Introduction to Discrete Event
Simulation Il

John Colley
13t February 2012
Southampton

Introduction

* Discrete Event Simulation Principles — Review

e The Testbench
e Simulation-based Verification

* Sign Off
* Summary

Discrete Event Simulation

COMPONENT VIEW

Ports:IN[] OUT R

SIMULATOR API

GetValue(port)

HasChanged(port)

SetValue(OUT port, val, delay)

Components: A, B, C, D (processes)

Connections: C1, C2 (unidirectional)

ScheduleEval(component, delay)

The Two-list Simulation Algorithm

t=n

update
list

evmgaﬁon e,
list ;:.dh
@

Time Zero Initialisation: Evaluate all Components

update
list

A|lB|C

D

evaluation =

list

e
oot

@

Component evaluations call SetValue, ScheduleEval

t =50

t=30

t=30
update
list

@) O m m

evalgahon :‘_.
list :..-.

@

Component evaluations call SetValue, ScheduleEval

t =50

C: future eval™

D: future eval™ t=30

C:C2newval™

update
list

A:Cl1lnewval

@) O m m

evalgahon :..
list :..0.

@

Global Time is Advanced to t = 20

50

~—t
]

(@) O m m

t=30
t=30

update
list

evaluation =

list

e
oot

@ :

Add to eval list each component on C1 fanout

t =50

t=30
t=30

@) O m m

update
list

BID

evaluation =

list

e
oot

@

B calls ScheduleEval with delay 40

t=60 EB

t=50 EC
] update
— list

t=30| ED

t=30| C2

t=20| C1

B|D

evaIgation S,

list :..t.

@0

Time advances to t = 30: two updates

update
list
t=30

t=30

20

(@) O m m m

evaluation S,
list :..‘.

@

Time advances to t = 30: two updates, one eval

t=60| EB| update
list
t=50| EC
t=30| ED
t=30 C2
D
evaIgation S,
list :..t.

@

The Simulation Testbench

1 \
Primary
Primary outputs
inputs

/

[1

The Simulation Testbench

In principle, just another component using the API

In practice, a complex model of the design environment:

Constrained Random Test Generation
Assertion Checking
Functional Coverage Metrics

Simulation-based Verification

As opposed to Formal Verification

— Theorem Proving
— Model Checking

Structural Coverage
Functional Coverage
Assertion Checking
Assertion Coverage

Integrating Formal and Simulation-based
Verification

Structural Coverage

Do the requirements- based test cases adequately
exercise the structure of the source code?

DO 178B

* Statement Coverage

* Branch (Decision) Coverage
» MC/DC (Modified Condition/Decision Coverage)

— Unique Cause
— Masking o

MC/DC
(Modified Condition/Decision Coverage)

Z = (A or B)and (Cor D)

A B C D Z
F F F T F
T F F T T N

MC/DC
(Modified Condition/Decision Coverage)

Z = (A or B)and (Cor D)

A B C D Z
FF T F
T F F T T

MC/DC
(Modified Condition/Decision Coverage)

Z = (A or B)and (Cor D)

A B C D Z
F F F T F
‘T F |F T T

- [T F T ..

T F|T T T o

MC/DC

(Modified Condition/Decision Coverage)

Summary

* Masking MC/DC results in fewer tests and

shorter simulation runs

* Unique-Cause MC/DC cannot deal with
repeated conditions

* Unique-Cause MC/DC may detect more errors

(NB not the actual DO 178B requirement)

Do the requirements- based test cases adequately exercise
the structure of the source code?

DO 178B

-
‘O‘Q.

@0

DO 178 C

* Approved: December 2011
 Provision for Formal Methods

* Provision for Object-Oriented Code Development

— As opposed to Structured Code Development

— Does MC/DC have the same value?

-
.
‘O‘Q.

@2

Bug Rate vs Time

Bug
Rate

Sign Off

~

N

Time e’ "
Tandem Computers ca. 1990 @

Bug Rate vs Time — Coverage Directed Verification

Bug
Rate

Sign Off

=—.———

N

Time o®* "
Tandem Computers ca. 1990 @

Bug Rate vs Time — Coverage Directed Verification

Bug
Rate

*

Sign Off

_————

e

Time o*°
Tandem Computers ca. 1990 @

Bug Rate vs Time — Coverage Directed Verification

Bug
Rate

Sharper “knee” \
S

Time bl
Tandem Computers ca. 1990 9

Functional Coverage

* User-defined Coverage Metrics

— Typical Scenarios

— Error Cases

— Corner Cases
* High-Level Language Description
Constrained Random Test Generation from

Coverage Description
e “Scoreboarding”

L

Functional Coverage Example
Transaction Coverage

. Typical | Min. Max.
Transactio Headerl | Header2 | Value Value Value
Type

A
B _ - -
C -

.‘

-
@ _ .0
e*’"
@

Functional Coverage Example
Transaction Coverage

: Typical | Min. Max.
Transactio Headerl | Header2 | Value Value Value
Type
A O o6 o o o
3 o o - | - | -
C @ - o o O
Functional Coverage: 8/11 (73%) §:';..

@

Assertion Checking: PSL
(Property Specification Language)

e LTL-based
e Unit of time is the Clock Cycle

* SEREs
— Sequential Extended Regular Expressions

{a; nota; b} [|=> {c}

Assertion Checking: PSL
(Property Specification Language)

e PSL is converted to Simulation Monitors
— First, convert to Buchi Automata (non-deterministic)
— Second, generate deterministic automata
— Third, generate HDL representation

* Simulate the Monitors together with the Design

{a; nota; b} [|=> {c}

<
0,.~o.

pet
-

Assertion Coverage

* How effectively do the tests exercise the
Assertions?

— Vacuously Satisfied? (d is always false)
— Are the SEREs sensitised to detect assertion failure?

{a; nota; b} [|=> {c}
* |sthe set of assertions

— Necessary?
— Sufficient?
ee
@ _o°
@ o

Integrating Formal and Simulation-based
Verification

* PSL SEREs can be verified using a model checker
— Assertion Coverage principles still apply
— Assertion Coverage results for simulation an model
checking can be combined
* Are the assertions necessary/sufficient?

— An open problem
— Scope for using theorem proving?

Verification Sign Off

* Ultimately, an engineer will have to physically
provide a sighature

* How confident is the engineer that the design
meets its specification?
— The outcome of the verification process must be

measurable

* Bug rate
* Coverage metrics

Summary

* Discrete Event Simulation
— Two-List Algorithm for Deterministic Execution

* Coverage-Driven Verification
— Structural (MC/DC)
— Functional
* Assertion Checking/Coverage
* Combining Formal and Simulation-based
Verification for
— Earlier Sign Off with

—Increased Confidence

