Introduction to Discrete Event
Simulation

John Colley
12t December 2011

Southampton

Introduction

* Motivation
* Discrete Event Simulation Principles

* Single-thread/Multi-thread Implementations

* Continuous Simulation Principles
* Hybrid Continuous/Discrete Simulation

* Summary

Discrete Event Simulation: Motivation

 Dominant Verification Technology for Synchronous
Digital Hardware and Systems on Chip

— $300 million per year Market
— Mature Tools (30 years of development)
— High Price Tools ($30k per seat + maintenance)

* Single Kernel, Multi-Language Tools for Model Re-use
— VHDL
— SystemVerilog
— SystemC (C++)
—C

Discrete Event Simulation

COMPONENT VIEW

Ports:IN[] OUT R

SIMULATOR API

GetValue(port)

HasChanged(port)

SetValue(OUT port, val, delay)

Components: A, B, C, D (processes)

Connections: C1, C2 (unidirectional)

ScheduleEval(component, delay)

The Two-list Simulation Algorithm

t=n

update
list

evmgaﬁon e,
list ;:.dh
@

The Two-list Simulation Algorithm

t=n

update
list

Why not just have a single,

time-ordered list?

evaluation :‘.

list @ _ss,
IS ‘.Q‘
@

Time Zero Initialisation: Evaluate all Components

update
list

A|lB|C

D

evaluation =

list

e
oot

@

Component evaluations call SetValue, ScheduleEval

t =50

t=30

t=30
update
list

@) O m m

evalgahon :‘_.
list :..-.

@ :

Component evaluations call SetValue, ScheduleEval

t =50

C: future eval™

D: future eval™ t=30

C:C2newval™

update
list

A:Cl1lnewval

@) O m m

evalgahon :..
list :..0.

@

Global Time is Advanced to t = 20

50

~—t
]

(@) O m m

t=30
t=30

update
list

evaluation =

list

e
oo

@0

Add to eval list each component on C1 fanout

t =50

t=30
t=30

@) O m m

update
list

BID

evaluation =

list

e
oot

@

B calls ScheduleEval with delay 40

t=60 EB

t=50 EC
] update
— list

t=30| ED

t=30| C2

t=20| C1

B|D

evaIgation S,

list :..t.

@

Time advances to t = 30: two updates

update
list
t=30

t=30

20

(@) O m m m

evaluation S,
list :..‘.

C JE

Time advances to t = 30: two updates, one eval

t=60| EB| update
list
t=50| EC
t=30| ED
t=30 C2
D
evaIgation S,
list :..t.

@ .

Simple Algorithm, Complex Implementation for
Performance

update
list

—+

1

o

O — —
O m m m

evalgahon :‘.
list :..0.

@5

Simple Algorithm, Complex Implementation for
Performance

update

Why not just have a single, ist
time-ordered list?

evaluation :‘.

list :.‘..
&6

Simulating Models without Discrete Delays —
Unit Delay

Each evaluate/update

cycle advances time by
one tick
EB|C1
update
list
evaluation Se,
list :o"t

@

The Simulation Testbench

1 \
Primary
Primary outputs
inputs

/

[1

The Simulation Testbench

In principle, just another component using the API

In practice, a complex model of the design environment:

Constrained Random Test Generation
Assertion Checking
Functional Coverage Metrics

Discrete Event Simulation Languages: Hierarchy

e
oo
@

Discrete Event Simulation Languages: Hierarchy

e
Hierarchy is flattened for simulation L
@

Discrete Event Simulation Languages: Function

* There must be an Entry Point to implement
the Eval API call

* Eval call must execute to completion
— Method call

— Actor

* Languages with Embedded Wait
— Eval call must resume at the Wait Point

— Implement as Finite State Machine
* Stored Current State represents the next Entry Point _
~ :b

pet
-

L

A Concurrent Simulator Implementation?

t=n

update
list

evaluation :“
list :kpp.

" PE

A Concurrent Simulator Implementation

t=n

update
/ list
Atomic Insertion
t=0
A B |C|D

/ evaluation s

EVAL Components in Parallel

list

3

@

A Concurrent Simulator Implementation

t=n

Amdahl’s Law Revisited for Single Chip Systems
Jo-Ann M. Paul and Brett H. Meyer, 2006

A|lB|C|D

/ evaluation s

_ list @ Qs
EVAL Components in Parallel @
" PE

Event-Driven vs Process-Driven

* Event-Driven
— Nominally Single core, single process, BUT
— OpenMP implementation
* Portable
e Optimised for multi-core

* Process-Driven
— Each process runs as a concurrent Thread , BUT

* Threads must manage communication/synchronisation

* Python Generators (coroutines)
* Single core only (SimPy)
o

Continuous v Discrete Simulation

Continuous

* Equation-based
model cont01

Real x, v, z;
equation
X+y+z=>5.000;
der(y) = x + 1.365;

y =der(z) — 1.875;
end cont01;

Discrete

e Assignment-based
always @ (posedge clk)

begin

Xx<=x+1

y<=x-1
end

< eer:1
] | |
|]
S
1 . L
= :o.be

-20 - -
T T T T T T T .
o 2 a & 27
time

Hybrid Modeling

* Continuous-time + Discrete-time Modeling
— Modelica “when”

model t03
Real x, vy, z;
equation
X+y+z=05;
when sample(0, 1) then
X=X+1;
y = delay(x — 1, 20);
end when;
end t03;

Summary

* Discrete Event Simulation
— Two-List Algorithm for Deterministic Execution

— “Event-driven” or “Process-driven”

— Hardware/Software
— Multi-thread implementation with OpenMP

e Continuous Simulation
— Modelica, Matlab/Simulink

* Hybrid Continous/Discrete Simulation
* Discrete Interfaces
~ :b.

