller dimensions.

The bright field mask, which would allow for sunk-relief features to be created,

resulted in poorer reproduction of the test patterns when compared to the dark

field mask patterns. The smallest relief pattern achieved (Figure 4.9b) was

measured to be 36.7 µm, a 10.1% error. The error improved modestly with

increased relief size. A 200 µm relief pattern the error was 7.5%. Worse yet

were the reproduced circle (Figure 4.9d) and corner relief patterns (Figure 4.9f)

with all features measured to be significantly smaller than designed. Increasing

the UV exposure time would result in smaller features as more resist would remain

after developing. Increasing the development time for a given UV exposure had

little effect resulting in features of similar size.

From the results above, the DFR and fabrication process should be suitable for

creating the replication masters necessary for integrated valve PDMS devices,

particularly as features as small as 40 µm wide by 50 µm can be supported. This is

within the range of feature sizes used for valve devices (Studer et al., 2004). Note

from these results that 40 µm features could be achieved despite the UV light

source used to pattern the DFR not being collimated. Previously it was found

that patterns created in dry film resist smaller than 130 µm (Vulto et al., 2005)

and 200 µm (Stephan et al., 2007) were not possible without a collimated light

source.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Resulting test patterns in dry film resist. Patterns from dark
(a), (c), (e) and bright (b), (d), (f) field masks. Scale bars: 100 µm.
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4.3.2 Patterning PDMS

4.3.2.1 Spinning thin films

y = 496170x-1.27 
 = 0.9839 

20 

30 

40 

50 

60 

70 

80 

90 

100 

110 

120 

130 

140 

150 

160 

170 

180 

190 

200 

210 

220 

230 







 



 





 




 

Sp pd rp 

Figure 4.10: PDMS film thickness versus spin coating speed.

Plotted in Figure 4.10 are results obtained from characterising the effect of spin

speed on PDMS film thickness. The trend in the data follows a power law as

expected from similar results reported in the literature (Zhang et al., 2004).

4.3.2.2 Rectangular channels in PDMS

A PDMS microchannel patterned with a DFR master is shown in Figure 4.11. The

width of the channel was measured to be 203.76 µm, slightly less than the designed

value of 204 µm. The channel was designed to be 204 µm to accommodate for

PDMS shrinkage during curing (Lee and Lee, 2008), however shrinkage was found

to be minimal.

PDMS channels patterned with DFR masters were cross-sectioned so that profiles

could be measured. In Figure 4.12 it can be seen that the sidewalls of the PDMS

channel are near vertical, despite the DFR master having been created without a

collimated light source.
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Figure 4.11: An approximate 200 µm wide channel patterned in PDMS
using a DFR replication master. Scale bar: 10 µm.

Figure 4.12: Cross-section of a PDMS channel patterned with a DFR
replication master. The cross-sectioned channel was bonded against a
thin PDMS film to aid assessment of the cross-section profile. Scale bar:
10 µm.
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4.3.2.3 Rounded channels

Replication masters could be obtained quickly and simply within 10 minutes by

using hot glue and a vacuum mould. No silanization treatment was required,

therefore as soon as the hot glue had cooled the rounded master could be used.

The hot glue was found to begin melting at temperatures above 55 oC. Therefore,

curing of PDMS on top of a glue replication master had to be limited to a maximum

temperature of 50 oC. The lower cure temperature resulted in both longer cure

times and cured PDMS that was noticeably less rigid than PDMS cured at 100 oC.

The softer PDMS would make processing, such as hole coring more difficult. The

PDMS mix ratio was modified to increase the amount of catalyst. This ensured a

shorter cure time, as well as PDMS that was similar in firmness to PDMS cured

at 100 oC.

A glue master containing a rounded channel is shown imaged from above in

Figure 4.13a. The channel width was measured to be 205.25 µm, which is slightly

more than the designed channel width of 204 µm. A cross-section profile obtained

from PDMS cured on the glue master is shown in Figure 4.13b. The channel height

was found to be lower at 30 µm than the height of the channel within the vacuum

mould, which was 50 µm. To make up for the difference in height, a vacuum mould

containing a deeper channel could be used. So far the simple case of a creating

a rounded master with a lone straight channel has been demonstrated. To test

the applicability of the method, a design containing several channels that meet at

junctions was attempted. The result is shown in Figure 4.14. It can be seen that

(a) (b)

Figure 4.13: A rounded replication master and the resulting profile in
PDMS. The replication master contains only a straight channel (a); scale
bar: 200 µm. The resulting cross-section profile of PDMS patterned with
the replication master (b); scale bar: 30 µm.
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Figure 4.14: A rounded hot glue master containing several microfluidic
channels that meet at junctions. The insets show the junction points at
greater magnification. Scale bars: 200 µm.

more complex designs can be implemented in rounded masters made with hot glue

and a vacuum mould.
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4.3.3 Peristaltic pump

Basic characterisation tests were first performed on the experimental set-up to

determine limits of operation. Shown in Figure 4.15 are results from solenoid

valve actuation tests. The solenoid valves were connected to pressure transducers

and programmed to switch with a delay between opening and closing. It appears

that switching times lower than 40 ms are not sufficiently long enough to allow

near complete pressurisation. This limitation was found to be dependent on the

air content of the tubing connected to the solenoid. By partially filling the tubing

with water, complete pressurisation was achieved with switching times as short as

15 ms.

Two types of pumps were fabricated, one with a rounded fluidic channel and the

other with a rectangular fluidic channel. The resistance of closed on-chip valves

to pressurised flow was measured for both types of pump. The pump containing

a rectangular fluidic channel was found to perform relatively poorly. The valves

in the rectangular channel pump could not stop flow in the fluidic channel despite

being driven with 4 bar of pressure. Conversely the valves in the rounded channel

pump when pressured with 2 bar of pressure, were found capable of stopping flow

driven with pressure in excess of 100 kPa.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ct

ua
tio

n 
pr

es
su

re
 (k

P
a)

 

Time (s) 

1000 ms 

8 ms 

12 ms 

15 ms 

18 ms 

21 ms 

24 ms 
27 ms 

30 ms 
35 ms 40 ms 45 ms 50 ms 55 ms 

Figure 4.15: Pressure measurements recorded from the outlet of a solenoid
with delayed switching between opening and closing. The delay between
open and closing of the solenoid is indicated above each peak.
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The operation of the pump is shown in Figure 4.16. The valves were driven

with 2 bar of pressure and the pump was operated with a 50 ms delay between

valve switching. The 50 ms delay translated into a pump cycle taking 300 ms

to complete. To estimate the flow rate of the pump, food colourant was injected

into the fluidic channel, allowed to settle, and then monitored during pumping.

The distance travelled by the front of the food colourant was measured for 30 s of

pumping. The food colourant was found to travel at a linear velocity of 632.1 µm/s.

This was converted into flow rate by multiplying the linear velocity with the cross-

sectional area of the channel. The cross-sectional area of the channel was calculated

by treating the cross-section profile as half an ellipse. Assuming a channel height

of 30 µm and channel width of 210 µm, the flow rate was calculated to be 93.83 pl

min−1. The pump flow rate is quite low when compared to the literature (e.g. (Graf

and Bowser, 2008)). Optimisation of the pump design is required, however for the

purpose of proof of principle the pump design was adequate. During fabrication of

the pump an important issue became apparent. That was how to obtain accurate

alignment between the control and fluidic layers when bonding each layer together.



Chapter 4 Accessible prototyping of integrated valve microfluidic devices 73

(a)

(b)

(c)

(d)

(e)

Flow

Figure 4.16: Operation of the peristaltic pump. The action of the three
integrated valves drives the blue food colourant from right to left (a)–(e).
Scale bar: 800 µm.
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4.4 Summary

A set of fabrication techniques has been presented that allow for integrated valved

devices to be created in a standard chemistry laboratory environment without

need for sophisticated equipment. Dry film resists are laminated onto glass

slides to obtain replication masters containing features with rectangular profiles.

Replication masters containing features with rounded profiles are fabricated by

depositing hot glue on to vacuum moulds. This method for creating rounded

masters is capable of supporting simple and more complex channel designs. The

implementation of a peristaltic pump device by using the fabrication techniques

described here, served to demonstrate the suitability of the methods to the creation

of integrated valve devices. From this work, barriers to integrated valve technology

are now diminished. However an issue that was not fully addressed here was how to

obtain good alignment between the device layers when constructing valved devices.



Chapter 5

Water alignment vacuum

extraction

5.1 Introduction

The creation of sophisticated microfluidic devices, such as three-dimensional

mixers (Lee et al., 2006; Cha et al., 2006) or integrated valve devices (Thorsen

et al., 2002; Hong et al., 2004b), typically requires several individual device layers

to be irreversibly assembled vertically on top of one another. Each device layer

has to be accurately aligned to ensure correct operation of the microfluidic device.

Oxygen plasma bonding, which is one of the most commonly used methods for

irreversibly sealing PDMS against PDMS or glass, makes the alignment of device

layers particularly challenging.

The exposure of glass and PDMS substrates to an oxygen plasma causes their

surfaces to become oxidised, resulting in the formation of reactive silanol groups

(Si-OH). When two oxidised surfaces containing silanol groups are brought into

contact, a condensation reaction takes place between the silanol groups resulting in

the formation of covalent siloxane (Si-O-Si) bonds (Duffy et al., 1998). This process

is rapid and completes within seconds. Therefore caution has to be exercised when

aligning two plasma exposed PDMS layers, as contact between them would result

in near instantaneous irreversible bonding.

Several research groups therefore use mechanical jigs to first align plasma exposed

PDMS layers before bonding (Chiu et al., 2000; Hofmann et al., 2001; McDonald

and Whitesides, 2002; Baek et al., 2005). However there exists a problem in that
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O plasma exposure2 Bring into contact

Vacuum extract 
water

Compress and 
align by hand

(a) Pipette DI water(b)

(d)

(c)

(e)

P < 0

Bake(f)

TOP BOTTOM

Figure 5.1: The WAVE technique included as part of the oxygen plasma
bonding process. Two PDMS device layers TOP and BOTTOM are
exposed to oxygen plasma (a). Deionised water is pipetted on to the
BOTTOM layer (b) and the TOP layer is then brought into contact with
water-covered BOTTOM layer (c). The two layers are compressed against
each other and aligned by hand under a microscope (d). Water between
the layers is then extracted by applying a vacuum to the inlets and outlets
of the TOP layer (e). The two layers are then baked to finalise their
bonding (f).

PDMS bonding can only be performed within the first few minutes after oxygen

plasma exposure. The surface reactivity necessary for bonding degrades with time.

By coating oxidised PDMS with hydrophilic liquids such as water, methanol and

trifluoroethanol, the surface reactivity can be prolonged (Anderson et al., 2000).

Methanol can be used in combination with a mechanical alignment jig to address

the issues of alignment and reactivity lifetime (Kim et al., 2005). Similarly without

a jig, methanol has been used to align oxidised PDMS layers simply by hand (Jo

et al., 2000). However methanol swells PDMS (Lee et al., 2003) sufficiently to

warrant its exclusion from the alignment process (Moraes et al., 2009). The

alternative is to use water, which does not swell PDMS. Water has been used

in the alignment of oxidised glass and PDMS, as well as several oxidised PDMS

layers (Irimia et al., 2004; Cho et al., 2009; Ding et al., 2011). But the effects of

water on the bonding strength of device layers has not yet been fully explored and

therefore is not well understood.

This chapter describes results from investigations into the effect of water on
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bonding between PDMS and PDMS, and PDMS and glass device layers. Test

devices are constructed to represent three device configurations that can be

considered typical in microfluidics. The test devices are fabricated by (1) bonding

a patterned PDMS layer to glass, (2) bonding a patterned PDMS layer against

an equally thick featureless PDMS block, and (3) bonding a patterned PDMS

layer against a thin PDMS film. The test devices are assembled both with and

without water used as a lubricant. Pressure tests are conducted on the test devices

to determine how much pressure can be supported. Analysis of the results from

pressure testing are used to establish what effect water has on bonding. Also tested

is a new technique introduced here called Water Alignment Vacuum Extraction

(WAVE). The WAVE technique (Figure 5.1) can be used to obtain accurate

alignment and robust bonding between oxidised microfluidic device layers, without

need of mechanical jigs. The WAVE technique is shown to be capable of supporting

the alignment of device layers in the construction of valved and three-dimensional

mixer microfluidic devices.
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5.2 Experimental methods

5.2.1 Device fabrication

PDMS devices were fabricated using the methods described in chapter4. Device

layers were either directly bonded together or subjected to an alignment process

after exposure to oxygen plasma.

5.2.2 Water alignment

The water assisted alignment procedure used here was based on that described

by Cho et al. (2009) Alignment was performed between two device layers at a time;

i.e. between an upper and a lower device layer. After exposure to oxygen plasma,

a 50 µl drop of deionised water was pipetted onto the surface of a lower device

layer. The complementary upper device layer was then brought into contact with

the water-covered lower device layer. The upper device layer was then compressed

by hand against the lower device layer to force out trapped air. While observing

through a stereo zoom microscope (Zeiss Discovery V8) with oblique brightfield

illumination, the two device layers were aligned by hand. Once aligned, the

device layers were placed on a hot plate at 80 oC for 10 minutes. Afterwards,

approximately 3.2 kPa of pressure was applied to the device layers using a sealed

bottle filled with water. The device layers were then baked for an additional 50

minutes.

5.2.3 Water alignment vacuum extraction (WAVE)

Alignment was performed between two device layers using water as a lubricant as

described above. Instead of baking the device layers after alignment, a vacuum

(-500 mbar) was applied in turn to all fluid access holes. The vacuum apparatus

consisted of a diaphragm pump (Air Admiral, Cole-Palmer UK) connected by

Tygon R© tubing to a 22 gauge (0.8 mm diameter) blunt syringe needle. The

vacuum pump was turned off when moving the 22 gauge needle from one fluid

access hole to another to prevent accidental separation of the device layers when

moving the needle. Within a few minutes of vacuum extraction, fluidic channels

would appear dry. At this point the upper device layer was compressed by hand

against the lower device layer to force remnants of water from between the device
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layers into the fluidic channels where it could be extracted. The device layers were

subjected to continued cycles of compression by hand until all water from between

the device layers had been extracted. Afterwards the device layers were baked for

30 minutes at 65 oC on a hot plate. The device layers were then baked for an

additional hour on a hot plate set to 100 oC. After baking, the layers were left to

cool to room temperature before being used.

5.2.4 Pressure testing: apparatus and procedure

Following Figure 5.2, pressure testing was performed using an air compressor

(Thorlabs PTA511, Thorlabs UK) capable of producing up to 825 kPa of pressure.

Blunt syringe needles 1.2 mm in diameter (19 gauge) were inserted into the ends

of Tygon R© tubing to serve as the interface between pneumatic components and

test device inlets (1 mm diameter cored holes). Two pressure transducers (PX40

100 PSI 0 to 4.5 Vdc output, Omega Engineering UK) were set-up to provide

measurements at the inlet and outlet of the test devices. This arrangement

allowed for pressure losses to be accounted for. Voltage signals from the pressure

transducers were captured using a National Instruments USB DAQ 6008 and

Labview software. Pressure testing was conducted under a stereo zoom microscope

(Zeiss Discovery V8) with images captured at 15 frames per second using a digital

camera (Zeiss Axiocam ICc1) and Axiovision software. Pressure testing proceeded

by adjusting the regulator on the air compressor from closed, up to a maximum

pressure of 689 kPa (transducer limit) within 30 seconds.

Inlet 
pressure
transducer

Test device

Outlet 
pressure
transducer

Air 
compressor

Regulator

On/off valve

Figure 5.2: Schematic of the pressure test apparatus with connections test
device.
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 15 mm

300 µm

Figure 5.3: Pressure test device design. The channel height is 50 µm.

5.2.5 Pressure testing: test devices

The straight channel design shown in Figure 5.3 was used in testing the effects of

water on bonding, as well as WAVE. The test channel device layers were obtained

by pouring and baking PDMS on top of a replication master. The pressure test

channel layers were bonded against featureless counter layers. The counter layers

were chosen to represent three typical bonding scenarios. The bonding scenarios

were: (1) sealing of the test channel against an equally thick featureless block of

PDMS, i.e. “PDMS-Thick”, (2) sealing of the test channel against a 100 µm thin

PDMS film, i.e. “PDMS-Thin” and (3) sealing of the test channel against a cleaned

glass microscope slide, i.e. “PDMS-Glass”. A total of 18 test devices were created:

Six controls that were directly bonded without water, six were aligned with water

and six were subjected to WAVE. During alignment the devices layers were moved

in arbitrary directions for 2 minutes. Test devices sealed with a thin PDMS layer

were directly bonded to glass slides to represent the typical construction of a valved

microfluidic device.

5.2.6 Demonstration device: F-mixer

The F-mixer (Figure 5.4) was used to test the applicability of the WAVE technique

to three-dimensional channel designs. Dry film resist with a thickness of 50 µm was

processed as described above to yield the necessary replication masters. PDMS

was processed as thick device layers that were then exposed to oxygen plasma

and WAVE aligned. To test the functionality of the F-mixer, food dye was driven

through the inlets of a finished F-mixer with positive air pressure supplied by a

diaphragm pump (Air Admiral, Cole-Palmer UK) capable of producing pressures

up to 200 kPa.
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Inlet flow

Inlet flow

Outlet flow

10 mm

Bottom layer

Top layer

250 µm

Figure 5.4: Schematic of the F-mixer. The F-mixer originally
demonstrated by Kim et al. (2004) consists of a series of isolated features
patterned in two separate planes or device layers.

5.2.7 Demonstration device: valved junction

The applicability of the WAVE technique was tested on an integrated valve

device. The three-way to two-way junction design shown in Figure 5.5 was

used, with valves controlling the fluid path between the inlet and outlet channels.

PDMS was processed as described previously. Layers were exposed to oxygen

plasma and aligned using WAVE. Control channels of the valve device were filled

with aqueous solution using the channel outgas technique described by Monahan

et al. (2001). Regulated positive pressure was supplied from an air compressor

(Thorlabs PTA511, Thorlabs UK) to the inputs of 3 way normally-closed solenoid

valves (Clippard Minimatic Mouse Series, The West Group, Hampshire, UK).

Tygon R© tubing was used to connect the outputs of the solenoid valves to the

control channels of the valve devices. Switching of the solenoid valves was

controlled by a USB interface (Phidget interfacekit 0/16/16, Active Robots UK)

and custom software (see appendix B), which consequently actuated the on-chip

valves of the demonstration device. Three Harvard Apparatus 11+ syringe pumps

were used to drive fluid through the fluidic channel inlets of the valved device.
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300 µm

Flow inlet

Flow inlet

Flow outlet

Flow outlet

Fluid channel

Control channel

200 µm

Valve open

Valve closed

Control 
channel

Fluid 
channel

Flow inlet

Figure 5.5: Valved junction design. Conceptually the normally-open valve
design consists of a thin PDMS membrane sandwiched between two PDMS
layers patterned with channels. Fluidic channels are open-ended whereas
control channels are dead-ended. The intersection of a fluidic and control
channel constitutes a valve. Positive pressure supplied to the control
channel deflects the membrane into the fluidic channel thus stopping the
flow.
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5.3 Results and Discussion

5.3.1 Pressure testing

(a) (b)

Figure 5.6: Typical failure modes ranged from minor de-lamination (a) to
more extreme failure (b). The channel widths of each test device are 300
µm.

Test devices would fail exhibiting two general modes as shown in Figure 5.6.

Results from pressure testing are summarised in Figure 5.7. Control test devices,

i.e. those that were directly bonded after plasma exposure, exhibited bond

strengths capable of withstanding test pressures in excess of 570 kPa. This

was consistent across all three bonding scenarios. The test pressures supported

by the control devices are similar to the maximum bond strengths obtained

by Bhattacharya et al. 2005 (≈ 510 kPa). The variation between maximum and

minimum supported test pressures here appears to be substantially lower than

the variation in bond strengths achieved by Eddings and co-workers for directly

bonded samples (Eddings et al., 2008).

Test devices that were water aligned but not subjected to WAVE failed at relatively

low test pressures. Test devices constructed by sealing channels with a thin PDMS

layer were found to be capable of supporting higher test pressures on average

at 343±53 kPa (mean±standard error; n = 3). Conversely devices sealed with

either glass or a thick PDMS layer supported lower test pressures, 168±51 kPa

(mean±standard error; n = 3) and 176±23 kPa (mean±standard error; n = 3). It

is believed that the discrepancy between the methods for sealing channels arises

from an extra bonding step. Recall from the experimental methods above that

channels sealed with thin PDMS layers were directly plasma bonded onto glass.
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Figure 5.7: Pressure test results. Maximum supported pressures of devices,
directly bonded without water (Control), aligned and bonded with water
(Water), and aligned and bonded with WAVE.

This was performed to represent the typical construction steps of a valved device.

The additional bonding step performed between channels sealed with a thin PDMS

film to glass appears to have a more pronounced effect for devices that were water

aligned.

Test devices that were subjected to WAVE were found to be capable of supporting

test pressures on average, in excess of 580 kPa. Although similar in magnitude to

the average supported pressure of control test devices, the variation of supported

pressures was higher for devices subjected to WAVE. From these results, it appears

that WAVE can be used without incurring the apparently detrimental effect water

has on bonding.
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5.3.2 Applicability of WAVE to three-dimensional mi-

crofluidic designs

Having demonstrated the WAVE method capable of producing devices that can

sustain high pressures, the next step was to assess the applicability of WAVE in

the fabrication of three-dimensional microfluidic designs.

5.3.2.1 Suitability for valved designs

Microfluidic designs that have integrated microvalves such as demonstrated by the

Quake group (Unger et al., 2000) could benefit from the WAVE technique, partic-

ularly where alignment is required between hundreds of elements as in (Thorsen

et al., 2002). The WAVE technique was tested on a more simple valved junction

design, which consists of five valves requiring alignment over flow channels.

The need for potentially expensive equipment to obtain good alignment between

the device layers was not necessary when using the WAVE method. Alignment

was performed simply by hand. It was found that during alignment, natural

evaporation of water from between device layers would aid alignment. This was

because the effect of evaporation rendered the PDMS surfaces in contact slightly

tacky, and therefore finer adjustments were more easily accomplished. For bonding

to be strong between device layers, any water inside channels has to be completely

extracted. This can take time, which does slow down the fabrication process.

Furthermore the WAVE method requires open ended channels in order to generate

enough flow to sufficiently remove water. Normally-closed valve designs cannot be

aligned using WAVE. The WAVE technique made the device assembly relatively

easy, particularly as the method was found to be far less time sensitive when

compared to bonding directly after oxygen plasma exposure.

Presented in Figure 5.8 is a valved junction device aligned and bonded by exposure

to oxygen plasma exposure and WAVE. The operation of the valved junction

is shown in Figure 5.9. The on-chip valves were driven with approximately 2

bar of pressure. The flow rates for each inlet were set at 20 µl/min. Valved

microfluidic devices typically include some tolerance in their designs to account

for some misalignment. A more challenging microfluidic design is considered next,

where tolerances are more critical than in valved designs.
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200 µm

Figure 5.8: A valved junction device created using WAVE. Valve control
channels are filled with red food colourant for imaging purposes.

200 µm

(a) (b) (c)

(d) (e)

Figure 5.9: Operation of the valved junction. Flow is from left to right
controlled by the switching of the on-chip valves (red). The three inlets
on the left contain: yellow food colourant, water, and blue food colourant.
The junction is cleared by opening the water inlet valve (a). Starting with
all valves closed, the yellow inlet and lower outlet valves are opened (b).
The upper outlet valve is opened (c). The junction is cleared once more
with water. Again starting with all valves closed, the blue inlet and lower
outlet valves are opened (d). The upper outlet valve is opened (e).
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5.3.2.2 Suitability for channels spanning multiple planes

As seen from above, WAVE can be easily applied to microfluidic designs where

channels are all in the same plane. However, in designs where channels are formed

in more than one plane, WAVE may be more difficult to conduct as channels may

not be continuous at first. The F-mixer (Kim et al., 2004) is one such design

that can pose such a challenge. The F-mixer design consists of a series of isolated

features patterned in two separate planes or device layers. The two planes, when

brought into contact and correctly aligned, form a continuous channel that varies

in all three spatial dimensions. Getting the two device layers of F-mixer to form

a continuous channel requires finer tolerance during alignment.

The sequence in Figure 5.10 demonstrates the water supported alignment of two F-

mixer layers after exposure to oxygen plasma. In Figure 5.11 vacuum extraction

was initiated leading to a channel devoid of water. From the finalised device

the misalignment was measured to be as low as 8.49 µm (measurement error:

±0.49µm) or 3.4% of the channel width. In Figure 5.12 the operation of the F-

mixer is demonstrated, with food colourant being driven through the two inlets

of the F-mixer at a pressure of 200 mbar. Despite challenges of F-mixer, the

discontinuous elements and need for fine alignment, WAVE was found to remain

a highly effective method.

(a) (b) (c) (d)

Figure 5.10: Alignment of top and bottom layers of the F-mixer. These
optical micrographs have been post-processed for visual clarity. Starting
from (a) the top layer was moved until coarsely aligned over the bottom
layer (b) through (c). A series of fine adjustments were then made to
achieve the alignment shown in (d). Scale bar: 250 µm.
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(a)

500 µm

(b)

Figure 5.11: Water extraction from the aligned layers of the serpentine
lamination mixer. A 500 mbar vacuum was applied to the outlet of the
serpentine lamination mixer (a). This process was continued until all water
was extracted from the microfluidic channel (b).

Figure 5.12: Operation of the F-mixer. Blue and yellow food colourant are
driven into the F-mixer where they mix and form a green colour solution.
Scale bar: 250 µm.
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5.4 Summary

An investigation of the effect of water on the bonding strength of oxidised PDMS

and glass samples has been conducted. Water was found to have had a detrimental

effect on bonding strength. Despite this water can still be used as a lubricant and

high bonding strengths achieved, provided all water is extracted from between

device layers after alignment. The water alignment vacuum extraction (WAVE)

technique is used to do this. The WAVE technique was shown to support the

accurate alignment of valved and three-dimensional mixer device layers simply

by hand. Complex devices can now be easily assembled by utilising WAVE in

conjunction with oxygen plasma treatments.





Chapter 6

Ultraviolet photometer

6.1 Introduction

In order to conduct enzymatic computing studies with a microfluidic autonomous

experimentation platform, a means of observing the enzymatic reaction is required.

As a starting point for the development of the autonomous experimentation

system, the enzyme malate dehydrogenase is of particular interest. Malate

dehydrogenase catalyses the reaction of its substrate in the presence of nicoti-

namide adenine dinucleotide (Englard and Siegel, 1969). Nicotinamide adenine

dinucleotide (NAD+) is a biological molecule that participates in numerous

enzyme-catalysed reactions, specifically reduction-oxidation (redox) reactions.

Following Figure 6.1, within an enzyme catalysed redox reaction NAD+ acts as

an oxidising agent where it accepts electrons and a proton (H+) from a substrate

molecule. From the oxidation process NAD+ is converted to a reduced form known

as NADH, which is capable of donating electrons and a proton. The oxidised

and reduced forms of nicotinamide adenine dinucleotide absorb light differently,

particularly in the ultraviolet region between 340 and 360 nm where NADH absorbs

relatively strongly compared to NAD+. As the rate of conversion between NAD+

and NADH is dependent on the catalytic activity of an enzyme, the difference in

light absorption between the two forms can be exploited to monitor the rate of

the enzymatic reaction.

Spectrophotometers are used to monitor the concentration of light absorbing

molecules such as NADH. While spectrophotometers are capable of measuring

over a broad range of optical wavelengths (190-1100 nm is typical), generally

they are physically large and are not always easily interfaced with microfluidic

91
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Figure 6.1: The structure of nicotinamide adenine dinucleotide in
oxidised and reduced forms. The oxidised form of nicotinamide adenine
dinucleotide NAD+ (a). NAD+ accepts a proton and electrons when
participating in a redox reaction. The NAD+ is converted to NADH (b),
which is capable of donating its gained electrons and proton.

devices. Smaller fibre optic spectrophotometers do exist, but are expensive and

are not available for all light wavelengths. With the increasing availability of

low-cost semiconductor optoelectronics in numerous wavelengths, it is possible

to build custom spectrophotometers cheaply and more amenable to integration

with microfluidic devices. For example, application specific photometer–i.e.

limited to one or two wavelengths–systems have been developed to measure both

visible (Srinivasan et al., 2004) and UV (260 and 280 nm) (Pan et al., 2010) light

in microfluidic devices.

Photometers can be assembled relatively easily from a few off-the-shelf electronic
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components by ensuring the light source is unmodulated (Thal and Samide, 2001).

However analogue circuits operating at low frequencies (near DC) are inherently

vulnerable to noise. Lock-in amplification is one means by which electronic noise

can be combated (described in section 6.2). There are several examples of custom

lock-in amplification schemes in the literature (e.g. Sonnaillon and Bonetto 2005)

some of which are designed to be used for optical measurements (Barragán and

Artigas, 2001; Alonso et al., 2003; Sengupta et al., 2005). A low-cost digital lock-

in amplifier currently can be assembled from code freely available online (Wenn,

2007) and a dsPIC R© digital signal controller. A dsPIC running lock-in amplifier

code is originally intended to be used for impedance measurements. For a dsPIC

lock-in to be adapted to optical measurements, the necessary analogue circuitry

requires development.

This chapter discusses the development of a low-cost, physically compact, UV

photometer instrument built using optical semiconductor components and driven

by a digital lock-in amplifier. The photometer is designed to enable optical

absorbance measurements to be recorded from solutions containing NADH. With

reference to the conceptual schematic of the photometer system in Figure 6.2,

a 350 nm LED is used as the UV light source. A digital signal controller is

configured to drive the UV LED and simultaneously capture measurements from

a photodetection circuit. The digital signal controller is programmed to run a

lock-in amplification algorithm, thereby providing some degree of noise immunity.

The suitability of the UV photometer for measuring NADH is assessed by testing

against a commercial spectrophotometer.
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Sample

Mag

Figure 6.2: Conceptual UV photometer device incorporating a dsPIC-
based lock-in amplifier. The dsPIC generates a modulated LED drive
signal through a digital-to-analogue converter (DAC). A low-pass filter
(LPF) smooths the LED drive signal before it is scaled. The scaled signal
is then used to drive the UV LED. The modulated light detected by the
photodiode (PD) generates a current that is converted to a voltage using
a transimpedance amplifier (I-V). The voltage signal is conditioned before
being fed into an anti-alias filter (AAF). The filtered signal is captured by
the analogue input on the dsPIC where it is digitised. The magnitude of
the signal (Mag) calculated by the lock-in algorithm is communicated to
a personal computer.

6.2 Theory

This section discusses basic electronic circuit theory relevant to the work described

later in this chapter. Photodiode amplification, noise and bandwidth considera-

tions, and the theory of lock-in amplifiers are covered.

6.2.1 The transimpedance amplifier

Photodiode amplification circuits consist of a photodiode connected to the input

of an operational amplifier (op amp) (Graeme, 1996). The photodiode can

be configured as either operating in photoconductive or photovoltaic mode as

shown in Figure 6.3. In photoconductive mode, a voltage bias is applied to the

photodiode that reduces the photodiode’s intrinsic capacitance (CPD). This serves

to improve the response time of the photodiode but at the expense of increased

dark current, which is the current generated by the photodiode in the absence

of illumination. The output from the photodiode increases logarithmically with

increasing illumination when connected in the photoconductive configuration. In

photovoltaic mode there is no bias applied to the photodiode. The response time
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of the photodiode is therefore slower, however the dark current is minimised.

The output of the photodiode increases linearly with increasing illumination

when connected in the photovoltaic configuration. Therefore the photovoltaic

mode is more suitable to applications where linear sensitivity to illumination is

favoured. Before implementing a photodiode amplifier, the relationship between

noise sources present in the circuit, as well the bandwidth and stability of the

circuit require consideration.

-
+

Rf

(a)

-
+

Rf

V-

(b)

Figure 6.3: Photodiodes connected in two different modes to an op amp
configured as a transimpedance amplifier. In (a) the photodiode is
connected in photovoltaic mode with no bias. In photoconductive mode
(b) a negative voltage bias is applied to the photodiode.

6.2.2 Stability analysis of the amplification circuit

Referring to the transimpedance amplifier model depicted in Figure 6.4 the analysis

begins with a description the op amp behaviour. The op amp produces an

output voltage (eo) which is ideally the product of the input current (ip) from the

photodiode and the feedback resistor (Rf ). The closed-loop gain (Acl) of the op

amp is equivalent to the value of the feedback resistor. However the circuit design

does not end with simply selecting a value of Rf for a desired gain. As both the

op amp and photodiode exhibit capacitance, Cd and Cia respectively, the effect of

the capacitance on bandwidth and stability has to be taken into account. This

is done through performing a frequency response analysis of the transimpedance

circuit which utilises three equations. The first equation is the transimpedance

transfer function T (s) which relates transimpedance gain and bandwidth:
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Figure 6.4: Transimpedance amplifier model. The photodiode is modelled
as a current source operating in parallel with a capacitor Cd that represents
the junction capacitance of the photodiode. The capacitor Cia represents
the input capacitance of the op amp A1. The feedback resistor Rf

determines the transimpedance gain. The phase compensation capacitor
Cf can be excluded depending on the stability requirements of the circuit.

T (s) =
eo
ip

Zf (s)

1 + 1
Ao(s) · β(s)

(6.1)

with complex frequency variable s = j2πf and j2=−1, Zf (s) the feedback

impedance, Ao(s) the frequency dependent open-loop gain of the op amp and

β(s) the feedback fraction. Note where Rf � Cf , Zf ' Rf . The second equation

required for the frequency response analysis describes the frequency dependent

open-loop gain of the op amp:

Ao(s) =
Ao

1 + s
ωc

(6.2)

where Ao is the DC open-loop gain, and ωc is the cut-off frequency where the op

amp open-loop gain starts rolling off. The third equation describes the relationship

between the feedback impedance (Zf ) and the impedance of the circuit presented

at the input of the op amp (Zi). The relationship is described by:

β =
Zi

Zi + Zf
(6.3)

From Figure 6.4 it can be seen that two scenarios can exist, one where a phase

compensation capacitor (Cf ) is omitted from the feedback loop and the second
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where it is included. This leads to two definitions of β distinguished here as

βuncomp and βcomp. Starting with Cf omitted, the frequency response of βuncomp(s)

is:

βuncomp(s) =
Xi

Xi + Zf
=

1
s·Ci

1
s·Ci

+ Rf

=
1

s ·Rf · Cf + 1
(6.4)

where Ci is the total input capacitance, i.e. Cd + Cia. For βcomp(s):

βcomp(s) =
Xi

Xi + (Rf ‖ Xf )
=

s · Cf ·Rf + 1

Rf (Ci + Cf ) · s + 1
(6.5)

With equations 6.1–6.4 a Bode plot can be constructed allowing for visualisation

during frequency response analysis. The next step is to consider the stability of

the circuit which concerns the noise gain, 1
βs

. Particular attention has to be given

to the slope of the noise gain where it intersects Ao(s). A near perpendicular

intersection indicates gain peaking and instability at the corresponding frequency.

To stabilise the circuit, the feedback capacitor Cf is included causing the noise

gain to flatten. An appropriate value for Cf can be determined from,

Cf =

√
Ci

2πRffGBW
(6.6)

where fGBW is the gain-bandwidth product of the op amp, i.e. the frequency where

Ao = 1. This concludes the bandwidth and stability analysis of the transimpedance

circuit. Next the noise sources present in the transimpedance amplifier circuit and

their analysis are discussed.

6.2.3 Noise analysis of the amplification circuit

Noise added to the photodiode signal through transimpedance amplification is an

important factor in determining the performance of the circuit as well as providing

a basis for component selection. The analysis begins with the noise model for the

transimpedance amplifier is depicted in Figure 6.5. In the noise model there are

voltage ene and current ini noise sources present at the input to the op amp,

and a voltage noise enR due to the feedback resistor Rf . Corresponding to these

three noise sources are three output noise voltages, Ene, Eni and EnR. Through
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Figure 6.5: The transimpedance amplifier noise model. Voltage ene and
current ini noise sources are present at the input to the op amp. A voltage
noise enR due to the feedback resistor Rf is present at the output of the
op amp.

root mean square (RMS) summation the total output noise RMS voltage can be

calculated as:

Eno(RMS) =
√

(Ene)2 + (Eni)2 + (EnR)2 (6.7)

Starting with the noise due to the feedback resistor:

enR(RMS) =
√

4kTRf∆f (6.8)

operating in the bandwidth ∆f with feedback resistor Rf , k the Boltzmann

constant (1.38 × 10−23 J/K) and T absolute temperature in Kelvin. This is an

example of Johnson or thermal noise, which arises from the thermal agitation of

charge carriers within the resistor. Johnson noise is class of white noise as its noise

power does not vary with frequency. The thermal voltage noise enR transfers to

the output of the transimpedance amplifier at unity gain, therefore enR = EnR.

Reducing thermal noise can be achieved through increasing the value of Rf as the

output signal increases directly by Rf , the corresponding noise signal increases by√
Rf . But increasing the feedback resistor reduces amplifier bandwidth.

The two other noise sources are products of the op amp. The current noise source

ini arises from charge carriers crossing the potential barrier at the input of the op
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amp. This type of noise is an example of shot noise and in this case it is related

to the input bias current Ib− of the op amp by:

ini(RMS) =
√

2qIb−∆f (6.9)

at a bandwidth ∆f with q the elementary charge (1.6 × 10−19 C). The shot noise

is amplified by the gain of the transimpedance amplifier (i.e. Eni = ini × Rf ) and

appears as a voltage (Eni) at the output. Shot noise like Johnson noise is white

as it too does not vary with frequency. As shot noise is a property of op amp bias

current, it can only be minimised through selecting an op amp with a low input

bias current.

The input noise voltage ene of the op amp behaves in a more complicated manner

when compared to the other two noise sources. It varies with frequency, exhibiting

a 1/f relationship (1/f or pink noise) up to a corner frequency where it then

minimises and behaves as white noise. The input noise voltage ene is amplified

by a noise gain An due to the feedback loop with An = 1/β. As the noise is

frequency dependent it has to be integrated over a range of frequencies to obtain

its contribution to the output noise Ene:

Ene(RMS) =

√∫ fu

fl

(An · ene)2df (6.10)

with ∆f equivalent to fu − fl. The noise gain varies with frequency which

can complicate the integration. To simplify the process, the integration can be

performed on split frequency segments of Ene, which are then added to yield the

Ene for the full bandwidth. For example on five frequency segments:

Ene(RMS) =
√

(Ene1)2 + (Ene2)2 + (Ene3)2 + (Ene4)2 + (Ene5)2 (6.11)

Once again as for input noise current, the input noise voltage is op amp dependent.
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6.2.4 Lock-in amplification
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Figure 6.6: Principle components of a lock-in amplifier. In (a) a single
phase sensitive detector (PSD) multiplies the input (S) and reference (R)
signals before feeding the product through a low-pass filter (LPF), which in
turn produces the output VPSD1. In (b) two PSDs are used. The reference
signal is phased shifted by 90o creating the quadrature signal (Q). In this
case two outputs are generated VPSD1 and VPSD2 respectively which allow
for the reduction of phase dependence on the signals.

Lock-in amplifiers are used to detect small signals within a noisy environment.

Central to a lock-in amplifier is the phase sensitive detector (PSD), which is a

signal mixer followed by a low-pass filter (Figure 6.6). In operation a signal is

modulated at a reference frequency, which is then detected and demodulated.

Demodulation is performed by multiplying the reference signal by the detected

signal and then low-pass filtering the product to obtain a measure of the magnitude

of the detected signal. By this approach noise signals at frequencies other than

the reference frequency are rejected.

As an example consider a lock-in amplifier containing one PSD. The reference

signal is a sine wave with amplitude Vref , angular frequency ωref and phase θref :

R(t) = Vref · sin(ωref · t + θref ) (6.12)

similarly the detected signal is:

S(t) = Vsig · sin(ωsig · t + θsig) (6.13)
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Multiplying the reference and detected signals yields:

S ·R =
Vsig · Vref

2
· cos([ωsig − ωref ] · t + θsig − θref )−

Vsig · Vref
2

· cos([ωsig + ωref ] · t + θsig + θref ) (6.14)

with ωsig = ωref and after low pass filtering, the output from the PSD reduces to:

VPSD2 =
Vsig · Vref

2
· cos(θsig − θref ) (6.15)

It can therefore be seen that the output from the lock-in amplifier containing a

single PSD is sensitive to changes in the phase difference between the detected

and reference signals. By incorporating a second PSD the phase dependence can

be eliminated. This is achieved by taking the reference signal and phase shifting

it by 90o (Figure 6.6b) before multiplying it by the detected signal with a second

PSD. The resulting output from the second PSD is:

VPSD2 =
Vsig · Vref

2
· sin(θsig − θref ) (6.16)

By taking the in-phase I (i.e. VPSD1) and quadrature Q (i.e. VPSD2) components,

the magnitude of the detected signal M independent of phase can be obtained:

M =
√
I2 +Q2 =

Vsig · Vref
2

(6.17)
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6.3 Experimental methods

6.3.1 UV LED characterisation

Three different LEDs were selected as candidate light sources for the photometer.

A Nitride Semiconductor (NS) 355 nm UV LED was purchased from Roithner

Lasertechnik (Vienna, Austria). Two Fox Group (FG) 350 nm UV LEDs were

obtained from DComponents (Vermont, USA). Of the two Fox Group LEDs, one

was supplied with a ball lens and the other in a standard 5 mm package. A bench-

top power supply unit with programmable current limiting capability was used

to power the LEDs. The power supply unit (PSU) was set to limit current to 20

mA, which was the typical operating current for the three UV LEDs specified by

both manufacturers. The voltage supplied to each LED was increased up to the

current limit. The spectral emission and optical power output of the LED were

then measured.

A Thorlabs (Cambridgeshire, UK) PM300E dual channel optical power meter

equipped with a Thorlabs S120UV broadband (200 nm – 1100 nm) photodiode

sensor was used to measure the optical power of a LED. The LED was positioned

to be in contact with the photodiode sensor of the optical power meter during

measurement. The emission spectra of the LEDs were recorded using an

Ocean Optics HR2000+ USB UV-Vis spectrophotometer connected to a personal

computer running SpectraSuite software (Ocean Optics, Dunedin, USA).

6.3.2 Circuitry: design and implementation

During the design process, the photometer circuitry was simulated in SIMetrix-

SIMPLIS SPICE software (SIMetrix Technologies Ltd, UK). Printed circuit board

fabrication and circuit assembly were conducted in-house. The photometer

circuitry was implemented as three physically separate units: a main circuit,

floating LED, and a satellite photodiode circuit.

The satellite photodiode circuit contained the photodiode, transimpedance ampli-

fier and voltage follower. Signals were transmitted from the photodiode circuit to

the main circuit via a shielded coaxial cable. This arrangement of the photodiode

circuit ensured the transimpedance amplifier was as close to the photodiode as

possible, thereby reducing signal paths and minimising electronic noise. A UVA

sensitive gallium nitride photodiode (GUVA-S20ED, sglux SolGel Technologies
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GmbH, Germany) was used to detect light from the LED. A low input bias current

(3 fA) operational amplifier (LMP7721, National Semiconductor) was configured

as the transimpedance amplifier. The input bias current rating of the op amp

is sufficiently lower than the dark current of the photodiode (1 nA) to ensure

measurements are limited by shot noise from the photodiode rather than shot

noise from the op amp. The floating LED unit consisted of just the LED mounted

on a PCB. This allowed for the LED to be mounted to the cuvette holder described

below. The main circuit unit contained all other analogue circuitry necessary to

drive the LED, and condition detected signals from the photodiode.

In operation, the photometer circuitry was powered with 9 volts from a simple AC

to DC regulated power supply (Maplin, UK). The circuitry was monitored with

an oscilloscope (Tektronix DPO4034, Tektronix UK Ltd. Bracknell UK). Manual

adjustments could be made to the amplification and DC offset of signals within

the circuit through rotating potentiometers.

6.3.3 Circuitry: lock-in amplifier

An Explorer 16 evaluation board was purchased from Microchip Ltd. (Wokingham,

UK). The dsPIC33FJ256GP710 supplied with the Explorer 16 board was used

to run the lock-in amplifier code. The lock-in code (AN1115) was downloaded

from the Microchip website. Modifications were made to the lock-in code that

enabled measured values to be displayed on a liquid crystal display present

on the evaluation board. The lock-in code was compiled in the MPLAB

development environment and programmed on to the dsPIC using a PICkit

2 USB microcontroller programmer. Outputs from the lock-in amplifier were

communicated to a personal computer (PC) via a RS232 serial connection. The

outputs from the lock-in amplifier were captured with custom software running

on the PC (see appendix B). The custom software was written in the Visual C#

programming language. The cost of the components used in the LED drive and

photodetection circuits, including optoelectronics and dsPIC, was less than £75.

6.3.4 Quantifying NADH: set-up

A cuvette holder jig was fabricated by cutting out pieces of 5 mm thick acrylic

with an Epilog mini 18 30 W CO2 laser (EMCO Education Ltd., Havant UK).

The cut pieces of acrylic were bonded together with super glue. The LED and
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photodiode circuit were attached to the acrylic jig with mechanical fasteners. A 10

mm cuvette could then be securely positioned between the LED and photodiode

circuit during measurements. The set-up is shown in Figure 6.7.

Cuvette

UV LED

Photodiode 
circuit

dsPIC

Analogue 
circuitry

10 mm

Figure 6.7: A photograph of the UV photometer set-up. A 10 mm path
length cuvette is positioned in front of the acrylic jig. Attached to the jig
are the UV LED and photodiode circuit.
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6.3.5 Quantifying NADH: procedure

Tris(hydroxymethyl)aminomethane (Tris) buffer (1 M pH 9.0), and β-NADH

reduced dipotassium salt were purchased from Sigma Aldrich (Dorset, UK).

The UV photometer was tested against a Thermo Scientific Biomate 3 UV-VIS

spectrophotometer. Aqueous solutions of NADH of varying concentration were

used to test both instruments. A 0.01 M pH 9.0 Tris buffer was prepared fresh.

Following the manufacturer’s guidelines, a concentrated stock solution of 5 mM

NADH in 0.01 M ph 9.0 Tris buffer was prepared fresh. Dilute NADH samples

were created by serial dilution with the Tris buffer. Samples were pipetted

into 2 ml volume, 10 mm path length, cuvettes. Prior to measuring samples

containing NADH, both instruments were intentionally blanked with nothing in

their cuvette holders. Eight cuvettes containing only buffer solution were measured

with both instruments, thus allowing for the limit of detection of each instrument

to be calculated. Samples containing NADH were then measured with the UV

photometer and spectrophotometer instruments.
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6.4 Results and discussion

6.4.1 UV LED characterisation
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Figure 6.8: Comparison of the spectral responses of the optoelectronic
components. Each response is normalised with respect to the maximum
response of an individual component.

In Figure 6.8, the emission spectra of the candidate LEDs are plotted against

one another. It can be seen that the 355 nm rated LED emits light over a wider

range of wavelengths than the two 350 nm LEDs. The wider emission band makes

the 355 nm particularly unsuitable for photometric measurements where ideally

monochromatic light is required. The two 350 nm LEDs exhibit similar widths

in their emission bands. The ball lens LED emits at slightly lower wavelengths

when compared to the 5 mm 350 nm LED. The range of emissions within 10% of

the peak spectral response is distributed between 348 and 351 nm for the ball lens

LED. Similarly for the 5 mm LED the range of emissions within 10% of the peak

spectral response is distributed between 349 and 352 nm.

The results from peak optical power output measurements for each LED are

summarised in Table 6.1. Despite limiting the supply current to each LED as per

manufacturers’ specifications, measurements of the forward voltages and optical

power outputs of each LED were found to differ from those reported by each

manufacturer.
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Table 6.1: Comparison of recorded and reported performance characteris-
tics.

Type Forward Voltage (V) Optical Power (µW)

Rated Measured Rated Measured

FG 350 nm ball lens 5.0 3.98 100 56.1
FG 350 nm 5 mm 4.5 4.31 350 225
NS 355 nm 5 mm 4.2 3.43 1200 501

FG – Fox Group, NS – Nitride Semiconductor

From these data the required gain of the photodetection circuitry was estimated.

The distribution of the optical power over the emission spectra of a LED was

calculated by: (1) integrating its emission spectra to obtain a dimensionless total

response value (St), (2) multiplying the total response value (St) by the measured

optical power (Po), (3) integrating across 1 nm ranges of the emission spectra to

obtain discrete response values (S(λ)), and (4) calculating the ratio of the discrete

response values (S(λ)) to the total response value (St) multiplied by the measured

optical power (Po). Integration was performed by using the trapezium rule over

the intervals (λ, λ+0.96 nm). The calculation of power distribution is summarised

by the equation:

P (λ) =
S(λ)

St
× Po (6.18)

and from which the plot in Figure 6.9 was obtained for the ball lens LED. The total

current output (Ip) from the UV photodiode was calculated for the range 337 to

363 nm giving a theoretical value of 6.67 µA. The power measurements reported

above had been made with the LED in contact with the optical power meter.

Given that distance is required between photodiode and LED to accommodate a

10 mm cuvette, the total current output was divided by 100 to yield a theoretical

current of 66.7 nA. The value of 100 is based on the assumptions that light

intensity decreases over distance following an inverse square law, that 10 mm

represents a 10 fold increase in distance, and minimal divergence of the light

emitted from the LED. Therefore the estimated transimpedance gain (R) for the

photodetection circuit assuming V = IpR where V is 5 volts, is approximately

75×106. Following Figure 6.10 a gain of 75×106 should not lead to instability

within the transimpedance amplifier (see section 6.2.2 for further details).
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Figure 6.9: Optical power distribution for the ball lens LED. Included
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obtained from the manufacturer’s datasheet.
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6.4.2 Circuit implementation: UV LED drive circuitry
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Figure 6.11: Circuitry required to drive the ultraviolet LED.

The circuitry developed to drive the ultraviolet LED is shown in Figure 6.11. The

drive circuit consists of a R-2R ladder network that acts as a digital-to-analogue

converter. Pulse-width modulated signals generated by the dsPIC are summed by

the R-2R ladder yielding the noisy 25 kHz LED drive signal in Figure 6.12a. The

noisy signal is fed into a low pass Butterworth filter (LPF) designed to have a

corner frequency of 40 kHz. The Butterworth filter configuration was selected to

ensure a flat frequency response in the passband. The output of the low pass filter

is shown in Figure 6.12b. A DC offset is applied to the filtered signal before being

fed into an operational amplifier. The operational amplifier drives the ball lens UV

LED with the offset signal (see Figure 6.12c). The 350 nm ball lens LED exhibits

less light divergence and resulted in a stronger response from the transimpedance

amplifier when compared to the 5 mm LED.
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(a)

(b)

(c)

Figure 6.12: Voltage waveforms captured from LED drive circuit. A 2 Vpp

waveform was measured at the output of the R-2R ladder network (a).
The waveform measured at the output of the low pass filter was 2 Vpp (b).
The waveform used to drive the UV LED was measured as 2 Vpp with a
DC offset of 3.8 V (c). The yellow arrow at the bottom left of each image
indicates the DC bias.
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6.4.3 Circuit implementation: photodetection circuitry
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Figure 6.13: Circuitry required to detect modulated UV light.

The circuitry developed to detect UV light is shown in Figure 6.13. A photodiode

is connected in photovoltaic mode to a transimpedance amplifier giving a linear

response to increasing illumination. The transimpedance gain is 150×106, double

that which was previously estimated. A higher gain requirement in implementing

the circuit was expected. The output from the transimpedance amplifier is buffered

with a voltage follower. The waveform at the output of the voltage follower is

shown in Figure 6.14a, and is approximately half the amplitude of the waveform

driving the LED. The output from the voltage follower is split in two feeding an

integrator, and an instrumentation amplifier. The integrator circuit extracts the

DC component of the signal, which is then inverted. The inverted DC component

is fed into the instrumentation amplifier where it is added to the original detected

signal. By this approach, DC offsets are automatically subtracted from detected
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(a)

(b)

Figure 6.14: Voltage waveforms captured from the photodetection
circuitry. A 1.1 Vpp waveform with a DC offset of 2 V was measured
at the output of the transimpedance amplifier (a). After conditioning, a
3.5 Vpp waveform with a 0.2 V DC offset was measured at the input to the
dsPIC analogue-to-digital converter (b). The yellow arrow at the bottom
left of each image indicates the DC bias.

signals. The instrumentation amplifier is used to both amplify, and apply a user

specified DC offset to the detected signal. The output from the instrumentation

amplifier passes through an anti-aliasing filter yielding the waveform shown in

Figure 6.14b, which then feeds into the analogue-to-digital converter of the dsPIC.
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Figure 6.15: Optical absorbance measurements obtained from solutions
containing different concentrations of NADH. Measurements obtained with
a commercial spectrophotometer are shown in (a). Measurements obtained
with the photometer system described here are shown in (b). Error bars
indicate standard error (n = 3).
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6.4.4 Relative performance test: quantifying NADH

Shown in Figure 6.15 are optical absorbance measurements recorded from solutions

containing different concentrations of NADH using a commercial spectropho-

tometer and the photometer system described above. With the commercial

spectrophotometer set to record optical absorbance at 340 nm the results in

Figure 6.15a were obtained. A linear slope was fitted to the spectrophotometer

results, indicating a Beer-Lambert relationship. The molar extinction coefficient

(ε) was calculated to be 6111.4 M−1 cm−1, which is close to that reported for

NADH in the literature (Siegel et al., 1959). Likewise for the photometer, a linear

slope could be fitted to the results also indicating a Beer-Lambert relationship.

The molar extinction coefficient in this case was calculated to be 5096.8 M−1

cm−1, which is close to that calculated for 355 nm from measurements made by

the spectrophotometer on the same samples (Table 6.2).

Table 6.2: Molar extinction coefficients (ε) and limits of detection (LOD)
calculated from measurements obtained from the spectrophotometer at
different wavelengths (λ).

λ ε LOD
[nm] [M−1 cm−1] [µM]

350 5601.7 3.95
351 5521.6 3.93
352 5417.7 4.12
353 5317.8 4.06
354 5209.5 4.16
355 5070.2 4.28

The limit of detection (LOD) for both instruments was computed from:

LOD =
3SDblank

ε
(6.19)

where SDblank is the standard deviation of the blank measurements, i.e. cuvettes

filled with just buffer solution. Accordingly the photometer LOD was calculated

to be 3.53 µM (from 8 blank measurements), lower than that calculated for

the spectrophotometer between 350 and 355 nm. The correlation between

the photometer measurements and spectrophotometer measurements at 355 nm

is plotted in Figure 6.16. A linear relationship can be identified between

measurements from the two instruments with the correlation coefficient calculated
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to be 0.996. A possible explanation for the difference between device measurements

may be the polychromatic nature of the light source in the photometer system.

y = 0.9923x 
 = 0.992 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.0

0.5

0.80

0.85

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.0 0.5 0.80 0.85

S
pe

ct
ro

ph
ot

om
et

er
  a

bs
or

ba
nc

e 
@

 3
55

 n
m

 

Lock-in photometer absorbance 

Figure 6.16: Correlation plot used to assess the agreement between
instruments. Error bars indicate standard error (n = 3).

6.5 Summary

A low-cost, physically compact UV photometer system built using optical semi-

conductor components has been presented. The UV photometer system was tested

against a commercially available spectrophotomter by conducting photometric

experiments. The photometric experiments involved the measurement of the

degree of light absorbance by dilute solutions containing NADH. In comparing

the data obtained from both instruments, a strong correlation was found between

both instruments at a wavelength of 355 nm. Therefore the spectrophotomter can

be substituted by the UV photometer system when measuring the absorbance of

355 nm light by NADH.





Chapter 7

Droplet microfluidics for

autonomous experimentation

7.1 Introduction

Despite attractive features of microfluidic technology such as lower reagent

consumption and automatability, issues still exist that are particularly detrimental

to enzymatic computing studies. Ideally, complex chemical mixtures would be

considered to explore enzyme interactions. However producing a complex chemical

mixture would require many chemical inputs, multiple arbitrarily defined dilutions

and their mixing. In microfluidics, even achieving several discrete dilutions

necessitates a high number of associated microfluidic channels, pumps and valves

(e.g. Yun et al. 2011). Microfluidic designs that contain high valve densities are

not only challenging to implement, fixed dilution networks such as those reported

by Walker et al. (2007); Kim et al. (2008); Hattori et al. (2009) impose a limit on

the complexity of chemical mixtures that can be produced on-chip. The droplet-

based approach to microfluidics and specifically where integrated valves are used,

may provide a solution to these issues.

Droplet microfluidic devices have been shown easily capable of producing on-

demand, aqueous droplets of varying size with only one integrated valve required

per aqueous input stream (Zeng et al., 2009). However, fusing two or more droplets

together to create a mixture has been more difficult than generation. There are

several approaches to fusing droplets, which include using chemically modified

surfaces (Fidalgo et al., 2007), electric fields (Ahn et al., 2006a), or physical

traps (Niu et al., 2008). Valves have been integrated with physical traps to fuse

117
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Figure 7.1: Photograph of a three-input automated droplet microfluidic
device designed for autonomous experimentation. The device contains
integrated valves (filled with yellow food colouring) that give the device
dilution and mixing functionality. Next to the device is a 1 GBP coin to
provide a sense of scale.

droplets (Lin and Su, 2008). More recently it has been shown that by stopping

the oil stream with a valve, a droplet can be moved from one aqueous inlet to

another, allowing for direct injection of an aqueous stream into the droplet (Guo

et al., 2011). A potential disadvantage of directly injecting into droplets, is that

the approach runs the risk of triggering premature reactions.

Associated with droplet microfluidic devices are a number of ancillary equipment

pieces. Generally a syringe pump is required for each inlet stream to a droplet

microfluidic device, directly impacting on the requirement for multiple chemical

inputs for enzymatic computing studies. Not only are syringe pumps physically

bulky, they are also expensive.

This chapter discusses an automated droplet microfluidic device designed to be

used as part of an autonomous experimentation system for enzymatic computing

studies. The microfluidic device (Figure 7.1) is designed to operate on aqueous

droplets (reaction vessels) formed by injecting aqueous streams into an oil phase

(oleic acid) via T-junctions. Control over the size of a generated droplet from an
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aqueous stream only requires a two pneumatically controlled on-chip valves, one at

the T-junction and one to interrupt the oil stream. By this approach single droplets

can be created ranging in size from approximately 120 µm, in diameter to in excess

of 10 mm in length. Therefore dilutions continuous in range can now be easily

achieved. Also presented is a novel approach to mixing and fusing multiple droplets

separated by oil in one step, which involves the manipulation of a third immiscible

phase. The detection volume in this device is four orders of magnitude smaller

than a standard 2 ml cuvette, thereby addressing the need to maximise available

resources. A major advantage of the approach presented here is the requirement for

minimal ancillary equipment. Only one pump is required to generate flow within

the device regardless of the number of chemical inputs. Therefore the restriction

to a small number of chemical inputs can now be addressed.
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7.2 Device design

Before designing the device, a model was created to evaluate the effects of device

dimensions on flow characteristics.

7.2.1 Modelling

Given the physical constants of the oil phase (Oleic acid, η = 27.64 mPa.s, ρ =

895 kg/m3, γPDMS = 15.6 mN/m), the device design was modelled starting with

the analytical solution to fluidic resistance:

R =
12ηL

wh3

[
1− h

w

(192

π5

∞∑
n= 1,3,5

1

n5
tanh(

nπw

2h
)
)]−1

(7.1)

Assuming a predefined channel height and width, 50 µm and 200 µm, fluidic

resistance was calculated for a unit length (i.e. 1 mm). Subsequently the

volumetric flow rate was calculated by using the HagenPoiseuille equation (see

chapter 3) for driving pressures ranging between 10 and 50 kPa (limitations of

the equipment). Converting the volumetric flow rate to velocity, the Reynolds

(Re) and Capillary (Ca) numbers were derived for the unit length. The length

was increased to give enable a sufficient range of flow velocities to be obtained

for the given driving pressures. Based on previous experiments, 116 mm was

found to be an optimal length, which gave a theoretical flow velocity range of 0.65

mm/s to 3.24 mm/s. The corresponding Re and Ca values ranged from, 0.0017–

0.0057 and 0.0011–0.0084 respectively, therefore suggesting linear predictable

flows. Moreover with Ca < 0.01 the flow should favour direct injection of aqueous

streams into previously generated droplets (Song et al., 2006), as well being capable

of supporting long droplets without their breakup (Liau et al., 2005).

7.2.2 Design

From the model, the microfluidic device design shown in Figure 7.2 was created.

The device features three aqueous inlet channels forming T-junctions with a main

channel. All inlet channels have isolation valves. The aqueous inputs are designed

to be used one at a time. The length of each aqueous input channel differs to

match the hydraulic resistance between each inlet and outlet ports. To generate
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Figure 7.2: Droplet microfluidic device designed for autonomous
experimentation. The design contains 12 integrated valves (red). The
three oil inputs can be shut off using valves O1, O2, and O3. Aqueous
inputs are shut off from the main flow channel by valves I1, I2 and I3.
Valves C1 and C2 isolate the rotary mixer from the main channel. Valve
B1 is a bypass valve. Valves P1, P2 and P3 act as a peristaltic pump that
drive fluids around the ring of the rotary mixer. Droplets are generated
and flow left to right. Mixing and fusion is performed in a single step
within the rotary mixer. An expansion chamber serves as a measurement
region.

droplets, first valves O1, O2 and O3 are closed. An aqueous inlet valve is opened

and after a predefined delay closed. The delay between valve open and closure

determines the length of the drop. After generating a drop O1 is opened to allow

the drop to be transported downstream to the rotary mixer.

The rotary mixer design is used to fuse droplets and mix their contents. From the

design there are two possible flow paths between rotary mixer inlet and outlet. The

shorter of the two paths contains a single bypass valve B1 that allows for switching

of the flow path between the shorter and longer distances. When generating

droplets the bypass valve B1 is first kept open. After generating a droplet the

bypass valve B1 is then closed. Droplets are then loaded into the longer path of

the rotary mixer where they are stored while other droplets are generated. Multiple

droplets are stored in the longer flow path of the rotary mixer. Mixing and fusion
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are conducted in one step. The isolation valves C1 and C2 of the rotary mixer are

closed. The bypass valve B1 is opened. The three pump valves P1, P2 and P3 are

actuated sequentially with the pattern: 001, 011, 010, 110, 100, 101 repeatedly for

a predefined number of cycles. The pumping action drives the fusion and mixing

of the droplets. Once fused and mixed, the new longer droplet is released from

the rotary mixer by opening the isolation valves C1 and C2.

After fusion and mixing drops are transported to the measurement region. As

the measurement region becomes completely filled with a drop, the valves O1 and

O2 close, while valve O3 opens. This is to prevent the drop from leaving the

measurement region. When all measurements are recorded, valves O1 and O2

are opened while valve O3 is closed. The drop is then transported out of the

measurement region and downstream to waste.
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7.3 Experimental methods

7.3.1 Device fabrication

Replication masters were fabricated by patterning dry film resist laminated on to

glass slides, using the methods described in chapter 4. The microfluidic device

design utilised on-chip valves, which required two functional layers: a fluidic layer

containing 50 µm high features and a valve layer containing 75 µm high features.

The fluidic layer was made by casting a thick layer of PDMS over the fluidic

replication master. The valve layer was fabricated by spinning a thin film of

PDMS over the valve replication master. After curing, holes were cored through

the fluidic layer using a 1 mm biopsy punch. The fluidic and valve layers were then

aligned and bonded together after oxygen plasma exposure. The WAVE technique

(chapter 5) was used to obtain alignment between the layers. The bonded PDMS

layers were then baked for 4 hours at 100 oC to recover surface hydrophobicity

(see contact angles in appendix D.1). After baking, a 1 mm biopsy punch was

used to core holes through both layers thus providing access to the valve channels.

Finally the valve layer was sealed by bonding to a cleaned glass microscope slide

after oxygen plasma exposure.

7.3.2 Device set-up and operation

7.3.2.1 Macroscopic equipment

Two pressure systems were required for operation of the microfluidic device.

Following Figure 7.3, a vacuum system was used to generate flow in the fluidic

channels, while a compressed air system was used to drive on-chip valves. The

vacuum system consisted of a vacuum pump (Air Admiral, Cole-Palmer UK)

connected to a sealed waste collection bottle with an inlet and an outlet port. The

outlet from the waste collection bottle was connected to a needle valve, pressure

gauge and Tygon R© tubing. The Tygon R© tubing was used to connect the vacuum

system to a microfluidic device. By adjusting the needle valve, the vacuum could

be varied between 0 and -550 mbar gauge pressure. The compressed air system

was the same as that used in chapter 5 to drive the valves of the valved junction

device.
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Figure 7.3: Schematic of the macroscopic equipment necessary for device
operation. On-chip valves are driven by positive air pressure supplied by
the air compressor. Only a single vacuum pump is used to generate flow
within the fluidic channels of the device.

7.3.2.2 Device preparation

On-chip valve control channels were filled with deionised water. The control

channels were filled by first dispensing a drop of water over each control channel

inlet hole. A vacuum was applied to each control inlet using a syringe equipped

with a blunt needle. The syringe was then removed from an inlet causing the

drop of water to be sucked into the control channel. A water filled syringe was

then used to drive additional water into a partially filled control channel. Pressure

was maintained on the water filled syringe until all air had been driven from the

control channel. Once filled, a control channel was then connected to a solenoid

valve using Tygon R© tubing.

For each inlet (oil and aqueous) a small 10 µl pipette tip was used as a fluid

reservoir. Before operation, the fluidic channels of a device were primed. First

all aqueous input channels were isolated from the main flow channel by closing

the relevant on-chip valves. Technical grade oleic acid mixed 2% w/w with Span

80 was used as the main flow fluid (oil phase). The oleic acid was dispensed

into the three main channel fluid reservoirs. Vacuum was applied to the outlet of

the microfluidic device for 2 minutes causing the main channel to fill with oleic

acid. The main flow reservoirs were then isolated by closing their on-chip valves.

Each aqueous inlet was then primed in turn by opening their valves. Finally, the
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aqueous inlets were once more isolated and the oleic acid stream was flowed for

an additional 2 minutes. Afterwards the device was ready for operation.

7.3.3 Device characterisation

7.3.3.1 Droplet generation

Droplet generation experiments were recorded under a stereo zoom microscope

(Zeiss Discovery V8) with still images captured using a Zeiss Axiocam ICc1 camera

and Axiovision software. The oil stream flow rate was adjusted by altering the

vacuum delivered to the device between 0 and -550 mbar. After setting a negative

pressure, a 10 s delay was adhered to, allowing for flow stabilisation prior to

generating a droplet. Basic droplet generation experiments were conducted to

determine an optimal vacuum setting. Droplet generation experiments were driven

by scripts read by the custom control software (e.g. appendix D.5.1). Images of

generated droplets were captured and measurements of a droplet size performed

in Axiovision software.

7.3.3.2 Fusion and mixing

Mixing and fusion experiments were recorded under a stereo zoom microscope

(Zeiss Discovery V8) with video captured at 15 frames per second using a Zeiss

Axiocam ICc1 camera and Axiovision software. Individual frames were analysed

using ImageJ software. Food colourant was used throughout fusion and mixing

characterisation. The efficacy of the mixer was characterised by comparing the

image intensity profiles of captured images. Specifically, mixed droplets were

compared to a control solution. The control solution was created by premixing

blue and yellow food colourant in a 1:1 v/v ratio. Control solution was flowed into

the rotary mixer and images captured. Afterwards two equal sized droplets, one

containing blue colourant and the other yellow colourant, were in turn generated

and transported into the rotary mixer. The fusion and mixing of the two droplets

were then explored as the rotary mixer operation parameters (i.e. number of

iterations, speed) were adjusted.
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7.4 Results and discussion

7.4.1 Droplet generation

Flow

Figure 7.4: Drop sizes resulting from the opening and closing of an aqueous
inlet valve. Starting from the top the inlet valve was kept open for, (a) 32
ms, (b) 64 ms, (c) 128 ms, (d) 256 ms, (e) 512 ms and (f) 1024 ms before
closing. The channel width is 200 µm.

The vacuum pump connected to the microfluidic device was set to deliver -350

mbar of vacuum. On-chip valves were driven with 3 bar of pressure. Due to

the rectangular profile of the fluidic channels, vacuum pressures greater than -350

mbar would result in leakage of aqueous streams beyond their inlet valves. Vacuum

pressures lower than -350 mbar resulted in a slower travelling oil stream, which

also increased the size of drops at shorter inlet valve actuation times.

Droplet generation from each aqueous inlet was characterised in turn. During

droplet generation all oil stream inlets were closed. This allowed for extremely long

droplets equal to the channel length of the microfluidic device to be generated.

Conversely without closing all oil stream inlets during droplet generation, the

longest drop lengths that could be generated from each aqueous input were

measured to be, 522.7 µm (Input 1), 861.25 µm (Input 2) and 906.39 µm (Input
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3). During generation, droplet lengths were defined by the delay between opening

and closing an aqueous inlet valve. The delay between opening and closing of an

aqueous inlet valve was varied from 32 to 1024 ms. Actuation times less than 32 ms

did not reliably produce droplets for all 3 aqueous inlets, either no droplets were

generated or several small droplets would form. This is believed to be an inherent

limitation of the on-chip valves. Shown in Figure 7.4 are droplets of different size

generated from aqueous Input 3.

Two types of droplet of characteristic length were generated from each input.

Generated droplets were either smaller than the channel width, or large enough to

be in contact with the channel walls. Therefore the volume of generated droplets

was estimated using two equations. For droplets smaller than the channel width,

their volume (Vs) was estimated by assuming a cylindrical shape:

Vs ≈ 1000πr2h (7.2)

where r is the measured radius of the droplet and h the height of the channel,

50 µm. For droplets large enough to be in contact with the sidewalls, their

two-dimensional shape was assumed to consist of a rectangle bounded by two

semicircles. Thus the volume of a large droplet was estimated by adding the

volumes for a cylinder of radius 100 µm and a rectangular prism:

Vl ≈ 1000

(
wh(l − w) +

1

4
πhw2

)
(7.3)

where w is the width of the channel 200 µm, l the measured length of the droplet.

Plotted in Figure 7.5 are the estimated volumes of droplets generated at each

aqueous inlet for a predefined valve actuation time. Droplet volumes as small as

0.88 nl and as large as 19.23 nl could be generated from aqueous input 1, a 21

fold range. Droplet volumes as small as 0.72 nl and as large as 24.37 nl could

be generated from aqueous input 2, a 33 fold range. Droplet volumes as small as

0.63 nl and as large as 19.36 nl could be generated from aqueous input 3, a 30

fold range. In theory the actual range of drop sizes that could be achieved by this

device is limited to approximately 75 fold, based on the assumption that a single

drop no larger than 10 mm (the measurement region length) would be used.

The relationship between generated droplet volumes (V ) and valve actuation times

(t) for each inlet were found to follow, V = ctn, where c and n are constants

(see Table 7.1). Despite designing the aqueous inlet lengths to have equal fluidic
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Figure 7.5: Droplet volumes resulting from predefined valve actuation
times.

resistances, it is surprising to see that the three inlets exhibit different relationships

between generated drop size and valve actuation time. Especially aqueous inlet

1, where its relationship follows a power law compared to inlets 2 and 3 that

exhibit linear relationships. It is believed that the amount of oil displaced by the

aqueous stream is responsible for the discrepancy between the inlets. Essentially

there is more oil to move before aqueous inlet 1 is drawn into the main channel

when compared to the other two inlets. It is postulated that in changing the device

design to ensure that the amount of oil to be displaced is equal for all three inputs,

the behaviour of each inlet should be more alike.

Table 7.1: Constants c and n, used in describing the relationship between
drop volume and valve actuation time

c n R2

Inlet 1 0.069 0.8234 0.9627
Inlet 2 0.0242 1 0.9973
Inlet 3 0.0195 1 0.9928
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7.4.2 Fusion and mixing

Figure 7.6: Fusion of an aqueous inlet stream with a droplet. A droplet
containing yellow food colourant is generated at the first aqueous inlet
and halted at the junction with the second aqueous inlet. The valve to the
second aqueous inlet is opened causing blue food colourant to be injected
into the droplet. The channel width is 200 µm.

The device design is capable of stopping the oil stream with an on-chip valve,

similar to Guo et al. (2011). A generated droplet can therefore be moved from

one aqueous inlet to another, allowing for direct injection of an aqueous stream

into the droplet. There are two problems with this approach to fusion. First it

is difficult to determine the amount of fluid being injected into the droplet, as

the interface between droplet and aqueous stream is less clearly defined as can

be seen in Figure 7.6. It is possible to keep sufficient distance between a droplet

and aqueous inlet so as to ensure a second droplet is generated without touching

the first droplet. But by this manner of droplet generation, fusion between two

droplets cannot be guaranteed particularly when droplets are of equal size, or when

the second droplet is larger. This is due to larger droplets travelling more quickly

downstream than smaller droplets.

The second problem with this approach to fusion, is that reactions may occur

prematurely. For example, if three streams are to be fused, by the time the first

and second streams are fused a reaction may have started before reaching the

third stream. The approach taken here was to keep all droplets separate and fuse

them in a single step. This is achieved by first loading and storing each generated

droplet in the loop of the rotary mixer, and then operating the rotary mixer. The
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(a) (b) (c)

(d) (e)

Figure 7.7: Unsuccessful mixing within a rotary mixer. Five droplets are
initially loaded into the rotary mixer (a). The rotary mixer is operated to
stir its contents clockwise starting at (b) and ending several cycles later at
(e). Droplets are not only resistant to fusing, the valves used in operation
of the rotary mixer cause breakup of the droplets. The channel width of
the rotary mixer is 200 µm.

storage functionality of the rotary mixer is achieved through actuating the bypass

valve between its inlet and outlet.

Mixing within small droplets is achieved rapidly when simply traversing down-

stream within the device. Long droplets however do not mix so readily. Previous

attempts by the author to mix long droplets used bumpy serpentine mixer designs

(see appendix D.3) but with little success. The rotary mixer also proved to be at

first unsuccessful as can be seen from Figure 7.7. However, it was found that by

purposefully injecting air into the mixer, along with the oil stream and aqueous

droplets, mixing could be significantly improved as shown in Figure 7.8.

The rotary mixer was characterised by first measuring the speed at which a sample

travelled around the loop. Air was initially introduced into the rotary mixer before

filling with a long droplet and a small amount of oil. The long droplet and oil

occupied approximately half of the rotary mixer. The peristaltic pump on the

rotary mixer was actuated with different valve timings and the motion of the

droplet observed. The number of peristaltic pump cycles to achieve one revolution

of the droplet about the ring was noted for each valve timing. The highest
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(a) (b) (c)

Figure 7.8: Mixing and fusion of droplets within a rotary mixer. Air is
first injected into the rotary mixer (a). Six droplets are loaded into the
loop of the mixer (b). After several cycles of mixing, a large fused and
mixed droplet is obtained (c).

frequency of drop rotation about the ring was 0.33 Hz (≈ 5 mm/s), which was

achieved by delaying the switching of the peristaltic pump valves by 20 ms. Both

shorter and longer switching times between valve actuations resulted in slower

rotations about the ring.

Figure 7.9 shows the intensity profiles measured from images taken of the green

control solution, yellow food colourant, and solution of yellow and blue food

colourant mixed within the rotary mixer. From a sequence of images captured

during mixing, intensity values were computed to give an estimate of the degree

of mixing Mn:

Mn ≈
2

100

[
Yv −

(
100−

(
(Io − I)

Io

)
× 100

)]
(7.4)

where Yv is the intensity of the yellow food colourant, Io the intensity of the

control solution (1:1 v/v blue and yellow food colourant) and I the intensity of

the solution undergoing mixing. The degree of mixing is normalised with respect

to the yellow food colourant peak intensity value. The degree of mixing is plotted

against mixing time in Figure 7.10. The relationship between the degree of mixing

and mixing time is approximately logarithmic. The apparent delay in mixing is due

two reasons, first droplets have to fuse before mixing, and second measurements are

recorded at the end of a yellow droplet rather than where it meets a blue droplet.

Near complete mixing of two approximately equal sized droplets is achieved within

25 seconds.
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Figure 7.9: Intensity plots across part of the rotary mixer. The plots are
obtained from measuring across the channel width. Shown are plots for the
control solution, unmixed yellow solution and yellow-blue mixed solution.
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Figure 7.10: Normalised mixing performance versus mixing time. Zero
indicates no mixing while one indicates complete mixing. Complete mixing
between two large equal-sized droplets is achieved within 25 seconds.
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The speed of rotation of the droplet about the ring increases 1.3× from initially

1.66 mm/s to 2.18 mm/s during mixing. The type of mixing exhibited in this case

appears to be Taylor dispersion-mediated (Squires and Quake, 2005). With a food

colourant diffusion coefficient (D) of approximately 200 µm2/s (Wei et al., 2010),

the Péclet number (see chapter 3) is calculated from:

Pe =
Uh

D
(7.5)

with U equal to 2.18 mm/s and h equal to 50 µm. The Péclet number is found to be

545, which is below the lower limit for convective stirring calculated from 2πR/h.

For malate dehydrogenase (D of 64.5 µm2/s) Pe would exceed 940 (i.e. 2πR/h),

and therefore more rapid mixing due to convective stirring could be expected.
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7.4.3 Measurement region

Flow

Air bubbles

Figure 7.11: An expansion channel acting as a measurement region. Air
bubbles can be seen to partially obstruct the expansion channel. Scale
bar: 200 µm

An expansion channel design modified from a previous design (see Appendix D.4)

is used as a measurement region. The expansion channel has a 1 mm radius and

a detection volume of 157 nl. Above and below the expansion channel are side

channels, which are included to ensure droplets entering the expansion are centred.

The expansion channel design proved to be unsuccessful. As demonstrated in

Figure 7.11, air bubbles would partially block the expansion channel and resist

flowing downstream. Two sources have been identified from which the air bubbles

originate. The first source is from operating the rotary mixer. The second source

is due to the air permeability of PDMS. With the oil flow driven under vacuum, air

is pulled from the bulk PDMS into the expansion channel region. When a simple

straight channel was used instead of an expansion channel, air did not become

trapped.
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7.5 Summary

An automated droplet microfluidic device has been presented for automonous

experimentation. A key feature of the device design is its minimal requirements for

ancillary equipment. A single vacuum pump is all that is required to drive multiple

streams. The device greatly reduces the volume of resources that would typically

be used in macroscale laboratory equipment. The device was characterised and

shown capable of producing droplets out of a single inlet ranging in volume from

0.63 nl to in excess of 25 nl. Also demonstrated was an approach whereby droplets

could be stored while other droplets were generated. Droplets could be stored

separated by oil to prevent premature reactions taking place. A novel approach to

fuse and mix the droplets in one sequence was developed where air was purposefully

preloaded into a rotary mixer. A consequence of actively using air, was that

a detection chamber design based around an expansion channel would become

partially obstructed by air bubbles.





Chapter 8

Conclusions and prospects

The work documented in this thesis investigated the development of microfluidic

technology for autonomous experimentation. Specifically the aims of the work were

to demonstrate a system that, supported scalability in its design, was capable of

automating processes, and was built from technology readily accessible to other

researchers. As a starting point the system was intended to perform automated

enzymatic assays. This required diluting, mixing, and measurement functionalities

to be included in the system design.

To meet the aim of producing technology readily accessible to other researchers,

a set of fabrication techniques was developed (chapter 4) that allow for computer

controlled microfluidic devices to be created in a standard chemistry laboratory

environment without need for sophisticated equipment. The implementation of

a peristaltic pump device by using the fabrication techniques demonstrated the

suitability of the methods for the creation of automated devices. Despite barriers

to microfluidic integrated valve technology being diminished, the fabrication

techniques of chapter 4 did not address the issues of alignment during the

construction of devices from multiple layers.

The alignment between oxidised device layers in the construction of integrated

valve microfluidic devices has been problematic in the field of microfluidics for

many years. Despite the many potential solutions in the literature (see examples

described by Eddings et al. 2008), not one has found to be sufficiently reliable

to become a recognised standard. Where water is used as a lubricant to aid

alignment during bonding (Cho et al., 2009; Ding et al., 2011), no consideration

had been given to whether or not water had a detrimental effect on bonding. An

investigation of the effect of water on the bonding strength of oxidised PDMS

137
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and glass samples was conducted (chapter 5). The presence of water was found to

reduce the strength of bonding between oxidised layers. A new technique known as

water alignment vacuum extraction (WAVE) was developed and introduced. The

WAVE technique allowed for water to be used as a lubricant to facilitate alignment

and obtain high bonding strengths between device layers. The WAVE technique

was shown to support the accurate alignment of valved and three-dimensional

mixer device layers simply by hand. Complex devices capable of withstanding

high pressures can now be easily assembled by utilising WAVE in conjunction

with oxygen plasma treatments.

To meet the measurement requirement in the system design, a low-cost physi-

cally compact ultra-violet photometer system built using optical semiconductor

components was developed (chapter 6). The UV photometer system was tested

against a commercially available spectrophotometer by measuring dilute solutions

of nicotinamide adenine dinucleotide (NADH). A strong correlation was found

between measurements from both instruments at a wavelength of 355 nm. The

data indicated good agreement between the two instruments. The UV photometer

system therefore allows for enzymatic assays involving NADH to be monitored.

In the context of the autonomous experimentation system, the UV photometer

provides the machine learning algorithms the necessary capability to observe

experiments in order to drive the automated hardware.

An automated droplet microfluidic device was designed for autonomous experi-

mentation with enzymes (chapter 7). To fully survey the potential computational

characteristics of enzymes, a complex chemical environment is required which in

turn necessitates numerous chemical inputs. The current trend in microfluidics

sees designs (e.g. Tice et al. 2003) that do not easily accommodate numerous

chemical inputs without requiring the same number of often expensive and bulky

ancillary equipment pieces. The design presented in this work can easily support

multiple chemical input streams, while only requiring a single vacuum pump to

provide flow. The same microfluidic device was designed to enable the production

of aqueous droplets of different size that could be varied continuously. This was

achieved by utilising an actuation scheme that employs two separate valves in

turn for droplet production. This allowed for droplets or slugs to be produced

independent of oil flow thus removing the upper limit to slug size typical in droplet

microfluidics. The scheme described in this thesis allows for droplets as small as

half the channel width and as long as the length of the device main channel to be

generated, therefore providing a wide continuous range for creating dilutions. This

is an improvement over devices in the literature which largely use fixed networks of
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microfluidic channels to obtain discrete dilutions (Walker et al., 2007; Kim et al.,

2008; Hattori et al., 2009).

Also demonstrated in this work is a novel means by which multiple droplets can be

fused and mixed in one step. The microfluidic design in this work utilises a circular

channel mixer similar to the rotary mixer described by Chou et al. (2001), except

that whereas Chou et. al. had used the rotary mixer for single-phase aqueous

solutions, here it is used to fuse and mix aqueous droplets suspended in oil. The

mixer consists of inlet and outlet channels in close proximity, separated by an active

bypass valve. With the bypass valve closed droplets are stored within the mixer

and when the bypass valve is opened, the flow proceeds between inlet and outlet

without disturbing the stored droplets. To fuse and mix the droplets the circular

mixer is first isolated from the main channel of the device, flow is then generated by

an integrated peristaltic pump. At first the mixing scheme was found to perform

poorly with droplets resisting fusion and the peristaltic pump causing droplet

breakup. However by introducing a third phase (air) to the fluid system, fusion was

far more reliable, droplet breakup was eliminated, and complete mixing possible

within 25 seconds for a 15 mm long slug. The advantages of the approach include,

the prevention of reactions taking place prematurely, and the ability to fuse and

mix multiple droplets in one step. The scheme of using a circular mixer together

with purposeful injection of air to fuse and mix aqueous slugs in oil is novel and

the results from the scheme are to be published. Droplet microfluidic technology

has not only allowed for a device capable of automatically performing diluting

and mixing functions, it has also opened up potential scalability to utilise many

different chemicals in experiments. Furthermore the use of droplet microfluidic

technology has allowed sample volumes to be reduced by almost four orders of

magnitude when compared to standard 1.5 ml cuvettes used in enzymatic assays.

In conclusion from this work, the previous limits of the experimental apparatus

component of autonomous experimentation systems, specifically for chemical and

biological studies, have now been overcome. There are however still some technical

challenges remaining that this work has not been able to fully address. Ideally

a control feedback mechanism would be implemented to allow for finer control of

fluids on-chip. A machine vision approach may be a possible means to achieve this.

The integration of optical measurement components into the microfluidic device

is still a problem that requires some attention, but a good starting point would be

to look at the work on dye-doping and out-of-plane detection channels described

in appendix F. Despite the open challenges, the work described in this thesis in

combination with novel machine learning algorithms (Lovell, 2011) makes for the



140 Chapter 8 Conclusions and prospects

exciting and realistic prospect that autonomous experimentation could soon be

used as a standard method to drive scientific discovery in the chemistry or biology

laboratory. This is in turn could rapidly advance research into cures for diseases,

the creation of new materials, and exploitation of biological systems as powerful

computers.
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Appendix A

Accessible prototyping of

integrated valve microfluidic

devices

A.1 UV exposure intensity data

Table A.1: UV light intensity versus distance with and without IR filter.
Unpublished data courtesy of (Aghdaei, 2010)

Distance from Lamp Intensity with IR Filter Intensity without IR Filter
(mm) (mW/cm2) (mW/cm2)

70 2.7 11.4
125 2.2 6.4
185 1.2 4.9
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A.2 DFR processing workflow

Preheat clean slide,
 110 °C 10 min

Laminate Slide
110 °C, Speed 2

Cool Slide
Room Temp, 10 min

UV Expose Slide
70 mm distance,
 no filter, 10 s

Post Exposure Bake
65 °C, 10 min

Cool Slide
Room Temp, 2 min

Develop Slide, 
Sonicate On, Face 

Down, t[1] s

Develop Slide, 
Sonicate On, Face 

Up, t[2] s

Develop Slide, 
Sonicate Off, Face 

Up, t[3] s, Rub

Rinse Slide Under 
Tap, N  Dry2

Inspect

Developed?
No

Yes

t = t - 10

Silanize

Dry Film Resist Processing

By Gareth Jones

t[1]: 60 s
t[2]: 50 s
t[3]: 45 s

AM175

1st Iteration

t = t / n

nth Iteration

t[1]: 40 s
t[2]: 30 s
t[3]: 30 s

AM150
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A.3 Silanized replication master contact angle

Figure A.1: A drop of water on a silanized replication master. A contact
angle of approximately 103o was recorded.

A.4 PDMS base weight and resulting thickness

Table A.2: PDMS Prepared Weight and Resulting Layer Thickness

Replication Master Dimensions Elastomer Base Weight Layer Thickness
(width × length [mm]) [grams] [mm]

25 x 75 5 2.06
25 x 75 10 4.22
25 x 75 15 6.94
35 x 75 5 1.21
35 x 75 10 2.64
35 x 75 15 4.5
50 x 75 10 2.02
50 x 75 15 3.22
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Table A.3: Manufacturer’s suggested curing times for PDMS, obtained
from (Corning, 2009)

Temperature
(oC)

Time (mins)

150 10
125 20
100 45
Room 48Hrs

Table A.4: Commonly-used Solvents and the amount of swelling caused in
PDMS, data from (Lee et al., 2003)

Solvent Swelling (%)

Acetone 6
Methanol 2
Toluene 31
1-propanol 9

A.5 PDMS cure times and temperature

A.6 PDMS–Solvent compatibility

A.7 Solenoid test script

valve 8 on

wait 1000

valve 8 off

wait 1000

valve 8 on

wait 8

valve 8 off

wait 1000

valve 8 on

wait 12

valve 8 off

wait 1000

valve 8 on

wait 15
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valve 8 off

wait 1000

valve 8 on

wait 18

valve 8 off

wait 1000

valve 8 on

wait 21

valve 8 off

wait 1000

valve 8 on

wait 24

valve 8 off

wait 1000

valve 8 on

wait 27

valve 8 off

wait 1000

valve 8 on

wait 30

valve 8 off

wait 1000

valve 8 on

wait 35

valve 8 off

wait 1000

valve 8 on

wait 40

valve 8 off

wait 1000

valve 8 on

wait 45

valve 8 off

wait 1000

valve 8 on

wait 50

valve 8 off

wait 1000
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valve 8 on

wait 55

valve 8 off

wait 1000

valve 8 on

wait 60

valve 8 off

wait 1000

valve 8 on

wait 65

valve 8 off

wait 1000

valve 8 on

wait 70

valve 8 off

wait 1000

valve 8 on

wait 75

valve 8 off

wait 1000

END
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Control software

B.1 Optical measurement

Figure B.1: Optical measurement component of the GUI.
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B.2 Valve control and scripting

Figure B.2: GUI developed to allow both manual and automated control
of on-chip valves
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B.3 Code listing

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using Phidgets;

using Phidgets.Events;

using System.IO.Ports;

using System.Threading;

using System.Numeric;

using System.Diagnostics;

namespace DeviceInterface

{

public partial class Interface : Form

{

static BackgroundWorker bw;

static BackgroundWorker bwComms;

static BackgroundWorker[] ValveWorkers;

private static InterfaceKit ifkit; //create new ifkit object

private static CheckBox[] ValvesCheck = new CheckBox[16]; //create 16 Checkbox objects

private static Panel[] ValvesPanel = new Panel[16]; //create 16 Panel objects

private static TextBox[] valveSelect = new TextBox[3];

private static SerialPort serialPort = new SerialPort();

private static TextBox CommsPhase = new TextBox();

private static TextBox CommsAmp = new TextBox();

private static TextBox CaptAbs = new TextBox();

private static TextBox RTAbs = new TextBox();

private static TextBox[] valveTime = new TextBox[16];

private static ListBox Target = new ListBox();

#region Global Variables

//Define some global variables

public static class GlobVars

{ public static int NoWorkers;

public static int PumpTime1;

public static int[] pumpValves = new int[3];

public static string ReadRS;

public static bool FormClosingFlag;

public static double BlankRead;

public static double AbsRead;

public static bool CameraStarted = false;

public static int[] ValveTiming = new int[16];

public static int PumpNTimes;

}

#endregion

public Interface()

{

InitializeComponent();

}

private void Form1_Load(object sender, EventArgs e)

{

GlobVars.PumpNTimes = 10;

GlobVars.NoWorkers = 16;

GlobVars.BlankRead = 1;

GlobVars.PumpTime1 = 500;

GlobVars.pumpValves[0] = 0;

GlobVars.pumpValves[1] = 1;

GlobVars.pumpValves[2] = 2;

GlobVars.FormClosingFlag = false;

pumpTime.Text = GlobVars.PumpTime1.ToString();

MakeValveControl(); //Assigns Checkboxes and Panels in form to objects created above

CommsPhase = (TextBox)groupBox1.Controls["textBox3"];

CommsAmp = (TextBox)groupBox1.Controls["textBox2"];

RTAbs = (TextBox)groupBox1.Controls["textBox4"];

CaptAbs = (TextBox)groupBox1.Controls["textBox1"];

//build the background worker object and assign hooks

bw = new BackgroundWorker();

bwComms = new BackgroundWorker();
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bwComms.WorkerSupportsCancellation = true;

bw.WorkerSupportsCancellation = true;

bw.DoWork += bw_DoWork;

bw.RunWorkerCompleted += bw_RunWorkerCompleted;

bwComms.DoWork += bwComms_DoWork;

bwComms.RunWorkerCompleted += bwComms_RunWorkerCompleted;

SerialStart();

try

{

ifkit = new InterfaceKit();

ifkit.Attach += new AttachEventHandler(ifkit_Attach);

ifkit.Detach += new DetachEventHandler(ifkit_Detach);

ifkit.Error += new ErrorEventHandler(ifkit_Error);

FormClosing += new FormClosingEventHandler(Form1_FormClosing);

serialPort.DataReceived += new SerialDataReceivedEventHandler(serialPort_DataReceived);

//serialPort.Open();

openCmdLine(ifkit);

}

catch (PhidgetException ex)

{

bw.CancelAsync();

}

catch (Exception ex)

{

bwComms.CancelAsync();

}

}

private void SerialStart()

{

serialPort.PortName = "COM9";

serialPort.BaudRate = 115200;

serialPort.DataBits = 8;

serialPort.Parity = Parity.None;

serialPort.StopBits = StopBits.One;

serialPort.Handshake = Handshake.None;

//serialPort.ReadTimeout = 500; no timeout otherwise exception when pic stopped

try

{

serialPort.Open();

}

catch (Exception ex)

{

return;

}

}

#region Serial Port Data Received

void serialPort_DataReceived(Object sender, SerialDataReceivedEventArgs e)

{

if (!bwComms.IsBusy && !GlobVars.FormClosingFlag)

{

bwComms.RunWorkerAsync();

return;

}

else if (GlobVars.FormClosingFlag)

{

bwComms.CancelAsync();

serialPort.Close();

serialPort.DataReceived -= new SerialDataReceivedEventHandler(serialPort_DataReceived);

}

return;

}

#endregion

#region Refresh Phidgets Outputs

//clear all outputs

private void refresh()

{

for (int i = 0; i != 16; i++)

{

ifkit.outputs[i] = false;

}

}

#endregion
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#region Phidget Handlers

//ifkit attach handler

//Display text "attached"

//Enable manual valve control

void ifkit_Attach(object sender, AttachEventArgs e)

{

InterfaceKit ifkit = (InterfaceKit)sender;

attachedTxtBox.Text = ifkit.Attached.ToString();

EnableValveControl();

refresh();

//on clicking pumpButton fire the background worker

pumpButton.Click += new EventHandler(runBw);

pumpAbortButton.Click += new EventHandler(cancelBw);

}

//ifkit detach handler

void ifkit_Detach(object sender, DetachEventArgs e)

{

if (!bw.CancellationPending)

{

bw.CancelAsync();

}

InterfaceKit ifkit = (InterfaceKit)sender;

attachedTxtBox.Text = ifkit.Attached.ToString();

DisableValveControl();

}

//ifkit error event handler

void ifkit_Error(object sender, ErrorEventArgs e)

{

}

#endregion

#region Background Worker Pumping Methods

//cancel the background worker

void cancelBw(object sender, EventArgs e)

{

bw.CancelAsync();

}

//run the background worker

void runBw(object sender, EventArgs e)

{

if (!bw.IsBusy)

{

bw.RunWorkerAsync();

}

}

//background worker do work function

static void bw_DoWork(object sender, DoWorkEventArgs e)

{

BackgroundWorker bw = sender as BackgroundWorker;

int time = GlobVars.PumpTime1;

int index = GlobVars.pumpValves.Length - 1;

//While there are no cancellation pending signals, try pumping, fail if phidgets acts up.

while(!bw.CancellationPending)

{

try

{

ValvePumpSequence();

}

catch (PhidgetException ex)

{

}

}

//Need to check if ifkit still attached when cancelling otherwise exception thrown as

//phidget not available

if (bw.CancellationPending && ifkit.Attached)

{

ifkit.outputs[GlobVars.pumpValves[index]] = false;

ifkit.outputs[GlobVars.pumpValves[index - 1]] = false;

ifkit.outputs[GlobVars.pumpValves[index - 2]] = false;

ValvesPanel[GlobVars.pumpValves[index - 2]].BackColor = Color.Green;

ValvesPanel[GlobVars.pumpValves[index - 1]].BackColor = Color.Green;

ValvesPanel[GlobVars.pumpValves[index]].BackColor = Color.Green;

e.Cancel = true;
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return;

}

else

{

e.Cancel = true;

return;

}

}

//background worker on complete function

static void bw_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)

{

}

#endregion

#region Background Worker Comms Methods

static void bwComms_DoWork(object sender, DoWorkEventArgs e)

{

string temp;

double working;

double final;

BackgroundWorker bwComms = sender as BackgroundWorker;

CommsPhase.Invoke(new Action(delegate { CommsPhase.Text = serialPort.ReadTo(",").Substring(0,7); }));

CommsAmp.Invoke(new Action(delegate { CommsAmp.Text = serialPort.ReadTo(",").Substring(10,8); }));

temp = serialPort.ReadTo(",").Substring(10, 8);

if (double.TryParse(temp, out working) == false)

{

working = 1;

}

final = (Math.Log10(working / GlobVars.BlankRead));

if (final != 0)

{

RTAbs.Invoke(new Action(delegate { RTAbs.Text = final.ToString().Substring(0,6); }));

}

else if (final == 0)

{

RTAbs.Invoke(new Action(delegate { RTAbs.Text = final.ToString(); }));

}

}

static void bwComms_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)

{

}

#endregion

#region Pump Sequence Method

//drives the pump sequence

static void ValvePumpSequence()

{

int t = GlobVars.PumpTime1;

int i = GlobVars.pumpValves.Length - 1;

//disables manual user input when pumping

for (int j = 0; j != 3; j++)

{

int s = GlobVars.pumpValves[j];

ValvesCheck[s].Invoke(new Action(delegate { ValvesCheck[s].Enabled = false; }));

ValvesCheck[s].Invoke(new Action(delegate { ValvesCheck[s].Checked = false; }));

}

for (int r = 0; r < GlobVars.PumpNTimes; r++)

{

ifkit.outputs[GlobVars.pumpValves[i]] = true; //101

ifkit.outputs[GlobVars.pumpValves[i - 2]] = true;

ValvesPanel[GlobVars.pumpValves[i - 2]].BackColor = Color.Red;

ValvesPanel[GlobVars.pumpValves[i]].BackColor = Color.Red;

Thread.Sleep(t);

ifkit.outputs[GlobVars.pumpValves[i]] = false; //100

ValvesPanel[GlobVars.pumpValves[i]].BackColor = Color.Green;

Thread.Sleep(t);

ifkit.outputs[GlobVars.pumpValves[i - 1]] = true; //110

ValvesPanel[GlobVars.pumpValves[i - 1]].BackColor = Color.Red;
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Thread.Sleep(t);

ifkit.outputs[GlobVars.pumpValves[i - 2]] = false; //010

ValvesPanel[GlobVars.pumpValves[i - 2]].BackColor = Color.Green;

Thread.Sleep(t);

ifkit.outputs[GlobVars.pumpValves[i]] = true; //011

ValvesPanel[GlobVars.pumpValves[i]].BackColor = Color.Red;

Thread.Sleep(t);

ifkit.outputs[GlobVars.pumpValves[i - 1]] = false; //001

ValvesPanel[GlobVars.pumpValves[i - 1]].BackColor = Color.Green;

Thread.Sleep(t);

}

for (int j = 0; j != 3; j++)

{

int s = GlobVars.pumpValves[j];

ValvesCheck[s].Invoke(new Action(delegate { ValvesCheck[s].Enabled = true; }));

}

bw.CancelAsync();

}

#endregion

#region Check Box Valve Control Method

//Links the check changed state of the check boxes to the changing of the panels representing

//the outputs of the phidget.

private void checkBox_CheckedChanged(object sender, EventArgs e)

{

CheckBox outputChk = (CheckBox)sender;

int outputIndex = int.Parse((string)outputChk.Tag);

//Checks to see if valves have been assigned to pumps and disallows their manual actuation.

// if ((outputIndex == GlobVars.pumpValves[0]) || (outputIndex == GlobVars.pumpValves[1]) || (outputIndex == GlobVars.pumpValves[2]))

// {

// return;

//}

//With the current checkbox, if the time is NaN, allow manual switching

if (int.TryParse(valveTime[outputIndex].Text, out GlobVars.ValveTiming[outputIndex]) == false)

{

ifkit.outputs[outputIndex] = outputChk.Checked;

if (ValvesPanel[outputIndex].BackColor != Color.Red)

{

ValvesPanel[outputIndex].BackColor = Color.Red;

}

else if (ValvesPanel[outputIndex].BackColor != Color.Green)

{

ValvesPanel[outputIndex].BackColor = Color.Green;

}

}

//If there is a number, fire up the background worker

else if (int.TryParse(valveTime[outputIndex].Text, out GlobVars.ValveTiming[outputIndex]) == true)

{

if (!ValveWorkers[outputIndex].IsBusy)

{

ValveWorkers[outputIndex].RunWorkerAsync(outputIndex);

}

}

}

#endregion

#region Disable Valve Control

//Stops user manually actuating valves when phidgets unplugged

private void DisableValveControl()

{

pumpButton.Enabled = false;

pumpTime.Enabled = false;

pumpAbortButton.Enabled = false;

for (int i = 0; i != 16; i++)

{

ValvesCheck[i].Enabled = false;

ValvesPanel[i].BackColor = Color.Gray;

valveTime[i].Enabled = false;

}

for (int i = 0; i < 3; i++)

{

valveSelect[i].Enabled = false;

}

}

#endregion
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#region Enable Valve Control

//Allows user to actuate valves when phidgets connected

private void EnableValveControl()

{

for (int i = 0; i < 16; i++)

{

ValvesCheck[i].Enabled = true;

ValvesPanel[i].BackColor = Color.Green;

valveTime[i].Enabled = true;

}

for (int i = 0; i < 3; i++)

{

valveSelect[i].Enabled = true;

}

pumpAbortButton.Enabled = true;

pumpButton.Enabled = true;

pumpTime.Enabled = true;

}

#endregion

#region Build Checkboxes to Manually Control Valves

//Assigns checkboxes to ValveCheck objects of which there are 16

//Same for panels 5-20 hence +5

private void MakeValveControl()

{

pumpAbortButton.Enabled = false;

pumpButton.Enabled = false;

pumpTime.Enabled = false;

for (int i = 0; i < 3; i++)

{

valveSelect[i] = (TextBox)pumpGroupBox.Controls["valveSelect" + i.ToString()];

valveSelect[i].Enabled = false;

valveSelect[i].Text = GlobVars.pumpValves[i].ToString();

}

ValveWorkers = new BackgroundWorker[16];

for (int i = 0; i < 16; i++)

{

ValvesCheck[i] = (CheckBox)groupBoxValves.Controls["checkBox" + (i + 1).ToString()];

ValvesPanel[i] = (Panel)groupBoxValves.Controls["panel" + (i + 5).ToString()];

ValvesCheck[i].Enabled = false;

ValvesPanel[i].Enabled = false;

ValvesCheck[i].CheckedChanged += new EventHandler(checkBox_CheckedChanged);

valveTime[i] = (TextBox)groupBoxValves.Controls["valveTime" + i.ToString()];

valveTime[i].Text = "N";

valveTime[i].Enabled = false;

//valveTime[i].TextChanged += new EventHandler(valveTime_Changed);

//GlobVars.IsNumeric[i] = false;

ValveWorkers[i] = new BackgroundWorker();

ValveWorkers[i].WorkerSupportsCancellation = true;

ValveWorkers[i].DoWork += new DoWorkEventHandler(Valve_DoWork);

}

}

#endregion

#region Valve Do Work for Timed Valves

void Valve_DoWork(object sender, DoWorkEventArgs e)

{

BackgroundWorker ValveWorker = sender as BackgroundWorker;

int i = (int) e.Argument;

while (!ValveWorker.CancellationPending)

{

try

{

ValvesCheck[i].Invoke(new Action(delegate { ValvesCheck[i].Enabled = false; }));

ValvesCheck[i].Invoke(new Action(delegate { ValvesCheck[i].Checked = false; }));

ValvesPanel[i].Invoke(new Action(delegate { ValvesPanel[i].BackColor = Color.Red; }));

ifkit.outputs[i] = true;

Thread.Sleep(GlobVars.ValveTiming[i]);

ifkit.outputs[i] = false;

ValveWorker.CancelAsync();

ValvesCheck[i].Invoke(new Action(delegate { ValvesCheck[i].Enabled = true; }));

ValvesPanel[i].Invoke(new Action(delegate { ValvesPanel[i].BackColor = Color.Green; }));

}

catch

{
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ValveWorker.CancelAsync();

}

}

}

#endregion

#region Form Closing

private void Form1_FormClosing(object sender, FormClosingEventArgs e)

{

GlobVars.FormClosingFlag = true;

//kill the bw if still running

for (int i = 0; i > 16; i++)

{

if (!ValveWorkers[i].CancellationPending)

{

ValveWorkers[i].CancelAsync();

}

}

if (!bw.CancellationPending || !bwComms.CancellationPending)

{

bw.CancelAsync();

bwComms.CancelAsync();

}

if (ifkit.Attached)

{

refresh();

}

ifkit.Attach -= new AttachEventHandler(ifkit_Attach);

ifkit.Detach -= new DetachEventHandler(ifkit_Detach);

ifkit.Error -= new ErrorEventHandler(ifkit_Error);

bw.DoWork -= bw_DoWork;

bw.RunWorkerCompleted -= bw_RunWorkerCompleted;

pumpButton.Click -= new EventHandler(runBw);

pumpAbortButton.Click -= new EventHandler(cancelBw);

for (int i = 0; i > 16; i++)

{

ValvesCheck[i].CheckedChanged -= new EventHandler(checkBox_CheckedChanged);

ValveWorkers[i].DoWork -= new DoWorkEventHandler(Valve_DoWork);

}

Application.DoEvents();

ifkit.close();

}

#endregion

//Parses command line arguments and calls the appropriate open

#region Command line open functions

private void openCmdLine(Phidget p)

{

openCmdLine(p, null);

}

private void openCmdLine(Phidget p, String pass)

{

int serial = -1;

int port = 5001;

String host = null;

bool remote = false, remoteIP = false;

string[] args = Environment.GetCommandLineArgs();

String appName = args[0];

try

{ //Parse the flags

for (int i = 1; i < args.Length; i++)

{

if (args[i].StartsWith("-"))

switch (args[i].Remove(0, 1).ToLower())

{

case "n":

serial = int.Parse(args[++i]);

break;

case "r":

remote = true;

break;

case "s":
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remote = true;

host = args[++i];

break;

case "p":

pass = args[++i];

break;

case "i":

remoteIP = true;

host = args[++i];

if (host.Contains(":"))

{

host = host.Split(’:’)[0];

port = int.Parse(host.Split(’:’)[1]);

}

break;

default:

goto usage;

}

else

goto usage;

}

if (remoteIP)

p.open(serial, host, port, pass);

else if (remote)

p.open(serial, host, pass);

else

p.open(serial);

return; //success

}

catch { }

usage:

StringBuilder sb = new StringBuilder();

sb.AppendLine("Invalid Command line arguments." + Environment.NewLine);

sb.AppendLine("Usage: " + appName + " [Flags...]");

sb.AppendLine("Flags:\t-n serialNumber\tSerial Number, omit for any serial");

sb.AppendLine("\t-r\t\tOpen remotely");

sb.AppendLine("\t-s serverID\tServer ID, omit for any server");

sb.AppendLine("\t-i ipAddress:port\tIp Address and Port. Port is optional, defaults to 5001");

sb.AppendLine("\t-p password\tPassword, omit for no password" + Environment.NewLine);

sb.AppendLine("Examples: ");

sb.AppendLine(appName + " -n 50098");

sb.AppendLine(appName + " -r");

sb.AppendLine(appName + " -s myphidgetserver");

sb.AppendLine(appName + " -n 45670 -i 127.0.0.1:5001 -p paswrd");

MessageBox.Show(sb.ToString(), "Argument Error", MessageBoxButtons.OK, MessageBoxIcon.Error);

Application.Exit();

}

#endregion

#region Manual Pump Settings

private void PumpNTimesInput_TextChanged(object sender, EventArgs e)

{

if (int.TryParse(PumpNTimesInput.Text, out GlobVars.PumpNTimes) == false)

{

GlobVars.PumpNTimes = 1;

}

}

//Capture manually inputted pump time and save to GlobVars.PumpTime1

private void pumpTime_TextChanged(object sender, EventArgs e)

{

if (int.TryParse(pumpTime.Text, out GlobVars.PumpTime1) == false)

{

GlobVars.PumpTime1 = 500;

}

}

//TODO: handle all valve selects under 1 function as per check boxes

// Capture assignment of valves to pumps, update GlobVars.pumpValves[] accordingly

private void valveSelect0_TextChanged(object sender, EventArgs e)

{

if (int.TryParse(valveSelect0.Text, out GlobVars.pumpValves[0]) == false)

{

GlobVars.pumpValves[0] = 0;

}

}
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private void valveSelect1_TextChanged(object sender, EventArgs e)

{

if (int.TryParse(valveSelect1.Text, out GlobVars.pumpValves[1]) == false)

{

GlobVars.pumpValves[1] = 0;

}

}

private void valveSelect2_TextChanged(object sender, EventArgs e)

{

if (int.TryParse(valveSelect2.Text, out GlobVars.pumpValves[2]) == false)

{

GlobVars.pumpValves[2] = 0;

}

}

#endregion

#region Spectrophotometer Reading Controls

//Capture Absorbance

private void button2_Click(object sender, EventArgs e)

{

Capture_Absorbance();

}

private void Capture_Absorbance()

{

double temp;

double actual;

if (double.TryParse(CommsAmp.Text, out GlobVars.AbsRead) == false)

{

GlobVars.AbsRead = 1;

}

actual = GlobVars.AbsRead;

temp = (-1 * Math.Log10(GlobVars.AbsRead / GlobVars.BlankRead));

if (temp != 0)

{

textBox1.Text = temp.ToString().Substring(0, 6);

listBox2.Items.Add(textBox7.Text.ToString() + "\t" + temp.ToString().Substring(0, 6)

+ "\t" + actual.ToString() + "\t" + DateTime.Now.ToString());

}

else if (temp == 0)

{

textBox1.Text = temp.ToString();

listBox2.Items.Add(textBox7.Text.ToString() + "\t" + temp.ToString() +

"\t" + actual.ToString() + "\t" + DateTime.Now.ToString());

}

listBox2.SelectedIndex = listBox2.Items.Count - 1; // makes listbox autoscroll with inputs

return;

}

//Capture Blank Value

private void button1_Click(object sender, EventArgs e)

{

Capture_Blank();

}

private void Capture_Blank()

{

if (double.TryParse(CommsAmp.Text, out GlobVars.BlankRead) == false)

{

GlobVars.BlankRead = 1;

}

listBox2.Items.Add("Blanked\t" + GlobVars.BlankRead.ToString() + "\t" + DateTime.Now.ToString());

listBox2.SelectedIndex = listBox2.Items.Count - 1; // makes listbox autoscroll with inputs

return;

}

//Save file dialog

private void button3_Click(object sender, EventArgs e)

{

string S = "listBox2";

SaveFile(S);
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}

//Clear listbox of all recorded values

private void button8_Click(object sender, EventArgs e)

{

listBox2.Items.Clear();

}

#endregion

#region Save File Dialog

private void SaveFile(string S)

{

Target = (ListBox)groupBox2.Controls[S];

SaveFileDialog saveFileDialog2 = new SaveFileDialog();

saveFileDialog2.DefaultExt = "txt";

saveFileDialog2.AddExtension = true;

saveFileDialog2.Filter = "Text File (*.txt)|*.txt|All Files (*.*)|*.*";

if (saveFileDialog2.ShowDialog() == DialogResult.OK)

{

System.IO.StreamWriter sw = new System.IO.StreamWriter(saveFileDialog2.FileName);

foreach (object item in Target.Items)

sw.WriteLine(item.ToString());

sw.Close();

};

saveFileDialog2.Dispose();

}

#endregion

#region Call Webcam

private void button9_Click(object sender, EventArgs e)

{

if (!GlobVars.CameraStarted)

{

try

{

Process.Start("TestAviCap32.exe");

GlobVars.CameraStarted = true;

}

catch

{

return;

}

}

return;

}

#endregion

#region Scripting Control

private void button5_Click(object sender, EventArgs e)

{

SaveFileDialog saveFileDialog2 = new SaveFileDialog();

saveFileDialog2.DefaultExt = "txt";

saveFileDialog2.AddExtension = true;

saveFileDialog2.Filter = "Text File (*.txt)|*.txt|All Files (*.*)|*.*";

if (saveFileDialog2.ShowDialog() == DialogResult.OK)

{

System.IO.StreamWriter sw = new System.IO.StreamWriter(saveFileDialog2.FileName);

//Use StreamWriter class.

//Use writeline methode to write the text and

//in para.. put your text, i have used textBox1’s text

sw.Write(textBox6.Text);

sw.WriteLine("\r\n" + "END" + "\r\n" + DateTime.Now);

//always close your stream

sw.Close();

};

saveFileDialog2.Dispose();

}

private void button6_Click(object sender, EventArgs e)

{

textBox6.Clear();
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}

//opens files

private void button7_Click(object sender, EventArgs e)

{

OpenFileDialog OpenFileDialog1 = new OpenFileDialog();

OpenFileDialog1.DefaultExt = "txt";

OpenFileDialog1.AddExtension = true;

OpenFileDialog1.Filter = "Text File (*.txt)|*.txt|All Files (*.*)|*.*";

if (OpenFileDialog1.ShowDialog() == DialogResult.OK)

{

System.IO.StreamReader tr = new System.IO.StreamReader(OpenFileDialog1.FileName);

textBox6.Text = tr.ReadToEnd();

//always close your stream

tr.Close();

};

OpenFileDialog1.Dispose();

}

//Run Program

private void button4_Click(object sender, EventArgs e)

{

int index = textBox6.Lines.Length;

string[] readlines = textBox6.Text.ToString().Split(new char[] {’\n’});

DisableValveControl();

pumpAbortButton.Enabled = true;

string[] decimated;

string ReadSwitch;

char[] delimiters = new char[] { ’\t’ };

int j;

//Read through inputs and decide

for (int i = 0; i < index; i++)

{

ReadSwitch = readlines[i].ToUpper();

decimated = ReadSwitch.Split(delimiters, StringSplitOptions.RemoveEmptyEntries);

try

{

decimated[0] = decimated[0].TrimEnd(new char[] { ’\r’, ’\n’ });

if (decimated[0] == "VALVE")

{

int.TryParse(decimated[1], out j);

ActuateValve(j, decimated[2]);

}

if (decimated[0] == "AVALVE")

{

int h;

int.TryParse(decimated[1], out j);

int.TryParse(decimated[2], out h);

GlobVars.ValveTiming[j] = h;

ValveWorkers[j].RunWorkerAsync(j);

}

if (decimated[0] == "WAIT")

{

int.TryParse(decimated[1], out j);

Thread.Sleep(j);

}

else if (decimated[0] == "END")

{

EnableValveControl();

}

else if (decimated[0] == "CLEAR")

{

refresh();

}

else if (decimated[0] == "BLANK")

{

Capture_Blank();

}

else if (decimated[0] == "MEAS")

{

Capture_Absorbance();

}
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else if (decimated[0] == "SPUMP")

{

int h = 0;

int k = 1;

int l = 2;

int m = 500;

int n = 10;

if (decimated.Length > 5)

{

int.TryParse(decimated[1], out h);

int.TryParse(decimated[2], out k);

int.TryParse(decimated[3], out l);

int.TryParse(decimated[4], out m);

int.TryParse(decimated[5], out n);

}

GlobVars.pumpValves[0] = h;

GlobVars.pumpValves[1] = k;

GlobVars.pumpValves[2] = l;

GlobVars.PumpTime1 = m;

GlobVars.PumpNTimes = n;

ValvePumpSequence();

}

else if (decimated[0] == "APUMP")

{

int h = 0;

int k = 1;

int l = 2;

int m = 500;

int n = 10;

if (decimated.Length > 5)

{

int.TryParse(decimated[1], out h);

int.TryParse(decimated[2], out k);

int.TryParse(decimated[3], out l);

int.TryParse(decimated[4], out m);

int.TryParse(decimated[5], out n);

}

GlobVars.pumpValves[0] = h;

GlobVars.pumpValves[1] = k;

GlobVars.pumpValves[2] = l;

GlobVars.PumpTime1 = m;

GlobVars.PumpNTimes = n;

bw.RunWorkerAsync();

}

}

catch (IndexOutOfRangeException)

{

textBox6.Text += "END";

EnableValveControl();

}

}

}

private void ActuateValve(int j, string decimated)

{

string state = decimated;

int k = j;

bool OutputState = true;

state = state.TrimEnd(new char[] {’\r’ , ’\n’});

if (state == "ON")

{

OutputState = true;

ifkit.outputs[k] = OutputState;

}

else if (state == "OFF")

{

OutputState = false;

ifkit.outputs[k] = OutputState;

}

return;

}

#endregion
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private void pumpAbortButton_Click(object sender, EventArgs e)

{

GlobVars.PumpNTimes = 0;

}

private void checkBox17_CheckedChanged(object sender, EventArgs e)

{

for (int z = 10000; z != 0; z--)

{

ifkit.outputs[0] = true;

delay(1250000);

ifkit.outputs[0] = false;

delay(1250000);

}

}

private void delay(int z) //5000000 == 20ms

{ //1250000 == 5ms

while (z != 0)

{

z--;

}

return;

}

private void button1_Click_1(object sender, EventArgs e)

{

SerialStart();

}

private void button2_Click_1(object sender, EventArgs e)

{

serialPort.Close();

}

//Rewrite output

/*textBox6.Clear();

for (int i = 0; i != index; i++)

{

textBox6.Text += readlines[i].ToString() + "\r\t" + (i+1).ToString() +"\r\n";

}*/

}

}
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Ultraviolet photometer

C.1 Data

Op amp (LMP7721) specs:

Ao, 120 dB

GBW, 17 MHz

Eni at 0.1 Hz, 400 nV/
√
Hz

Eni at 1 kHz, 6.5 nV/
√
Hz

ini, 0.01 pA/
√
Hz

Cia, 15 pF

Circuit specs: Rf , 150 M

CPD, 24 pF

BW, 25000 Hz

Trans amp calcs:

enR =
√

4× 298.15K × 1.38× 10−21 × 150× 106 × 25× 103 = 2.48 mV

eni = 10× 10−15 × 150× 106 = 1.5µV

ene = 7.76 mV

eno = 8.14 mV
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Appendix D

Droplet microfluidics for

autonomous experimentation

D.1 Contact angles

Contact angle measurements were recorded with a Kruss DSA 30 Drop shape

analysis system (Hamburg, Germany) connected to a PC running Drop shape

analysis software.

D.1.1 PDMS–Water

(a) (b) (c)

Figure D.1: PDMS–Water contact angles. A water drop on the surface
of PDMS prior to oxygen plasma exposure yields a contact angle of
approximately 107o (a). A water drop on the surface of PDMS minutes
after oxygen plasma exposure yields a contact angle of approximately 15o

(b). A water drop on the surface of oxygen plasma exposed PDMS after
4 hours of baking at 100 oC yields a contact angle of approximately 102o

(c).
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D.1.2 PDMS–Oleic Acid

Figure D.2: A drop of oleic acid on a PDMS surface. A contact angle of
approximately 40o was recorded.
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D.2 Fusion designs

Flow direction

200 µm 400 µm

1.2 mm 

Figure D.3: Simple expansion chamber design to facilitate droplet fusion.
Droplets entering the chamber had a tendency to collide without fusing.

Flow direction

200 µm

800 µm

Valve line

1.6 mm 

Figure D.4: Valved drop trap design to facilitate droplet fusion. In
operation the valve partially blocked the upper channel.
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Flow direction

200 µm
1.5 mm

Valve line

7.67 mm 

Figure D.5: A larger valved drop trap design to facilitate droplet fusion.
The pillars are designed to minimise shear stress imposed at the sides of
droplets when in the trapping area. Drops would still shear and air would
be pulled into the oil stream from the PDMS bulk (see below).

(a) (b)

(c) (d)

Figure D.6: Optical micrographs of the drop trap in operation. Flow is left
to right. With the valve closed (yellow) two slugs of different composition
are trapped between the comb-like structures of the drop trap (a). The
valve is then opened (b), the slugs decompress and partially fuse but do
not leave the trap cleanly (c). Part of the fused slug is left behind in the
trap.



Appendix D Droplet microfluidics for autonomous experimentation 171

Figure D.7: Unwanted drop separation and air bubbles present in the drop
trap. Flow is left to right.
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D.3 Mixer designs

Flow direction

200 µm

r 30 µm

Mixing length : 6.25 mm

Figure D.8: A serpentine bumpy mixer to aid mixing within droplets. This
mixer design was not very effective at mixing, particularly larger droplets.
Each bump has a radius of 30 µm.

Figure D.9: Optical micrographs of the bumpy serpentine mixer in
operation. Long drops or slugs despite being shorter than the mixing
path length would mix poorly. The poor mixing was evident in the 3.3
mm long drop where two distinct halves can be identified. From the top
flow is left to right.
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D.4 Detection channel designs

Flow direction

200 µm

dia 2 mm

Figure D.10: An expansion chamber where droplet contents can be
interrogated with UV light. Droplets entering this chamber would exhibit
strange dynamics and would often get stuck in one half of the chamber.

(a) (b)

(c) (d)

Figure D.11: Optical micrographs of the detection expansion channel in
operation. Aqueous solutions would attach to the wall of the expansion
chamber (a). Increased main flow rate (b)–(c) did not prevent sticking.
Even flowing just the aqueous phase, the expansion chamber would not fill
completely (d). Flow is left to right.
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D.5 Scripts

D.5.1 Droplet generation

valve 7 on

wait 500

valve 8 on

wait 370

valve 10 off

wait 64

valve 8 off

valve 10 on

valve 7 off

end



Appendix E

Electrohydraulic interface

Current approaches to interfacing and controlling on-chip valves predominantly

use moderately expensive pneumatic actuators (Urbanski et al., 2006) but in some

instances Braille displays are used (Gu et al., 2004; Futai et al., 2006; Gu et al.,

2007). While the cost per actuator of the Braille display approach is lower than

that of the pneumatic, it lacks the freedom of pneumatic actuation in allowing

for arbitrary placement of the actuators. The approach presented here addressed

both issues.

Shown here is a new type of electrohydraulic interface enabling low-cost computer

control over valved microfluidic chips. The interface scheme is illustrated in

Figure E.1 and uses low-cost (<£9 each) linear action solenoids operating on

a sealed microfluidic control channel. The interface scheme has been tested on a

prototype valved microfluidic device.

E.1 Design

To give the solenoids flexibility of placement, they are mounted on handmade L-

shaped aluminium brackets with height adjustment slots. Neodymium magnets

are glued to the base of the brackets allowing for solenoid positioning around a

microfluidic chip placed on a sheet of galvanised steel (see Figure E.2c). The

magnets allow for the position of the solenoids to be fixed and moved as necessary.
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Linear Solenoid
Actuator

Microfluidic 
Device

Control Channel

Fluidic Channel

Figure E.1: Electrohydraulic interface. A linear motion solenoid applies
pressure on to a sealed hydraulic control channel. The force is transmitted
by the hydraulic fluid and deflects the membrane closing the valve.
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Figure E.2: Aspects of the prototype automated experimentation system.
In (a) is an early prototype valved device with control channels filled
with black ink for visibility. Shown in (b) is the overall automated
experimentation system hardware and control software. In (c) we see
a close-up of the solenoid actuators positioned around a prototype
microfluidic device.
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E.2 Experimental methods

E.2.1 Electrohydraulic interface: mounts

Solenoid mounts (Figure E.3) were designed using Autodesk Inventor software

(Autodesk, USA). These were fabricated from the cutting and forming of 1.2 mm

thick sheet aluminium. The aluminium mounts were drilled and tapped from

above to accommodate a M6 nylon screw. Acrylic was cut into 18 mm (w) x 18

mm (l) x 5 mm (h) pieces. These were drilled to accommodate a single 10 mm

(dia) x 3 mm (h) Neodymium disc magnet (RS695-0172, RS Components Ltd.,

Corby UK). The acrylic magnet holders were bonded on to the solenoid mounts

with superglue. Complete solenoid mount assemblies were placed on 1 mm thick

galvanised steel sheet and positioned around microfluidic devices accordingly.

Nylon adjustment screw

Linear 
solenoid

Solenoid
armature

Neodymium
magnet

Acrylic holder

Height adjustment 
screws

Figure E.3: CAD generated solenoid mount assembly. The nylon
adjustment screw mechanically displaces the stroke of solenoid armature.
This allows for the solenoid to be adjusted such that it operates within
its characteristic linear region. The solenoid can be positioned at
varying heights above a microfluidic device using the height adjustment
screws. The Neodymium magnet affixes the solenoid mount assembly to a
galvanised steel base. The magnet allows for arbitrary positioning of the
solenoid.



Appendix E Electrohydraulic interface 179

E.2.2 Electrohydraulic interface: circuitry

Monostable solenoid actuators (RS250–1280, 6 Vdc 0.5 A) were purchased from RS

Components Ltd., Corby UK. Following Figure E.4 the solenoids were connected

between a 15 Vdc 5 A switched-mode power supply and a low-cost USB PC I/O

board (PhidgetInterfaceKit 0/16/16, Active Robots, Somerset UK). Up to ten

solenoids could be controlled with this set-up.

6V 2A Reg

GND

15V 5A In

GND

VI1

2

VO 3

GND

1
2
3

PWR

L
1

L
2

L
3

L
4

D
1

D
2

D
3

D
4

1
2
3
4
G

PHIDGETS

+ +

GND

Figure E.4: Electrohydraulic interface circuitry. Protection diodes were
included in the design to dissipate energy spikes arising from solenoid
actuation.

E.2.3 Electrohydraulic interface: control software

Solenoids were controlled by custom software written in the C# programming

language. A graphical user interface provided simple control over the solenoids.

More complex operations were possible by using scripted text commands. The

software was designed so that each solenoid actuation routine was assigned to

a software thread. This allowed both independent and simultaneous switching

of the solenoids. Solenoids could be grouped together in software to be actuated

sequentially in a finite loop. The switching time of each solenoid and loop duration

were user-defined. Solenoids grouped together in an actuation loop were used to

drive peristaltic pumps.
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E.3 Results

Figure E.5: Photographic sequence showing on-chip valve actuation with
force applied by a linear motion solenoid. The control line is seen in
black intersecting the transparent fluidic channel. The voltage applied to
the solenoid was varied between 0 V and 6 V. In (a), at 0 V the valve
was completely open. From (b) to (c) the valve progressively closed with
increasing voltage recognisable by the dark area and distortion around it
appearing in the centre of the valve. The scale bar represents 400 µm.
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Optical interfacing

F.1 Dye-Doped PDMS preparation

PDMS can be doped with dyes allowing for optical filtering. Described here is

PDMS doped with a dye, Sudan II (Sigma Aldrich, Dorset, UK) that filters light

below 560 nm. PDMS was prepared as described in chapter 4, without degassing

and with the weighing boat substituted for a glass petri dish. Using the method

described by Bliss et al. (2007) Sudan II was prepared. Briefly, for n grams of

PDMS base and catalyst, m milligrams of Sudan II (where m = 1.2 × n) was

weighed out in a glass petri dish, m/20 mL of toluene was dispensed into the

same petri dish and the contents stirred with a metal spatula dissolving the dye.

The dissolved dye was then poured into the petri dish containing the prepared

PDMS. The dye was then stirred into the PDMS using a metal spatula until

a uniform mixture was achieved. The PDMS-dye mixture was then degassed

for 30 minutes in a vacuum dessicator, after which it was ready to be poured

and cured. A convection oven set to a temperature of 100 oC was used to cure

poured PDMS-dye mixture for a 1 hour duration. Samples from both Sudan II

dye-doped and unmodified PDMS have been characterised optically using a UV-

VIS spectrophotometer (Perkin Elmer Lambda 650). An empty cuvette served

as a blank, the transmission spectra from the two types of PDMS are shown in

Figure F.1, which are in good agreement with those reported by Hofmann et al.

(2006). Physically the dye-doped PDMS differs in feel from the unmodified PDMS

by feeling softer.
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Figure F.1: Transmission spectra of modified and dye-doped PDMS.
Photograph of PDMS samples are shown in the inset, left is dye-doped
and right is unmodified PDMS.
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F.2 Out-of-plane detection channel

By bonding a measurement channel on top of a device, optoelectronic components

can be positioned easily around the detection channel. Preventing stray light is

an issue. The idea here was to use dye dope the detection channel block to filter

out the stray light. An air channel is included in the design (left of fluidic channel

in Figure F.2) with a small wall separating the fluidic channel from air. With a

dye doped detection channel block, at the air/fluidic channel wall the filter will be

least effective therefore allowing light through. The bulk block should filter out

stray light. By this approach it is thought that optical fibres will not be necessary.

Figure F.2: Out of plane detection channel. Optoelectronic components
are not easily interfaced with microfluidic devices. Often optical fibres
are used but there are issues such as coupling efficiency to be considered.
Here an alternate approach was attempted. Using the WAVE method
to assembling PDMS layers, two channels were bonded together to form
a single square detection channel with edges of 100 µm in length. The
detection channel length is 1 cm long. The channel is designed to be
bonded on top of a microfluidic device. Here fluid can be seen to travel
from a test device, up through the detection channel and down through
an oulet.
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