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Abstract: In this work a depth and pitch controller for an autonomous underwater vehicle
(AUV) is developed. This controller uses the model predictive control method to manoeuvre
the vehicle whilst operating within the defined constraints of the AUV actuators. Experimental
results are given for the AUV performing a step change in depth whilst maintaining zero pitch.
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1. INTRODUCTION

There exists two types of unmanned underwater vehi-
cle (UUV); remotely operated vehicles (ROVs), and au-
tonomous underwater vehicles (AUVs). ROVs are typi-
cally tethered to a ship or surface structure, with the
tether providing power and communication between the
vehicle and operator. The use of the tether enables a pilot
on the surface to manoeuvre the vehicle accurately and
intelligently in order to complete a complex task such as
repairing an oil well riser. The disadvantage of an ROV is
that, due to the tether, the range of the vehicle is short
and any motion of the ship is coupled with the ROV.

AUVs are typically of torpedo shape, with four control
surfaces and a propeller at the stern of the vehicle. These
vehicles are used for long range survey type operations
where the vehicle essentially acts like a bus for onboard
sensors to log data (McPhail [2009]). Such missions include
bathymetry, CTD (conductivity, temperature and depth),
or mine detection surveys among many other survey type
missions. Due to the actuator set on-board a typical AUV,
the vehicle has a minimum speed below which the vehicle
becomes unstable (Burcher and Rydill [1994]). This results
in a vehicle that is incapable of hovering and thus unable
to conduct detailed inspection type missions.

The next generation of AUV will have the ability to transit
long distances, typical of standard AUVs, but also slow
down to a hover in order to conduct inspections on areas
of interest, typical of ROVs. In order to do this requires
a new approach to designing the vehicle and the on-board
actuators. Along with the physical design challenges are

implementation challenges such as controlling the vehicle
using a multitude of actuators.

In this paper a depth and pitch controller is developed
using the model predictive control method. A model of
the AUV, that will be used within the controller design,
is given. The model predictive control method and imple-
mentation is described. Experiments have been conducted
in an acoustic tank, measuring 8 x 8 x 5 metres, at the
University of Southampton. All the tests are the same,
with a step change in depth from the surface to 1 metre
whilst maintaining 0o, and controller parameters varied to
tune the controller. The experimental results of the depth
and pitch controller are given and evaluated by the depth
overshoot, depth settling time and final pitch value.

1.1 Delphin2 AUV

The Delphin2 AUV (Fig. 1) (Phillips et al. [2010]) is a
prototype vehicle designed for the development of AUV
control and navigation methods, a brief specification is
given in Appendix A. The AUV is torpedo shaped and
over-actuated with four through-body tunnel thrusters,
four independently controlled control surfaces, and a rear
propeller. The term ’over-actuated’ is used as the vehicle
has more actuators (nine) than degrees of freedom (six),
however this is only true when the vehicle is moving as
the control surfaces will not produce any force whilst the
vehicle is stationary (relative to fluid).

As mentioned earlier, a typical AUV has a minimum
velocity below which the vehicle becomes unstable. With
the Delphin2 AUV, the through-body tunnel thrusters
are used below this critical speed to maintain vehicle



Fig. 1. Delphin2 AUV: Over-actuated hover capable AUV

stability. The thrusters are the dominant actuator set
when operating between minus 0.3 ms−1 to plus 0.5 ms−1

forward speed.

To date the Delphin2 AUV has relied upon gain-scheduled
proportional integral derivative (PID) controllers for ma-
noeuvring the vehicle, (Steenson et al. [2011a]) and (Steen-
son et al. [2011b]). These controllers are decoupled from
each other, thus a controller exists for each degree of
freedom that the operator wishes to control. Although
these controllers have been reasonably successful, the lack
of coupling between degrees of freedom and the reliance
on fixed values (such as estimated buoyancy) can present
problems when performing complex manoeuvres or if the
system unexpectedly changes (loss or gain of buoyancy).

2. AUV MODEL

For this work the AUV will be modelled in two degrees
of freedom; pitch (θ) and depth (Z), and with two inputs;
the front and rear vertical through-body tunnel thrusters.
A complete representation of the vehicle physics would
result in a highly nonlinear model (Fossen [1994]). As the
control method in this work relies on a linear model, first
a simplified nonlinear model is development and then a
linear approximation of the nonlinear model is created.
This linear model is used within the model predictive
control design. The nomenclature for all the equations can
be found in Appendix B.

2.1 Nonlinear Depth and Pitch Model

Pitch Model

θ̈ = [T0actxT0 + T1actxT1 −BGmg sin θ − 1

2
ρCDθAθ θ̇

2]/I

(1)

θ̇ =

∫ t

0

θ̈ dt, θ =

∫ t

0

θ̇ dt (2)

Depth Model

Z̈ = [T0act cos θ + T1act cos θ +B − 1

2
ρCDZAZŻ

2]/I (3)

Ż =

∫ t

0

Z̈ dt, Z =

∫ t

0

Ż dt (4)

2.2 Thruster Dynamics

It has been shown that if the actuator dynamics are not
taken into account when designing a controller for an
UUV then performance of the controller can be dominated
by the actuator dynamics (Yoerger et al. [1990]). For
this work the thruster dynamics have been simplified
as a first order system from thrust demand to actual
thrust. Although the thrusters are not exactly a first
order system, the approximation should be sufficient to
enable the controller to handle the inherent lag between
demand and generated thrust (Steenson et al. [2011a]).
The controller output is therefore a thrust demand (N). As
the motor controller used by the thrusters accepts a speed
demand, the inverse of the quasi-steady thrust equation
(7) is used to define the speed set-point that will produce
the thrust demand (Steenson et al. [2011c]).

n = [Tact/ρKTD
4]0.5 (5)

2.3 Linear Depth and Pitch Model

Both the pitch and depth models, (1) and (4), have
nonlinear terms due to hydrodynamic damping when the
vehicle is moving. These terms will be approximated by a
linear term about zero. There are also cosine functions in
the nonlinear model, these have been approximated to 1.
This should be adequate for vehicle operation ±20o pitch
angle, with a maximum error of ±6%.

Combining (1) - (4), linear hydrodynamic damping terms
and the thruster dynamics, we can represent the AUV with
the state space model:
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3. MODEL PREDICTIVE CONTROL

Model predictive control (MPC) has been chosen for this
AUV due its ability to handle multiple degrees of freedom
using a model of the system with constraints. MPC cal-
culates the optimal control inputs over a finite number of
time steps in order to reduce the error. The constraints are
specified within the controller, thus enabling the optimal
control to be calculated within the stated constraints.
In this work the constraints are set on the minimum
and maximum thruster forces. Due to the vehicle being
positively buoyancy (it floats), the thruster limits are set
such that the thrusters only rotate in one direction and
the motors do not stop. The reasoning for avoiding zero
speed is due to the nonlinear dead-band associated with a
motor starting stationary.
In this study two controller parameters are adjusted in
order to tune the controller. The performance of the con-
troller will be evaluated by the overshoot (percentage of
step change), settling time (time to within 10% of set-
point) and the pitch angle at the end of the test.

3.1 MPC Algorithm

A full derivation of the algorithm can be found in (Wang
[2010]) and the relevant references therein. Here the steps
required to create and run the model predictive controller
will be described.

First the continuous state-space model of the system is
converted into a discrete state-space model using the
time step chosen for the controller giving the dynamics,
input and output matrices Ad, Bd and Cd respectively.
This discrete state-space model is then embedded with an
integrator to create an augmented model of the system
giving:

A =

[
Ad oTd

CdAd I

]
;B =

[
Bd

CdBd

]
;C = [odI] (8)

Using the prediction horizon, Np, and the control horizon,
Nc, we create the matrices;

F =


CA
CA2

CA3

..
.

CANp

 (9)

φ =


CB 0 0 ... 0
CAB CB 0 ... 0
CA2B CAB CB ... 0

..
.

CANp−1B CANp−2B CANp−3B ... CANp−NcB


(10)

The optimal change in control signal, ∆U , for the fu-
ture Nc control inputs can be calculated by solving the
quadratic programming problem;

∆U = (ΦTΦ+ R̄)−1(ΦT R̄sr(ki)− ΦTFx(ki)) (11)

In this work, φT R̄s is taken as the last nin columns of F,
where nin is the number of system inputs. R̄ is used as a
tuning parameter and for this work is an identity matrix

multiplied by a scaler, and r(ki) is the depth and pitch
set-points at sample ki.

The optimal solution is then evaluated to check whether
any of the control inputs have violated the specified
constraints. If a constraint has been violated then the
Hildreth programming procedure (HPP) is used to find a
correction term, λ∗, such that an optimal solution can be
found within the constraints. Therefore the optimal within
constraints is:

∆U = (ΦTΦ+ R̄)−1(ΦT R̄sr(ki)− ΦTFx(ki))...

...− (ΦTΦ+ R̄)−1MTλ∗ (12)

The first nin values in the optimal ∆U set are taken and
added to the previous control input U (initialised at zero),
such that the control signal is an integral of the optimal
solution ∆U .

3.2 Implementation

The MPC controller has been integrated into the Delphin2
control software as a separate node. The code is written
in the computer programming language Python within the
robotics framework ROS (Quigley et al. [2009]). Processing
efficiency of this code is not optimised however has proven
adequate for this work. For better computational efficiency
a low level programming language such as C or C++ could
be used. Depth and pitch are measured using a pressure
transducer and digital compass sensor respectively. Linux
is used as the computers operating system on-board a dual
core mini-itx board.

4. RESULTS

The results presented here are for the Delphin2 AUV
diving, using the vertical tunnel thrusters only, from the
surface to 1m depth whilst maintaining 0o pitch. The
system is a multi-input multi-output system where the
inputs are the front and rear vertical thrusters and the
outputs are depth and pitch. The system has been dis-
cretized using a ∆t value of 0.1 seconds. Two parameters
in the controller have been varied in order to tune the
controller; Np and R̄. Twenty-two tests were conducted at
four different Np values. The tests were conducted in an
acoustic tank measuring 8 x 8 x 5 metres deep.

4.1 Overview

Fig. 2 presents the results from a test with Np and R̄
equal to 50 and 1.25I respectively. As can be seen in the
top plot, the depth does not start from 0 m, this is because
the offset of the transducer is not correctly set. This does
not effect the performance of the controller as the offset
remains the same for all the tests.

The performance of the depth controller is good, with
a smooth transition from the surface to 1 m depth.
Maximum measured overshoot for the test is measured at
7.6% however it is expected that if the depth signal was
post-processed with a filter, to remove the noise, then the
real overshoot would be much less. The pitch control in
this case resembles most of the test cases in that there
is a strong disturbance to the pitch whilst diving but the
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Fig. 2. Step change in depth with pitch demand fixed at
0o. From top, 1st plot; Dashed line = depth set-point,
Solid line = measured depth. 2nd plot; Dashed line
= pitch set-point, solid line = measured set-point.
3rd plot; Dash line = maximum and minimum thrust
constraints, solid lines = thrust demands. 4th plot;
Dash line = maximum and minimum change in thrust
constraints, solid lines = change in thrust demands,
5th plot; Number of iterations of the HPP on each
control loop.

controller recovers to near the desired set-point. The pitch
did not converge to the desired 0o in any of the tests.

The third and forth plots of Fig. 2 are of the thrust
demands and the change in thrust (∆thrust) demands
from the controller respectively. Both plots include the
constraints imposed on the controller for the maximum
and minimum thrust and ∆thrust values. The fifth plot
shows the iterations of the HPP on each sample. When-
ever the value is greater than zero then the constraints
have been violated and the HPP will iterate towards a
correction term to find an optimal solution within the
constraints.
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Fig. 3. Percentage overshoot of the set-point for four Np
values; ’*’ dashed line = Np of 25, ’o’ solid line = Np
of 50, ’*’ solid line = Np of 75, and ’o’ dashed line =
Np of 100

4.2 Overshoot

Overshoot is of great importance for a depth controller
as the AUV could collide with the seabed resulting in a
potentially catastrophic failure. In Fig. 3 the percentage
overshoot is plotted against R̄ for the four Np values;
25, 50, 75 and 100. It should be known that none of
the R̄ values with the Np value of 25 provided a stable
controller, instead it oscillated about the set-point with a
large amplitude. For the higher Np values stable R̄ values
were found resulting in overshoots of below 10%. For Np
of 50 the range of R̄ values providing a stable system is
narrow in comparison to the higher Np values of 75 and
100. All of the stable results have an overshoot value of
approximately 5%, it is expected that if the depth signal
was filtered to remove noise then the overshoot values
would be lower.

4.3 Settling time

Second to overshoot as regards importance for any con-
troller is the ability to quickly reach the set-point that
the user, or high level controller, demands. If a system
is designed to be too stable, so as to minimise the risk
of overshoot, then the system may never reach the desired
set-point within a suitable time. In Fig. 4 the settling time
(the time taken from the start until the AUV reaches and
stays within ±10% of the set-point) is plotted against R̄
for three Np values; 50, 75 and 100. Data from tests that
never converged to a stable value within the ±10% of the
set-point have been emitted, thus all of the data from the
tests with Np of 25 are not included.
From Fig. 4 it can be stated that the shorter the length
of the prediction horizon, Np, the faster the settling time.
However, as the data from the tests of Np equal to 25 have
been emitted due to the AUV being unstable, it can also
be said that the desire for a fast settling time must involve
consideration for both stability and overshoot.
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Fig. 4. Settling time to within ±10% of set-point for three
Np values; ’o’ solid line = Np of 50, ’*’ solid line =
Np of 75, and ’o’ dashed line = Np of 100
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Fig. 5. Final pitch value at the end of the test for three
Np values; ’o’ solid line = Np of 50I, ’*’ solid line =
Np of 75I, and ’o’ dashed line = Np of 100I

4.4 Pitch control

In this work the pitch controller has been used to maintain
zero degrees of pitch. All of the tests, that are stable in
depth control, have resulted in a slow convergence towards
zero pitch. Fig. 5 plots the final pitch value at the end of
each test against R̄ for three Np values. The data presented
in Fig. 5 are for stable test data. In general the lower the
Np value the better convergence towards zero pitch angle.
This corresponds with the settling time shown in Fig. 4.

5. CONCLUSIONS

A depth and pitch controller has been developed for the
Delphin2 AUV using the model predictive control method.
The controller has been implemented on the AUV and
experimental results given. The controller has been tuned
using two controller variables. The depth controller has

been shown to work very well with minimal overshoot
and a fast settling time. It has been shown that a higher
Np value is more likely to provide a stable controller as
opposed to a low Np value. For a faster response the
opposite is true, with the fastest stable responses being
at the Np value of 50 before becoming unstable at Np
of 25. For the tuning of a new controller it is expected
that a high value of Np should be used to increase the
likelihood of stability, then the Np value can be reduced
incrementally to improve response time.

The pitch controller has only been tested by maintaining
zero degrees pitch. Although the pitch does show conver-
gence to zero, none of the tests converge to the set-point.
The settling time for pitch is therefore significantly slower
than that of the depth controller. The separate tuning of
the depth and pitch response needs to be investigated.

For these tests the linear model has proven sufficiently
accurate for the MPC method to work. It would be
expected that if MPC was to be used on the vehicle whilst
moving forward that a linear model would not be accurate
enough due to the dominance of the velocity squared terms
in the nonlinear model.
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Appendix A. DELPHIN2

Depth = 50 m (maximum)
Speed = 2 ms−1

Range = 20 km (estimated)
Endurance= 8 hours

Appendix B. NOMENCLATURE

∆U = Array of ∆thrust demands
θ = Pitch angle (radians)
ρ = Density of water (kg.m−3)
Aθ = Area of vehicle about pitch axis (m2)
AZ = Area of vehicle about Z axis (m2)
B = Vehicle buoyancy (N)
BG = Distance between centre of buoyancy and

centre of gravity (m)
CDZ = Nonlinear drag coefficient for pitch axis
CDθ = Nonlinear drag coefficient for pitch axis
D = Thruster diameter (m)
g = Acceleration due to gravity (ms−2)
G = Derivative of restoring moment with re-

spect to pitch (Nm
rad ),

I = Vehicle inertia about pitch including
added inertia ((kg.m2))

kd = Linear drag coefficient (dimensional) for
Z axis ( N

ms−1 ),
kp = Linear drag coefficient (dimensional) for

pitch axis ( Nm
rad.s−1 ),

KT = Thrust coefficient
m = Vehicle mass excluding added mass (kg)
M = Vehicle mass including added mass (kg)
n = Thruster speed (rps)
nin = Number of system inputs
Nc = Control horizon (number of samples
Np = Prediction horizon (number of samples)
R̄ = Controller gain matrix
T0act = Produced thrust from front thruster (N)
T1act = Produced thrust from rear thruster (N)
T0demand = Thrust demand for front thruster (N)
T1demand = Thrust demand for rear thruster (N)
TT = Thruster time constant (s)
xT0 = Distance from centre of gravity to front

thruster (m)
xT1 = Distance from centre of gravity to rear

thruster (m)
Z = Depth (m)


