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Abstract

Fine sinusoidal wrinkling on the surfaces of mechanically compressed objects
has been observed in many contexts over many years. In this paper we in-
vestigate such wrinkling through the application of a boundary layer analysis
to an elastostatic problem in nonlinear elasticity. We determine the onset of
buckling using a linear-stability analysis, and the leading-order postbuckling
behaviour through consideration of higher-order terms of the energy. The ob-
ject is assumed to (initially) ‘preserve’ its shape, so that these equations reduce
to ordinary differential equations. We then apply a boundary-layer analysis to
this problem, determining (in the asymptotic limit of large wavenumbers) the
leading order behaviours of the eigenmode, the critical parameter, and the mag-
nitude of the buckle. We find that the magnitude of a buckle with wavenumbers
ςγ∗2 and ςγ∗3 (for fixed γ∗2 and γ∗3 ) has leading asymptotic order ς−

3
2
√

λ(2), for
an increment λ(2) of the critical parameter beyond the critical time of buckling.
We provide electronic supplementary material which extends this analysis to
that of incompressible elasticity. Finally we confirm the accuracy of our ansatz
on a compressed NeoHookean ring.

1. Introduction

Wrinkling on the surface of nonlinearly elastic materials has been observed
in many contexts over many years. The wrinkling is often observed in biological
materials, for example on the surfaces of cells, tumours (Dervaux and Amar
[8]), tubular organs (such as airways Moulton and Goriely [22], the oesophagus
Li et al. [16], intestine and blood vessels MacLaurin et al. [19]) or brain convo-
lutions. It is also observed in nonbiological materials, such as the wrinkling of
stretched elastic sheets with low bending modulus (Brau et al. [2]), the wrin-
kling of thin films anchored to stiff substrates (Cao and Hutchinson [5]), the
formation of sulci in compressed soft materials (Hohlfeld and Mahadevan [14])
or the wrinkling on the inner surface of a bent rubber block (Destrade et al.
[9]).

These wrinkled patterns all occur in elastic materials in response to a gradual
loading λ, whether by external forcing or internal growth fields, with the follow-
ing characteristics. For small loading the unwrinkled initial state remains me-
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chanically stable. If wrinkling (buckling) does occur with wavenumbers (n,ω),
there must be a critical value λ(n,ω) of the loading such that the unwrinkled
state is unstable to deformations of this type for loadings above λ(n,ω) and sta-
ble below. This critical value λ(n,ω) is found by superimposing an infinitesimally
small sinusoidal deformation with these wavenumbers on the unwrinkled state,
and searching for the value of λ for which the wrinkled state has the same en-
ergy as the unwrinkled state. This only characterizes the solution at the critical
point. To find the solution for values of λ in the neighbourhood of the critical
value, we need to analyze the higher order terms in the asymptotic expansion
of the energy. The equations governing the post-buckled state are often difficult
to analyze, but progress can be made if we make simplifying assumptions about
the nature of the geometry and the solution.

We analyze the equations in the limit that the wavenumbers (n,ω) are large
(and hence the wavelength is short), in which case the deformation is largely
confined to a boundary layer at the surface.1 This assumption allows us to ob-
tain a simplified expression for the shape of the buckled configuration in terms of
geometric and material parameters. We assume that, if (n,ω) are the wavenum-
bers associated with a wrinkled pattern and λ(n,ω) is the value of the critical
parameter at which the wrinkled pattern first emerges, then λ(n,ω) asymptotes
to a finite constant as (n,ω) → ∞ (we define these variables more precisely
below). In other words, we assume that the wrinkled patterns ‘cluster together’
as the wavelength shrinks. Furthermore we assume that the wrinkles are in-
creasingly confined to the surface as (n,ω) → ∞. This phenomenon has been
observed in previous studies of buckling in nonlinear elasticity (Biot [1], Coman
and Bassom [7], Dervaux and Amar [8], Hohlfeld and Mahadevan [14], Cao and
Hutchinson [5], MacLaurin et al. [19]). It is analogous to the surface buckling of
compressed infinite half-spaces: since there is no characteristic lengthscale, all
of the wavelengths go unstable simultaneously (Biot [1]). It has been studied
in various contexts using boundary layer techniques (see particularly the pa-
pers by Coman [6] and Coman and Bassom [7]). A mathematical analysis using
the theory of partial differential equations has also been performed by Negron-
Marrero and Montes-Pizarro [23, 24]. These authors conjecture a necessary and
sufficient condition - the ‘Complementing Condition’ - for the clustering of the
wavenumbers in the above manner, and they use this to investigate the nature
of the buckling.

This paper has four main parts. In the first part (Section 2)- we outline an
elastostatic problem and our assumptions on the pre-buckling behaviour of the
system. In the second part (Sections 3 - 4), we apply a linear stability analysis
to determine when the system starts to buckle, before applying a postbuckling
analysis to determine the leading order of the magnitude of the buckle. In the
third part (Sections 5 - 6), we perform a boundary layer analysis to elucidate
the behaviour of the buckle for vanishingly small wavelengths. We will find that
the magnitude of the buckle is of the order of the square root of the increment
in the bifurcation parameter multiplied by ς−3/2 (where ς is of the order of
the wavenumber). In the fourth part (Section 8) we apply the theory to the
wrinkling of a compressed NeoHookean ring, and correlate the predictions of
our boundary layer analysis with numerical simulations. We also provide ex-

1Our model is thus not accurate if there is a thin film on the surface.
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tra supplementary materials in which we extend our analysis to incompressible
elasticity.

2. Elastostatic Problem

Our problem is that of a nonlinear elastic body subject to surface forces. We
assume that there is no body force, although this paper could easily be extended
to such a case. We let the reference configuration of the body be B0, with current
configuration B. Let (X1, X2, X3) be coordinates for B0 and (x1, x2, x3) be
coordinates for B. These coordinate systems are in C∞ correspondence with,
respectively, B0 and B. Throughout this paper, we denote coordinates in the
current configuration with lower case letters and coordinates corresponding to
the reference configuration with upper case letters. One can refer to [20] for a
more detailed explanation of the differential geometry in this paper.

We assume that B0 and B are respectively parameterised in the following
way

X1 ∈ [X1
c , X

1
+] , X

2 ∈ [−X2
c , X

2
c ], X3 ∈ [−X3

c , X
3
c ].

x1 ∈ [x1
c , x

1
+] , x

2 ∈ [−x2
c , x

2
c ], x3 ∈ [−x3

c , x
3
c ]. (1)

We assume throughout this paper that {x1
c , x

2
c , x

3
c} are finite, although the anal-

ysis may easily be extended to the cases that some or all of {x1
+, x

2
c , x

3
c} are

infinite. Let the covariant basis vectors for B be {ga} and the covariant ba-
sis vectors for B0 be {GA}. The corresponding metrics are gab = ga · gb and
GAB = GA ·GB . Let u = x−X be the displacement. We consider u = uaga to
be a vector in current coordinates (one may ‘shift’ X to the current coordinates
in the manner of Marsden and Hughes [20] in order that this is well-defined).
Let ∂B(a) be the subset of ∂B given by xa = constant. We assume that the nor-
mal to ∂B(a) is given by either ga or −ga. We assume that the normal to ∂B(a)

in reference coordinates is given by GA (or its negative), so that (in reference
coordinates) the boundary is Xa = constant. Of course, ∪a∂B(a) = ∂B.

We assume the bifurcation is driven by a single parameter λ, which is initially
equal to zero before being gradually increased until bifurcation occurs. We
denote the state the system initially adopts the base state. We assume that
initially, when λ = 0, the system is mechanically stable. As λ increases, we
assume that a boundary layer (with progressively finer wrinkling) develops on
the face ∂B∗ given by x1 = x1

c . We will perform a stability analysis in Sections 3
and 4 to determine when the system destabilises, and what is the postbuckling
behaviour. We will then apply a boundary layer analysis to this phenomenon
in Section 5 so that we may elucidate its behaviour. However before we do all
this we must firstly outline the equations of elastostatic equilibrium in greater
depth.

We suppose that the deformation is given by φ, i.e. x = φ(X,λ). Let F be
the deformation gradient, with components F a

A = ∂φa

∂XA . Let J be the Jacobian
of φ, i.e.

J = detF,

where det is the standard matrix determinant. This gives the local volumetric
‘stretch’ of the material under the deformation φ. We require a similar ex-
pression for the local stretch in area at each of the boundaries. We begin by
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obtaining such an expression at the boundary ∂B(1). Because x1 is constant over
this boundary, the area of a small segment of it (spanned by small increments
dx2 and dx3 in current coordinates) is given by da = Γdx2dx3, where

Γ = |(g2 × g3) · n| (2)

and n = (g11)−
1
2g1 is the unit outer normal. The same segment has area (in

reference coordinates) given by dA = Γ0dX2dX3, where

Γ0 = |(G2 ×G3) ·N| (3)

and N = (G11)−
1
2G1 is the unit outer normal. We define Γ and Γ0 over ∂B(2)

and ∂B(3) analogously.
We assume that the body is hyperelastic, so that there exists a strain energy

function ψ(F,X,λ), which gives the stored elastic energy per unit volume of
B0. The first Piola-Kirchhoff stress tensor P0 has components P aA

0 = gba ∂ψ
∂F b

A
.

The system is in mechanical equilibrium, so that over B0,

−∇0 ·P0 = 0, (4)

where ∇0 is the divergence over reference coordinates and we assume there
is no body force. For the boundary conditions, we assume that ∂B0 can be
decomposed as ∂B0 = ∂Bu

0 ∪ ∂Bt
0, where ∂Bu

0 and ∂Bt
0 are distinct closed sets.

We assume the same decomposition applies for ∂B. On ∂Bt
0, we impose the

traction boundary condition

P0 ·N = t(X,u,λ), (5)

where t gives the surface traction per unit area of ∂Bt
0 and N is the unit outer

normal. On ∂Bu
0 we impose the displacement boundary condition

u = v(X,λ), (6)

where v is the stipulated displacement function.
We assume for simplicity throughout this document that φ is infinitely con-

tinuous and differentiable with respect to both ∇(X) and λ (although of course
this assumption could be significantly relaxed without loss of the major results).
We similarly assume that v (and t) are infinitely continuously differentiable with
respect to λ (and u).

We apply the Piola Transform to find that, over current coordinates, P ab =
J−1P aB

0 F b
B . Here and after, unless otherwise indicated, every tensor is over

current coordinates. The equation of equilibrium (4) thus becomes

−∇ ·P = 0, (7)

where the divergence is taken over current coordinates. The stress boundary
condition (5) may similarly be written as

P · n =
Γ0

Γ
t(X,F,λ), (8)

where we have scaled by Γ0/Γ to account for the change in area induced by the

4



deformation.
We require t to have a potential τ(X,u,λ) per unit area of ∂Bt

0, such that
the first variation may be written as

∂τ

∂ua
wa = −wct

c. (9)

For example, we may write the potential of a dead load h(X,λ) applied to a
face Bt as

τ = u · h. (10)

In summary, the total potential of the system is given by

W =

∫∫∫

B0

ψdV0 +

∫∫

Bt
0

τdA0,

where dV0 = detGABdX1dX2dX3 and dA0 = Γ0dXJdXK over ∂B(L) (where
{J,K,L} = {1, 2, 3}). Over current coordinates, we find

W =

∫∫∫

B
J−1ψdV +

∫∫

Bt

Γ0

Γ
τdA, (11)

where dV = detgabdx1dx2dx3 and dA = Γdxjdxk over ∂B(l) (where {j, k, l} =
{1, 2, 3}).

2.1. Incremental Notation

Here we outline expressions governing the incremental behaviour of the stress
tensor and the surface forces: refer to Ogden [26] for a more detailed explanation.
These are essentially obtained by differentiating the respective quantities with
respect to the displacement (and its gradient). Before we begin, we recall that
the dot product between two vectors is

v ·w = vawa = vaw
a.

We illustrate the double contraction between two tensors with the following
two examples. Let T be T a

B, S be Sc
D

e
F , Y be Yg

H and Z be Zi
J . Then

T : Y = Ta
BY a

B and S : Y : Z = Sa
B
c
DYa

BZc
D. The double contraction of

higher order tensors may be defined analogously.
The fixed-reference elastic moduli (in the terminology of Ogden [26]) are

P aB
0 c

D =
∂P aB

0

∂F c
D
,

P aB
0 c

D
e
F =

∂2P aB
0

∂F c
D∂F e

F
,

P aB
0 c

D
e
F
g
H =

∂3P aB
0

∂F c
D∂F e

F ∂F g
H
.

As we will be working in the current configuration, we must push the fixed-
reference moduli forward to the current configuration, obtaining the instanta-
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neous elastic moduli, i.e.

P ab
c
d = J−1P aL

0 c
KF d

KF b
L,

P ab
c
d
e
f = J−1P aL

0 c
K

e
JF f

JF
d
KF b

L,

P ab
c
d
e
f
g
h = J−1P aL

0 c
K

e
J
g
MF f

JF
d
KF b

LF
h
M .

Let u be a vector field over B. Its covariant derivative is

∇u = ua
|bga ⊗ gb,

where ua
|b =

∂ua

∂xb + Γa
cbu

c, and {Γa
cb} are the Christoffel symbols. We note that

ua|b = uc
|bgca. Thus if s,u,w, z are vector fields over B, we may write the

increments in the energy in the form

∂2ψ

∂F 2
: ∇w : ∇z = P ab

c
dwa|bz

c
|d,

∂3ψ

∂F 3
: ∇u : ∇w : ∇z = P ab

c
d
e
fua|bw

c
|dz

e
|f ,

∂4ψ

∂F 4
: ∇s : ∇u : ∇w : ∇z = P ab

c
d
e
f
g
hsa|bu

c
|dw

e
|fz

g
|h.

We write Djτ
Duj to be the order j contravariant vector such that

(

Djτ

Duj

)

a1...aj

=
Γ0

Γ

djτ

dua1 . . . duaj
. (12)

Similarly Dj
t

Duj = −Dj+1τ
Duj+1 .

The divergence of a second order contravariant tensor P defined over the
current configuration is

(∇ ·P)a =
∂

∂xb
P ab + P kbΓa

kb + P akΓb
kb.

3. Stability Analysis

There are two basic components of our stability analysis. In the first step,
we employ a linear stability analysis to determine the value(s) of λ for which
the system bifurcates. In the next step, we perform a perturbation expansion
about the point of bifurcation to determine the leading order of the magnitude
of the buckle and its stability.

We work in the current configuration B. We recall that the base state is the
configuration prior to buckling, with displacement u(0) and λ = λ(0). We insist
that the base state deformation ‘preserves’ the geometry in the following sense.
The base state solution is obtained by solving (4)-(6) for u (for the base state
solution we consider u to be a vector over B0, so that its coordinates are with
respect to {Ga}). We assume that the strain energy function ψ, the potential
τ , boundary displacement v and the geometry variables {Γ0, GAB} may be
written as functions of X1, u1

(0) and λ only (so that they are independent of

{u2
(0), u

3
(0), X

2, X3}). We assume that the base state solution of (4)-(6) is such
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that x2 = X2, x3 = X3, that gα and Gα are coaxial (for α ∈ {1, 2, 3}) and u0

may be written as a function of X1 only2. Furthermore, we assume that the
solution u0 is infinitely continuous and differentiable with respect to X1 and λ
that the perturbation analysis to follow is well-defined. Note that uj

(0) may be

nonzero (for j = 2 or 3). Most of the phenomena outlined in the introduction
with either a rectangular or cylindrical geometry satisfy these assumptions3. We
note also that many of the above assumptions may be relaxed without affecting
the major results in this paper: it depends on the specific nature of the problem.

We consider the stability of the base state to be governed by the incremental
equations of equilibrium (Ogden [26]). This requires us to consider the effect of a
small variation εu(1) on the stability of the system, so that the total displacement
is of the form

u = u(0) + εu(1). (13)

The displacement increment u(1) must be admissible, meaning that it is in L2(B)
and satisfies the ‘incremental boundary condition’

u(1) = 0 over ∂Bu. (14)

We denote the set of all admissible displacements by U .
We denote the state with displacement field (13), State I. Let )W = εW(1)+

1
2ε

2W(2) + . . . be the difference in energy between the base state and State I.
We find that to leading order

W(1) =

∫∫∫

B

∂ψ

∂F
: ∇u(1)dV +

∫∫

∂Bt

Dτ

Du
· u(1)dA, (15)

W(2) =

∫∫∫

B

∂2ψ

∂F2
: ∇u(1) : ∇u(1)dV

+

∫∫

∂Bt

D2τ

Du2
· u(1) · u(1)dA. (16)

Here, and after, dA and dV are the area and volume elements given in (11). Now
W(1) is identically zero as a consequence of the base state being in mechanical
equilibrium. The second of these terms (W(2)) governs the stability of the base
state: the base state is stable if (16) is greater than zero for all nonzero admis-
sible u(1), and it is unstable if (16) is less than zero. At a point of bifurcation,
(16) must be zero for some u(1). The Trefftz Criterion states that a bifurcation
point occurs when the first variation of (16) (considered as a function of u(1))
is zero. That is, if we superpose a further admissible variation w(1) on top of

2It follows by implication that gab and Γa
bc

may be written as functions of X1, u1
(0) only.

3The problems with a spherical geometry may be analysed using a similar method to this
paper, except that one must use the spherical harmonics to perform the stability analysis, see
Wang and Ertepinar [28].
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u(1) and neglect terms of quadratic order,

DW(2)

Du(1)
·w(1) = 2

∫∫∫

B

∂2ψ

∂F2
: ∇u(1) : ∇w(1)dV

− 2

∫∫

∂Bt

Dt

Du
· u(1) ·w(1)dA = 0, (17)

for all admissible w(1). The resulting Euler-Lagrange equations are

L(u(1)) = 0, over B, (18)

M(u(1)) = 0 over ∂Bt, (19)

where

L(w) = ∇ ·P(1), (20)

M(w)a = P(1)
ab

c
dwc

|dnb −
Γ0

Γ

∂ta

∂uc
wc, (21)

P(1)
ab = P ab

c
dwc

|d, (22)

and n is the unit outer normal over Bt. We determine a point of bifurcation
by gradually incrementing λ(0) until there exists a nonzero solution to (14),(18)
and (19).

3.1. Fourier Decomposition

We may investigate the stability of the various modes by assuming u(1) to
be of the following form,

u(1) = a(γ2,γ3)+,+ u
(γ2,γ3)
(1) + a(γ2,γ3)−,− u

(−γ2,−γ3)
(1)

+ a(γ2,γ3)−,+ u
(−γ2,γ3)
(1) + a(γ2,−γ3)+,− u

(γ2,−γ3)
(1) , (23)

where {a(γ2,γ3)±,± } are constants and

u(α,β)
(1) := Z(α,β)eiαx

2

eiβx
3

, (24)

for some function Z(α,β)(x1,λ). We assume that γ2 = mπ
2xc

2
for some m ∈ Z and

similarly for γ3 (recall that we are also assuming that x2 = X2 and x3 = X3).
Let Uα,β be the set of all displacements of the form (24).

It follows from our earlier assumptions that (14), (18), and (19) reduce to
an ordinary differential equation in x1. In order that this ordinary differential
equation is solveable, we require that L is strongly elliptic, meaning that (for a
fixed base state) there exists a positive K such that for all a,

∂P a
1

∂F a
1
= P a

1a
1 > K over B. (25)

In this definition of strong ellipticity we are considering L as an ordinary differ-
ential operator in x1 due to the substitution in (24). Our definition differs from
the conventional definition of strong ellipticity in nonlinear elasticity, where L is
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considered as a partial differential operator [20]. Since (by our earlier assump-
tions on ψ and τ), the coefficients of L and M are infinitely continuous and
differentiable, the solution of the form (24) is unique and infinitely continuous
and differentiable (although possibly zero) (Evans [10]). Furthermore, it follows
from the self-adjointness of L, the Fourier decomposition and (25) that

L2(B) = RangeL⊕KerL. (26)

This is known as the Fredholm Alternative. The Fredholm Alternative is neces-
sary for the postbuckling analysis to be performed in the following section. Let
U(α,β) be the set of all admissible u which can be written in the form (24), and

let λ(γ2,γ3) be the value of λ for which a solution of the form (24) exists to (14),

(18) and (19). We require that u(γ2,γ3)
(1) += 0.

It is necessary that each of {u(±γ2,±γ3)
(1) } must individually satisfy (18). It

can be seen that, as a consequence of taking the complex conjugate, we may
write

ū
(γ2,γ3)
(1) = u

(−γ2,−γ3)
(1) and

λ(−γ2,−γ3) = λ(γ2,γ3). (27)

If
λ(−γ2,γ3) += λ(γ2,γ3) (28)

then we must insist that u
(−γ2,γ3)
(1) = u

(γ2,−γ3)
(1) = 0. Aside from these cases,

we assume that the modes are distinct, i.e. λ(β1,β2) += λ(δ1,δ2) if β1 += ±δ1 or
β2 += ±δ2.

4. Postbuckling Analysis

In this section we perform a perturbation expansion at the critical time of
buckling of a mode (γ2, γ3). Thus the expansion is at λ = λ(γ2,γ3), and there
exists a solution of the form (23) to (14), (18) and (19). Our method is to obtain
the displacement field by successively rendering each order of )W stationary.
We are essentially employing the energy criterion of Lagrange: we are assuming
that the system adopts the state which minimises its potential energy. We may
stipulate that u(k) ⊥ u(1) (for k ≥ 2), so that ε modulates the magnitude of the
buckle in the direction of the eigenmode. This stipulation is possible because of
the Fredholm Alternative (26). We may then determine u(k) to be the unique
displacement field which renders the O(ε2k) component of the energy stationary.
Our method is an adaptation of that outlined in Koiter [15] to three-dimensional
elasticity. It has recently been employed to study the emergence of wrinkling in
growing Blatz-Ko materials by the authors [19] and compressed Neo-Hookean
materials by Cao and Hutchinson [4].

The increment in λ is assumed to be of higher order than the increment in
the displacement, i.e.

λ = λ(0) +
1

2
ε2λ(2) + . . . , (29)

where λ(0) = λ(γ2,γ3). This is necessary for the higher order terms in the per-
turbation expansion to be well-matched. We expand the change in energy from
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the buckled to unbuckled state as

! W = εW(1) +
1

2
ε2W(2) +

1

6
ε3W(3) +

1

24
ε4W(4) + . . . (30)

We define

W̄ (w) =

∫∫∫

B

∂ψ

∂F
: ∇wdV +

∫∫

∂Bt

Dτ

Du
·wdA, (31)

W̃ (w) =

∫∫∫

B

∂2ψ

∂F2
: ∇u(1) : ∇wdV +

∫∫

∂Bt

D2τ

Du2
· u(1) ·wdA. (32)

In fact both of these expressions are identically zero for all admissible w. In
the case of W̄ (w), this is a consequence of the base state being in mechanical
equilibrium. In the case of W̃ , this is a consequence of the Trefftz condition
(17). We may thus expand the subsequent orders of the energy as follows,

W(1) = W̄ (u(1)) (33)

1

2
W(2) =

1

2
W̄ (u(2)) +

1

2
W̃ (u(1)). (34)

1

6
W(3) =

1

6
W̄u(3) +

1

2

∂

∂λ
W̄ (u1)λ(2) +

1

2
W̃ (u(2))

+

∫∫∫

B

1

6

∂3ψ

∂F3
: ∇u(1) : ∇u(1) : ∇u(1)dV

+

∫∫

∂Bt

1

6

D3τ

Du3
· u(1) · u(1) · u(1)dA (35)

In the expression forW(4) below, we have neglected quadratic terms in λ(2) since
they integrate to zero as a consequence of the regularity of the geometry.

1

24
W(4) =

1

24
W̄ (u(4)) +

1

6
W̃ (u(3)) +

1

4

∂

∂λ

(

W̃ (u1) + W̄ (u2)
)

λ(2)

+

∫∫∫

B

[

1

24

∂4ψ

∂F4
: ∇u(1) : ∇u(1) : ∇u(1) : ∇u(1)+

1

4

∂3ψ

∂F3
: ∇u(2) : ∇u(1) : ∇u(1) +

1

8

∂2ψ

∂F2
: ∇u(2) : ∇u(2)

]

dV

+

∫∫

∂Bt

[

1

24

D4τ

Du4
· u(1) · u(1) · u(1) · u(1) +

1

4

D3τ

Du3
· u(2) · u(1) · u(1)

+
1

8

D2τ

Du2
· u(2) · u(2)

]

dA. (36)

We will determine each order of the displacement by successively rendering
each order of the energy stationary. We have already seen that W(1) is zero as
a consequence of the base state being in equilibrium. It follows from the Trefftz
Criterion for buckling that u(1) rendersW(2) stationary. However the magnitude

of u(1) (i.e. the constants {a(γ2,γ3)±,± }) remains undetermined: we determine this
through consideration of the higher orders of the energy.

10



We must make a small detour and discuss the nature of this stationary point
of W(2). If (γ2, γ3) is the first mode to go unstable, then (16) is positive semi-
definite and this stationary point ofW(2) will be a minimum. However if another
mode (α,β) has already gone unstable before (γ2, γ3) then we expect thatW(2) <

0 if u(1) = u
(α,β)
(1) . This means that the mode (γ2, γ3) branch is unstable to

perturbations of this form (for ε small enough). One might expect the system
to move outside the regime of accuracy of our perturbation expansion. However
we are still interested in investigating the mode (γ2, γ3) buckled state even if it
is not the first to go unstable, for the following reasons. In some systems, the
critical times {λ(α,β)} of the modes are highly clustered. Indeed this clustering
of the modes is precisely what we wish to investigate with our boundary layer
analysis. Sometimes, for example, buckles of infinitely fine wavelength are the
first to go unstable, so that for every set of modes (γ2, γ3) there is another
set of modes (γ∗2 , γ

∗
3) which goes unstable before (see for example MacLaurin

et al. [19]). We expect that every continuum model becomes inaccurate as the
wavelength asymptotes to zero. Thus, in practice, systems will not necessarily
realise the first modes to go unstable (if this even exists). Furthermore there may
be small inhomogeneities which predispose the system more towards buckles
of one particular type (which are not the first to go unstable): if the modes
are highly clustered then these inhomogeneities may be sufficient to reverse the
buckling order of the various modes. In conclusion, we assume that it is possible
that the system might adopt the mode (γ2, γ3) buckled state even if u(1) does
not minimise W(2). Since W2 is only stationary with respect to u(1), we must
investigate W3 and W4 to further understand the nature of the bifurcation.

It follows from our assumptions about the geometry and base state defor-
mation that W(3) is identically zero. In more detail, the first two terms of (35)
are zero due to (31)-(32). The incremental elastic moduli are functions of x1

and λ only due to our assumptions about the base state deformation outlined
in Section 3. Thus the other terms integrate to zero due to the regularity of our
geometry. It follows that we must determine the magnitude of the buckle using
W(4). We employ the Liapunov-Schmidt reduction to do this. In brief, we do
this by fixing u(1) and λ(2) and rendering the terms containing u(2) stationary.

Upon doing this we obtain an expression for u(2) as a function of {a(γ2,γ3)±,± } and

λ(2). We may then, in turn, determine {a(γ2,γ3)±,± } by requiring them to render
the resulting expression for the energy stationary.

4.1. Solution of u(2)

We begin by specifying that u(2) renders the terms in (36) stationary to
admissible variations, with fixed u(1) and λ(2). We decompose u2 such that

u2 = u(2,a) + λ(γ2,γ3)(2) u(2,p), where for all admissible variations w (we defined

admissibility in Section 3),

∫∫∫

B

[

∂2ψ

∂F2
: ∇u(2,a) : ∇w +

∂3ψ

∂F3
: ∇u(1) : ∇u(1) : ∇w

]

dV

+

∫∫

∂Bt

[

D3τ

Du3
· u(1) · u(1) ·w +

D2τ

Du2
· u(2,a) ·w

]

dA = 0, (37)
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and

∫∫∫

B

[

∂2ψ

∂F2
: ∇u(2,p) : ∇w +

∂2ψ

∂F∂λ
: ∇w

]

dV

+

∫∫

∂Bt

[

D2τ

Du2
· u(2,p) ·w +

∂

∂λ

Dτ

Du
·w

]

dA = 0. (38)

It may be observed that if, for an admissible w, (37) and (38) are satisfied, then
the first variation of the u(2) terms in (36) in the direction w is zero. We obtain
the Euler-Lagrange equations as follows. We further decompose u(2,a) such that

u(2,a) =
∑

α1,α2,α3,α4

a(γ2,γ3)α1,α2
a(γ2,γ3)α3,α4

u
(α1,α2,α3,α4)
(2) + λ(γ2,γ3)(2) u(2,p), (39)

where we sum over α1,α2,α3,α4 ∈ {±1}. Here u
(α1,α2,α3,α4)
(2) is the solution of

the linear system

−∇ ·P(α1,α2,α3,α4)
(2) = 0, (40)

P
(α1,α2,α3,α4)
(2) · n =

Dt

Du
· u(α1,α2,α3,α4)

(2)

+
D2t

Du2
· u(α1γ2,α2γ3)

(1) · u(α3γ2,α4γ3)
(1) over ∂Bt, (41)

u
(α1,α2,α3,α4)
(2) = 0 over ∂Bu, (42)

where n is the unit normal and

P (α1,α2,α3,α4)
(2)

ab = P ab
(1)c

du(α1,α2,α3,α4)
(2)

c
|d

+ P ab
(2)c

d
e
fu(α1γ2,α2γ3)

(1)
c
|du

(α3γ2,α4γ3)
(1)

e
|f . (43)

The existence and uniqueness of the solution u
(α1,α2,α3,α4)
(2) to the above equa-

tions follows from the fact that the homogeneous ordinary differential equation
is elliptic and nondegenerate (because, as we noted in Section 3.1, we assume
that the modes go unstable at different times). We find, by multiplying (40)-(42)
by an arbitrary admissible displacement w and integrating, that

∫∫∫

B

[

∂2ψ

∂F2
: ∇u

(α1,α2,α3,α4)
(2) : ∇w

+
∂3ψ

∂F3
: ∇u

(α1γ2,α2γ3)
(1) : ∇u

(α3γ2,α4γ3)
(1) : ∇w

]

dV

+

∫∫

∂Bt

[

D3τ

Du3
· u(α1γ2,α2γ3)

(1) · u(α3γ2,α4γ3)
(1) ·w +

D2τ

Du2
· u(α1,α2,α3,α4)

(2) ·w
]

dA

= 0. (44)

It may also be observed that u(α1,α2,α3,α4)
(2) ∈ U((α1+α3)γ2,(α2+α4)γ3) and

u
(α1,α2,α3,α4)
(2) = u

(α3,α4,α1,α2)
(2) . (45)
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Furthermore u(2,p) is a solution of the linear system

−∇ ·P(2,p) = 0, (46)

P(2,p) · n =
Dt

Du
· u(2,p) +

Γ0

Γ

∂

∂λ
t over ∂Bt, (47)

u(2,p) =
∂

∂λ
v over ∂Bu, (48)

where n is the unit normal and

P ab
(2,p) = P ab

(1)c
du(2,p)

c
|d +

∂

∂λ
P ab. (49)

The existence and uniqueness of the solution u(2,p) is a direct consequence of
our assumption that the base state solution is differentiable with respect to
λ in Section 3. The solution u(2) is a local minimum if (γ2, γ3) are the first

modes to go unstable. We find that the equations governing u(α1,α2,α3,α4)
(2) reduce

to ordinary differential equations in x1 under the Fourier expansion. They
may thus be solved used finite-difference methods. Often, particularly for high
wavenumbers, these equations will be highly numerically unstable. Therefore, it
might be necessary to employ special techniques. For example we employed the
method of compound matrices in [19] (refer to Ng and Reid [25] for a thorough
description).

4.2. Determination of the Magnitude of the Buckle

After substituting the solution for u(2) back into (36), we obtain a poly-

nomial in {a(γ2,γ3)±,± } and λ(2). We will determine {a±,±} by differentiating the
polynomial with respect to these variables, so that (36) is stationary. However
before we do this we must simplify (36), using the following two identities. We
substitute w = u(2,a) into (37) to obtain

∫∫∫

B

∂3ψ

∂F3
: ∇u(1) : ∇u(1) : ∇u(2,a)dV +

∫∫

∂Bt

D3τ

Du3
· u(1) · u(1) · u(2,a)dA

= −
∫∫∫

B

∂2ψ

∂F2
: ∇u(2,a) : ∇u(2,a)dV −

∫∫

B

D2τ

Du2
· u(2,a) · u(2,a)dA. (50)

We substitute w = u(2) into (38) to obtain

∫∫∫

B

[

∂2ψ

∂F2
: ∇u(2,p) : ∇u(2) +

∂2ψ

∂F∂λ
: ∇u(2)

]

dV

+

∫∫

∂Bt

[

D2τ

Du2
· u(2,p) · u(2) +

d

dλ

Dτ

Du
· u(2)

]

dA = 0. (51)
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Using (50) and (51), we find that (36) simplifies to

1

24
W(4) =

∫∫∫

B

[

−
1

8

∂2ψ

∂F2
: ∇u(2,a) : ∇u(2,a)

+
1

4
λ(2)

(

∂3ψ

∂F3
: ∇u(2,p) : ∇u(1) : ∇u(1) +

∂3ψ

∂F2∂λ
: ∇u(1) : ∇u(1)

+
1

24

∂4ψ

∂F4
: ∇u(1) : ∇u(1) : ∇u(1) : ∇u(1)

)]

dV

+

∫∫

∂Bt

[

−
1

8

D2τ

Du2
· u(2,a) · u(2,a) +

1

24

D4τ

Du4
· u(1) · u(1) · u(1) · u(1)

+
1

4
λ(2)

(

D3τ

Du3
· u(2,p) · u(1) · u(1) +

∂

∂λ

D2τ

Du2
· u(1) · u(1)

)]

dA. (52)

We note that, due to the assumptions in Section 3, each of these integrals
∫∫∫

PdV may be written as

∫∫∫

PdV =

∫ x3
c

−x3
c

∫ x2
c

−x2
c

∫ x1
+

x1
c

Pdet(gab)dx
1dx2dx3

= 4x2
cx

3
c

∫ x1
+

x1
c

P |(0,0)det(gab)dx
1, (53)

where P is one of the terms in (52) and |(0,0) denotes the projection of P onto
U(0,0) (as defined in Section 3.1). This is because terms which are not in U(0,0)

integrate to zero. This means that the cubic terms in {a(γ2,γ3)α,β } are identically
zero.

In order that (52) is stationary, we require that its derivative with respect

to a(γ2,γ3)α,β (for α = ±,β = ±) is zero. We obtain an equation of the form

1

24

∂W(4)

∂a(γ2,γ3)α,β

:= d(γ2,γ3)α,β := g(γ2,γ3)α,β + a(γ2,γ3)−α,−βh
(γ2,γ3)
α,β λ(2) = 0, (54)

where g(γ2,γ3)α,β is cubic in {a(γ2,γ3)±α,±β} and h(γ2,γ3)
α,β is independent of {a(γ2,γ3)±α,±β}. The

specific structure of g(γ2,γ3)α,β and h(γ2,γ3)
α,β may be obtained as follows. Using (45),

we find that

g(γ2,γ3)α,β =

∫∫∫

B

[

1

6

∂4ψ

∂F4
: ∇u(1) : ∇u(1) : ∇u(1) : ∇u

(αγ2,βγ3)
(1)

−
1

2

∑

µ,ν

a(γ2,γ3)µ,ν
∂2ψ

∂F2
: ∇u(2,a) : ∇u

(α,β,µ,ν)
(2)

]

dV

+

∫∫

∂Bt

[

−
1

2

∑

µ,ν

a(γ2,γ3)µ,ν
D2τ

Du2
· u(2,a) · u

(α,β,µ,ν)
(2)

+
1

6

D4τ

Du4
· u(1) · u(1) · u(1) · u

(αγ2,βγ3)
(1)

]

dA, (55)
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and

h(γ2,γ3)
α,β =

1

2

∫∫∫

B

[

∂3ψ

∂F3
: ∇u(2,p) : ∇u

(−αγ2,−βγ3)
(1) : ∇u

(αγ2,βγ3)
(1)

+
∂3ψ

∂F2∂λ
: ∇u

(−αγ2,−βγ3)
(1) : ∇u

(αγ2,βγ3)
(1)

]

dV

+

∫∫

∂Bt

[

D3τ

Du3
· u(2,p) · u

(αγ2,βγ3)
(1) · u(−αγ2,−βγ3)

(1)

+
∂

∂λ

D2τ

Du2
· u(αγ2,βγ3)

(1) · u(−αγ2,−βγ3)
(1)

]

dA. (56)

It may be observed that h(γ2,γ3)
+,+ = h̄(γ2,γ3)

−,− . We now rearrange these expres-
sions so that they are in a form that is more convenient for the boundary layer
analysis.

We simplify (55) through (44) and the identity (23), finding that

g(γ2,γ3)α,β =

∫∫∫

B

[

1

6

∂4ψ

∂F4
: ∇u(1) : ∇u(1) : ∇u(1) : ∇u

(αγ2,βγ3)
(1)

+
1

2

∂3ψ

∂F3
: ∇u

(αγ2,βγ3)
(1) : ∇u(1) : ∇u(2)

]

dV

+

∫∫

∂Bt

1

2

D3τ

Du3
· u(αγ2,βγ3)

(1) · u(1) · u(2)dA

+

∫∫

∂Bt

1

6

D4τ

Du4
· u(1) · u(1) · u(1) · u

(αγ2,βγ3)
(1) dA. (57)

This expression (57) is easier to use in the boundary layer analysis that will
follow than (55). In fact4 (54) is equivalent to the Fredholm solvability condition
for the O(ε3) component of the equation of equilibrium (4)-(6). Thus in fact (54)
holds in more general circumstances when we cannot define an energy potential

for the system. It may be observed that g(γ2,γ3)α,β is a sum of cubic terms in

{a(γ2,γ3)±,± }, but h(γ2,γ3)
α,β is independent of {a(γ2,γ3)±,± }. Both g(γ2,γ3)α,β and h(γ2,γ3)

α,β are

independent of λ(2). It can be observed that d(γ2,γ3)−α,−β is the complex conjugate

of d(γ2,γ3)α,β . Thus we only need to solve (54) in the case that {α = +,β = +}
and {α = +,β = −}.

The stability of the buckled state is governed by the eigenvalues of the Ja-

4See MacLaurin [18].
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cobian Mαβζσ =
∂2W(4)

∂a
(γ2,γ3)
α,β ∂a

(γ2,γ3)
ζ,σ

. The components are given by

Mαβζσ =

∫∫∫

B

[

1

2

∂4ψ

∂F4
: ∇u(1) : ∇u(1) : ∇u

(ζγ2,σγ3)
(1) : ∇u

(αγ2,βγ3)
(1)

−
1

2

∂2ψ

∂F2
: ∇u(2,a) : ∇u

(α,β,ζ,σ)
(2)

−
∑

µ1,...,µ4

a(γ2,γ3)µ1,µ2
a(γ2,γ3)µ3,µ4

∂2ψ

∂F2
: ∇u

(ζ,σ,µ1,µ2)
(2) : ∇u

(α,β,µ3,µ4)
(2)

]

dV

+

∫∫

∂Bt

[

−
1

2

D2τ

Du2
· u(2,a) · u

(α,β,ζ,σ)
(2) +

1

2

D4τ

Du4
· u(1) · u(1) · u

(ζγ2,σγ3)
(1) · u(αγ2,βγ3)

(1)

−
∑

µ1,...,µ4

a(γ2,γ3)µ1,µ2
a(γ2,γ3)µ3,µ4

D2τ

Du2
· u(ζ,σ,µ1,µ2)

(2) · u(α,β,µ3,µ4)
(2)

]

dA

+ λ(2)δ(α,−ζ)δ(β,−σ)hα,β , (58)

where δ(ε1, ε2) equals 1 if ε1 = ε2 and zero otherwise and µi ∈ {+,−}. If (γ2, γ3)
is the first mode to go unstable, and all of the eigenvalues of M are positive
then the buckled state is stable. If at least one eigenvalue is negative, then the
buckled state is unstable. If (γ2, γ3) is not the first mode to go unstable, then,
as we have already discussed above, the analysis is not as straightforward.

4.3. Magnitude and Stability of the Buckle when a+,− and a−,+ are Identically
Zero

In this section we assume (28) holds, i.e. λ(γ2,γ3) += λ(γ2,−γ3). It follows
as a consequence of this that a+,− and a−,+ are identically zero. The above
equations may be simplified though use of the fact that terms which are not
in U0,0 (as defined in Section 3.1) integrate to zero as a consequence of the
regularity of the geometry. We find that the strain energy may be written in
the form

W(4) =
1

2
C(γ2,γ3)(a+,+a−,−)

2 + a+,+a−,−h
(γ2,γ3)
+,+ λ(2), (59)

for some real constant C(γ2,γ3) which satisfies C(γ2,γ3) = C(−γ2,−γ3) and may

be determined from (52). Note that h(γ2,γ3)
+,+ = h(γ2,γ3)

−,− . Since a+,+ = ā−,−, we
may consider (59) to be a quadratic in |a| := √

a+,+a−,−. We set the derivative
of (59) with respect to |a| to zero and find

d

d|a|
W(4) = 2C(γ2,γ3)|a|3 + 2|a|h(γ2,γ3)

+,+ λ(2) = 0, (60)

which yields

|a|2 = −λ(2)
h(γ2,γ3)
+,+

C(γ2,γ3)
. (61)

It may be observed that

2C(γ2,γ3)|a|4 = a(γ2,γ3)+,+ g(γ2,γ3)+,+ = a(γ2,γ3)−,− g(γ2,γ3)−,− . (62)
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We find that the second derivative of the energy is

d2

d|a|2
W(4) = 6C(γ2,γ3)|a|2 + 2h(γ2,γ3)

+,+ λ(2). (63)

We substitute (61) and find

d2

d|a|2
W(4) = −4h(γ2,γ3)

+,+ λ(2). (64)

This governs the stability of the buckled state: if it is positive, and if (γ2, γ3) is
the first mode to go unstable, the buckled state is stable. If it is negative, the
buckled state is unstable. We require the right hand side of (61) to be positive for
there to exist buckled states. We are thus presented with a pitchfork bifurcation.

We finish by proving that h(γ2,γ3)
+,+ ≤ 0. The significance of this is that the

nature of the buckle is determined by the sign of C(γ2,γ3). It is supercritical
(and stable) if C(γ2,γ3) > 0, and it is subcritical (and unstable) if C(γ2,γ3) < 0.

The reason that h(γ2,γ3)
+,+ ≤ 0 is as follows.

h(γ2,γ3)
+,+ =

1

2

∂

∂λ

∫∫∫

B

∂2ψ

∂F2
: ∇u

(−γ2,−γ3)
(1) : ∇u

(γ2,γ3)
(1) dV

+
1

2

∂

∂λ

∫∫

∂Bt

D2τ

Du2
· u(γ2,γ3)

(1) · u(−γ2,−γ3)
(1) dA. (65)

In fact (65) is equal to 1
4
dH
dλ , where

H(λ) =
∫∫∫

B

∂2ψ

∂F2
:
(

∇u
(γ2,γ3)
(1) +∇u

(−γ2,−γ3)
(1)

)

:
(

∇u
(γ2,γ3)
(1) +∇u

(−γ2,−γ3)
(1)

)

dV

+

∫∫

∂Bt

D2τ

Du2
·
(

u
(γ2,γ3)
(1) + u

(−γ2,−γ3)
(1)

)

·
(

u
(γ2,γ3)
(1) + u

(−γ2,−γ3)
(1)

)

dA. (66)

This is because

∫∫∫

B

∂2ψ

∂F2
: ∇u

(γ2,γ3)
(1) : ∇u

(γ2,γ3)
(1) dV =

∫∫∫

B

∂2ψ

∂F2
: ∇u

(−γ2,−γ3)
(1) : ∇u

(−γ2,−γ3)
(1) dV = 0 (67)

as a consequence of the regularity of the geometry (and similarly for the other
terms). However since the system is stable with respect to variations in U(γ2,γ3)∪
U(−γ2,−γ3) for all λ < λ(γ2,γ3), it must be the case that for all λ < λ(γ2,γ3), H > 0.

Since H = 0 when λ = λ(γ2,γ3), it must be the case that h(γ2,γ3)
+,+ ≤ 0.

5. Boundary Layer Analysis of The Eigenmode

We assume that a boundary layer develops on the face ∂B∗ of B given by
x1 = x1

c . What we mean by this is that, if (γ2, γ3) = ς(γ∗2 , γ
∗
3) for some fixed
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{γ∗2 , γ∗3}, then as ς → ∞, λ(γ2,γ3) converges to a finite constant. We denote this

constant λ
(γ∗

2 ,γ
∗

3 )
(I) . In the sections to follow, we will perform a boundary layer

analysis to determine λ
(γ∗

2 ,γ
∗

3 )
(I) , and also the leading order of u(1) and u(2).

5.1. Assumptions Concerning the Incremental Elasticity Tensor

We have already made assumptions about the nature of the elasticity tensor
in Section 3. We now outline additional assumptions about the elasticity tensor
which will make our boundary layer analysis easier. That is, we assume that
P ab

c
d += 0 if and only if one of the following three conditions holds

a = b and c = d (68)

a = c and b = d (69)

a = d and b = c. (70)

These assumptions ensure that the eigenvalues of the matrix D to be defined in
the next section come in ± pairs.

We now give an example of a strain energy function and base state deforma-
tion which together ensure that (68)-(70), as well as the assumptions in Section
3, are satisfied. We suppose that the base state deformation is coaxial with the
basis vectors, i.e. F a

A += 0 only if a = A. Furthermore we suppose that the
stress P can be written as a sum of terms of the form

q1p1 + . . .+ qkpk, (71)

where {pj} are polynomials in F and FT , and {qj} are scalar-valued functions
of the symmetric invariants {I1, I2, I3} of F. It can be demonstrated that the
resulting incremental stress tensor satisfies (68)-(70).

One example where the stress tensor has the above form (71) is when the
material is isotropic. This is because the first Piola-Kirchhoff stress tensor of
an isotropic material may be written in the form

P = α0F+ α1F ·C+ α2C
2, (72)

where C = FT · F, and {α0,α1,α2} are functions of the symmetric invariants
of F.

The stress tensor also has the above form (71) in the modelling of growing
isotropic materials using a multiplicative decomposition of the deformation gra-
dient (see Rodriguez et al. [27], Goriely et al. [11], MacLaurin et al. [19]). In
brief, the deformation gradient is decomposed as F = Fe · Fg, where Fg is the
growth tensor. We require the growth tensor Fg and deformation gradient F to
be diagonal with respect to the basis vectors. If the material (which is isotropic)
has strain energy function ψ(F,X,λ), then the stress response is given by

P = det(Fg)
∂ψ

∂F
|FeF

−T
g , (73)

which, through (72), may be seen to be of the form (71).
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5.2. Determination of the Asymptotic Limit of λ

Throughout this section, we perform a boundary layer analysis on the equa-

tions governing u
(γ2,γ3)
(1) , i.e. (14), (18) and (19). We recall that u(γ2,γ3)

(1) is of the
form

u
(γ2,γ3)
(1) = Z(γ2,γ3) exp

(

i
(

γ2x
2 + γ3x

3
))

. (74)

We rescale x1 as x1
c + ρς−1 (recall that x1 = x1

c on ∂B∗). This rescaling entails
that, after a substitution of the above Fourier ansatz, and the substitutions
γ2 = ςγ∗2 and γ3 = ςγ∗3 , the field equation governing the onset of buckling (18)
may be written as

(

ς
∂

∂ρ
P a1
(1) + ςiγ∗kP

ak
(1) + P al

(1)Γ
b
lb + P lb

(1)Γ
a
lb

)

eiγ2x
2

eiγ3x
3

= 0. (75)

We have, for convenience, dropped the (γ2, γ3) superscripts from Z, i.e. we
write Z(γ2,γ3) = Z = (Z1, Z2, Z3)T . We similarly drop the subscripts from u(1).
In the above summation (and for all following summations), we stipulate that
γ∗1 = 0, so that for example γ∗kP

ak
(1) = γ∗2P

a2
(1) + γ∗3P

a3
(1). We now outline the

specific structure of (75), bearing in mind our assumptions (68)-(70). It has
components of orders {ς2, ς , 1}. We find the a’th component of the coefficient
of ς2 is

P a1
a
1Za

,ρρ + iγ∗kP
a1

j
kZj

,ρ + iγ∗kP
ak

j
1Zj

,ρ − γ∗kγ
∗
mP ak

j
mZj. (76)

The a’th component of the coefficient of ςZj
,ρ is

d

dx1

(

P a1
a
1
)

δaj + P a1
m

nΓm
nj + P al

j
1Γb

lb + P lb
j
1Γa

lb. (77)

The a’th component of the coefficient of ςZj is

iγ∗k
d

dx1
P a1

j
k + iγ∗kΓ

n
mjP

ak
n
m + iγ∗kΓ

b
lbP

al
j
k + iγ∗kP

lb
j
kΓa

lb. (78)

The a’th component of the coefficient of Zj is

∂

∂x1

(

P a1
m

n
)

Γm
nj + P al

m
nΓb

lbΓ
m
nj + P lb

m
nΓa

lbΓ
m
nj. (79)

Let V = (Z1, Z2, Z3, Z1
,ρ, Z

2
,ρ, Z

3
,ρ)

T . We may then write (75) in the form

ς2
(

A(0) ·
∂V

∂ρ
+A(1) ·V

)

+ ςA(2) ·V +A(3) ·V = 0. (80)

Here {A(j)} are 6× 6 matrices. We stipulate the (j + 3)’th row of (80) (where

j ∈ {1, 2, 3}) to derive from the identity ∂Vj

∂ρ = Vj+3. The structure of the first
three rows of these matrices can be inferred from (76)-(79). Indeed, it may
be inferred from (76)-(79) and the coaxiality assumptions (68)-(70) that the
structures of A(0) and A(1) are given by (where an ‘x′ denotes a potentially
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nonzero number)

A(0) =

















0 0 0 x 0 0
0 0 0 0 x 0
0 0 0 0 0 x
x 0 0 0 0 0
0 x 0 0 0 0
0 0 x 0 0 0

















, A(1) =

















x 0 0 0 x x
0 x x x 0 0
0 x x x 0 0
0 0 0 x 0 0
0 0 0 0 x 0
0 0 0 0 0 x

















. (81)

We perform the following asymptotic expansion of V and λ over the bound-
ary layer,

λ = λ
(γ∗

2 ,γ
∗

3 )
(I) + ς−1λ

(γ∗

2 ,γ
∗

3 )
(II) + . . . (82)

V = V(I) + ς−1V(II) + . . . . (83)

Our aim in this section is to determine the leading order terms of λ and V.
It is a consequence of our ellipticity assumption (25) that each of the ele-

ments denoted by an ‘x’ in the expression for A(0) in (81) are nonzero, which
means that A(0) is invertible. It may be readily inferred that the eigenvalues
of (A(0))−1 ·A(1) occur in ± pairs. We assume that they all have nonzero real
part, and that we have the following diagonalisation 5

(A(0))−1 ·A(1) = −E ·D ·E−1. (84)

We assume the first three eigenvalues of −D have negative real part, and the
last three eigenvalues have positive real part. We find

ς2E−1 ·
∂V

∂ρ
= ς2D ·E−1 ·V− ςE−1 · (A(0))−1 ·A(2) ·V−E−1 · (A(0))−1 ·A(3) ·V.

(85)
We are careful to consistently order the eigenvalues such that D and E are
continuous and differentiable functions of x1 and λ. We stipulate that the norm
of each column6 of E is 1. We let Y = E−1 ·V, and we perform the following
asymptotic expansion

Y = Y(I) + ς−1Y(II) + . . .

E = E(I) + ς−1E(II) + . . .

D = D(I) + ς−1D(II) + . . .

We outline further below our method for determining Y(I),E(I) and D(I). We
find that (85) may be simplified to

ς2
∂Y

∂ρ
= ς2D ·Y + ςB(1) ·Y +B(2) ·Y, (86)

5A sufficient condition for the existence of the diagonalisation is that all the eigenvalues
are distinct.

6Note that rescaling the columns of E does not affect our results.
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where

B(1) = −E−1 · (A(0))−1 ·A(2) ·E+
d

dR

(

E−1
)

· E, (87)

B(2) = −E−1 · (A(0))−1 ·A(3) ·E. (88)

The leading order of the solution of (86) is

Y j
(I) = Cj exp(djjρ), (89)

for some constants {Cj}. Since the real components of {d44, d55, d66} are greater
than zero, we stipulate {C4, C5, C6} to be equal to zero to ensure that the
solution is asymptotically decaying. We thus find that

V k
(I) = EkjC

j exp(djjρ). (90)

The leading order of the displacement gradient is given by (for b ∈ {1, 2, 3})

u(1)
b
m = ς

3
∑

j=1

u∗
(1,j)

b
m exp(ρdjj) exp(iς(γ

∗
2x

2 + γ∗3x
3)) where, (91)

u∗
(1,j)

b
1 = djjEbjC

j , (92)

u∗
(1,j)

b
m = iγ∗mEbjC

j where m = 2 or m = 3. (93)

The boundary condition at ∂B∗ could be either that of pressure or
null-displacement. The incremental stress boundary condition (19) at ∂B∗ is,
to leading order,

ςP a1
b
cu(1)

b
c = 0, for all a ∈ {1, 2, 3}. (94)

where the above expression is evaluated at ρ = 0. We note that Dτ
Du

is not in
this expression because, being independent of ∇u(1), it has lower asymptotic
order. Alternatively, the incremental displacement boundary condition (14) at
∂B∗ is

V a
(I) = 0 for all a ∈ {1, 2, 3}. (95)

Whichever boundary condition applies, we obtain the following condition

Q ·C = 0, (96)

where C = (C1, C2, C3)T and Q is a 3 × 3 matrix which can be inferred from
(90)-(95). For there to exist a boundary layer, we thus require

det(Q) = 0. (97)

This is the condition we use to solve for the leading order of the critical parame-

ter, i.e. λ
(γ∗

2 ,γ
∗

3 )
(I) . We assume that when (97) is satisfied, the kernel of Q is of one

dimension only. The condition (97) is analogous to the ‘complementing condi-
tion’ of Negron-Marrero and Montes-Pizarro [23, 24]. It is interesting to observe

that (97) is independent of the Christoffel symbols, which means that λ
(γ∗

2 ,γ
∗

3 )
(I)

is independent of the local geometry (as has been pointed out by Hohlfeld and

21



Mahadevan [14] and Negron-Marrero and Montes-Pizarro [23]).

5.3. Solution of λ
(γ∗

2 ,γ
∗

3 )
(II)

We determine the next order of λ, i.e. λ
(γ∗

2 ,γ
∗

3 )
(II) , by solving the O(1) compo-

nent of (86), i.e.

∂

∂ρ
Y j
(II) = djjY

j
(II) +B(1)

jk Ck exp(ρdkk)+
(

λ
(γ∗

2 ,γ
∗

3 )
(II)

∂djj
∂λ

+ ρ
∂djj
∂R

)

Cj exp(ρdjj). (98)

We make use of the following asymptotic expansions for E(II) and D(II),

D(II) = ρ
d

dR
D+ λ

(γ∗

2 ,γ
∗

3 )
(II)

d

dλ
D, (99)

E(II) = ρ
d

dR
E+ λ

(γ∗

2 ,γ
∗

3 )
(II)

d

dλ
E. (100)

The derivatives are always evaluated at λ = λ
(γ∗

2 ,γ
∗

3 )
(I) . The general solution of

(98) is

Y j
(II) = CkB(1)

jk (dkk − djj)
−1 exp(ρdkk)+

Cj

(

B(1)
jj + λ

(γ∗

2 ,γ
∗

3 )
(II)

∂djj
∂λ

+
ρ

2

∂djj
∂ρ

)

ρ exp(ρdjj) + Cj
(II) exp(ρdjj), (101)

where j ∈ {1, . . . , 6}, C(II) is a vector of constants and we sum over all k += j.

Note that Cj
(II) must be identically zero if Re(djj) > 0 to ensure that the

solution decays. At ρ = 0,

Y j
(II) = CkB(1)

jk (dkk − djj)
−1 + Cj

(II), (102)

where we sum over all k += j.

We determine λ
(γ∗

2 ,γ
∗

3 )
(II) by matching the next order of the boundary con-

dition, which could be either null-stress (19) or null-displacement (14). We
begin by considering the null-displacement boundary condition Za = 0 (for all
a ∈ {1, 2, 3}) at ρ = 0. At O(1), this may be written as

V(II) = E ·Y(II) +
∂

∂λ
E ·Y(I) = 0. (103)

We find, for all a ∈ {1, 2, 3},

qa + EabC
cB(1)

bc (dcc − dbb)
−1 +

(

∂

∂λ
Eab

)

Cbλ
(γ∗

2 ,γ
∗

3 )
(II) = 0, (104)

where q = Q · C(II) and we sum over all b += c. We assumed earlier that the
kernel of Q is of one dimension, which means that the range of Q must be of
dimension 2. We dot multiply (104) with a vector perpendicular to the range

of Q to eliminate q and determine λ
(γ∗

2 ,γ
∗

3 )
(II) .
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We now consider the stress boundary condition (19). We firstly write ∇u to
its leading two orders, i.e.

ub
|a =



ς
3

∑

j=1

u∗
(1,j)

b
a + λ

(γ∗

2 ,γ
∗

3 )
(II) mb

a + nb
a



 eiγ2x
2

eiγ3x
3

, (105)

where, for a ∈ {2, 3} and b ∈ {1, 2, 3},

mb
1 = Cj ∂

∂λ
E(b+3)j (106)

mb
a = iγ∗aC

j ∂

∂λ
Ebj (107)

nb
1 = B(1)

jk Ck(dkk − djj)
−1E(b+3)j + Γb

c1C
kEck + Ck

(II)E(b+3)k (108)

nb
a = iγ∗aB

(1)
jk (dkk − djj)

−1CkEbj + Γb
caC

kEck + iγ∗aC
k
(II)Ebk, (109)

where we sum over all k += j. We recall that u∗
(1,j) is defined in (92)-(93). We

thus find the O(1) component of the boundary condition to be

qa + P a1
c
dnc

d −
Γ0

Γ

dta

dub
EbkC

k+

λ
(γ∗

2 ,γ
∗

3 )
(II)





∂

∂λ
P a1

c
d

3
∑

j=1

u∗
(1,j)

c
d + P a1

c
dmc

d



 = 0, (110)

where q = Q · C(II). We eliminate q by dot multiplying (110) with a vector

perpendicular to the range of Q to solve for λ
(γ∗

2 ,γ
∗

3 )
(II) .

5.4. Structure of u(1)

The above boundary layer analysis was performed on u
(γ2,γ3)
(1) . We now

investigate how altering the signs of γ2 and γ3 affects the analysis. We may

directly infer from (27) that λ(−γ
∗

2 ,−γ
∗

3 ) = λ(γ
∗

2 ,γ
∗

3 ), and u
(−γ2,−γ3)
(1) = ū

(γ2,γ3)
(1) .

We now demonstrate that

λ
(γ∗

2 ,γ
∗

3 )
(I) = λ

(−γ∗

2 ,γ
∗

3 )
(I) . (111)

This is for the following reasons. Firstly, D is unchanged when γ∗2 → −γ∗2 , and
the second and fifth rows of E switch signs. In the case of the null-stress bound-
ary condition, it can be seen that Q is unchanged, except {Q12, Q21, Q23, Q32}
switch signs. In the case of the null-displacement boundary condition, Q2a →
−Q2a. Thus in both cases, the condition (97) governing λ

(γ∗

2 ,γ
∗

3 )
(I) also governs

λ
(−γ∗

2 ,γ
∗

3 )
(I) . In turn, it follows from (27) and (111) that

λ
(γ∗

2 ,γ
∗

3 )
(I) = λ

(−γ∗

2 ,γ
∗

3 )
(I) = λ

(γ∗

2 ,−γ
∗

3 )
(I) = λ

(−γ∗

2 ,−γ
∗

3 )
(I) . (112)

However it is not necessarily the case that

λ
(γ∗

2 ,γ
∗

3 )
(II) = λ

(−γ∗

2 ,γ
∗

3 )
(II) . (113)
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It can be shown that a sufficient condition for (113) is

Ĩ ·A(2) · Ĩ = A(2), (114)

where Ĩ is equal to the identity, except Ĩ2,2 = Ĩ5,5 = −1. Note that, due to

(27), λ
(γ∗

2 ,γ
∗

3 )
(II) = λ

(γ∗

2 ,−γ
∗

3 )
(II) if and only if (113) is satisfied. Furthermore if (114)

is satisfied, a sufficient condition that λ
(γ∗

2 ,γ
∗

3 )
(j) = λ

(−γ∗

2 ,γ
∗

3 )
(j) (for j ≥ III), is

Ĩ ·A(3) · Ĩ = A(3). (115)

6. Boundary Layer Analysis of Postbuckled Solution

We determine the leading asymptotic behaviour of {u(α1,α2,α3,α4)
(2) } as ς →

∞. These variables are defined in Section 4.1. Once we have determined the
asymptotic behaviour of these variables, we determine the asymptotic behaviour
of the integrals governing the magnitude and stability of the buckle.

6.1. Solution of u(2,a)

It is convenient to define a new boundary layer variable ν so that the
boundary layer equations have a similar form to the previous section. We let
x1 = x1

c +
1
2 ς

−1ν, so that ν = 2ρ. We consider that αj = + for all j throughout
this section (we give reasons for this assumption further below). We define Z
and V analogously to Section 5, i.e.

u(+,+,+,+)
(2)

a = Za(x1) exp
(

iς
(

2γ∗2x
2 + 2γ∗3x

3
))

(116)

V = (Z1, Z2, Z3, Z1
,ν, Z

2
,ν , Z

3
,ν)

T . (117)

The ν subscript denotes differentiation with respect to ν. We must be careful not
to confuse Z, V and Y with their definitions in the previous section. However
it will be seen that D,E and {Ck} remain the same.

We find the leading order of the field equation (40) which governs u(α1,...,α4)
(2)

over the boundary layer to be

(2ς)2
(

A(0) ·
∂V

∂ν
+A(1) ·V

)

+ 2ςA(2) ·V +A(3) ·V

+ (2ς)3
∑

1≤j,k≤3

A
(4)
(j,k) exp

(ν

2
(djj + dkk)

)

= 0. (118)

Here A(4) is essentially obtained by substituting the asymptotic expression for

u(1) we obtained in Section 5 into ∇ ·
(

∂2
P

∂F2 : ∇u(1) : ∇u(1)

)

. We only need to

keep the leading order terms of order O((2ς)3). More precisely, A(4)
jk

a = 0 if
a ∈ {4, 5, 6}, and if a ∈ {1, 2, 3},

A(4)
(j,k)

a =
1

2
P a1
(2)c

d
e
f (djj + dkk)u

∗
(1,j)

c
du

∗
(1,k)

e
f

+ iγ∗mP am
(2) c

d
e
fu∗

(1,j)
c
du

∗
(1,k)

e
f (119)
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where u∗
(1,j) is defined in (92)-(93).

In the case of a null-stress boundary condition (19), we may write the leading
order of the boundary condition at ν = 0 as

P a1
c
du(2)

c
d + exp(iν(γ∗2x

2 + γ∗3x
3))×

P a1
(2)c

d
e
f

3
∑

j,k=1

u∗
(1,j)

c
du

∗
(1,k)

e
f = 0, (120)

In the case of a null-displacement boundary condition (14), we may write the
leading order of the boundary condition at ν = 0 as

u(2) = 0. (121)

In the discussion to follow below, the ‘homogeneous solution’ of the above equa-
tions governing u(2) is that obtained by setting u(1) = 0. We have seen in
Section 5 that the leading order of the homogeneous part of the field equation
(118), i.e.

(

A(0) ·
∂V

∂ν
+A(1) ·V

)

= 0, (122)

together with the leading order of the homogeneous part of the boundary con-
dition ((120) or (121)), has a nontrivial solution over the boundary layer. This
means that, if V has leading order (2ς), then in general we will not be able to
find a solution to the leading order of (118) and ((120) or (121)). We therefore
require that V has leading order (2ς)2. Thus

V = (2ς)2V(I) + (2ς)V(II) + . . . (123)

It can similarly be demonstrated that u(−,−,−,−)
(2) has leading order (2ς)2. Indeed,

since λ
(γ2,

∗,γ∗

3 )
(I) = λ

(−γ2,
∗,γ∗

3 )
(I) , we may also determine u

(+,−,+,−)
(2) and u

(−,+,−,+)
(2) ,

and these have leading order (2ς)2. However in general circumstances we expect
the other variables to have leading order (2ς). To see this, consider for example

u
(+,+,−,−)
(2) ∈ U0,0. The homogeneous equation governing u

(+,+,−,−)
(2) may be

obtained by taking the homogeneous equation governing u(1) (i.e. 80) and
substituting γ∗2 = γ∗3 = 0. Therefore in most circumstances we expect it will

not be singular, and the asymptotic matching only requires u(+,+,−,−)
(2) to have

leading order (2ς).
As previously, we let Y = E−1 ·V, with Y = (2ς)2YI +(2ς)YII + . . ., so that

(118) simplifies to

(2ς)4
∂Y

∂ν
= (2ς)4D ·Y + (2ς)3B(1) ·Y +B(2) ·Y

+ (2ς)3
∑

1≤j,k≤3

B
(4)
(j,k) exp

(ν

2
(djj + dkk)

)

, (124)

where B(4)
(j,k) = −E−1 ·A(4)

(j,k). The leading order solution is of the same form as

(89), i.e.
Y j
(I) = KCj exp(djjν), (125)
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for some constantK to be determined further below. The asymptotic behaviour
of the critical parameter is

λς(γ
∗

2 ,γ
∗

3 ) =λ
(γ∗

2 ,γ
∗

3 )
(I) + (ς)−1λ

(γ∗

2 ,γ
∗

3 )
(II) + . . . (126)

=λ
(γ∗

2 ,γ
∗

3 )
(I) + (2ς)−1

(

2λ
(γ∗

2 ,γ
∗

3 )
(II)

)

+ . . . (127)

We have already determined expressions for λ
ς(γ∗

2 ,γ
∗

3 )
(I) and λ

ς(γ∗

2 ,γ
∗

3 )
(II) in Sections

5.2 and 5.3.
The next order of (124) is

∂

∂ν
Y j
(II) = djjY

j
(II) +KB(1)

jmCm exp(νdmm)+

K

(

2λ
(γ∗

2 ,γ
∗

3 )
(II)

∂djj
∂λ

+ ν
∂djj
∂R

)

Cj exp(νdjj)

+
∑

1≤l,m≤3

B(4)
(l,m)

j exp
(ν

2
(dll + dmm)

)

. (128)

We thus find that

Y j
(II) =KB(1)

jmCm(dmm − djj)
−1 exp(νdmm)+

KCj

(

B(1)
jj + 2λ

(γ∗

2 ,γ
∗

3 )
(II)

∂djj
∂λ

+
ν

2

∂djj
∂R

)

ν exp(νdjj) + Cj
(II) exp(νdjj)

+
∑

1≤l,m≤3

(

1

2
(dll + dmm)− djj

)−1

B(4)
(l,m)

j exp
(ν

2
(dll + dmm)

)

+ ν
∑

a,b:a+b=2j

B(4)
(a,b)

j exp(νdjj) (129)

=KB(1)
jmCm(dmm − djj)

−1 +
∑

1≤l,m≤3

(

1

2
(dll + dmm)− djj

)−1

B(4)
(l,m)

j

+ Cj
(II) at ν = 0. (130)

Here Cj
(II) are undetermined constants and in the two summations we sum over

all l,m such that dll + dmm += 2djj .
We use the boundary condition to determine K. To implement the bound-

ary condition we must consider the null-stress and null-displacement boundary
conditions separately.

If there is a null-displacement boundary condition at ∂B∗, then the O((2ς))
component of the null-displacement boundary condition is

K

(

EakB
(1)
kmCm(dmm − dkk)

−1 + 2λ
(γ∗

2 ,γ
∗

3 )
(II) Ck ∂

∂λ
Eak

)

+
∑

1≤l,m≤3

(

1

2
(dll + dmm)− dkk

)−1

B(4)
(l,m)

kEak + qa = 0, (131)

where q = Q ·C(II), a ∈ {1, 2, 3} and we sum over all l,m such that dll+dmm +=
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2djj . Here Q is the same as defined in Section 5.2. We dot multiply (131) with
a vector perpendicular to the range of Q to solve for K.

Alternatively, if there is a stress boundary condition at ∂B∗, then the bound-
ary condition is implemented as follows. The O((2ς)2) of the displacement gra-
dient is

(∇u(2))(II) = Kr+ s, (132)

where for a = 2 or 3 and b ∈ {1, 2, 3},

rb1 = 2λ
(γ∗

2 ,γ
∗

3 )
(II)

∂

∂λ
E(b+3)jC

j + Γb
c1C

jEcj

+B(1)
jk Ck(dkk − djj)

−1E(b+3)j + Ck
(II)E(b+3)k (133)

rba = 2iγ∗aλ
(γ∗

2 ,γ
∗

3 )
(II)

∂

∂λ
EbjC

j + Γb
caC

jEcj

+ iγ∗aB
(1)
jk (dkk − djj)

−1CkEbj + iγ∗aC
k
(II)Ebk (134)

sb1 =
∑

1≤j,l,m≤3

B(4)
(l,m)

jdjj

(

1

2
(dll + dmm)− djj

)−1

Ebj + Cj
(II)Eb(j+3) (135)

sba = iγ∗a
∑

1≤l,m≤3

B(4)
(l,m)

j

(

1

2
(dll + dmm)− djj

)−1

Ebj + iγ∗aC
j
(II)Ebj . (136)

In the summations, we sum over all l,m such that dll + dmm += 2djj and all
k += j. The O((2ς)2) component of the stress boundary condition becomes

qa +K



P a1
c
drcd −

Γ0

Γ

∂ta

∂ub
EbjCj + 2λ

(γ∗

2 ,γ
∗

3 )
(II)

∂

∂λ
P a1

c
d

3
∑

j=1

u∗
(1,j)

c
d





+ P a1
(2)c

d
e
f

3
∑

j,k=1

u∗
(1,j)

c
du

∗
(1,k)

e
f + P a1

c
dscd = 0, (137)

where u∗
(1,j) is defined in (92)-(93), q = Q · C(II) and a ∈ {1, 2, 3}. We dot

multiply (137) with a vector perpendicular to the range of Q to solve for K.

7. Boundary Layer Analysis of the Integrals Governing the Magni-
tude of the Buckle

In this section we determine the asymptotic order of the integrals govern-
ing the magnitude of the buckle (as defined in Section 4.2). However before
doing this, we summarise our asymptotic analysis thus far. We must reappend
the superscripts (α,β) to distinguish between the different Fourier modes. To

leading order, the k’th component of u(αγ2,βγ3)
(1) (as defined in (23), and where

α,β ∈ {±1}) is equal to

u(αγ2,βγ3),k
(1) =

3
∑

j=1

C(α,β)jE(α,β)
kj exp(ρdjj + iς(γ∗2x

2 + γ∗3x
3)). (138)
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We have neglected terms of order ς−1 exp(iς(γ∗2x
2 + γ∗3x

3)) or lower. We define
E(α,β) to be equal to E (as defined in (84)), except that we swap γ∗2 → αγ∗2 and
γ∗3 → βγ∗3 in the course of our determination of E throughout Section 5.2. We
already have, by definition, that E(+,+) = E. As was explained in Section 5.4,

we find that E(−,+) = E(+,+), except that (for all j) E(−,+)
2j = −E(+,+)

2j and

E(−,+)
5j = −E(+,+)

5j . Similarly, E(+,−) = E(+,+), except that (for all j) E(+,−)
3j =

−E(+,+)
3j and E(+,−)

6j = −E(+,+)
6j . Finally, E(−,−) = −E(+,+), except that (for

all j) E(−,−)
1j = E(+,+)

1j and E(−,−)
4j = E(+,+)

4j . Through reference to (96) and the

discussion of the structure of Q in Section 5.4, we find that, C(α,β) = C in the
case of the null-displacement boundary condition (for all α and β). In the case
of the null-stress boundary condition, C(+,+) = C (as defined in (96)), C(−,+) =
(C(+,+)1,−C(+,+)2, C(+,+)3)T , C(+,−) = (C(+,+)1, C(+,+)2,−C(+,+)3)T and
C(−,−) = (C(+,+)1,−C(+,+)2,−C(+,+)3)T .

The leading order of u(2) is given by

u(α,β,α,β),k
(2) = (2ς)2K(α,β)

3
∑

j=1

C(α,β)jE(α,β)
kj exp(2ρdjj + 2iς(γ∗2x

2 + γ∗3x
3)),

(139)
where K(α,β) is determined from (131) or (137) depending on the boundary
condition. Thus for example K(−,+) may be determined by switching γ∗2 → −γ∗2
throughout the boundary layer analysis. As an aside, it may be observed that
at x1

c , u(2) dominates u(1) as ς → ∞, so that the buckled shape at the boundary
layer is dominated by the second order solution (in the asymptotic limit). In
general, if we were to continue solving for higher orders of u, we would find that
u(j) dominates u(k) for all j > k at x1 = x1

c in the asymptotic limit.
We write the leading order of the displacement gradient over the boundary

layer as

∇u
(αγ2,βγ3)
(1) 0 ς

3
∑

j=1

u
(∗,α,β)
(1,j) exp(ρdjj + iς(γ∗2x

2 + γ∗3x
3)) (140)

where α,β ∈ {±1}. Here u(∗,α,β)
(1,j) is defined in (91), although we have appended

the superscript (α,β) to distinguish between the different Fourier Modes. We

determine the structure of u(∗,±α,±β)
(1,j) using the above expressions for the struc-

ture of E(α,β) and C(α,β). Similarly,

∇u
(α,β,α,β)
(2) = (2ς)3K(α,β)

3
∑

j=1

u
(∗,α,β)
(1,j) exp(2ρdjj + 2iς(γ∗2x

2 + γ∗3x
3)), (141)

Recall that (as we noted in Section 6.1), if α += µ and β += ω, u(α,β,µ,ω)
(2) is of

asymptotic order O(ς) and ∇u
(α,β,µ,ω)
(2) is of asymptotic order O(ς2).

We determine the leading asymptotic orders of g(γ2,γ3)α,β and h(γ2,γ3)
α,β as follows.

We recall that these variables are each a sum of body and surface integrals. It
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can be seen from (53) that the body integrals are each of the form

∫ x1
+

x1
c

c(x1) exp(−ρConst)dx1, (142)

where Const is a positive constant and c is a function of x1. It can be seen that
the leading asymptotic order of (142) is

ς−1c(x1
c)Const

−1. (143)

It is clear that the surface integral over ∂Bt is asymptotically negligible because
τ is independent of F.

We are now ready to determine the leading asymptotic order of g(γ2,γ3)α,β .
Making use of (53) and (143), we thus have that

g(γ2,γ3)(α,β) 0 ς(2ς)3a(γ2,γ3)α,β

(

a(γ2,γ3)−α,−β

)2
g̃(γ2,γ3)(α,β) , (144)

where

g̃(γ2,γ3)(α,β) 0 −
1

2
(4xc

2x
c
3)K

(α,β)det(g)×
3

∑

j,k,l=1

(djj + dkk + 2dll)
−1 ∂

3ψ

∂F3
: u

(∗,αγ∗

2 ,βγ
∗

3 )
(1,j) : u

(∗,αγ∗

2 ,βγ
∗

3 )
(1,k) : u

(∗,−αγ∗

2 ,−βγ
∗

3 )
(1,l)

(145)

where all of the expressions dependent on x1 are evaluated at xc
1.

We determine the leading asymptotic order of h(γ2,γ3)
α,β to be

h(γ2,γ3)
(α,β) 0 ςh̃(γ2,γ3)

(α,β) , (146)

where

h̃(γ2,γ3)
(α,β) 0 −

1

2
(4xc

2x
c
3)det(g)

3
∑

j,k=1

(djj + dkk)
−1 ×

(

∂3ψ

∂F3
: ∇u(2,p) : u

(∗,−α,−β)
(1,j) : u(∗,α,β)

(1,k) +
∂3ψ

∂F2∂λ
: u(∗,−α,−β)

(1,j) : u(∗,α,β)
(1,k)

)

, (147)

and n is the unit outer normal. In the special case that (28) holds, we see from
(61), (62), (145) and (147) that

a
(ςγ∗

2 ,γ
∗

3 )
α,β a

(ςγ∗

2 ,ςγ
∗

3 )
−α,−β =

∣

∣

∣
a
(ςγ∗

2 ,ςγ
∗

3 )
α,β

∣

∣

∣

2
0 −

1

4

h̃(γ2,γ3)
(α,β)

g̃(γ2,γ3)(α,β)

ς−3λ(2). (148)

We thus see that the magnitude of the buckle has leading asymptotic order

ζ−
3
2 λ

1
2

(2).
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8. An Application: A Compressed NeoHookean Annulus

We apply the preceding theory to the following two-dimensional problem.
We consider an annulus, with internal radiusR0 and external radiusR1 (we scale
R1 to be 1). We work in polar coordinates, with reference coordinates {R,Θ}
and current coordinates {r, θ}. For convenience, we consider the deformation
gradient to be relative to the orthonormal basis vectors (eR, eΘ), so that there
is no distinction between contravariant and covariant components. The ring is
modelled as an incompressible NeoHookean Material, with strain energy density
given by

Ψ(F) =
1

2
ΣF : F, (149)

where Σ is the shear modulus (which is scaled to be 1). Since the ring is
incompressible, we must include an extra term to enfore the incompressibility
constraint

J − 1 = 0, (150)

so that Ψ̂ = Ψ − p(J − 1). We have outlined our method for incompressible
elasticity in the extra supplementary material. The Piola-Kirchhoff Stress is
therefore P = ΣF − pJF−T , and the equation of equilibrium is −∇ · P = 0.
The ring is unstressed at R0. At R1, the displacement is stipulated to be −veR
(for v ≥ 0). The boundary conditions are thus

P ·N = 0 at R = R0 and (151)

u = −veR at R = R1. (152)

The critical parameter, i.e. the displacement (v), is gradually increased until
the system buckles. The base solution is stipulated to be radially symmetric
(so that θ = Θ). We obtain the base solution as follows. The incompressibility
constraint yields the ordinary differential equation ∂r

∂R × r
R − 1 = 0. We find

that r2 = R2 + C, for some constant C. In the base state, we have F =
FRReR ⊗ eR + FΘΘeΘ ⊗ eΘ, where FRR = ∂r

∂R and FΘΘ = r/R. The equation
of mechanical equilibrium yields an ordinary differential equation of the form

Σ
∂2r

∂R2
+

Σ+ p(0)
R

(

∂r

∂R
−

r

R

)

−
∂p(0)
∂R

∂R

∂r
− p(0)

∂

∂R
(FΘΘ) = 0. (153)

Through the displacement boundary condition at R1, we find that C = (R1 −
v)2 −R2

1. We may then determine p(0) by integrating (153) from R0 to R1.
The incremental equations governing the stability and postbuckling behaviour

are implemented according to the methodology outlined in the electronic sup-
plementary material. We note that the fixed-reference elastic moduli have the
form P aB

c
D = ΣδacδBD. The higher order fixed-reference elastic moduli are

zero. The critical value of v when mode n buckles is v(n). In brief, the buckled
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expansion is

v = v(n) +
1

2
ε2v(2) + . . .

u = u(0) + εu(1) +
1

2
ε2u(2) + . . .

p = p(0) + εp(1) +
1

2
ε2p(2) + . . .

In brief, we have that

u(1) =
(

a+Z
(n)R exp (inΘ) + a−Z

(−n)R exp (−inΘ)
)

eR

+
(

a+Z
(n)Θ exp (inΘ) + a−Z

(−n)Θ exp (−inΘ)
)

eΘ,

p(1) =a+Z
(n)p exp (inΘ) + a−Z

(−n)p exp (−inΘ) ,

where eR and eΘ are the orthonormal cylindrical basis vectors. It may be easily
shown7 that we may assume without loss of generality that each of Z(n)R, Z(n)p,

Z(−n)R and Z(−n)p are real, and Z(n)Θ and Z(−n)Θ
(2) are purely imaginary. Since

a+ = ā− and Z(−n) = Z̄(n), we may thus write the solution in the form

u(1) = aZ(n,∗)R cos (nΘ)eR + aZ(n,∗)Θ sin (nΘ) eΘ,

p(1) = aZ(n,∗)p cos (nΘ) ,

where Z(n,∗) and a are real. We similarly find that we may write the O(ε2)
solution in the form u(2) = v(2)u(2,p) + a2u(2,a) (similarly for p(2)), where

u(2,a) =
(

Z(2n,∗)R
(2) cos (2nΘ) + Z(0,∗)

(2)

)

eR + Z(2n,∗)Θ
(2) sin (2nΘ)eΘ

p(2,a) = Z(2n,∗)p
(2) cos (2nΘ) + Z(0,∗)p

(2) ,

and Z
(2n,∗)
(2) and Z(2n,∗)

(0) are real functions of R. The above variables (and u(2,p))
may be solved for using the method outlined in the electronic supplementary
materials.

The ordinary differential equations governing the above variables are highly
unstable for large n. This is not surprising because our boundary layer analy-
sis indicates that the solutions are of the order of exp(nρ). The determinantal
method (whereby one separately integrates two independent solutions and su-
perposes them) is therefore unsuitable (Goriely et al. [12]). We thus employ the
method of compound matrices. This has been previously done in the numerical
solution of the incremental equations of nonlinear elasticity by (amongst others)
Haughton and Orr [13], Goriely et al. [12] and the authors of this paper [19].
The method is sourced from Ng and Reid [25], to which the reader is referred
for a more detailed explanation.
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Figure 1: At the top we plot the asymptotic convergence of the critical displacement, with the

limit v(I) plotted in a solid line and v(I)+ς−1v(1)(II) plotted in a dashed line. The dimensions are

such that R0/R1 = 1/2. At the bottom we plot the asymptotic convergence of the magnitude
|a| of the buckle. The asymptotic limit is plotted in a solid line. The critical modes are
{2, 3, 4, 5, 20, 50, 75, 100, 125, 150, 200}.
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Figure 2: The asymptotic convergence of the first and second order components of the dis-
placement as the wavenumber n converges to infinity. Here R0/R1 = 1/2 and we employ the
displacement boundary condition at R1. The variables are evaluated at R0. The asymptotic
limits are plotted in solid lines.
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Figure 3: The postbuckled profiles for modes 2-5. We employed the displacement boundary
condition and R0/R1 = 0.5. We have plotted equally-spaced contours of R (the reference
coordinate) from 0.5 to 0.65. In the first column ε2v(2) = 0.005, and in the second column

ε2v(2) = 0.025.
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Figure 4: The effect of varying the ratio R0/R1 on the onset of buckling, for modes n ∈
{2, 3, 4, 5, 10, 20}, and the asymptotic limit n = ∞. On the left we plot the logarithm of the
hoop stress at R0 at the time of buckling, and on the right we plot the magnitude a of the
buckle. Online Version in Colour

8.1. Results

We test the accuracy of our ansatz by comparing it to the direct numerical
solution of the incremental equations. The asymptotic convergence for large n is
plotted in Figures 1 and 2. Here R0/R1 = 1/2. It is interesting to observe that
for low modes, the buckle is supercritical and stable (since a > 0), but for higher
modes (and in the asymptotic limit), a < 0, so that the buckle is subcritical and
unstable (refer to Section 4.3 for an explanation of this analysis). Furthermore
the first mode to go unstable appears to be between 5 and 20. Observe also
that the asymptotic convergence of Zn,∗

(2) appears to be much slower than the

asymptotic convergence of Zn,∗
(1) . This is not surprising because we needed to

solve an additional order of the asymptotic equations to determine Zn,∗
(2) .

We plot the buckled contours in Figure 3 to demonstrate the qualitative
nature of the wrinkling. We plot the buckled contours for modes 2-5, with
ε2v(2) = 0.005 and ε2v(2) = 0.025. These plots demonstrate the emergence of
the boundary layer. It may be observed that as the mode number n increases,
the displacement is increasingly concentrated at R0. Furthermore, consistent
with our boundary layer analysis, for fixed ε2v(2), as n increases the buckled
profile is increasingly dominated by u(2) at the expense of u(1). In particular,
with the R = R0 contour when ε2v(2) = 0.025, it may be seen that the mode 2
plot is dominated by u(1) (as the wrinkled shape is predominantly of mode 2),
but the mode 5 plot is dominated by u(2) (the wrinkled shape is predominantly
of mode 10).

In Figure 4 we investigate the dependence of the wrinkling on the ratio

7See MacLaurin et al. [19] for a more detailed explanation.
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R0/R1. It may be seen that the asymptotic limit of the hoop stress PΘΘ at
R0 at the time of buckling is independent of R0/R1. Furthermore our results
suggest that as R0/R1 → 1, the mode which buckles first asymptotes to ∞. We
also see that the magnitude a of all of the buckles gets smaller as R0/R1 → 1.
However in the asymptotic limit, a is always less than zero, meaning that in the
asymptotic limit the wrinkles are eventually subcritical.

9. Discussion

In these results we have seen that the asymptotic limit v(I) was never the
first mode to go unstable. Moulton and Goriely [21] observed similar results to
ours in their various models of an externally compressed tube (without growth):
the asymptotic limit of the critical pressure appears to occur well after the ini-
tial critical pressure. However when the bifurcation parameter was some form of
growth8, the asymptotic limit of the critical growths of the modes was close to
the critical growth of the initial mode to go unstable (Moulton and Goriely [21]).
The authors observed a similar phenomenon in their modelling of the growth-
induced buckling of tumour capillaries [19]. They proved using the methods of
this paper that sometimes the asymptotic limit was the infimum of the critical
growths. This phenomenon arises because the (confined) growth generates an
enormous hoop stress at the inner boundary. It underscores our discussion in
Section 4 that we cannot simply assume that the system adopts the first mode
to go unstable: such a mode may not even exist, or even if it does exist, then it
may have such a fine wavelength that it lies outside the validity of the model.
Furthermore we expect that such fine wrinkled patterns are vulnerable to inho-
mogeneities, so that it is difficult to predict from analytic consideration of the
model the preferred buckled mode of the system. Perhaps these considerations
suggest the importance of performing an imperfection sensitivity analysis in the
manner of Cao and Hutchinson [4].

It is possible that our analysis might shed some light on the period-doubling
phenomena observed in (for example) Brau et al. [2] and Li et al. [17]. In
these phenomena, in general, an initial wrinkled pattern was observed, which
over time evolved into a pattern with double the wavelength. It is possible

that, λ
(γ∗

2 ,γ
∗

3 )
(I) is close to the infimum of the points of instability of the modes,

which would explain the susceptibility to fine wrinkling. However as λ increases,
modes of higher wavelength become unstable and eventually more energetically
favourable, so that the system eventually jumps to these preferred modes.

Finally we note that many of the phenomena outlined in the introduction
involve the wrinkling of a thin film anchored to some sort of compliant substrate
(for example Cai et al. [3],Hohlfeld and Mahadevan [14],Cao and Hutchinson [5]).
If the film is sufficiently thin, we would not expect the boundary layer analysis
of this paper to be accurate. However it is possible that the method of this
paper could be generalised into a two (or one) dimensional model of the film,
coupled with a boundary layer analysis of the substrate.9

8Using the modelling briefly outlined in Section 5.1, with no external compression.
9The cited works have already gone some way towards this.
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10. Conclusion

In this paper we have investigated surface-wrinkling in elastostatic prob-
lems. We determined the onset of buckling using a linear-stability analysis, and
the leading-order postbuckling behaviour through consideration of higher-order
terms of the energy. We then applied a boundary-layer analysis to this prob-
lem, determining the leading order behaviours of the eigenmode, the critical
parameter, and the magnitude of the buckle. We found that the magnitude of a
buckle with wavenumbers ςγ∗2 and ςγ∗3 (for fixed γ∗2 and γ∗3) has leading asymp-
totic order ς−

3
2
√

λ(2), for an increment λ(2) of the critical parameter beyond
the critical time of buckling. We finally confirmed the accuracy of our ansatz
on a compressed NeoHookean ring.
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