
Introduc)on	
 to	
 Discrete	
 Event	

Simula)on	
 	

John	
 Colley	

12th	
 December	
 2011	

Southampton	

1	

Introduc)on	

•  Mo)va)on	

•  Discrete	
 Event	
 Simula)on	
 Principles	

•  Single-­‐thread/Mul)-­‐thread	
 Implementa)ons	

•  Con)nuous	
 Simula)on	
 Principles	

•  Hybrid	
 Con)nuous/Discrete	
 Simula)on	

•  Summary	

2	

Discrete	
 Event	
 Simula)on:	
 Mo)va)on	

•  Dominant	
 Verifica)on	
 Technology	
 for	
 Synchronous	

Digital	
 Hardware	
 and	
 Systems	
 on	
 Chip	

–  $300	
 million	
 per	
 year	
 Market	

– Mature	
 Tools	
 (30	
 years	
 of	
 development)	

–  High	
 Price	
 Tools	
 ($30k	
 per	
 seat	
 +	
 maintenance)	

•  Single	
 Kernel,	
 Mul)-­‐Language	
 Tools	
 for	
 Model	
 Re-­‐use	

–  VHDL	

–  SystemVerilog	

–  SystemC	
 (C++)	

–  C	

3	

A	

C	

B	

D	

C1	

C2	

COMPONENT	
 VIEW	

	

Components:	
 A,	
 B,	
 C,	
 D	
 (processes)	

	

Connec)ons:	
 C1,	
 C2	
 (unidirec)onal)	

	

Ports:	
 IN	
 	
 	
 	
 	
 	
 	
 	
 OUT	
 	

	

	

SIMULATOR	
 API	

	

GetValue(port)	

	

HasChanged(port)	

	

SetValue(OUT	
 port,	
 val,	
 delay)	

	

ScheduleEval(component,	
 delay)	

Discrete	
 Event	
 Simula)on	

4	

A	

C	

B	

D	

C1	

C2	

update	

list	

evalua)on	

list	

t	
 =	
 0	

The	
 Two-­‐list	
 Simula)on	
 Algorithm	

t	
 =	
 n	

5	

A	

C	

B	

D	

C1	

C2	

update	

list	

evalua)on	

list	

t	
 =	
 0	

The	
 Two-­‐list	
 Simula)on	
 Algorithm	

t	
 =	
 n	

Why	
 not	
 just	
 have	
 a	
 single,	

)me-­‐ordered	
 list?	

6	

A	

C	

B	

D	

C1	

C2	

update	

list	

evalua)on	

list	

	
 A	
 	
 	
 	
 	
 B	
 	
 	
 	
 	
 C	
 	
 	
 	
 	
 D	

t	
 =	
 0	

Time	
 Zero	
 Ini)alisa)on:	
 Evaluate	
 all	
 Components	

7	

A	

C	

B	

D	

C1	

C2	

update	

list	

evalua)on	

list	

t	
 =	
 0	

Component	
 evalua)ons	
 call	
 SetValue,	
 ScheduleEval	

t	
 =	
 20	
 	
 	
 	
 C1	

t	
 =	
 30	
 	
 	
 	
 C2	

t	
 =	
 30	
 	
 	
 	
 ED	

t	
 =	
 50	
 	
 	
 	
 EC	

8	

A	

C	

B	

D	

C1	

C2	

update	

list	

evalua)on	

list	

t	
 =	
 0	

Component	
 evalua)ons	
 call	
 SetValue,	
 ScheduleEval	

t	
 =	
 20	
 	
 	
 	
 C1	

t	
 =	
 30	
 	
 	
 	
 C2	

t	
 =	
 30	
 	
 	
 	
 ED	

t	
 =	
 50	
 	
 	
 	
 EC	

C:	
 future	
 eval	

D:	
 future	
 eval	

C:	
 C2	
 new	
 val	

A:	
 C1	
 new	
 val	

9	

A	

C	

B	

D	

C1	

C2	

update	

list	

evalua)on	

list	

t	
 =	
 0	

Global	
 Time	
 is	
 Advanced	
 to	
 t	
 =	
 20	

t	
 =	
 20	
 	
 	
 	
 C1	

t	
 =	
 30	
 	
 	
 	
 C2	

t	
 =	
 30	
 	
 	
 	
 ED	

t	
 =	
 50	
 	
 	
 	
 EC	

10	

A	

C	

B	

D	

C1	

C2	

update	

list	

evalua)on	

list	

t	
 =	
 0	

Add	
 to	
 eval	
 list	
 each	
 component	
 on	
 C1	
 fanout	

t	
 =	
 20	
 	
 	
 	
 C1	

t	
 =	
 30	
 	
 	
 	
 C2	

t	
 =	
 30	
 	
 	
 	
 ED	

t	
 =	
 50	
 	
 	
 	
 EC	

	
 B	
 	
 	
 	
 	
 D	
 	
 	
 	
 	

11	

A	

C	

B	

D	

C1	

C2	

update	

list	

evalua)on	

list	

B	
 calls	
 ScheduleEval	
 with	
 delay	
 40	

t	
 =	
 20	
 	
 	
 	
 C1	

t	
 =	
 30	
 	
 	
 	
 C2	

t	
 =	
 30	
 	
 	
 	
 ED	

t	
 =	
 50	
 	
 	
 	
 EC	

	
 B	
 	
 	
 	
 	
 D	
 	
 	
 	
 	

t	
 =	
 60	
 	
 	
 	
 EB	

12	

A	

C	

B	

D	

C1	

C2	

update	

list	

evalua)on	

list	

Time	
 advances	
 to	
 t	
 =	
 30:	
 two	
 updates	

t	
 =	
 20	
 	
 	
 	
 C1	

t	
 =	
 30	
 	
 	
 	
 C2	

t	
 =	
 30	
 	
 	
 	
 ED	

t	
 =	
 50	
 	
 	
 	
 EC	

t	
 =	
 60	
 	
 	
 	
 EB	

13	

A	

C	

B	

D	

C1	

C2	

update	

list	

evalua)on	

list	

Time	
 advances	
 to	
 t	
 =	
 30:	
 two	
 updates,	
 one	
 eval	

t	
 =	
 30	
 	
 	
 	
 C2	

t	
 =	
 30	
 	
 	
 	
 ED	

t	
 =	
 50	
 	
 	
 	
 EC	

t	
 =	
 60	
 	
 	
 	
 EB	

	
 D	
 	
 	
 	
 	
 	
 	
 	
 	
 	

14	

A	

C	

B	

D	

C1	

C2	

update	

list	

evalua)on	

list	

t	
 =	
 30	
 	
 	
 	
 C2	

t	
 =	
 30	
 	
 	
 	
 ED	

t	
 =	
 50	
 	
 	
 	
 EC	

t	
 =	
 60	
 	
 	
 	
 EB	

Simple	
 Algorithm,	
 Complex	
 Implementa)on	
 for	

Performance	

15	

A	

C	

B	

D	

C1	

C2	

update	

list	

evalua)on	

list	

t	
 =	
 30	
 	
 	
 	
 C2	

t	
 =	
 30	
 	
 	
 	
 ED	

t	
 =	
 50	
 	
 	
 	
 EC	

t	
 =	
 60	
 	
 	
 	
 EB	

Simple	
 Algorithm,	
 Complex	
 Implementa)on	
 for	

Performance	

Why	
 not	
 just	
 have	
 a	
 single,	

)me-­‐ordered	
 list?	

RACE	

16	

A	

C	

B	

D	

C1	

C2	

update	

list	

evalua)on	

list	

Simula)ng	
 Models	
 without	
 Discrete	
 Delays	
 –	

Unit	
 Delay	

EB	
 	
 C1	

Each	
 evaluate/update	

cycle	
 advances	
)me	
 by	

one	
 <ck	

17	

A	

C	

B	

D	

C1	

C2	

The	
 Simula)on	
 Testbench	

Primary	

inputs	

Primary	

outputs	

18	

A	

C	

B	

D	

C1	

C2	

The	
 Simula)on	
 Testbench	

Primary	

inputs	

Primary	

outputs	
 In	
 principle,	
 just	
 another	
 component	
 using	
 the	
 API	

	

In	
 prac<ce,	
 a	
 complex	
 model	
 of	
 the	
 design	
 environment:	

Constrained	
 Random	
 Test	
 Genera)on	

Asser)on	
 Checking	

Func)onal	
 Coverage	
 Metrics	

19	

A	

C	

B	

D	

C1	

C2	

Discrete	
 Event	
 Simula)on	
 Languages:	
 Hierarchy	

20	

A	

C	

B	

D	

C1	

C2	

Discrete	
 Event	
 Simula)on	
 Languages:	
 Hierarchy	

Hierarchy	
 is	
 fla@ened	
 for	
 simula)on	

21	

Discrete	
 Event	
 Simula)on	
 Languages:	
 Func)on	

•  There	
 must	
 be	
 an	
 Entry	
 Point	
 to	
 implement	

the	
 Eval	
 API	
 call	

•  Eval	
 call	
 must	
 execute	
 to	
 comple)on	

– Method	
 call	

– Actor	

•  Languages	
 with	
 Embedded	
 Wait	

– Eval	
 call	
 must	
 resume	
 at	
 the	
 Wait	
 Point	

–  Implement	
 as	
 Finite	
 State	
 Machine	

•  Stored	
 Current	
 State	
 represents	
 the	
 next	
 Entry	
 Point	

22	

A	

C	

B	

D	

C1	

C2	

update	

list	

evalua)on	

list	

t	
 =	
 0	

A	
 Concurrent	
 Simulator	
 Implementa)on?	

t	
 =	
 n	

23	

A	

C	

B	

D	

C1	

C2	

update	

list	

evalua)on	

list	

t	
 =	
 0	

A	
 Concurrent	
 Simulator	
 Implementa)on	

t	
 =	
 n	

	
 A	
 	
 	
 	
 	
 B	
 	
 	
 	
 	
 C	
 	
 	
 	
 	
 D	

EVAL	
 Components	
 in	
 Parallel	

Atomic	
 Inser)on	

24	

A	

C	

B	

D	

C1	

C2	

update	

list	

evalua)on	

list	

t	
 =	
 0	

A	
 Concurrent	
 Simulator	
 Implementa)on	

t	
 =	
 n	

	
 A	
 	
 	
 	
 	
 B	
 	
 	
 	
 	
 C	
 	
 	
 	
 	
 D	

EVAL	
 Components	
 in	
 Parallel	

Atomic	
 Inser)on	

Amdahl’s	
 Law	
 Revisited	
 for	
 Single	
 Chip	
 Systems	

Jo-­‐Ann	
 M.	
 Paul	
 and	
 Brej	
 H.	
 Meyer,	
 2006	

25	

Event-­‐Driven	
 vs	
 Process-­‐Driven	

•  Event-­‐Driven	

– Nominally	
 Single	
 core,	
 single	
 process,	
 BUT	

– OpenMP	
 implementa)on	

•  Portable	

•  Op)mised	
 for	
 mul)-­‐core	

•  Process-­‐Driven	

–  Each	
 process	
 runs	
 as	
 a	
 concurrent	
 Thread	
 ,	
 BUT	

•  Threads	
 must	
 manage	
 communica)on/synchronisa)on	

•  Python	
 Generators	
 (corou)nes)	

•  Single	
 core	
 only	
 (SimPy)	

26	

Con)nuous	
 v	
 Discrete	
 Simula)on	

Con$nuous	

•  Equa)on-­‐based	

model	
 cont01	

	
 	
 Real	
 x,	
 y,	
 z;	

equa)on	

	
 	
 x	
 +	
 y	
 +	
 z	
 =	
 5.000;	

	
 der(y)	
 =	
 x	
 +	
 1.365;	

	
 	
 y	
 =	
 der(z)	
 –	
 1.875;	

end	
 cont01;	

	

	

	

Discrete	

•  Assignment-­‐based	

always	
 @	
 (posedge	
 clk)	

begin	

	
 	
 x	
 <=	
 x	
 +	
 1	

	
 	
 y	
 <=	
 x	
 -­‐	
 1	

end	

	

27	

Hybrid	
 Modeling	

•  Con)nuous-­‐)me	
 +	
 Discrete-­‐)me	
 Modeling	

–  Modelica	
 “when”	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 model	
 t03	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Real	
 x,	
 y,	
 z;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 equa)on	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 x	
 +	
 y	
 +	
 z	
 =	
 5;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 when	
 sample(0,	
 1)	
 then	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 x	
 =	
 x	
 +	
 1;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 y	
 =	
 delay(x	
 –	
 1,	
 20);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 end	
 when;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 end	
 t03;	

	

28	

Summary	

•  Discrete	
 Event	
 Simula)on	

– Two-­‐List	
 Algorithm	
 for	
 Determinis)c	
 Execu)on	

–  	
 “Event-­‐driven”	
 or	
 “Process-­‐driven”	

–  	
 Hardware/Sorware	

– Mul)-­‐thread	
 implementa)on	
 with	
 OpenMP	

•  Con)nuous	
 Simula)on	

– Modelica,	
 Matlab/Simulink	

•  Hybrid	
 Con)nous/Discrete	
 Simula)on	

•  Discrete	
 Interfaces	

29	

