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Characterizing directivity patterns of musical instruments implicitly requires measuring non-
stationary sound fields. A priori, this fact implies using multichannel methods to assess any
change along time at all regarded positions. However, this paper explores the advantages
of using a static reference sensor close to the musical instrument to track any variations in
the sound field during the measurement, allowing scanning techniques to be performed. The
method developed is based on taking transfer functions between the scanning transducer and
the reference sensor. Then, the number of positions measured is limited for each frequency
depending on the dynamic range acquired. Experimental results of violin directivity patterns
are presented along with a discussion focused on comparing the technique proposed with con-
ventional multichannel measurement methods.

1. Introduction

Human understanding is mainly based on seeing; leading people to create many visual repre-
sentations to help understanding what is going on when things cannot be seen. Sound representations
have been key aids for understanding practical problems regarding noise issues. Many different tech-
niques have been implemented over years for charting sound fields and noise sources but always with
a trade-off between cost, time and accuracy.

Already from the late 1980’s scan-based methods have been introduced for mapping stationary
sound fields [1]. Recent works have introduced a novel scanning method called “Scan & Paint” [2–4]
for measuring sound pressure, particle velocity, intensity, sound absorption and acoustic impedance
in an efficient way. The properties of the sound field are determined and visualized via the following
routine: while the probe is moved slowly over the surface, pressure and velocity are recorded and, at
the same time, a video image is captured. Next, all data is processed. At each time interval, the video
image is used to determine the location of the sensor. The absolute position of the probe is unknown,
only the 2D coordinates relative to the background image are computed. Then, an acoustic color plot
is generated.

Scanning methods are proven to minimize the measurement time and cost, but conventionally
constrained to mapping stationary sound fields. In the literature of Near field Acoustic Holography
(NAH), several signal processing techniques have been proposed to overcome some problems de-
rived from the degree of time stationary of the source [5–7]. However, these techniques require using
multiple references along with scanning microphone arrays. In contrast, this paper is focused on pre-
senting an effective method for directly visualizing sound radiation patterns without back-propagating
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the sound field to the source and using only one fixed and one moving sensor.
The sound radiation patterns of a musical instrument is a classic example of non-stationary

sound source. There are no standard regulations regarding the measurement procedure required for
characterizing their directivity patterns due to its practical difficulties. Directivity patters play an
important role on virtual acoustics, specially when computing room auralizations [8]. Therefore,
finding a measurement technique which allows to characterize the sound radiated of a non-stationary
source in a fast and efficient way will simplify the process remarkably.

The following sections will present the theory and methodology required to implement the
proposed measurement technique. Furthermore, the directivity patterns of a violin are presented.
Finally, advantages and disadvantages of the novel technique are discussed.

2. Theory

The problem addressed by this article is depicted in Figure 1. A scanning pressure microphone
is moved across a planar surface which has a separation distanceRwith the sound source. This section
derive the theoretical basis required in order to understand how to extract directivity information using
only two transducers.

Figure 1. Sketch of the assessed problem

Any complex sound source can be represented as a set of monopoles closely distributed in
the space. The superposition of two or more monopoles under free field conditions will generate a
pressure sound field which can be modeled as

p(θ, ϕ, r, t) =
A

r
D(θ, ϕ)ej(ωt−kr) (1)

where A is a complex time independent term which relates source characteristics such as volume
velocity, specific acoustic impedance and wavenumber; ω is the angular frequency; r is the distance
between source center and measurement plane; and D(θ, ϕ) is a directivity term which can take ar-
bitrary values for different radiation angles of azimuth (θ) and elevation (ϕ). Evaluating the above
expression for simple sources such as a monopole source, D(θ, ϕ) will simplify to unity for all possi-
ble angles. In contrast, D(θ, ϕ) could also be expressed using first order Bessel functions if the source
behaves as a baffled circular piston [9]. In contrast, musical instruments cannot be described using
general analytical expressions. Consequently, suitable measurement procedures for characterizing
complex sound sources are required.
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Let us now evaluate Equation (1) for the two transducers shown in Figure 1. First of all, the
fixed reference position can be defined such as

p(θ̂, ϕ̂, r̂, t) = pref (t) = Bej(ωt−kr̂) (2)

where B is a complex time independent term which relates source characteristics perceived at a given
position θ̂, ϕ̂, r̂. It is important to highlight that the number of independent variables have been re-
duced but the time dependency is maintained. Secondly, it is necessary to define the projection of
each of the measured pressures across the measurement plane in a sphere of radius R, i.e.

psph(θ, ϕ, t) = p(θ, ϕ, r, t)

(
R + ∆r

R

)
ej∆r (3)

where ∆r represent the euclidean distance between the corresponding sphere projection and the mea-
surement position. Figure 2 shows an example of the sound field produced by a monopole source
measured in 6 equidistant planar planes and the corresponding directivity pattern obtained after pro-
jecting the data into a sphere.

Figure 2. Example of a monopole radiattion measurements transformed to a spherical directivity pattern

So far, arbitrary signals in the time domain have been assessed. However, by defining a time har-
monic excitation we can relate Equation (2) and Equation (3) in the frequency domain by computing
the transfer function estimator H1 such as

H1(θ, ϕ, ω) =
F{psph(θ, ϕ, t)}

F{pref (t)}
= D(θ, ϕ)

(
A(ω)

B(ω)

e−jkR

R

)
(4)

where F{·} denotes time Fourier transform. Since the right hand side of Equation (4) is independent
of the position of the moving sensor we can demonstrate that the transfer function estimator H1 could
be understood as a scaled version of the directivity term D(θ, ϕ), hence

H1(θ, ϕ, ω) = D(θ, ϕ)γ(ω) (5)

where γ(ω) is a scaling factor which depends on the position of the reference sensor, radius R and the
source characteristics. From Equation (5) can be inferred that measuring transfer function between
fixed and projected signals leads to a time independent expression for calculating the directivity of
any sound source. This key factor allows using scanning techniques even though the source excitation
is non stationary. Tracking the position of the moving sensor across time make possible to represent
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transfer function variations across space, which are directly related with the radiation patterns of the
sound source. Nevertheless, errors could appear if not only the absolute level varies but also the
spectral content changes along time. An algorithm for selecting the spatial positions depending on
the dynamic range of the assessed frequency is presented in the next section in order to overcome this
potential problems.

In summary, it has been shown analytically that the transfer functions between a fixed and a
moving transducer gives a time independent ratio which carries information about the directivity of
the sound source assessed.

3. Positional discrimination algorithm

So far it has been pointed out that taking transfer functions between a fixed and a moving trans-
ducer allows to characterize time independent relative variations across a sound field. Nonetheless,
a detailed description of the measurement scenario is required to understand how to apply a posi-
tional discrimination algorithm. Figure 3 shows a schematic view of a generic experimental setup.
This figure illustrates how a continuous time signal is driving the sound source while the scanning
microphone is moving across the sound field. A finite grid of positions can be created relative to
the location of the moving transducer. Then, the time intervals (t1, t2, ..., tn) can be linked with their
corresponding measurement positions (x1, x2, ..., xn).

Figure 3. Schematic view of the measurement scenario

Next, the time sequences measured with the moving and static sensors are combined by com-
puting the transfer function estimator H1 (see Equation (4)). This allows to assess how the sound
radiation changes across the space. Nonetheless, it is required to have sufficient spectral excitation at
the source so as to evaluate this power spatial changes. Hence, the Power-Spectral Density (PSD) of
the fixed transducer can be studied for different time intervals so as to neglect transfer functions with
poor signal to noise ratio.

A maximum dynamic range has been establish depending on the maximum transfer function
found for each frequency band. Consequently, any position with insufficient signal excitation for a
given frequency has been disregarded. This leads to have an irregular spatial grid which size changes
across the frequency domain. Figure 4 shows a representation of the procedure.

In summary, transfer functions have been mapped across space depending on the excitation
signal. The spectrogram of the reference sensor is assessed for each position to see whether there is
enough excitation on the source for each particular frequency.
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Figure 4. Diagram of the positional discrimination procedure

4. Instrumentation and experimental setup

Scanning measurements were carried out using a Microflown PU probe which contains a pres-
sure microphone along with a particle velocity sensor. The reference pressure microphone used was
a Read Instrument Microphone Fiddle Pro. This hyper-cardioid microphone was attached to the C
bout of the violin by a stainless steel spring clip. In addition, a camera “Panasonic Lumix TZ7” was
required for recording a video of the measurements.

Measurements were performed in the large anechoic chamber of the ISVR (Southampton, UK)
for achieving free-field conditions. The sound radiation of a violin was measured carrying out sweeps
one meter away from the musical instrument along surfaces of two meters by two meters.

Six different planes were scanned without modifying the measurement setup: the musician was
turned around the radiation center for the front, left, right and back plane and then she had to perform
lying on a table so as to capture the top and bottom radiation. The excitation signal measured was a
traditional music piece. The time expended in each scanning was about 4 minutes.

In addition, Figure 5 presents a picture of the measurement setup in the ISVR anechoic chamber
(left) along with a spectrogram sample extracted from one the measurements performed. As can be
inferred from this figure, the statistical properties of short time segments of the excitation signal are
not representative of the whole time series. Consequently, it can be conclude that the measurements
were performed under non time stationary conditions.

Figure 5. Experimental measurement setup (left) and spectrogram sample (right)
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5. Presenting results

One common visualization methods for presenting 3D directivity patterns is using colormaps
overlay on a mesh of the geometry used. It gives a direct feedback about radiation maxima but it
is not enough clear to follow the pattern variations across the space. Consequently, it is common
practice using polar coordinates scaling the radius of the point aimed to represent according to the
value represented by the color. Figure 6 illustrates the two representation methods explained. The
data used in both cases corresponds to the scaled directivity described in Section 2.

Figure 6. Example of a monopole radiattion measurements transformed to spherical directivity pattern

6. Directivity patterns

Figure 7 presents several examples of the measured directivity patterns at four different third
octave frequency bands: 315 Hz, 500 Hz, 1000 Hz and 1588 Hz. The X plane represent the frontal
measurement plane. Hence, only the frontal, top and right directivity can be seen in the given figure.
According to the measurement results the violin has an omnidirectional behavior at the lower fre-
quency bands. In contrast, as frequency increases the directivity patterns shapes change dramatically,
moving the radiation lobe from the front of the musician to the side, depending on the frequency band
assessed.

7. Advantages and disadvantages of the measurement procedure

Current methods for measuring non-time stationary sound field rely on using large sensor ar-
rays. The most common solution uses one sensor for each measurement position. Alternatively,
methods based on NAH can reconstruct the entire sound field by placing multiple reference trans-
ducers and then scanning an area with a large array [5]. The novel technique proposed in this paper
only requires two sensors: one static while the other is manually moved. Time, cost, simplicity, flexi-
bility and accuracy are the main issues evaluated in this section which determine the advantages and
disadvantages of choosing a measurement technique.

Time required for setting up the instrumentation and performing the measurement is always a
big issue. Manual sweeps of a single probe are a fast procedure for directly obtaining information
about a sound field. Each measurement plane was evaluated undertaken sweeps for less than 4 min-
utes, which can be seen as a reasonable amount of time for characterizing the sound field produced
by a non-stationary sound source such as violin.
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Figure 7. Directivity patterns of a violin at third octave bands of 500 Hz (top left), 1000 Hz (top right), 1260
Hz (bottom left) and 1588 Hz (bottom right) [dB]

One of the main problems of most conventional array measurement systems is the cost of the
equipment. Not only the number of transducer required for performing the measurements but also the
multichannel acquisition system rise the price strongly. The proposed two-sensor solution has far less
requirements than most of the current large multichannel applications.

The measurement protocol and the post processing stage should be fairly intuitive. The use
of a camera makes sure that all the measurement process is filmed . This has been proved to be
helpful with trouble shooting. Color maps overlaid on pictures give a direct feedback that is easy to
understand.

The flexibility of the proposed method is one of its stronger advantages against array-based
solutions. The novel technique allows to setup all instrumentation and resize the measurement plane
just by moving the camera. Furthermore, the spatial resolution of the measurement is selected after
performing the measurement allowing to assess several spatial distribution a posteriori. The criteria
for selecting the blocks size of the grid depends on the frequency investigated and the duration of the
measurement (as the sweep get longer the grid blocks can be smaller).

The main outcome of a measurement technique is to ensure accurate and reliable results. The
smooth radiation maps presented in Figure 7 support the great potential of combining the Scan &
Paint measurement techniques with the positional discrimination algorithm. The more measurements
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per plane, the more accurate the results will be since the small errors due to human factors can be
minimized when averaging all the sessions. Besides, the fact that there are not physical fixed positions
leads to minimize the interference effect of placing so many objects in the sound field.

8. Conclusions

A theoretical base for measuring time independent relative changes in a sound field has been
derived. Moreover, an algorithm for selecting the spatial areas with same signal excitation has been
proposed. The combination of the described principles with the scanning measurement technique
Scan & Paint lead to a novel method for characterizing directivity patterns of non-stationary sound
sources using a scan based two-channel system. Results presented support the successful imple-
mentation of the method. The measurement technique presented reduces the number of transducers,
measurement time and cost, while maximizes the flexibility of current methods.
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