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Virtual arrays can be created by using data acquired with scanning measurements techniques
such as “Scan&Paint” [1–4]. This method is based on mixing tracking information with the
signals recorded in order to characterise time stationary sound fields. With one transducer,
variations of sound pressure or particle velocity can be assessed. Furthermore, relative phase
of the sound field can be preserved by using an additional fixed reference sensor. Thereby,
magnitude and phase information at discrete spatial areas are obtained, such as if the field were
measured with a virtual array. The resolution of virtual arrays can be modified by changing
the area which corresponds to a single data point. This property allows enhancing the spectral
frequency range of conventional arrays.
This paper introduces the underlying theory of virtual arrays and validates the technique devel-
oped solving a problem which has high accuracy requirements: multiple source localization.

1. Introduction

There are many applications which require using transducer arrays in order to map magnitude
and phase variations across the space. Traditionally, this fact directly implies investing huge amounts
of money in an acquisition system. Furthermore, the resolution of the measurements would depend
on the number of transducers used and their positions. If the array is constituted by too many sensors,
it becomes acoustically significant, biasing the sound field aimed to characterise.

The following approach can be undertaken so as to avoid all constrains of conventional arrays if
the sound field is assumed time stationary. Magnitude and phase of the sound field could be measured
by using only two transducers, one situated in a fixed position and another moving across the measur-
able area. Tracking information is acquired by processing video information of the scanning sensor.
Then, segments of a long time sequence can be evaluated for different areas in the space. Moreover,
the relative phase of the sound field can be acquired calculating the phase differences between the
two transducers. This powerful technique, which relies on using a “virtual array” can simplify many
common problems due to its low time and cost requirements, but it also can improve the accuracy of
traditional results due to its adaptable resolution and resizeable measurement area.

In the following sections not only the underlying theory is introduced but also some simulations
and experiments are presented.
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2. Theory

As a first approach, the sound field produced by a monopole source is studied. This approx-
imation will give a good understanding of how the phase can be acquired at multiple points even
measuring at different time instants by using only two transducers. Furthermore, the synthesis pro-
cess required to generate the spectral matrix is introduced. Symmetrical and asymmetrical virtual
arrays are studied.

2.1 Radiation from a monopole source

The acoustic source simplest to analyse is a sphere whose volume varies sinusoidally with time.
While pulsating spheres are meaningless from a practical point of view, their theoretical features
provides an ideal prototype for simplifying the behaviour of complex sources. In a medium that is
infinite, homogeneous, and isotropic, a monopole source will produce an outgoing spherical wave [5]

p(r, t) =
A

r
ej(ωt−kr) (1)

where A is determined by the source features, as can be seen below; k is the wavenumber; ω is
the frequency of the sinusoidal movement and r is the distance from the centre of the sphere. Consider
a sphere of radius a, vibrating radially with complex speed Uo exp(jωt), where the displacement of
the surface is much less than the radius, Uo/ω << a. The acoustic pressure of the fluid in contact with
the sphere is given by Equation (1) evaluated at r = a. (This is consistent regarding small amplitude
variations of linear acoustics). The pressure at the surface of the source can be defined as

p(a, t) = Z0U0cos(θa) e
j(ωt−ka+θa) (2)

where Z0 is the characteristic acoustic impedance of the medium evaluated (ρ0c0); and θa =
coth(ka), so it is a function of the ratio of the source distance to the wavelength. Comparing Equation
(1) and Equation (2) can be inferred that A is time and spatial independent, and it can be defined such
as,

A = Z0U0cos(θa) e
j(ka+θa) (3)

Now, assessing the complex pressure over the sound field produced by the monopole source,
since A will be independent of distance r, for time instance t = 0

p(r) =
A

r
e−jkr (4)

Therefore, if the phase response of the source is known, phase information can be predicted
beforehand at any point by calculating the distance rn between the evaluated position and the sound
source.

2.2 Phase mapping

Absolute time phase measurements implies acquiring information at discrete points on the space
simultaneously. Since the number of transducer used in scanning techniques is reduced due to the fact
that they are moving during the measurement, absolute phase information cannot be characterised.
Nevertheless, if the sound field can be assumed time stationary, relative phase variations can be mea-
sured at different time instances, allowing to use scanning techniques also for phase issues.
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An additional fixed transducer is required in order to compare its phase information with the
scanning sensor at the same time instance. Consequently, relative phase changes between two posi-
tions will be obtained. Because the scanning transducer is moved, phase variations can be charac-
terised at any point in the space repeating the same procedure. One common way to obtain phase
differences between two signals is by computing their cross-power spectral density [6]

Prel
n (ω) = lim

T→∞

E
{
P ∗ref (ω)Pn(ω)

}
T

(5)

where P ∗ref is the complex conjugate Fourier Transform of the time signal recorded by a pressure
sensor at a fixed reference position and Pn represent each of the time sequences recorded at different
position in the space. Moreover, the pressure generated by a monopole source at certain position
given in Equation (1) can be evaluated now after computing the cross correlation between any two
points. The last expression can be re-arranged so as to demonstrate that the new relative pressure is
time independent, i.e.

Prel
n (ω) =

(Z0U0cos(θa))
2

rnrref
e−jk(rn−rref ) (6)

As can be seen in Equation (6), phase information of each point of the time stationary sound
field is preserved in the exponential term, which only depends on the wavenumber and the distance
difference between source and transducer positions.

In conclusion, it has been proved analytically that relative phase changes of a sound field can
be mapped by taking the cross-correlation between two transducers: one at a fixed position and the
other scanning the positions aimed to measured.

2.3 Spectral matrix

The spectral matrix is the key of powerful spectral estimation techniques such as Capon or
MUSIC. Eigenvalue decomposition of the spectral matrix is a way of measuring the number of inde-
pendent components that constitute a signal. This can be used to distinguish between signal subspace
(high eigenvalues) and noise subspace (low eigenvalues).

Commonly, the spectral matrix is calculated using time data from array sensors. Nonetheless,
since all information cannot be acquired at different positions simultaneously using “virtual arrays”,
a different approach has to be implemented. Measuring pressure at n positions and cross-correlating
the data with a fixed sensor we can define the Fourier Transform matrix of the results as

prel
n (ω) = [prel1 prel2 ... preln ] (7)

Then, the spectral matrix of the relative complex pressures measured can be defined such as,

Crel(ω) = E
[
prel
n (ω)

(
prel
n (ω)

)H]
=

=

p
rel
1 (ω)prel1 (ω) ... prel1 (ω)preln (ω)

... . . . ...
preln (ω)prel1 (ω) ... preln (ω)preln (ω)

 (8)

where the operator H denotes the complex conjugate transpose. According to Equation (6) and Equa-
tion (8), the spectral matrix produced by a single monopole source in the free field can be defined
then such as,
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Crel =
(Z0U0cos(θa))

4

r2ref


ejk(r1−r1)

r21
... ejk(r1−rn)

r1rn
... . . . ...

ejk(rn−r1)

rnr1
... ejk(rn−rn)

r2n

 (9)

The phase of the spectral matrix Crel can be expressed as a product of the wavenumber k and
the separation difference between the noise source and any position measured,

∠Crel = k

(r1 − r1) ... (r1 − rn)
... . . . ...

(rn − r1) ... (rn − rn)

 (10)

As it has been point out above, the spectral matrix is calculated conventionally from time data
of the different elements of the array. This will create a matrix with a maximum rank that depends on
the number of sensors. However, the rank of matrix Crel is, by definition, constrained to unity since
the matrix has been created by combinations of only one linearly independent function made up from
complex pressure values at a certain frequency. This fact will imply that most of the information of
the spectral matrix has been missed. Only one eigenvalue will be high, regardless of the number of
uncorrelated signals which create the sound field, as if one sound source were creating the entire sound
field. So to overcome rank problems, two different approaches have been studied: measuring the noise
sources individually and performing the measurements under far field conditions for reconstructing
the spectral matrix taking advantage of its intrinsic symmetry.

The first solution proposed guarantees a perfect reconstruction of the conventional C(ω) from
individual relative spectral matrices exciting the sound field with only one noise source at a time, i.e.

C(ω) =
L∑
s=1

Crel
s (ω) (11)

where L is the number of noise sources which produce the sound field. Despite the fact that the
spectral matrix is calculated accurately, this method does not suit all possible practical scenarios.

Secondly, if far field conditions are satisfied, the spectral matrix C(ω) is guaranteed to be her-
mitian as a consequence of equation (10). Figure 1 presents an 3x3 array using two reference sensors
at the top corners and its corresponding spectral matrix. The arrows between the positions represent
the transfer function between two elements. On the right hand side, each term of the spectral matrix
is plotted with a colour. As can be seen, the matrix follows a simple pattern. Therefore, it is possible
to synthesize the whole matrix by using only elements of the two rows and columns highlighted.

Figure 1. Sketch of a 3x3 array and its corresponding spectral matrix

A relative spectral matrix Crel(ω) can be obtained using any sensor as a reference. This matrix
will have common elements with C(ω) at the row and column where the reference sensor was situ-
ated. Consequently, if Crel(ω) is calculated twice but using two different reference sensors at the top
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corners of the array, all elements required for reconstructing C(ω) (highlighted elements on Figure
1) will be found. In conclusion, if measurements are undertaken under far field conditions with two
reference sensors even the whole spectral matrix can be reconstructed accurately.

In addition, asymmetrical array geometries can be implemented by calculating first a C(ω) of an
rectangular or square array which contains the asymmetric version aimed to emulate. Then, unwanted
elements could be directly removed from the spectral matrix by removing their corresponding row and
column.

2.4 Source localization and DOA algorithms

One common application for sensor arrays is to determine the direction of arrival (DOA) of
propagating wavefronts. In this section two different techniques are assessed: conventional sum and
delay beamforming and Multiple Signal Classification (MUSIC) applied to source localization.

2.4.1 Conventional Beamforming

Generally, an array receives spatially propagating signals and processes them to estimate their
direction of arrival; it acts as a spatially discriminating filter [7]. This spatial filtering operation is
known as beamforming. An conventional array processor steers a beam to a particular direction by
computing a properly weighted sum of the individual sensor signals. Thus, this procedure results in
the coherent addition of signals coming from the direction of focus, maximising the energy in the
beamformer output, whereas signals from other directions will be attenuated.

For short or intermediate distance away from a noise source, spherical propagation of the wave-
front given in Equation (4) should be taken into account. If the sound field is produced by a simple
source, waves arriving at the array can be characterised by

B(ω) =
1

L

L∑
n=1

preln (ω)e−jωτn =
1

L

L∑
n=1

preln (ω)e−jk rn

where τn is the delay necessary to apply to the signal recorded by the L transducers for focusing the
beam towards the source. If the array is sufficiently far from the source, the resulting wavefronts
sampled by the array may be regarded as plane waves. In this case, τn can be defined as a function of
a unit vector γ̂ related to the position of the transducer ~x,

τn =
γ̂ · ~x
c

(12)

Therefore, evaluating Equation (12) for far field conditions leads to

Bff (ω) =
1

L

L∑
n=1

preln (ω)e−jγ̂·~x (13)

2.4.2 Multiple Signal Classification

MUSIC is an acronym which stands for Multiple Signal classification. It is a high resolution
technique based on exploiting the eigenstructure of the spectral matrix [8]. If D uncorrelated signals
are impinging on L elements of an array, the eigenstructure of the spectral matrix can be used to
distinguish between signal subspace, defined by D high eigenvalues; and noise subspace, constituted
by L−D low energy components. Then, the spectral matrix can be divided into two different terms,
i.e.

C(ω) = ACSS A
H + σ2

nI (14)
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where A = [a(σ1), a(σ2), a(σ3), ...a(σD)] is L ×D array steering matrix; σ2
n is the noise vari-

ance and CSS(ω) = [s1(k), s2(k), s3(k), ...sD(k)] is D × D source spectral matrix. C has D eigen-
vectors associated with signals and L−D eigenvectors associated with the noise. Hence, we can then
construct the L× (L−D) subspace spanned by the noise eigenvectors such that

VN = [v1, v2, v3, ...vL−D] (15)

The noise subspace eigenvectors are orthogonal to array steering vectors at the angles of arrivals
σ1, σ2, σ3, σD. Consequently, the MUSIC Pseudospectrum is given as

PMUSIC(σ) = |a(σ)HVNV H
N a(σ)|

−1
(16)

3. Simulations

For techniques which require use the spectral matrix, it has to be synthesized assuming far field
conditions for handling a symmetric matrix. There is an inherent positional error in the method used.
This error will depend on the distance from the source. Figure 2 shows the error variation by changing
separation between the source and the array.

Figure 2. MUSIC positional error after synthesize the spectral matrix for different separation distance rn

4. Instrumentation and measurement setup

A source localization experiment has been undertaken in a small anechoic chamber of the Insti-
tute of Sound and Vibration (UK). Two loudspeakers KEF KHT 3005 have been localised by scanning
an area of 0.5x0.35 m. The loudspeakers have been excited with broadband white noise. In addition,
two reference microphones have been allocated at the left and right top corners of the virtual mea-
surement plane.

5. Results and discussion

Three different scans of 3 minutes each have been undertaken. Positions with less than three
sweeps within a block have been removed in order to avoid poor spectral estimations. So, 118 virtual
elements have been used to generate the results presented in this section.
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5.1 Conventional Beamforming

A conventional beamforming (CBF) algorithm has been implemented according to Equation
(12). First of all, Figure 3 shows on the left hand side an error graph between theoretical and estimated
noise source positions for different frequencies. As can be seen, CBF works very stable along the
spectral range evaluated. Low variance results which guarantee good position estimation with fairly
constant bias across the spectrum. It is also important to highlight that localization is preserved even
at very high frequencies such as 8 kHz, when the width of each area of the grid (0.03 m) becomes
comparable to the wavelength (< 0.05 m) and small errors become significant.

In addition, a localization map at 5 kHz is presented on the right hand side of Figure 3. The huge
number of sensors emulated (118) produce a very clear picture with two clear maxima. Assessing
how localization maps change across frequency, the width of the lobes decrease significantly at high
frequencies whereas the noise increases. This is because the number of wavelengths at the measured
plane increases with frequency, leading to sharper graphs. Meanwhile, as the areas of the grid become
significant, noise artefacts become significant.

Figure 3. CBF error across the spectrum (left) and CBF localization map at 5 kHz (right)

5.2 MUSIC

This parametric spectral estimation technique has been implemented following Equation (16)
for source localization purposes. As explained in Section 2.4.2, MUSIC relies on eigenvalue decom-
position of the spectral matrix of the data. Ideally, the eigenspectrum will follow the same trend for
the whole frequency range if, for example, the sound field is produced by two identical incoherent
sources. Nonetheless, in practise, spectral estimation is never exact and small errors will become
significant. Figure 4 presents the error of the measurements across the spectrum (left) and sound lo-
calization map for 5 kHz (right). As can be seen the peaks are sharper than with CBF and the signal
to noise ratio is also greater. However, MUSIC behaves less stable across the spectrum, although, on
average it will give the same result with better resolution. Thereofore, superresolution is reached at
the cost of higher sensitivity to noise.

6. Conclusions

A novel technique for mapping phase variations across a time stationary sound field has been
introduced. Not only the theoretical bases have been presented but also, experimental data has been
shown. The MUSIC methods promises superresolution at the cost of higher sensitivity to noise.
Conventional beamforming has lead to superior results in this framework, possibly due to the lower
sensitivity to the approximations which are inherently present in the method.
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Figure 4. MUSIC error across the spectrum (left) and MUSIC localization map at 5 kHz (right)

Results obtained probe the reliability of the proposed method which has a series of advantages
compared to using conventional arrays. Firstly, the cost of two or three transducer (depending of
the localization technique used) compared with 118 which has been emulated is a huge difference.
Also, due to the adaptive resolution, a greater frequency range can be assessed. Moreover, high
density microphone arrays will acoustically bias the results significantly, whereas “virtual arrays” do
not. Also, the flexibility of the method allows to easily rescale the size of the plane measured from
a couple of centimetres to several meters just by moving the camera used to acquire the tracking
information.
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