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Linear systems
* Most results presented here are valid for any linear system,
Ax=f

 Linearity between input or force vector, {, output or
response vector, X, is represented by stiffness matrix, A

« Main question: How does the response x change if the
system matrix A changes?

[A-sD]x(s)=f P

)

e D deterministic,

« srandom, p(s) known



Linear structural dynamics systems

The matrices and vectors can be parameterised. We use the

frequency parameter w=2xf.

We consider responses, x(w), and transfer functions, g(w):
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[A(w)-sD(w)] x(w,s) = £

g(w,s)=c’ x(w, s)
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Can be ANY linear structural

dynamic system, e.g.
Alw)=K(1+iC)—w’M

Absolute value

10"k
1 g

10%}

10°

| il

10° b

10

v e

?

1

| | 1 1 1 | | 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency parameter, o°




Uncertainty propagation (forward/backward)

* Where do the poles go? Where do the zeros go? What is
the effect on the transfer functions?

e Are there invariants?

« Average, variance, covariance
of transfer function, poles, zeros?

10"

 Isthe variance the right measure
of variability? Extreme values?
Probability density functions?

Abs(g)
=

» Effect of kind of randomness?
(different distribution of s)

 Effect of frequency range? ol

Frequency, f [Hz]



Uncertainty propagation (forward/backward)

What can be inferred of the system from ‘measurements™

Can one identify the randomness?
Can one identify the nominal

system despite the randomness?

Effect of error in measurements? «|

Any particular frequencies?

Combination of frequencies,
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Some common’ options for the forward analysis

Monte-Carlo simulations

* For each sampled value, s = s;, exact expression

x(w, 57) = [A(w)-s;D(w)] " f

« Positive: Statistics can be evaluated (approximated)
Any pdf p(s) can be considered
 Negative: Cost may be large for each s; (Inversion/solution with large matrix)
Might need millions (billions) of simulations
No real assurance of “convergence’
Harder to understand what is happening

Perturbation approach



Some common’ options (continued)

* Perturbation approach (Recall [A(w)-sD(w)]x(w,s) = f)

[A(w) + sD(w)] [X(w, 0) + sAMX(w,0) + PABCX(w,0) +...] = f
s A(w)x(w,0)=f
s': A(w)AMx(w,0) + D(w)x(w,0) =0
AMxX(w,0) = — [A(w)~'D(w)] X(w, 0)
s? A(w)APX(w,0) + D(w)AMxX(w,0) =0
APx(w,0) = — [A(w)”'D(w)] AMx(w, 0)

X(w, ) ~ {l — s [A(w)"'D(w)] + 2 [A(w)~! D(w)]z} X(w, 0)

 Positive: Only solutions are x(w,0) = A(w) —1; and A(w) _ID(w)
Can then be used for any value of s

Statistics easily approximated

R(w, 5) ~ {l — 8 [A(w)"'D(w)] + E[s?] [A(w)_1D(w)]2} X(w, 0)



Some common’ options (continued)
* Eigen sensitivity (Disturbed eig.: [A(w;(s))-sD(w;(s))] w;(s) = 0)
1. Expand the eigenvalues and eigenvectors
wi(8) = wj(0) + sAMw;(0) + 2AB)w;(0) . ..
¢j(s) = $j(0) + sA1§;(0) + s2AB)p(0) + ...
2. Substitutein [A(w;(s))-sD(w;(s))] w;(s) = 0
3. Solve for orders 0, 1, 2, etc.
 Positive: Only solutions are x(w,0) =A(w) ~1f and A(w) ~1D(w)

Can then be used for any value of s
Statistics easily approximated

« Negative: What about large disturbance?
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Low rank approach

e Based on the facts that

1. If the nominal (independent on s) solutions of x(w,0)
= A(w) —1¢ and A(w) _1D(w) are available,

then there is an exact expression of the response (and therefore
transfer function) using these solutions for any value of s.

2. If the disturbance matrix is low rank,
D(w)=Dy(w)D,(w)"

the exact expression further simplifies:




Low rank approach (continued)

If the disturbance matrix is rank-one, i.e. if D;(w) and
D,.(w) are vectors d;(w) and d,(w),

D(w)= dy(w)d,(w)"

then the exact update expression is

£ 1 _axy T _®g°



Low rank statistics

We can evaluate exactly all average and variance or
covariance of the response and transfer function

Average: %(w)= ] x(w,s)p(s)ds (by definition)

)= (0, s, (@) 4] d (0)d (] Alw)” fE@) 1]

It only requires first stochastic coefficient

Variance/covariance:

var[xA(_wA,s),xB(wB,S)] () fAfB (wp) H[

Notation: B(w)=s,(w

It only requires second stochastic coefficient qll(w)=—sl(w)2T { ( 1

(Not always necessary...)

Once we have evaluated these two simple integrals, we have EXACT
expressions of all averages and covariances... Simple integrals’...?



Stochastic coefficients
* More of these integrals are required in the multi-rank case

e,(w)= |
Lo SJ,-((»U)_S j=1,...,n

* They depend on the probability density function p(s)

* Note that we assumed s real (integrals from —~ to « and
change of variable), which is not a necessity

» They are actually difficult integrals... (If one wants to
evaluate them correctly)



Stochastic coefficients (normal real variable)
« We have an exact expression of the two coefficients!

It can be evaluated cheaply and accurately (using last
century work)!

» Second coefficient directly from first coefficient (simple).

« If 5 is a normal variable, with zero mean and standard deviation, o, its probability
density function is the Gaussian function, -

[ 5
1 2
(g'}(s)a_)_ e 20

= —
P VZ?TU2

* The stochastic coefficients are then (exactly)

s, (w) [s,() o
eg_g.»(wlg):_wlgsj(w, “‘\-’Lﬁ it (s, (w)]>0 | 2
PV) 5 | ‘ 2
eig)(w,a)=v"2_51(.w)p “J%w) if 3(s,(w))=0
a V20 ' !
s (w)? :
¢ (w,o)= "Uz' [ei—g}(w,aﬁ—l)

» The special Faddeeva and Dawson's functions are

b b

w(_b)=e_b2 1"‘%.[ e dr F(b)=eibl|q e dt
VT o 0
Error function family (See Abramowitz and Stegun) “os 642 0 2 4 6 8 10

Argument, b



Other questions...

What about a complex random variable, s = s, + i s;?
 Isthe evaluation of the stochastic coefficients simple or difficult?

 In the case of a normal complex variable, for example, are the real
and complex stochastic coefficients related?

« What about other kinds of random variables?

» Are the average and variance of the responses and transfer
functions the right information?

« Would the evaluation of the whole probability density
functions of the transfer functions be simple of difficult?

« What about the statistics of the location of poles and zeros?

YAT 1 [ . 1 ] 1 1 [ . (Y



Some answers...

* About a complex random variable, s = s, + i s;, with
normal distribution...

o If the normal variable is ‘symmetric’:

 the real and complex stochastic coefficients are not (directly) related

* the stochastic coefficients have very simple exact expression (but they
are not necessarily easy to find... It took me some time.). Much
simpler to evaluate than in the real case.

o If the normal variable is not ‘symmetric’ (added spring
with small damping):
» The stochastic coefficients appear to be relatively complicated (though

interesting) functions (I am not sure what they are. There is some link
with continued fractions).



Some answers... (continued)

» About probability density functions of transfer functions:
 Exact expression is available (for any random variable)
« It has interesting properties

Some values of the
transfer function
are impossible

» About the statistics of the location of poles and zeros?

It appears (I am not sure) that their statistics (average
and variance) cannot be evaluated as easily as those of
the responses and transfer functions

A statistical estimation of the variance of the poles (i.e.
of the robustness of the system) is possible. Exactly? I
do not know yet.




Some answers... (continued)

« About (some of the) interesting patterns and invariants of
the transfer functions...

Transfer function magnitude (log-scale)
10 I
> 10° | NN AN |

Frequency parameter, A

0 1 2 3
Disturbance, s Frequency parameter, A
 Invariants correspond to intersection of poles (whiter lines) and
zeros (darker lines) in the frequency parameter — disturbance
magnitude plane (need check of proof...).

* Note the ellipse in which there is no zero... (It is a property of the
particular system)



Some answers... (continued)

» About applicability and robustness: All appears fine.
Monte-Carlo simulations tend to the evaluated exact
expressions (billions of simulations if low damping...).

« Example: Application from low- to mid- and high-
frequency range.

N=100 N=250 N=1000

Nominal transfer functions

Deterministic response

* Smooth

Exact average
(for given multi-rank
disturbance)
Evaluated using nominal
Transfer functions

Average response

Variance

Exact variance

4 0 2 4
Frequency parameter Frequency parameter Frequency parameter




Some answers... (continued)
« Variance and covariance (between different frequencies)

L ess affected by variability
» Variance of BCSST11 benchmark: » Covariance: i i
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Inversion of uncertainty propagation

» The objective is to characterise the nominal system and the
disturbance from knowledge of some measurements.
34 )2

A

T?

1. Absence of complete model and/or system parameters: ZE >>>
characterise the randomness via simplified parameters. 3 _:{,' 1
E.g. Sound transmissibility (Average? Variance?). |

2. Assembled system more complicated than the sum of the individual components.
E.g. Vulcanisation of tyres (Stiffness variability? Geometry variability?).

3. Validation of model, nominal system, presence and characteristics of disturbance.
E.g. Checking presence of damage (Where? How much?); Update of nominal
parameter values.

4. Understanding the inverse problem’s structure. E.g. Gain insight into mid-
frequency/mid-modal density problems.

e Use Bayes theorem.

Work in collaboration with Jon Forster, Brian Mace, Neil Ferguson



Bayesian inversion (intuitively and theorem)

*  We know the structure of the (random) system but some of its
parameters, 6, are unknown. For example, we know that the system
behaves as a complex normal variable but we do not know the mean
and/or variance.

* We can sample measurements, y, from the model...

* One sample does not give very probable information on the parameters,
more samples do:

oy P

« Mathematical expression_of the probability of values of the parameters
p(y|0)p(0)

p(y)
Very simple proof: P(ANB) = P(A[B)P(B) = P(B|A)P(A)

Bayes theorem: p(Bly) =



Bayesian inversion components

o Posterior probability p(6jy) is (only) function of € (once y

known)
_ plyl0)p(0)

« Itisa function (product) of two functions:

 Likelihood p(y/6) describes the randomness
propagation of the system (which needs to be known)

» The prior probability p(8) is a known or assumed
probability (e.g. based on past or best knowledge)

» The probability p(y) is a scaling factor (dependent on the
same two functions...)



Bayesian inversion application

* Even though the proof of Bayes theorem is extremely simple, it leads to
very intricate properties and theory.

a) For given combinations of prior and likelihood, there exists
analytical expression of the posterior.

b) For more ‘complicated’ systems (combinations of likelihood and
prior), one can implicitly sample from the posterior without
knowing its expression (MCMC — Markov Chain Monte Carlo
sampling)

« Itis avery general theorem that can
* be applied with multiple measurements and parameters

« allow to choose between different models for a given system

* is not limited to linear systems or working in the frequency domain

« A big advantage is that other probabilities can be derived from the
posterior probability p(6|y)



Bayesian inversion application (Analytical cases)
 First consider cases with analytical expression of the posterior.

» A collinear chain of springs and masses with small proportional
damping

e
2
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- A smgle disturbance (in all cases) at a single location or connecting two
masses. Disturbance is a spring (frequency independent).

« Measurements are taken at a single position

e There is no error in the measurements

e Three questions:

1.  Identify the parameters of the disturbance (knowing its location)?
2. Identify the location of the disturbance (knowing its properties)?
3. Identify correction of the nominal system (knowing the disturbance)?



Case 1: Identification of disturbance

o Disturbance is a normal variable with known standard deviation

« The "Bayesian parameter’ is the mean of the disturbance

« Posterior mean and standard deviation are available analytically from a

Gaussian prior: Actual mean

Posterior mean i Pr‘i}r mean
—1 \*
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100073000 5000 1000 3000 5000 0.094. 0.102
Sampling size, m Sampling size, m

« Relatively trivial (simple)... for this particular choice of prior and
disturbance (both normal).

» Posterior independent of frequency considered...



Case 2: Identification of location of damage

* Considering one frequency at a time (each row of the map
independently)

_——_— e — L '
@[ﬂl‘ur‘haﬂca (Measurement) Different patterns at right
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« Very interesting pattern

 If only one frequency is considered, there are better frequencies
than other to identify the location

* Considering all frequency together with give the location (1 sample!)



Case 2: Identification of location of damage (continued)

* Considering one frequency at a time (each row of the map
independently) — Measurements on several samples...

( Disturban@ (Measurement)
— N
10 samples l T‘J
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50 100 150 200 250 300
Position (bin #) 1 0

« Similar pattern as with one single sample



Case 3: Correction to nominal system

All members of the stochastic ensemble share a wiggly
component with known statistical properties and
location. The nominal system however has an
unknown component (shared by all members).

Can one identify this deterministic component
despite of the presence of the random
component?

 Uniform prior for cin the range [0.07,0.13]
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Conclusion

The analysis of forward and backward propagation of uncertainties in a
structural dynamic systems low rank random disturbance is very
interesting.

Some questions have answers simpler than expected while others
questions have no obvious answers or show very intriguing patterns or
generate other very interesting questions.



References

» Lecomte, Christophe, Vibration analysis of an ensemble of
structures using an exact theory of stochastic linear
systems, in Proceedings of the IUTAM Symposium on the Vibration
Analysis of Structures with Uncertainties, St-Petersburg, July 2009,
Belyaev, A. K. & Langley, R. S. (ed.), Springer-Verlag, 2011, 301-315

» Lecomte, Christophe, Zero and root loci of disturbed spring-
mass systems, in Recent Advances in Structural Dynamics:
Proceedings of the X International Conference, University of
Southampton, 2010, Brennan, M.J. Kovacic, Iopes, Murphy, Petersson

(ed.).

> Christophe Lecomte, J.J. Forster, B.R. Mace, and N.S. Ferguson. Bayesian inference for uncertain dy-
namic systems. In M.J. Brennan, Ivana Kovacic, V. Lopes, K. Murphy, B. Petersson, and T. Rizzi,
S. andYang, editors, Recemt Advances Structural Dynamics: Proceedings of the X International Confer-
ence, Southampton, UK, 2010. University of Southampton. Paper 161, 14 pages.

> Christophe Lecomte, B.R. Mace, 1.J. Forster, and N.S. Ferguson. Bayesian localisation of damage in a
linear dynamic system. In Proceedings of the 2nd International Conference on Uncertainty in Structural
Dynamics (USD2010), pages 4953-4964, Leuven, September 2010.



