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Elastic metamaterials provide a new approach to solving existing problems in vibration 

and acoustics. They have also been associated with novel concepts such as acoustic 

invisibility and subwavelength imaging. To be applied to many of the proposed applications 

a metamaterial would need to have the desired mass density and elastic moduli over a 

prescribed frequency band. Importantly active metamaterials provide a degree of 

adaptability. This paper will focus on extending a previous theoretical concept to a more 

realistic experimental design. This will include a consideration of the problems which arise 

when the theory and simulation are developed into an experimental demonstration, 

including the role which the control system dynamics play in the achievable performance. 

The adaptability of the bandwidth in which the properties achieve their desired values will 

also be investigated. 
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1 INTRODUCTION 

 

 The concept of a metamaterial was first proposed in the field of electromagnetics [1-2] and 

subsequently extended to the fields of acoustics and elastodynamics [3-6]. Metamaterials have a 

number of important properties such as a subwavelength structure and the ability to provide a 

material with negative values for its effective constitutive parameters, which are the mass density 

  and elastic moduli   of the material for elastic materials. It is well known that when the mass 

density and elastic moduli of a material have opposite signs, the material partially blocks the 

propagation of any wave within the material. On the other hand, when both of these parameters 

have the same sign, wave motion is permitted. If both parameters are positive, the wave motion 

is as expected in a conventional material. However, if both parameters are negative, the 

refractive index  /n
 
of the material becomes negative real. As a result, any wave moving 

from a material with a positive real to one with a negative real refractive index will experience 

negative refraction, i.e., the refracted wave will lie on the opposite side of the boundary normal 

to the conventional case. This is still in agreement with Snell’s law. 

 

Previous studies have designed elastic metamaterials that achieve the objective of a single 

negative effective parameter. For example, a negative effective mass density can be realized 

through an array of dipolar resonances contained within a host or attached to a transmission 

material. Examples include an array of lead spheres coated with a silicone rubber and embedded 

in an epoxy host [4], resonant masses connected through a spring element periodically along a 

transmission medium composed of a series of mass and spring elements [7] and mass-spring 

resonators periodically attached to a slender beam [5]. In these materials the result is a negative 

effective mass density associated with the fundamental resonant frequency of the embedded or 

attached elements. Alternatively, a negative effective modulus can be realized through an array 

of monopolar resonances. An example is a material with an array of split hollow spheres 

embedded within a sponge matrix [8]. This design was subsequently extended to demonstrate 

that a multi-band and potentially broadband response can be achieved by varying the dimensions 

of the split hollow spheres [9]. 

 

The majority of previous research has focused on achieving a single negative parameter, which is 

partly due to the difficulty in achieving simultaneously negative mass density and elastic 

modulus. However, several studies have proposed designs for simultaneously double negative 

metamaterials. An active elastic metamaterial design was proposed whereby the motion of one-

dimensional array of resonant masses was controlled by a feedback control system, leading to an 

effective system with a frequency band in which the mass and stiffness were both negative [14]. 

A subsequent study proposed a passive metamaterial design with both negative effective mass 

density and modulus [10]. The system consisted of locally resonant translational and rotational 

inertia coupled by an arrangement of springs. This design enables the system to achieve a narrow 

frequency band over which both effective modulus and effective mass are negative. The negative 

modulus and effective mass are due to a monopole resonance associated with the rotational 

intertia and a dipolar resonance associated with the translational inertia respectively. An 

important extension to this study is that the initial one-dimensional concept is expanded to two-

dimensions and the response demonstrated in simulation. Another study also considers a two 

dimensional approach in which a lumped parameter system is realized through a composite 

elastic structure which provides monopole, dipole and quadrupole resonances leading to 



dispersive properties for the effective bulk modulus, density and shear modulus respectively 

[11]. 

 

Passive solid elastic metamaterial designs rely on dynamic phenomena, usually in the form of 

spatially periodic resonant structures to realize the negative effective parameters. As a result, a 

fundamental problem arises. That is, the resulting effective mass density and elastic moduli are 

both inherently dispersive in nature and only negative over a small frequency band. Although 

some studies have shown that in solid elastic materials it is possible to achieve a wide frequency 

band in which one of the effective parameters is negative, the simultaneously double negative 

frequency band, in many cases, is  limited by the narrow band of the other negative effective 

parameter [10-11]. However in some cases, it may be possible to extend these approaches such 

that the double negative frequency band broadens [9], but due to the dispersive nature of the 

effective parameters the resulting negative effective refractive index is dispersive. This may not 

be a problem in applications where only a fixed narrow band response is required, as the 

dispersion maybe limited over this band, but it may limit the application of these designs to 

many of the interesting applications which have been proposed for metamaterials, such as 

invisibility cloaks [12] and subwavelength resolution lenses [13]. 

 

Active metamaterials can potentially overcome some of the limitations of passive designs. The 

previously proposed novel active elastic metamaterial (AEM) design applied non-collocated 

control forces to an array of single resonant units, in order to provide a system which emulates 

the monopole and dipole behavior required by an effective system with negative effective values 

for the bulk modulus and density [14]. The advantage of such an arrangement is that the control 

parameters can be tuned so that the double negative frequency band and transmission properties 

can be designed for a particular application, or potentially adapted online. They also provide a 

mechanism whereby designs can be realized which cannot otherwise be achieved using passive 

components. However, the previous work was purely theoretical and ignored important elements 

which need to be considered if the design is to be realized experimentally and potentially used in 

practical applications. These elements include the actuators needed to implement the non-

collocated control forces and importantly the stability of the proposed AEM. In this paper both 

the stability and performance of the previously proposed AEM is analyzed in simulation when 

the control forces are realized by the two commonly used actuators, namely inertial and reactive 

actuators. This provides an important basis for the experimental demonstration of the theoretical 

results of the previous study 

 

2 COMPARATIVE DESIGNS FOR AN AEM WITH INERTIAL AND REACTIVE  

        ACTUATORS 

 

 The theoretical design for an AEM proposed in a previous study assumed that an inertial 

force could be applied directly to the resonant masses as described in figure 1. However, 

realizing the inertial force in figure 1 is not straightforward and requires the use of a particular 

type of actuator. The inertial actuator generates a control force cf  by reacting its inertial system 

comprising of mass am , stiffness 
ac  and damping 

ak   against a controlled structure bm as shown 

in figure 2 (a). As such the control force, which can be described by equation (1) where s is the 

Laplace operator, is a function of the mechanical dynamics of the actuator. In addition the 

actuator force af  is also a function of the electrical characteristics of the force generation 

mechanism. It is well reported in active control literature that the inclusion of theses dynamics 



into active vibration system can often results in an unstable system [15-17]. The inclusion of 

these inertial actuator dynamics into the previously proposed theoretical AEM has been 

investigated and shown that the control system employed, has to be extended from its original 

structure to compensate for the actuator dynamics to ensure both a simultaneously double 

negative region in the frequency response and a stable system [18]. 
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In active vibration control, there are two widely used actuators namely reactive and inertial 

actuators.  In contrast to the inertia actuator which is normally placed on top of the structure that 

needs to be controlled and has no other connections, the reactive actuator is normally placed 

between the structure to be controlled and a base structure. The basic operation of the reactive 

actuator is to generate a control force af  that reacts against a controlled structure bm  as shown 

in figure 2 (b). As such the control force generated by a reactive actuator, which can be described 

by equation (2), doesn’t include any mechanical actuator dynamics. Although active vibration 

systems with reactive actuators are well known to be unconditionally stable for collocated 

control forces, active systems can become unstable under non-collocated control forces [15]. 

 

ac ff 
                                                                                                                                     (2)

 

 

Figure 3 shows an alternative design to that previously investigated, whereby the inertial control 

force of Figure 1 has been replaced by a control force generated by a reactive actuator which is 

attached to a fixed foundation. Otherwise the structure of the AEM is identical to that in Figure 

1. The potential advantage of the arrangement in Figure 3 is that the control force doesn’t suffer 

from significant mechanical dynamics inherent in the actuators design. The disadvantage is that 

it requires each of the reactive actuators to be attached to fixed points, thereby reducing the 

flexibility in the physical design of the system. 

 

The equation of motion of the AEM with reactive actuators can readily be described by equation 

(3). 
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are the mass, damping and stiffness matrices respectively and 
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3. STABILITY AND PERFORMNCE ANALYSES OF THE AEM WITH REACTIVE  

       ACTUATORS 

 

In the previous study it was demonstrated theoretically that the AEM in figure 1 under the non-

collocated control scheme of equation (4) can achieve the simultaneously double negative 

parameters required for negative refraction in a prescribed frequency band. This assumed perfect 

control, i.e. the control system dynamics could be ignored. 
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The simplest control scheme which provides the system in figure 1 with the double negative 

parameters is one which is based on a pure displacement feedback, i.e. cc = 0 in equation (4). For 

simplification of the analysis, this simplest control scheme will be adopted in the present study. 

In this case, the force generated by the reactive actuator in equation (2) can be rewritten as: 
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3.1 Stability analysis of the AEM with reactive actuators 
 

The AEM described by equation (3) is essentially a multivariable system. It has  n2  inputs ( n  

control actuator inputs and n  transmission inputs) and n2  outputs (the displacements of the 

transmission and resonant masses). If the system is assumed to be closed, i.e. bounded at either 

end by a “disturbing medium” this reduces to 2n  inputs ( n  control actuator inputs and 2 

disturbance inputs). Re-arranging the equations of motion in equation (3) so that the system can 

be expressed as a state space model with inputs  T

cffu ],[


  where f


 and cf


 are the vectors of 



control forces applied to the transmission and resonant masses respectively and outputs 
T

rxxy ],[


  where x


 and rx


 are vectors of displacements of the transmission and resonant 

masses respectively, the feedback control inputs can be expressed in matrix form as in equation 

(6).  
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The four sub matrices of cK  are all nn  matrices with 
1,1cK and 

2,1cK both zero matrices, 
1,2cK a 

zero matrix except for 1’s on the two diagonals either side of the leading diagonal and the two 

end elements of the leading diagonal and 
2,2cK is the zero matrix with -2 of the leading diagonal 

except for -1 on the elements at both ends of the diagonal. The closed loop response of the AEM 

with reactive actuators can then be determined from fGGGIy c

 1)(  , where G  is the open 

loop response obtained from the state space form of equation (3). Analyzing the stability of the 

AEM with reactive actuators is not trivial due to its multivariable nature. However, it is well 

known that internal stability of a multivariable system is guaranteed if 1)(  cGGI  is stable and 

there are no right half plane pole-zero cancellations between G and 
cG . As G  is stable due to its 

passive construction, the requirement is whether there are any right half plane zeros in G  which 

cancel with right half plane poles in 
cG . The non-collocated controller in equations (6) has no 

poles and therefore it cannot cancel any right half zeros present in the plant G . As a result, the 

stability of the system can be inferred directly from the analysis of the roots of  1)(  cGGI  

using well known stability analysis tools.  Figure 4 shows the movement of the closed loop poles 

of a fourth order system 4n  (i.e. four transmission masses) with the parameters Kgm 5 , 

mNk /105 4 , mNsc /1.0 , ,2Kgmr  mNk r /108 3  and mNscr /102 3 when the controller 

gain ck  is varied from zero to an upper cut-off. These system parameters are chosen from a proof 

of concept perspective and are not necessarily indicative of any particular application. The 

trajectory of the closed loop poles in figure 4 indicates that the AEM with reactive actuators is 

stable over the range of feedback gain ck [0, 16000]. for the given system. 

 

3.2 Performance analysis of the AEM with reactive actuators 

 

The requirement for a negative refractive index in an AEM is that both the effective mass and 

stiffness are simultaneously negative over a frequency range of interest, whilst ensuring that the 

system is also stable. The objective of this section is therefore to investigate the performance of 

the AEM with reactive actuators shown in figure 3 using a stable feedback gain. The effective 

equation of motion for mass i  can be written as equation (7), where the effective mass and 

stiffness are given by equations (8) and (9) respectively.  
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(9) 

The desired terms required for analysis of the effective parameters are the real parts of equations 

(8) and (9) which can readily be obtained as equations (10) and (11). The imaginary parts of 

equations (8) and (9) constitute the loss terms for the effective system. 
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Because the denominators on the right hand side in equations (10) and (11) are the results of the 

multiplications of the original denominators in equations (8) and (9) by their complex 

conjugates, they are therefore guaranteed to be positive semi-definite. Consequently, the 

objective of providing negative effective mass and stiffness of the system requires the 

numerators of the terms in equations (10) and (11) to be negative over a specified frequency 

bandwidth. This leads to the two inequalities given in equations (12) and (13) to provide negative 

effective parameters. 
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These two inequalities are necessary but not sufficient to ensure the effective parameters are 

negative. Sufficiency is achieved by also ensuring that the magnitudes of the right-hand terms in 

equations (12) and (13) are also greater than their respective passive transmission parameters: 

mass m  and stiffness k , in addition to being negative. This further complicates the analysis of the 

effective parameters. Following the previous theoretical work, considerable insight can be found 

by analyzing equations (10) and (11) [14].  The denominators of these two equations have the 

same resonant frequency 
rrc mkk )22(  .  It is at this frequency that the magnitudes of these 

components will be large. Thus if the resonance is sufficiently large, negative effective 

parameters are guaranteed if the frequency range in which the inequalities of equations (10) and 

(11) overlap with the resonance frequency. They do not necessarily need to overlap with the 

centre point of the resonant frequency as long as the magnitudes are sufficiently larger than the 

passive components of the AEM.  

 

Figure 5 shows the displacement transmission across four masses for the same system as used in 

Section 3.1. The feedback gain was selected as 10000 ck which falls within the previously 

determined stability range [0, 16000]. As expected from the theoretical design [14], the double 

negative band marked by the dotted green lines in figure 5 is located near the resonant frequency 

of the effective parameters which is 112 rad/s.  

 



To clearly demonstrate this double negative band and its tunability, the real values of the 

effective mass and stiffness of the AEM with reactive actuator under the non-collocated control 

gain  10000 ck and over the frequency range [10rad/sec, 1000rad/sec] is plotted in figure 6 (b). In 

addition, figure 6 (a) takes a frequency (90rad/sec) in which the parameters are simultaneously 

negative and plots the change in these variable against a changing control gain ck . 

 

It can be seen clearly from figure 6 (b) that the effective mass and stiffness of the system become 

simultaneously negative when the plot is in the lower left quadrant with this stable gain for a 

range of frequencies. On the other hand, figure 6 (a) indicates that there is also a range in the 

feedback gain 
ck  for a given frequency, in which both the parameters are simultaneously 

negative and can be tuned to a limited range of values 

 

These results suggest that that the proposed AEM implemented using reactive actuators under 

non-collocated control scheme meets the stability requirement and at the same time provides a 

double negative region for the effective parameters and this region is tunable to some extent. 

This result provides an important basis for the practical application of the theoretical results 

reached in the previous studies. The advantage of this design over that previously investigated 

for a system implemented using inertial actuators [18] is that stability and simultaneously double 

negative properties can be achieved using a simple non-collocated displacement feedback 

controller, whereas with the inertial actuator the control system needs to be extended to a more 

complex form to compensate for the significant actuator dynamics. The disadvantage of the 

design implemented using reactive actuators is that its physical construction allows less 

flexibility in design as it requires fixed terminations for the array of reactive actuators. 

 

4. CONCLUSIONS  

 

In a previous study a novel simultaneously double negative active elastic metamaterial design 

(AEM) using a non-collocated control scheme was proposed. However, the previous study 

ignored important elements which need to be considered if the design is to be verified 

experimentally. This includes the actuators which are needed to implement the non-collocated 

control forces and the stability of the proposed AEM. In the present study, the performance and 

stability of the previously proposed AEM was investigated for the case when the non-collocated 

control forces are applied via reactive actuators. The results of this study show that the proposed 

AEM with reactive actuators meets the stability requirement and at the same time provides a 

simultaneously double negative region for the effective parameters which is tunable to some 

extent. The design potentially provides better performance and stability using a simpler control 

system than that implemented using inertial actuators [18], but at the expense of a less flexible 

physical design. Future work will aim to verify experimentally the proposed designs for AEM. 

 
5. ACKNOWLEDGEMENTS  

 
The authors gratefully acknowledge the support of the Engineering and Physical Science 

Research Council, UK through grant (EP/J003816/1). 

 

 

 

 



6. REFERENCES 
 

1. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, ”Extremely low frequency plasmons in   

  metallic mesostructures”, Phys. Rev. Lett., 76, 4773-4776 (1996). 

 

2. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat- Nasser, S. Schultz, ”Composite medium  

 with simultaneously negative permeability and permittivity”, Phys.Rev. Lett.,84, 4184-

4187 (2000) 

 

3. Z.Y. Liu, C.T. Chan, P. Sheng, ”Analytic model of phononic crystals with local 

resonances”,  Phys. Rev. B, 014103 (2005) 

 

4.    J. Li, C.T. Chan, ”Double-negative acoustic metamaterial”, Phys. Rev. E, 70, 055602 (2004)  

           

5. G. Wang, X.S. Wen, J.H. Wen, Y.Z. Liu, ”Quasione- dimensional periodic structure with    

  locally resonant band gap”, J. Appl. Mech.-T. ASME, 73, 167-170(2006). 

 

6. N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, X. Zhang, ”Ultrasonic  

   metamaterials with negative modulus”,Nat. Mater.,5,452-456 (2006) 

 

7. S. Yao, X. Zhou, G. Hu, ”Experimental study on negative effective mass in a 1D mass- 

   spring  system”, New J. Phys., 10, 043020 (2008) 

 

8. C. Ding, L. Hao, X. Zhao, ”Two-dimensional acoustic metamaterial with negative  

   modulus”, J.Appl. Phys., 108, 074911 (2010) 

 

9. C. Ding, X. Zhao,”Multi-band and broadband acoustic metamaterial with resonant     

         structures”,J.  Phys. D.Appl. Phys., 44, 215402 (2011) 

 

10. X.N. Liu, G.K. Hu, G.L. Huang, C.T. Sun, ”An elastic metamaterial with simultaneously  

        negative mass density and bulk modulus”, Appl. Phys. Lett., 98, 251907 (2011).          

 

11.   Y. Lai, Y. Wu, P. Sheng, Z,-Q. Zhang, ”Hybrid elastic solids”, Nat. Mater., 10, 620-624  

        (2011). 

     

12. G.W. Milton, M. Briane, J.R. Willis, ”On cloaking for elasticity and physical equations     

         with  a transformation   invariant form”, New J. Phys., 8, 248 (2006) 

 

13. S. Guenneau, A. Movchan, G. Petursson, S. Ramakrishna, ”Acoustic metamaterials for  

         sound focusing and confinement”, New J. Phys., 7, 399 (2007) 

 

14. S.A. Pope, S. Daley, ”Viscoelastic locally resonant double negative metamaterials with  

   controllable effective density and elasticity”, Phys. Lett. A, 374, 4250-4255 (2010) 

 

15    S.J. Elliott, M. Serrand, P. Gardonio, Feedback stability limits for active isolation systems  

        with reactive and inertial actuators, American Society of Mechanical Engineers, Journal of  

        Vibration and Acoustics, 123, 250– 261, (2001). 

 



16 L. Benassi, S.J. Elliott, P. Gardonio, Active vibration isolation using an inertial actuator  

  with local force  Feedback control,  Journal of Sound and Vibration, 276, 157–179, (2004). 

     

17. L. Benassi, S.J. Elliott, P. Gardonio, Equipment isolation of a SDOF system with an inertial  

         actuator using feedback control strategies, Proceedings of the ACTIVE2002 Conference,  

        Southampton, UK, 15–17, July (2002). 

 

18. S.A.Pope, H. Laalej, S. Daley, Active elastic metamaterials with applications in vibration  

  and acoustics, Proceedings of the Acoustics2012 Conference, Nantes, France, 23–27 April    

  (2012). 

 

 
Fig. 1 – The previously proposed AEM design. 

 

 
Fig. 2 – Active and reactive actuators controlling a structure with mass bm , stiffness bk  and 

damping bc : (a) Inertial actuator implementation; (b) reactive actuator implementation. 

 



 
 

Fig. 3 – An AEM with reactive actuators. 
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Fig. 4 – Plot of the closed loop poles with increasing feedback gain 
ck  of AEM with reactive 

actuators. The red crosses mark the poles of the open loop system, i.e. 0ck . 
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Fig. 5 – The displacement transmission across four units for the AEM with reactive  

              actuators with  10000. ck  

-1 -0.5 0 0.5 1

x 10
5

-50

-40

-30

-20

-10

0

10

20

-1 -0.5 0 0.5 1

x 10
8

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

4

                   
Fig.6  – Real parts of the effective mass against stiffness: (a) A fixed frequency (90rad/sec) 

  and changing control parameters ck ;(b)  A changing frequency [10rad/sec,    

  1000rad/sec] and fixed control parameter ck . 
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