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Introduction

* Discrete Event Simulation Principles — Review

e The Testbench
e Simulation-based Verification

* Sign Off
* Summary



Discrete Event Simulation

COMPONENT VIEW

Ports:IN[ ] OUT R

SIMULATOR API

GetValue(port)

HasChanged(port)

SetValue(OUT port, val, delay)

Components: A, B, C, D (processes)

Connections: C1, C2 (unidirectional)

ScheduleEval(component, delay)




The Two-list Simulation Algorithm
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Time Zero Initialisation: Evaluate all Components
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Component evaluations call SetValue, ScheduleEval
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Component evaluations call SetValue, ScheduleEval
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Global Time is Advanced to t = 20
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Add to eval list each component on C1 fanout
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B calls ScheduleEval with delay 40

t=60 EB

t=50 EC
] update
— list

t=30| ED

t=30| C2

t=20| C1

B|D

evaIgation S,

list :..t.

@0



Time advances to t = 30: two updates
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Time advances to t = 30: two updates, one eval
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The Simulation Testbench
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The Simulation Testbench

In principle, just another component using the API

In practice, a complex model of the design environment:

Constrained Random Test Generation
Assertion Checking
Functional Coverage Metrics




Simulation-based Verification

As opposed to Formal Verification

— Theorem Proving
— Model Checking

Structural Coverage
Functional Coverage
Assertion Checking
Assertion Coverage

Integrating Formal and Simulation-based
Verification



Structural Coverage

Do the requirements- based test cases adequately
exercise the structure of the source code?

DO 178B

* Statement Coverage

* Branch (Decision) Coverage
» MC/DC (Modified Condition/Decision Coverage)

— Unique Cause
— Masking o



MC/DC
(Modified Condition/Decision Coverage)
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MC/DC
(Modified Condition/Decision Coverage)

Z = (A or B)and (Cor D)
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MC/DC

(Modified Condition/Decision Coverage)

Summary

* Masking MC/DC results in fewer tests and

shorter simulation runs

* Unique-Cause MC/DC cannot deal with
repeated conditions

* Unique-Cause MC/DC may detect more errors

(NB not the actual DO 178B requirement)

Do the requirements- based test cases adequately exercise
the structure of the source code?

DO 178B
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DO 178 C

* Approved: December 2011
 Provision for Formal Methods

* Provision for Object-Oriented Code Development

— As opposed to Structured Code Development

— Does MC/DC have the same value?
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Bug Rate vs Time
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Bug Rate vs Time — Coverage Directed Verification
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Bug Rate vs Time — Coverage Directed Verification
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Bug Rate vs Time — Coverage Directed Verification
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Functional Coverage

* User-defined Coverage Metrics

— Typical Scenarios

— Error Cases

— Corner Cases
* High-Level Language Description
Constrained Random Test Generation from

Coverage Description
e “Scoreboarding”

L



Functional Coverage Example
Transaction Coverage

. Typical | Min. Max.
Transactio Headerl | Header2 | Value Value Value
Type
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Functional Coverage Example
Transaction Coverage

: Typical | Min. Max.
Transactio Headerl | Header2 | Value Value Value
Type
A O o6 o o o
3 o o - | - | -
C @ - o o O
Functional Coverage: 8/11 (73%) §:';..

@



Assertion Checking: PSL
(Property Specification Language)

e LTL-based
e Unit of time is the Clock Cycle

* SEREs
— Sequential Extended Regular Expressions

{a; nota; b} [|=> {c}



Assertion Checking: PSL
(Property Specification Language)

e PSL is converted to Simulation Monitors
— First, convert to Buchi Automata (non-deterministic)
— Second, generate deterministic automata
— Third, generate HDL representation

* Simulate the Monitors together with the Design

{a; nota; b} [|=> {c}
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Assertion Coverage

* How effectively do the tests exercise the
Assertions?

— Vacuously Satisfied? ( d is always false)
— Are the SEREs sensitised to detect assertion failure?

{a; nota; b} [|=> {c}
* |sthe set of assertions

— Necessary?
—  Sufficient?
ee
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Integrating Formal and Simulation-based
Verification

* PSL SEREs can be verified using a model checker
— Assertion Coverage principles still apply
— Assertion Coverage results for simulation an model
checking can be combined
* Are the assertions necessary/sufficient?

— An open problem
— Scope for using theorem proving?



Verification Sign Off

* Ultimately, an engineer will have to physically
provide a sighature

* How confident is the engineer that the design
meets its specification?
— The outcome of the verification process must be

measurable

* Bug rate
* Coverage metrics



Summary

* Discrete Event Simulation
— Two-List Algorithm for Deterministic Execution

* Coverage-Driven Verification
— Structural (MC/DC)
— Functional
* Assertion Checking/Coverage
* Combining Formal and Simulation-based
Verification for
— Earlier Sign Off with

—Increased Confidence



