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Topological interface physics of defects and textures in spinor Bose-Einstein condensates
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We provide a detailed description of our previously proposed scheme for topological interface engineering
with constructed defects and textures perforating across coherent interfaces between different broken symmetries
[Borgh and Ruostekoski, Phys. Rev. Lett. 109, 015302 (2012)]. We consider a spin-1 Bose-Einstein condensate, in
which polar and ferromagnetic phases are prepared in spatially separated regions. We show that a stable coherent
interface is established between the two phases, allowing defects of different topology to connect continuously
across the boundary. We provide analytic constructions of interface-crossing defect solutions that could be
experimentally phase imprinted using existing technology. By numerically minimizing the energy, we calculate
the core structures of interface-crossing defect configurations. We demonstrate nontrivial core deformations to
considerably more complex structures, such as the formation of an arch-shaped half-quantum line defect, an
Alice arch, at the interface, with the topological charge of a point defect, whose emergence may be understood
by the “hairy ball” theorem. Another example of an energetically stable object is the connection of a coreless
vortex to a pair of half-quantum vortices. We show that rotation leads to spontaneous nucleation of defects in
which a coreless vortex continuously transforms to a half-quantum vortex across the interface.
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I. INTRODUCTION

In systems described by an order parameter, for example
superfluid liquid helium, liquid crystals, and Bose-Einstein
condensates (BECs), the symmetry properties of this order
parameter determine the topological properties of defects
and textures [1]. Systems with vector order parameters, such
as superfluid liquid 3He [2] and spinor BECs [3–5], may
exist in several distinct phases. Each phase corresponds to
a different ground-state manifold of energetically degenerate
and physically distinguishable states, resulting in different
order-parameter symmetries. When two phases coexist in
spatially separated regions in the same medium, topological
defects cannot penetrate the boundary unchanged, but must
either terminate at the interface or connect nontrivially to
an object on the other side. Topological interfaces appear
as important objects in seemingly distant areas of physics.
For example, it has been proposed that a series of symmetry
breakings in the early universe leads to the formation of
cosmic strings that terminate on boundaries between regions of
different vacua [6,7]. Complex interface physics also arises in
string theory from collisions between branes during inflation
[8,9], in condensed-matter theory in exotic superconductivity
[10], and in superfluid liquid 3He when a magnetic-field
gradient causes A and B phases to coexist, resulting in
the possibility of nontrivial defects at the phase boundary
[11–14]. Parallels between defects in superfluids and objects
in cosmology [7] led to the suggestion of using superfluid
systems to study analogs of cosmological phenomena in
the laboratory [12,15], including defect formation in phase
transitions [16–18], analogs of brane annihilation [14,19], and
structures similar to cosmic vortons [20–22].

Here we present a detailed description of our proposal
for an experimentally feasible scheme to study topological
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interface physics in a gas of ultracold atoms with spin degree
of freedom [23]. A stable, coherent interface between two
ground-state manifolds of different broken symmetries may
be prepared by local manipulation of the interaction strengths
of different scattering channels of the atoms. The proposed
technique can be used to realize, e.g., two different ground-
state manifolds simultaneously in spatially separate regions.
Defects and textures crossing the interface, and connecting
objects of different topologies, can be created by controlled
phase imprinting of elementary vortex and soliton structures
or by rotating the gas. Under dissipation the phase-imprinted
defect configurations relax to more complex objects for which
the continuous spinor wave function interpolates smoothly
across the topological interface.

As an example we consider defects and textures crossing
the boundary between polar and ferromagnetic (FM) regions in
a spin-1 BEC and show that a coherent interface is established
within a continuous condensate wave function. We analyt-
ically construct prototype spinor wave functions represent-
ing interface-crossing defect structures, and by numerically
minimizing their energy, we evaluate the configurations that
emerge as a result of energy dissipation in spin-1 BECs.
The simulations demonstrate nontrivial core deformations and
defect structures. We characterize the defect cores, analyze
the energetic stability of defect solutions crossing the interface,
and explain how the defect-carrying condensate wave function
continuously interpolates across the interface. We also demon-
strate nucleation of interface-crossing defects consisting of a
coreless vortex that connects to a half-quantum vortex.

A spinor BEC [3–5] is created in an all-optical trap
so that the spin degree of freedom of the atoms is not
frozen out by magnetic fields. Spin rotations then combine
with the condensate phase to form a large set of physically
distinguishable states. Because also the contact interaction
between the atoms in the condensate becomes spin dependent,
energetically degenerate subsets depend on the strength and
sign of the spin-dependent contributions. Hence the spinor
BEC exhibits a rich diagram of phases with different broken
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order-parameter symmetries [24–30] as a function of the
interaction strengths. This is similar to superfluid liquid 3He
where nonzero spin and orbital angular momenta of the Cooper
pairs combine to form phases with different order-parameter
symmetries [2] supporting a variety of defects and textures
[31].

Modern techniques used in experiments with ultracold
atoms provide tools for unprecedented control over system
parameters and for accurate measurements, including the
possibility for in situ observation of vortices in spinor BECs.
As there has been considerable interest in the studies of
the stability properties of field-theoretical solitons in various
physical systems [32–35], it is therefore not surprising that
this is also followed by an accelerating theoretical interest in
a variety of stable and metastable objects in multicomponent
atomic BECs. Perhaps the simplest of such structures where
the multicomponent nature of BECs plays an important role
are one-dimensional (1D) vector solitons [36–43], typically
consisting of stable combinations of dark and bright solitons in
different condensate components. Higher-dimensional defects
and textures include vortex sheets [44] and 3D particlelike
solitons [20–22,45–47] in two-component (pseudospin-1/2)
condensates, as well as a rich phenomenology of defects
and textures in spin-1 [23,24,26,48–63], spin-2 [64–66], and
spin-3 [30,67] BECs. Interface physics has been studied in
two-component BEC systems, for example, in the context of
vortex bifurcation at energetically established interfaces in
the phase-separation regime [68,69] and interface collisions
[19]. There is a rapid parallel experimental development,
exemplified by preparation of coreless vortices and related
textures [70–73], as well as observations of singular vor-
tices produced in phase transitions [74], and of spin-texture
formation [75–77]. Furthermore, trapping of ultracold atoms
in artificial gauge-field potentials [78] was recently realized
experimentally [79,80]. This presents intriguing possibilities
for the stability studies of defects and textures, including those
of particlelike solitons [47].

Our study of topological interface engineering is organized
as follows: In Sec. II, we first give a brief overview of the
standard mean-field theory of the spin-1 BEC and then proceed
to give a more detailed presentation of the topology and basic
defects of the FM and polar phases. In Sec. III we discuss how
an interface between FM and polar regions can be created, and
then identify and explicitly construct interface-crossing defect
solutions. We proceed to minimize the energy of the defect
solutions in Sec. IV and describe the emerging structures of
the defect core and the energetic stability of the defects. We
explicitly demonstrate continuity of the spinor wave function
across the stable interface. We summarize our findings in
Sec. V.

II. SPIN-1 BEC

A. Mean-field theory of spin-1 BEC

We consider a trapped spin-1 atomic BEC confined in an
all-optical, harmonic trap. We may then employ the classic
Gross-Pitaevskii mean-field theory describing a spatially
inhomogeneous macroscopic condensate wave function �(r).
Since we are considering spin-1 atoms, �(r) can be written

in terms of the density of atoms n(r) and a normalized,
three-component spinor ζ (r) in the basis of spin projection
onto the z axis as

�(r) =
√

n(r)ζ (r) =
√

n(r)

⎛
⎜⎝

ζ+(r)

ζ0(r)

ζ−(r)

⎞
⎟⎠ , ζ †ζ = 1. (1)

The mean-field Hamiltonian density then reads [24,25,81]

H = h̄2

2m
|∇�|2 + V (r)n + c0

2
n2 + c2

2
n2|〈F̂〉|2

+ g1n〈B · F̂〉 + g2n〈(B · F̂)2〉, (2)

where V (r) is an external trapping potential and m is the atomic
mass. In this work we consider the atoms trapped in a slightly
elongated potential, so that

V (r) = 1

2
mω2

(
x2 + y2 + z2

4

)
. (3)

The spin operator F̂ is given by a vector of spin-1 Pauli
matrices. Its expectation value 〈F̂〉 = ζ †

αF̂αβζβ is the local spin
vector. A weak external magnetic field may be imposed, in
which case linear and quadratic Zeeman shifts as described
by the last two terms will arise. Most of our numerical results
correspond to cases for which the Zeeman splitting is assumed
to be negligible. We note, however, that all our results remain
qualitatively the same in the presence of weak Zeeman splitting
energy.

We also investigate the configurations of defects and
textures in a rotating trap. In that case we minimize the free
energy in a rotating frame, corresponding to

H ′ = H − 〈� · L̂〉
=

∫
d3r

[
H(r) + ih̄��†(r)

(
x

∂

∂y
− y

∂

∂x

)
�(r)

]
, (4)

where we have assumed the axis of rotation defined by � to be
along the positive z axis, and L̂ denotes the angular-momentum
operator.

The two interaction terms in Eq. (2) arise from the fact that
the spins of two colliding spin-1 atoms may combine to either
0 or 2. There are therefore two s-wave scattering channels,
with scattering lengths a0 and a2, contributing to the contact
interaction between the atoms in the condensate. Standard
angular-momentum algebra [81] separates the interaction
energy into one spin-independent contribution and one term
that depends on the magnitude of the spin. The strengths of
the spin-independent and spin-dependent interaction terms are
then given by

c0 = 4πh̄2(2a2 + a0)

3m
, c2 = 4πh̄2(a2 − a0)

3m
, (5)

respectively. Additional magnetic dipole-dipole interactions
that may influence the spin textures [62,75,82] are neglected
here.

The sign of c2, the strength of the spin-dependent interac-
tion, determines the magnitude of the spin vector in a uniform
ground state, leading to the two topologically distinct phases
of the spin-1 BEC. If c2 < 0, energy minimization favors
maximized spin magnitude |〈F̂〉| = 1 in the FM phase. This
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is the case for 87Rb where c0/c2 � −216 [83]. Conversely,
if c2 > 0, as for 23Na with c0/c2 � 31 [84], |〈F̂〉| = 0 is
favored in the polar phase. The two phases are described by
fundamentally different order parameters, supporting different
families of defects, which we will discuss in some detail below.

Characteristic length scales arise from the interaction terms.
The spin-independent interaction defines the usual density
healing length

ξn = 1√
8πc0n

, (6)

which describes the length scale over which the atom density
n(r) heals around a local density depletion. In addition, the
spin-dependent interaction gives rise to a spin healing length

ξF = 1√
8π |c2|n

, (7)

defining the distance over which |〈F̂(r)〉| heals as the order
parameter is excited out of its ground-state manifold. That
situation arises in two cases of importance for the analysis
presented in this article. First, the core of a singular vortex
in one phase may fill with atoms such that the atoms at
the singularity exhibit the opposite phase. This can happen
since the singularity of the spinor order parameter may
be accommodated either by forcing the density to zero or
by requiring that the wave function become orthogonal to
the ground-state manifold (meaning locally perturbing |〈F̂〉|)
[55,63]. The size of the filled vortex core is then determined
by ξF . Second, we are interested here in the interface between
polar and FM regions. For the condensate wave function to
interpolate between the two manifolds, the spin magnitude
must leave its ground-state value close to the interface, which
will therefore acquire a width determined by ξF .

B. Ground-state manifolds and basic defects

The order-parameter manifold is the set of energetically
degenerate, physically distinguishable states. In the conden-
sation transition, this symmetry is spontaneously broken, and
this broken symmetry determines the topologically distinct
families of defects. The FM and polar phases of the spin-1 BEC
are described by very different order-parameter manifolds,
leading to dramatically different possible vortex states. Before
discussing the interface between FM and polar regions in the
next section, we here give an overview of the families of defects
in the purely FM or purely polar BEC.

1. FM phase

If c2 < 0 in Eq. (2), the spin-dependent interaction will
favor a state that maximizes the magnitude of the spin
everywhere, such that |〈F̂〉| = 1. A representative FM spinor
is given by ζ = (1,0,0)T , such that the spin vector is parallel
with the z axis. From this representative spinor, a general FM
spinor may be constructed by a 3D spin rotation,

U (α,β,γ ) = exp(−iFzα) exp(−iFyβ) exp(−iFzγ ), (8)

defined by three Euler angles, together with a condensate phase
φ, as

ζ f = eiφU (α,β,γ )

⎛
⎜⎝

1

0

0

⎞
⎟⎠ = e−iγ ′

√
2

⎛
⎜⎝

√
2e−iα cos2 β

2

sin β√
2eiα sin2 β

2

⎞
⎟⎠ , (9)

where the condensate phase is absorbed in the third Euler
angle: γ ′ = γ − φ. Any FM spinor is thus described by some
particular choice for (α,β,γ ′). Therefore the broken symmetry
of the ground-state manifold is represented by the group of 3D
rotations SO(3). The spin vector is given by the Euler angles
as 〈F̂〉 = (cos α sin β, sin α sin β, cos β).

Topological stability of line defects can be characterized
by studying closed contours around the defect line and the
mapping of these contours into order-parameter space [1]. If
the image in order-parameter space of a closed loop encircling
a line defect can be contracted to a point, the defect is not
topologically stable. The order-parameter space of a FM spin-1
BEC, SO(3), can be represented geometrically as S3 (the
unit sphere in four dimensions) with diametrically opposite
points identified. If a closed contour connects such identified
points more than once, any pair of such connections can
be eliminated by continuous deformation of the contour.
Therefore any contour with an even number of connections
can be contracted to a point, whereas a contour with an
odd number of connections can be deformed into a contour
with just one connection. Hence we have only two distinct
classes of vortices: singly quantized, singular vortices that
correspond to noncontractible loops, and nonsingular, coreless
vortices representing contractible loops. All other vortices can
be transformed to either one of these by local deformations of
the order parameter. Mathematically, these equivalence classes
are characterized by the two elements of the first homotopy
group, π1[SO(3)] = Z2.

The simplest representative of the class of singular line
defects is constructed as a 2π winding of the condensate phase
such that γ ′ = −ϕ in Eq. (9), where ϕ is the azimuthal angle.
This results in a line singularity oriented along the z axis. The
spin texture is uniform, such that α and β are arbitrary but
constant. The vortex is then described by the spinor

ζ s(r) = eiϕ

√
2

⎛
⎜⎝

√
2e−iα cos2 β

2

sin β√
2eiα sin2 β

2

⎞
⎟⎠ . (10)

From ζ s other vortices in the same equivalence class can
be formed by local spin rotations. For example, we may rotate
the spin vector such that at each point it points radially away
from the vortex line, as illustrated in Fig. 1(a). This vortex
corresponds to the choices α = ϕ, β = π/2, and γ ′ = 0 in
Eq. (9), and is described by

ζ sv = 1

2

⎛
⎜⎝

e−iϕ

√
2

eiϕ

⎞
⎟⎠ . (11)

This singular spin vortex [24,25] illustrates another important
aspect of the FM phase: circulation alone is not quantized. The
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(a) (b)

(c) (d)

FIG. 1. (Color online) Nontrivial vortices in the FM phase. (a) A
radial disgyration of the spin vector (red cones) around the singular
core represents a spin vortex. This vortex carries a spin current
but no mass circulation, a manifestation of the nonquantization of
circulation alone in the FM phase. (b) All vortices in the class of
singly quantized, singular vortices can be deformed into each other
by local spin rotations. For example, it is possible to form a spin
vortex with a cross-disgyration of the spin vector. (c) In addition to the
one class of singular vortices, the FM phase also supports nontrivial,
nonsingular vortices. In a coreless vortex the order parameter remains
nonsingular everywhere in the vortex structure. The characteristic
fountain structure of the spin is formed by a rotation of the spin vector
around the vortex line, together with a winding of the condensate
phase, corresponding to spin rotations about the local spin vector
[indicated by the orthogonal green and blue (light and dark gray)
vectors]. (d) Like the class of singular line defects, members of the
family of nonsingular vortices are related by local deformations of
the order parameter allowing different vortex configurations.

superfluid velocity in the FM phase [24],

v = − h̄

m
(∇γ ′ + cos β∇α), (12)

vanishes when γ ′ = 0 and β = π/2. Therefore the circulation
is in fact zero in ζ sv, but it does carry a nonvanishing spin
current around a singularity of the FM spin vector, whose
structure is similar to an analogous vortex with a radial
disgyration of the angular momentum vector in 3He. Further
local spin rotations yield other singular vortices with different
spin structures, such as the cross disgyration shown in Fig. 1(b)
or a tangential disgyration with 〈F̂〉 = ϕ̂.

A striking manifestation of the nonquantization of circu-
lation in the FM phase is the formation of a nonsingular
coreless vortex. This can be constructed as a combined rotation
of the spin vector and the condensate phase [Fig. 1(c)]:
α = −γ ′ = ϕ, yielding the spinor

ζ cl(r) = 1√
2

⎛
⎜⎝

√
2 cos2 β(ρ)

2

eiϕ sin β(ρ)√
2e2iϕ sin2 β(ρ)

2

⎞
⎟⎠ , (13)

where the Euler angle β is now a function of the radial distance
ρ =

√
x2 + y2, such that β → 0 as ρ → 0, keeping the spin

texture continuous. The superfluid velocity, Eq. (12), becomes

vcl = h̄

mρ
(1 − cos β)ϕ̂, (14)

and increases smoothly from zero at ρ = 0 as β increases
away from the vortex, the spin vector forming a fountainlike

texture. The coreless vortex in the FM phase of a spin-1 BEC is
analogous to the Anderson-Toulouse and Mermin-Ho vortices
in superfluid 3He [85,86], which differ by the boundary
condition imposed on the angular momentum vector at the
container wall. In the BEC there is no hard container wall, and
the amount by which β turns from the vortex line to the edge
of the cloud is determined by the rotation of the trap, causing
the total angular momentum to vary smoothly with rotation.

The coreless vortex can be continuously transformed
into other members of the class of nonsingular vortices,
including the vortex-free state, by purely local operations.
The continuous deformation is a striking consequence of the
two-element character of the fundamental group of the SO(3)
order-parameter space: the doubly quantized vortex belongs
to the same topological class as the nonsingular vortices and
the vortex-free state, and can be continuously unwound, if the
orientation of the spin texture is not fixed outside the structure.
Another nontrivial nonsingular vortex with continuous spin
textures is displayed in Fig. 1(d).

We have now identified two topologically distinct classes of
vortices that can both carry mass and spin circulation in the FM
spin-1 BEC. A similar situation applies in the A phase of 3He.
There the singular vortex has the lower energy, but the energy
barrier for nucleation is lower for the nonsingular vortex [87].
In a rotating FM spin-1 BEC, the coreless vortex has the lower
energy and the lower nucleation barrier, and consequently
the ground state is made up of nonsingular coreless vortices
for sufficiently rapid rotation [53,54,57,58,61]. However, it
is also possible to form a singly quantized, singular vortex
[51,52], which despite not being the lowest-energy state at any
frequency of rotation can nevertheless be energetically stable
as a local energy minimum [63].

So far we have considered line defects, classified by the
first homotopy group π1. Point defects—monopoles—are
analogously classified by the second homotopy group π2.
For the FM order-parameter manifold, the second homotopy
group is the trivial group, π2[SO(3)] = 0, indicating that the
FM phase does not strictly speaking support point defects.
However, it is possible to form a spinor with a monopole
structure of the spin vector (a radial hedgehog) as the
termination of a doubly quantized vortex [56] (Fig. 2). This
is the analog of the Dirac monopole in quantum field theory,
and the doubly quantized vortex line is called the Dirac string.
The corresponding spinor is written by choosing α = γ ′ = ϕ

and β = θ (where θ and ϕ are the polar and azimuthal angles,

FIG. 2. (Color online) An analog of the field-theoretical Dirac
monopole can be constructed in the FM phase of the spin-1 BEC.
The radial hedgehog monopole structure of the spin vector (cones)
appears as the termination of a doubly quantized, singular vortex line.
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respectively) to form

ζ D = 1√
2

⎛
⎜⎝

√
2e−2iϕ cos2 θ

2

e−iϕ sin θ√
2 sin2 θ

2

⎞
⎟⎠ . (15)

This Dirac monopole can be continuously deformed into the
spin structure of the coreless vortex [56].

2. Polar phase

We next consider c2 > 0 in Eq. (2), in which case the spin-
dependent interaction favors a state with |〈F̂〉| = 0. A simple
representative polar spinor fulfilling this requirement is ζ =
(0,1,0)T . As for the FM phase, the general polar spinor is
found by applying a 3D spin rotation U (α,β,γ ) together with
a condensate phase φ:

ζ p = eiφU (α,β,γ )

⎛
⎜⎝

0

1

0

⎞
⎟⎠ = eiφ

√
2

⎛
⎜⎝

−e−iα sin β√
2 cos β

eiα sin β

⎞
⎟⎠ . (16)

We now make the important observation that the unit vector
d̂ = (cos α sin β, sin α sin β, cos β) defines the local direction
of macroscopic condensate spin quantization. This allows us
to rewrite ζ p in terms of this vector as [55]

ζ p = eiφ

√
2

⎛
⎜⎝

−dx + idy√
2dz

dx + idy

⎞
⎟⎠ . (17)

The condensate phase φ, which takes values on a unit circle,
and the unit vector d̂, taking values on a sphere, thus together
fully specify the order parameter in the polar phase. Note,
however, that ζ p(φ,d̂) = ζ p(φ + π, − d̂). These two states
must be identified in order to avoid double counting. The
order parameter space therefore becomes [U(1) × S2]/Z2,
where the factorization by the two-element group Z2 results
from the identification. The vector d̂ should thus be taken
to be unoriented and defines a nematic axis [26], and the
order-parameter is correspondingly said to exhibit nematic
order, which leads to parallels with the A phase of superfluid
3He.

A simple singly quantized vortex can again be constructed
as a 2π winding of the condensate phase, keeping d̂ uniform
(choosing α and β to be constants):

ζ 1 = eiϕ

√
2

⎛
⎜⎝

−e−iα sin β√
2 cos β

eiα sin β

⎞
⎟⎠ . (18)

In the polar phase the superfluid velocity is [4]

v = h̄

m
∇φ. (19)

We observe that v depends only on the gradient of the
condensate phase, and is independent of d̂. This means that
another singly quantized vortex, with the same circulation as
that described by Eq. (18), can be formed by allowing d̂ to
wind by 2π (thus preserving single-valuedness of the order
parameter) in addition to the winding of the condensate phase.

This is achieved by choosing α = φ = ϕ in Eq. (16), yielding
the spinor

ζ 1′ = 1√
2

⎛
⎜⎝

− sin β√
2eiϕ cos β

e2iϕ sin β

⎞
⎟⎠ . (20)

One can further show from Eq. (19) that circulation is
quantized in the polar phase. However, due to the nematic
order, the smallest circulation possible is half that of a singly
quantized vortex. The equivalence ζ p(φ,d̂) = ζ p(φ + π, − d̂)
implies that we can allow the condensate phase to wind
by π along a loop encircling the vortex and still preserve
single-valuedness of the the order parameter by a simultaneous
d̂ → −d̂ winding of the nematic axis [49]. If d̂ is in the (x,y)
plane, a half-quantum vortex can be written

ζ hq = eiϕ/2

√
2

⎛
⎜⎝

−e−iϕ/2

0

eiϕ/2

⎞
⎟⎠ = 1√

2

⎛
⎜⎝

−1

0

eiϕ

⎞
⎟⎠ . (21)

In general, the axis about which d̂ winds need not coincide
with the vortex core. Figure 3(b) shows a half-quantum vortex
where d̂ winds about an axis perpendicular to the vortex line.
This vortex is related to that shown in Fig. 3(a) and defined
by Eq. (21) by a spin rotation. The resulting spinor wave
function may appear quite complicated, but the π winding of
the nematic axis still allows us to identify the vortex.

Thus circulation is quantized in the polar phase, and indeed
one can show that π1{[U(1) × S2]/Z2} = Z. The topological
charges 1/2, 1, 3/2, etc., are additive. For example, the
state with two half-quantum vortices belongs to the same
equivalence class as the singly quantized vortices. This
observation shall prove important for understanding the core
structure of defects that cross a polar-FM interface.

In addition to singular line defects, the polar phase
also supports singular point defects [50,55]: A spherically
symmetric point defect, analogous to the ’t Hooft–Polyakov
monopole in quantum field theory, is formed by choosing
d̂ = r̂ = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) in Eq. (16), such that

(a) (b)

FIG. 3. (Color online) The polar phase of the spin-1 BEC supports
half-quantum vortices, constructed as a π winding of the condensate
phase (which determines the quantized circulation) together with a
d̂ → −d̂ winding of the nematic axis. The identification ζ p(φ,d̂) =
ζ p(φ + π, − d̂) keeps the order parameter single valued. (a) Half-
quantum vortex as described by Eq. (21). The nematic axis (cones)
winds by π in the plane perpendicular to the vortex line as the core is
encircled. The disclination plane where the d̂ ↔ −d̂ identification is
made is indicated by the dashed line. (b) The winding of the nematic
axis need not stay in the plane perpendicular to the vortex line. For
example, a half-quantum vortex can also be constructed where d̂
winds in a plane parallel to the vortex line as the defect is encircled.
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the vector field d̂ forms a radial hedgehog structure,

ζ pm = 1√
2

⎛
⎜⎝

−e−iϕ sin θ√
2 cos θ

eiϕ sin θ

⎞
⎟⎠ . (22)

Here a singular point defect is located at the origin. The two
spinor wave function components ζ± form overlapping, singly
quantized vortex lines with opposite circulation. The vortex
lines are oriented along the z axis, normal to a dark soliton
plane (phase kink) in the component ζ0.

III. TOPOLOGICAL INTERFACE IN A SPIN-1 BEC

The two phases of the spin-1 BEC exhibit different topolog-
ical properties of the order parameter, which is manifest in the
very different defects they support, as detailed in the previous
section. We now consider the behavior of the order parameter
and defects when the two phases are realized simultaneously
in spatially separated regions within the same ultracold gas, so
that an interface between the different ground-state manifolds
is formed.

The order-parameter manifolds in the FM and polar phases
emerge out of the full symmetry of the condensate wave func-
tion as the spin-dependent interaction selects an energetically
degenerate subset of all possible wave functions. In particular,
the order-parameter space in the FM phase consists of all spinor
wave functions that maximize the spin magnitude, |〈F̂〉| = 1,
everywhere if the texture is uniform. Correspondingly in the
polar phase, the order-parameter space is the set of wave
functions that have |〈F̂〉| = 0 everywhere. These sets are
clearly nonoverlapping. However, because they form subsets
of the same spin-1 wave function, a continuous connection
between spatially separated polar and FM manifolds is possible
by exciting the wave function out of its ground-state manifold
close to the interface, locally restoring its full symmetry.

In this section we first discuss how the interface may be
created in the spinor BEC through local manipulation of
the scattering lengths. We then identify the basic interface-
crossing defect states and explicitly construct prototype spinor
wave functions to describe them. In Sec. IV we minimize the
energy of these spinor wave functions for defect configurations
and show how this leads to a rich phenomenology of defect
structures.

A. Creating the topological interface

In order to realize a topological interface in a spinor
BEC it is necessary make the system switch continuously
between regions of different broken symmetries. Which
broken symmetry is preferred in a spin-1 BEC on energetic
grounds is determined, as explained in Sec. II A, by the spin-
dependent interaction. Therefore if one can spatially control
the interaction strength c2, Eq. (5), separate FM and polar
regions within the same BEC can be engineered. Specifically,
since c2 ∝ (a2 − a0), this implies changing the ratio a0/a2 of
the two scattering lengths of colliding spin-1 atoms such that
c2 changes sign.

The scattering lengths that determine interaction strengths
in ultracold-atom systems are routinely manipulated using
magnetic Feshbach resonances. However, this technique

cannot be used for our present purpose since the strong
magnetic fields required would freeze out the spin degree
of freedom and destroy the spinor nature of the BEC. The
possibility for engineering the scattering lengths in the spinor
BEC is instead provided by the use of either optical [88] or
microwave-induced Feshbach resonances [89], in which case
the fields can be kept sufficiently weak in order not to destroy
the spinor nature of the BEC.

We suggest constructing an interface between topologically
distinct manifolds in a spinor BEC by local adjustment of
the scattering lengths, such that regions with different-sign
c2 are created [23]. In a spin-1 BEC experiment, the spatial
dependence of the scattering lengths can then result in an
interface between coexisting FM and polar phases. Doing so,
however, presents practical challenges. If an optical Feshbach
resonance is used to manipulate one or both scattering lengths,
the spatial pattern corresponding to a sharp interface can
be imposed using a holographic mask. Optical Feshbach
resonances suffer from inelastic losses [88], but these can be
kept small for small adjustments of the scattering lengths.
Since the spin-dependent interaction is proportional to the
difference between a0 and a2, only a small relative shift
is needed to create the interface if |c2| is small, which is
true for both 87Rb and 23Na, commonly used in spinor-BEC
experiments.

Using a microwave-induced Feshbach resonance avoids the
problem of large inelastic losses, but makes engineering the
spatial profile more difficult, since, except in specific traps,
for example surface microtraps, a microwave field cannot be
focused in the same way as the laser. This problem could
be overcome by using an optically induced level shift to tune
the microwave transition off-resonant. The microwave field
could then be applied uniformly across the system, whereas
spatial control of the laser field is used to apply the optical
tuning only in the region where no shift of c2 is required.

B. Construction of prototype interface spinors

The use of optical or microwave-induced Feshbach res-
onances can thus realize spatially separated polar and FM
phases in the same spin-1 BEC, with the condensate wave
function remaining continuous, allowing, in principle, defects
to connect across the interface. In order to demonstrate the
nontrivial nature of defect penetration across the interface
between topologically distinct manifolds, we consider a spin-1
BEC where c2 abruptly changes sign at z = 0. We choose
c2 > 0 for z > 0 and c2 < 0 for z < 0, such that the interface
exists at z = 0 with the polar phase above it and the FM
phase below. In the following, we analytically construct spinor
solutions that represent physical wave functions for defects and
textures simultaneously in the two different manifolds.

The simplest vortex connection can be identified by con-
sidering a singly quantized vortex in both phases, as illustrated
schematically in Fig. 4(a). Note that a singly quantized vortex
does not mean the same thing in the two phases: the topology
that describes vortices is entirely different, one vortex being
a product of the broken symmetry manifold SO(3), with the
fundamental homotopy group of two elements, and the other
one resulting from the broken symmetry [U(1) × S2]/Z2, with
the fundamental homotopy group of integers that represent the
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(a) (b)

(c) (d)

FIG. 4. (Color online) Schematic illustrations of possible vortex
connections. The polar phase is above the interface and the FM
phase is below. (a) The simplest vortex connection to construct is
to consider a singly quantized vortex in either phase. Even though
these are different objects, representing different topologies, their
wave functions can be joined continuously across the interface. (b)
If the singly quantized vortex in the polar phase also contains a 2π

winding of the nematic axis, its spinor wave function can be made to
connect to a spinor representing a coreless vortex in the FM phase.
(c) The FM Dirac monopole has a spinor structure similar to the
coreless vortex (in fact, the monopole can be continuously unwound
into a coreless vortex [56]) and it is therefore possible for it to form
the termination point of a singly quantized polar vortex that ends at
the interface. (d) Similarly, a polar monopole on the interface can
form the termination point of a singly quantized FM spin vortex.
The spinor is constructed by noticing that both defects have common
phase windings of the spinor components.

number of half quanta of circulation. It is therefore not obvious
that these different topological objects can be continuously
joined across the interface.

In the following we show how to construct spinor wave-
function solutions that simultaneously represent a singly
quantized vortex line in both phases and perforate through the
interface with a 2π winding of the condensate phase around
the vortex line (which we take to be along the z axis). A
similar procedure is then extended to other topological defects
and textures. The joining of two singly quantized vortex lines
can be achieved by changing the sign of either of the spinor
components ζ+ or ζ−. By appropriate choice of parameters
doing so causes the spinor wave function to adjust between
the two manifolds by forcing |〈F̂〉| to switch from 0 to 1, or
else leads to a state which immediately relaxes to the desired
configuration. Physically, such a sign change in one of the
two spinor components can be obtained by introducing a
dark soliton plane (phase kink) in that component at z = 0.
The π phase shift across the soliton is then associated with
a vanishing density in that spinor component at the soliton
core. The BEC wave function, however, remains continuous
across the interface, since the remaining spinor components
have nonvanishing atom densities also at the position of the
soliton plane. The BEC wave function thus connects the two
manifolds. In this construction, the switch between polar and
FM sides is abrupt. In Sec. IV we will see that as energy is
relaxed, the interface acquires a finite width determined by the
spin healing length ξF , Eq. (7).

Following this procedure and starting from the expression
for a singular vortex in the FM phase, Eq. (10), we can write the
spinor wave function connecting two singly quantized vortices
across the polar-FM interface explicitly as

ζ 1↔s = eiϕ

√
2

⎛
⎜⎝

√
2e−iα cos2 β

2

sin β

∓√
2eiα sin2 β

2

⎞
⎟⎠ , (23)

where the negative sign is used on the polar side of the interface
and the positive sign on the FM side. Note that only the choice
β = π/2 yields |〈F̂〉| = 0 corresponding to an exactly polar
state above the interface. However, even for a different β the
spinor wave function has the appropriate vortex structure and
will quickly relax to the polar phase for z > 0 with a singly
quantized vortex. This highlights the general consideration
that even though writing exact vortex connections analytically
may be very complicated, we have a simple method for
finding approximate spinor wave functions representing defect
connections.

In Eq. (20) we demonstrated that a singly quantized vortex
in the polar phase can include a 2π winding of the nematic
axis in addition to the 2π winding of the condensate phase.
Comparing Eq. (20) with the solution for a coreless FM vortex
in Eq. (13), we note that these have a similar structure in
terms of the complex phases of the spinor components. We can
therefore construct an approximate wave function representing
the connection of a singly quantized vortex in the polar phase
with a coreless vortex on the FM side of the interface by the
insertion of a soliton plane in ζ− in Eq. (20). This yields the
interface spinor

ζ 1↔cl = 1√
2

⎛
⎜⎝

− sin β√
2eiϕ cos β

±e2iϕ sin β

⎞
⎟⎠ , (24)

where the positive sign is used on the polar side of the
interface and the negative sign on the FM side. Choosing
β = π/4 or β = 3π/4 yields |〈F̂〉| = 1 on the FM side, and
specifically the choice β = 3π/4 approximates the coreless
vortex ζ cl [Eq. (13)]. This solution relaxes to the characteristic
fountainlike spin profile to yield the state illustrated in
Fig. 4(b).

In addition to connecting to another vortex across the
interface, a vortex could also terminate on a point defect at
the interface. Such solutions can be constructed by joining
the monopole spinor wave functions of Eqs. (15) and (22) to
vortices with analogous phase windings in each of the spinor
components. For example, consider the Dirac monopole in the
FM phase [Eq. (15)]. By the same construction that resulted
in the interface-crossing defect in Eq. (24) we can connect the
singular vortex of Eq. (20) on the polar side to the monopole
of Eq. (15) at the interface by inserting a soliton plane into ζ D

− .
The resulting spinor wave function,

ζ 1↔D = 1√
2

⎛
⎜⎝

√
2e−2iϕ cos2 θ

2

e−iϕ sin θ

∓√
2 sin2 θ

2

⎞
⎟⎠ , (25)

represents the monopole on the FM side of the interface. Here
the negative sign refers to the polar side and the positive sign to
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the FM side. On the polar side the spinor has a structure similar
to Eq. (20), thus approximating a singly quantized vortex in the
polar phase. The resulting defect configuration is illustrated in
Fig. 4(c) and represents a vortex in the polar phase terminating
to a monopole at the interface. This defect is closely related
to the one shown in Fig. 4(b), as the Dirac monopole and the
coreless vortex can be deformed into each other by purely
local operations. Note also that in Eq. (25) the Dirac string
is represented by the singular polar vortex along the positive
z axis and there is no line defect on the FM side. By instead
aligning the Dirac string with the negative z axis, the doubly
quantized line defect terminates on the monopole from the FM
side, while for positive z, the spinor still represents a singular
vortex connecting to the monopole from the polar side.

In a similar way a point defect (radial hedgehog) in the polar
side [Eq. (22)] can be placed on the interface as the termination
point of a singular FM vortex. We consider a defect structure
with overlapping, singly quantized vortex lines in ζ±, both
oriented normal to the interface and of opposite circulation,
together with π phase kinks in ζ+ and ζ0. This spinor wave
function can be parametrized as

ζ sv↔pm = 1√
2

⎛
⎜⎝

∓e−iϕ sin θ√
2 cos θ

eiϕ sin θ

⎞
⎟⎠ , (26)

using the negative sign on the polar side and the positive sign
on the FM side. The resulting structure on the polar side is
that of Eq. (22), in which the nematic axis d̂ forms a radial
hedgehog d̂ = r̂ [50,55]. This represents the polar point defect
on the interface. On the FM side the spinor is similar to the
singular spin vortex ζ sv of Eq. (11) with vortex lines of opposite
winding in ζ±. Hence we have constructed on the FM side an
approximation to a spin vortex that terminates to the polar
monopole at the interface, as illustrated in Fig. 4(d).

Next we show that vortices can also be made to terminate
at the interface. In Eq. (24) and in Fig. 4(b), a singular, singly
quantized polar vortex perforates the interface to a coreless FM
vortex when a π phase kink is inserted in ζ−. The resulting
defect can be cut in half while still preserving the coherent
interface with a continuous order-parameter field by inserting
an additional phase kink in ζ0. This allows the vortices on
different sides of the interface to move apart:

ζ cut = 1√
2

⎛
⎜⎝

− sin β√
2eiϕ cos β

e2iϕ sin β

⎞
⎟⎠ , for z > 0, (27a)

ζ cut = −1√
2

⎛
⎜⎝

sin β√
2eiϕ cos β

e2iϕ sin β

⎞
⎟⎠ , for z < 0, (27b)

where we may choose β = 3π/4 as in Eq. (24). One possible
configuration is illustrated in Fig. 5(a), where the singular
polar vortex and a doubly quantized FM vortex are spatially
separated and both terminate on the interface.

Since the vortex lines in the individual spinor components
terminate on the soliton planes, it is also possible to consider
a state where a vortex exists only on one side of the interface,

(a) (b)

(c) (d)

FIG. 5. (Color online) Schematic illustrations of more compli-
cated vortex connections that can be constructed from the basic defect
solutions illustrated in Fig. 4. (a) A singly quantized vortex in the polar
phase connecting to a doubly quantized vortex on the FM side may be
cut in half at the interface and the resulting vortices in the two regions
may be moved apart if an additional dark soliton plane is introduced in
ζ0. (b) A singly quantized polar vortex can split into two half-quantum
vortices when its energy relaxes [63]. A repulsive force between the
half-quantum vortices makes the splitting energetically favorable.
The splitting mechanism can then yield a state where a FM vortex
connects to a pair of half-quantum vortices. (c) A Dirac dipole can be
constructed by joining the Dirac strings of a Dirac monopole and an
antimonopole [56]. Placed on the interface, the dipole connects to two
singly quantized vortices on the polar side. (d) Rotation may cause
interface-crossing vortex structures to nucleate. Here four nucleated
vortex complexes are drawn together with a singular vortex already
present.

for instance,

ζ pv = 1√
2

⎛
⎜⎝

− sin β√
2eiϕ cos β

e2iϕ sin β

⎞
⎟⎠ , for z > 0, (28a)

ζ pv = − 1√
2

⎛
⎜⎝

sin β√
2 cos β

sin β

⎞
⎟⎠ , for z < 0. (28b)

In addition to singly quantized vortices also half-quantum
vortices are possible in the polar phase [Eq. (21)]. A singly
quantized vortex can split into two half-quantum vortices while
preserving the topology, and such splitting can be energetically
favorable [63]. The defect configuration of perforating singly
quantized vortices in Fig. 4(a) can therefore also deform to
a state in which a singly quantized FM vortex continuously
connects to a pair of half-quantum vortices as illustrated in
Fig. 5(b). We will demonstrate in the next section that this state
does indeed appear as a consequence of energy minimization.

The vortices and monopoles in the spin-1 BEC are made
up of vortex lines and soliton planes in the individual spinor
components. The construction of the interface-crossing defect
solutions was achieved by identifying defects in the two phases
that have a similar combination of vortex lines, and using
soliton planes to achieve the switch between polar and FM
manifolds. Dark solitons have been phase imprinted experi-
mentally [90,91]. Phase imprinting of vortex lines in a BEC by
transferring angular momentum from an electromagnetic field
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has been proposed theoretically [92–96] and several of the
techniques have also been realized in experiments [97–100].
In spinor BECs, coreless vortices and related textures have
been prepared by adiabatic ramping of a magnetic field along
the trap axis [70,72,73], or by population transfer using
Laguerre-Gaussian laser [71]. More complicated vortices and
textures could be imprinted using proposed techniques for
creating vortex rings [45,101].

Other interface defect configurations can be constructed by
combining more elementary defect connections. For instance,
in the FM phase the Dirac monopole can be turned inside out
to form an antimonopole, in which the spins point radially
inward. By joining the Dirac strings of a Dirac monopole
and an antimonopole, a Dirac dipole can be constructed [56].
In Fig. 5(c), we illustrate a state where such a dipole is
placed on the polar-FM interface. The Dirac string forms a
doubly quantized vortex line in the FM phase, connecting the
two monopoles. Consequently, the Dirac dipole can form the
termination points of two oppositely winding singly quantized
vortices [see the construction that led to Eq. (25)].

IV. CORE STRUCTURE OF INTERFACE-CROSSING
DEFECTS

A. Core deformation of interface-crossing defect solutions

In the preceding section we constructed the prototype spinor
wave functions for the interface-crossing defect solutions
connecting defects in the FM and polar phases. We showed that
such solutions can be formed by combinations of elementary
vortex lines and dark soliton (phase kink) planes that could
be experimentally prepared by phase imprinting. Here we use
the constructed spinor wave functions for the defect config-
urations as initial states for numerical studies of the defect
stability. Provided that prototype spinors sufficiently closely
approximate the local energetic minimum configuration, the
initial states quickly relax to the targeted defect structure.

By numerical simulations we can determine the energet-
ically preferred core structures and the energetic stability of
the defects. In order to do so we minimize the free energy
in the rotating frame [Eq. (4)] by propagating the coupled
Gross-Pitaevskii equations, derived from Eq. (2), in imaginary
time using a split-step algorithm [102]. We assume the slightly
elongated trap, defined by Eq. (3). The initial state prototype
spinor wave functions are given in Sec. III B. We choose
the spin-independent nonlinearity c0 = 2.0 × 104h̄ωl3, where
l = (h̄/mω)1/2 is the transverse oscillator length. For 87Rb in
a trap with ω = 2π × 10 Hz these parameters correspond to
106 atoms. The spin-dependent nonlinearity c2 is allowed to
vary.

In Ref. [63] it was demonstrated that the core of a singly
quantized vortex in the FM phase of spin-1 BEC deforms
by locally rotating the spin vector so that the vortex lines
in the individual spinor components in the appropriate basis
representation move apart. The singular vortex line then no
longer represents a vanishing atom density, but is occupied by
atoms with zero spin magnitude as in the polar phase of the
spin-1 BEC. The FM vortex line singularity filled by atoms in
the polar phase becomes energetically favorable by allowing a
larger core size and a correspondingly smaller bending energy.

The core deformation can be understood from the energetics
associated with the hierarchy of characteristic length scales
determined by the interaction strengths: the size of the filled
core is determined by the spin healing length ξF , Eq. (7), which
is usually larger than the density healing length ξn, Eq. (6), that
sets the size of a core with vanishing density.

Similarly, a singly quantized vortex in the polar phase
was shown to lower its energy by spontaneously breaking
axial symmetry, splitting into a pair of singular half-quantum
vortices [63]. This again avoids depleting the atom density in
the vortex core: at the location of the singularities |〈F̂〉| = 1,
with spins antialigning in the two cores. The two vortices
form an extended core region where the order parameter
is excited out of the polar ground-state manifold. The size
of the core region is then enlarged to be on the order of
ξF , with a corresponding decrease in bending energy. The
overall topology is preserved away from the two singularities.
Inside the extended core region, the splitting of the singly
quantized vortex locally deforms the nematic d̂ field that
describes the order parameter [see Eq. (17)], and a disclination
plane, where the identification d̂ ↔ −d̂ is made, appears
between the vortex lines. Thus on a loop encircling only
one line singularity, both condensate phase and nematic axis
wind by π . The splitting of the singly quantized vortex is
closely related to the deformation of a point defect into a
half-quantum vortex ring [55]. In the 2D cross section of the
ring, the diametrically opposite points on the ring correspond
to half-quantum vortices with antialigned spins in the cores. In
Ref. [60] dynamic nucleation of half-quantum vortices under
energy dissipation was studied, demonstrating formation of a
square vortex lattice. To get a simple qualitative picture of the
interactions between half-quantum vortices one may consider
the corresponding problem in a two-component BEC. In a
nonrotating uniform system it was argued that the repulsive
force between vortices with opposite core polarizations falls
off as 1/R3 [103].

It was demonstrated in Eq. (23) how singly quantized
vortices in the FM and polar phases can be connected across
the polar-FM interface, despite the fact that these are two
topologically different defects. As the energy is minimized,
this interface-crossing defect deforms by a mechanism analo-
gous to that described above for the singly quantized vortices
in the purely FM and polar BECs. The resulting structure
is shown in Fig. 6. On the polar side of the interface, the
splitting of the singly quantized vortex into two half-quantum
vortices is recognized from the deformation of the nematic
field, which shows the characteristic π winding around each
singularity, and the formation of the disclination plane. The
order parameter is excited out of the |〈F̂〉| = 0 ground-state
manifold, to reach |〈F̂〉| = 1 at the singular lines. The pair
of half-quantum vortices connects across the interface to the
singly quantized FM vortex. This, in turn, exhibits the local
rotation of the spin vector, allowing the core region to fill by
mixing FM and polar phases, with |〈F̂〉| = 0 on the singularity.

The relaxed interface-crossing vortex structure is thus
recognized as that illustrated schematically in Fig. 5(b), and
the deformation is understood in terms of the characteristic
length scales set by the atom-atom interactions. In the purely
polar or FM condensate, the core-deformed, singly quantized
vortices are energetically stable [63]. For the parameter values
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FIG. 6. (Color online) Deformation of connecting singly quan-
tized vortices. The green (gray) |〈F̂〉| isosurface shows the interface
and the cores of singular defects. The polar phase is above the
interface. Energy relaxation causes the singly quantized vortex on the
polar side to split into a pair of half-quantum vortices with |〈F̂〉| > 0
cores on the polar side, recognizable by the characteristic π winding
of d̂ [red (dark gray) cones]. These connect across the interface to
a singly quantized FM vortex [cf. Fig. 5(b)]. A local rotation of the
spin vector (light gray cones) allows the core region to fill with atoms
with |〈F̂〉| < 1. (|c2| = 1.0 × 104h̄ωl3 and � = 0.20ω.)

investigated, the configuration in Fig. 6 ultimately decays for
very long relaxation times in our simulations.

We do, however, find an energetically stable deformation of
a singly quantized polar vortex connecting across the interface
if instead of starting from ζ 1↔s of Eq. (23), we minimize the
energy of ζ 1↔cl from Eq. (24). This spinor describes a singly
quantized polar vortex connecting across the interface to a
coreless vortex. [A topologically equivalent configuration can
be constructed by allowing the polar vortex to terminate on
a Dirac monopole, Eq. (25).] Minimizing the energy leads

(a)

(b)

FIG. 7. (Color online) Minimizing the energy of Eq. (24),
corresponding to Fig. 4(b) results in a splitting of the singly quantized
polar vortex, while the characteristic fountainlike spin structure of
the coreless vortex is established in the FM part of the cloud. (a) The
magnitude of the spin [|〈F̂〉| = 1 is dark red (dark gray) with long
arrows] shows the interface after relaxation of the energy, and the
filled cores, with |〈F̂〉| = 1 at the singularity, of two half-quantum
vortices in the polar part. White arrows show the spin vector and
indicate the coreless vortex in the FM part, and how the spin
structure connects to the vortex cores across the interface. This result
was obtained using |c2| = 2.5 × 102h̄ωl3 and � = 0.12ω. (b) The
half-quantum vortices may be identified by the winding of the nematic
axis d̂ (unoriented but shown as cones to emphasize winding). This
displays the characteristic d̂ → −d̂ winding as any single vortex
core is encircled. The two cores are joined by a disclination plane.
Note that away from the core region the original topology of the
singly quantized vortex is preserved. Here a stronger spin-dependent
nonlinearity has been used to get more sharply defined FM cores:
|c2| = 1.0 × 104h̄ωl3, � = 0.19ω.

(a) (b)

(c) (d)

(e)

FIG. 8. (Color online) The condensate wave function varies
smoothly across the polar-FM interface, showing that the defect
states cross the interface smoothly, connecting the two topologies.
(a)–(c) Densities in the individual spinor components ζ+,ζ0 and ζ−,
respectively. These vary smoothly and do not vanish simultaneously
on the interface. The position of the interface, defined as the plane
where c2 changes sign, is indicated by the dashed line. (d) The smooth
variation of the nonzero atomic density across the interface shows the
continuity of the condensate wave function. (e) 〈F̂〉 shown as color
map [dark red (dark gray) with long arrows at |〈F̂〉| = 1] and vector
field (white arrows). Note how the spin structure connects smoothly
across the interface, in particular connecting the FM cores of the
half-quantum vortices continuously to the fountain structure of the
spin in the coreless vortex. The magnitude of the spin also shows how
the interface has acquired a finite width.

to the deformation shown in Fig. 7. On the FM side of the
interface, the spin structure acquires the fountainlike structure
characteristic of the coreless vortex, as shown by the white
arrows in Fig. 7(a). Here the frequency of rotation determines
the direction of the spin vector at the edge of the cloud as the
angular momentum in the FM phase adapts to the imposed
rotation.

On the polar side of the interface we recognize the splitting
of the singly quantized vortex into a pair of half-quantum
vortices, identified by the π winding of the nematic axis
d̂ around each vortex [Fig. 7(b)], preserving the overall
topology. As before, in the core region the order parameter
is excited out of the ground-state manifold, with |〈F̂〉| = 1
on the singular lines. Figure 7(a) shows how the spin texture
connects smoothly across the interface.

The continuity of the relaxed spinor wave function is further
demonstrated in Fig. 8, giving a detailed picture of the interface
region. In the relaxed state, the total atom density remains
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(a)
(b) (c)

FIG. 9. (Color online) In Fig. 4(d) a polar point defect forms the termination of a FM spin vortex. As the energy relaxes, the point defect
deforms into an archlike, singular defect line that connects to the interface at both ends. (a) An isosurface of the spin magnitude is shown in
green (light gray). The spin magnitude rises to 1 (dark red, black) on the FM side of the interface (z < 0) and inside the line defect. Gray
cones indicate the spin vector. (b) Away from the defect, the d̂ vector field (cones) in the polar phase retains the hedgehog structure of the
original monopole. (c) In the trial wave function, Eq. (26), both the FM spin vortex and the polar monopole are formed by exactly overlapping
vortex lines of opposite winding in ζ

sv↔pm
+ and ζ

sv↔pm
− . Constant-density surfaces for n |ζ+|2 (red, medium gray) and n |ζ−|2 (blue, dark gray)

show how the arch-shaped line defect is formed by deformation of these vortex lines, such that they no longer overlap close to the interface.
The half-quantum vortex line (above the interface) and the spin vortex (below the interface) are indicated by silver and gold (light gray) spin
isosurfaces at |〈F̂〉| = 0.9 and |〈F̂〉| = 0.5, respectively. (|c2| = 5.0 × 102h̄ωl3 and � = 0.)

nonvanishing at the interface and varies smoothly across
it. The populations of the individual spinor components are
also continuous across the interface. The continuity of the
defect-carrying spinor wave function as it crosses between
the different broken symmetries means that it represents a
continuous connection of defects across the interface. In Fig. 8,
the position where c2 changes sign is indicated by a dashed
line, and |〈F̂〉| shown in panel (e) shows the finite width of the
interface region after energy relaxation.

The vortex core structures are particularly intriguing and
complex when a vortex terminates to a point defect on the
interface. We study a singular FM vortex terminating to a
radial hedgehog at the interface (d̂ forms a hemispherical
hedgehog on the polar side), as depicted schematically in
Fig. 4(d). Unlike the FM Dirac monopole, the polar monopole
cannot unwind into simpler vortex configuration. Therefore,
while the connection depicted in Fig. 4(b) is equivalent to
Fig. 4(c) and leads to the same energy-minimizing defect
configuration, Fig. 4(d) is topologically distinct from all other
vortex connections.

A constructed prototype spinor wave function representing
a singular FM vortex terminating to a hedgehog point defect
is given by Eq. (26). At the point defect singularity the atom
density is zero. The density depletion at the defect core is
energetically costly, and if ξF , Eq. (7), is sufficiently large in
comparison with ξn, Eq. (6), the energy cost can be reduced
by deforming the point defect into a semicircular line defect
whose ends attach to the interface. The resulting archlike
defect is shown in Fig. 9 together with the spin structure in
the FM core (a) and the nematic axis away from the defect
on the polar side of the interface (b). The deformation of
the defect, schematically illustrated in Fig. 10, is local and
the topological charge of the monopole is retained: away
from the defect, the radial hedgehog structure of d̂ is preserved.
This implies that on any closed loop through the arch, d̂ must
turn by π . Consequently, single valuedness of the spinor wave
function requires the condensate phase to also turn by π , and
we infer that the arch-shaped line defect is a half-quantum
vortex. This Alice arch resembles the upper hemispheric part
of the Alice ring—a closed half-quantum vortex ring that

exhibits the topological charge of a point defect over any
surface enclosing the defect [55]. Alice rings also appear in
high-energy physics [104] with a topological charge similar to
the magnetic “Cheshire” charge [105].

The deformation of the point defect at the interface to
an Alice arch results from a complex interplay between
the energetic considerations, topology, and the length scale
hierarchy in the system. The two characteristic healing lengths
determine whether the energy cost of forming the extended
vortex core region, where the singularity is occupied by the
atoms in the FM phase, offsets the energy cost of the density
depletion at a point defect (with a vanishing density at the
singularity). We find an abrupt transition point to an Alice arch
when c2 � 0.5c0. For larger values of c2 the point defect at the
interface is preferred to the arch defect. The sharp threshold
for the deformation can be understood by the topology. For
the point defect there cannot be a singular point with |〈F̂〉| = 1
and a spherically symmetric core region with |〈F̂〉| > 0. The
nematic axis forms a radial hedgehog structure and this would
then imply that the spin vector (always orthogonal to d̂)
would have to form a continuous tangent vector field for the

FIG. 10. (Color online) Deformation of the hedgehog point defect
(left) on the interface into an arch-shaped line defect (right). Red
(gray) cones represent the (unoriented) d̂ field; the defect cores
are shown as a green (gray) sphere and torus, respectively. The
deformation creates a hole in the point-defect core, allowing it to
expand into the line defect by locally deforming the d̂ field. Away
from the line defect, the asymptotic hedgehog structure is preserved.
(Dashed lines indicate unperturbed d̂ field for reference.) On any
closed loop through the arch, d̂ therefore winds to −d̂, identifying
the defect as a half-quantum vortex line. The line-defect core is filled
with atoms with |〈F̂〉| > 0; spin vector indicated by silver arrows.
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spherically symmetric object which is not possible (“hairy
ball” theorem). Therefore the point defect has to deform to
a ring or an arch-shaped defect at the interface before the
transition from the zero-density singularity to the |〈F̂〉| = 1
singularity with nonvanishing density is possible. The sharp
deformation threshold also appears in the stability analysis of
a singular point defect and the Alice ring [55].

We note that the arch defect is unstable towards drifting
out of the cloud due to the density gradient resulting from the
harmonic trapping potential. It could potentially be stabilized
using a weak pinning laser to create a small density depletion
at the center of the trap.

The structure of the arch defect emerging from the point
defect may be understood by studying the individual spinor
wave function components. In the point defect with vanishing
density at the singularity, the overlapping vortex lines in ζ±
intersect with the soliton plane in ζ0. In the prototype spinor
wave function ζ sv↔pm an additional soliton plane is present in
ζ+ to account for the switch from the polar to the FM side of
the interface. In Ref. [55] the deformation of the spherically
symmetric point defect was explained by a local separation
of the vortex lines in ζ± such that they no longer overlap at
the soliton plane. Here the additional soliton plane in ζ+ cuts
the vortex line in ζ+ at the interface, separating the two
parts. The spinor components ζ± are shown in Fig. 9(c). The
positions of the Alice arch and the FM vortex are indicated,
and we find how in the polar part of the cloud, the separated
vortex lines make up the semicircular half-quantum vortex.
On the FM side, the unbroken vortex line in ζ− and the z < 0
part of the vortex line in ζ+ form the spinor wave function
of the FM vortex whose core is filled by the vortex-free ζ0

component.
At high rotation frequencies of the trap, we find nucleation

of interface-crossing defects in the energy minimization. Pro-
vided that the appropriate instability for nucleating vortices is
triggered, the emergence of defect configurations where a half-
quantum vortex connects to a coreless vortex spontaneously
emerges, as they lower the energy of the system in a sufficiently
rapidly rotating trap. An example is shown in Fig. 11, in which
four interface-crossing vortices nucleate. On the polar side of
the interface, four singular lines appear, on which |〈F̂〉| = 1.

FIG. 11. (Color online) Left: Isosurface of |〈F̂〉| showing the cores
of singular defects, together with d̂ (red or dark gray cones) on the
polar side of the interface, and 〈F̂〉 (light gray cones) in the FM part.
Four nucleated vortices are identified as polar half-quantum vortices
connecting across the interface to nonsingular coreless vortices.
Right: Top-down view of 〈F̂〉 in the FM part, showing the four coreless
vortices.

These vortices may be identified as half-quantum vortices
through the winding of the nematic axis. On the FM side,
the order parameter remains nonsingular. However, the spin
texture reveals that each of the four half-quantum vortices
connects to a coreless vortex.

V. CONCLUSIONS

Interfaces between topologically distinct ground-state man-
ifolds play an important role in several areas of physics, many
of which are difficult or impossible to access experimentally.
Here we have given a detailed analysis of our proposal for
how topological interface physics of defects and textures can
be studied in ultracold atomic gases [23]. We considered the
specific example of a spin-1 BEC with spatially separated polar
and FM regions within a continuous condensate wave function.
For a number of representative, interface-crossing defect
states, we provided detailed constructions of prototype spinor
wave functions by considering how basic vortex and monopole
solutions with similar spinor structure represent different
topological objects in the two phases. The resulting wave
functions are built from vortex lines and soliton planes in the
individual spinor components that could be phase imprinted
using existing experimental techniques [45,90,91,97–101].

The energetic stability and energy-minimizing core struc-
tures of the interface-crossing defect configurations were ana-
lyzed by numerically minimizing the energy of the prototype
wave functions. The resulting spinor states demonstrate how
the condensate wave function smoothly interpolates between
the two ground-state manifolds by locally restoring its full
symmetry, thereby establishing a coherent interface through
which defects may connect continuously. In particular, we
demonstrated the energetically stable connection of a coreless
vortex to a pair of half-quantum vortices, and the formation of
an Alice arch: the deformation of a point defect at the interface
into an arch-shaped half-quantum vortex line that preserves the
topological charge.

In order to demonstrate the basic principle of the topological
interface physics in ultracold atoms, we have concentrated
in this work on a relatively simple and accessible example
of defect perforation across constructed interfaces in spin-1
BECs. The interface analysis, however, can also be applied
to more complex systems, such as spin-2 [27,28,64] and
spin-3 [29,30] BECs, where, for example, non-Abelian defects
are predicted [65,66]. Other particularly promising platforms
for topological interface studies are strongly correlated atoms
in optical lattices [106–108] exhibiting also quantum phase
transitions and potential analogs of exotic superconductivity
[10] in crystal lattices.

Moreover, the interface scheme may be used to investi-
gate nonequilibrium dynamical scenarios for production of
topological defects and textures in phase transitions. An
intriguing possibility is production of topological defects in
experiments inspired by brane-inflation models, where brane
annihilation leads to formation of defects [8,9]. In a FM
BEC, a region of polar phase can be created by locally
shifting the spin-dependent interaction strength. The resulting
phase boundaries then form two-dimensional analogues of
D-branes. When the interaction shift is removed, the polar
region collapses, simulating brane-antibrane annihilation, and
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resulting defects can be observed in the cloud. This is similar
to a recent experiment in 3He [14], where, however the defects
are more difficult to observe directly.

Defect production may also result from dynamic insta-
bilities, for example arising from superfluid counterflow
between the FM and polar phases. The boundary between two
fluids moving with respect to each other becomes unstable
if the relative velocity exceeds some critical value, leading
to excitations on the interface. This phenomenon is well
understood in classical fluid mechanics and is known as the
Kelvin-Helmholtz instability [109]. An analogous superfluid
Kelvin-Helmholtz instability has been shown to occur at the
interface between superfluid 3He A and B, providing another

active area of research related to interfaces between different
ordered phases [13]. Vortices in the A phase cause counterflow
against the initially vortex-free B phase. As the relative
velocity exceeds a critical value, vortices nucleate from the
interface into the B phase. A superfluid Kelvin-Helmholtz
instability has also been predicted in phase-separated two-
component BECs [110,111].
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[43] R. Carretero-González, D. J. Frantzeskakis, and P. G.
Kevrekidis, Nonlinearity 21, R139 (2008).

[44] K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. Lett. 91,
150406 (2003).

[45] J. Ruostekoski and J. R. Anglin, Phys. Rev. Lett. 86, 3934
(2001).

[46] U. Al Khawaja and H. Stoof, Nature (London) 411, 918 (2001).
[47] T. Kawakami, T. Mizushima, M. Nitta, and K. Machida, Phys.

Rev. Lett. 109, 015301 (2012).
[48] S.-K. Yip, Phys. Rev. Lett. 83, 4677 (1999).
[49] U. Leonhardt and G. Volovik, JETP Lett. 72, 46 (2000).
[50] H. T. C. Stoof, E. Vliegen, and U. Al Khawaja, Phys. Rev. Lett.

87, 120407 (2001).
[51] T. Isoshima and K. Machida, Phys. Rev. A 66, 023602 (2002).
[52] T. Mizushima, K. Machida, and T. Kita, Phys. Rev. A 66,

053610 (2002).
[53] T. Mizushima, K. Machida, and T. Kita, Phys. Rev. Lett. 89,

030401 (2002).

033617-13

http://dx.doi.org/10.1103/RevModPhys.51.591
http://dx.doi.org/10.1038/24567
http://dx.doi.org/10.1016/j.physrep.2012.07.005
http://arXiv.org/abs/arXiv:1205.1888
http://dx.doi.org/10.1088/0305-4470/9/8/029
http://dx.doi.org/10.1016/S0370-2693(99)00132-X
http://dx.doi.org/10.1016/S0370-2693(02)01824-5
http://dx.doi.org/10.1038/nphys2079
http://dx.doi.org/10.1038/326367a0
http://dx.doi.org/10.1088/0034-4885/69/12/R03
http://dx.doi.org/10.1088/0034-4885/69/12/R03
http://dx.doi.org/10.1038/nphys815
http://dx.doi.org/10.1038/317505a0
http://dx.doi.org/10.1038/382332a0
http://dx.doi.org/10.1038/382334a0
http://dx.doi.org/10.1038/nature07334
http://dx.doi.org/10.1103/PhysRevA.85.053639
http://dx.doi.org/10.1103/PhysRevA.85.053639
http://dx.doi.org/10.1103/PhysRevLett.88.080401
http://dx.doi.org/10.1103/PhysRevLett.88.080401
http://dx.doi.org/10.1103/PhysRevLett.91.010403
http://dx.doi.org/10.1103/PhysRevLett.91.010403
http://dx.doi.org/10.1103/PhysRevA.70.041601
http://dx.doi.org/10.1103/PhysRevLett.109.015302
http://dx.doi.org/10.1103/PhysRevLett.109.015302
http://dx.doi.org/10.1103/PhysRevLett.81.742
http://dx.doi.org/10.1143/JPSJ.67.1822
http://dx.doi.org/10.1142/S0217979203018399
http://dx.doi.org/10.1103/PhysRevLett.84.1066
http://dx.doi.org/10.1103/PhysRevA.61.033607
http://dx.doi.org/10.1103/PhysRevA.61.033607
http://dx.doi.org/10.1103/PhysRevLett.97.180412
http://dx.doi.org/10.1103/PhysRevLett.97.180412
http://dx.doi.org/10.1103/PhysRevLett.96.190404
http://dx.doi.org/10.1103/RevModPhys.59.533
http://dx.doi.org/10.1103/RevModPhys.59.533
http://dx.doi.org/10.1103/PhysRevD.13.3398
http://dx.doi.org/10.1038/387058a0
http://dx.doi.org/10.1038/387058a0
http://dx.doi.org/10.1103/PhysRevLett.87.010401
http://dx.doi.org/10.1103/PhysRevLett.86.2918
http://dx.doi.org/10.1140/epjd/e2003-00311-6
http://dx.doi.org/10.1103/PhysRevLett.94.120401
http://dx.doi.org/10.1103/PhysRevLett.103.190401
http://dx.doi.org/10.1103/PhysRevLett.103.190401
http://dx.doi.org/10.1103/PhysRevA.83.051605
http://dx.doi.org/10.1103/PhysRevA.77.033612
http://dx.doi.org/10.1103/PhysRevA.77.033612
http://dx.doi.org/10.1088/0951-7715/21/7/R01
http://dx.doi.org/10.1103/PhysRevLett.91.150406
http://dx.doi.org/10.1103/PhysRevLett.91.150406
http://dx.doi.org/10.1103/PhysRevLett.86.3934
http://dx.doi.org/10.1103/PhysRevLett.86.3934
http://dx.doi.org/10.1038/35082010
http://dx.doi.org/10.1103/PhysRevLett.109.015301
http://dx.doi.org/10.1103/PhysRevLett.109.015301
http://dx.doi.org/10.1103/PhysRevLett.83.4677
http://dx.doi.org/10.1134/1.1312008
http://dx.doi.org/10.1103/PhysRevLett.87.120407
http://dx.doi.org/10.1103/PhysRevLett.87.120407
http://dx.doi.org/10.1103/PhysRevA.66.023602
http://dx.doi.org/10.1103/PhysRevA.66.053610
http://dx.doi.org/10.1103/PhysRevA.66.053610
http://dx.doi.org/10.1103/PhysRevLett.89.030401
http://dx.doi.org/10.1103/PhysRevLett.89.030401


MAGNUS O. BORGH AND JANNE RUOSTEKOSKI PHYSICAL REVIEW A 87, 033617 (2013)

[54] J.-P. Martikainen, A. Collin, and K.-A. Suominen, Phys. Rev.
A 66, 053604 (2002).

[55] J. Ruostekoski and J. R. Anglin, Phys. Rev. Lett. 91, 190402
(2003).

[56] C. M. Savage and J. Ruostekoski, Phys. Rev. A 68, 043604
(2003).

[57] J. W. Reijnders, F. J. M. van Lankvelt, K. Schoutens, and
N. Read, Phys. Rev. A 69, 023612 (2004).

[58] E. J. Mueller, Phys. Rev. A 69, 033606 (2004).
[59] H. Saito, Y. Kawaguchi, and M. Ueda, Phys. Rev. Lett. 96,

065302 (2006).
[60] A.-C. Ji, W. M. Liu, J. L. Song, and F. Zhou, Phys. Rev. Lett.

101, 010402 (2008).
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and K. Machida, J. Phys. Soc. Jpn. 80, 013001 (2011).
[63] J. Lovegrove, M. O. Borgh, and J. Ruostekoski, Phys. Rev. A

86, 013613 (2012).
[64] G. W. Semenoff and F. Zhou, Phys. Rev. Lett. 98, 100401

(2007).
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