A selection model for longitudinal binary responses subject to non-ignorable attrition

Alfo', Marco and Maruotti, Antonello (2009) A selection model for longitudinal binary responses subject to non-ignorable attrition Statistics in Medicine, 28, (19), pp. 2435-2450. (doi:10.1002/sim.3604).


Full text not available from this repository.


Longitudinal studies collect information on a sample of individuals which is followed over time to analyze the effects of individual and time-dependent characteristics on the observed response. These studies often suffer from attrition: individuals drop out of the study before its completion time and thus present incomplete data records. When the missing mechanism, once conditioned on other (observed) variables, does not depend on current (eventually unobserved) values of the response variable, the dropout mechanism is known to be ignorable. We propose a selection model extending semiparametric variance component models for longitudinal binary responses to allow for dependence between the missing data mechanism and the primary response process. The model is applied to a data set from a methadone maintenance treatment programme held in Sidney, 1986.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1002/sim.3604
ISSNs: 0277-6715 (print)
Keywords: longitudinal binary responses, ar(1) variance components, non-ignorable dropouts, random effect-based dropout model, non-parametric maximum likelihood
Organisations: Statistics, Statistical Sciences Research Institute
ePrint ID: 345966
Date :
Date Event
7 May 2009e-pub ahead of print
30 August 2009Published
Date Deposited: 10 Dec 2012 12:02
Last Modified: 17 Apr 2017 16:18
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/345966

Actions (login required)

View Item View Item