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Over the last decade there has been significant interest in the design and production of acoustic metamaterials

with physical qualities not seen in naturally occurring media. Progress in this area has been stimulated by the

desire to create materials that exhibit novel behaviour when subject to acoustic waves,such as negative refraction

or the appearance of band gaps in the frequency response of the material. Proposed designs range from locally

resonant phononic crystals to arrays of Helmholtz resonators within ducts and past research has investigated both

passive and active materials. Much of the research into active acoustic metamaterials remains theoretical, therefore

to determine whether such materials are physically realisable and of potentially practical use it is important to

understand the physical constraints that may arise in a produced active metamaterial. In this paper a 1-dimensional

active acoustic metamaterial derived from a passive, Helmholtz resonator based design is considered where the

applied control forces produce controllable double negative behaviour. The physical dimensions and active forces

required to achieve the desired novel behaviour are explored for different architectures and any trade-offs that might

have to be considered when producing a practically useful active metamaterial are identified

1 Introduction
The concept of ’left-handed’ electromagnetic materials

was first proposed by Vesalago [16], where it was proposed

that materials that displayed negative electromagnetic per-

meability and permittivity could create interesting effects on

waves incident to the medium. Later, metamaterials were

proposed as a means of realising such a material [14]. The

analogy of acoustic and electromagnetic waves has led to

a great deal of research into acoustic metamaterials [7, 10,

11, 17], where the analogues of permeability and permit-

tivity are density and bulk modulus respectively. Like their

electromagnetic counterparts when an acoustic metamaterial

displays either negative effective bulk modulus or effective

mass density the refractive index becomes complex and the

medium partially blocks the transmission of the wave. When

both become negative simultaneously (where the material is

said to be in its double negative (DNG) region), the refrac-

tive index has a negative sign so negative refraction occurs.

In this region Snell’s law still applies, however the path of the

reflected wave lies to the opposite side of the incident normal

than one would expect in a regular transmission medium.

Band gaps appear in the dispersion characteristics of meta-

materials, at high frequencies due to Bragg scattering effects

[10] related to the periodic properties of the material and, in

materials where low frequency resonances occur, at frequen-

cies around two orders of magnitude lower [11]. This leads

to high levels of attenuation in the transmission characteris-

tics of the material at these frequencies. These novel prop-

erties mean that metamaterials are of particular interest and

have been proposed as a potential solution to achieve acous-

tic cloaking [3, 5, 9], transmission blocking [4, 8, 17] and

subwavelength acoustic lenses [11, 18].

One of the major limitations of many proposed materials

is the fixed, narrow frequency bands in which the attenua-

tion and negative behaviour occur. This is due to the mate-

rials being constructed from passive components with fixed

material properties. One potential solution to this problem

is to introduce an active control architecture into the mate-

rial, allowing the material parameters to be altered and the

region of novel behaviour associated with low frequencies to

be adapted [1, 2]

In this paper a viscoelastic active metamaterial is pro-

posed based on previous work carried out by the authors [12].

By giving the material arbitrary dimensions and a realistic

excitation force the dimensions, forces and size of a practi-

cal metamaterial are investigated. By coupling the feedback

forces to not only the motion of resonant mass but to adja-

cent transmission masses, the active architecture exhibits be-

haviour not possible with passive materials. The advantages

of this active architecture when considering the magnitude

of material’s physical parameters are demonstrated. Finally,

by considering the the resonators as independent mechanical

filters the low frequency resonant band gap can be widened,

and potential future work is identified using established con-

trol techniques to optimise the filter design.

2 Definition of the Metamaterial
A commonly cited example of a 1-dimensional acoustic

metamaterial is a duct fitted with an array of Helmholtz res-

onators to create a periodic material with locally resonant el-

ements [7]. Figure 1(a) is an example of such a material. By

creating lumped parameter model of this material, as sug-

gested in [12], one can envisage a solid 1D metamaterial,

shown in Figure 1(b) that could used as a vibration isolator,

for example. The material would consist of solid layers sep-

arated by a viscoelastic layer, represented in lumped parame-

ter form by the transmission masses, mt, and the transmission

stiffness and viscous damping terms kt and ct, respectively.

Each individual transmission layer would have connected a

separate resonator mass, mr (equivalent to the mass of the air

in the neck of the Helmholtz resonators in the ducted array),

via a spring and viscous damper, kr and cr. The resonator

mass would be connected to an immobile ’earth’ connection

via an additional spring and viscous damper, kh and ch, as

shown in Figure 1(c).

The classical equation of motion of the lumped parameter

model in Figure 1(b) can be constructed using D’Alemberts

principle, and it can be shown [12] that the material dynamics

are governed by

−Mexnω
2 = (Ceiω + Ke)(xn−1 + xn+1 + 2xn) + fn (1)

Where fn is a harmonic disturbance applied to the first

transmission mass and Me,Ke and Ce are the effective mass,

stiffness and damping coefficients of the Kelvin-Voigt ma-

terial respectively. By comparing the classical equation of

motion of the material with Eq. 1 the effective mass of the

material becomes dependent on the excitation frequency, ω,

and will become negative at certain frequencies. Presuming

that all the layers of the material have the same parameters

(mt,1 = mt,2... = mt,N etc) the effective mass becomes Eq.

2. Here Ke = kt and Ce = ct so both remain positive and

independent of frequency.
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Figure 1: (a) A duct fitted with an array of Helmholtz

resonators to create a 1D acoustic metamaterial. (b) A

lumped parameter equivalent model of the metamaterial (c)

An active metamaterial where the static ’earth’ connection

and it’s associated springs and dampers are replaced by an

actively fed back force applied to the resonator masses in a

’skyhook’ configuration.

Me = mt − (−mrω
2 + chiω + kh)(criω + kr)

ω2(−mrω2 + (ch + cr)iω + kh + kr)
(2)

Me is complex, where the real part describes the actual

effective mass of the dynamic system and the imaginary part

represents an additional damping component related to the

resonators. At the natural frequency of the resonators the ef-

fective mass becomes negative [7, 11, 17], and there will be a

deep, asymmetric band-gap in this region caused by the wave

vector becoming complex. This band gap occurs at a fre-

quency associated with the resonators, and hence can be cre-

ated at frequencies much lower than those due to Bragg scat-

tering [11]. Therefore the resonant band gap is of great inter-

est when considering disturbances in the audible frequency

range where the wavelengths are such that the periodicity of

material would have to be of the order of several metres to

induce Bragg scattering.

An alternative approach to the passive metamaterial de-

scribed in 1(b) is to replace kh and ch with an active control

architecture providing a feedback force as a function of the

displacement and velocity of the resonator mass. Such an

active control system is known as ’skyhook’ control, and is

shown in Figure 1(c). This model gives the same dynamic

performance as the passive example but the resonator param-

eters kh and ch are replaced with a force fc,n = kcxn + cc ẋ.

When kc = kh and cc = ch the dynamic response of the sys-

tem is identical to that of its passive equivalent, however by

changing these control parameters the region of negative ef-

fective mass and resonant behaviour can be adapted.

The above system provides negative mass, however does

not have the frequency dependent stiffness term necessary to

achieve negative effective stiffness and hence double negativ-

ity. Following the approach used in [12] the control system

can be extended by making the control forces a function of

the displacement and velocity not only of the resonator itself,

but of elements of neighbouring elements, in this case the (n−
1)th and (n+1)th transmission masses. This modified control

force, fc,n = kc(xt,n−1+ xt,n+1+2xr,n)+cc(ẋt,n−1+ ẋt,n+1−2ẋr,n)

results in an expression for the effective mass and a combined

expression for the effective damping-stiffness of the system,

given by Eq. (3) and Eq. (4) respectively.

Me = m +
mr(criω + kr)

−mrω2 + (2cc + cr)iω + 2kc + kr
(3)

Ce + Ke = ciω + k +
(cciω + kc)(criω + kr)

−mrω2 + (2cc + cr)iω + 2kc + kr
(4)

Eq. (4) is a complex expression describing the combined

effective damping and stiffness. As such the real part repre-

sents the pure stiffness elements within the system, and the

imaginary part the dissipative damping elements within the

system. So calculating the real part of Eq. (4) yields the

effective stiffness of the system.

Ke = k+
mrcccrω

4 + (−mrkckr + 2c2
ckr + c2

r kc)ω2 + kckr(2kc + kr)

m2
rω

4 + (−2mr(2kc + kr) + (2cc + cr)2)ω2 + (2kc + kr)2
(5)

Now using this extended, ’parallel coupled’, control force

the material may have a region not only of negative effec-

tive mass but of negative effective stiffness, becoming ’dou-

ble negative’ and allowing negative refraction to occur.

3 Physical properties of a metamate-
rial

If the metamaterials described in Section 2 are to be vi-

able both the physical dimensions and the material param-

eters must be practical. Insight into these properties, for a

given scenario, can be gained by interrogating the equations

of motion. The dimensions of a producible material are de-

pendent on the displacements of the transmission and reso-

nant masses for a particular excitation force and the number

of layers required to produce useful transmission blocking,

for example. The active feedback forces that would be re-

quired are then a function of the displacements and veloc-

ities of the relevant masses. Since the low frequency band

gap and onset of negative material parameters occurs at fre-

quencies associated with the resonant parts of the material,

it is the behaviour at these frequencies that is critical. The

dynamic behaviour of a metamaterial can be expressed using

D’alembert’s principle to construct the equations of motion,

presuming harmonic excitation.

[−ω2M + iωC +K]q = f + Fc (6)

Where M,C,K and Fc are the mass, damping, stiffness

and feedback force matrices respectively, f is the excitation

force vector, and ω is angular frequency in rad/s. The exam-

ples presented here have material coefficients described by

Table 1.

A circular cross-section metamaterial is considered with

a diameter of 100mm, incident with an acoustic plane wave

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

4015



Parameter Value

Transmission Media mt 0.01g
kt 3000Nm−1

ct 0.01Nsm−1

Resonators mr 0.1g
kh 1000Nm−1

ch 0.1Nsm−1

kr 1000Nm−1

cr 0.002Nsm−1

Equivalent feedback parameters kc 1000Nm−1

cc 0.01Nsm−1

Table 1: The material parameters used to simulate a the

metamaterials described in Section 2

with an SPL of 90dB (ref 20μPa). The displacement of ele-

ments within metamaterials peak at modal frequencies. Since

it is in the resonant band gap region that the desired novel

behaviour occurs it is the displacement and active forces oc-

curring within the band gap that are presented here. Figure 2

shows the maximum mass element displacement within a 4

layer metamaterial as a function of frequency.

Figure 2: The maximum elemental displacement of a

lumped parameter equivalent of the Helmholtz resonator

metamaterial (-x-), an active metamaterial with ’skyhook’

active control (-o-) and an active metamaterial where the

active feedback force is parallel coupled to the motion of the

adjacent transmission masses (dotted line). The shaded area

represents the region where the passive and skyhook

metamaterials have negative effective mass, which coincides

with their resonant band gap.

As Figure 2 shows there is a large peak in displacement,

of an order of 1mm, associated with the resonant band gap.

The passive and skyhook materials have equivalent perfor-

mance, as expected. The results suggest that the parallel

coupling active architecture can be used to reduce the max-

imum displacement within this region. However, as the re-

sults show, this may be associated with increased displace-

ment at other frequencies; an inevitable consequence of the

’waterbed effect’ [13]. Figure 3 demonstrates how a paral-

lel coupled active metamaterial can achieve a smaller max-

imum displacement per layer in the resonant band gap re-

gion. Compared to a passive construction, therefore, the

parallel coupling material achieves greater performance ef-

ficiency with respect to material thickness.

Results were calculated for metamaterials consisting of

3-6 layers. The passive lumped parameter material and active

skyhook material always experience maximum displacement
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Figure 3: The maximum elemental displacement within the

region of the resonant band gap as a function of the number

of metamaterial layers. Passive lumped parameter (-x-),

skyhook (-o-) and parallel coupled (-�-)

in the first transmission mass. This can be understood phys-

ically as each layer acting independently and consisting of

the transmission medium attached to a mechanical filter. As

the energy passes through each layer it is attenuated by the

action of the filter so the energy transferred to the next layer

is lower, and elemental displacements are smaller. The paral-

lel coupled model cannot be considered in such simple terms

since the active forces acting on the resonators are coupled

to the adjacent transmission masses so the cells no longer act

independently. Here the maximum displacement alternates

between the first and last transmission masses depending on

whether there are an odd or even number of layers. This may

be physically explained by examining how the mode shape

changes for a material when the number of layers is changed

from odd to even, and requires further investigation.

Used in an active metamaterials physical size of the ac-

tuators will be a function of the magnitude of the force re-

quired, which here is a function of the displacements and ve-

locities of the mass elements. This data can therefore again

be extracted for any given case from the equations of motion.

Figure 4 shows the maximum required feedback forces for a

skyhook active metamaterial (a), a parallel coupling active

metamaterial (b) and the required force as a function of the

numbers of layers (c).

The amount of feedback force required to realise the par-

allel coupled metamaterial is over an order of magnitude higher

than that required for the skyhook example. Being a function

of displacement, a peak in the required force occurs in the

resonant band gap. However it was observed in the parallel

coupled material that at frequencies approaching 2 octaves

lower the maximum feedback force peaked at almost twice

that experienced within the band gap so, if the metamaterial

is intended to be used in regions other than the band gap,

larger actuators will be required. Increasing the number of

layers can greatly reduce the magnitude of the feedback force

required to realise the parallel coupled material, as Figure

4(c) shows, however this tends towards a finite value.

The force and displacements of the metamaterial are lin-

early proportional to the magnitude of the excitation force.

Following the approach detailed above will provide vital in-

formation when designing an active metamaterial, providing

a quick and easy tool to assess the viability of a material of

a given specification and to gain insight into the trade offs

involved when specifying material performance where there

is a limit on the numbers of layers, total material thickness

and the available transducers. These preliminary results in-

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

4016



3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of layers

F
or

ce
, N

(b)

Figure 4: (a)The maximum applied feedback control force

within a 4 layer active metamaterial with skyhook

architecture (solid line) and parallel coupled architecture

(dashed). Also shown is the region of negative effective

mass for the skyhook material (shaded), and parallel

coupled material (between the dotted lines). (b) The

maximum required force in the band gap as a function of the

number of layers.

dicate that for a DNG material there is an optimum trade-off

between displacement and force, and both dictate physical

size.

4 Isolation Performance of Active Meta-
materials

One of the major drawbacks of the metamaterials de-

scribed in Section 2, and limiting their potential use, is that

the bandwidth in which the desired behaviour occurs is very

narrow. This is particularly true of the region of attenuation

associated with the resonator elements which has a deep but

narrow, asymmetric attenuation profile. As shown in Section

3, the layers of passive metamaterial can be considered to

be practically independent of each other with each resonator

acting like a mechanical filter. For transmission blocking the

resonators are performing the function of a traditional vibra-

tion absorber, but with an additional stiffness and damping

term related to the static earth connection. By adapting vi-

bration absorber theory [15], the approximate frequency at

which the resonator acts (neglecting damping) is

ωr =

√
kr + kh

mr
(7)

By considering the Kelvin-Voigt model of an equivalent

viscoelastic material shown in Figure 5(a), the behaviour of

each layer of a material can be described in terms of the mo-

tion of the previous layer using a transfer matrix, Tn.

{
fn+1

xn+1

}
=

[
Tn,1 Tn,2

Tn,3 Tn,4

] {
fn
xn

}
(8)

Where xn and fn are, respectively, the displacement of the

equivalent mass Men and the force acting on that mass due to

the viscoelastic connections to its adjacent layer. Assuming

all layers are identical, calculating the dynamic response of

the material the transfer matrix, T, is

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 −ω2Me

1
Ke+iωCe

1 − ω2 Me
Ke+iωCe

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
a
b

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
b
a

−ω2 Meb
a

1
a 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

Where a = −Meω
2 + iωCe + Ke and b = iωCe + Ke. If Γ

is used to denote the square matrix on the right hand side of

Eq. 9, then by applying the boundary condition fN = 0 the

transfer function across the material becomes

H(s) =
xN

x0

=

⎛⎜⎜⎜⎜⎜⎝−Γ
N
1,2Γ

N
2,1

ΓN
1,1

+ ΓN
2,2

⎞⎟⎟⎟⎟⎟⎠ ×
(a
b

)N
(10)

Where the subscript (p, q) denotes the pth row and qth

column of ΓN . From Eqs. 8 and 9 it is clear that for the meta-

materials described in Section 2, the material parameters are

constant for all n and the transfer matrices associated with the

layers are identical. With reference to the common factor, a
b ,

the locations of the poles and zeros associated with this term

will remain identical, layer to layer. With multiple layers this

term is merely raised to the power n and therefore the attenu-

ation associated with ( a
b )n will increase in magnitude as more

zeros occupy the same location, but the frequency at which

the attenuation occurs will remain the same. A more desir-

able objective may be to widen rather than deepen the band

gap . This can be achieved by altering T with each layer

by changing the value of Me,n so the zeros associated with a
b

move as a function of n.

In a multiple layer material this can be achieved by stag-

gering the frequencies at which the resonators act [6]. Now

the region of attenuation can be widened at the expense of

notch depth, as shown in Figure 5(b). In addition, this pushes

the band gap profile towards a more symmetric shape; poten-

tially a desirable characteristic. Whilst it would be possible

to achieve this with a passive material by varying kr+kh
mr from

layer to layer, when manufacturing such a material it would

be more practical to produce identical layers that include ac-

tive components. Now the value of Eq. 7 can be adapted

by replacing kh with an active feedback control force. This

would simplify the production of such materials whilst also

creating a metamaterial where the region of the low frequency

band gap and DNG behaviour is both widened and adaptable.

Whilst the appearance of a wider band gap may be desir-

able, designing such a material poses a problem. There are

trade offs to be made when designing the shape and width of

the resultant band gap. For a given target frequency and num-

ber of layers it is not obvious what the frequency gap between

adjacent resonators should be to achieve an optimum solu-

tion. Whilst each resonator will absorb maximum energy at

its tuned frequency, either side of this frequency the response

of the element will exhibit a resonant peak. If the filter fre-

quencies are too far apart this peak will not be filtered out by

adjacent resonators and will compromise the performance of

the band gap. Alternatively, if the filters are too close in fre-

quency the full potential bandwidth of the gap will not be ex-

ploited. Additionally, due to the asymmetric nature of each

resonators band gap response, shaping the overall band gap

in a controllable way is non trivial.
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Figure 5: (a) The low frequency resonant band gap when the

resonators are all tuned to the same frequency (dotted line)

and when they are staggered about a target frequency (solid

line). (b) The equivalent Kelvin-Voigt viscoelastic

representation of a metamaterial.

By approaching the above problem with an active control

mindset, a solution can be sought using existing control de-

sign methods. The active system as a whole can be modeled

so the feedback forces of the system are represented by gain

coefficients within the feedback loop. Now, a band gap shape

can be specified and a solution be found using established de-

sign methods such as H∞ optimisation. The viability of this

approach is currently being investigated by the authors.

5 Conclusion
A one dimensional, lumped-parameter active acoustic meta-

material was derived from a passive design based on a duct

fitted with an array of Helmholtz resonators. The control ar-

chitecture was extended to include forces on the resonators

as a function of adjacent transmission masses, and the ad-

vantages this architecture provides the physical properties of

the material were demonstrated. The difficulty of designing

a metamaterial to operate as a useful isolator was highlighted

and it was shown that the potential of applying control opti-

misation techniques, the physical advantages active control

systems over their passive counterparts and the adaptability

of their working range could lead to metamaterials that not

only have compact, practical dimensions, but enhanced per-

formance over a useful, wideband frequency range.
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