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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Doctor of Philosophy

RUN-TIME COMPILATION TECHNIQUES FOR WIRELESS SENSOR

NETWORKS

by Joshua Ellul

Wireless sensor networks research in the past decade has seen substantial initiative,

support and potential. The true adoption and deployment of such technology is highly

dependent on the workforce available to implement such solutions. However, embedded

systems programming for severely resource constrained devices, such as those used in

typical wireless sensor networks (with tens of kilobytes of program space and around ten

kilobytes of memory), is a daunting task which is usually left for experienced embedded

developers.

Recent initiative to support higher level programming abstractions for wireless sensor

networks by utilizing a Java programming paradigm for resource constrained devices

demonstrates the development benefits achieved. However, results have shown that

an interpreter approach greatly suffers from execution overheads. Run-time compila-

tion techniques are often used in traditional computing to make up for such execution

overheads. However, the general consensus in the field is that run-time compilation tech-

niques are either impractical, impossible, complex, or resource hungry for such resource

limited devices.

In this thesis, I propose techniques to enable run-time compilation for such severely

resource constrained devices. More so, I show not only that run-time compilation is in

fact both practical and possible by using simple techniques which do not require any

more resources than that of interpreters, but also that run-time compilation substantially

increases execution efficiency when compared to an interpreter.
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Chapter 1

Introduction

At the dawn of the 21st century, Weiser’s (1999) vision that computing will become

ubiquitous and invisible had seen its first steps towards realisation with the proposal

of Wireless Sensor Networks (WSNs) and Smart Dust (Warneke et al., 2001). Many

promising WSN applications were proposed for military (Arora et al., 2004), habitat

monitoring (Mainwaring et al., 2002) and environmental (Martinez et al., 2004) use.

Pister (2001) envisaged that by 2010, wireless sensor nodes would cost a dollar in large

volumes. Although wireless sensor nodes have not yet been made available at this price

(for whatever reason), many will agree that the successful adoption of wireless sensor

networks is highly dependent on cost. That said, with sensor node hardware costs

estimated to eventually be in the range of a few dollars, actual firmware development

may comprise much of the cost involved in deploying a sensor network.

Wireless sensor networks present programming challenges that are not present in tra-

ditional computing systems. The typical memory resources available on sensor nodes

are extremely limited, typically equipped with tens of kilobytes of program space and

ten kilobytes of volatile memory. Therefore, algorithm developers must ensure that

memory is not used imprudently. More challengingly, typical applications impose strict

prolonged lifetimes whilst sensor nodes are deployed with extremely limited power re-

sources. Therefore, software developers must ensure that algorithms are highly efficient

and ensure that the processor and any peripheral hardware are put into sleep modes

as much as possible. Sensor nodes require to communicate with other nodes in order

to relay sensed information or else to send updates or configuration messages into the

network. Therefore, sensor nodes usually cannot sleep indefinitely however are required

to follow wakeup schedules so that nodes can communicate in predetermined communi-

cation windows. Further programming complexity is increased due to internal clock drift

which sensor nodes are prone to, and therefore clocks must be corrected to accommodate

for such drift typically done using time synchronization techniques. The complexity does

not end there, the wireless medium over which sensor nodes communicate only allows

one node to communicate at a time (within the same transmission range). Therefore,

1



2 Chapter 1 Introduction

medium access control (MAC) protocols must be implemented to avoid wireless colli-

sions. Also, sensor networks aim to maximise lifetime by optimising the route taken

from sensor nodes to base stations to consume the least amount of energy. A plethora of

MAC and routing protocols have been proposed that focus on different aspects including

scalability, dynamicity, responsiveness, and density amongst other attributes (Akyildiz

et al., 2002; Akkaya and Younis, 2005; Demirkol et al., 2006).

The challenges facing sensor node application programming also stems from the low level

embedded programming expertise required. Wireless sensor nodes typically comprise of

a microcontroller, a wireless transceiver, a number of sensors and other peripherals such

as additional flash storage. Drivers must be implemented for each hardware peripheral

which typically communicate over SPI and I2C, and a strict communication protocol

often involving configuring low level registers. Such hardware devices often utilise general

purpose input/output (GPIO) pins for status updates which are in turn wired up to

microcontroller interrupts. Moreover, substantial internal microcontroller peripherals

are wired to interrupts. Thus, knowledge of interrupt based systems and how to program

interrupt based systems is required to program such low level embedded systems.

Sensor node applications are predominantly developed in C or flavours of C such as

nesC (Gay et al., 2003). Therefore, development challenges also include those faced

by traditional low level systems developed in C including allocation and deallocation

of memory by the programmer and as well as no type safety mechanisms. The most

popular sensor network operating system, TinyOS, allows developers to code applications

in nesC (Gay et al., 2003) which exposes an event based programming paradigm. The

abstraction layers provided are very low, and as noted by Sugihara and Gupta (2008)

”it is often difficult to implement even simple programs.” This is partly due to the event

based programming paradigm and lack of blocking operations.

As described above, the development learning curve for sensor networks is steep. Higher

level languages providing higher abstractions can be used to lower the learning curve

substantially. Higher level abstractions can help by hiding the lower level embedded

systems and sensor networks specific requirements. Nodes can be put to sleep auto-

matically by underlying drivers; default routing and MAC protocols can be used and

swapped without the higher level developer having to change any code in relation to

this; drivers for different hardware peripherals can be used and then exposed to the

higher level language by abstracting the communication protocols, interrupts and regis-

ter access. However, in using a higher level language such as Java the developer is also

relieved of memory management since this will be taken care of by a garbage collector.

Implicit type safety also ensures that the programmer will not incorrectly cast types.

More so, majority of the available workforce is already familiar with high level languages

such as Java, therefore the learning curve can be drastically decreased be removing the

requirement to learn a new language. It has been shown that higher level languages such

as Java provide a more efficient development and maintenance environment compared
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to lower level languages such as C (Butters, 2007). Therefore, by using a higher level

language, the development and maintenance costs of WSNs can be reduced, and thus

increase the successful adoption of such technology.

1.1 Enabling Java for Sensor Nodes

Recent work on enabling virtual machines (Brouwers et al., 2009; Caracas et al., 2009;

Aslam et al., 2010) for wireless sensor networks attempt to alleviate the paradigm shift

by providing a Java programming environment by means of an interpreter. Results

presented by Brouwers et al. (2009) demonstrate that an interpreter approach greatly

suffers from high execution overheads.

When Java virtual machines (JVMs) for traditional hardware were becoming more popu-

lar the costs of interpretation were realised, and initiatives to perform run-time compila-

tion began (Hsieh et al., 1996). However, it is widely assumed that compiling bytecode

to native code on such severely resource constrained devices is impossible, infeasible,

impractical, complex or resource hungry given the limited storage and memory avail-

ability (Palmer, 2004; Koshy and Pandey, 2005; Pandey and Koshy, 2006; Koshy et al.,

2008; Aslam, 2011). Following are quotes from recent work which state that run-time

compilation is not for WSN class devices:

• Palmer (2004): ”...compiled applications, something beyond the power of many of

the resources...”

• Koshy and Pandey (2005): ”JIT compilers are more practical on higher end plat-

forms.”

• Pandey and Koshy (2006): ”Most nodes do not have sufficient resources for JIT

compilation...”

• Koshy et al. (2008): ”JIT compilers are non-trivial programs that cannot be im-

plemented effectively on the typically resource constrained WSN nodes.”

• Aslam (2011): ”...it is usually difficult to develop a JIT compiler...JIT and AOT

are not suitable for a variety of tiny embedded devices...”

Compiling to native code on the development machine would meet the needs to speed

up slow interpretation costs. However, drawbacks of this method include that the gen-

erated code would be platform specific, and native code tends to be larger than that of

bytecode therefore updating nodes over the air would prove to be less efficient. More

so, the sensor node would require to perform linking of newly received code since the

development machine may not know the location where code will be placed. Therefore,

a host machine compilation to native code scheme will not be adequate for updating
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sensor nodes remotely. Run-time compilation techniques could be used to achieve both

an efficient execution platform as well as provide the possibility of remotely updating

sensor nodes.

Therefore, this thesis is concerned with determining whether run-time compilation tech-

niques are in fact something beyond the capabilities of the severely resource constrained

devices such as those commonly used in wireless sensor networks (usually having tens

of kilobytes of program space and around ten kilobytes of RAM). Techniques to enable

both Ahead-Of-Time (AOT) compilation and Just-In-Time (JIT) compilation are pro-

posed, designed, implemented and further compared to existing approaches for enabling

a Java execution environment for resource constrained sensor nodes.

Although which programming language would best suit WSN development is an in-

teresting question, it is not the topic of this thesis. Due to the popularity of Java in

industry and also recent initiatives to enable Java in WSNs it was decided to use Java

as a candidate language. Other high level languages could just as easily be used.

1.2 Challenges, Motivation and Requirements

The main reason why it is assumed that run-time compilation techniques cannot be

successfully implemented on wireless sensor network class devices is due to the severe

resource constraints they are prone to, being tens of kilobytes of program space and

around ten kilobytes of RAM and minimal processing speeds. That said, the limited

program and memory availability is the greatest challenge in the face of enabling run-

time compilation.

However, perhaps the assumption that run-time compilation is impossible or imprac-

tical on such devices is preconceived. The translation logic required to implement a

run-time compiler is roughly equal to the translation required to implement an inter-

preter, thus the program space footprint for the actual translation logic would be similar.

The memory required during translation using typical Ahead-Of-Time and Just-In-Time

compilation techniques is usually larger than that of an interpreter, however it may be

possible to minimize this memory overhead by introducing other techniques. Since the

introduction of JIT compilation for Java on traditional platforms, extensive research has

been performed in aims of producing highly optimized code by using complex compila-

tion techniques and efficient register mapping. It is perhaps for this reason that run-time

compilation techniques may have been deemed unfit for severely resource constrained

devices. However, perhaps simple compilation mechanisms could be used which would

not require extensive overhead. Results demonstrated from recent interpreter initia-

tives for wireless sensor networks show the high execution costs of interpreting code.

Battery life is another major constraint in wireless sensor nodes, and due to the high
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execution overhead of interpreting, battery life may be greatly reduced for computa-

tionally intensive (and even for non-computationally intensive) applications. Therefore,

the interpreter approach is unsuitable for a large range of WSN applications. Thus,

the question that must be asked is whether or not there are other methods to enable

high level programming languages such as Java for such resource constrained devices.

Chapter 3 further investigates the motivation behind the work and provides a case to

continue research in the area of enabling run-time compilation techniques for wireless

sensor networks.

The motivation behind this work and one of the primary requirements is to ease the

programming burden of wireless sensor networks. However unlike interpreter based

approaches previously proposed, execution efficiency is also a primary requirement of

this work. The importance of execution efficiency can also directly impact overall system

performance as explored in Chapter 3. Development time compilation to native code

can achieve this, however does not facilitate over the air reprogramming. Over the

air reprogramming is an essential requirement for many wireless sensor networks and

therefore reprogrammability also serves as a primary requirement of this work.

1.3 Overview of Work

The work presented in this thesis focuses on run-time compilation techniques for severely

resource constrained embedded systems. Run-compilation techniques require other mod-

els and components to form a complete system. This work is closely related to bytecode

design, language design, application programming interface (API) design, kernel design,

driver implementation and programming models, however it is not the scope of this

work to explore these areas. The work in this thesis concentrates primarily on enabling

run-time compilation techniques for resource constrained devices. In doing so, a case

for run-time compilation is made by analysing the effects of battery lifetime for inter-

preted and native code execution platforms. Ahead-Of-Time compilation is proposed to

alleviate slow bytecode execution. In order to achieve a low memory footprint whilst

compiling we propose gradual compilation, which compiles code on the fly as it is re-

ceived. Just-In-Time (JIT) compilation is also proposed for applications that have a

larger footprint. In order to achieve JIT compilation we propose using volatile memory

for executing code as well as basic block compilation, offline basic block analysis and

direct JIT compiler calls. The evaluation of these techniques show that the execution

gains achieved are substantial compared with an interpretation approach. More so,

the benefits of using run-time compilation is showcased by demonstrating over-the-air

reprogramming.
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1.4 Relationship to Existing Approaches

Squawk (Shaylor et al., 2003), a Java interpreter based virtual machine developed by Sun

Microsystems, was proposed in 2003 for smart cards having 32 bit processors and 160

KB of program space. The virtual machine was later ported to the Sun SPOT (Simon

et al., 2006) device which has 512 KB RAM and 4 MB of flash memory. The Squawk

virtual machine is intended for devices larger than the devices this work targets. To

support the Java virtual machine for lower end platforms than traditional computers,

Simon et al. (2006) proposed a Split VM architecture, which allows code to be pre-

processed and verified on a more powerful host machine, and then only the necessary

code to execute the program is required be sent to the device. In a similar fashion, a

Split VM architecture is also adopted in this work, by separating the compilation and

verification processes amongst the resource constrained device and the more powerful

host machine used to transmit the code.

More recently several initiatives were proposed to enable Java virtual machines for sensor

network class devices (Brouwers et al., 2008b; Caracas et al., 2009; Aslam et al., 2008).

All three virtual machines propose interpreter based approaches. The standard Java

stack (discussed later in Chapter 2) uses a 32 bit width slot. This means that each value

put on the stack will take up a multiple of 32 bit slots. Even values consisting of 8 and

16 bits will take up 32 bit slots and therefore waste memory. To overcome this Brouwers

(2009) proposes to convert the stack to a 16 bit width stack as originally demonstrated

by Lindholm and Yellin (2005). Aslam et al. (2008), on the other hand propose a variable

slot size whereas the user can configure the slot size to be 8, 16 or 32 bit. For their test

applications, Aslam et al. (2008) show that minimal memory is freed by using an 8 bit

slot size, and therefore the authors propose that a 16 bit width stack is sufficient. That

said, to support a variable slot the virtual machine footprint is increased, and therefore

it is questionable whether this increase justifies the variability of slot size (more so

considering that the developer must select the slot size). It is agreeable that a 32 bit

stack width will result in a large amount of memory wastage, and since minimal gain

is achieved by also offering an 8 bit stack width the approach presented in this thesis

proposes using a 16 bit stack width. Two of the virtual machines propose removing

textual representations of class, function and field names, since the overhead of keeping

such textual representation does not justify their overhead for such memory limited

devices. Brouwers et al. (2008b) suggested using a double-ended stack for separation

of reference and integer values which would support a more efficient garbage collection

scheme and using linked stack management (von Behren et al., 2003) to support threads

with less memory wastage. Similar to Brouwers et al. (2008b) the work presented in this

thesis also makes use of a double-ended stack and linked stack management. Further

details on the techniques employed by the related virtual machines and the work being

presented in this thesis are presented in Chapters 2 and 4.
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Outside of the realm of resource constrained devices and wireless sensor networks, ini-

tiative was put into increasing the slow speed of interpretation. One technique used

was Ahead-Of-Time (AOT) compilation, or native code translation (Hsieh et al., 1996).

AOT compilation converts bytecode to native code before program execution. AOT

approaches are discussed in Chapter 2. In Chapter 4 design and implementation details

are given for an AOT compiler for severely resource constrained devices.

Just-In-Time (JIT) compilation is the process of compiling code to native code when

it is required to be executed. Java inherently uses a stack to store operands on which

all operations are performed. Efficient compilation usually consists of mapping operand

operations to registers in an efficient manner. Adl-Tabatabai et al. (1998) and Alpern

et al. (1999) propose stack mimicking. This term is used to represent a method by which

generated native code performs the exact same operations on the stack as described by

the bytecode instructions it is compiling (although such stack operations may not be

necessary). In designing a simple compilation process (for both AOT and JIT compila-

tion) it was decided to sustain the underlying Java stack by mimicking the operations

which are performed on the stack, except that the operations are performed natively.

Due to memory constraints JIT compiling whole functions at a time may not be feasible.

Thus, investigation into JIT basic block compilation was undertaken. JIT basic block

compilation compiles at the granularity of a basic block. This idea was proposed by

Rogers (2002) in aim of increasing JIT execution efficiency. This is due to the use of

conditional statements, since JIT compilers may compile code which will not actually

be executed. Previous work on JIT compilers is further discussed in Chapter 2 and the

approach proposed in Chapter 6.

1.5 Research and Contributions

The scope of this work is to provide grounds as to whether run-time compilation tech-

niques are in fact beyond the resources of devices commonly used in WSNs. The main

contributions presented in this thesis are:

• Contrary to the general consensus in the area, it is shown that run-time compi-

lation is in fact possible, practical and can be achieved using simple compilation

techniques without consuming large amounts of resources (or at least comparable

to existing interpreters).

• The first Ahead-Of-Time and Just-In-Time compilers for such severely resource

constrained devices are presented.

• A case demonstrating the benefits of using a native code execution paradigm com-

pared to an interpreted paradigm for wireless sensor networks is provided.
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• A technique to reduce the amount of memory required to compile code Ahead-Of-

Time is provided, namely Gradual Compilation.

• Although the work is intended for high level development, developers may require

lower level register and interrupt access, and therefore a novel approach to exposing

such low level concepts to developers was provided.

• An evaluation of both AOT and JIT compilation is provided against an interpreter

in which it is shown that both AOT and JIT compilation results in substantially

faster execution than that of an interpreter. More so, it is shown that the overhead

is comparable to an interpreter.

• Basic block JIT compilation for resource constrained devices is proposed in order

to minimize memory overhead requirements when performing JIT compilation.

• Offline basic block analysis is proposed in which basic blocks are identified by a

start basic block bytecode instruction. This releases the resource constrained

device of the task of having to identify the basic blocks itself.

• To minimize the JIT compiler footprint, direct JIT compiler calls are proposed.

The stored bytecode for a unit of code will be preceded by a native call to the JIT

compiler. Thereafter, by exploiting the underlying hardware architecture, the JIT

compiler can establish the location of the bytecode to be compiled and also return

directly to the next unit of code to be executed.

• A reprogramming overhead model for interpreted, AOT and JIT compiled code is

provided.

The work in this thesis has contributed in part or full to the following publications:

• J. Ellul, K. Martinez (2010). Run-time Compilation of Bytecode in Sensor Net-

works. In 4th International Conference on Sensor Technologies and Applications

2010.

• K. Martinez, P. Basford, J. Ellul, R. S. Clarke (2010). Field Deployment of Low

Power High Performance Nodes. In IEEE 3rd International Workshop on Sensor

Networks 2010.

• J. Ellul, K. Martinez. Demo Abstract: Run-time Compilation of Bytecode in

Wireless Sensor Networks (2010). In ACM/IEEE 9th International Conference on

Information Processing in Sensor Networks 2010.

• J. Ellul, K. Martinez (2010). A Few Bytes are Worth a Thousand Words: Run-

Time Compilation of High Level Scripts in Sensor Networks. In IEEE 3rd Inter-

national Workshop on Sensor Networks 2010.
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• J. Ellul, K. Martinez, D. De Roure (2009). A Dynamic Size Distributed Program

Image Cache for Wireless Sensor Networks. In IEEE 23rd International Conference

on Advanced Information Networking and Applications - Workshops 2009.

• K. Martinez, P. Basford, J. Ellul, R. Spanton (2009). Gumsense - A High Power

Low Power Sensor Node. In 6th European Conference on Wireless Sensor Networks

2009.

• J. Ellul, K. Martinez. DPICache: A Distributed Program Image Cache for Wireless

Sensor Networks (2008). In IEEE/ASME International Conference on Mechtronic

and Embedded Systems and Applications 2008.

1.6 Outline of Thesis

This prelude has provided an overview of the expertise required to program wireless

sensor network applications, Java enabling initiatives aimed at lowering the steep learn-

ing curve and the inherent execution overheads. The general consensus regarding the

impossibility or impracticality of run-time compilation techniques for such resource con-

strained devices was mentioned and the problems as regards to why this is the consensus

in the field.

Chapter 2 serves as an introduction to the field and related work including: wireless sen-

sor networks programming requirements and issues; the typical programming paradigm

and other proposed models; the Java programming language, bytecode and supporting

virtual machine infrastructure; JVMs proposed for wireless sensor networks are pre-

sented along with the techniques they employ; and compilation techniques proposed for

traditional JVMs.

Chapter 3 provides a case and motivation to continue research on enabling run-time

compilation techniques for such resource constrained devices.

Chapter 4 describes the design requirements and implementation details of how Ahead-

Of-Time compilation can be enabled for resource constrained devices. Techniques pro-

posed to enable AOT compilation include a double-ended stack separating reference and

integer values, linked stack management, gradual compilation, simple translations which

produce a mimic stack and simple optimizations.

Chapter 5 provides an evaluation of the Ahead-Of-Time compiler implementation. It

is compared with an interpreter developed for the same specification of devices. Native

code is prone to higher encoding sizes. Therefore, thoughts towards JIT compilation are

provided.

Chapter 6 demonstrates how Just-In-Time compilation can be achieved in such severely

resource constrained devices. To achieve this basic block JIT compilation is proposed,
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along with pre-JIT basic block analysis, direct JIT compiler calls and a circular JIT

cache.

Chapter 7 evaluates the JIT compilation techniques proposed.

Chapter 8 provides further support for run-time compilation techniques by analysing

the reprogramming overheads of AOT, JIT and interpreter based paradigms.

Chapter 9 provides a review of the overall contributions of this thesis and paves the way

for future work.



Chapter 2

Related Work

Wireless sensor networks provides a paradigm that is different to traditional computing

platforms due to the stringent requirements and various issues inherent in the plat-

form and environment. Higher level languages such as Java can be used to lower the

wireless sensor networks learning curve. Previous attempts at enabling such higher

level languages have implemented interpretation methods that suffer from high execu-

tion overheads. Compilation techniques are typically used to overcome such overheads,

however compiling bytecode to native code on development machines is not desirable

since it would imply platform dependence, and also larger program updates since native

code tends to be larger than bytecode. The general consenus in the community is that

on-node compilation is impossible or impractical on such severely resource constrained

systems. This thesis is concerned with determining whether this is true or if this notion

is preconceived. An introduction to the background and related work will now be pro-

vided to allow the reader to appreciate how the work presented in this thesis fits within

the broad areas of wireless sensor networks programming, high level languages, bytecode

design, virtual machines and compilers.

2.1 WSN Requirements and Issues

Wireless sensor networks consist of a number of sensor nodes that can sense the en-

vironment, process the sensed data and transmit (and receive) the processed data for

an extended period of time. The requirements and challenges inherent in wireless sen-

sor networks directly influence programmability. Therefore, the main requirements and

issues of WSNs will be described here with a focus on how they affect ease of program-

ming.

Wireless sensor nodes are most often equipped with a limited energy source and are

usually expected to operate for an extended period of time from months to even years.

11
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A primary requirement of WSNs lies in the fact that they are deployed in environments

that are meant to be monitored in an unobtrusive manner. This relies on miniaturisation

of nodes and therefore battery size, which in turn requires an energy efficient system.

In order to meet the expected lifetime, and given the limited battery source, the sys-

tem must be as energy-efficient as possible. This involves ensuring that the wireless

transceiver, sensors and any other devices are only used and turned on when they are

required. This becomes more complex when considering other aspects including MAC

protocols, routing protocols and time synchronisation amongst other factors. Program-

mers are commonly required to explicitly turn different hardware components on and

off, and even in to different sleep modes. Such fine grained control of hardware is often

intimidating to programmers since they are not familiar with such low level fine grained

control. Computational efficiency on the other hand is often considered to be of minor

importance and therefore cheaper, more energy-efficient (and slower) processors than

those used in larger platforms can be used. However, computational efficiency is often

discarded without considering the impact it may have on quality of service and energy

expenditure (in Chapter 3 the direct impact of computational efficiency on energy ex-

penditure is demonstrated). Therefore, programming environments should be both as

energy and computationally efficient as possible without requiring extensive effort from

the system developer.

Networks can consist of a handful of sensor nodes to thousands of sensor nodes. Sensor

nodes communicate with each other over the same physical wireless medium. Therefore,

protocols and overall system implementation must be able to scale with the network

size and limited bandwidth. Developers typically have to cater for such low level in-

trinsic properties when they really should be able to concentrate effort on application

requirements. Besides the work involved in deploying a WSN, one must also keep in

mind that like other computing platforms, sensor nodes may be required to be updated

from time to time due to various reasons including bug fixes, new application require-

ments and even complete retasking of a network. Therefore, software reconfiguration

and reprogrammability is essential, however this is often left up to the developer to

implement.

The underlying theme from the above is that the low level internals of WSNs is more

often than not left up to application developers to implement, when really they should

be focusing on the application specific requirements. The work in this thesis focuses

on easing the programming burden by providing a higher level sensor node program-

ming abstraction. Other programming models attempt to achieve this with higher level

abstractions. A taxonomy of the different programming models proposed will now be

discussed.
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Figure 2.1: A taxonomy of sensor networks programming models.

2.2 WSN Programming Paradigms

Programming applications for wireless sensor networks can be a daunting task due to

the low level embedded systems platform and the stringent requirements inherent in

WSNs. This had been identified as a problem since the introduction of WSN technology

and over the past decade different approaches have been proposed to overcome the steep

learning curve. The different programming models proposed can be divided into Node-

level, Group-level and Network-level abstractions. Figure 2.1 reproduces the taxonomy

of programming models as proposed by Sugihara and Gupta (2008).

2.2.1 Node-Level Programming

Node-level programming environments provide the lowest level abstraction in that hard-

ware is abstracted such that programmers can control the underlying devices as required

which provides the greatest flexibility. Program logic consists of controlling each node

individually and describing how individual nodes sense the environment, process sen-

sor data and interact with neighboring nodes. Initial WSN deployments were typically

programmed using C on the bare metal (i.e. code that executes directly on the microcon-

troller and requires to interface with the different hardware peripherals) by embedded

systems developers. Due to various reasons including the growing interest in wireless

sensor network applications, effort was put into allowing non embedded experts to de-

velop their own applications. Such effort led to operating systems development and

soon after virtual machines development. An extensive number of approaches have been

proposed in the past decade, therefore only the most popular and related approaches

will be described here.

2.2.1.1 OS / Bare-metal Programming

Bare-metal programming refers to programming that involves directly interfacing with

the underlying hardware including the processor’s registers, peripherals and other hard-

ware. Programming ’on the bare-metal’ (as it is referred to) is commonly developed in
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C and/or Assembly (for highly optimised code sections). Due to the low level required

to program ’on the bare metal’, initiative was put into abstracting the hardware layer so

that non-embedded programmers would also be able to develop applications for WSNs.

TinyOS (Levis et al., 2004) is one of the earliest attempts to abstract bare-metal pro-

gramming and is also referred to as the de facto standard operating system. TinyOS

programs are developed using nesC (Gay et al., 2003), a language based on C that

provides component abstractions and is event based. Different system components are

’wired’ together in configuration files to form a single application. Components and the

wiring concept were most likely proposed to encourage code reuse and portability of code

across different hardware, however reusing code across different hardware often requires

digging deep into low levels of the TinyOS libraries. Although, TinyOS is widely used it

is also widely accepted that it is extremely difficult to use and even configure to different

application requirements. This may be due to poor application programming interface

(API) design, the event driven programming paradigm or perhaps to the fact that a

new language must be adopted. Applications coded in nesC are actually compiled to

C and merged with the underlying TinyOS components that are used. Thereafter the

generated C code is compiled to a single native code binary and is loaded directly onto

the bare-metal. The term operating system in the WSN community is somewhat differ-

ent to traditional computing. Operating systems tend to include elements of a separate

execution kernel that provides services to applications running on top of it (Silberschatz

et al., 2001). TinyOS does not provide a kernel but is essentially a framework or library

of existing components. Many other ’operating systems’ proposed for WSNs use simi-

lar approaches. The main problem with single native binary approaches (that consist

of both the operating system and the application) is that reprogramming is either not

possible or else can be implemented without the option of reusing code that is already

installed on the system.

Contiki (Dunkels et al., 2004) is another popular operating system used for WSNs.

Programs are coded in C and both event-driven and threaded programing models can

be used. Light-weight pre-emptive threading can be implemented using Protothreads

(Dunkels et al., 2006b) which only requires two bytes of memory per protothread. Con-

tiki also supports dynamic program loading which allows for top level application logic

to be replaced as necessary. Contiki provides an extensive set of libraries and drivers

that can easily be used, however like many other operating system approaches in the

WSN community does not address supporting higher level programming languages for

non embedded programmers.
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2.2.1.2 Virtual Machines

Virtual machines abstract underlying hardware by providing a higher level execution

platform. Virtual machines can provide different benefits including higher level pro-

gramming languages and APIs, smaller sized program encodings (which is useful for re-

programming WSNs) and platform independence. However, the following disadvantages

are inherent in supporting a virtual machine: increased program space and memory re-

quirements and any execution overheads incurred due to the virtual machine abstraction.

Virtual machines can execute code by either interpreting the code or else by compiling

the code to the underlying hardware’s native code. Interpretation and compilation is

further discussed later in this chapter.

Maté (Levis and Culler, 2002) is one of the first virtual machines proposed for WSNs.

Maté’s main goal was to provide an energy-efficient means of retasking deployed nodes.

Maté executes virtual machine scripts termed Maté scripts that are encoded in ’capsules’.

The scripts are comprised of assembly like instructions that can perform arithmetic and

boolean operations, manipulate the stack, high level hardware configuration (e.g. turn

sounder on/off), and calling user functions. The instruction set can be tailored for

different applications, and therefore the approach was termed as ’Application Specific

Virtual Machines’ (ASVMs) (Levis et al., 2005). By exposing such a high level instruc-

tion set the encoding size can be drastically reduced, and as a result of this the flexibility

exposed through the language is also drastically limited. The VM is implemented as

an interpreter and therefore high execution overheads are inherited (over 30% overhead

for arithmetic operations). More recent Java based virtual machine approaches are

described later in this chapter.

2.2.2 Group-Level Programming

Group-level models abstract the individual nodes into groups of nodes, whereby appli-

cation logic can be defined on a group level rather than treat each node as an individual

system. This approach can be considered to be a system of systems. The higher abstrac-

tion allows for the developer to focus more on the overall system application, however

at the cost of less flexibility. The group-level model is split into neighbourhood-based

grouping which relies on spatial locality whilst logical grouping tends to encapsulate

those programming models that group nodes together based on other logical properties,

such as by the type of sensors.

Neighbourhood-based grouping abstracts the wireless sensor network into groups of sen-

sors according to their spatial locality. Each sensor node defines its own group locally by

establishing its neighbouring nodes. Spatial locality is a good fit for many WSN appli-

cations since readings are often highly correlated to the location of sensor nodes. Spatial

locality is also inherent in the transmission range of the wireless medium used in WSNs.
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Abstract Regions (Welsh and Mainland, 2004) and Hood (Whitehouse et al., 2004) are

two popular neighbourhood-based programming abstractions proposed for WSNs. The

languages expose automatic neighbourhood discovery and data sharing abstractions to

facilitate group based processing of data.

Spatial locality may not be the ideal grouping for sensor nodes in regards to process-

ing data for certain applications. Therefore, other logical grouping abstractions were

proposed whereby groups are defined by other properties. Such properties can include

(but are not limited to) types of sensors available, other environmental parameters and

even based on the dynamic input sensed from the environment. More so, group mem-

bership can be dynamic allowing nodes to join and leave groups according to the group

membership criteria. A particular example where spatial locality is not the ideal pro-

gramming abstraction is that of target-tracking based applications. Abdelzaher et al.

(2004) proposed EnviroTrack, a grouping abstraction focused on target tracking. Sensor

nodes are grouped to all the sensor nodes that detect the same event. A generic logical

grouping programming abstraction language, SPIDEY, was proposed by Mottola and

Picco (2006). Nodes are assigned attributes and group membership can be defined by

predicate logic based on the assigned attributes. Thereby the developer can specify the

logic which defines a group. Such groupings can consist of all nodes with the same sensor

type, or even all nodes with specific sensor input ranges (for example all sensor nodes

having temperature readings greater than 10 degrees).

2.2.3 Network-Level Programming

The network-level programming model provides the highest level of abstraction by ab-

stracting the whole network as a single abstract machine. Again, the higher abstraction

will provide an easier programming framework however again at the cost of further

restrictions on flexibility.

The database programming abstraction was the first network-level programming model

proposed for WSNs. Primary work on WSN database abstractions includes Cougar

(Bonnet et al., 2000), SINA (Srisathapornphat et al., 2000) and TinyDB (Madden et al.,

2005). The approaches allow for sensor data to be queried using SQL-like queries via a

single query engine abstraction. The approaches vary in how the retrieval of sensor data

is implemented. Cougar was the first proposed database programming approach in which

the SQL-like queries are disseminated into the wireless sensor network. Each sensor node

will upon receiving the query, process the query by sampling sensors and performing

any specified aggregation of previous stored data and transmit the results back to the

query originator. In addition to this, SINA also provides an imperative programming

language called Sensor Querying and Tasking Language (SQTL) that allows for tasks

to be written much like that of stored procedures in traditional databases. TinyDB

extends the query request paradigm by also adding constructs to provide automatic



Chapter 2 Related Work 17

query updates by specifying how often data should be sampled, how often the processed

query results should be transmit and also on which nodes the tasks should take place.

Work on routing trees to provide optimal paths for disseminating queries and collecting

results was also proposed. The database programming abstraction provides an easy to

user interface to query readings, perform simple aggregations on data, and transmit the

data to the base station. The trade-off is however that more sophisticated tasks cannot

be implemented.

Macroprogramming languages were proposed that attempt to provide ease of program-

ming without trading off extensive flexibility. Regiment (Newton and Welsh, 2004) is

one of the earliest proposed macroprogramming languages for WSNs. Regiment is im-

plemented as a functional programming language similar to Haskell (Hudak et al., 1992).

Groups of nodes can be specified according to spatial and topological location as well

as other logical parameters, and thereafter operations can be performed on the groups.

Operations can be performed on individual nodes or groups of nodes and their results

aggregated to provide a single system wide view of the collected and processed data.

Recent work by Hossain et al. (2011) acknowledge the benefits heeded using the higher

level macroprogramming abstraction and propose that node-level microprogramming

can be made to be just as simple as macroprogramming given an adequate programming

abstraction. To demonstrate this Hossain et al. (2011) propose µSETL, a programming

abstraction that allows node-level programming using set theory like operations. It is

shown that by using set theory based operations with the ’right set of programming

abstractions’ programs can be described with comparable lines of code to that of other

macroprogramming approaches for several relatively simple applications. It is not shown

whether or not the approach will be adequate for more complex applications. More

so, as noted by the authors the ease of programming (or number of lines of code in

a program) really depends on the abstractions available. More complex applications

requiring abstractions that are not provided by the run-time environment will result

in more effort from the programmer. Really, as indicated by Hossain et al. (2011),

it is the right set of programming abstractions that ease the programming complexity

and not the language. As previously stated, although which programming language

and programming abstraction best suits WSNs is an interesting topic, it is not the

topic of this thesis. Java was chosen as a candidate language in this thesis due to

its popularity and also since other virtual machines proposed used Java, therefore a

comparison between the different approaches would be more fair. Background on the

Java programming language, bytecode and virtual machine specification will now be

provided.
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Figure 2.2: An overview of the Java ClassFile structure.

2.3 Java

The Java programming language (Gosling et al., 1996) is a general-purpose object-

oriented language designed with simplicity in mind. Its syntax is similar to C and

C++ with a few alterations. Platform independence is another focal design criteria

of the Java framework. The authors state that code should be able to be written

without an understanding of the underlying hardware architecture. This would allow

programmers with minimal low level expertise to easily develop solutions for ranges

of different platforms. Java over the years has matured into a popular and industry

accepted language used in a plethora of environments.

The Java Virtual Machine (JVM) as specified by Lindholm and Yellin (1999) describes

the internals of JVMs and how they should be constructed. Here a description will be

provided of the concepts and principles which are necessary for comprehension of the

work presented in this thesis in relation to Java. This section is not intended as an

introduction to the language constructs and uses, but to provide an overview of the

underlying framework that supports the virtual machine and execution paradigm.

2.3.1 The Class File Format

Java code is written and separated into different Java class source files. Java source is

then compiled using the Java compiler which produces Java ClassFile structures. The

ClassFile structure’s overview is presented in Figure 2.2. The ClassFile structure’s

main components include the constant pool, interfaces, fields, methods and attributes.

The constant pool contains class, interface, field and method names (where class and

interface names are stored as fully qualified Java names) as well as strings and other

constant values. A list of interfaces is stored containing all interfaces that act as super-

interfaces to the class. All of the class’ fields and methods are listed in the ClassFile

structure and the associated bytecode for each method is stored within the method
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Figure 2.3: A 32 bit operand stack depicting usage of 8, 16, 32 and 64 bit
datatypes.

structure. Attributes are also stored in the ClassFile. Attributes allow for class meta-

information to be associated to the class itself as well as to specific fields and methods.

The Java framework specifies that class files should be verified to ensure that the code

within the class file is valid and respects the framework’s constraints.

2.3.2 JVM Stacks, Method Frames and Operand Stacks

A JVM stack is used to store frames, where a frame contains data related to a specific

method. A JVM stack is created for each thread of execution within the JVM. When

a new method is called, a new frame is created and associated to the new method,

and pushed onto the JVM stack. When a method is finished executing, its associated

frame will be popped from the JVM stack. Thereby only one frame will be active at

any point in time (in each thread of execution). A method’s frame will consist of local

variables, the method’s operand stack and other method related information such as a

return address and other JVM implementation specific information. As mentioned each

frame will contain an operand stack which is used to store operands and results from

the operations specified in associated method bytecode. The Java bytecode instructions

perform operations (to and from the stack) at the smallest granularity of 32 bits. Figure

2.3 depicts a (Java) 32 bit operand stack containing an 8, 16, 32 and 64 bit values stored

in it. A 64 bit value will take up two slots on the stack, a 32 bit value takes up a single

slot, while a 16 bit and 8 bit value will also take up a single slot. That means that 16

bits of memory will be wasted when a 16 bit value is placed on the stack and 24 bits is

wasted when an 8 bit value is placed on the stack. Since most operations on traditional

platforms consist of 32 bits, and given the abundance of memory resources, this is hardly

an issue when targeting traditional platforms.
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2.3.3 Java Bytecode Instruction Specification

An overview of the Java bytecode specification will be described here, however for a more

comprehensive description interested readers should refer to the actual specification by

Lindholm and Yellin (1999).

After Java source files are compiled, Java ClassFiles are produced which contain

method structures, whereby each of these method structures will contain bytecode which

represents the actual method logic. Bytecode instructions represent operations to be per-

formed. When necessary instructions are required to pop values from the operand stack

to use inputs to the operation and also may push results on to the stack. Operations may

also result in storing and loading values from and to variables or fields. The standard

notation for describing an operation’s effect on the stack is as follows:

..., value1 , value2 ⇒ ..., value3

The left side of the right arrow represents the stack before the operation takes place

and the right side of the right arrow represents the stack after the operation has taken

place. The three dots (’...’) represent the stack and its contents which are not relevant

to the respective operation. All inputs to the operation are then specified (in the case

above value1 and value2). The above then describes that value1 and value2 are popped

from the operand stack, and thereafter value3 is pushed onto the operand stack. The

example above would suit the stack effects for an iadd bytecode instruction. The iadd

instruction is used to add two integer values. In doing so it will pop two values from the

stack, value1 and value2, perform an addition of the two and the push the result, value3

on the stack (where value3 = value1 + value2).

Bytecode operations consist of single byte opcodes that specify the operation which

the bytecode operation performs, along with zero or more operands. A single byte

opcode implies that there can be a maximum of 256 different operations, however of

the possible 256 possibilities 51 are reserved for other purposes or future use. The

number of operands that each bytecode instruction requires as specified in the Java

Virtual Machine Specification (Lindholm and Yellin, 1999) is dependent on the opcode

itself. The opcode itself also determines the type of the parameters it requires. For

example the iload instruction loads a local int variable, whilst the fload instruction

loads a float variable onto the stack. As per the examples, most of the typed bytecode

instructions can be identified by the first character of the instruction where i represents

int operations, l represents long operations, s for short operations, byte operations

by b, c for char operations, f represents float operations, double operations by d

and a is used to represent reference operations. However, a bytecode operation does

not exist for every possible typed operation since this would require more than the 256

possible bytecode opcodes, also since the Java stack is inherently 32 bits (i.e. every value
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Table 2.1: Typed Java Bytecode Instructions

opcode byte short int long float double char reference

Tipush bipush sipush

Tconst iconst lconst fconst dconst aconst

Tload iload lload fload dload aload

Tstore istore lstore fstore dstore astore

Tinc iinc

Taload baload saload iaload laload faload daload caload aaload

Tastore bastore sastore iastore lastore fastore dastore castore aastore

Tadd iadd ladd fadd dadd

Tsub isub lsub fsub dsub

Tmul imul lmul fmul dmul

Tdiv idiv ldiv fdiv ddiv

Trem irem lrem frem drem

Tneg ineg lneg fneg dneg

Tshl ishl lshl

Tshr ishr lshr

Tushr iushr lushr

Tand iand land

Tor ior lor

Txor ixor lxor

i2T i2b i2s i2l i2f i2d

l2T l2i l2f l2d

f2T f2i f2l f2d

d2T d2i d2l d2f

Tcmp lcmp

Tcmpl fcmpl dcmpl

Tcmpg fcmpg dcmpg

if TcmpOP if icmpOP if acmpOP

Treturn ireturn lreturn freturn dreturn areturn

that lives on the stack takes up 32 bits) than stack operations that involve pushing or

popping values less than 32 bits would never be used. Table 2.1 provides a summary of

the type support provided by the bytecode instruction set as reproduced from Lindholm

and Yellin (1999). If an operation is not provided for a specific value type, then the

value can be converted to a type that is supported for the specific bytecode operation.

For example, if an addition is required for two short values, then the values can be

converted to int values using the short-to-int, s2i, bytecode instruction. Table 2.1 is

summarised by each operation in the opcode column where the capital T represents the

parameter type, and in the case of if TcmpOP, OP represents the operation type. A

description of each bytecode operation group including bytecode instructions that are

not summarised by parameter types in Table 2.1 will follow.

2.3.3.1 Load and Store Instructions

JVMs use a stack to store input values for operations and the results of operations are

also placed on the stack. Values will however not live permanently on the stack. Values

are typically stored in local variables that live inside a JVM method frame as described

above. To transfer local variables from JVM method frames to the operand stack the

following load instructions are used: iload, lload, fload, dload and aload to transfer

int, long, float, double and reference values respectively. These load bytecode oper-

ations require a single byte parameter to indicate the index number of the local variable
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to load onto the stack. Since loading values from local variables to the stack is a very

common operation the JVM bytecode specification implements bytecode mnemonics of

the load operation that does not require a separate local variable index parameter in

the format of: iload <n>, lload <n>, fload <n>, dload <n> and aload <n> where <n>

is replaced for each local variable index from 0 to 3. Similarly for storing values stored

on the operand stack back into local variables (stored in the JVM method frame) the

following bytecode instructions can be used: istore, istore <n>, lstore, lstore <n>,

fstore, fstore <n>, dstore, dstore <n>, astore and astore <n>.

Java needs to facilitate more than 256 local variables, therefore the wide bytecode in-

struction allows for the execution of the load and store instructions with a 2 byte local

variable index.

Constant values can be pushed onto the operand stack using bipush and sipush which

push byte and short values as int values respectively; ldc, ldc w and ldc2 w are used

to push constants stored in the constant pool onto the operand stack; aconst null

pushes the null reference value; iconst m1 pushes -1 onto the stack; and iconst <i>,

lconst <l>, fconst <f> and dconst <d> are used to store constant values onto the stack

where <i>, <l>, <f> and <d> represent 0 to 5, 0 to 1, 0 to 2 and 0 to 1 respectively.

2.3.3.2 Arithmetic Instructions

Arithmetic instructions supported can be grouped into single operand and dual operand

instruction groupings. Dual operand instructions pop the two operands from the stack,

perform the arithmetic operation and push the result onto the stack. The dual operand

instructions support addition (iadd, ladd, fadd and dadd), subtraction (isub, lsub,

fsub and dsub, multiplication (imul, lmul, fmul and dmul), division (idiv, ldiv, fdiv

and ddiv), remainder (irem, lrem, frem and drem), shifts (ishl, ishr, iushr, lshl,

lshr and lushr), bitwise or (ior and lor), bitwise and (iand and land), bitwise xor

(ixor and lxor), comparisons (dcmpg, dcmpl, fcmpg, fcmpl and lcmp) and incremen-

tation, iinc, which differs from addition in that it increments a local variable by a

specified value.

Single operand instructions similarly pop a single operand, perform the operation and

push the result on the stack. The only single operand arithmetic operation supported

is negation (ineg, lneg, fneg and dneg).

2.3.3.3 Type Conversion Instructions

Type conversion instructions are used to convert a value from one type to another. This

is typically required either due to conversions explicit in user code or else due to con-

versions required to perform typed operations that are not supported. Conversions can
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be grouped into two types, widening conversions and narrowing conversions. Widening

conversions are those conversions that can convert a value to a data type that supports

all possible values of the original data type (or more). Widening conversions supported

include int to long (i2l), int to float (i2f), int to double (i2d), long to float

(l2f), long to double (l2d) and float to double (f2d).

Narrowing conversions changes values to a data type that cannot hold all possible values

of the original data type. The narrowing conversions supported are int to byte (i2b),

int to char (i2c), int to short (i2s), long to int (l2i), float to int (f2i), float

to long (f2l), double to int (d2i), double to long (d2l) and double to float (d2f).

2.3.3.4 Object Creation and Manipulation

Instances of objects are created using the new bytecode instruction. The type of object

is specified by two bytes placed on the stack which consist of a constant pool index that

points to a class reference type. Arrays are created using the newarray, anewarray and

multianewarray which are used for standard value type arrays, reference arrays and

multi-dimensional reference arrays.

Values of object fields and class variables (or static fields) are retrieved using getfield

and getstatic respectively. The constant pool index associated with the field or class

variable is included as an operand following the opcode. In the case of an object field

the object reference is placed on the stack prior to execution of the bytecode instruction.

Thereby the virtual machine can look up the object reference in the case of object fields,

and for both opcodes, the virtual machine will place the object field’s value or the class

variable’s value on the stack. Storing values works in a similar fashion. The object field

or class variable constant pool index is specified as an operand to the putfield and

putstatic instructions respectively. The value to be stored is expected to be on the

stack prior to execution of the bytecode instruction. In the case of object field value

storing the object reference is also expected to be on the stack.

Array values can be retrieved by looking up the array reference and then finding the

required array item to be retrieved. Both the array reference and array item index are

expected to be on the stack. The instruction will then pop the array reference and the

array item index, find the array item to be retrieved and push the array item’s value

on the stack. To store values into an array, the value to be stored along with the array

reference and array item index is expected to be on the stack. Array item value loading

and storing is supported for the standard Java value types: byte (baload and bastore),

char (caload and castore), short (saload and sastore), int (iaload and iastore),

long (laload and lastore), float (faload and fastore) and double (daload and

dastore) and reference arrays (aaload and aastore).
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Other object and array bytecode instructions include instructions to check the type of an

object or array (instanceof and checkcast) and array length retrieval (arraylength).

2.3.3.5 Control Transfer Instructions

Execution flow can be altered using control transfer instructions. Unconditional branch-

ing supports instructions that can change execution to a code address specified as a

parameter both without the intention of returning to the original execution point (goto

and goto w) as well as instructions that support returning to the original execution

point (jsr and jsr w) by placing the return address on the stack. Unconditional jump

locations can also be specified by the value of local variables (ret).

Simple conditional instructions are also used to alter execution flow. The Java bytecode

specification supports instructions that alter control flow based on: the comparison of

a value (on the stack) with the integer 0 (ifeq, iflt, ifle, ifne, ifgt and ifge); the

comparison of a reference (on the stack) with the null reference (ifnull and ifnonnull);

the comparison of two integer values on the stack (if icmpeq, if icmpne, if icmplt,

if icmpgt, if icmple and if icmpge); and the comparison of two references on the

stack (if acmpeq and if acmpne). Each simple conditional instruction requires a two

byte parameter that represents a signed offset to jump to in the case of when a condition

is evaluated to be true.

Compound conditional instructions are also supported that allow for multiple branch-

ing destinations based on the value of an integer (on the stack). The lookupswitch

bytecode instruction requires that each comparison value-destination pair follows the

opcode. A comparison value-destination pair consists of a comparison value by which

the value being compared is matched against. If the value (on the stack) matches the

comparison value then execution is branched to the address specified in the compari-

son value-destination pair. It is often the case that the individual comparison values

are provided in a sequential order (when using switch-case statements). Therefore,

the tableswitch instruction was also provided that does not require comparison values

but only a list of destination addresses. The minimum comparison value and maximum

comparison value are passed as parameters to the instruction. Thereby, the JVM can

compare each value in the range and jump to the relative destination if a match is found.

2.3.3.6 Method Invocation and Return Instructions

Four method invocation instructions are provided by the bytecode specification includ-

ing: invokevirtual, the standard method of dispatching method calls; invokeinterface,

used to invoke a method according to the interface method specification; invokespecial,

used for invoking instance initialisation methods, private methods or a superclass method;
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and invokestatic, which is used to call class methods (attributed by the static key-

word).

Method control flow starts at the beginning of a method and ends when a return state-

ment is reached. A return statement must always end execution of a method (even if it

is the last instruction in a method). Methods that do not return values use the return

instruction to identify that execution of the method has ended. If a method returns a

value then the associated return instruction is used. ireturn for int, lreturn for long,

freturn for float, dreturn for double and areturn for references.

2.3.3.7 Exceptions

Java supports the throwing and catching of exceptions. The only bytecode instruction

implemented to support this is the athrow instruction which instructs the JVM to throw

an exception where the exception object is expected to be on the stack. The process of

finding an exception handler and passing uncaught exceptions up the call stack is left

up to the JVM.

2.3.3.8 Synchronization Instructions

Synchronization is implemented using two instructions monitorenter and monitorexit.

The monitorenter instruction is used to acquire a lock on a specified object (which is

expected to be on the stack). An object’s lock can only be acquired by one thread at

a time. The monitorexit instruction is used to release an acquired lock of a specified

object (which is expected to be on the stack).

2.3.3.9 Operand Stack Management Instructions

Direct manipulation of the data on the stack can be implemented using instructions

which: pop items from the stack (pop and pop2); duplication of items on the stack (dup,

dup2, dup x1, dup2 x1, dup x2 and dup2 x2); and swap items on the stack (swap).

2.4 Desirability of Java for WSNs

The above provides an overview on the Java Virtual Machine specification and how Java

bytecode is constructed. Given the deeper insight into the internals of the virtual ma-

chine and language it is sufficient to now analyse the desirability (and undesirability) of

Java for wireless sensor networks. The main benefit heeded using Java as a programming

language lies in the fact that most computer science students and workforce are proficient
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in Java programming or in the very least familiar with it. Thereby, the learning curve

to develop WSN applications would greatly be minimised. More so, as previously noted

the development and maintenance costs of systems implemented in high level languages

such as Java are reduced than lower level languages such as C (Butters, 2007). Previous

work proposing popular high level languages have focused on Java as a programming

language (which will be described next). Therefore, it is suitable to implement Java as

the language of choice in order to not introduce any unfair comparisons (that said, the

run-time compilation techniques proposed in this thesis are not specifically tied to Java

and can be used with other languages).

The high level programming abstraction provided by Java, along with an adequate

hardware abstraction can greatly decrease programming effort. However this is a double-

edged sword. Since like many of the advantages introduced by abstracting to higher

programming levels, undesirable features are also introduced including the execution

overhead introduced due to the abstraction. This is a trade-off that must be evaluated

for such programming paradigms. That said, the work proposed in this thesis attempts

to minimise such execution overheads without sacrificing programmability. Another

trade-off implicit in abstraction is the loss of fine-grained control of underlying hardware,

however that is essentially the goal of the higher level abstraction. More so, such fine-

grained tuning can be implemented at the operating system or driver layer if required.

Java programs are stored and distributed as Java bytecode. The benefits of this include

platform independence, and also bytecode tends to be smaller in size than that of native

code which are both desirable features for over-the-air reprogramming. Java bytecode

however was not designed with 8 or 16 bit microcontrollers in mind. This can be seen

from table 2.1 whereby byte and short data types (that is 8 and 16 bit data types) are

not inherently supported for most bytecode operations. Most operations on byte and

short datatypes require casting to or from the int (32 bit) datatype. This means that

more than double the memory is required on the stack for 8 or 16 bit operations. Also,

execution is slowed down due to the introduced typecasting operations. For this reason

an intermediate assembly language that can inherently support operations of 8 or 16

bits would be better suited such as that of the Common Language Infrastructure (CLI)

(Miller and Ragsdale, 2003) used in .NET or the LLVM assembly language (Lattner and

Adve, 2004).

That said, the desirability or undesirability of the usage of the Java programming lan-

guage for WSNs is subject to the more generic question as regards to whether node-level

programming is a suitable feature for WSNs or if higher level group or network level

abstractions are more suited. This question is out of scope of this thesis, however it

should be noted that a majority of WSN applications are developed using a node-level

programming model. Therefore, the work in this thesis provides methods for imple-

menting a node-level programming environment which is easier to use than alternatives

without sacrificing execution efficiency. Also, the premise that an extensive number of
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computer science graduates and available workforce are already knowledgeable in Java

programming, may provide an advantage over learning new group-level and network-

level programming models. However, again this is out of scope of this thesis and should

be addressed in future work.

As mentioned before to minimise unfair advantages, we have decided to use Java in

a similar manner to other approaches proposed for WSNs. To overcome this problem

previous approaches propose analysing the bytecode and altering it to inherently support

8 or 16 bit operations as will be described further below.

2.5 Sensor Nodes are for WSNs, not for Java Purists

Java provides a number of different Java Editions aimed at providing different needs to

different device classes. The most notable are Enterprise, Standard and Micro Editions

which are targeted at enterprise software, generic pc based applications, and embedded

systems (larger than that of WSNs) including mobile phones and set-top boxes.

A less popular platform more targeted towards the smaller sizes of WSNs (or even

smaller) was proposed for smart cards, namely JavaCard. The JavaCard platform how-

ever is too specific to smart cards and not generic enough for WSNs. Restrictions include

lack of float and double datatypes and therefore does not support any decimal values

which may be required by certain developers. JavaCard programs are implemented in a

web server request and response paradigm in Java Servlets which is not the ideal exe-

cution paradigm for WSNs, also the implementation requires extensive security features

that are not necessarily required in WSN applications.

2.5.1 Need for a New Java Platform Specification

Two predominant schools of thought exist regarding how Java should be supported on

sensor nodes, the first being that of Java purism and the second group, focusing on sensor

node optimization which will be named pragmatics here for lack of a better word. Java

purists believe that the port should be compliant with a Java Edition (usually the Java

Micro Edition since the JavaCard platform is not well suited). These implications result

in an increase of cost or substantial decrease in memory availability and most likely

higher execution overheads. Pragmatics, on the other hand, focus on the task at hand

and how it can best be achieved; i.e. how can Java be supported (or a subset thereof)

which will allow (novice) programmers to easily write applications for sensor networks

without sacrificing memory or increasing execution overhead or node costs. The Java

Micro Edition supports two configurations: the Connected Device Configuration (CDC)

and the Connected Limited Device Configuration (CLDC). The CLDC defines the lowest

common denominator of features amongst the different editions. It is the opinion of the
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author of this thesis that the CLDC specification is not adequate for WSNs and a new

specification should be devised. Reasons behind this opinion are described here.

The CLDC specification was primarily intended for larger devices than the sensor nodes

commonly used today, and thus the design of CLDC was not focused around sensor

nodes. Implementing a CLDC compliant sensor node would most likely increase costs

due to requiring more memory, or substantially limit the amount of memory available

to the developer’s application. This is ultimately for features which are useful only to

a very few number of sensor applications. Reflection allows an application to, at run-

time, inspect and modify applications in the VM. How useful is that to sensor network

applications, and is it worth the overhead trade-offs? CLDC does not support reflection

and more so reflection can provide little benefit for WSNs (especially compared to the

trade-offs required to support it). CLDC does limit the Java platform quite suitably,

however also requires certain features that are not required in WSNs which will be

highlighted here.

2.5.1.1 Strings and Encodings

CLDC includes a number of classes which provide text related features such as strings,

character encodings and related functions. Sensor nodes do not require to output data

in a textual representation, nor do they require to input data in such an encoding. Thus,

the related classes can be omitted for a sensor node implementation. Strings may be

useful for debugging purposes, however they provide no real benefit for executing an

application.

2.5.1.2 The double Datatype

MSPGCC and AVR-GCC, the most common MSP430 and AVR compilers used in sensor

networks, do not support the double (64 bit) floating point datatype. Although this

fact is not justification to omit the datatype it should be stated that many sensor

network deployments have managed fine without a 64 bit floating point implementation.

Although, scenarios may exist where such precision is required the overhead required for

supporting a double datatype should not be inflicted on all sensor network applications.

2.5.1.3 IO, Streams and Connections

Streams, StreamReaders and Writers are a concept which most Java developers should

be familiar with. They provide an abstraction to interact with a stream of bytes usually

associated with files, network connections or memory. The question must be asked as to

whether this is an appropriate abstraction for sensor nodes. Sensor nodes communicate
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with attached sensors and peripherals with analog to digital circuitry as well as data

buses including serial, I2C and SPI amongst others. Communicating with a sensor often

includes writing ’tight’ code which configures the sensor if required, and then reads

raw or preprocessed sensor values. Sensor communication often involves strict timing

requirements as well as initializing the sensor which may include warming up the sensor.

Also, sensor values are usually read and then either stored, sent over the air or have

some computation performed on them. The concept of applying a finite stream of data

does not fit here.

Applying streams to communication mediums only fits slightly better. The CLDC spec-

ification includes the Generic Connection Framework which provides an abstraction for

connection oriented communication. The general form of opening a communication con-

nection is described as follows: Connector.open("<protocol>:<address>;<parameters>")

A String representation of a connection is most likely not the optimal way to describe

a sensor network connection. Also, sensor network communication protocols are often

coupled tightly with the application. The API in the CLDC specification does not cater

for such coupling.

2.5.1.4 Calendars and Dates

Many sensor networks only require knowledge of a global sensor network time, and not

any relation to time outside of the sensor network. Other sensor networks may require

information to do with the time external to the sensor network, and thus parts of the

Calendar, Date and TimeZone classes may be useful. However, it is unfair to impose

the memory requirement for such classes on sensor nodes which would not require such

functionality.

2.5.1.5 Dynamic Class Loading

The CLDC specification requires that dynamic class loading is implemented. This is

a feature which is rarely required in desktop applications, let alone in sensor networks

which usually have a single purpose and are maintained by a single developer or team.

As with most aspects of sensor networks it is a running theme that the inclusion of such

features really is application specific. Thus, it would be beneficial that each sensor node

application (or deployment) can be configured to include the system classes which it

requires.
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2.5.1.6 Exceptions and Threads

Other Java features that may or may not be required for WSN applications include Ex-

ceptions and Threads. Both involve an additional memory, program space and execution

overhead. Some may argue that exceptions can be removed by replacing them with func-

tion return values that signify whether an error or unexpected state has occurred. On

the other hand perhaps exceptions are a programming notation that developers require.

Similarly the requirement of threads is just as controversial. Some argue that threads are

essential whilst others argue that event loops are more than enough for WSN applica-

tions. It is not the focus of this thesis to explore this question, however it is the opinion

of the author that the choice of whether to support exceptions and threads (and other

features that may have controversial views) should be up to the application developer

and not the specification.

2.5.2 Code Conventions

One of Java’s benefits is ease of programming. Code conventions King et al. (1999)

were encouraged in aim of facilitating easy to read code. Implications of some of the

code conventions and other programming practices can lead to an increase in overhead.

When using more powerful processors the overhead can be justified, however, in sensor

networks, more computation means longer active times which results in higher energy

usage. Popular code conventions which incurs extensive execution overheads will now

be highlighted.

The code conventions issued by Sun King et al. (1999) state ”Don’t make any instance

or class variable public without good reason.” Instead, it is recommended to encapsulate

the logic in methods which alter class instance variables. Let’s analyse the difference

between accessing public instance variables directly and indirectly using method calls.

Figures 2.4 and 2.5 displays the bytecode required to set an integer instance variable to

the value of 1 followed by retrieving the value of the instance variable which is set to a

local variable for indirect and direct instance variable accesses respectively. Comments

are denoted by ”//”.

As can be seen in the examples indirect access of instance variables requires the same

bytecode required to access instance variables directly, plus some extra overhead to call

the class methods and pass or return values to or from it. In our example the following

extra bytecode instructions were required to be executed: 2 aload, 2 invokevirtual and

1 iload instructions. This could amount to double the execution overhead to perform

the same actions. Thus, a ’good reason’ to directly access class or instance variables

is that it is more efficient, and when working with a limited power budget efficiency is

king.
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Figure 2.4: Example of bytecode to indirectly access instance variables using
getters and setters.

//call MyClass.setMyInt (1)

aload_1

iconst_1

invokevirtual #4 //(MyClass.setMyInt)

// bytecode executed in setMyInt(int i)

// MyClass.myInt = parameter

aload_0

iload_1

putfield #2 //(MyClass.myInt)

//call MyClass.getMyInt ()

aload_1

invokevirtual #5 //(MyClass.getMyInt)

// bytecode executed in getMyInt ()

aload_0

getfield #2 //(MyClass.myInt)

// bytecode executed in caller

// which assigns the return value to a local variable

istore_2

Figure 2.5: Example of bytecode to directly access instance variables.

//set field to 1

aload_3

iconst_1

putfield #8 //(MyClass.myInt)

//get field

aload_3

getfield #8 //(MyClass.myInt)

istore_2 // store it in a local variable

Other code conventions and programming practices which impose higher execution over-

heads may exist. It is important that application developers are provided with new code

conventions which provide priority to efficiency.

2.6 JVMs for WSNs

The above questions which features of Java are relevant for WSNs. Now related work will

be presented in respect to what has already been done in supporting JVMs for WSNs.

The first proposed JVM for WSNs, Squawk, was proposed by Shaylor et al. (2003)
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initially intended for smart cards having 32 bit processors and 160 KB of program space

but later ported to the Sun SPOT (Simon et al., 2006) platform. The Sun SPOT is

equipped with 512 KB of RAM and 4 MB of flash memory, making it substantially

larger than the class of wireless sensor node devices targeted in this work. Several

decision choices made in the Squawk system are however relevant to this work. More

recent JVMs proposed for traditional WSN class devices (having tens of kilobytes of

program space and ten kilobytes of RAM) include the TakaTuka VM (Aslam et al.,

2008), the Darjeeling VM (Brouwers et al., 2008a) and the Mote Runner VM (Caracas

et al., 2009). In this section we will discuss design choices and details which are relevant

to the work being presented in this thesis.

2.6.1 Application Portability

One of the design goals behind Java is application platform independence. By employ-

ing a bytecode encoding the virtual machine can then execute the logic on the under-

lying hardware (either using an interpreter or by compilation techniques). The JVMs

proposed for WSNs all make use of a bytecode encoding which allows for application

portability, meaning that the same bytecode can be interpreted on sensor nodes with

differing hardware architectures.

2.6.2 Pre-processing Bytecode

The Sun SPOT sensor node targeted by the Squawk JVM has substantially larger re-

sources than the nodes targeted by this work and that of the other proposed JVMs for

WSNs. However still much smaller than the resources available in traditional comput-

ing platforms. Shaylor et al. (2003) initially proposed an offline class file pre-processing

stage which above all transforms bytecode produced by the standard Java compiler into

more compact bytecode to better suit the resource constraints. Later Simon et al. (2006)

proposed the term split VM architecture, whereby the offline pre-processing stage in-

volves loading, verification and transformation of Java bytecode on a host machine. The

device is then only required to store the pre-processed bytecode. Thereby the device

and host machine are seen as a single large virtual machine, providing different parts

of the virtual machine bytecode compilation and loading process. Due to the increased

constraints on the platforms targeted by the other JVMs, offline pre-processing is also

included in their designs which can also be viewed as a split VM architecture.

2.6.3 Compact Bytecode Instruction Set

Due to the limited program space available it is beneficial to minimise the overhead

required to store application logic. Therefore, the Java bytecode produced from the
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Java compiler is pre-processed and translated to a more compact bytecode specification

that better suits the target platform. Where possible, Shaylor et al. (2003) replace Java

bytecode instructions that require two operands to require only one operand. An exam-

ple of this includes branch instructions which provide a two byte destination address. If

the destination address fits in a byte, then essentially the second byte is not used. The

iload bytecode instruction is used to load an integer local variable, whereby a single

byte identifying the local variable index to load follows the iload instruction. To reduce

size, the Java bytecode specification (Lindholm and Yellin, 1999) also includes bytecode

instructions which combine the iload instruction with a variable index number, from

iload 0 to iload 3. In aim of further decreasing code size, Simon et al. (2006) propose

increasing more combined single byte bytecode instructions of this type for load, store

and const related instructions. Similar to a single byte operand address for branches, the

same is proposed for field and method addresses. To facilitate more efficient Garbage

Collection (GC), the bytecode is altered so that local variables are re-allocated such that

value slots are separated from reference slots, and therefore one pointer map is required

per method.

2.6.4 Bytecode Optimisation

Simon et al. (2006) propose inlining getter and setter methods, as well as small static

or final methods. The authors also propose constant folding and constant propagation.

Constant folding involves resolving operations at compile-time if the sufficient operands

are available at run-time. Constant propagation involves replacing variable value usage

with that of a constant value, if the value of the variable can be determined at compile-

time. By inlining code more constant folding and propagation optimisations should be

possible, especially due to Java’s recommended getter and setter methods for accessing

variables. Consider the following code as an example of code before constant folding

and propagation:

int minute = 60;

int hour = 60 * minute;

int day = 24 * hour;

and the resultant code after constant folding and propagation:

int minute = 60;

int hour = 3600;

int day = 86400;

Bytecode size reduction techniques are usually split up into two categories: compres-

sion and compaction (Beszédes et al., 2003). Compression techniques that unpack the

underlying bytecode on loading could be useful, however if the decompression stage was
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to be implemented during execution this would greatly hinder the execution overhead

already inherent in interpreters. Aslam (2011) proposes a compaction technique that

utilises unused bytecode instruction values to represent common bytecode instructions

used. They consider operand reduction, operand removal and compacting multiple in-

structions together. Operand reduction is the process of reducing the operand size. Java

instructions that point to branch offsets contain a 2 or 4 byte operand whilst constant

pool indexes contain a 2 byte index. Aslam (2011) propose to reduce the operand size

for operands having values less than 256. More so, to optimise the constant pool ac-

cess they also order the constant pool entries according to the most commonly used.

Operand removal involves the complete removal of an operand. This can be done by

merging a bytecode instruction and an operand to a single bytecode instruction value.

Furthermore, they propose to identify popular sequences of bytecode instructions that

can be compacted to a single bytecode instruction (with a number of operands). During

compilation they analyse the bytecode for the different compaction optimisations and

replace the most common optimisation with the respective compaction. Code to han-

dle the decompaction is appended to the interpreter loop and therefore the compaction

scheme is dynamically changed according to the application being compiled.

2.6.5 Symbolic Name Resolution

Java class files contain symbolic class, method and field name information. These names

can allow dynamic run-time loading and inspection of class files and objects (most often

through Java reflection libraries). When resolving names a lookup is required to find the

actual address of the associated element. Many Java interpreters perform this lookup

whilst executing code. In order to optimise this process, the first time a lookup is

performed, the bytecode is patched to include a direct reference. As pointed out by

Shaylor et al. (2003) patching bytecode on the devices in question typically requires

rewriting flash memory (which is time consuming and incurs substantial energy). In

respect to the target platform however, this textual representation may be more of an

overhead than a benefit. By resolving the symbolic name information, execution is

increased by replacing the symbolic name with the actual address. This approach is

used by the Squawk (Shaylor et al., 2003) and Darjeeling (Brouwers et al., 2009). The

Squawk JVM originally allowed this translation to either be done offline during the pre-

processing stage, or on node during the loading phase. However this was changed to only

implement name resolution during the pre-processing stage. The decreased bytecode size

via symbolic name resolution, comes at the cost of loss of reflection, however reflection

is a rarely required for WSN applications.
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2.6.6 Language Independence

The approach proposed by Caracas et al. (2009) provides a Java or C# based program-

ming environment. The bytecode pre-processing stage they present can take as input

either Java bytecode or Common Intermediate Language (CIL) instructions (ECMA In-

ternational, 2006) generated from languages implementing the .NET specification (Miller

and Ragsdale, 2003) such as C# (Hejlsberg et al., 2003). This could be possible in the

other proposed solutions as well provided that a translator is created to translate from

the input instruction set to the platform’s instruction set and given that both languages

support stack based architectures this should not prove to be a problem. However, in

light of programming language research this would prove to be an asset in that new

language translators could easily be implemented and tested for resource constrained

devices.

2.6.7 Garbage Collection

Java abstracts the memory allocation and de-allocation task from the developer. Thereby

garbage, i.e. memory reserved by the application but no longer used, gradually increases.

Therefore, Java requires a garbage collector to release such reserved memory. The main

control loop for the Squawk JVM is:

for (;;) {

interpret(result );

result = gc();

}

The interpret function will exit only when memory allocation fails. The garbage

collector will then be executed and remove any memory reserved that is no longer being

used. Following this if the available memory is less than that which is required by the

memory allocation instruction which caused the allocation fail, then the garbage collector

will return false and then the interpreter will then issue an error. If memory is available,

then execution will continue as normal. Garbage collection can only occur on a method

entry since a stack frame is allocated at the beginning of a method, when creating a new

object (whereby the memory allocation is performed in the object’s constructor) and an

explicit call to the System.gc method. Garbage collection typically involves traversing

memory and freeing any memory which was previously used but is no longer reachable

from the program. The process of executing garbage collection during program execution

is referred to as online garbage collection. Different online garbage collection techniques

used within the WSN targeted JVMs will now be discussed followed by a more recent

offline garbage collection scheme.
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2.6.7.1 Mark and Sweep GC

McCarthy (1960) proposed the first automatic storage reclamation technique, the Mark

and Sweep algorithm. The algorithm’s principle is to allow memory to be allocated

from the heap without requiring explicit de-allocation or techniques to automatically

de-allocate memory when an object is no longer used. When an allocation is required

and the heap returns that not enough memory is available, then a traversal on the

heap will be made to determine which objects are reachable, and which ones can be

de-allocated. After marking reachable objects as active, all the unmarked (unreachable)

objects will be swept, i.e. de-allocated. This technique is used by the Darjeeling VM.

2.6.7.2 Mark and Compact GC

During a program’s life cycle, memory will be allocated, used and then de-allocated.

When memory is de-allocated it leaves a gap of free memory. The gaps will continue

to get smaller and smaller over a program’s lifetime. This could eventually result in

cases where enough memory is available however is fragmented and thus a contiguous

amount of required memory cannot be allocated. Mark and Compacting Garbage Col-

lection (Jones and Lins, 1996), used by the TakaTuka VM, can alleviate this problem

by separating memory into two sections, one containing live data and the other section

containing memory that is free to use. Mark and Compacting algorithms consist of three

main phases. The first phase consists of traversing reachable objects and marking each

object as reachable, the second phase then consists of relocating objects so that they

all fit two one side of the heap and the final stage involves resolving and updating any

pointers that reference to objects that have been relocated.

2.6.7.3 Generational GC

When performing garbage collection the heap must be traversed to determine which

objects are unreachable and therefore garbage. Objects living at the end of the traversal

tree will require more time to traverse to in comparison to objects living at the begin-

ning of the traversal tree. It is widely believed that ”most objects die young” (Ungar,

1984). Generational garbage collection is designed around this, in that de-allocation

can be made more efficient if it can find the objects that are more likely to die younger

quicker. Generational GC splits the heap into two or more parts, each associated with a

generation, whereby a generation is defined by an object’s age. Garbage collection can

then be performed first on only the younger generation, and only if more memory is still

required after GC, then further GC can be performed on the next older generation. This

technique is employed by the Squawk VM along with a Mark and Compact algorithm.
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2.6.7.4 Offline GC

Aslam (2011) identifies two main drawbacks with online garbage collection for resource

constrained devices. The first being that if an object is reachable from the program but

is never actually used, the garbage collector will not be able to de-allocate the mem-

ory associated with this object. The second drawback is that garbage collection will

frequently be invoked which results in a traversal on the object graph and ultimately

in an increased execution overhead and reduced lifetime. Offline analysis techniques

proposed for traditional computing platforms (Choi et al., 1999; Blanchet, 2003; Guyer

et al., 2006; Albert et al., 2007; Cherem and Rugina, 2007) attempt to reduce the exe-

cution overhead required to perform garbage collection in a system, but do not provide

any mechanisms to de-allocate objects that will not be used that are still reachable.

Aslam (2011) propose a method to de-allocate objects that are reachable but that will

not be used by performing analysis at compile time and therefore name this scheme

Offline GC. Analysis is performed during compilation to determine when objects can

be explicitly de-allocated (since they will no longer be used). The approach introduces

new bytecode instructions to instruct the VM to de-allocate specific objects. Once the

objects to be de-allocated are identified, the new bytecode instructions can be inserted

in the pre-processed bytecode to explicitly instruct the VM to de-allocate the objects.

A normal online garbage collection scheme must also be used in conjunction with offline

garbage collection. The benefits of doing so are that more memory is made available

to the application (since other techniques do not release objects that are still reachable

even if they will never be used) and as a result of this garbage collection will be required

to be executed less.

2.6.8 Threading

Interpreters keep track of the current executing instruction by storing a bytecode pro-

gram counter which points to the next address to execute. Squawk originally supported

threading by assigning a counter to each thread. The counter is decremented ”every time

the interpreter executes a branch” (Shaylor et al., 2003). When the counter reaches zero

a thread switch is performed, which involves saving the state of the current thread (such

as the bytecode program counter). Later, Squawk was altered to support Green Threads.

Green Threads implemented threading without relying on native OS threading libraries

or features, and therefore run in user space and not in kernel space. Green Threads

do not support pre-emption, but instead perform thread switching either when explic-

itly instructed by code (using Thread.yield(), Object.wait() or other methods that

imply a thread switch) or when a blocking operation is executed.
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2.6.9 Debugging

Squawk supports debugging of applications on Sun SPOTs by using the Java Debug

Wire Protocol (Sun Microsystems). JDWP is a protocol which is used to communicate

with a JVM to inspect and debug applications that are running on top of the JVM.

This involves reading class file information (including fully qualified names, source line

tables and other class meta-information). Since this information is stripped out by the

pre-processor approach proposed, JDWP cannot be implemented directly to the target

devices. Instead, by using a similar approach to the split VM architecture, a split debug

architecture is also used whereby a debug proxy runs on a host machine. Class files

are loaded into the debug proxy, and thereafter the proxy retrieves state information

from the device and can reconstruct the whole debug information state by merging the

current state information and the class file information. Simon et al. (2006) states that

the overhead introduced when enabling debugging is 10%. Aslam (2011) also propose

a similar approach to that of Simon et al. (2006). Aslam (2011) implement a solution

that requires less RAM due to a native C implementation when compared to the Java

implementation proposed by Simon et al. (2006) and also a light-weight wire protocol

to decrease RAM requirements.

2.7 Interpretation is slow

Java initially provided JVMs based purely on interpretation and the performance was

notably slow, as worded by Cramer et al. (1997) ”Interpreting bytecodes is slow.”, and

by Tyma (1998) ”Java isn’t just slow, it’s really slow, surprisingly slow.” and by Aycock

(2003) ”less-than-stellar performance”. Initiatives towards increasing the performance

of Java was therefore conducted. The following sections provide an overview of different

techniques proposed to increase the execution performance of Java.

2.8 Java Processors

Noting that interpreters were inefficient and that effective dynamic compilers for Java

required hundreds of kilobytes of program space and megabytes of RAM, McGhan and

O’Connor (1998) proposed a processor architecture, PicoJava, that can natively under-

stand Java bytecode and thereby achieve highly efficient execution of bytecode without

incurring any overheads due to a run-time environment. Target devices for this work in-

cluded ”set-top boxes, smart phones, mobile phones, PDAs and other handheld devices,

automotive systems, smart controllers, smart cards, and so on.” Cormie (2000) propose

Jazelle, an extension to ARM CPU cores to support an extra mode that operates on

bytecode. These CPUs have substantially more resources than the microcontrollers used
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in WSNs. Ito et al. (2001) claims that PicoJava does not address resource-constrained

applications, perhaps due to the cost involved in a larger processor, and therefore iden-

tifies the need for Java microcontrollers. Ito et al. (2001) demonstrate the FemtoJava

architecture which provides a Java microcontroller synthesized within an FPGA. AWSN

node based on the FemtoJava processor, FemtoNode, was proposed by Allgayer et al.

(2009). Hardware implemented VMs can be provide a more efficient Java execution plat-

form which ultimately results in less power consumption, however there may be barriers

to its adoption since the target audience is limited, as can be seen from the popular-

ity of Java specific CPU based processors. Lower production volumes would result in

higher costs and therefore would not be relevant for such applications. However, this is

definitely an area of interest where further research and marketing initiatives should be

taken.

2.9 Compilation, Interpretation and Semi-Compilation

Programming languages (higher than machine code) are translated and executed using

two different schemes being interpretation and compilation. Interpretation is often at-

tributed by its slow execution speeds, whilst compiled code executes natively on the

underlying hardware and therefore executes faster. The JVMs proposed for WSNs and

early JVMs for traditional computing execute instructions by means of interpretation.

Compilation techniques aimed at increasing execution of Java bytecode will follow, and

in order to provide the reader with a better understanding of compilation and interpre-

tation a brief introduction will now be provided.

Computing devices can understand machine code (also referred to as native code). Ma-

chine code programs consist of instructions that are encoded in a binary format which is

very hard for humans to understand. To facilitate humans to be able to program com-

puting devices easier programming languages with human readable instructions were

created. However, computing devices cannot understand anything but machine code.

Therefore, the programming language code needs to be translated to machine readable

native code. A compiler is a computer program which translates code from a source

language (or a programming language) to a target language, usually with the intent of

executing the program logic on a computer (or other device). This translation process

is called compilation.

Many different dialects or types of machine code languages exist. A computing device

will usually only understand one type of machine code. When compiling from a source

programming language for a device, the target machine code type must be specified.

This means that the resultant target machine code can only execute on devices that un-

derstand that specific instruction set of machine code. Therefore, the same programming

language would have to be recompiled for the different target platforms it is intended to
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support. A solution to recompiling code for different target platforms lies in interpreta-

tion. An interpreter is a computer program that can understand and translate a source

language and execute it on the target platform. By installing an interpreter on each

different computing device, recompilation of the source code for each target platform

would not be required. Interpreters are also useful for environments where compilers

are not available and code is required to be changed (perhaps on-the-fly). Interpreters

incur extra processing overheads since the interpreter has to translate the input lan-

guage, whilst code compiled to machine code is natively understood by the underlying

hardware.

The difference between compilation and interpretation is clear, compilation is the process

which translates code from the source language to the target format prior to execution,

whilst interpretation translates and executes the code on-the-fly. Using only compilation

or interpretation is sometimes not ideal. High level programming language code is highly

abstracted, therefore interpretation would involve extensive processing overheads. Thus,

a hybrid solution is often used called semi-compilation, whereby code is compiled from

the high level source language to a lower level intermediate language but is not targeted

to a specific machine code instruction set. The advantages of this is that the code can

be easier translated in comparison to the high level source language. Modern high level

languages such as Java and C# use semi-compilation whereby the input language is

compiled to Java bytecode or .NET CLI code respectively. The code is then interpreted

(or compiled) on the specific platform as required. This chapter will now conclude with

an overview on different compilation techniques.

2.10 Way Ahead of Time Compilation

To increase Java performance Dean et al. (1996) proposed compiling Java (and other high

level languages) to C code which is in turn compiled to native code. A similar approach

was taken by Proebsting et al. (1997) in which they term the compilation process as

Way Ahead of Time (WAT) compilation. This process is often described Ahead-Of-Time

(AOT) compilation as well. However, for the purpose of clear separation between the

time in which code is compiled whilst developing and loading time, throughout this thesis

the term Way Ahead of Time will be used to describe compilation during development,

and Ahead-Of-Time to describe the compilation process that occurs after loading code

(and before execution time). Other approaches that implement WAT compilation by

first converting to C include Gilles Muller (1996); Muller et al. (1997); Thomm et al.

(2010). Courbot et al. (2010) propose a ’romization’ method for embedded systems

whereby Java code can execute offline on an external system and thereafter translate

the code and system state into a single C file which is then compiled to a native code

image and ’burned’ onto the end device. The GNU Compiler for Java (GCJ) (Bothner,

2003) provides WAT compilation, however instead of translating the produced bytecode
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to C, it treats Java like any other language using GCC and compiles it directly to native

code. The approaches demonstrate a reasonable improvement in speed, however at the

sacrifice of platform independence. In respect to WSNs, although this may not be an

issue when initially deploying code, platform independence would be sacrificed and more

so update sizes are likely to be larger due to the nature of native code.

2.11 Ahead-Of-Time Compilation

WAT compilation although potentially able to produce highly efficient code (due to of-

fline analysis and compilation) strips the VM of platform independence. Ahead-Of-Time

(AOT) compilation on the other hand, performs compilation when code is loaded into the

system. Thereby it can generate efficient code prior to execution whilst at the same time

not sacrificing platform independence. Hsieh et al. (1996) demonstrate a simple AOT

compilation technique which translates bytecode to native code by mimicking the Java

operand stack. Alpern et al. (1999) present Jalapeo, a JVM written in Java that uses

an AOT compilation paradigm. Alpern et al. (1999) describe three compilers, a baseline

compiler which mimics the Java operand stack (similar to Hsieh et al. (1996)), an opti-

mizing compiler (Burke et al., 1999) to speed up computationally intensive methods and

a middle ground which performs low level optimisations (primarily register allocation).

Execution efficiency is highly dependent on the optimisations performed, and therefore

although WAT compilers may be able to include more optimisation if resources are lim-

ited on the target device, AOT compilation still provides sufficient execution efficiency

without sacrificing platform independence. A simple baseline compiler which mimics the

Java stack should require footprint comparable with that of an interpreter since roughly

the same translation logic is required. This work serves as initial motivation towards

implementing run-time compilation of bytecode in severely resource constrained devices.

Since an AOT compiler translates bytecode to native code during loading, more pro-

gram space will be required when compared with a bytecode encoding, and in severely

resource constrained devices this may be a problem (depending on the application).

2.12 Just-In-Time Compilation

Just-In-Time (JIT) compilation translates code from bytecode to native code during

program execution, and therefore it maintains a low program space requirement along

with a native execution paradigm without sacrificing platform independence. Although

JIT compilation is often a technology that is associated with Java, as pointed out by

Aycock (2003), it has been around since the early 1960’s with McCarthy’s (1960) LISP

paper. Throughout the years JIT compilation techniques have resurfaced for systems

such as Smalltalk (Deutsch and Schiffman, 1984) and Prolog Haygood (1994).
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Cramer et al. (1997) describes early work on JIT compilation and motivation for further

work to enhance efficiency of JIT compiled code. Extensive research was proposed for

improving JIT compilation by including common subexpression elimination, efficient

register allocation, array bounds check elimination, basic block analysis, static method

inlining, stack analysis, dynamic and hybrid compilation/interpretation techniques and

more (Plezbert and Cytron, 1997; Adl-Tabatabai et al., 1998; Krall, 1998; Ishizaki et al.,

1999; Yang et al., 1999; Suganuma et al., 2000, 2001). Stripped down JVMs and JIT

compilation was proposed for mobile device class embedded devices having a program

space footprint size of larger than 140 kilobytes (much larger than the device class

proposed in this thesis) (Shaylor, 2002; Delsart et al., 2002; Gal et al., 2006; Debbabi

et al., 2004, 2006). It is most likely due to the large footprints required (by even JIT

compilers targeted for mobile class devices) that it is believed that JIT compilation is

something beyond the power of WSN class devices.

2.13 Basic Block JIT

A basic block is a unit of code that has one entry point and one exit point ”without

having the possibility of branching except at the end” (Aho et al., 1986). JIT compilers

traditionally translate code at the granularity of whole methods. When code is being

executed it is possible that certain code paths are not executed due to conditional and

branching statements. Rogers (2002) propose Basic Block JIT compilation to increase

system performance by only compiling code that will be executed. To achieve this, a JIT

compiler must first perform basic block analysis to determine basic block starting and

ending points, and thereafter compile basic blocks as they are encountered. Although

originally proposed for an increase in efficiency, basic block compilation can serve as a

means of minimising memory overhead when performing compilation, and therefore this

technique is further investigated in this thesis.
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The Case for Run-time

Compilation of Bytecode in

Wireless Sensor Networks

As demonstrated by Brouwers et al. (2009) interpreting bytecode incurs a high execution

overhead compared with native code. Although it can be argued that sensor nodes sleep

most of the time and even that execution speed of non-time critical programs is less

important (Brouwers et al., 2008a), the fact that the interpretation overheads result in

higher power consumption for executing code compared with a native code application

cannot be dismissed. In this chapter we investigate the consequences of interpretation

on a sensor node’s lifetime and provide a case and motivation for research towards run-

time compilation techniques by modelling the overheads inherent in interpretation and

also by performing an experimental analysis of the effects of interpretation on timing

and power consumption.

3.1 Modelling Interpretation Overheads

The cost of executing bytecode can broken down as follows. The execution cost of

interpreting and executing a Java bytecode instruction, E(i), can be expressed as:

E(i) = Eint(i) + Estack(i) + Eexeop(i) (3.1)

where i is the bytecode instruction to execute, Eint(i) is the overhead required to inter-

pret the bytecode instruction, Estack(i) is the stack operation overhead associated with

the respective bytecode instruction and Eexeop(i) is the overhead required to execute the

arithmetic and logical operations associated with the bytecode instruction.

43
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In aim of minimising the cost of bytecode execution, it is proposed to remove the in-

terpretation cost, Eint(i), from the ’fetch, decode, execute’ cycle. A typical interpreter

implementation will consist of a switch statement with a case code block for each possi-

ble bytecode instruction. The switch statement for the Darjeeling virtual machine was

analysed (or any virtual machine really) and the resultant native code generated for

the MSP430F1611 microcontroller (which is commonly used in WSN nodes). The cost

associated for a switch statement is at least 5 native code instructions (i.e. Eint(i) ≈ 5),

depending on the build optimisation settings, for each bytecode instruction. Obviously

an interpreter would involve a significant amount of other interpretation related over-

heads (substantially larger than 5 native code instructions). In fact, Mitchell (1970)

state in their early work on translation from Smalltalk to native code that ”the benefit

of even this simple kind of translation will be great.”

The Java bytecode instruction set is inherently stack based and thus it has been decided

to sustain the stack operation overheads, Estack(i), associated with bytecode execution

in return for a smaller sized run-time compiler.

Thus, the energy consumption of the proposed method should amount to Estack(i) +

Eexeop(i), therefore removing a minimum of 5 native code instructions (although the

reduction will be much larger) from the execution overhead for each bytecode instruction.

Furthermore, although it is widely believed that run-time compilation is non-trivial,

infeasible, or impossible on such small devices (Palmer, 2004; Koshy and Pandey, 2005;

Pandey and Koshy, 2006; Koshy et al., 2008; Aslam, 2011), the thesis presented is that

a simple run-time compiler can be achieved with roughly the same amount of code that

is required for an interpreter since the same translation is required to be done anyhow.

The general consensus in the wireless sensor networks community is that the execu-

tion overheads introduced from an interpreter are of minor importance (Brouwers et al.,

2009). This may seem especially true when the dissemination costs of firmware is fac-

tored in as presented by Steinfeld and Carro (2009). This is due to the decrease in

overall overhead since dissemination costs of bytecode is smaller than that of native

code. However, if it was possible to implement a platform which would allow a bytecode

dissemination encoding and a native code execution platform, dissemination costs could

be reduced to that of an interpreter equipped sensor network whilst at the same time

minimizing the execution overheads inherent in an interpreter. Now, the question is

whether the interpretation overhead is significant to a sensor node’s lifetime.

To put this into perspective, a model of the expected lifetime of a sensor node based

upon the duty cycle and the current consumption of the microcontroller’s execution and

sleep states will now be provided. The expected lifetime of a sensor node, L, is defined

as:

L =
B∑
s IsTs

(3.2)
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where B is the total battery capacity, s represents a microcontroller power state, Is

is the microcontroller’s current consumption at state s, and Ts is the ratio of time at

which the microcontroller is in state s. Obviously, a wireless sensor node would also

incur sensing and communication overhead. However, let us for now ignore the sensing

and communication overheads in aim of emphasizing the significance of interpretation

costs. Let us also assume that the microcontroller exhibits two power states, an active

state and a sleep state, since interpretation will only affect the duration of the active

state. Thus, (3.2) can be simplified to two states as follows:

L =
B

Iactive · Tactive + Isleep · (1− Tactive)
(3.3)

where Iactive and Tactive are the current consumption and ratio of time spent in the

active state for native code execution and Isleep is the sleep state current consumption.

Execution speeds for an interpreter demonstrated by Brouwers et al. (2009) ranged from

30.4 to 113.2 times the speed of the native code implementation. Let us assume that

the interpreter can achieve an optimal execution speed of 30 times that of native code.

Thus, Tint, the ratio of time in which the microcontroller is in an active state for an

interpreter can be defined as:

Tint = Tactive · 30 (3.4)

and Lint, the lifetime of a node equipped with an interpreter can then be defined as:

Lint =
B

Iactive · Tint + Isleep · (1− Tint)
(3.5)

Using (3.3) and (3.5) the lifetime of a node for a varying duty cycle is plotted in Figure

3.1 for native code and interpreted implementations. The degradation factor (i.e. the

native version’s lifetime divided by the interpreted version’s lifetime) is also presented

which highlights the performance loss when using interpretation. Let us assume a battery

capacity, B, of 3,000 mAh, and use current consumption levels for the Telos B sensor

node, i.e. an active state, Iactive, of 1.8 mA and a sleep state, Isleep, of 5.1µA. As can be

seen from Figure 3.1, as the active percentage of the duty cycle increases, the lifetime

of the native code implementation compared with the interpreted version approaches

the interpretation overhead (in this case 30). Even with a low active duty cycle of 0.1%

(for example, 3.6 seconds per hour), a native implementation will last 8.5 times more

than an interpreted implementation. The model only considers the microcontroller’s

current consumption for active and sleep states, and therefore results in an extremely

long lifetime which is not realistic. This is due to the model not factoring in hardware

related issues such as battery dissipation; and other sources of energy consumption

typical to sensor nodes including sensors and transceivers which essentially results in
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Figure 3.1: Lifetime of a sensor node with a varying active execution ratio for
native code and an implementation with 30 times the overhead. The degradation
factor (native lifetime divided by the interpreted lifetime) also highlights the
performance loss when using interpretation. As the active percent increases the
degradation factor tends toward the overhead, i.e. in this case 30.

a sensor node that cannot sense or transmit. The purpose of the model, however, is

simply to demonstrate the impact of execution overheads in isolation.

Sensor networks, however, do not just consist of active and sleep components in a duty

cycle, they also include a sensing and communication component. Let’s now consider

adding sensor and communication costs to the model. The lifetime of a sensor node

is obviously dependent on the application logic which controls the amount and timing

of computation, sensor acquisition and communication tasks. Obviously, each different

possible configuration cannot be modelled since there exist infinitely many. However,

as can be seen from Figure 3.1, as the active percentage of the duty cycle increases,

the factor at which the native code implementation lasts longer when compared to the

interpreted implementation increases (and approaches the overhead). Thus, modelling

on those applications which incur a minimal active duty cycle percentage, such as a

sample and send application will be provided to highlight the performance of best case

scenarios of interpretation (since worst case applications will only prove the case even

more).
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(a) Active Time of 0.1 seconds
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(b) Active Time of 1 second
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(c) Active Time of 3 seconds
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(d) Active Time of 10 seconds
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Figure 3.2: Lifetime of a sensor node for an application with a varying duty
cycle including a single sensor acquisition and communication transmission for
an active time of (a) 0.1, (b) 0.5, (c) 1, (d) 3, (e) 5 and (f) 10 seconds.

Let’s define Ecycle as the energy consumed in a single duty cycle for a sample and send

application as follows:

Ecycle = (Cyclesleep · Esleep + Cycleactive · Eactive + Esensor + Eradio) (3.6)

where Cyclesleep and Cycleactive are the lengths of the sleep and active components of

the duty cycle respectively; and Esleep and Eactive are the energy consumption values

for the sleep and active states respectively. Using 3.6, the expected lifetime for a given

duty cycle can now be computed by dividing the energy available, Ebattery, by the energy

consumed for a single duty cycle, Ecycle, multiplied by the duration of a single duty cycle

as follows:

L =
Ebattery

Ecycle · (Cyclesleep + Cycleactive)
(3.7)

By using 3.7 the expected lifetime of a sensor node can now be estimated for a given

duty cycle with a fixed sensor and communication cost. Let’s assume the same values as
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above for current consumption and a 3.3V battery source, therefore the energy required

during sleep, Esleep, is 16.83 µJ and 5.94 mJ whilst active, Eactive. Also, let’s assume

that Esensor is 80 µJ and Eradio is 81.6 µJ (typical values for a 12-bit reading using an

SHT11 (Sensirion, 2010) and a 100 byte length message being sent over the air using

a CC2420 radio (Texas Instruments, 2010) at -25 dBm). Ebattery can be calculated to

35640 J from a 3300 mAh battery and a 3.3V battery. Figures 3.2 (a), (b), (c), and

(d) depict the expected lifetime in years against the sleep duration of a duty cycle in

seconds for an active duty cycle duration of 0.1, 1, 3 and 10 seconds respectively using

equation 3.7.

As can be seen from the graphs in Figure 3.2, the degradation factor which is imposed

by using interpretation gradually decreases as the amount of sleep time increases. As

can be noted from 3.2 (d), the interpreted lifetime prior to a 280 second sleep time is

not depicted (and therefore the degradation factor is also not depicted). This is due

to the fact that the interpreted version prior to the cut-off point requires more time

to execute the required computation than the time available in the whole duty cycle

and therefore the node cannot enter the sleep component of the duty cycle. The reason

why the sleep component of the duty cycle is less for the interpreted version is that it

is assumed that the quality of service and requirements of the sensor network does not

change according to the execution platform, however is inherent in the specific sensor

node application. The model once again reports extremely high lifetimes which is due

to the simplistic model used, and more so due to the extremely low active computation

times, extremely long sleep times, and other factors that are not accounted for such

as battery dissipation. However, the purpose of the model is to show that even for

very low active cycles and very long sleep cycles, interpretation overhead will greatly

hinder efficiency. The higher the active component of the duty cycle, the greater the

degradation factor of interpretation will be.

3.2 An Experimental Analysis of the Effects of

Interpretation

From the model above it is shown that as the amount of computation increases, the

interpretation degradation factor increases. It is worth noting that in an interpreted

system not all execution will take place by means of interpretation but also by means of

native execution for natively implemented drivers and libraries. The more execution that

takes place natively, the less the interpretation costs. This is obviously highly dependent

on the actual user application code being executed and also on how the specific run-time

system was implemented. In order to evaluate whether or not the execution overheads

will be high enough to justify the research proposed in this thesis, an initial evaluation of

an existing virtual machine, namely the TakaTuka virtual machine (Aslam et al., 2008),

was undertaken. The overheads inherent in execution were high compared to native code
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Table 3.1: Radio On/Off Evaluation

Turn On Time (ms) Turn Off Time (ms) On-Off Consumption (mJ)

TakaTuka VM 5.2 2.3 0.159
Native Code 1.6 0.011 0.02

Table 3.2: Toggle LED Evaluation

Toggle Time (µs) On-Off Consumption (µJ)

TakaTuka VM 1261 16.5
Native Code 5.2 0.11

as expected and reported by the authors. Execution overhead experiments are further

described in Chapter 5. Initial experimentation of the interpreter not only revealed the

high execution costs, but more interestingly the indirect additional energy expenditure

due to longer execution times.

WSN applications aim to turn off peripheral hardware as much as possible to lower

energy consumption. Therefore, a first experiment was performed to establish the time

taken to turn on and off a radio transceiver and also the energy consumed in doing

so. A Telos B (Polastre et al., 2005) sensor node was connected to an oscilloscope to

monitor current consumption. An application to continuously turn on and off the radio

was loaded for both the TakaTuka VM and a natively coded application. The results are

presented in Table 3.1. The time taken to turn the radio on and off is presented along

with the consumption for a single on-off cycle. The time taken to turn the radio on is 3.25

times longer for the TakaTuka VM than compared to a natively coded implementation.

Turning on the radio involves enabling the radio’s power line followed by configuring

the radio’s internal registers. The TakaTuka VM takes 209 times longer to turn the

radio off, which involves switching off the power line, however additional work could be

performed here such as configuring the internal registers into a sleep mode. Actually,

this comparison is not exactly a fair comparison since it is highly dependent upon the

radio driver implementation. This is most likely why large differences are seen between

the comparison of turning the radio on and turning the radio off. Nonetheless, it does

show higher energy expenditure even if it is due to poor driver implementation. The

energy consumption required to turn the radio on and off once using the virtual machine

takes 7.95 times than that of native code. Again, although this is highly dependent on

driver implementation, for this particular case the virtual machine implementation will

result in much higher energy costs not only for the computation part of a duty cycle,

but also for the usage of the radio.

To evaluate the indirect costs fairly, instead of using a radio transceiver, it was decided

to analyse the difference required to turn on and off a LED. A LED is turned on or

off by flipping a bit of an internal register that controls the output pins, which can

be implemented with only several instructions. It is therefore hard to blame driver

implementation for any extra energy consumed when switching on and off a LED. The

same experimental setup for the radio test was used, except instead of turning the radio
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on and off, a LED was toggled. The results are presented in Table 3.2. The time

taken between LED toggles for the TakaTuka VM is 230 times longer than that of a

native implementation, and therefore consumes more energy since the actual device is

on longer. The energy consumption required to turn a LED on and off once is 150 times

that of native code. Again, this will greatly impact the lifetime of a sensor node since

not only will the node have to deal with the burden of longer computation times and

the resultant higher computational energy costs, however it will also incur higher energy

costs for peripheral hardware usage. The reason why there is a such a higher energy

consumption for using hardware lies in the fact that it takes the interpreted code longer

to turn on and off devices. Once a device is powered on, the longer it takes to perform

any required processes and turn off the device, the higher the consumption will be.

In this chapter an analysis on both the direct and indirect costs of interpretation has

been provided. It is evident that the lifetime is substantially decreased for an interpreted

application when compared to a native code implementation. A high level object oriented

programming language such as Java, however provides many development advantages.

Thus effort should be put into achieving a Java execution run-time which does not

interpret code, but executes code natively. Therefore this investigation provides grounds

that run-time compilation of bytecode on sensor nodes should be further explored to

evaluate primarily whether it is possible and feasible, and secondly to examine what

overheads are associated with a run-time compiled application when compared to a

native code application, and furthermore the effects of any incurred overheads on the

lifetime of a sensor node.



Chapter 4

Enabling AOT Compilation for

Resource Constrained Devices

In the previous chapter the costs of interpretation and native execution are modelled.

A native code platform can provide a substantially more efficient execution environ-

ment. Virtual machines however can enable higher level abstractions to support ease

of development. In aim of supporting both a VM abstraction and a native code execu-

tion platform, this thesis proposes run-time compilation techniques which are deemed as

something beyond the power of WSN class devices. In this chapter techniques to enable

an Ahead-Of-Time (AOT) compilation are presented.

4.1 Design

A Java programming paradigm can provide many advantages for programming WSNs,

however recent work on compatible virtual machines has revealed the high execution

costs incurred when using an interpreter (Brouwers et al., 2008a). Therefore, an AOT

compiler has been designed which compiles bytecode into the underlying platform’s

native code. The design directions and decisions that have been taken will now be

discussed.

4.1.1 Requirements

Similar to Darjeeling, Mote Runner and TakaTuka the primary goal of this work is to

achieve a Java bytecode execution platform for WSNs. However, the contribution pre-

sented here is focused on techniques to enable AOT compilation which aims to minimize

the overhead required to execute bytecode on sensor nodes. The main requirements for

the proposed approach are outlined as follows:

51
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4.1.1.1 Ease of Use

The virtual machine should be augmented with an environment that allows program-

mers to develop applications for sensor nodes with minimal effort. New languages or

paradigms should only be imposed if it is absolutely necessary. Thus, it has been de-

cided that like the other approaches, to support Java bytecode in which a high number

of programmers are already experienced with.

4.1.1.2 Platform Independence

Applications written for the virtual machine should be able to run on any platform (pro-

vided that a virtual machine implementation is available for the platform). WSNs may

consist of different sensor node architectures. When an application update is required

it would be beneficial to be able to update all different architectures with the same

update so as to minimise data transmitted over-the-air. Therefore, platform dependent

solutions described in Chapter 2 such as Way Ahead of Time compilation does not suit

this requirement. A stack based bytecode instruction set, such as Java bytecode, is a

perfect candidate to achieve this since no assumptions are made on to the underlying

hardware register set (Shi et al., 2008).

4.1.1.3 Memory Efficiency

Memory on typical sensor nodes is highly restricted (typically from 4 to 16 KB) and

therefore the virtual machine should ensure that memory is not wasted and that the

majority of the memory is reserved for the actual application rather than the virtual

machine.

4.1.1.4 Small Footprint

Like RAM, program space on such resource constrained devices is restricted (typically

tens of kilobytes). Thus, the virtual machine should be as small as possible to allow a

high majority of the program memory to be used by applications. This is why it has

been decided to implement a simple AOT compiler as initial steps to determine the

efficiency of such an approach. Future work on generating optimized native code may

be conducted to analyse the trade-off of an increasing virtual machine size.

4.1.1.5 Driver Extensibility

Most virtual machine approaches hide the underlying hardware and devices from the

application developer. Although the intentions of this are good, since the developer
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does not have to worry about the underlying hardware and devices, by not providing

a mechanism to interact directly with the hardware it is impossible for an application

developer to integrate new hardware features or devices. Thus, the developer is heavily

dependent on the virtual machine implementation to provide such abstractions. Such a

dependency would preferably be avoided and therefore allow developers to communicate

directly with the underlying hardware if required.

4.1.1.6 Software Management

Sensor networks, like other computing platforms are prone to software updates due to

various reasons including bug fixes, new features or a complete new application. For this

reason the virtual machine must incorporate a mechanism to load and unload software

at run-time. For this reason, a software management module has been included in the

virtual machine which enables adding or removing software at the granularity of classes

or functions.

4.1.1.7 Low-cost

The successful adoption of WSN technology is highly dependent upon lost cost solutions.

Motivation behind the work is to lower application development costs. Hardware costs

must also be low in order to provide a viable solution. Until low power Java processors

become cheap enough and sensor nodes are made available with them on it, using a Java

processor may increase costs. Although this area of work is interesting and may provide

a viable solution in the future, as it currently stands today the production of such sensor

nodes is drastically low. Therefore, we have opted for a solution that will run on top of

widely available sensor nodes.

4.1.1.8 Execution Efficiency

Last but not least, a virtual machine should incorporate an efficient execution environ-

ment. Although it is true that typical sensor node applications involve a high amount

of sleeping, this does not justify high execution overheads as can be seen from the pre-

vious analysis. Thus, if it is possible to implement a sufficiently more efficient execution

platform, then it is definitely an area which should be investigated. This work proposes

AOT compilation of bytecode in resource constrained devices which is widely assumed

as impossible or impractical given the resource constraints (Palmer, 2004; Koshy and

Pandey, 2005; Pandey and Koshy, 2006; Koshy et al., 2008; Aslam, 2011).
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Figure 4.1: This figure depicts the run-time compilation split virtual machine
model. The application is developed, compiled to bytecode and then requires
to be disseminated into the sensor network. Bytecode is prepared off-node prior
to dissemination into the network and is considered part of the same virtual
machine abstraction. Received code is loaded by the run-time compiler.

4.1.2 System Architecture

The proposed system architecture is depicted in Figure 4.1. Applications are developed

and compiled to bytecode. Similar to the Squawk Split VM architecture proposed by

Simon et al. (2006), bytecode is prepared off-node prior to dissemination into the WSN

(for several reasons which will be described later in this chapter). This off-node prepara-

tion phase is considered part of the abstract run-time compilation split virtual machine

model. Once code is received by the run-time compiler it is loaded into the system in the

on-node VM. To facilitate the work proposed in this thesis a standard application stack

was required to support the execution of applications which typically includes hardware

drivers (for devices such as the radio), the operating system components, service libraries

(such as a MAC layer), and an application which is loaded into the system. Operating

System components required includes the run-time environment which facilitates the ex-

ecution of code (this includes stack management, amongst other components described

later), a scheduler which supports threading, and a garbage collection mechanism to free

memory no longer being used by the application. The off-node bytecode preparation

phase implies a similar model to the Split VM model. This is required since loading

of code often involves extensive memory usage and also the bytecode format generated

from the Java compiler is not suitable for such devices. This is especially true when

targeting resource constrained devices such as those typically used in WSNs. A more

detailed description of this preparation phase, by the Converter component, is discussed

later in this chapter.

It was decided to use Java as the candidate programming language so as to have a fair

comparison with other proposed virtual machines for WSNs. This results in not only
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using Java as the front-end programming language, but also Java bytecode compiled

from the standard Java compiler. Other proposed VMs also use a Split VM architec-

ture whereby Java compiled bytecode is further compacted and altered to a bytecode

representation more suitable for the targeted devices. Therefore, a similar approach was

also taken to allow for a fair comparison. However, supporting a Java bytecode encoding

with alterations to further support a more compact and suitable encoding for WSNs may

not be the ideal approach. As described in Chapter 2, Java bytecode was not designed

for 8 or 16 bit microcontrollers. This is obvious from the fact that operations for 8 and

16 bit datatypes are not inherently supported. To support such operations casting from

a 32 bit datatype is required (which results in higher memory usage and computation).

This is in fact the reason why such alteration to the Java bytecode generated from the

standard Java compiler is required (as will be discussed later). A bytecode encoding

which inherently supports 8 and 16 bit datatypes, such as .NET’s Common Language

Infrastructure (CIL) (Miller and Ragsdale, 2003) or the LLVM assembly language (Lat-

tner and Adve, 2004), would be better suited. However, as previously mentioned a Java

bytecode encoding was sustained to allow for a fair comparison with other proposed

approaches.

4.1.3 Compilation Process

The compilation process involves the off-node bytecode preparation stage and on-node

run-time compilation. A four stage compilation process is proposed, as depicted in

Figure 4.2. In the first stage pre-processing is performed which includes resolving mi-

crocontroller specific register symbols to a special register array that has been defined

which is used for direct access to microcontroller registers (access to registers is ex-

plained in Section 4.1.5). The second stage involves compiling Java source code to Java

bytecode using the standard Java compiler or any other Java compiler. Next, the Java

bytecode produced will be passed through the converter which will convert the Java

bytecode into a more compact intermediate bytecode. This process involves resolving

constants, class names and function signatures to a smaller numerical representation as

described later in this section. All external class and function references are resolved

against an archive of bytecode translation tables which store the translation information

for previously converted classes. The converter also produces a bytecode translation

table which is later used to resolve references to the class when referenced from another

class. The intermediate bytecode can then be transferred to sensor nodes which will

then be compiled to native code by the AOT compiler.

4.1.3.1 Java Source Pre-processor

The pre-processor is responsible for translating any symbols used into source which

can be compiled by the Java compiler. This includes translating microcontroller register
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Figure 4.2: The translation process from Java source code down to native code
compiled on the sensor node.

symbols into accesses to a special array that has been defined for microcontroller register

access described later in Section 4.1.5.

4.1.3.2 Converter

Java was not initially intended for such resource constrained devices, and thus Java

bytecode imposes certain properties which are not desirable for such resource constrained

systems. The converter is responsible for translating the generated Java bytecode to an

intermediate bytecode which is designed around the resource constraints inherent in

such devices. Other JVM proposals for WSNs demonstrate substantial offline bytecode

optimisation. The only offline bytecode optimisation used in this work has been to

remove the constant pool and constant pool lookups. The optimisations considered in

other approaches are applicable for this work and should be included in the future to

increase performance.
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Figure 4.3: A 16 bit operand stack depicting usage of 8, 16, 32 and 64 bit
datatypes.

Java uses a 32 bit width operand stack, i.e. objects placed on the stack take up multiple

slots of 32 bits. WSN applications however primarily use 16 bit mostly and thus a large

amount of memory will be wasted on the stack. Therefore, Brouwers et al. (2008a)

proposed to use a 16 bit width operand stack as originally demonstrated by Lindholm

and Yellin (2005). Figure 4.3 depicts the usage of a 16 bit operand stack with 8, 16, 32

and 64 bit values placed on top of it. In comparison to a 32 bit stack as depicted in

Figure 2.3, less memory is wasted, since 16 bit values do not incur any memory wastage.

Translation from a 32 to a 16 bit stack occurs during the bytecode pre-processing stage.

Aslam (2011) proposes a variable size slot whereby the developer can choose an 8, 16 or

32 bit width operand stack. Thereafter, in their results they show that minimal memory

is freed by using an 8 bit stack for the benchmark applications and therefore the authors

propose that a 16 bit width stack is sufficient. In order to support a variable size slot, the

virtual machine footprint is increased, and therefore it is questionable whether a variable

size slot will provide any benefit for WSN applications and their target platform due to

the increased footprint.

The smallest value that the Java bytecode specification (Lindholm and Yellin, 1999)

supports is 32 bits. Therefore, in order to translate from a 32 to a 16 bit width stack,

changes would need to be made to the bytecode produced for 8 and 16 bit values and

variables. Any values that can be stored in 16 bits are translated to 16 bit versions of

the respective bytecode instructions. However, to correctly determine whether bytecode

instructions can be converted to 16 bit equivalents, analysis on the bytecode must be
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performed to ensure that the conversion does not lose any bits that are relevant. In order

to achieve this Brouwers et al. (2008a) describe arithmetic optimisation which translates

arithmetic operations originally encoded as 32 bit operations to 16 bit operations. Also,

since 16 bit bytecode operations have been introduced it could be the case that a 16

bit value will reside on the stack when in fact a 32 bit integer is required. In this case

a type cast instruction, s2i, can be used to instruct the VM to widen the 16 bit value

to 32 bits. The converter presented here also converts the 32 bit stack width generated

from the standard Java compiler to a 16 bit stack as proposed in the previous JVMs for

WSNs.

When a constant value is used within Java bytecode, a constant value lookup is required.

An instruction which uses a constant will specify a 16 bit constant pool lookup index

by which the constant will be identified in the constant pool. This lookup although

trivial involves an extra lookup phase. Also, the lookup index consists of 16 bits and

since most values used in resource constrained development are of the size of 16 bits

(or less), then the constant value could be directly placed inline with the instruction.

The converter also removes the constant pool by placing constants inline with bytecode

commands rather than requiring a constant pool lookup.

Similarly, Java method invocation bytecode instructions require a constant pool lookup

index to be specified following the bytecode command. The constant pool lookup index

will point to a symbolic reference (in the form of a fully qualified Java method name) to

the respective method. Textual symbolic references have little use inside a wireless sensor

network, and therefore they are completely removed by the converter which creates a

more compact encoding. The textual representations, although helpful when looking

at bytecode, substantially increases the size of Java classes. It was therefore decided

to replace all class names with a byte value which is unique to that class for a specific

wireless sensor network application. This limits the maximum number of classes which

can be used in a system to 256, however this can easily be increased to a 16 bit identifier.

The same applies to functions, i.e. all functions are resolved to a byte which is unique

within the same class, thus restricting the number of functions within a class to 256,

resulting in a maximum of 65,536 functions in the whole virtual machine. This maximum

limit is sufficient since many resource constrained devices have a 16 bit program address

space. However as previously mentioned it is an easy task to increase this maximum

value.

As an example consider the invocation of a static method as depicted in Figure 4.4. The

sequence on top represents standard Java bytecode. The standard Java invokestatic

bytecode instruction requires a 16 bit constant pool lookup, in this case index #2. The

virtual machine is then required to perform a lookup in the constant pool for item #2.

The constant pool item will contain a reference to the method requiring invocation, which

can then be invoked. The converter removes the constant pool by directly appending

constant values following instructions. In the case of invocation the class and method
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invokestatic #2

Constant Pool

2      Method CalleeClass.calleeMethod:()V

...

...

public class CalleeClass

public static void calleeMethod();

1

2

invokestatic 3,2
public class 3; //CalleeClass

public static void 2(); //calleeMethod

Java

Bytecode

Converted

Bytecode

Figure 4.4: Bytecode method invocation execution for standard Java bytecode
and the proposed converted bytecode.

Table 4.1: Bytecode to Native Code Translation Example

Bytecode Stack Before Stack After Pseudo Native Code

iload 1 ... ..., value1 PUSH variable1

iload 2 ..., value1 ..., value1, value2 PUSH variable2

iadd ..., value1, value2 ..., value1 POP reg1
..., value1 ... POP reg2
... ... ADD reg1, reg2, reg3
... ..., result PUSH reg3

istore 0 ..., result ... POP variable0

numeric identifiers are appended to the invocation bytecode instruction. Therefore, the

method to be invoked can be directly referenced rather than having to lookup the value

in the constant pool. As described above 8 bits is sufficient to encode both the class and

method numeric representations. Thus, the method can be directly referenced without

changing the parameter size of the invocation instruction, which will result in a more

efficient execution of invocation instructions. More so, this facilitates the removal of the

constant pool, which will reduce bytecode size for applications utilising a majority of 8

and 16 bit constant values.

4.1.4 AOT Compiler and Execution

The AOT compiler is responsible for generating native code from the intermediate byte-

code, and for loading and unloading classes and functions from program memory. Java

bytecode is stack based, and to minimize the footprint of the AOT compiler, a run-time

operand stack was designed which mimics the Java bytecode operand stack in a similar

fashion to the baseline compiler proposed by Suganuma et al. (2000). It is believed that

a substantial decrease in execution overhead can be achieved without introducing any

complex compiler optimizations, since it is planned to remove the high interpretation

overhead as previously described in Chapter 3.
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The AOT compiler will perform a single pass on the bytecode which it is required to

load. The bytecode to native code translation process is done once per unit of code.

When a unit of code is translated to native code it is stored in flash memory for future

execution. The initial AOT compilation process occurs as bytecode is sent to the device.

Thereby the bytecode is never stored in the device and is immediately translated to

native code. That said the installation process is similar to the installation of bytecode

on an interpreter. The main difference is that the AOT compiler will require to translate

the bytecode to native code, and then save the native code to flash (which is larger than

bytecode). The overheads in doing so are minimal, especially if this process is considered

to be at the bootloading stage when sensor nodes are likely to be externally powered.

The AOT compiler follows a set of rules that define how each bytecode instruction will

be transformed to native code. The general ideology behind the translation, as stated

above, is that the native code will perform actions so that at every bytecode instruction

the operand stack will mimic the contents of the Java operand stack (even if such actions

can be removed). Table 4.1 provides an example of a step by step execution of native

code for the expression c = a + b. The stack’s contents before and after execution of

the native code instructions.

4.1.4.1 Double-Ended Operand Stack and Garbage Collection

The Java operand stack is used to push and pop integer and reference operand values

to which will be used by operations. Garbage collection requires to determine whether

references to objects exist within the VM in aim of identifying memory no longer being

used. The garbage collector therefore, amongst other things, requires to iterate through

the operand stack to detect if any references exist on the stack. Operands placed on

the stack are typically marked up with a type identifier used to associate the operand

to a specific data type or class. In order to facilitate a more efficient garbage collection

scheme, Brouwers et al. (2009) proposed to separate references from integer operands

on the stack. Thereby type information can be removed from the stack and also the

garbage collector will only require to traverse the references placed on the reference stack

(without having to determine the types of the operands). To implement this Brouwers

et al. (2009) propose that the integer values should be pushed on one end of the stack

and reference values pushed onto the other end of the stack. A depiction of how the

stack is separated into a double-ended stack is shown in Figure 4.5. To facilitate garbage

collection it was also decided to implement a double-ended operand stack in the work

proposed in this thesis. Similar to separating references from values on the operand

stack, the same is done for object fields. Each object separates the value fields from

reference fields by keeping separate pointers to the values and references associated with

the object. Thereby, the garbage collection scheme will not require to check whether

slots on the stack or fields are references or values.
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Figure 4.5: Double ended stack depicting reference slots pushed on to the left
of the stack and integer slots pushed on to the right of the stack.

01 function mark(Object object)

02 if object.markbit == 1

03 return;

04 object.markbit = 1;

05 for each (Object fieldObject in field_objects)

06 mark(fieldObject );

07 end function

08

09 function gc()

10 clearMarkBits ();

11

12 for each (Object object in static_object_list)

13 mark(object );

14

15 for each (MethodFrame methodFrame in method_frames)

16 for each (Object object in methodFrame.referenceStack)

17 mark(object );

18 for each (Object object in methodFrame.referenceVariables)

19 mark(object );

20

21 sweepUnreachableObjects ();

22 end function

Figure 4.6: Garbage collection pseudo code.

In this work a näıve mark and sweep garbage collector was implemented. Each object

has an associated bit which represents the mark bit. The bit is used to identify whether

the object is reachable from any root execution points. This involves three stages: clear-

ing the mark bit for all objects on the heap, marking all objects that are reachable, and

removing any object from the heap that after marking have been found to be unreach-

able. The process of clearing the mark bit is straight forward. The heap is traversed and

the mark bit is cleared for every object on the heap. Setting the mark bit for all reach-

able objects is only slightly more complicated. Pseudo code describing the procedure is

provided in Figure 4.6. The mark function is used to mark an object as being reachable.

An object may also reference other objects, and therefore each object referenced by the

object being marked is also set to be marked in a recursive manner. The gc function

represents the garbage collection main function which will first clear all mark bits for

all objects on the heap and finally after marking each reachable object, it will sweep

all unreachable objects represented by clearMarkBits and sweepUnreachableObjects

respectively. The pseudo code for the clear bits and sweep functions have not been
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included due to brevity and also the functions’ simplicity. The mark phase involves two

parts: marking all objects that are static objects (and inherently all recursively refer-

enced objects), followed by marking all objects that are on any reference stacks (and

again all recursively referenced objects). The list of reference stacks includes reference

stacks for all functions on the call stack for every possible thread of execution.

If the operand stack was not separated into reference and value operand stacks, and

similarly if class fields and method variables were not separated into value fields and

object fields then a check would be required on each field and operand to determine

whether or not they are in fact objects. Therefore, lines 5 and 6 in Figure 4.6 would

be altered to loop through every possible field (instead of only object fields), and also

for each field a conditional statement would be required to determine if the field is an

object. The same applies for lines 16 and 17, in that all operands on the stack would

require to be traversed (instead of just the reference operand stack) and the type of each

operand would be required to be checked to determine if it is an object. Variables are

also split up into value variables and reference variables and therefore the same would

need to be applied to lines 18 and 19. Therefore, the complexity of these two loops,

in Big O notation, have been reduced to O(r) from O(r + v) where r is the number of

reference objects and v is the number of value variables or fields in the associated field

list or operand stack.

4.1.4.2 Stack Frame Layout

The traditional JVM stack scheme allocates a single JVM stack per thread. A method

stack frame is created and placed on the JVM stack upon method invocation. This in-

volves allocating enough space for local variables and necessary bookkeeping information.

The operand stack is placed on top of the local variables and bookkeeping information,

which grows and shrinks as values are pushed and popped onto the operand stack. A

traditional JVM stack is depicted on the left of Figure 4.7. Arguments intended for

a callee function are pushed on the caller’s operand stack. Thereafter the same argu-

ments in memory can be used as the starting point for the local variable section of the

callee function. Thus, the argument values only exist in one memory location. This

scheme minimises memory consumption by not having to copy arguments over to the

new method. However, the drawback of this scheme is that the JVM stack size has to be

pre-allocated on thread initialisation in order to provide a contiguous memory section

for the JVM stack. This means that the worst case JVM stack size must be pre-allocated

even if not fully in use (which will be the case throughout most of the execution of a

program). Memory on WSN devices is severely limited and thus this scheme may not

be appropriate.

Brouwers et al. (2009) propose a different method which uses linked stacks (von Behren

et al., 2003). Linked stacks provide a scheme whereby a method stack frame is allocated
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Figure 4.7: A traditional JVM stack depicted on the lift and linked stacks on
the right.

upon method entry and freed upon method exit. Figure 4.7 depicts a traditional JVM

stack scheme on the left and a linked stack scheme on the right. The benefit of using

linked stacks is that memory related to method stack frames are only allocated for those

methods that are executing. The drawback on the other hand is that, since the method

stack frames do not share a contiguous memory layout arguments from one function to

another must be copied over from the caller’s operand stack to the callee’s local variables.

However, given the target platform, this slight duplication of arguments may justify the

decrease of pre-allocated memory required for a thread’s JVM stack.

The traditional JVM stack scheme frame layout minimises memory consumption since

argument values are not required to be copied from caller to callee stacks, however

it requires that the whole stack frame is preallocated on a per thread basis. Although

memory consumption is reduced for argument value passing the benefits are only heeded

when the entire stack frame size is used. This will only occur very rarely in a program’s

life cycle. More so, the worst case size of the stack frame is not known and usually a

substantial amount of memory is allocated for it. Given the limited amount of memory

available on the targeted device it would not make sense to preallocate substantial

memory for the JVM stack layout especially when most of the time the JVM stack will

be quite empty. Linked stacks on the other hand allow for memory to be allocated

to stack frames as required, however at the cost of duplicating argument values copied

from caller to callee functions. Linked stacks require memory allocation to take place

every time a function call is made, whilst the the traditional stack layout only requires

an initial stack frame layout allocation. Therefore, linked stacks will incur a memory

allocation execution overhead every time a function is called.

The memory allocated for each linked stack frame is automatically deallocated when

the associated function exits without requiring garbage collection. However, since more
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Figure 4.8: Run-time linked stack frame layout.

memory is required for linked stacks due to duplicated argument values, garbage col-

lection may be required more frequently since less memory will be available to the

application. That said, a traditional JVM stack frame layout will most of the time re-

sult in more garbage collection cycles since the complete stack frame layout memory will

be allocated throughout the execution cycle of the application, resulting in less memory

availability during periods when the whole stack frame layout is not required. Linked

stacks may cause system failure if not enough memory is available to the application

to cater for application memory, the stack frame memory and the duplicated argument

memory. A traditional JVM stack frame layout will allow for more memory to be utilised

by the application (since it does not require additional memory such as the duplicated

arguments), however due to its statically initialised size, it will be very difficult to find

the sweet spot where the JVM stack frame layout size fits perfectly with the worst case

memory requirement. Also, linked stacks will be able to cater for dynamic situations

whereby more application memory is required than stack frame memory or vice versa;

whilst a traditional JVM stack frame layout will not be able to cope with such dynamic-

ity. On traditional computing platforms it is usually sufficient to use a traditional JVM

stack frame layout, since ample memory is usually allocated for the JVM stack frame

layout and also for the heap. However, the resource constrained devices being targeted

do not have that luxury and therefore linked stacks provides a more suitable solution

(even given the extra execution overhead and temporal memory overhead).

The run-time linked stack frame layout used is depicted in Figure 4.8. Two stack frames

are present; the stack frame on the left belongs to a method which has been called

by a method associated with the stack frame on the right. Stack frames contain local

variables, the integer operand stack and the object stack (which are implemented as

a double ended stack). A pointer to each of the stacks and the local variables are
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maintained for the active stack frame. A stack frame also maintains pointers to the

caller’s stacks and local variables so that the active stack frame pointers can be set to

them once the callee method has completed. Before a method calls another method it

also pushes the return program counter address onto the stack. Then when the callee

changes the current stack frame to the callers stack frame, no other action is required to

restore execution to the caller’s program counter since it is already on the native stack

(the hardware run-time environment then pops the top element to establish where to

set the program counter to).

The work presented in this thesis provides methods to enable run-time compilation in

severely resource constrained devices which in turn provides a native Java execution

environment. That said, the execution environment is independent to other system

components such as Garbage Collection and Threading. In order to test the work a full

system architecture was required and therefore it was decided to implement a Näıve Mark

and Sweep Garbage Collector and pre-emptive threading, however different garbage col-

lection and threading or event driven models could be implemented without affecting the

run-time compilation techniques proposed. The pre-emptive threading implementation

will be described next.

4.1.4.3 Threading

To demonstrate that the run-time compilation techniques are independent of the execu-

tion paradigm, it was decided to implement a pre-emptive threading execution paradigm.

An overview of implementation details will now be provided. In traditional JVMs each

thread is assigned its own JVM frame stack, however as described, it was decided to

opt for linked stacks to minimise memory consumption for majority of the application

lifetime. Therefore memory does not need to be preallocated for the thread, however

memory will be allocated upon function execution. The thread does, however, require

to acquire memory for its process control block. The process control block is used to

store the state of a thread’s registers so that when a thread regains execution control its

last executing state is restored. The thread’s execution starting point memory address

is stored into the process control block, and thereafter a global thread list is updated

to include the thread’s object reference and the process control block. Thread deletion

involves removing the thread’s process control block and object reference from the global

threads list, and will also actively force a context switch if the current executing thread

is the thread being deleted. Java inherently deletes threads when the thread execution

ends. Therefore, thread deletion is implicitly performed at the end of each thread’s

execution point.

One of the microcontroller’s internal timers is used to interrupt execution occasionally

and initiate a context switch. The context switch involves storing the current executing

thread’s registers (including the stack pointer), choosing a new thread to execute (a
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round-robin thread execution model has been implemented) and restoring the thread’s

registers including the stack pointer and program counter. Since linked stacks are used,

an initial thread frame stack is not allocated. Linked stacks require memory to be al-

located upon method invocation. Therefore no changes need to be made to support

threading since memory will be allocated as required when methods are called inde-

pendent of the execution model. More so, the threading implementation is completely

indifferent to garbage collection as well. The reason is that the threading operations are

executed as atomic sections (that is they cannot be interrupted) and the same applies

for garbage collection.

Java provides two bytecode instructions, monitorenter and monitorexit, to support

thread synchronisation. The instructions provide a locking mechanism in which an

exclusive lock can be obtained on an object. monitorenter, as specified by the Java

Virtual Machine Specification, will obtain a lock on the object and continue executing if

the object is not already locked. If it is locked by a different thread, then the executing

thread will block and wait until the object is unlocked. If the executing thread requires

another lock to an object which it already obtains a lock for than a lock counter will be

increased. Therefore, to support this each object is associated with a lock counter and

a reference to the owning thread. Blocking is implemented by forcing a context switch.

As soon as a blocked thread receives execution back it will again check if the lock has

been released, and if not once again block. monitorexit is straightforward and only

requires to decrement the lock count.

4.1.4.4 Optimizations

Since most JIT compilers run on powerful machines they tend to include algorithms

which generate highly optimized code. Also, such compilers do not tend to take the

same approach that is taken in this work, in that they do not attempt to maintain a

run-time operand stack but instead map the operations directly to registers. Although,

the IBM baseline compiler (Suganuma et al., 2000) does use a run-time operand stack,

the purpose of the development of the IBM baseline compiler was to serve as initial

steps for JIT compilation and to verify the other compilers as they were being developed

(Burke et al., 1999). Two types of optimisations are presented here, being optimisations

focusing on execution speed improvements (that may also decrease size requirements)

and optimisations that focus on decreasing size (which may hinder speed improvements).

The speed optimisations implemented are in the form of peephole optimisations that

are performed on the generated native code (which is stored in a buffer that will be

described later). The following peephole optimizations are performed on the baseline

generated native code:
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Table 4.2: Optimization Examples

Before After

Instructions Cycles Length Instructions Cycles Length

PUSH R13 6 2 0 0
POP R13

PUSH R13 6 2 MOV R13,R14 1 1
POP R14

MOV #0,R15 2 2 CLR R15 2 1

MOV R6,R5 5 3 MOV R6,0x0000(R4) 4 2
MOV R5,0x0000(R4)

• Completely removing PUSH/POP pairs which work on the same register, since

the pair has no effect.

• Resolving PUSH/POP pairs working on different registers to a direct register move

command.

• Resolving any 0 constant move commands to clear commands.

• Removing any intermediate register copy commands.

Examples of the optimizations are given in Table 4.2. The instructions both before and

after optimization are listed along with the number of clock cycles it takes to execute the

instructions and the length of the instructions in words. The examples are based on the

MSP430 architecture which has a 16 bit word size. The first two optimizations provide

both cycle length and instruction size optimizations, whilst the last one provides size

optimization only. These optimisations are considered as speed optimisations (although

they do decrease size as well).

Optimisations focused on decreasing the size of a native code image are also included

into the design of the compiler. A single bytecode instruction could result in more

than ten native code instructions. In order to reduce the generated native code size,

assembly functions were created that perform the same native code required for bytecode

instructions that entail a larger number of native code instructions. Then when such a

bytecode instruction is required to be compiled a native call to the associated assembly

function implementing the logic will be generated. As an example consider the Java

bytecode instruction iastore which is used to store an int value in an array at a

specified index. The non-optimised code generated for the instruction is as follows:

POP R11 ;pop the most significant value byte into R11

POP R5 ;pop the least significant value byte into R11

POP R6 ;pop the index into R6

;pop the array reference from the reference stack

MOV.W @R8 , R7 ;copy the value on the reference stack to R7
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DECD.W R8 ;decrease the reference stack (R8) by 2

;R7 points to the array , skip array information

INCD.W R7 ;skip the array type

INCD.W R7 ;skip the array length

;array items are 4 bytes; find the byte offset from the index:

RLA.W R6 ;left shift the index a first time

RLA.W R6 ;left shift the index a second time

;point R7 to the array item

ADD.W R6 , R7 ;add the byte offset to the start of array data

MOV.W R5 ,0 x0000(R7) ;copy the LSB to the array item LSB

MOV.W R11 ,0 x0002(R7) ;copy the MSB to the array item MSB

The generated native code above is 28 bytes. A native call only consists of 4 bytes.

Therefore, by increasing the run-time compiler footprint by 28 bytes (plus 6 additional

bytes for function setup and returning) the application size requirements for the iastore

instruction can be decreased to 4 bytes. Therefore, if the iastore instruction is used

more than 7 times then overall compiler footprint and application size requirements will

also be decreased. Other similar size optimisations have also been included however have

been left out for brevity. That said, an extra CALL native code instruction is introduced

along with function preparation and returning from the function which will incur a

higher execution overhead. The original generated native code above would also require

28 clock cycles to execute. The additional instructions for the size optimisation would

require 5 clock cycles for the call instruction; 6 clock cycles for function preparation and

2 clock cycles to return from the function. That is, the size optimisation would result in

an additional 13 clock cycles, an additional 46% execution time. The execution slowdown

is inherent in the size optimisation and is a trade-off that needs to be considered when

such optimisations are chosen.

4.1.4.5 Gradual Compilation of Bytecode

Typical Java JIT platforms compile whole functions at a time or at the minimum require

the function’s complete code in order to perform JIT compilation. This would involve

storing the said function in memory and then performing compilation once the whole

function is received. In aim of decreasing memory overhead when receiving code, this

work proposes gradual compilation which allows code to be compiled as it is received

rather than waiting for whole functions to be received. This reduces the required memory

to perform compilation to that of tens of bytes.
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Figure 4.9: The gradual compilation algorithm which buffers instructions that
can be optimized and then writes the optimized native code to program memory
when instructions which cannot be optimized are received.

The reason why such compilation techniques require a function’s complete code listing

is due to the requirement to resolve jump destinations. In order to be able to compile

code without a function’s complete code listing, it has been decided to pass the byte-

code jump locations at the beginning of new functions. Thereafter, upon receiving and

compiling bytecode to native code, the native code equivalent location of the bytecode

jump location can be filled in as it is encountered and any code which jumps to this

location can be patched with the native code equivalent location.

The AOT compiler mimics the Java operand stack by natively pushing and popping

operands to the microcontroller’s stack. PUSH-POP sequences are reduced to MOV in-

structions or completely removed, therefore the gradual compilation process has been

constrained to buffer the generated native code and only write the buffered native code

to program memory when non-optimizable instructions are encountered. The gradual

compilation algorithm is presented in Figure 4.9. Upon run-time compilation and whilst

new bytecode is received, any generated instructions that can be optimized are buffered.

When an instruction is encountered that cannot be optimized, all instructions in the

buffer are optimized if possible, and then written to program memory. When the run-

time compiler is no longer awaiting instructions it will again optimize any instructions

in the buffer if possible, and thereafter write the instructions native code to program

memory.
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4.1.5 Hardware Register Access

As outlined in the requirements, it would be beneficial to expose the underlying hardware

to the application programmer in aim of facilitating hardware driver development and

to provide access to the microcontroller’s features if required. Common microcontrollers

interact with their various peripherals by means of a register set that can usually be

accessed as part of the data address space. It has been decided to expose this to the

application developer as an array which can be read from or written to which is later

translated to read and write operations on the actual data address space. To facilitate

hardware register access even more, the microcontroller’s symbol table has been added

to the pre-processor. The translation process of microcontroller symbols is shown in

Figure 4.10. Upon seeing any of the microcontroller’s symbols, the pre-processor will

translate them to array accesses via the fully qualified Java namespace for the relevant

register. The Java compiler and converter will generate bytecode which is then passed

into the run-time compiler which compiles it to native code.

4.1.6 Exposing Interrupts

Microcontrollers raise interrupts for different events that can occur. In fact, implement-

ing code in interrupts can help minimize power consumption since modern microcon-

trollers can sleep the rest of the time and only wake up when an interrupt is required.

An application developer working on a virtual machine should not be restricted to what

Figure 4.10: Translation process of microcontroller symbols.

@InterruptAttribute(interrupt=TIMERA0_INTERRUPT)

public void TestInterrupt ()

{

}

Figure 4.11: Example of how an interrupt routine is exposed to developers.
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has been exposed by the virtual machine, but if need be, the developer should be able to

extend such functionality. Thus, it has been decided to expose interrupts to the applica-

tion developer via a custom Java attribute class created, named InterruptAttribute.

The developer will only be required to annotate the method which is to serve as the

interrupt with the attribute InterruptAttribte and the associated interrupt identifier.

Figure 8.2 is an example of code that can be used to create an interrupt, in the case of

the example it exposes the TIMERA0 interrupt.

4.2 Implementation Specific Details

An Ahead-Of-Time compiler for the MSP430F1611 microcontroller has been imple-

mented and has been tested on the Telos B (Polastre et al., 2005), TinyNode 584

(Dubois-Ferriere et al., 2006) and BSN (Lo et al., 2005) sensor nodes. As discussed

in the Design section, the run-time operand stack and the native code stack operations

that mimic the operations an interpreter would perform is the central building block

that enables us to achieve a small footprint AOT compiler.

Just by removing the interpretation element of the virtual machine, substantial execution

gains can be achieved. Implementations from one platform to another of the AOT

compiler will only differ in the actual bytecode to native conversions, but all the other

logic is essentially the same. Thus, in this section it is only required to demonstrate

the bytecode to native code conversions implemented in the AOT compiler as all other

implementation details are trivial and in accordance with the Design section.

Received bytecode is passed into the AOT compiler which converts the bytecode to native

code, as described in Section 4.1.4.5. Table 4.3 displays different bytecode instructions

and the respective generated native code. As can be seen from the generated native

code, a high amount of native code PUSH and POP commands will exist throughout

the generated native code application. In fact, the resultant push and pop operations

should tally the amount of push and pop operations an interpreter would execute. The

primary difference is that the push and pop operations generated by the AOT compiler

do not incur any interpretation overheads. More so, all interpretation overhead has been

removed from the execution paradigm.

Let’s consider compiling the bytecode for a Java assignment for three short variables a

= b + c, where the Java compiler has referenced a, b and c by local variables 0, 1 and

2 respectively. This will be compiled to the following bytecode:

iload_1

iload_2

iadd

istore_0
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Table 4.3: Bytecode to Native Code Conversions

Bytecode Native Code

iload 0 PUSH <OFFSET>

iconst 0 PUSH #0

aload 0 PUSH <OFFSET>

getfield POP.W R9
MOV.W @R9,R9
PUSH <OFFSET>(R9)

istore 0 POP R10
MOV.W R10,<OFFSET>(R11)

iinc ADD.W <CONST>,<OFFSET>(R11)

iadd POP R10
POP R9
ADD.W R10,R9
PUSH R9

if icmpeq POP R9
POP R10
CMP.W R9,R10
JEQ (<JUMP ADDR>)

dup2 PUSH 0x0004(SP)
PUSH 0x0004(SP)

putstatic POP R10
MOV.W R10, <STATIC VAR ADDR>

Although the variables were specified as short, the resultant bytecode converts them

to integer, since Java uses a 32 bit width stack. As previously explained this work

makes use of a 16 bit width stack. Thus, the converter will translate such statements to

a 16 bit width version. The following intermediate bytecode is produced from the above

bytecode by the converter:

sload_1

sload_2

sadd

sstore_0

The AOT compiler will then produce the following native code commands for the above

generated bytecode:

; sload_1

0 PUSH <OFFSET TO VARIABLE 1>

; sload_2

1 PUSH <OFFSET TO VARIABLE 2>

; sadd

2 POP R5
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3 POP R6

4 ADD.W R5 ,R6

5 PUSH R6

; sstore_0

6 POP R5

7 MOV.W R5 ,<OFFSET TO VARIABLE 0>

The sload 1 bytecode instruction is translated to a native pushing of the variable ref-

erenced by 1, i.e. b. The same applies for the loading of variable 2. The sadd bytecode

instruction results in two native code poppings into registers 5 and 6 which are then

added together and the result stored in register 6 by the ADD.W native command. In

order to mimic the bytecode operand stack, the result has to be put on the run-time

operand stack. Hence the result stored in register 6 is pushed onto the run-time operand

stack. Finally, the result is set to be stored into variable 0, i.e. a, by popping the result

just pushed onto the stack into register 5 and then moving the value of register 5 to the

memory position of variable 0.

As can be seen from the example above, the PUSH performed at line 5 and the following

POP could be eliminated, and the value of register 9 could be directly moved to variable

0’s memory position. When using the optimizations described in 4.1.4.4, the generated

native code is reduced to:

; sload_1

MOV.W <OFFSET TO VARIABLE 1>,R6

; sload_2

MOV.W <OFFSET TO VARIABLE 2>,R5

; sadd

ADD.W R5,R6

; sstore_0

MOV.W R6 ,0x0000(R4)

In this chapter, techniques to enable AOT compilation for resource constrained devices

including a run-time operand stack that mimics the Java operand stack, and gradual

compilation. An evaluation of the proposed techniques will now be provided to determine

exactly what gains are achieved by using an AOT compiler, and also to establish whether

mimicking the bytecode operand stack is a good idea.





Chapter 5

Evaluation of the AOT Compiler

In order to evaluate the Ahead-Of-Time compilation approach proposed, benchmark

tests as used by Brouwers et al. (2009) and Aslam et al. (2010) have been implemented.

The benchmarks have been implemented using the same Java code source from the

Darjeeling and TakaTuka distributions, with only minor changes to remove Darjeeling

and TakaTuka specific function calls. Both 16 and 32 bit bubble sort tests, an MD5 test

and a binary search test have been tested.

The bubble sort test sorts 256 integer values which are initialised in descending order

for 16 and 32 bit integer types. The MD5 test performs 5 MD5 hashes on each of the

strings ’a’, ’abc’, ’darjeeling’ and ’message digest’. The binary search test performs 1,000

binary searches for the worst case search in 100 16 bit values.

Only the results for a single experiment for each benchmark were required since the exe-

cution of code runs directly on the microcontroller without disturbance or any required

input from external events. Execution timings were measured by switching a LED on

temporarily and then switching it off before the test, and then switching a LED on after

the test. By measuring the current consumption on an oscilloscope, the beginning of the

experiment can be pinpointed from the drop in current consumption when the LED is

turned off, and similarly the end of the experiment can be marked from the increase in

current consumption when the LED is then turned on. The accuracy of the oscilloscope

for the experimental setup was 1 ms.

The AOT compiler can be configured for speed and size optimizations. The above tests

have been performed for the following configurations: AOT compilation with no op-

timizations (AOT), AOT compilation with speed optimizations (AOT-Sp), AOT com-

pilation with size optimizations (AOT-Si) and AOT compilation with speed and size

optimizations (AOT-SpSi). The size and speed optimisations are those optimisations

described in the previous chapter. Speed optimisations involve peephole optimisation

of the generated native code whilst size optimisations focus on decreasing size require-

ments by implementing the required native code in the run-time compiler footprint, and

75
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Figure 5.1: Execution times for C, AOT Compiled and TakaTuka versions of the
benchmarks. The y axis uses a log scale to better visualise the large differences.

thereafter only requiring a call instruction to the respective instruction code. The same

tests were performed on the TakaTuka virtual machine (TTVM) on the same hardware.

A Telos B (Polastre et al., 2005) sensor node was used (equipped with a MSP430F1611

microcontroller) running at 4MHz for the above tests.

Unfortunately, the Darjeeling virtual machine is no longer supported for the MSP430

microcontroller and thus could not directly be benchmarked against.

The execution performance of the benchmarks for C generated native code, Interpreted

bytecode (using TakaTuka) and the AOT compiler (for each optimization configuration)

will be evaluated. Following the execution performance evaluation, an analysis of the

generated program size will be provided.

5.1 Execution Performance Evaluation

In order to measure the execution time of the benchmark applications the current con-

sumption of the sensor node was monitored and a LED was used to indicate the start

and end of the test.
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Figure 5.2: Comparison of the AOT compiled benchmarks to the TakaTuka
versions of the benchmarks.

The time taken for each benchmark application using the TakaTuka VM, the different

configurations of the AOT compiler and C implementations are displayed in Figure 5.1.

As can be seen from the graph, AOT compiled code is executed significantly faster

than interpreted code. In comparison to native code generated from C implementations,

the AOT compiled code executes from 1.8 to 3.4 times slower (whilst the TakaTuka

implementations require from 67 to 324 more than that of the C implementations).

Figure 5.2 shows the speedup of the different AOT compiled configurations compared

to the TakaTuka VM implementations. The AOT compiled configurations results in

varying speedups for the benchmarks ranging between 22 to 171 times the speed of the

interpreter.

From the execution speed evaluation of AOT compiled code compared to the interpreter

implementation, it is evident that a substantial performance increase is gained. The

slowdown incurred for AOT compiled code (1.8 to 3.4 times) compared to the C im-

plementation is due to the stack based architecture which is maintained to simplify the

compilation process.

To put these values into perspective, the resultant execution overheads of the interpreter

and AOT compiler will be applied into the lifetime model described in Chapter 3. The

optimal execution overhead achieved will be used for both the interpreter and the AOT

compiled code, i.e. 67 and 1.8 times the C execution time respectively. Thus, 3.4 can

be redefined as:

Tint = Tactive · 67 (5.1)
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Figure 5.3: Lifetime of a sensor node with a varying active execution ratio for
native code, AOT compiled code and interpreted code. The ratio of the lifetime
of native code to AOT code and interpreted platforms is also depicted. As the
active percent increases the ratio of native code to interpreted lifetimes tends
to the overhead of the approach, i.e. 1.8 for AOT compiled code and 67 for
interpreted code.

The ratio of time in which the microcontroller is in an active state for AOT compiled

code, Taot, can be defined as:

Taot = Tactive · 1.8 (5.2)

and Laot, the lifetime of a node equipped with an AOT compiler as:

Laot =
B

Pactive · Taot + Psleep · (1− Taot)
(5.3)

In Figure 5.3, the expected lifetime for a native code implementation is then plotted

using equation 3.3, AOT compiled code (equation 5.3), interpreted code (equation 3.5)

(using the new overhead value 5.1), and ratios for the expected life of native versus AOT

compiled code, native versus interpreted code and AOT compiled against the interpreted

code. As the duty cycle increases the native code to AOT compiled lifetime ratio tends

towards 1.8 (the AOT compiled implementation overhead) and likewise the native code

to interpreted lifetime ratio tends towards 67 (the interpreter overhead). Also, as the

duty cycle increases, the AOT compiled to interpreted lifetime ratio tends towards 37,

i.e. the overhead of using an interpreter in comparison to AOT compiled code.

Due to Java class abstractions and the stack based architecture of Java and the fact

that the AOT compiler sustains the Java operand stack (in order to facilitate a simple

small footprint AOT compiler), the efficiency of the AOT compiled code cannot match

that of native code compiled from C. C++ compiles out class abstractions by statically

linking function calls which produces faster native code. Such an approach could not be
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Figure 5.4: The size of the benchmark application logic for TakaTuka bytecode
(TTVM), native code for a C based equivalent, and the intermediate bytecode
(AOT-BC), the generated AOT compiler native code size for no optimizations
(AOT), speed optimizations (AOT-Sp), size optimizations (AOT-Si) and both
speed and size optimizations (AOT-SpSi).

taken in this work since the execution of Java methods are dependent on the underlying

object type which would be lost when statically linking functions. In any case, the

increase in execution overhead is negligible when compared with that of an interpreter

based approach. The slight increase in execution overhead is justified by the platform

independence achieved by using a bytecode encoding and the higher level programming

abstraction provided to developers. Bytecode also usually results in energy gains when

transmitting software over the air due to the smaller encoding when compared with

native code.

5.2 Program Size Evaluation

Besides the limited battery life and execution power, sensor networks also have a limited

amount of program space. An evaluation of the program space required for the different

program encodings will now be provided, followed on by an analysis of the size of the

virtual machines coupled with the applications.

5.2.1 Program Encoding Size Evaluation

Figure 5.4 depicts the size of the program encoding for TakaTuka bytecode (TTVM),

the native code size for a C based equivalent, the intermediate bytecode (AOT-BC),
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i.e. the bytecode that is sent to sensor nodes using the AOT compilation technique; as

well as the native code generated on the sensor nodes using the AOT compiler for no

optimizations (AOT), speed optimizations (AOT-Sp), size optimizations (AOT-Si) and

both speed and size optimizations (AOT-SpSi).

Much of the work presented in the TakaTuka VM (Aslam et al., 2010) focuses on bytecode

compaction (using single and multiple instruction compaction, and also constant pool

optimization). Java also provides textual descriptions of each class, function and field

(in order to allow dynamic loading). The TakaTuka VM does not remove any class,

function and field string names unlike the other proposed approaches including the work

presented in this thesis. It has been decided to opt for such a technique since such

textual representations can provide little benefit for on-node applications. It is most

likely for this reason that the TakaTuka VM bytecode is in most cases larger than that

of the bytecode produced for the AOT version presented in this thesis. That said, this

is a design choice, and either of the proposed solutions could choose to keep or remove

textual representations and any other optimisations. Both interpreters and run-time

compilers can be made to operate on the same bytecode.

Bytecode is in general smaller than native code due to the higher abstraction level,

except for when textual names of the code is included in the bytecode since native code

does not contain such textual representations of units of code. The bytecode generated

for the AOT compiler is smaller than that of native C code generated for most of the

benchmarks, except for the case of the MD5 application. By analysing the Java bytecode

generated for the MD5 application it can be noted that certain Java instructions result

in larger code than that of native code generated from C, in particularly for any code

related to references (objects or arrays), since in Java these references must first be

resolved before getting access to the actual data member, whilst using the C version, all

variables are statically linked. Therefore, a comparison with C is an unfair comparison

due to the nature of statically linked variables. However, if a bytecode compaction

algorithm were to be used the bytecode could be drastically reduced (Aslam et al.,

2010) which would result in a much smaller size than that of the native code generated

by C. That said, bytecode compaction is not the research contribution of this thesis. It

must be noted that the bytecode can be the same for that of an interpreter or an AOT

compiler.

5.2.2 Virtual Machine and Application Size Evaluation

An analysis of the program encoding size has been presented (i.e. the bytecode or native

code for the C and VM based implementations), however this only represents the pro-

gram logic and does not include the facilitating framework to support the program logic.

Since sensor nodes have a limited amount of program space it is necessary to evaluate

the total program space required for such applications which also includes the virtual
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Figure 5.5: The size of the complete application and the VM footprint for
TakaTuka (TTVM), and the AOT compiler for no optimizations (AOT), speed
optimizations (AOT-Sp), size optimizations (AOT-Si) and both speed and size
optimizations (AOT-SpSi).

machine. Virtual machines provide a number of benefits which include portability, a

higher level abstraction which results in an easier programming paradigm and (usually)

a smaller program encoding (which will provide benefits when sending code over the

air). The C based implementations do not provide any framework to support this and

thus it would be unfair to compare the C based implementation with the virtual ma-

chines. In Figure 5.5 the total size of the virtual machine plus the application logic for

the TakaTuka Virtual Machine (TTVM), and the AOT compiler configurations for no

optimizations (AOT), speed optimizations (AOT-Sp), size optimizations (AOT-Si) and

both speed and size optimizations (AOT-SpSi) are compared.

The TakaTuka virtual machine keeps the bytecode stored in the same format that the

bytecode was generated (and thereafter interprets the bytecode). The compiler generates

the virtual machine and tailors the VM according to the bytecode used in the application.

Thus, if any bytecode commands are not used, then the interpreter will not be compiled

with such logic and thus will decrease the footprint of the interpreter. However, in

doing so it would be impossible to update deployed sensor nodes with code that contains

commands that the interpreter was not built for. The AOT compiler, on the other hand,

translates the bytecode to native code. The native code generated will be substantially

larger than that of the bytecode. More so, the AOT compiler is compiled to include all

possible bytecode commands so that deployed sensor nodes can be updated with new

application logic without any problems. That said, either approach could be used for

both interpreters and AOT compilers.
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Table 5.1: System Footprint

Component Program Size (bytes)

AOT Compiler 7414

Flash Controller 106

Garbage Collector 400

Run-Time Environment 3872

Threading 494

Looking at Figure 5.5, surprisingly, the total size of the TakaTuka virtual machine and

the application logic (which is encoded as bytecode) is larger for most of the cases results

when compared with the AOT compiler footprint and the native code application logic.

Only when the application logic is substantially large, does the interpreter result in a

smaller footprint. This is most likely due to the interpreter having a large standard

footprint. Also, since the interpreter removes any code related to bytecode commands

which are not used, it is expected to see a much smaller footprint for the interpreter.

That said, it would be interesting to see how the results compare using the same virtual

machine generation approach (i.e. either both include the full bytecode command set, or

both remove any code related to unused bytecode commands). Even for a substantially

larger application such as the MD5 application, the total footprint of the AOT compiler

is not much larger than that of the interpreter.

A breakdown of the run-time compilation system footprint is provided in Table 5.1.

The AOT compiler is the largest component with a footprint of 7500 bytes. In order

to program code to flash, a flash controller is implemented which requires 112 bytes

of program space. That said, the TakaTuka virtual machine does not provide a flash

controller, and therefore if flash storage would be required in a TakaTuka application, a

flash controller would be required to be included (and increase the TakaTuka footprint).

The näıve mark and sweep garbage collector require 240 bytes of program space and

threading requires 494 bytes. The run-time environment, which consists of functions used

by the underlying system during program execution (including memory management,

arithmetic and other system level functionality) requires 3020 bytes of program space.

5.3 Garbage Collection Evaluation

In aim of evaluating the whole system a garbage collection evaluation was conducted.

Garbage collection is (usually) implemented in the run-time environment in a language

that is compiled to native instructions. Therefore, given the same amount garbage, both

an interpreter’s and a run-time compiler’s garbage collection should result in roughly

the same overhead. An evaluation on how long garbage collection takes on a reasonably

large amount of garbage was conducted by creating a number of objects that immediately

become garbage. The test code is as follows:
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Table 5.2: Garbage Collection Evaluation

Test RTC Time (ms) TakaTuka Time (ms)

Create 400 x 4 byte objects and GC 184 1899

Create 400 x 4 byte objects 142 1824

Garbage Collect 400 x 4 byte objects 43 75

public void createGarbage () {

for(int i = 0; i < 400; i++)

new Garbage ();

}

public void runTest () {

createGarbage ();

System.gc();

}

The Garbage class defintion consist of 2 short fields as follows:

public class Garbage {

public short garbage1;

public short garbage2;

}

The test creates 400 objects consisting of 4 data bytes (plus object meta-information

bytes). As soon as the new Garbage(); line is executed the object created immediately

becomes garbage since it is unreachable. After creating the garbage, the garbage collec-

tor is invoked. The time taken to perform the whole process was analysed in a similar

fashion to the tests presented at the beginning of this chapter (i.e. by using an LED

to indicate the beginning and end of a test, and monitoring the current consumption

of the system on an oscilloscope). The results are presented in Table 5.2. The run-

time compiled version took 184 milliseconds to complete, whilst the TakaTuka virtual

machine took 1899 ms, that is 10.32 times longer. However, the test above does not

provide enough fine-grained information to calculate the overhead of garbage collection.

Therefore, the time taken to create the objects only was analysed in which the TakaTuka

virtual machine took 12.84 times longer. The actual garbage collection time was anal-

ysed in isolation to reveal that the mark-and-sweep implementation used in the work

presented in this thesis took 43 ms to execute, whilst the mark and compact implemen-

tation used in TakaTuka took 75 ms. The difference in time is justified since the mark

and compact implementations requires (over and above the mark and sweep tasks) an

additional compact phase. However, the exact same garbage collection implementation

could be used for both systems. Therefore, assuming that the TakaTuka virtual machine

requires 43 ms to perform the same garbage collection, then the whole implementation

would take 10.15 times longer (rather than 10.32 times longer). Essentially, garbage
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//fake sample

setLedOn (0);

waitMs (1);

setLedOff (0);

//store reading

synchronized(vals) {

vals[cnt] = cnt;

cnt ++;

}

waitMs (1000);

Figure 5.6: Thread code to sample a sensor and store the values. Sensor sam-
pling is represented by LED toggling to remove any unfair comparisons due to
driver implementation.

waitMs (10000);

// calculate average

average = 0;

synchronized(vals) {

for(short s = 0; s < cnt; s++) {

average += vals[s];

}

average = average / cnt;

cnt = 0;

}

//fake transmission

setLedOn (1);

waitMs (1);

setLedOff (1s);

Figure 5.7: Thread code to average readings and transmit the result. Radio
transmission is represented by LED toggling to remove any unfair comparisons
due to driver implementation.

collection is a common factor for both interpretation and run-time compilation. The

execution time for both will (or should) be increased by the same quantity for the same

application. This thesis is not concerned with garbage collection implementation details,

however the subject is definitely of interest and further analysis in respect to the ideal

garbage collection implementation for WSN applications should be conducted in future

work.
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5.4 Threading Evaluation

Threading can be used to allow application designers to decompose an application into

different tasks. Although, the threading implementation is not a primary contribution of

this work but rather just a demonstration of the fact that run-time compilation can also

support threading, an experimental evaluation is provided to highlight the programming

benefits of threading. A comparison between a threaded application for both the AOT

compilation scheme and the TakaTuka virtual machine will follow. Assuming a typical

WSN application that samples a sensor, performs some computation on readings, and

periodically sends out the result was used. In order to remove any unfair comparisons

due to driver implementation an LED is used to represent sensor sampling and radio

transmission. Two threads are used, one for sampling the sensor and storing readings

as outlined in Figure 5.6, and the other for averaging the readings and transmitting the

result as outlined in Figure 5.7. The synchronized blocks are used so that the common

readings storage array is not altered by one thread whilst the other is using it. The

experiment was conducted to determine the total energy consumed for a single cycle (i.e.

10 sample thread executions and a single send thread execution). The sensor node was

connected to an oscilloscope to monitor the current consumption, and the derived energy

consumption for the cycle resulted to 59 mJ and 69 mJ for the AOT compilation and

interpreted versions respectively. This experiment shows that for a threaded application

(which provides a higher level programming tasks abstraction) the AOT compilation

approach results in 17% less energy consumption than that of the interpreted version,

for an application that is most of the time sleeping. For applications with more extensive

processing, obviously, the gains would be much larger.

5.5 Evaluation Discussion

In this chapter an evaluation of the execution overhead and program size for both an

interpreter designed for sensor nodes (TakaTuka) and the AOT compiler has been pro-

vided. It is evident from the program execution overhead evaluation that the AOT

compiler results in substantially less execution overhead which in turn implies a longer

node lifetime (as discussed in Chapter 3).

Although, a substantially larger footprint is expected for AOT compilation, due to:

native code being larger than bytecode; the fact that the TakaTuka virtual machine

removes code to do with unused bytecode (whilst the AOT compiler does not); and also

the decrease in bytecode in TakaTuka by using bytecode compaction, it turns out that

the implementation size and generated native code is in some cases smaller than that of

the interpreter, and only for larger applications results in a slightly larger footprint.
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That being said, since the implementation results in less execution overhead, whilst

at the same time requiring less or comparable program space, it has been shown that

run-time compilation of bytecode for sensor networks is in fact possible, feasible, and

practical contrary to the general consensus in the research field (Palmer, 2004; Koshy

and Pandey, 2005; Pandey and Koshy, 2006; Koshy et al., 2008; Aslam, 2011).

Although the footprint of the AOT compiler and resultant applications is already com-

parable with that of interpreters, in the next chapter efforts for providing a smaller ap-

plication size footprint by using Just-in-Time (JIT) compilation for resource constrained

devices will be presented. JIT compilation will allow the compiler to store bytecode and

only generate native code when it is required to be executed.



Chapter 6

Enabling JIT Compilation for

Resource Constrained Devices

In the previous chapter the implementation of an Ahead-of-Time (AOT) compilation

technique for resource constrained devices has been provided. The results show sub-

stantially better execution costs for AOT compiled code against interpreted code. More

so, the footprint for the virtual machine and application code is comparable and in some

cases it is even smaller than that of an interpreter. In aim of further decreasing the ap-

plication footprint a Just-In-Time (JIT) compiler could be used. This chapter presents

a proposed method in aim of enabling JIT compilation for resource constrained devices

such as sensor networks.

Traditional platforms that perform Just-In-Time compilation typically compile whole

functions at a time (Krall and Grafl, 1997; Yang et al., 1999; Brandner et al., 2009).

Compiling whole functions at a time will consume a substantial amount of memory, a

resource which is severely limited in such resource constrained devices. It is most likely

due to this reason, that the general consensus is that JIT compilation is impossible and

impractical for such resource constrained devices (Palmer, 2004; Koshy and Pandey,

2005; Pandey and Koshy, 2006; Koshy et al., 2008; Aslam, 2011). However, there is

no reason why code cannot be compiled and executed in smaller granularity. In fact,

Hennessy and Patterson (2006) show that statistically 90% of execution time is spent in

10% of code, and therefore it is not necessary to keep all code compiled to native code

since a majority of the code will only be used rarely. Also, code is typically stored in flash

memory on such microcontroller devices and executed thereafter. Flash programming

does require substantial power and time, and thus constant flash programming would

decrease the lifetime of such a system and increase the start-up time for the execution

of JIT compiled code. This is another reason why JIT compilation is deemed unfit

for such devices, as pointed out by Aslam (2011). However, contrary to the statement

”JIT would require generation of native code in flash memory” (Aslam, 2011), there is

87
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no restriction which limits native code to being generated in flash memory, and it can

in fact be generated and executed from RAM (Texas Instruments, 2004). A proposed

method to enable JIT compilation for such resource constrained devices will now be

presented, by using Basic Block JIT Compilation, Direct JIT Compiler Calls, and a

Circular JIT Cache.

6.1 Basic Block JIT Compilation

Compiling code from bytecode to native code is usually performed as functions are

required and are compiled at the granularity of a function. Traditional platforms that

perform JIT compilation for Java compile functions as a whole. If JIT compilation were

to use flash memory as its means of storing executable code, a high power consumption

ovrhead would be incurred as well as a delayed start due to flash programming time.

Typical microcontrollers used in sensor networks allow for code to be executed from

RAM which would not incur any extra overhead in the translation process, however

RAM is scarce in such systems. Therefore, a Basic Block JIT compilation scheme is

proposed, which will allow code to be JIT compiled and executed at the granularity of

basic blocks.

The definition of a basic block as defined by Aho et al. (1986) is:

A basic block is a sequence of consecutive statements in which flow of control

enters at the beginning and leaves at the end without halt or possibility of

branching except at the end.

Basic Block JIT compilation for Java was proposed by Rogers (2002). In their thesis,

Rogers (2002) shows that basic block compilation results in an 18% decrease in bytecode

compilation for their evaluation test cases. When bytecode for a whole function is

compiled to native code, it is possible to compile bytecode which will in fact not be used

(due to code branches that are not taken due to conditional statements). By using a

basic block JIT compilation scheme the memory required to store the generated native

code and translation process will be minimized.

6.1.1 Offline Basic Block Analysis

Traditionally, basic block analysis is performed by the JIT compiler prior to beginning

the translation process. Once the basic blocks have been identified, the compiler can

then compile each basic block as the basic block is executed. In order to minimize

the footprint of the JIT compiler, basic block analysis has been removed from the JIT

compiler stage, and instead offline basic block analysis is performed at the source code
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compilation stage when converting from Java bytecode to the intermediate bytecode

(described in Chapter 4). The intermediate bytecode will then be altered to include

’start basic block’, sbb, bytecode commands which are used to represent the start of a

basic block. The ’start basic block’ bytecode command will also be used to represent

the end of a preceding basic block. Consider the following function which calculates the

Greatest Common Divisor using the Euclidean algorithm:

private static short gcd(short a, short b) {

while(a != b) {

if (a > b) {

a = (short)(a - b);

}

else {

b = (short)(b - a);

}

}

return a;

}

When compiled to Java bytecode this will produce the following:

0 iload_0

1 iload_1

2 if_icmpeq 24

5 iload_0

6 iload_1

7 if_icmple 17

10 iload_0

11 iload_1

12 isub

13 istore_0

14 goto 0

17 iload_1

18 iload_0

19 isub

20 istore_1

21 goto 0

24 iload_0

25 ireturn

As previously discussed, basic block identification is performed before JIT compilation

to release the burden of basic block analysis from the resource constrained device. There-

fore, when the intermediate bytecode is being generated from the above bytecode, the
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start basic block bytecode commands will be inserted into the intermediate bytecode

to produce the following:

0 sbb

1 sload_0

2 sload_1

3 if_scmpeq 28

6 sbb

7 sload_0

8 sload_1

9 if_scmple 20

12 sbb

13 sload_0

14 sload_1

15 ssub

16 sstore_0

17 goto 0

20 sbb

21 sload_1

22 sload_0

23 ssub

24 sstore_1

25 goto 0

28 sbb

29 sload_0

30 sreturn

One of the converter’s job is to translate from the 32 bit width stack which is used

by Java to a 16 bit stack width which is more suitable for such devices. The change

in stack width is noted above from integer operations to short operations (e.g. from

iload instructions to sload instructions). The converter is described more in detail in

Chapter 4. Back on topic, the bytecode instruction sbb (in lines 0, 6, 12, 20 and 28)

represents the start of a basic block. From the bytecode above it can be seen that all

jump locations are resolved to a sbb instruction. Thereafter, when JIT compilation is

required, the device is only required to compile from the beginning of the basic block to

the end of the basic block, and then execute the compiled code. This mechanism will

reduce the amount of memory that is required to both perform JIT compilation as well

as store the generated native code. More so, very large basic blocks can be broken up

into smaller blocks by inserting an sbb bytecode instruction where required. This could

be useful if the allocated memory for JIT compilation is restricted to less than the size

of a particular basic block. An alternative to this would also be to compile such large
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Figure 6.1: This figure demonstrates intermediate bytecode with ’start basic
block’ instructions compiled to basic block bytecode which is stored on the
device and prepared for JIT compilation. When the JIT compiler requires to
compile and execute code, it will compile only the basic block which is to be
executed and then compile (and execute) additional basic blocks as they are
executed.

basic blocks to flash, and thereafter keep the basic block’s native code in flash as long

as possible (in order to minimize flash writes due to the overhead).

6.1.2 Supporting a JIT Compiler

In Chapter 4 a method to enable run-time compilation of bytecode for sensor networks

by using an Ahead-Of-Time (AOT) compiler was presented. When using the AOT

compiler, bytecode is translated to native code upon receiving the bytecode (whether

over a wired or wireless connection). The AOT compiler, besides compiling bytecode

instructions to native code, also generates native code to support function creation and

destruction (consisting of function stack frame maintenance code) as described in Chap-

ter 4. The logic used in AOT compilation is essentially the same for JIT compilation,

except for the timing at which the compilation to native code occurs. In supporting JIT

compilation, changes would need to be made to the Ahead-Of-Time compiler and the

bytecode transmission protocol to be able to identify which parts of bytecode are to use

JIT compilation and which parts are to use AOT compilation. In doing so, mixed-mode

compilation can be enabled along with an execution paradigm which can provide AOT

compiled code for heavily executed code, and JIT compilation for code which is used

less frequent.

Figure 6.1 depicts the compilation process from the received intermediate bytecode down

to the native code which is compiled and executed by the Just-In-Time compiler. When

the Ahead-Of-Time compiler receives bytecode which is intended for JIT compilation, it

creates a native code execution call to the JIT compiler for each basic block. Thereafter,

when the JIT compiler is called (from the native code execution calls just generated) it

will compile the bytecode associated with the basic block to native code and then execute
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it (this execution process is further discussed in Section 6.2). As previously mentioned

the process for AOT and JIT compilation is the same, and thus the same compiler

code is used for both processes. However, due to the different timings of the events,

differentiation is made between the two in Figure 6.1 as Ahead-Of-Time Compilation

and Just-In-Time Compilation (but are not actually different compilers).

In order to prepare code for JIT compilation at the AOT compilation stage it was

required to add a new bytecode command, createjitfn which differentiates a function

which is intended for JIT compilation. Also, as previously described, the sbb bytecode

instruction will be inserted at the start of each basic block. A sbb instruction is not

required at the start of a function since the basic block is implicit at the beginning of a

function (however, in the example above the first instruction is also a jump destination

and thus the instruction is required). When the createjitfn is encountered at the AOT

compilation stage, the compiler will create native code to call the JIT compiler, followed

by the standard AOT createfn instruction so that the JIT compiler can correctly create

the function when it is invoked.

The sbb command will instruct the AOT compiler to insert the command at the current

basic block to identify the end of the current basic block and the beginning of the next

basic block. Thereafter, similar to the createjitfn instruction, the AOT compiler will

create a native function call to the JIT compiler so that the next basic block can be JIT

compiled and executed. Since the compiler by default will compile bytecode received to

native code, it is necessary to instruct the compiler to treat bytecode intended for JIT

compilation to be stored as is, so that it is not compiled Ahead-Of-Time, but compiled

Just-In-Time, and therefore the bytecode instruction asis was added, which instructs

the compiler to copy bytecode as is (up to the specified number of bytecode instructions).

6.2 Direct JIT Compiler Calls

When code which is required to be prepared for JIT compilation is loaded into the system

a native function call to the JIT compiler, JITAndExe, is generated and placed above

the related bytecode. In doing so, any code which calls such JIT enabled functions, is

only required to make a call to the native call statement location which initiates the JIT

process. Thus, the callee is unaware of whether the function has already been compiled

to native code or if it is intended for JIT compilation and thus can enable a mixed

compilation paradigm.

Figure 6.2 depicts the execution process for a function prepared for JIT compilation.

The function call stack for each step of the execution process is given on the right side

of the figure, and each step is labelled by a dashed line. Initially, in step 1, the callee

function (whether it is a function compiled Ahead-Of-Time, Just-In-Time or if it is a

native function) will be executing and have its own stack. The callee then makes a CALL
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Figure 6.2: This figure shows the execution process for a function prepared for
JIT compilation. The function call stack at each step of the process is presented
on the right.

to the function which requires JIT compilation (however the callee does not require

to know whether the function is intended for JIT compilation or if it is a native code

function). The CALL instruction will place the callee’s return address on to the stack,

in step 2, so that a RET instruction can return to the callee later on. All functions (and

basic blocks) which are intended for JIT compilation will only consist of a native code

function call to the JIT compiler, JITAndExe, followed by the bytecode which is to be

compiled to native code. Thus, the code intended for JIT compilation will then CALL

the JIT compiler. Since the bytecode to be compiled is stored immediately after the

CALL instruction, and the CALL instruction places the address to the next instruction on

the stack, then in step 3, the address which is placed on the stack will be pointing to

the bytecode to be compiled, i.e. FFJIT. After the JIT compiler is able to determine

the address of the bytecode to compile, the address is not required on the stack. Thus,

in step 4 the JIT compiler removes the address from the stack. After compiling the

bytecode to native code, the JIT compiler is then required to execute the native code.

Since, execution is not required to return to the JIT compiler, then there is no need to

put the JIT compiler’s address on to the stack, and therefore a branch, BR, instruction

is used to change execution to the generated native code without placing any return

address on the stack, as depicted in step 5. The JIT compiled function will then use it’s

own stack frame, i.e. the ’JIT Function Stack’ depicted in Figure 6.2 for the execution

of its code in step 6. Thereafter, once the JIT compiled function is done executing, as

explained in Chapter 4, the function’s stack frame will be de-allocated and the previous

stack frame will be restored as shown in step 7. Since, the callee’s address is on the

stack, a RET instruction can be used to return to the callee. By manipulating the call

stack as specified above, calls to functions intended for JIT compilation will operate in

exactly the same way to other native functions. Also, there is no extra book keeping

required in order to be able to facilitate JIT compilation.
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6.3 Circular JIT Cache

Writing to flash consumes a substantial amount of power and time. Also, code is most

frequently executed from flash. As previously mentioned this fact most likely attributed

to the general consensus regarding the possibility and viability of a JIT compiler for

such resource constrained devices. Although code is most typically executed from flash,

contrary to the statement made by Aslam (2011), code can also be executed from RAM.

RAM is, however, usually more constrained than flash and thus majority of RAM should

be used for the user application.

By using a basic block JIT compilation scheme the amount of space required to execute

JIT compiled code can be minimised to that of the largest basic block. For very large

basic blocks native code could either be permanently or temporarily stored in flash,

or could even be broken down into smaller basic blocks. Also, it is common practice

to keep methods as short as possible when using an Object Oriented language such

as Java (Sharp, 1996). More so, studies show that basic blocks tend to be shorter

than functions (Antonioli and Pilz, 1998), although this is intuitively obvious since

basic blocks cannot exceed the function size and also given the high usage of loops and

conditional statements.

Previously JIT compiled code can be stored for future execution instead of having to

always perform JIT compilation. A circular cache is proposed for storing JIT compiled

code. A circular cache will ensure that the most recently executed JIT compiled code

will be available in the cache. The reason for a ”first in, first out” (FIFO) policy is due

to the inherent execution path of loops which are common in code. Although, this may

not be the best JIT cache policy to use, it will serve its purpose for evaluation of a JIT

compiled approach which relies on a minimal amount of RAM. Further cache policies

can be used and should be further investigated as a further extension of this work.

Figure 6.3 depicts an overview of the execution process for code which requires JIT

compilation. A cache lookup will be performed to determine if the basic block has

already been compiled and is present in the JIT cache. If it is, then the code can just be

executed without incurring any extra overhead. Otherwise, the basic block native code

size will be computed and thereafter the code will be compiled to native code if sufficient

space is available in the JIT cache. If there is not enough space available, the oldest

basic blocks in the JIT cache will be removed until there is enough space. The code

can then be stored in the JIT cache (for future cache hits) and then executed. System

performance will obviously be dependent upon the amount of memory reserved for the

JIT cache. The more memory reserved for the JIT cache, the more likely it is that

compiled code will remain in the JIT cache for future use. The current implementation

requires a statically sized JIT cache. However, future work can be implemented to share

memory between the application and the JIT cache. An analysis of performance based

on the JIT cache size is provided in Chapter 7.
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Figure 6.3: An overview of the execution process for code which requires JIT
compilation.

Besides the compilation overheads inherent in JIT compilation, two other JIT cache

related operations add to the overhead of JIT compilation and execution being: JIT

cache lookup and JIT cache code addition. The JIT cache keeps track of code blocks

by means of a lookup table and an associated lookup entry for each code block. Lookup

entries consist of the location of the generated native code and the location of the source

bytecode block used to generate the native code. Thereby, whenever a lookup is being

performed to check whether the block being executed is already in the JIT cache, the

lookup table is traversed. The worst case lookup therefore is, in Big O notation, O(n)

where n is the number of code blocks stored in the cache.

In Chapter 5 it has been shown that AOT compilation performs substantially better

than an interpreter. In aim of decreasing resource footprint, in this chapter techniques

to enable JIT compilation for severely resource constrained devices have been presented

including basic block JIT compilation, offline basic block analysis, direct JIT compiler

native calls and a circular JIT cache. An evaluation of the JIT compiler will now be

given to deduce whether footprint can in fact be decreased.





Chapter 7

Evaluation of the JIT Compiler

Methods to enable JIT compilation for resource constrained devices were proposed in

Chapter 6. An evaluation will now be provided in respect to how the JIT compilation

method compares to the TakaTuka interpreter. The TakaTuka interpreter requires 862

bytes of RAM to operate for an empty application. We have therefore decided to base

the JIT cache size upon this value. The JIT implementation requires 340 bytes of RAM

to operate, and therefore we have decided to use a 500 byte JIT cache. Following an

evaluation is provided that analyses the JIT compiler’s execution speed and the size of

both the bytecode encoding and bytecode storage requirements.
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Figure 7.1: Execution times for AOT, JIT and TakaTuka versions of the bench-
marks. The y axis uses a log scale to better visualise the large differences.
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7.1 Execution Performance Evaluation

Figure 7.1 depicts the execution times for the TakaTuka VM (TTVM), AOT without

optimisations (AOT), with speed optimisations (AOT-Sp), size optimisations (AOT-Si),

both optimisations (AOT-SpSi) and JIT compilation. The JIT compiled code’s worst

case execution performance for the MD5 benchmark is 10 times the execution speed

of the AOT compiled code, however is still half the speed of the TakaTuka VM. The

other JIT benchmarks range from 2.5 to 4.5 times the AOT execution speed. The

motivation behind the JIT compiler though is not performance, but is to decrease the

storage overhead inherent in the AOT compilation scheme. Therefore, an evaluation on

code size follows.

7.2 Program Size Evaluation

Program space on WSN nodes is limited. The evaluation of the AOT compiler program

sizes in Chapter 5 demonstrate that the program sizes of the AOT compiled code is

comparable with that of the TakaTuka VM. However, due to the bytecode encoding

used in the TakaTuka VM it should have a substantially smaller size (although it does

not remove textual class and function name representations). In any case, the native

code generated for the AOT compiler is larger than that of the intermediate bytecode

produced in the pre-processing stage. In aim of decreasing space requirements, JIT com-

pilation was proposed as described in the previous chapter. Analysis on the intermediate

bytecode prior or after loading into the system occurs is first provided as a means to

evaluate the overhead of transmitting bytecode to sensor nodes and the individual ap-

plication space overhead, followed by an analysis on the total footprint of the VM and

the installed application.

7.2.1 Program Encoding Size Evaluation

Figure 7.2 provides the sizes of the TakaTuka VM (TTVM) and the intermediate byte-

code (AOT-BC) along with the native code generated from the AOT compiler for no

optimisations (AOT), speed optimisations (AOT-Sp), size optimisations (AOT-Si) and

both optimisations (AOT-SpSi) and the altered bytecode for JIT compilation before

(JITBC-BEFORE) and after (JITBC-AFTER) the bytecode is loaded into the system.

As can be seen from the graph, minimal increased space is required to convert bytecode

to enable JIT (by adding start basic block bytecode instructions), and a slight increase

is thereafter introduced when the bytecode is stored on the node (due to direct JIT com-

piler native calls). The JIT enabled bytecode both before and after being loaded into

the system is less than that of the interpreter except for the case of the MD5 benchmark

whereby the JIT enabled bytecode after installation is slightly larger (due to direct JIT
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Figure 7.2: The size of the benchmark application logic for TakaTuka bytecode
(TTVM), the intermediate bytecode (AOT-BC), the generated AOT compiler
native code size for no optimizations (AOT), speed optimizations (AOT-Sp), size
optimizations (AOT-Si) and both speed and size optimizations (AOT-SpSi), and
the bytecode for the JIT compiler before (JITBC-BEFORE) and after (JITBC-
AFTER) the bytecode is loaded into the system.

compiler native calls). However as explained in Chapter 5, the TakaTuka VM could just

as easily produce and operate on a smaller bytecode size. The important thing to note

here is that there is a slight increase in JIT enabled bytecode size prior to loading, an

average of 15%, and a slightly larger increase in size after loading, an average of 33%.

However, when compared to the generated native code the storage space required for

that of the JIT code after loading is on average 50% of the best case AOT compilation

scheme.

7.2.2 Virtual Machine and Application Size Evaluation

To put the size gains into perspective a whole system size analysis including the appli-

cation storage requirement and the VM footprint will now be provided. Extra code is

required to extend the AOT compiler to support the JIT compilation scheme described

in the previous chapter. The added compiler footprint amounts to 1544 bytes, totalling

the JIT compiler to 9044 bytes. Figure 7.3 depicts the full system size for the TakaTuka
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Figure 7.3: The size of the complete application and the VM footprint for
TakaTuka (TTVM), and the AOT compiler for no optimizations (AOT), speed
optimizations (AOT-Sp), size optimizations (AOT-Si) and both speed and size
optimizations (AOT-SpSi) and the JIT compiler.

bytecode and VM footprint (TTVM), the AOT compiler footprint and generated na-

tive code for no optimisations (AOT), speed optimisations (AOT-Sp), size optimisations

(AOT-Si), both optimisations (AOT-SpSi) and for the JIT enabled bytecode after load-

ing along with the JIT compiler footprint (JIT). From the graph it can be seen that the

footprint from the whole application is substantially less than that of the interpreter.

Minor savings are made for the smaller benchmark applications, however large program

space savings can be seen for the MD5 benchmark. In Chapter 5, the MD5 application

was the only benchmark in which the interpreter required less program space. By using

a JIT compilation scheme the program space overhead even for a large application such

as the MD5 application results in less program space than that of an interpreter.

7.3 Benefits of JIT Compilation

Native code requires more space than bytecode. When code is translated from bytecode

to native code using the AOT compiler, the amount of space required to store the

generated native code greatly outweighs the bytecode encoding. For large applications

there may not be enough space to store the generated native code (due to the size

expansion). Java is particularly bad at expressing array data initialisation. Take for

example the following array initialisation:

arr = new byte[] {

127, 127, 120
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Table 7.1: 16 bit Bubble Sort JIT Cache Analysis

JIT Cache Size Hits Misses

500 66300 10

300 65281 1029

250 256 66054

};

The generated bytecode compiled using the standard Java compiler is as follows:

0 iconst_3

1 newarray 8 (byte)

3 dup

4 iconst_0

5 bipush 127

7 bastore

8 dup

9 iconst_1

10 bipush 127

12 bastore

13 dup

14 iconst_2

15 bipush 120

17 bastore

18 putstatic #2 <Main.arr >

21 return

Note, that each array element has been expanded to 4 bytecode instructions which

total to 5 bytes. These bytecode instructions will further be expanded to a minimum

of 20 bytes using the size optimised compilation scheme. A 256 initialised byte array

will therefore require 5120 bytes of program space to store the initialisation code. An

FFT algorithm was implemented using a lookup table consisting of more than 1024

bytes. When this code gets compiled to bytecode and thereafter generated to native

code this results in a total of 20480 bytes. In addition to this the added logic required

more than another 10 KB of generated native code and therefore the application could

not be loaded onto the system using AOT. This is where JIT compilation provides a

substantial benefit over AOT. The bytecode can be stored in its original form and then

only compiled to native code when it is required. More so, initialisation data is only

required to be executed once. The FFT application successfully fit on the JIT compiled

system without a problem. In total 11,084 bytes were required to store the application

(in a bytecode encoding).
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Table 7.2: 32 bit Bubble Sort JIT Cache Analysis

JIT Cache Size Hits Misses

500 66300 10

450 65281 1029

400 256 66054

Table 7.3: MD5 JIT Cache Analysis

JIT Cache Size Hits Misses

3000 384245 6424

2000 213561 177108

500 117232 273437

Table 7.4: Binary JIT Cache Analysis

JIT Cache Size Hits Misses

500 112992 14

250 104000 9006

200 102000 11006

Table 7.5: FFT JIT Cache Analysis

JIT Cache Size Hits Misses

2000 4112 33

675 2954 1191

600 519 3626

7.4 JIT Cache Analysis

The performance gains of JIT compilation is dependent upon being able to reuse code

previously compiled. The larger the JIT cache, the more likely code is to be found.

However, the larger the JIT cache, the less memory is made available to the application.

An analysis was conducted for each of the benchmark applications to evaluate the opti-

mal JIT cache size, and how hit/miss rate is affected by decreasing the size. The results

for the 16 bit bubble sort, 32 bit bubble sort, MD5, binary search and FFT benchmarks

are presented in Tables 7.1, 7.2, 7.3, 7.4 and 7.5 respectively.

A JIT cache size of 500 bytes was sufficient for the optimal compilation and execution of

the two bubble sorts and binary search benchmarks. The optimal speeds achieved were

2.9, 2.6 and 4.35 times slower than that of the AOT (with no optimisations) compiled

code. The slowdown is due to the fact that compilation is actually occurring at execution

time, whilst AOT compilation compiles code before execution upon loading. A large JIT

cache size of 3000 bytes was required for the MD5 application which resulted in a 10.08

times slower speed. The FFT algorithm could not be tested against AOT since it could

not be loaded on the AOT enabled system.
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When the JIT cache is less than a threshold whereby it can achieve a substantial hit

rate, obviously, the performance is highly degraded due to extensive recompilation. The

current JIT cache scheme is implemented as a FIFO JIT cache, whereby the oldest

code in the JIT cache is evicted. However, other JIT cache eviction algorithms should

be investigated in the future to determine the ideal one for the different cases. Also,

whether a JIT cache size is acceptable for a particular application is really dependent

on the application. If an application does not use more than a few hundred bytes,

larger JIT caches could be used. However, if the application requires a large amount

of memory, then less memory should be reserved for the JIT cache. That said, the

experimental evaluation here has shown that for typical light-weight WSN algorithms

including sorting, hashing and even a complicated algorithm such as the FFT, a JIT

based system which requires a maximum of 3,000 bytes to a minimum of 500 bytes

is required for optimal execution. If the run-time system required 1,000 bytes and a

3,000 byte JIT cache was used, then 6,000 bytes would still be available for use by the

application (which is often enough for WSN applications). However, again this is very

application dependent.

7.5 Discussion

In Chapter 5 an evaluation of the AOT compilation methods proposed was provided.

Results heeded show a substantial increase in execution performance when compared

with an interpreter. Resources required for AOT compilation was shown to be compa-

rable or better than that of the interpreter. However, it is believed that this may be due

to implementation details of the interpreter. In fact application bytecode sizes for the

interpreter should have resulted in less of a footprint, although the actual interpreter

size should be comparable to the AOT compiler. Since it is believed that interpreters

can achieve a smaller footprint, further work was performed into minimising resources

required for run-time compilation by proposing JIT compilation. Due to the resource

constraints inherent in WSN class devices, techniques to enable JIT compilation were

proposed in Chapter 6 including basic block offline analysis and direct JIT compiler

native calls.

In this chapter we have evaluated the JIT compilation methods proposed. Results show

that JIT execution performance is degraded by 2.5 to 10 times the AOT compiled code.

Lower execution speeds are sacrificed for less program space requirements. It is shown

that the JIT proposed methods result in less program space requirements than the

interpreter. Therefore, it has been shown that simple run-time compilation techniques

can be implemented to provide an efficient execution platform with comparable or less

resources than that of the available interpreter.





Chapter 8

Reprogramming Sensor Networks

with Run-time Compilation

Sensor networks, like other traditional computing platforms, require updates from time

to time due to bug fixes, new features, or a complete re-tasking of the devices. Virtual

machines provide an easier to program abstraction and also a platform independent

program encoding. Steinfeld and Carro (2009) demonstrate the benefits of using a byte-

code encoding for program updates. However, as presented in Chapter 3, the overheads

inherent in an interpreter greatly impact the overall lifetime (even for very long sleeping

periods).

In Chapters 4 and 6 techniques to enable Ahead-Of-Time and Just-In-Time compilation

for resource constrained devices were presented. Results were then presented in Chapters

5 and 7 which demonstrate the performance gains and the fact that the program space

that is required is comparable and sometimes less than that of the interpreters. More

so, it has been shown that the RAM required for both AOT and JIT compilation is

comparable or less than that of the interpreter. To further demonstrate the gains of

using a run-time compilation technique for sensor networks and also due to the necessity

for reprogramming sensor nodes, a model to analyse the effects of run-time compilation

for reprogramming sensor networks will now be provided.

8.1 Modelling Reprogramming Overhead

The energy required to reprogram a unit of code, Erepro, can be modelled as:

Erepro = Erx + Estore (8.1)
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where Erx is the energy required to receive the code and Estore is the energy required

to store the update. Similar to Dunkels et al. (2006a), a simplified model for the energy

required to receive code is used, whereas Erx is proportional to the size of the code as:

Erx = Erxbyte · Srx (8.2)

where Erxbyte is the energy consumed for receiving a single byte over the air and Srx is

the number of bytes of code received. A similar equation is used to model the energy

required to store the update, Estore, as follows:

Estore = Estorebyte · Sstore (8.3)

where Estorebyte is the energy required to store a single byte to flash memory and Sstore

is the size of the update to store to flash.

Now, equation 8.1 will be adapted to represent the reprogramming overhead for inter-

preted code, Ahead-Of-Time compiled code and Just-In-Time compiled code as Ereproint,

Ereproaot and Ereprojit respectively.

Although, the bytecode generated from the TakaTuka virtual machine is larger than the

bytecode generated for the run-time compilation techniques, as explained in Chapters

5 and 7 the larger bytecode is due maintaining meta-information to do with classes,

functions and fields. That said, interpretation and run-time compilation could both

operate on the same bytecode. Therefore, it will be assumed that the interpreter’s

bytecode is of the same size as that used for run-time compilation (less the bytecode

overhead inherent in facilitating run-time compilation).

It will be assumed that the interpreter and JIT systems incur minimal processing over-

heads, since they just store the received bytecode to flash with minor modifications.

Also, the interpreter stores the bytecode as it is received thus the number of bytes to

be stored, Sstore will equal that of the number of bytes received, Srx. Thus, the energy

consumed for reprogramming a unit of code using an interpreter can defined as:

Ereproint = Erxbyte · Srx + Estorebyte · Srx (8.4)

and by factoring equation 8.4:

Ereproint = Srx(Erxbyte + Estorebyte) (8.5)

In order to support JIT compilation, basic block JIT compilation was proposed which

uses an offline compilation technique to determine the basic blocks prior to transmitting
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the bytecode. The resultant bytecode size including the appended basic block infor-

mation was analysed and compared against the original bytecode size. The average

overhead introduced by adding the basic block information for the test cases is 15% and

therefore the number of received bytes, Srx, must be increased by 15%.

For each start basic block instruction, native code which calls the JIT compiler is

appended to the stored bytecode. The resultant average additional storage overhead

for supporting native calls to the JIT compiler is 33% for the test cases. Therefore the

storage component overhead must be increased by 33%. Thus, the energy consumed for

reprogramming a unit of code using the Just-In-Time compiler can be defined as:

Ereprojit = Erxbyte · Srx · 1.15 + Estorebyte · Srx · 1.15 · 1.33 (8.6)

and by factoring equation 8.6:

Ereprojit = Srx · 1.15(Erxbyte +Estorebyte · 1.33) (8.7)

In order to support Ahead-Of-Time compilation, gradual compilation was proposed

which gradually compiles code as it is received. In order to do this the list of jump

destinations must be sent prior to a function’s bytecode. The overhead for appending

this information has been analysed and compared to the actual bytecode size. The

average overhead for the test cases is 6.6%. Thus, the number of bytes received, Srx,

requires an additional 6.6%.

The Ahead-Of-Time compiler, upon receiving bytecode will instantly compile the byte-

code to native code. Thus, the process of reprogramming the code update will also incur

a processing component, Eprocess, defined as:

Eprocess = Eprocessbyte · Srx (8.8)

where Eprocessbyte is the energy required to process a single byte. Thus, the energy

required for reprogramming using AOT compilation can be defined as:

Ereproaot = Erx + Eprocess + Estore (8.9)

The native code generated for the Ahead-Of-Time compiler using both speed and size

optimizations is 3.8 times larger the bytecode size on average for the given test cases.

Therefore, the number of bytes required to be stored to flash, Sstore, will be 3.8 times

that of the amount of bytes received over the air. Thus, the energy consumed for

reprogramming a unit of code using the Ahead-Of-Time compiler can be defined as:

Ereproaot = Erxbyte ·Srx ·1.066+Eprocessbyte ·Srx ·1.066+Estorebyte ·Srx ·1.066 ·3.8 (8.10)
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and by factoring equation 8.10:

Ereproaot = Srx · 1.066(Erxbyte + Eprocessbyte + Estorebyte · 3.8) (8.11)

In order to calculate the processing overhead in compiling from bytecode to native

code the average time for compiling 100,000 bytes without actually writing to flash was

calculated. The average processing takes 70 µs per byte. The current draw for the active

microcontroller state for the Telos B node is 1.8 mA (Polastre et al., 2005). Thus, the

energy consumption per byte, Eprocessbyte, can be worked out to 0.34 µJ (assuming a 2.7

supply voltage). Therefore, this overhead can be inserted into equation 8.11:

Ereproaot = Srx · 1.066(Erxbyte + 0.34µJ + Estorebyte · 3.8) (8.12)

In their paper, Dunkels et al. (2006a) provide the energy required to receive a single

byte, Erxbyte, as 21 µJ. The power consumption for storing a single byte to flash, Estore,

can be worked out from Texas Instruments (2009) to 0.55 µJ (using a 257 kHz Flash

time generator, a 3 mA supply current during programming and a 2.7 program and erase

supply voltage). Therefore, these values are plugged into equations 8.5, 8.7 and 8.12:

Ereproint = Srx(21µJ + 0.55µJ) = Srx · 21.55µJ (8.13)

Ereprojit = Srx · 1.15(20µJ + 0.55µJ · 1.33) = Srx · 23.84µJ (8.14)

Ereproaot = Srx · 1.066(21µJ + 0.34µJ + 0.55µJ · 3.8) = Srx · 24.98µJ (8.15)

Equations 8.12, 8.13 and 8.14 result in a linear increase in energy consumption for

reprogramming as the number of bytes to be sent increases. However, the energy cost

of reprogramming cannot be looked at in isolation since the reprogramming component

does not take into account the overheads inherent in each different execution paradigm.

Therefore, the energy consumption of reprogramming alongside the execution overheads

will now be investigated.

8.2 Modelling the Energy Consumption Lifecycle of

Reprogrammed Code

The energy consumption for the given life cycle of reprogrammed code, Elifecycle, is

defined as:

Elifecycle = Erepro + Eexecution (8.16)

where equations 8.13, 8.14 and 8.12 can be used as the reprogramming overhead, Erepro,

and Eexecution is the energy consumed for executing the update throughout the lifecycle.
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Although, the energy consumed for executing an update requires an analysis of the

actual code (due to conditional and loop instructions), for simplicity’s sake it will be

assumed that the size of the update is directly proportional to the execution cost of the

update. This assumption will suffice, since the execution path taken by the interpreter,

Ahead-Of-Time compiler and Just-In-Time compiler will be the same. Thus, the energy

consumed for executing the update throughout the lifecycle, Eexecution can be defined

as:

Eexecution =

n−1∑
i=0

Srx · Eexecbyte (8.17)

where Eexecbyte is the energy consumed for executing a byte (i.e. a single byte pertaining

to the bytecode which was sent to the device) and n is the number of times the code is

executed. In order to determine Eexecbyte, the execution overhead per byte, the execution

time has been averaged for the BubbleSort16 test case by performing loop unrolling,

which works out to 27 µs per byte. Thus, by using the time required to execute a

byte, the current consumption and the voltage for the device (a current draw of 1.8 mA

(Polastre et al., 2005) and assuming a 2.7 supply voltage) it can deduced that the energy

consumed for executing a byte, Eexecbyte, is 0.13 µJ. Thus, the execution cost for the

Ahead-Of-Time compiler, Eexecutionaot, can be defined as:

Eexecutionaot =

n−1∑
i=0

Srx · 0.13µJ (8.18)

From the evaluation conducted in Chapter 5 it was shown that the TakaTuka interpreter

is on average 94 times slower than that of the Ahead-Of-Time compiler using both

speed and size optimizations for the given test cases. The Just-In-Time compilation

method was further evaluated in Chapter 7 in which it was shown that the Just-In-Time

compiler’s worst case resulted in execution decrease of 10 times than that of the AOT

compiler (with both optimizations set). Therefore, the execution costs for the interpreter

and just-in-time compiler will be multiplied by the execution speed overhead. Thus,

the execution cost of the interpreter and JIT compiler, Eexecutionint and Eexecutionjit

respectively, can be defined as:

Eexecutionint =

n−1∑
i=0

Srx · 0.13µJ · 94 =

n−1∑
i=0

Srx · 12.22µJ (8.19)

Eexecutionjit =

n−1∑
i=0

Srx · 0.13µJ · 10 =

n−1∑
i=0

Srx · 1.3µJ (8.20)

Therefore, the total energy consumption for the lifecycle of reprogrammed code for an

interpreter, AOT compiler and JIT compiler is defined as Elifecycleint, Elifecycleaot and
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Elifecyclejit respectively as follows:

Elifecycleint = Srx · 21.55µJ +
n−1∑
i=0

Srx · 12.22µJ = Srx(21.55µJ +
n−1∑
i=0

12.22µJ) (8.21)

Elifecycleaot = Srx · 24.98µJ +

n−1∑
i=0

Srx · 0.13µJ = Srx(24.98µJ +

n−1∑
i=0

0.13µJ) (8.22)

Elifecyclejit = Srx · 23.84µJ +

n−1∑
i=0

Srx · 1.3µJ = Srx(23.84µJ +

n−1∑
i=0

1.3µJ) (8.23)

Since equations 8.21, 8.22 and 8.23 are all proportional to the number of bytes in the

original bytecode, then in order to compare the three, Srx can be removed from the plots.

Therefore, a comparison of the equations for reprogramming a single byte of bytecode

for an interpreter, Ahead-Of-Time compiler and Just-In-Time compiler, Ereprobyteint,

Ereprobyteaot and Ereprobytejit respectively are:

Ereprobyteint = 21.55µJ +

n−1∑
i=0

12.22µJ (8.24)

Ereprobyteaot = 24.98µJ +

n−1∑
i=0

0.13µJ (8.25)

Ereprobytejit = 23.84µJ +
n−1∑
i=0

1.3µJ (8.26)

Equations 8.24, 8.25 and 8.26 result in a linear relationship with the number of execution

cycles, and even after a single execution cycle the dominant factor will be the execution

overhead. Wireless sensor networks, however do not just perform computation, but also

are required to sense the external environment and send wireless messages. Therefore,

in the next section an extension to the reprogramming model to include an element of

sensing and wireless communication will be provided.

8.3 Including Sensing and Wireless Communication

Overheads

Equation 8.17 expresses the execution overhead component for the lifecycle of a given

unit of reprogrammed code, Eexecution, as consisting of the summation of execution

cycles. Where each cycle is the product of the size of the bytecode and the overhead

required to execute each byte. In order to add the sensing overhead, Esense, and wireless
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(b) Update size of 100 bytes
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(c) Update size of 1000 bytes
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(d) Update size of 2000 bytes
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Figure 8.1: A sensing and wireless transmission consumption component is fac-
tored into the lifecycle of a reprogrammed unit of code. This figure shows the
energy consumed for reprogramming and executing a unit of code for a varying
number of execution cycles for (a) 1 byte, (b) 100, (c) 1000, (d) 2000 and (e)
5000 bytes.

communication overhead, Ewireless, the equation is extended as follows:

Eexecution =
n−1∑
i=0

(Srx · Eexecbyte + Esense + Ewireless) (8.27)

The actual overhead required to sense and transmit (and receive) wireless is entirely

application dependent. Also, after applying the update the actual processing will most

likely include previous logic already installed on the node. However to simplify the

problem, let’s assume that the new code being sent is the only logic to be executed.

Let us assume that each time the cycle is executed a single sensor is sampled and the

associated data is sent over the air. This will suffice to demonstrate the impact of sensing

and wireless transmission to the model. Therefore, let’s assume energy consumption for

the sensor and radio as 80 µJ (Sensirion, 2010) and 82 µJ (Texas Instruments, 2010),

having a combined consumption of 162 µJ. Thus, the energy consumed for the lifecycle

of the unit of reprogrammed code for the interpreter, AOT and JIT compilers would
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need to be rewritten as:

Elifecycleint = Srx · 21.55µJ +

n−1∑
i=0

(Srx · 12.22µJ + 162µJ) (8.28)

Elifecycleaot = Srx · 24.98µJ +

n−1∑
i=0

(Srx · 0.13µJ + 162µJ) (8.29)

Elifecyclejit = Srx · 23.84µJ +
n−1∑
i=0

(Srx · 1.3µJ + 162µJ) (8.30)

Figure 8.1 depicts the curves for equations 8.28, 8.29 and 8.30 for update sizes, Srx, of

(a) 1 byte, (b) 100, (c) 1000, (d) 2000 and (e) 5000 bytes. When the update size consists

of only 1 byte the energy consumed for the duty cycle is saturated by the sensing and

wireless component. However, it is assumed that it is only the newly sent code which will

be executed it is impossible to have a program size of 1 byte which consists of sampling

a sensor and sending the data (unless a very high abstraction layer is used in which

the single byte represents this logic). When using a Java bytecode paradigm, typical

applications would require much more logic than a single byte. As the number of bytes

in the update increases to 100 bytes (which is a more probably program size) the large

difference in energy consumption between the execution paradigms is obvious.

8.4 An Experimental Evaluation of Reprogramming with

Run-time Compilation Techniques

An experimental evaluation to determine the true costs of reprogramming with run-time

compilation techniques was conducted. To determine the individual radio, processing

and flash storage components involved in reprogramming a blink application was repro-

grammed over-the-air three times. The first time the node would only receive the data.

The second time the node would receive the data and process the bytecode instructions.

The final time the node would receive the data, process the bytecode instructions and

store the required data to flash. When using a radio to transmit data, different runs can

result in a different outcome due to a number of factors including radio propagation.

Therefore, the blink application is ideal since it is encoded in 45 bytes which is sent in

a single radio message, and therefore once the first packet is received the whole repro-

gramming process can take place. The node was connected to an oscilloscope to monitor

the current consumption, and as per other experiments in this thesis, a LED was used

to indicate the start and end of the experiment. The radio current consumption for each

byte could then be analysed using the first test which only receives the bytecode instruc-

tions over the radio. The radio energy consumed per byte was analysed to be 27.2µJ

(which is similar to the value used in the model above). The next test involved receiving
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and processing the received bytecode instructions. Using the difference between the two

tests, the processing energy consumed was analysed to be 0.24µJ per byte (which is

close to the value used in the model above). The final test which included receiving,

processing and storing the processed instructions was conducted. The difference be-

tween the last two tests was used to calculate the flash reprogramming energy per byte

to 3.4µJ (which is higher than the value used in the model above). The values deduced

are not completely accurate since the difference between the tests will not exactly define

the different components. However, the values are close enough to the expected values,

and therefore in the very least it has been shown that for a single radio reprogramming

message the model above will hold.

The case will be very different for applications having more than a single radio message

though. The reason for this is due to the underlying MAC protocol used for reprogram-

ming (which will most likely include acknowledgement messages sent from the node

amongst other MAC related components). Therefore, calculating the individual repro-

gramming components will not be possible since the measurements will be diluted with

varying energy consumption due to the changing properties of the wireless medium.

However, the test can be repeated a number of times to establish an average consump-

tion for the whole reprogramming overhead for the AOT and JIT run-time compilers.

A WSN application to sample, average readings and send data will be used for this

experiment. The code is outlined in figure 8.2.

The algorithm models sampling and sending in the form of a toggling of an LED. The

reason why this was used is due to a fair comparison with the TakaTuka virtual machine,

since as shown in Chapter 3, driver implementation can account for a large different in

performance. The application will wait 1 second between samples, and every 60 samples

calculate the average sample and send it out over the air. Also, since sensors are not

being sampled (for a fair comparison) the sensor values must be generated. Therefore,

the sample number will be used. In any case, the processing overhead will be the same for

real or generated values. The resultant bytecode is 181 bytes for AOT compilation and

278 bytes for JIT compilation. Reprogramming was attempted 10 times for each AOT

and JIT compilers, and the average whole programming cost per byte resulted to 1.12 mJ

and 1.09 mJ for AOT and JIT respectively. The reprogramming overheads per byte are

larger than that of the previous experiment since multiple radio messages are required

as well as a reprogramming MAC protocol. Nonetheless, for a given MAC protocol the

cost per radio message should be roughly equal. Unfortunately, the TakaTuka virtual

machine does not support reprogramming so we’ll assume a similar energy consumption

of 1.09 mJ per byte for an interpreted version. The TakaTuka VM also entails a much

larger bytecode encoding, and therefore we’ll assume a bytecode encoding similar to

that of the AOT of the amount of 181 bytes. The reprogramming energy consumed

for AOT, JIT and the interpreter is therefore 203 mJ, 303 mJ and 197 mJ respectively.

The complete reprogramming and execution of the AOT and JIT systems were analysed
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short[] vals = new short [60];

short cnt = 0;

short average;

while(true) {

//fake sensor sample

setLedOn (0);

waitMs (1);

setLedOff (0);

vals[cnt] = cnt;

cnt ++;

if (cnt == 59) {

average = 0;

for(short s = 0; s < 60; s++) {

average += vals[cnt];

}

average = (short) (average / 60);

//fake radio transmission

setLedOn (0);

waitMs (1);

setLedOff (0);

cnt = 0;

}

waitMs (1000);

}

Figure 8.2: Implementation of an application to simulate sampling of 60 sensor
readings, averaging of the readings and transmission over the air. An LED was
used to represent sensor sampling and radio transmission so as to remove any
unfair comparisons due to driver implementation.

in these experiments, whilst only the execution was analysed for the TakaTuka virtual

machine and the reprogramming overhead was assumed to be as optimal. The execution

overhead was then analysed per complete 60 second cycle (including 60 sensor samples

each represented by an LED toggle, and 1 radio transmission represented by another

radio toggle) and the resultant energy consumption was 326 mJ, 357 mJ and 410 mJ for

AOT, JIT and interpretation using the TakaTuka virtual machine respectively.

Therefore, the lifecycle energy consumption equations can be altered to include the true

analysed consumptions values for this experiment as follows:

Elifecycleint = 197mJ +

n−1∑
i=0

410mJ (8.31)

Elifecycleaot = 203mJ +

n−1∑
i=0

326mJ (8.32)
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Figure 8.3: Energy consumption for reprogramming and execution of application
over a given number of cycles.

Elifecyclejit = 303mJ +

n−1∑
i=0

357mJ (8.33)

Equations 8.31, 8.32 and 8.33 are plotted in Figure 8.3. As can be seen from the figure

and equations the energy consumed for the reprogramming and execution lifecycle is

linear. As the number of cycles increases the gains achieved for using AOT over JIT and

interpretation increases, and also the gains for using JIT over interpretation increases.

The curve profiles tend to match the model used in 8.1 for single byte updates more than

that of larger sized updates. The reason is due to the simple model used to determine

the reprogramming and execution overhead based on the size of the update. However, in

actual fact the resultant energy consumption will be highly dependent not only on the

size of the update but also the execution profile of the application. The profile consists

of different factors including the percentage of active execution and sleep states, the

type of processing involved (certain instructions require more execution than others)

and the duration that peripheral hardware is switched on amongst other aspects. The

application used in this experiment, was purposely chosen to emphasise a typical WSN

application with a high sleep percentage state and a low active execution state. As can be

seen from the results, even with a high sleep profile, the energy consumed is substantially
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larger for interpretation and JIT compilation than that of AOT compilation. For the

given experiment, after 100 cycles interpretation requires around 26% more energy, and

JIT compilation requires 10% more energy than that of AOT compilation; and the

interpreted version requires 14% more energy than that of the JIT implementation. This

experimental evaluation therefore shows, that even for application with high percentages

of sleep periods, that both AOT and JIT compilation provides a better platform for

reprogramming (and execution) than that of an interpreter.



Chapter 9

Conclusions

Programming application software for wireless sensor networks can prove to be a daunt-

ing task which is usually left to expert embedded systems programmers. High level

programming languages could be used to ease the burden of programming wireless sen-

sor networks and also increase the adoption of such technology. Recent virtual machine

interpreter based initiatives to enable Java for wireless sensor nodes demonstrates the

benefits of a higher level language programming paradigm for such severely resource

constrained devices, however interpretation suffers from high execution overheads. Run-

time compilation techniques are commonly used to increase performance. However, the

general consensus in the wireless sensor networks community is that run-time compila-

tion is impossible, impractical, complex or too resource hungry for such severely resource

constrained devices (Palmer, 2004; Koshy and Pandey, 2005; Pandey and Koshy, 2006;

Koshy et al., 2008; Aslam, 2011). This thesis demonstrates that Ahead-Of-Time and

Just-In-Time run-time compilation techniques for severely resource constrained devices

are in fact possible, practical and can be implemented in a simple manner which does

not require any more memory than that of an interpreter. This concluding chapter

summarises the work presented in this thesis and suggests some future directions.

9.1 Choosing the Ideal Run-time Platform

In this thesis, run-time compilation techniques were proposed for WSNs in aim of sup-

porting efficient execution of (Java) bytecode whilst not sacrificing reprogrammability or

platform independence. Alternative Java bytecode execution approaches which can be

implemented on typical WSN nodes include Java-to-Native (and Java-to-C) code com-

pilation and interpretation. No known Java-to-Native code techniques for WSN nodes

were available at the time of writing and therefore native code benchmarks implemented

were developed in C. Java-to-Native code is likely to be slower than that of C code due to

Java abstractions. The benchmarks however served their purposed to identify the best

117
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Table 9.1: Run-time Platform Support for Requirements

Java-to-Native Interpretation AOT JIT

Reprogramming Low High High High
Platform Independence Low High High High
Speed High Very Low Medium Low
Short Execution Cycles High High High High
Long Execution Cycles High Very Low High Low
Program Space Efficiency Low High Very Low Medium
Energy Consumption Efficiency Very High Low High Medium

case execution time for the different test cases. The Ahead-of-Time and Just-in-Time

compilation techniques proposed in this thesis have been shown to provide beneficial

execution efficiency and power efficiency improvements over interpretation. The scope

of this thesis is primarily to demonstrate that such run-time compilation techniques are

possible and practical. It is not the belief of the author that any one particular run-time

platform provides a silver bullet solution to supporting Java for typical sensor nodes.

Therefore, a comparison of the different approaches is provided in Table 9.1. The table

highlights how the different approaches vary in support for application requirements.

Values for how well the requirement is supported is categorised into Very Low, Low,

Medium and High. Only the requirements where the approaches differ in their support

are included in the table which are: reprogramming, i.e. the ability to be able to repro-

gram a sensor node over the air; platform independence defines whether the platform can

support types of sensor nodes; speed is how fast the platform can execute code; short

execution cycles and long execution cycles represents how well the platform is suited

for applications that have short or long execution cycles; and program space defines

how well the platform caters for minimising program space usage. The ideal platform

for a particular application can therefore be selected by reviewing each requirement’s

criticality and eliminating any platforms that do not support it.

In respect to reprogramming Java-to-Native code compilation provides little support

since code is typically statically linked and more so since native code tends to be larger

than bytecode, higher transmission costs of code will be incurred. The Interpretation,

AOT and JIT platforms are all well suited to support reprogramming and also platform

independence primarily due to the bytecode encoding. Java-to-Native code compilation

does not provide good support for platform independence in that if a network were to

consist of different types of sensor nodes, different code updates would have to be sent

to the different types of nodes (since the different types of sensor nodes support different

native code instruction sets). As noted from our experimental evaluation of execution

speeds, Interpretation suffers greatly with very low execution speeds, JIT offers a slightly

better speed improvement, AOT a decent speed and as expected native code offers the

greatest speed efficiency. Although it was shown the interpreter’s performance was slow

even for short execution cycles, it should be possible to speed it up by offloading more

execution into the natively written drivers and libraries. Therefore, an interpreter should
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be possible to suitably support those applications with short execution cycles and long

sleep periods. For long execution cycles (and short sleep periods), as described in Chap-

ter 3, an interpreted platform will not be able to cope with the quality of service required,

whilst a JIT platform provides slightly better support. On to a requirement where an

interpretation platform greatly beats other platforms is that of program space require-

ments. Although, in our evaluation the interpreted version actually results in program

sizes comparable to that of the other approaches, bytecode intended for interpretation

can actually be much smaller as explained in Chapter 5. The JIT platform proposed

requires slightly more space (due to basic block identification bytecode instructions).

Native code would tend to be larger, and therefore program space is not well supported

by a Java-to-Native code compiler (without compiling out Java abstractions), and the

AOT compiler performs worst when it comes to program space requirements. This is

due to the simple compilation process used. Native code generated on a development

machine will undoubtedly result in the most energy efficient platform (for application

execution). As shown in Chapter 3, the slower code executes, the slower it takes to

turn on and off hardware. Indirect energy consumption costs will also be incurred, and

therefore the energy consumed is greatly affected by the platform’s speed.

9.2 Summary of Work

The aim of this thesis has been to investigate whether the preconception that run-time

compilation techniques are in fact something beyond the power and resources of severely

resource constrained devices commonly used in wireless sensor networks. Run-time com-

pilation techniques were designed and implemented to establish whether the claims are

indeed true. This thesis describes techniques proposed to enable run-time compilation

for resource constrained devices. Following is a summary of the work presented in this

thesis leading to a conclusion in relation to whether run-time compilation techniques are

in fact applicable for wireless sensor networks.

Chapter 1 provided a discussion on the current programming environments used for

wireless sensor network development and the need for higher level abstractions to de-

crease development costs and increase adoption of the technology. Recent initiatives to

enable higher level abstractions by means of a Java interpreter were introduced and the

high execution costs associated with such an approach were discussed. The consensus

in the wireless sensor network field concerning the impossibility and impracticality of

run-time compilation for resource constrained devices is mentioned and thus the problem

statement is introduced, that is, whether the consensus is preconceived. The challenge,

as indicated by the assumption that run-time compilation is not for WSN class devices,

is identified as the limited program and memory resources. An introduction to motiva-

tion behind the work was then provided, along with how the work relates to existing

approaches.
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Having introduced the problem and main question surrounding the thesis, in Chapter 2,

an introduction to related work and an overview of background areas is provided. Main

wireless sensor networks requirements and issues are highlighted with further focus on

WSN programming paradigms. The work presented in this thesis focuses on a Java

programming paradigm and therefore further background on the Java virtual machine

and bytecode is presented followed by an analysis of the desirability and undesirability

of Java for WSNs and a discussion highlighting Java features that were not designed

for WSNs. Techniques suggested by recent initiatives to enable Java programming envi-

ronments for WSNs are then discussed and followed by techniques proposed to increase

Java execution performance including run-compilation techniques used in traditional

computing platforms.

To justify the work involved in implementing run-time compilation of bytecode in wire-

less sensor networks, an analysis of execution overheads for both a native code and

interpreter execution platform was performed and presented in Chapter 3. An estima-

tion of the expected lifetime of a device for varying active and sleep durations for natively

compiled firmware is given in comparison to an interpreted version for code that per-

forms the same task. The estimation shows that interpretation results in a substantial

decrease in expected lifetime even for low duty cycles. Since, wireless sensor networks

do not just consist of computation but also sensing and radio communication, the life-

time model was further expanded to include an element of sensor sampling and radio

transmission. The model is based upon the assumption that a single sensor sample and

radio transmission is made per active and sleep period. The analysis shows that even

low active periods and long sleep periods results in a substantial decrease in expected

lifetime for interpreted code with a single sensor sample and radio transmission. The

general approach used in WSN application development advocates higher computation

in order to minimise transmission. When this approach is kept in mind the gains of

using a native code paradigm over an interpreted one are further amplified. Further to

an initial analysis by means of estimating execution overheads, an experimental analy-

sis of an existing virtual machine was performed which highlighted indirect overheads

inherent in interpretation. The indirect overheads are due to slower execution speeds

which results in peripheral hardware being on for longer periods, and therefore consum-

ing more energy. This chapter provided enough motivation to continue investigating

whether run-time compilation techniques can be achieved.

Following the motivation behind the continuation of pursuing run-time compilation tech-

niques for wireless sensor networks, design requirements and choices for an Ahead-Of-

Time compilation scheme are then presented in chapter 4. A simple run-time compilation

mechanism is used to convert bytecode into native code by mimicking the Java operand

stack by natively pushing and popping to a stack. Simple optimizations on the resul-

tant generated code are further proposed to increase performance and decrease resultant
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application size. To overcome the memory constraints imposed in WSNs, Gradual Com-

pilation was proposed so that code can be gradually compiled as it is received without

having to receive a whole function’s code before beginning compilation. Although, Java

is meant to relieve the application developer of lower level details it was decided to still

expose such lower level registers and interrupts in the event that the developer required

to use such mechanisms. A novel technique to expose registers and interrupts to Java is

thereby provided.

An evaluation of the Ahead-Of-Time compilation method proposed was presented in

chapter 5. Results show that the proposed AOT compilation method achieves signifi-

cantly faster execution of code compared with interpretation, which in turn results in

an increased lifetime. A comparison of program encoding size is then presented whereas

it is shown that the bytecode produced for the proposed AOT compilation scheme is

less than that of native code generated from C for most cases and always less than

that of an interpreter (although, the bytecode used in the interpreter should in general

be smaller or equivalent to the bytecode proposed due to gradual compilation). The

generated native code for the AOT compilation method proposed is also for most test

applications smaller than that of the interpreter (although this most definitely should

not be the case). Therefore, it was shown that as regards to application logic size (for

both the bytecode and native code encodings), the AOT compilation scheme results in

comparative sizes to that of an interpreter. Furthermore, the complete size of the un-

derlying virtual machine along with the application logic on top of it was analysed. The

results show that the AOT compiler footprint along with the application logic resulted

in comparable or smaller sizes to that of the interpreter. Therefore, it was confirmed

that the AOT compilation scheme achieves similar program space requirements to the

interpreter and therefore claims that run-time compilation is impossible or impractical

on such devices is rejected, or at least that the same applies to interpreters.

Although the evaluation presented in chapter 5 demonstrates that the total application

size for AOT compilation is comparable to an interpreter, further work into minimising

the application size was performed by designing and implementing Just-In-Time compi-

lation for resource constrained devices as described in chapter 6. The challenge in doing

so, as previously mentioned, is the program and memory space constraints. Writing

to program flash consumes substantial energy and therefore it is proposed to compile

and execute native code from RAM. To enable JIT compilation for such resource con-

strained devices Basic Block JIT compilation was proposed. By JIT compiling code at

the granularity of basic blocks, the memory required to store and execute the generated

native code can be drastically reduced. More so, code blocks that are not executed due

to conditional statements not being evaluated will not be compiled and thus speed up

the compilation process. To further facilitate JIT compilation for resource constrained

devices it was proposed to perform Offline Basic Block Analysis on a host machine prior

to transmitting bytecode to the sensor node, and therefore the sensor node would be
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relieved of basic block analysis and can concentrate purely on executing the code. To

further support efficient execution of code and minimise the JIT compiler footprint, di-

rect native code calls to the JIT compiler are generated and stored before each basic

block of bytecode. In doing so, by exploiting the underlying hardware architecture, the

JIT compiler can establish the location of the bytecode to be compiled and then return

to the next basic block to be executed. To further support a lightweight JIT compilation

scheme, a circular JIT cache is used to store previously generated native code and then

when required to discard native code due to size limitations, the oldest native code can

be discarded from the cache. The simple JIT cache will ensure that at least execution

of loops will exhibit optimised behaviour.

An evaluation of the JIT compilation scheme is then provided in chapter 7. It is shown

that JIT compilation can be achieved with less of a footprint than an interpreter achiev-

ing comparable or less execution speeds.

Reprogrammability of bytecode is advantageous due to its platform independence and

also bytecode encoding which usually provides a smaller encoding size. In chapter 8

it is shown that the overheads of reprogramming sensor nodes which utilise a run-time

compilation scheme result in substantially less overheads than if interpretation is used.

Furthermore, to reiterate the main contribution of this work, the thesis that run-time

compilation is possible, practical and can be implemented on severely resource con-

strained devices by using simple techniques which results in resource usage comparable

(or better) to that of an interpreter has been shown to be true. The run-time compilation

source is available from: http://sourceforge.net/projects/micrortc/

9.3 Future Work

The major part of this thesis has been concerned with determining whether run-time

compilation is in fact beyond the power of severely resource constrained devices such as

those commonly used in wireless sensor networks. In investigating this preconception,

techniques were proposed to enable Ahead-Of-Time and Just-In-Time compilation for

resource constrained devices. The proposed techniques enable run-time compilation for

resource constrained devices with space requirements comparable (or smaller) than that

of an interpreter, furthermore it results in a significantly more efficient execution plat-

form. Having proven that run-time compilation is in fact possible and having provided

the first AOT and JIT compilers for such resource limited devices, this thesis paves the

way for further research into resource constrained run-time compilation research. In this

section areas of interest are identified which could be further investigated to extend the

work presented in this thesis.
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9.3.1 Mixing AOT and JIT Compilation

The work presented in this thesis demonstrates that both AOT and JIT compilation can

be achieved for severely resource constrained devices. It would be useful to use AOT

compilation for code that is executed frequently and JIT compilation for code that is less

frequently executed (as done by other traditional dynamic compilation systems). In this

thesis focus was on the enabling methods to achieve run-time compilation for severely

resource constrained devices. The study of enabling a dynamic compilation system for

severely resource constrained devices would entail a thesis of its own.

Since the AOT and JIT compilers use the same translation logic (bar some minor ad-

ditional JIT logic) the two compilation techniques can be used together with minor

additional changes. Also since the AOT and JIT generated native code does not rely

on an underlying run-time system to execute the code (since it is executed natively),

code blocks can be seamlessly executed as Ahead-Of-Time compiled code or Just-In-

Time compiled code (even within the same function). That said, due to program space

constraints this would be a challenging task for an interpreter based approach since

the bytecode to native code transition logic would require to be implemented on top of

the interpreter logic which would result roughly in double the size of the interpreter.

Therefore research should be conducted in aim of providing a hybrid AOT and JIT

compilation (and execution) platform. The simplest way of enabling this would be to

allow the developer to determine whether a function should be marked for AOT or JIT

compilation. However, in aim of decreasing effort on behalf of the programmer, it would

be interesting to develop policies to determine whether blocks of code should be marked

for AOT or JIT compilation. Research into such policies should both focus on offline

analysis which would take place on a host machine when converting Java bytecode into

the system’s intermediate bytecode, and also run-time policies that would be able to

decide if any code blocks marked for JIT compilation should be permanently stored in

flash (and thereafter never require any further compilation).

9.3.2 Bytecode Optimization

Bytecode optimization is an area of interest to all types of virtual machines and ex-

tensive research has been presented for bytecode optimization on traditional computing

platforms. Aslam (2011) presented extensive research on bytecode compaction in their

work. Positive results are demonstrated for run-time compilation in this thesis, even

when compared with an interpreter which makes use of bytecode optimization. Re-

search into offline bytecode optimization and its relationship to run-time compilation

could substantially further increase the performance gains and minimise storage over-

head.
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9.3.3 Native Code Optimization

Bytecode to native code translation techniques that mimic the Java operand stack were

proposed in this thesis to enable a simple compilation framework. Furthermore sim-

ple optimization on the generated native code were also proposed. Work on further

optimizations should be investigated in aim of increasing the execution efficiency and

reducing the storage requirements.

9.3.4 JIT Cache Policies

In this thesis a simple circular cache was proposed to store native code generated by the

JIT compiler. Further research should be executed to determine other caching policies

that may increase cache hits and minimise storage requirements for native code that is

unlikely to be executed.

9.3.5 Flash Memory Management

The JIT compilation scheme proposed is supported by a circular JIT cache which stores

previously generated native code in RAM (since flash writing is time and power con-

suming). RAM is highly constrained and therefore the JIT cache size will determine the

efficiency of code intended for JIT compilation and execution. Often the flash memory

available for program space is never completely used. Therefore, it would be beneficial

to develop a flash memory management layer that would allow the JIT compiler to store

generated native code to unused flash. Thereafter if flash memory is required by the ap-

plication or system level logic, flash memory in use by JIT could be freed and if the JIT

generated native code is ever required again it could be either written to other available

flash memory areas, or else to a JIT cache in RAM. That said, policies to ensure that

flash writing is minimised and code blocks that are more frequently executed are given

priority for storage in flash would have to be investigated.

9.3.6 Integratation of the JIT Cache with the Memory Manager

and Garbage Collector

Similar to the idea proposed above, although RAM is limited on such devices, this does

not necessarily mean that majority of the RAM is in use for applications. The Java

paradigm uses a garbage collector which releases developers from having to implement

memory management. The garbage collector will release resources that are no longer in

use by the application. Therefore, it is possible that substantial memory previously used

by application logic is tied up waiting to be garbage collected. More so, memory usage

of specific applications may not be large and therefore the JIT cache would be able to



Chapter 9 Conclusions 125

use more memory for such applications. Hence, further research into integration of the

JIT cache with the memory manager and garbage collector should be investigated so as

to optimise the JIT cache size availability at run-time.

9.3.7 Debugging via Reverse Translation

Source level debugging is a useful tool to analyse code and fix bugs. In aim of supporting

source level debugging of firmware loaded on a sensor node, further work should be

performed in reverse translation from native code to the original Java source. This would

involve the inverse of the compilation process described in chapter 4, and therefore being

native code to intermediate bytecode, which is further translated to Java bytecode and

then can be matched to Java source files and lines.

9.3.8 Other Language and Bytecode Alternatives

Java was used as the programming language of choice for this work due to its popularity

and other recent Java interpreter based virtual machines for WSNs. However, Java may

or may not be the ideal language to use for enabling development of WSN applications.

Although the question of which language would best suit development is not the scope of

the thesis, it is definitely an area of interest. When considering the different languages

it is important to keep in mind the underlying program encoding (be it native code,

bytecode or other) and how such encodings effect platform dependency, update sizes,

execution efficiency, storage requirements and reprogrammability.





Appendix A

Bytecode to Native Code

Translations

A.1 Load and Store Instructions

A.1.1 Local Variable Value Loading

Bytecode Instructions fload, fload 0, fload 1, fload 2, fload 3, iload,

iload 0, iload 1, iload 2, iload 3

Stack [before] ⇒ [after] ... ⇒ ..., value

Native Code Translation PUSH <VARIABLE LSW OFFSET>(R4)

PUSH <VARIABLE MSW OFFSET>(R4)

Description

The bytecode instructions are used to push local variable float and int (32-bit) values

onto the stack. The translation therefore pushes the least significant word (16-bits in the

case of the MSP430 microcontroller used) onto the native microcontroller stack, followed

by pushing the most significant word onto the native microcontroller stack.

The various fload <n> and iload <n> bytecode instructions implicitly state the local

variable index number, whilst it is provided as a parameter for fload and iload. The

compiler must therefore prior to this, calculate the local variable’s position in respect to

the current method stack frame.

127
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A.1.2 Local Variable Reference Loading

Bytecode Instructions aload, aload 0, aload 1, aload 2, aload 3

Stack [before] ⇒ [after] ... ⇒ ..., objectref

Native Code Translation INCD.W R8

MOV.W <REFERENCE OFFSET>(R4), 0x0000(R8)

Description

The bytecode instructions are used to push local variable references onto the (refer-

ence) stack. The run-time compiler implementation separates the value stack from the

operand stack, and the microcontroller’s native stack is used to represent the value stack.

Therefore, the reference stack requires a software implemented stack. The R8 register is

used to represent the reference stack pointer. The native code translation increments the

reference stack pointer, and thereafter copies the object reference from the local variable

method frame to the address of the reference stack pointer. The compiler must prior to

this calculate the object reference position offset in respect to the current method stack

frame.

The local variable reference position is implicitly stated in the aload <n> instructions

whilst the position is provided as a parameter for the aload bytecode instruction.
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A.1.3 Local Variable Value Storing

Bytecode Instructions fstore, fstore 0, fstore 1, fstore 2, fstore 3,

istore, istore 0, istore 1, istore 2, istore 3

Stack [before] ⇒ [after] ..., value ⇒ ...

Native Code Translation POP R5

MOV.W R5, <VARIABLE MSW OFFSET>(R4)

POP R7

MOV.W R7, <VARIABLE LSW OFFSET>(R4)

Description

The bytecode instructions are used to store float and int (32-bit) values stored on

the operand stack into a local variable. The translation involves popping the most sig-

nificant word (16-bits) from the native microcontroller stack, and thereafter storing the

popped value to the position of the variable’s most significant word. The same procedure

is followed for the least significant word.

The various fstore <n> and istore <n> bytecode instructions implicitly state the local

variable index number, whilst it is provided as a parameter for fstore and istore. The

compiler must therefore prior to this, calculate the local variable’s position in respect to

the current method stack frame.
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A.1.4 Local Variable Reference Storing

Bytecode Instructions astore, astore 0, astore 1, astore 2, astore 3

Stack [before] ⇒ [after] ..., objectref ⇒ ...

Native Code Translation MOV.W @R8, R5

DECD.W R8

MOV.W R5, <REFERENCE OFFSET>(R4)

Description

The bytecode instructions are used to store object references stored on the (reference)

stack into a local reference variable. The R8 register is used as a software implemented

reference stack. The native code translation copies the reference on the top of the ref-

erence stack into an intermediate register (R5), decrements the reference stack (which

represents the popping of the top reference), and then copies the reference stored in the

intermediate register to the local variable reference position in the method frame.

The local variable reference position is implicitly stated in the astore <n> instructions

whilst the position is provided as a parameter for the astore bytecode instruction.
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A.1.5 Value Constant Loading

Bytecode Instructions bipush, fconst 0, fconst 1, fconst 2 iconst m1,

iconst 0, iconst 1, iconst 2, iconst 3, iconst 4,

iconst 5, sipush

Stack [before] ⇒ [after] ... ⇒ ..., value

Native Code Translation PUSH <VALUE LSW>

PUSH <VALUE MSW>

Description

The bytecode instructions are used to push constant byte, float, int and short val-

ues onto the stack as 32-bit values. The native code translation pushes the value’s

least significant word (16-bits) followed by the most significant word onto the native

microcontroller stack.

The fconst <n>, iconst <n> and iconst m1 (minus 1) bytecode instructions implicitly

state the constant value, whilst the constant value is provided as a parameter for bipush

and sipush.
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A.1.6 Reference Constant Loading

Bytecode Instruction aconst null

Stack [before] ⇒ [after] ... ⇒ ..., null

Native Code Translation INCD.W R8

CLR.W 0x0000(8)

Description

The bytecode instructions is used to push the null reference value onto the (refer-

ence) stack. The null reference is represented as the binary value 0. The R8 register is

used as a software implemented reference stack. The native code translation increments

the reference stack pointer, and thereafter clears the value stored in the address pointed

by the reference stack pointer (or rather sets the value to binary 0).
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A.2 Arithmetic Instructions

A.2.1 Natively Supported Dual Stack Operand Integer Arithmetic

Translations

Bytecode Instructions iadd, iand, ior, isub, ixor

Stack [before] ⇒ [after] ..., value1, value2 ⇒ ..., result

Native Code Translation POP R15

POP R14

POP R13

POP R12

<OPERATION 1> R14, R12

<OPERATION 2> R15, R13

PUSH R12

PUSH R13

Description

The bytecode instructions are used to perform integer arithmetic operations on val-

ues stored on the stack, and thereafter push the result back on the stack. The iadd

(integer addition), iand (integer bitwise and), ior (integer bitwise or), isub (integer

subtraction) and ixor (integer bitwise xor) bytecode instructions can be implemented

using native microcontroller operations. The native code translation first pops the sec-

ond value’s most significant word (16 bits) into a working register followed by the least

significant word. The first value’s most significant word and least significant word are

then also popped to working registers. Then a first operation is performed on the least

significant words of the second (R14) and first value (R12) (and the result will be stored

in R12). Then a second operation is performed on the most significant words of the

second (R15) and first value (R13) (and the result will be stored in R13). The reason

why the least significant word is processed first is due to carrying over bits for addition

and subtraction operations. Finally, the results are put back on the stack by pushing

the resultant least signficant word (R12) and most significant word (R13).

The native ADD.W and ADDC.W instructions are used for integer addition; and SUB.W and

SUBC.W for integer subtraction. The same native instruction can be used for <OPERATION

1> and <OPERATION 2> for integer bitwise and, or and xor. The native instructions are

AND.W, BIS.W and XOR.W respectively.
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A.2.2 Other Natively Supported Dual Operand Integer Arithmetic

Translations

Bytecode Instruction iinc

Stack [before] ⇒ [after] ... ⇒ ...

Native Code Translation ADD.W <CONST>,<VARIABLE LSW OFFSET>(R4)

ADC.W <VARIABLE MSW OFFSET>(R4)

Description

The bytecode instruction is used to increment the value of a local variable by a constant

specified byte value, which is provided as a parameter to the instruction. The native

translation first performs an addition of the constant value and the variable’s least sig-

nificant word (16-bits). Thereafter, if the previous operation resulted in a carry the

most significant word will be increased by 1 by using the add carry to destination native

instruction.



Appendix A Bytecode to Native Code Translations 135

A.2.3 Software Supported Dual Operand Arithmetic Translations

Bytecode Instructions fadd, fdiv, fcmpg, fcmpl, fmul, fsub, idiv, imul,

ishl, ishr, iushr

Stack [before] ⇒ [after] ..., value1, value2 ⇒ ..., result

Native Code Translation CALL <OPERATION FUNCTION>

Description

The underlying microcontoller (as most other processors) does not provide native in-

structions to facilitate native execution of all possible arithmetic bytecode instructions.

Therefore, the arithmetic has to be implemented in software. Therefore, functions were

implemented in software which pop the required values from the stack, perform the re-

quired operation and store the result on the stack. The functions have to manipulate

the microcontroller stack to ensure that execution is returned to the caller, since the

microcontroller stack is used both for execution control as well as for the value operand

stack. The following template code is used for each operation:

__<OPERATION_FUNCTION_NAME >

POP R10 ;pop the return address of the caller into R10

POP R15 ;pop value2 MSW into R15

POP R14 ;pop value2 LSW into R14

POP R13 ;pop value1 MSW into R13

POP R12 ;pop value1 LSW into R12

<PERFORM OPERATION HERE >

PUSH <LSW RESULT > ;usually use R12

PUSH <MSW RESULT > ;usually use R13

MOV.W R10 , PC

The code first pops the return address of the caller function into R10. This is followed by

popping the second and first values’ most significant words and least significant words

into working registers. The arithmetic operation is then performed. The resultant least

significant word and most significant word is then pushed back on the stack. Execution

is then passed back to the the caller by setting the value of the program counter to the

return address (stored in R10).
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A.2.4 Software Supported Single Operand Arithmetic Translations

Bytecode Instructions fneg, ineg

Stack [before] ⇒ [after] ..., value ⇒ ..., result

Native Code Translation CALL <OPERATION FUNCTION>

Description

A similar approach is used for single operand arithmetic translations to that of soft-

ware supported dual operand translations. The native code generated for the operation

is a CALL instruction to a function that implements the single operand arithmetic oper-

ation. The function template for single operand instructions only differs slightly to the

dual operand function template, as can be seen below:

__<OPERATION_FUNCTION_NAME >

POP R10 ;pop the return address of the caller into R10

POP R15 ;pop value MSW into R15

POP R14 ;pop value LSW into R14

<PERFORM OPERATION HERE >

PUSH R14 ;push result LSW

PUSH R15 ;push result MSW

MOV.W R10 , PC

The return address of the caller is popped into R10. Then, only the most significant

word and least significant word for a single value on the stack need to be popped into

working registers. The single operand operation is performed, and thereafter the result

least significant word and most significant word (stored in the same registers) is pushed

on the stack. Execution is returned to the caller by changing the value of the program

counter to that of the return address (previously stored in R10.
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A.3 Type Conversion Instructions

A.3.1 Software Supported Type Conversion Transformations

Bytecode Instructions f2i, i2f

Stack [before] ⇒ [after] ..., value ⇒ ..., result

Native Code Translation CALL <OPERATION FUNCTION>

Description

The bytecode instructions provided conversions from float to integer (f2i) and vice

versa (i2f). Conversions between float and integer values are not natively supported

by the underlying microcontroller instruction set. Therefore, conversions are provided

by software implementations. The native code translation only requires to provide a

native CALL instruction to a function that implements the conversion. The function

template is as follows:

__<OPERATION_FUNCTION_NAME >

POP R10 ;pop the return address of the caller into R10

POP R15 ;pop value MSW into R15

POP R14 ;pop value LSW into R14

<PERFORM OPERATION HERE >

PUSH <LSW CONVERTED VALUE >

PUSH <MSW CONVERTED VALUE >

MOV.W R10 , PC

The return address of the caller is popped into R10. Then, the most significant word and

least significant word for the value being converted is popped from the stack into working

registers. The conversion is performed, and thereafter the result least significant word

and most significant word is pushed on the stack. Execution is returned to the caller

by changing the value of the program counter to that of the return address (previously

stored in R10.
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A.3.2 Natively Supported Type Conversion Transformations

Bytecode Instruction i2s

Stack [before] ⇒ [after] ..., value ⇒ ..., result

Native Code Translation POP R5

Description

The i2s bytecode instruction is used to convert an integer value to a short value. The

native code translation only requires the most significant word to be popped from the

stack.
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A.4 Object Creation and Manipulation

A.4.1 Object Instantiation

Bytecode Instruction new

Stack [before] ⇒ [after] ... ⇒ ..., objectref

Native Code Translation MOV.W <SIZE>,R12

MOV.W <CLASS ID>,R5

CALL DoNewObject

Description

The new bytecode instruction is used to create an instance of the class specified as

a parameter to the instruction. The native code generated first stores the oject size

into R12, then the class numeric ID into R5. This is followed by a CALL to a func-

tion that performs the new object instantiation. The object will then be created inside

DoNewObject and placed on the reference stack.

A.4.2 Array Creation

Bytecode Instructions anewarray, newarray

Stack [before] ⇒ [after] ..., count ⇒ ..., arrayref

Native Code Translation MOV.W <CLASS ID OR ARRAY TYPE>, R7

CALL DoNewArray

Description

The anewarray and newarray bytecode instructions are used to create an array of

objects or values respectively. In the case of an object array creation, the object class is

specified as a parameter to the instruction; whilst the array type is specified for an array

consisting of primitive value types. The native code translation copies the class numeric

ID or the array type to R7, and then calls a function implemented in the run-time system

to create the array. DoNewArray will create an array of type specified by R7 with its

size specified on the operand stack.
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A.4.3 Instance Field Retrieval

Bytecode Instruction getfield

Stack [before] ⇒ [after] ..., objectref ⇒ ..., value

Native Code Translation MOV.W @R8,R6

DECD.W R8

PUSH <FIELD LSW OFFSET>R6

PUSH <FIELD MSW OFFSET>R6

Description

The getfield bytecode instruction is used to retrieve an instance field value for an

object placed on the (reference) stack. The field index is specified as a parameter to the

instruction. The native code translation first pops the object reference on the reference

stack into R6 (by copying the value from the reference stack, and decrementing the ref-

erence stack pointer). Thereafter, the least and most significant words of the field value

is pushed on to the stack. The compiler therefore requires to calculate the index of the

field. The code generated in the code above is for that of a 32-bit field.
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A.4.4 Static Field Retrieval

Bytecode Instruction getstatic

Stack [before] ⇒ [after] ... ⇒ ..., value

Native Code Translation MOV.W <STATIC FIELD LSW ADDRESS>, R5

PUSH @R5

MOV.W <STATIC FIELD MSW ADDRESS>, R6

PUSH @R6

Description

The getstatic bytecode instruction is used to retrieve a static field value. The field

index is specified as a parameter to the instruction. Since static field locations are known

at (run-)compile time, the native code translation only requires to push the values at

the static field location onto the stack. Therefore, the translation copies the field’s least

and most significant word addresses into working registers and thereafter pushes the

contents of the addresses onto the stack. The code generated in the code above is for

that of a 32-bit field.
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A.4.5 Instance Field Storing

Bytecode Instruction putfield

Stack [before] ⇒ [after] ..., objectref, value ⇒ ...

Native Code Translation MOV.W @R8, R6

DECD.W R8

POP R5

MOV.W R5, <FIELD MSW OFFSET>(R6)

POP R5

MOV.W R5, <FIELD LSW OFFSET>(R6)

Description

The putfield bytecode instruction is used to store a value (on the stack) in an in-

stance field. The field index is specified as a parameter to the instruction. The native

code translation first pops the object reference on the reference stack into R6 (by copying

the value from the reference stack, and decrementing the reference stack pointer). There-

after, the value’s most significant word is popped off the stack and copied to instance

field most significant word. The same is done for the least significant word. During code

generation, the field offset is calculated by the compiler. The code generated in the code

above is for that of a 32-bit field.
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A.4.6 Static Field Storing

Bytecode Instruction putstatic

Stack [before] ⇒ [after] ..., value ⇒ ...

Native Code Translation POP R5

MOV.W R5, <STATIC FIELD MSW ADDRESS>

POP R5

MOV.W R5, <STATIC FIELD LSW ADDRESS>

Description

The putstatic bytecode instruction is used to store a value (on the stack) in a static

field. The field index is specified as a parameter to the instruction. Since static field

locations are known at (run-)compile time, the native code translation only requires

to pop the value off the stack and thereafter copy the value to the static field loca-

tion. Therefore, the translation pops the value’s most significant word and then copies

it to the static field’s most significant word’s address. The same is done for the least

significant word. The code generated in the code above is for that of a 32-bit field.
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A.4.7 Array Value Loading

Bytecode Instructions baload, faload, iaload, saload

Stack [before] ⇒ [after] ..., arrayref, index ⇒ ..., value

Native Code Translation POP R5

MOV.W @R8, R6

DECD.W R8

INCD.W R6

INCD.W R6

RLA.W R5

RLA.W R5

ADD.W R5, R6

PUSH 0x0000(R6)

PUSH 0x0002(R6)

Description

The bytecode instructions are used to push an array element value onto the operand

stack. The native code translation pops the index from the operand stack, and the pops

the array reference from the (reference) stack (by copying the value from the reference

stack, and decrementing the reference stack pointer). The array pointer then is incre-

mented to skip array information including the array type and array size. The index

specified is an array index number, therefore the R5 register is shifted right twice so that

the index number is translated to the byte offset. The offset is then added to the array

pointer, R6, to point to the element of interest. The least and most significant words

of the array element value are pushed onto the stack. The code generated in the code

above is for that of a 32-bit field.
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A.4.8 Array Value Storing

Bytecode Instructions bastore, fastore, iastore, sastore

Stack [before] ⇒ [after] ..., arrayref, index, value ⇒ ...

Native Code Translation POP R11

POP R5

POP R6

MOV.W @R8, R7

DECD.W R8

INCD.W R7

INCD.W R7

RLA.W R6

RLA.W R6

ADD.W R6, R7

MOV.W R5, 0x0000(R7)

MOV.W R11, 0x0002(R7)

Description

The bytecode instructions are used to store a value placed on the stack into an ar-

ray element. The native code translation first pops the most and least significant words.

Then, similar to the array element loading operation, it pops the index from the operand

stack, and the pops the array reference from the (reference) stack (by copying the value

from the reference stack, and decrementing the reference stack pointer). The array

pointer then is incremented to skip array information including the array type and ar-

ray size. The index specified is an array index number, therefore the R6 register is shifted

right twice so that the index number is translated to the byte offset. The offset is then

added to the array pointer, R7, to point to the element of interest. The least and most

significant words of the array element are set to the values previously popped from the

stack. The code generated in the code above is for that of a 32-bit field.
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A.4.9 Array Length Retrieval

Bytecode Instruction arraylength

Stack [before] ⇒ [after] ..., arrayref ⇒ ..., length

Native Code Translation MOV.W @R8, R5

DECD.W R8

PUSH 0x0002(R5)

Description

The arraylength bytecode instruction is used to retrieve an array’s length and placing

it on the operand stack. The native code translation involves getting a pointer to the

array specified by the array reference on the stack (by copying the value from the refer-

ence stack, and decrementing the reference stack pointer). Then, the array length can

be pushed onto the stack.
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A.5 Control Transfer Instructions

A.5.1 Patching In Jump Addresses

Execution can be transferred based on unconditional jumps and also conditional state-

ments. In order to perform a single pass of bytecode, the compiler leaves jump destina-

tions empty and then fills them in once the jump native code location can be determined.

A.5.2 Unconditional Jumps

Bytecode Instruction goto

Stack [before] ⇒ [after] ... ⇒ ...

Native Code Translation BR <DESTINATION>

Description

The goto bytecode instruction is used to unconditionally jump to a different bytecode

location. The run-time compiler upon encountering a goto bytecode instruction will

generate a branch instruction and leave the native code destination blank. Once the

destination address can be determined it will then be patched in.
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A.5.3 Value Based Conditional Instructions

Bytecode Instructions if icmpeq, if icmpge, if icmpgt, if icmple,

if icmplt, if icmpne

Stack [before] ⇒ [after] ..., value1, value2 ⇒ ...

Native Code Translation POP R6

POP R5

POP R15

POP R14

CMP.W R6, R15

<CONDITIONAL JUMP> <DESTINATION>

CMP.W R14, R5

<CONDITIONAL JUMP> <DESTINATION>

Description

The bytecode instructions are used to jump to a bytecode instruction address if a com-

parison between two values on the stack holds for a particular condition. The native code

translation first pops the most and least significant words of value2, followed by value1.

Thereafter, the most significant words are compared against eachother. Then if the par-

ticular condition holds, execution is transferred to the native code destination address.

If the condition does not hold, then the least significant words are compared against and

execution is transferred to the destination address if the comparison holds. Otherwise,

execution continues from the next native code instruction. The code generated in the

code above is for that of an int datatype.
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A.5.4 Conditional Instructions Based on Comparison with Zero

Bytecode Instructions ifeq, ifge, ifgt, ifle, iflt, ifne

Stack [before] ⇒ [after] ..., value ⇒ ...

Native Code Translation POP R6

POP R15

CMP.W R6, #0

<CONDITIONAL JUMP> <DESTINATION>

CMP.W R14, #0

<CONDITIONAL JUMP> <DESTINATION>

Description

The bytecode instructions are used to jump to a bytecode instruction address if a com-

parison between a value on the stack and zero holds for a particular condition. The na-

tive code translation pops the most and least significant words of the value. Thereafter,

the most significant word is compared against zero. Then if the particular condition

holds, execution is transferred to the native code destination address. If the condition

does not hold, then the least significant word is compared against zero and execution

is transferred to the destination address if the comparison holds. Otherwise, execution

continues from the next native code instruction. The code generated in the code above

is for that of an int datatype.
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A.5.5 Reference Based Conditional Instructions

Bytecode Instructions ifnonnull, ifnull

Stack [before] ⇒ [after] ..., objectref ⇒ ...

Native Code Translation MOV.W @R8, R5

DECD.W R8

CMP.W R5, #0

<CONDITIONAL JUMP> <DESTINATION>

Description

The bytecode instructions are used to compare whether a reference is non-null (ifnonnull)

or null (null). The native code translaton first pops the object reference off of the (ref-

erence) stack (by copying the value from the reference stack, and decrementing the

reference stack pointer). The pointer value is then compared to zero, or null, and if the

comparison holds for the particular condition, execution is transferred to the native code

destination address. Otherwise, execution continues at the next native code instruction.
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A.6 Method Invocation and Return Instructions

A.6.1 Static Method Invocation

Bytecode Instruction invokestatic

Stack [before] ⇒ [after] ..., [arg1, [arg2 ...]] ⇒ ...

Native Code Translation CALL <STATIC METHOD ADDRESS>

Description

The invokestatic bytecode instruction is used to call static methods. The class and

method identification is passed as a parameter to the instruction. The compiler will

first find the address of the static method, and then generate the native code translation

which results in a native CALL instruction to the static method.

A.6.2 Instance Method Invocation

Bytecode Instructions invokeinterface, invokespecial, invokespecial

Stack [before] ⇒ [after] ..., objectref, [arg1, [arg2 ...]] ⇒ ...

Native Code Translation MOV.W <CLASS ID>, R12

MOV.W <METHOD ID>, R13

CALL <EXECUTION HANDLER>

Description

The bytecode instructions are used to invoke instance methods. The class and method

identification is pass as a parameter to the instruction. An instance method call cannot

be statically linked at (run-time) compile time, since the rules of method invocation de-

pend on the type of the object and not the type of class variable. Therefore, a run-time

environment execution handler is used to find the correct method to invoke. Thus, the

class ID and method ID are copied to working registers, and thereafter the execution

handler can correctly identify the correct method to invoke.
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A.6.3 Method Return

Bytecode Instruction return

Stack [before] ⇒ [after] ... ⇒ [empty]

Native Code Translation CALL DestroyStackFrame

Description

The return bytecode instruction is used to exit the current executing method. The

native code translation only requires to create a native CALL instruction to the run-time

environment’s DestroyStackFrame function which is responsible for destroying the

method stack frame and returning execution to the caller.

A.6.4 Method Return Instructions

Bytecode Instructions areturn, freturn, ireturn

Stack [before] ⇒ [after] ..., value ⇒ [empty]

Native Code Translation CALL DestroyStackFrame

Description

The bytecode instructions are used to exit the current executing method and return

the value on the stack. The native code translation only requires to create a native

CALL instruction to the run-time environment’s DestroyStackFrame function which is

responsible for destroying the method stack frame, returning execution to the caller and

also returning the value placed on the stack.



Appendix A Bytecode to Native Code Translations 153

A.7 Exceptions

Bytecode Instruction athrow

Stack [before] ⇒ [after] ..., objectref ⇒ objectref

Native Code Translation CALL FindACatchHandler

Description

The athrow bytecode instruction is used to throw an exception. The exception ob-

ject reference will be placed on the stack, therefore the native code translation only

requires to create a native CALL instruction to the run-time environment function which

handles exceptions (the function FindACatchHandler).
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A.8 Synchronization Instructions

A.8.1 Gain Ownership of Object

Bytecode Instruction monitorenter

Stack [before] ⇒ [after] ..., objectref ⇒ ...

Native Code Translation CALL DoMonitorEnter

Description

The monitorenter bytecode instruction is used to gain ownership of an object, which is

used to implement synchronization. The run-time environment function DoMonitorEnter

handles the access to gain ownership, and therefore the native code translation is only

required to create a native CALL instruction to the run-time environment function.

A.8.2 Release Ownership of Object

Bytecode Instruction monitorexit

Stack [before] ⇒ [after] ..., objectref ⇒ ...

Native Code Translation MOV.W @R8, R5

DECD.W R8

DEC.B 0x0002(R5)

Description

The monitorexit bytecode instruction is used to release ownership of an object, which

is used to implement synchronization. The native code translation pops the object ref-

erence from the (reference) stack (by copying the value from the reference stack, and

decrementing the reference stack pointer). Thereafter, the monitor count is decreased.
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