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Linear systems 
• Most results presented here are valid for any linear system,  

 

• Linearity between input or force vector, f, output or 
response vector, x, is represented by stiffness matrix, A 

• Main question: How does the response x change if the 
system matrix A changes? 

 

 

• D deterministic, 

• s random, p(s) known 

Ax=f 

[A-sD]x(s)=f 



Linear structural dynamics systems 

[A()-sD  ] x( s) = f 



Uncertainty propagation (forward/backward) 

• Where do the poles go?  Where do the zeros go?  What is 
the effect on the transfer functions? 

• Are there invariants? 

• Average, variance, covariance 
of transfer function, poles, zeros? 

• Is the variance the right measure  
of variability?  Extreme values? 
Probability density functions? 

• Effect of kind of randomness? 
(different distribution of s) 

• Effect of frequency range? 



Uncertainty propagation (forward/backward) 

• What can be inferred of the system from `measurements’? 

• Can one identify the randomness? 
Can one identify the nominal 
system despite the randomness? 

• Effect of error in measurements? 

• Any particular frequencies? 

• Combination of frequencies, 
or transfer functions? 



Some `common’ options for the forward analysis 



Some `common’ options (continued) 



Some `common’ options (continued) 



Low rank approach 



Low rank approach (continued) 



Low rank statistics 

• We can evaluate exactly all average and variance or 
covariance of the response and transfer function 

• Average: 

 

 
It only requires first stochastic coefficient 

 

 

• Variance/covariance:  

 
 

It only requires second stochastic coefficient 

(Not always necessary…) 

• Once we have evaluated these two simple integrals, we have EXACT 
expressions of all averages and covariances…     `Simple integrals’…? 

 

 

 



Stochastic coefficients 



Stochastic coefficients (normal real variable) 

• We have an exact expression of the two coefficients! 

• It can be evaluated cheaply and accurately (using last 
century work)! 

• Second coefficient directly from first coefficient (simple). 

 



Other questions… 



Some answers… 



Some answers… (continued) 

• About probability density functions of transfer functions: 

• Exact expression is available (for any random variable) 

• It has interesting properties 

 

 

 

 

 

• About the statistics of the location of poles and zeros? 

• It appears (I am not sure) that their statistics (average 
and variance) cannot be evaluated as easily as those of 
the responses and transfer functions 

• A statistical estimation of the variance of the poles (i.e. 
of the robustness of the system) is possible.  Exactly?  I 
do not know yet. 



Some answers… (continued) 

• About (some of the) interesting patterns and invariants of 
the transfer functions… 

 

 

 

 

 

 

 

 
• Invariants correspond to intersection of poles (whiter lines) and 

zeros (darker lines) in the frequency parameter – disturbance 
magnitude plane (need check of proof…).   

• Note the ellipse in which there is no zero…  (It is a property of the 
particular system) 



Some answers… (continued) 

• About applicability and robustness: All appears fine.  
Monte-Carlo simulations tend to the evaluated exact 
expressions (billions of simulations if low damping…). 

• Example: Application from low- to mid- and high-
frequency range. 



Some answers… (continued) 

• Variance and covariance (between different frequencies) 



Inversion of uncertainty propagation  

• The objective is to characterise the nominal system and the 
disturbance from knowledge of some measurements. 

 

 

• Motivation for inversion: 
1. Absence of complete model and/or system parameters:  

characterise the randomness via simplified parameters.  
E.g. Sound transmissibility (Average? Variance?). 

2. Assembled system more complicated than the sum of the individual components.  
E.g. Vulcanisation of tyres (Stiffness variability? Geometry variability?). 

3. Validation of model, nominal system, presence and characteristics of disturbance.  
E.g. Checking presence of damage (Where? How much?); Update of nominal 
parameter values. 

4. Understanding the inverse problem’s structure.  E.g. Gain insight into mid-
frequency/mid-modal density problems. 

• Use Bayes theorem.   
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Bayesian inversion (intuitively and theorem) 
• We know the structure of the (random) system but some of its 

parameters, , are unknown.  For example, we know that the system 
behaves as a complex normal variable but we do not know the mean 
and/or variance. 

• We can sample measurements, y, from the model… 

• One sample does not give very probable information on the parameters, 
more samples do: 

 

 

• Mathematical expression of the probability of values of the parameters 

 

 

Bayes theorem: 



Very simple proof: 



Bayesian inversion components 



Bayesian inversion application 
• Even though the proof of Bayes theorem is extremely simple, it leads to 

very intricate properties and theory. 

a) For given combinations of prior and likelihood, there exists 
analytical expression of the posterior. 

b) For more ‘complicated’ systems (combinations of likelihood and 
prior), one can implicitly sample from the posterior without 
knowing its expression (MCMC – Markov Chain Monte Carlo 
sampling) 

• It is a very general theorem that can 

• be applied with multiple measurements and parameters 

• allow to choose between different models for a given system 

• is not limited to linear systems or working in the frequency domain 

• A big advantage is that other probabilities can be derived from the 
posterior probability p(|y) 

 



Bayesian inversion application (Analytical cases) 
• First consider cases with analytical expression of the posterior. 

 

 

 

 

 

 

• Three questions: 

1. Identify the parameters of the disturbance (knowing its location)? 

2. Identify the location of the disturbance (knowing its properties)? 

3. Identify correction of the nominal system (knowing the disturbance)? 

 



Case 1: Identification of disturbance 
 

 

 

 

 

 

 

 

• Relatively trivial (simple)… for this particular choice of prior and 
disturbance (both normal). 

• Posterior independent of frequency considered… 



Case 2: Identification of location of damage 
• Considering one frequency at a time (each row of the map 

independently) 

 

 

 

 

 

 

• Very interesting pattern 

• If only one frequency is considered, there are better frequencies 
than other to identify the location 

• Considering all frequency together with give the location (1 sample!) 



Case 2: Identification of location of damage (continued) 

• Considering one frequency at a time (each row of the map 
independently) – Measurements on several samples… 

 

 

 

 

 

 

 

• Similar pattern as with one single sample 



Case 3: Correction to nominal system 
 

 

 

 

 

 

 

 

 

• Similar pattern as with one single sample 



Conclusion 
 

The analysis of forward and backward propagation of uncertainties in a 
structural dynamic systems low rank random disturbance is very 
interesting. 

Some questions have answers simpler than expected while others 
questions have no obvious answers or show very intriguing patterns or 
generate other very interesting questions. 



References 
 Lecomte, Christophe, Vibration analysis of an ensemble of 

structures using an exact theory of stochastic linear 
systems, in Proceedings of the IUTAM Symposium on the Vibration 
Analysis of Structures with Uncertainties, St-Petersburg, July 2009, 
Belyaev, A. K. & Langley, R. S. (ed.), Springer-Verlag, 2011, 301-315  

 Lecomte, Christophe, Zero and root loci of disturbed spring-
mass systems, in Recent Advances in Structural Dynamics: 
Proceedings of the X International Conference, University of 
Southampton, 2010, Brennan, M.J. Kovacic, Iopes, Murphy, Petersson 
(ed.). 

   

 

   

 


