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Discrete Event Simulation: Motivation

 Dominant Verification Technology for Synchronous
Digital Hardware and Systems on Chip

— $300 million per year Market
— Mature Tools (30 years of development)
— High Price Tools ($30k per seat + maintenance)

* Single Kernel, Multi-Language Tools for Model Re-use
— VHDL
— SystemVerilog
— SystemC (C++)
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Discrete Event Simulation

COMPONENT VIEW

Ports:IN[ ] OUT R

SIMULATOR API

GetValue(port)

HasChanged(port)

SetValue(OUT port, val, delay)

Components: A, B, C, D (processes)

Connections: C1, C2 (unidirectional)

ScheduleEval(component, delay)




The Two-list Simulation Algorithm
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The Two-list Simulation Algorithm
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Time Zero Initialisation: Evaluate all Components
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Component evaluations call SetValue, ScheduleEval
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Component evaluations call SetValue, ScheduleEval

t =50

C: future eval™
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Global Time is Advanced to t = 20
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Add to eval list each component on C1 fanout
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B calls ScheduleEval with delay 40
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Time advances to t = 30: two updates
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Time advances to t = 30: two updates, one eval
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Simple Algorithm, Complex Implementation for
Performance
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Simple Algorithm, Complex Implementation for
Performance
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Simulating Models without Discrete Delays —
Unit Delay

Each evaluate/update

cycle advances time by
one tick
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The Simulation Testbench
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The Simulation Testbench

In principle, just another component using the API

In practice, a complex model of the design environment:

Constrained Random Test Generation
Assertion Checking
Functional Coverage Metrics




Discrete Event Simulation Languages: Hierarchy
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Discrete Event Simulation Languages: Hierarchy

e
Hierarchy is flattened for simulation L
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Discrete Event Simulation Languages: Function

* There must be an Entry Point to implement
the Eval API call

* Eval call must execute to completion
— Method call

— Actor

* Languages with Embedded Wait
— Eval call must resume at the Wait Point

— Implement as Finite State Machine
* Stored Current State represents the next Entry Point _
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A Concurrent Simulator Implementation?
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A Concurrent Simulator Implementation
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A Concurrent Simulator Implementation

t=n

Amdahl’s Law Revisited for Single Chip Systems
Jo-Ann M. Paul and Brett H. Meyer, 2006
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Event-Driven vs Process-Driven

* Event-Driven
— Nominally Single core, single process, BUT
— OpenMP implementation
* Portable
e Optimised for multi-core

* Process-Driven
— Each process runs as a concurrent Thread , BUT

* Threads must manage communication/synchronisation

* Python Generators (coroutines)
* Single core only (SimPy)
o



Continuous v Discrete Simulation

Continuous

* Equation-based
model cont01

Real x, v, z;
equation
X+y+z=>5.000;
der(y) = x + 1.365;

y =der(z) — 1.875;
end cont01;

Discrete

e Assignment-based
always @ (posedge clk)

begin

Xx<=x+1

y<=x-1
end
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Hybrid Modeling

* Continuous-time + Discrete-time Modeling
— Modelica “when”

model t03
Real x, vy, z;
equation
X+y+z=05;
when sample(0, 1) then
X=X+1;
y = delay(x — 1, 20);
end when;
end t03;



Summary

* Discrete Event Simulation
— Two-List Algorithm for Deterministic Execution

— “Event-driven” or “Process-driven”

— Hardware/Software
— Multi-thread implementation with OpenMP

e Continuous Simulation
— Modelica, Matlab/Simulink

* Hybrid Continous/Discrete Simulation
* Discrete Interfaces
~ :b.



