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ABSTRACT would like to distribute the items in a way that maximizes social

Following previous work on payment redistribution in static mech- welfare. In order to incentivize agents to reveal their private values,

anisms, we develop the theory of redistribution in online mech- Payments must be introduced. Importantly, there is no revenue-
anisms (e.g., [2, 10, 8]). In static mechanisms, redistribution is maximizing auctioneer aesidual claimanto absorb the revenue.

important as it increases social welfare in scenarios with no resid- Thus, any revenue'collected represents the cost of truthfulness, and
ual claimant. Many online scenarios also do not have a natural 46creases the social welfare. It has been shown [6] that the cost
residual claimant, and redistribution there is equally important. In €annot be zero: i.e., budget balance and allocative efficiency are

this work, we adopt a fundamental online mechanism design model not cqmpatiblfs. Against this background, the redistribution .Iitera-
where a single expiring item is allocated in eachTofperiods ture aims to distribute back as much of the revenue as possible.
Agents with unit demand are present in the market betvveen. their Much of the work on redistribution mechanisms focuses on find-
arrival and departure periods, which are private information along "9 t\r/‘gcb;ESt mechanism froTOthg Glrfvest:Iass: €., on lzerc]ilstnb;t-
with the value an agent attributes to the item. For this model, we 'dng q pay”;f?r?ts (e.g.,h[ A 7])"1 HUt some V\{ohr h as ad-
derive a number of properties characterizing redistribution in on- iressed non-€ |C|ent.mec anlsms[ 4] owever, .W't.t € excep-
line mechanisms (including revenue monotonicity properties, and tion of [3] discussed in Section 7, all of the redistribution results
quantifying the effect an agent can have on the total revenue). We assume static settings, in which the decisions are made at the same
then design two redistribution functions. The first one generalizes time in th? presence of 6_‘" participating agents. Wh'le relevant_to
the static redistribution proposed by Cavallo [2] making redistri- S°Me settings, in others Ilke_electrlc vehicle gharg_lng and allogatlon
bution after the departure of the last agent. For this redistribution ©f €0mputational resources in cloud computing this is not a suitable
function we provide theoretical worst-case guarantees. The sec-mOdel'

ond function is truly “online” making redistribution to each agent To th|§ end, we prgwde the first re_sults on red|st.r|but|.oummne. .
on her departure. The performance of both functions is evaluated mechanisms. Spemflcally, we consider the case n which decnsm_ns
using numerical simulations must be made over time, with a separate decision made each period,

and agents who arrive and depart at various times not known by the
mechanism, i.e., the private information of each agent also includes

Categories and Subject Descriptors her arrival and departure times.

1.2.11 Distributed Artificial Intelligence ]: Multiagent systems As in the prior work on static models, our goal is to maximize
social welfare. Welfare maximization is a natural objective for al-
Keywords locating resources in situations without a revenue-maximizing auc-

tioneer. An example of an online setting where social welfare is the
right objective is electric vehicle charging [5, 14], where vehicles,
arriving and departing at different times of day, draw electricity
1. INTRODUCTION from a shared resource such as a community-owned wind turbine
Revenue redistribution is a growing area of study within mecha- Or need to divide between them a joint quota made available by the
nism design. Its importance can be intuitively illustrated by means €lectricity distribution company. Another example is cloud com-
of a simple example. Consider a situation in which a number of Puting, in which computational jobs arriving over time need to be
identical items need to be allocated among a group of agents (spe-2llocated to a number of processors.
cific examples might include allocating free tickets for a popular 1N our work we consider the fundamental model where identical
talk, deciding which roommate gets to use the living room for a items are distributed among agents with unit demand [13]. In par-
weekend party, or a"ocating university parking spots among fac- tiCUlar, we focus on deterministic, |nd|V|dUa”y rational (i.e., each
ulty members). Each agent has a private value for the item, and we@gent should not be worse off after participating in the mechanism),
and weakly budget-balanced (i.e., the total payment collected from
*Dou.ble afflllatlon W|th Politecnico di Milano, Milan, |ta|y Email: the agents should be non_negative) mechanisms where truthful re-
ceppi@elet.polimi.it porting is a dominant strategy. We refer to the latter property as
dominant strategy incentive compatibil{SIC). A class of online

Appears in: Proceedings of the 12th International Conference on  mechanisms satisfying these properties has been described in [13],
Autonomous Agents and Multiagent Systems (AAMAS 2013), It0,5nq we study redistribution within this class. This simple model

ﬂggﬁ; %lgi&and Shehory (eds.), May, 6-10, 2013, Saint Paul, Min proves to be a good departure point for the study of redistribution
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to online settings such as: (i) arrival and departure times are privatethat are present at some time betwéesndT’, with the cardinal-
information of the agents, (i) in each period no information about ity denoted byn = |N|. We denoté by «* : § — {0,1}" the
agents arriving in the future is available, and (iii) the allocation de- greedyallocation function [13] that, at each time allocates the
cisions in each period are interdependent. We start with deriving a good to the previously unallocated agent who is present at time
number of general properties for this online setting (see Section 3).¢ and has the highest value among all unallocated agents present
Based on the general properties, we design two redistribution at ¢. Allocation to agent is specified byr!(8) € {0,1}. For-
functions. One is a generalization of the function proposed for mally, 7{(¢) = 1if ¢ € N' andi = argmax;c ¢ v; Where
static settings by Cavallo [2]. Under this rule, redistribution occurs Nt — (j € N | ¢ € [a;,d,] and 3% W;’ (6) = 0} denotes the

. . t'=a;
only ajter the last agent departs. We prowae gnal_yncal guaranteesgqy agents active on daylf there areJmuItipIe active agents with
of the performance of the generalized redistribution. The second

f - distrib h her d Perf the same highest value, the allocated agent is determined randomly.
unction, re !St” _utes to eac _agent on her _epart_ure. eriormance  tpe utility of agenti € N from participating in the market is
of both functions is evaluated in numerical simulations.

h ; buti  thi K follows: u;i(0) = v;mi(0) — z;(0) wherez; () denotes the payment of
In summary, the main contributions of this work are as follows: 55014 (defined in Equation 1 and generalized in Equation 3), and

: d; - )
« We derive general results characterizing properties of redis- 7i(6), defined a$~7% | ;(¢) indicates whether agenhas been
tribution functions in online domains that are required to guar- allocated ;(6) = 1) or not ¢r; () = 0).

antee dominant strategy truthfulness and weak budget bal- . We remark that, for this deterministic, single-unit demand set-
ance ting, the state of the art characterization was first presented by

Hajiaghayiet al. [9] (and, in a more extended form, by Parkes
u_[13]). Assuming individual rationality and zero payment from un-
allocated agents, they show that the allocation functiban be
truthfully implemented in single-valued domains witimited mis-
reports (i.e., no early arrivals/late departures can be reported) if
and only if the payment; of each agent € N takes the form:

e Based on these general properties, we design two redistrib
tion functions for online settings: one that redistributes to all
agents at the last period, and one that redistributes to each
agent at her departure time. Moreover, we provide theoreti-
cal guarantees on the performance of the first redistribution

function.
”L)C(G_i,ai,di) if 71'1(0) =1

2i(0) = 2:(0) = {0 otherwise @)

e \We evaluate the performance of both functions in redistribut-
ing collected revenue using numerical simulations.

c . . . it )
The remainder of the paper is organized as follows. First, we de- wherev®(6—;, a;, d;) denotes theritical valueof agenti:

scribe the online mechanism design model we adopt from [13]. We
proceed with a series of results pointing out the features that an on-
line redistribution function must satisfy to guarantee weak budget
balance and DSIC. Then, we propose two redistribution functions We dispose of the assumption that unallocated agents’ payment
analyzing them in terms of the percentage of revenue redistributed.is zero, and characterize all possible ways to modify the payment
Finally, we present the results of numerical simulations of the func- function above:

tions described.

ve(0_s,a;,d;) = min v} | m;(0;,0_;) = 1,for 0 = (v}, ai,d;) (2)
v;ER

i(0) = 2:(0) — h(0—i, ai, i) ®)
2. MODEL OF ONLINE MECHANISMS whereh(0_;, a;, d;) is the redistribution ageritreceives.

Existing literature on online mechanism design discusses several |n the next section we discuss how redistribution should be de-
models of online allocation (see [13] for an overview). We fo- fined in order for the allocation mechanism to maintain DSIC and
cus on a fundamental model proposed in [9, 13]. Specifically, we weak budget balance. Note that, individual rationality—the prop-
study the class afleterministic, model-freenline mechanisms. In  erty that each agent has a non-negative utility—is satisfied by the
such mechanisms, the allocation rule itself is deterministic, and the mechanism described above if and only if the redistribution is non-
mechanism does not need a model of future arrivals of the agentsnegative. This will be the case throughout the paper.
in order to compute the allocation. Furthermore, in this work we  The last part of the model that needs to be specified is the evalu-
only consider online mechanisms where truthtelling (i.e., true re- ation metric. As in much of the work on the static case (e.g., [2, 10,
porting of types by the agents) is a dominant strategy. Determin- 8]), we evaluate mechanisms based on the worst-case performance
istic, model-free, dominant-strategy mechanisms are the most de-guarantee: i.e., the welfare that is guaranteed regardless of agents’
sirable mechanisms to design as they require no prior information private information.
on agents’ types, and do not make any assumptions about risk- In order to better explain our results, we benchmark them against
preferences of the agents. the existing results for the static case. The relevant static case is
Formally, there ard’ discrete time periods, and agents may ar- allocatingm identical items among. agents (by definition, there
rive and depart withirl, T]. There is an identical item available s only one period” = 1 in the static case). Note that in the online
for allocation in each periotl. The items are “expiring”, and if  case, since we consider the scenario with single unit supply (i.e.,
not allocated within their period, they disappear (this is natural, for only one item can be allocated in each time interval), the number
example, when items correspond to computational time on a ma- of items is the same as the number of peripds= 7.
chine). We define the type of agehtsd; = (a;, d;,v;:), where
a; is her arrival periodd; is her departure periodl (< a; < 2To avoid complicated notation, we use typesf all agentsN as
d; < T), andv; € R is her value for obtaining the item. We an argument to the allocation functianand of all agents except

sometimes refer to the intervél,, d;] when agent is presentas 1V \ % to the payment functiom;. However, allocation at period

agenti's active window We useN to denote the set of agents IS decided based only on the types of the agents that already arrived
in the market. The types of agents that have not yet arrived are not

The case of multi-unit supply per period is not discussed in this used (and, in fact, cannot be known) by these functions.

paper, but our model can be extended to cover this case. 3We adopt this assumption throughout the paper.




The worst-case ratio for allocating items amongn agents is of (6), agent’s rebate is higher when she reports a later arrival or
measured as the percentage of revenue that is guaranteed to be ren earlier departure. Agentith the true value of zero (i.e., agent
distributed back to the agents regardless of their types: who is never allocated, or never pays for being allocated), would
want to lie about her arrival/departure violating DSIC.]

4)

Next we address the issue of weak budget balance in online
mechanisms. Denote hit(0) the total revenue collected by the
mechanism before any redistribution occurs: i.e., whgh.;, a;, d;) =
0, Vi. Similarly, denote byr(0_;) the total revenue the mechanism
collects, before redistribution, if agenwere not present.

whereR(0) = >, =i(0) is the collected revenue, add(0) =

> ien R(0-:) is the total amount redistributed. Note that the best
possible ratio of any mechanism satisfying weak budget balance is
one (corresponds to a fully budget-balanced mechanism).

In the static case of allocating identical items to agents with unit ~ LEMMA 2. Given reports of agents other thajg_;, let0; de-
demand, the private information of an agent is her value for an note the report of agentthat minimizes the revenu@™"(6_;) =
item 6; = v;. The ratio of various redistribution mechanisms can minyco R(0;, 6—;). Redistribution to agentcannot excee®™"(6—; )
be described as a function ef andn. For instance, as shown jp aWeakIy budget-balanced mechanism.
in [8], the Bailey-Cavallo redistribution mechanism [2, 1] achieves PROOF. SUPPOSEh(0_i, ai, d;) > R™(0_,). Recall that, in

the ratio of* order to maintain truthfulness, the redistribution to agenust be

ch(m, n) = n—m-—1 (5) independent of;. When agent has the typ#;, the revenue col-

n lected is exacthR™"(0_;). Thus, giverh(0_;, a;,d;) > R™(0—,),

In the online case, each agent’s private information also includes the weak budget balance property is violated as ageateives
the arrival and departure datés, = (ai,d:,v;). In the next sec- ~ more than the collected revenuel. |

tion, we show that it is more difficult to provide positive results for

the online case and show how to remedy this in Section 4. Lemma 2 provides an upper bound on the amount that can be

redistributed to each agent. We would like to redistribute as much
as possible, and are looking for ways to guarantees at least a certain

3. CHARACTERIZING REDISTRIBUTION percentage of revenue is redistributed: i.e., we would like to bound
IN ONLINE MECHANISMS redistribution from below. One of the difficulties in doing this is

We start with characterizing the class of DSIC redistribution mech- related to non-monotonicity of revenue described next.

anisms. LeEmMA 3. The revenue does not monotonically increase with

- . ) . the number of agents.
LEmMA 1. Under limited misreports, the mechanism specified

by the greedy allocation functior’ is DSIC if and only if the pay-
ment function is given by Equation 3 whet€d_;, a;,d;) is an
arbitrary function satisfying

PROOF The proof is by counterexample. Consider césgin
Figure 1. There are three agents, all present only; atGiven
the values reported in the figure, agent 1 is allocated and the total
revenue isk(6) = 10. Now, consider cas@) in Figure 1 in which
h(O_i,ai,di) > h(0—i,a;,d;) YO_i, a) > ai, di; < di  (6) a new agent, agent 4, whose active window(tis t2) is added.
Given the values reported in the figure, the only agent allocated is
agent 4 at;. Since her critical value is zero, the total revenue is
R(0) = 0. Thus, even though the number of agents increased, the
total revenue actually decreased.]

PROOF First, we show the “if” part: any payment rule (3) with
a redistribution functiork(6—;, a;, d;) satisfying (6) is DSIC. Re-
call that payment rule without redistribution (1) is DSIC [9, 13]
and note that the redistribution is independent of agent’s reported
valuev;. The only manipulation an agent has is with respeet;to We observe that while revenue does not monotonically increase
andd;. The condition in (6) guarantees that an agent never gets ain n, the critical value of each agent does.
higher redistribution by reporting a later arrival or an earlier depar-
ture. By assumption of limited misreports, agents cannot report an
earlier arrival or a later departure. Thus, the agents have no incen-

tive to misreport due to the redistribution term, and the mechanism Thjs observation may seem surprising as, at first, it appears to con-

OBSERVATION 1. Critical value of agent is non-decreasing in
the number of other agents. This holds foraall

remains DSIC. tradict Lemma 3. However, while the critical values of all agents
Next, we prove the “only if" part: only payment rules stated in  are monotone in the number of agents, allocation decisions are
the lemma truthfully implement the greedy allocatioh For this, made based on values of the agents rather than their critical val-
we need to argue that in a DSIC mechanfsmust be independent  yes. |t is possible that an agent with the highest value has the low-
of v; and must satisfy (6). To argue independence;afre invoke est critical value because it is patient (i.e., has a late departure date

results for static allocation aof: items amongr agents, whichis  and can wait for a less competitive period). Adding such an agent
a special case of our online mechanisms when arrival and depar-to an existing set of agents would decrease the collected revenue,
ture dates for all agents are the same. DSIC in the static case (e.9.but cannot decrease the critical values of other agents. Figure 1
see [12], Theorem 9.36) states that the difference between the payi||ystrates this.

ment of agent when she is allocated and when she is not allocated  Qur first result on providing a worst-case performance guarantee
(i.e., the price she pays for the item) must be exactly the critical js negative, showing that for amy andn, there are types of agents
valuev(6—i, a:,d;) defined in Equation 2. Thus, redistribution  sych that for each of thel®™"(#_;) = 0. This is in contrast

to agent; must be independent of. Finally, we show that DSIC g the static case of allocating identical items where, a non-zero
requires (6). We just argued that redistribution to agésindepen-  ratio could be achieved far > m + 1 for all agent values (see
dent ofv; and consequently of her allocation. Suppose in violation Equation 5). We show this through the following lemma.

“The allocation rule is set to the efficient allocation function in the SThis result is a generalization of Lemma 3 derived in [2] for static
Bailey-Cavallo mechanism. mechanisms.
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Figure 1: Example of non-monotonicity of revenue in the num-
ber of agents.
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Figure 2: Problem instance in which the worst-case ratio is zero
independently ofm and n.

LEMMA 4. The worst—case ratio of an online mechanism is
zero for anym andn.

PrRoOOF Consider the example depicted in Figure 2 viiith> 1.
Let the first two agents be present only in pertacand have the
value ofv, while the othem — 2 agents have the value 6f The
revenue for this problem instanceuisone of the first two agents is

allocated and pays the value of the other. The corresponding social
welfare before redistribution is zero. We argue that this cannot be
improved through redistribution. By Lemma 2, agent 1 can receive

no redistribution as the revenue is zero when she reforfEhe
same for agent 2. Next, exploiting non-monotonicity of revenue,
we show that, for each agent> 2, there is a typd; that results

in zero revenue, i.eR™™(0_;) = R(0,6_;) = 0. Suppose the
type reported by ageritis 9, = (t1,T,v’), wherev’ > v. By the
greedy allocation rule, agenwill be allocated on day one, but will
pay O, resulting in zero revenue. Thus, by Lemma 2, agent
cannot receive any redistribution eithef]

ExaMPLE 1 (CASCADE). There areT + 1 agents. Agent 1
has the windowl, 1] and the valuey, each agen2 < ¢ < T has
the window{: — 1, ¢] and the value) — (i — 1)¢, for some smalt,
and agenfl’+ 1 has the windowWT", T'] and the value — T'e. Each
of the agentd ... T — 1 is allocated in its departure period and
pays the value of the next agent:— ie. Ignoring thee's, the total
revenue from these agentsi¥6) = Tw. If agent 1 reports the
value of0 (or, equivalently is not present in the market), each of the
agents2...T + 1 is allocated in his arrival period and pay zero.
Generalizing this, if agentis dropped, the agents. . .7 — 2 each
payv while the agent$ — 1,7 + 1...T pay nothing. In Figure 3,
an example of the cascade is proposedfor= 4. In particular,
part (a) shows the allocation when agent 1 is in the market and part
(b)—when agent 1 is not in the market.

In the example above, agent> 2 cancels a fraction of roughly
1— ’;2 of the revenue. Thus, providing a uniform non-zero bound
on R(0) — R™(0_;) that holds for all agents is not possible.
However, we can bound the difference betwégfi_;) andR™"(0_;).
The difference can be positive due to non-monotonicity of revenue.
Intuitively, this difference is the amount by which introducing agent
i can reduce the revenue collected had agewot been present. To
bound it, we first characterize the effect a new agent has on the
allocation decisions.

LEMMA 5. Introducing agent with typeé;, which is allocated
in the market with agent®\ 7, affects the allocation of agenié\ :
only by forcing out one of the previously allocated ag&nts

W(0:,0-:) = W(0-:) U{i} \ {5}

whereW (X)) refers to the set of allocated agents when the set of
agents with typesY are in the market, ang € W(6_;) is the
agent that is forced out by

PROOF AgentsiW (6_;) represent the most “competitive” agents
in the market_,. From the point of view of agerit # i, arrival
of agent; causes the number of available items to decrease by one
and the critical values to weakly increase (Observation 1). Suppose
for contradiction that agent ¢ W(6-,) is allocated. The con-
tradiction is immediate, ag must have been allocated in the less
competitive markef_; as well. Thus, the only agents allocated af-
ter the arrival ofi, are the agents fro’ (6_;). Since the number
of available items decreases by one, all agé¥i{®_;) except one
(who we callj) remain allocated. []

Let v denote the highest value an agent can have.

LEMMA 6. The minimum revenue agentan induce with her
report is bounded by™"(0_;) > R(0—;) — ©.

PrROOF We saw in Lemma 3 that an agent can reduce the rev-
enue collected had she not been present. In order to influence
R(6-,), agenti must submit a report that affects either the allo-
cation or the critical values or both. If agef# report sets a critical
value for one of allocated agents but ageén¢mains unallocated,
the revenue increases. Notice that in this case, the allocation does
not change for any of the agents, but one of the agents pays a higher
price—the critical value provided by agent Therefore, agent

As the lemma above showed, one can construct a type profile may be able to decrease the revenue only if she is allocated.

0 where R™"(9_,) is zero for every agent. However, for value

To prove the bound, we use Lemma 5. When agénallocated,

profiles & where revenue comes from multiple agents, not every the set of other allocated agents remains the same except for one

agent can cancel the entire revenue. We would like to bound exactly 5

how much the report of agefitan decrease the reveniéd). This
turns out to be difficult as the next example illustrates.

We implicitly assume that there are no items that are unallocated
due to lack of demand. In that case, agéntay claim the unal-
located item without forcing anyone out. However, this does not
affect any of the results in the paper.
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Figure 3: A cascade example. (ajR(0) ~ 4v when agent 1 is in the market, (b)R(6—1) = 0 when agent 1 is not in the market.

agent that is forced out. By Observation 1, the critical values of
those agents cannot decrease with the appearance ofiagénis,

the amount collected from all agents but one is at least as high as it

was before ageritshowed up. Agent can reduce the revenue, by
forcing out an agent who paid a lot, and paying less herself. The
difference is the biggest when the forced out agent has the critical
valuev and agent has the critical value of zero. The claim in the
lemma follows immediately. [

THEOREM 1. The redistribution function given in Equation 7
is weakly budget-balanced.

PROOF The proof is immediate from the definition of redistri-
bution. For each agerjt we have
1 c . . . 1 min .
- Z v9(0=s,ai,d;) > ﬁR (0-5)
1EN|m;(0)=1

Adding up the inequalities for all agents, we obtain the result: total

The discussion in this section focused on general properties of revenue collected®(6) (left-hand size in Equation (8)) is above the

online redistribution mechanisms. In the next two sections, we ap-
ply these intuitions to design specific redistribution rules.

4. REDISTRIBUTION AT THE LAST PERIOD

Based on the mechanism of Cavallo [2] and using results from the
previous section, we can now design a redistribution mechanism.
Let us consider redistribution at peridd By then, we know the
entire set of agent®’ and their types. Our mechanism uses the
greedy allocation rule and the following redistribution function:

_ Rmin(Q,i)

h'(0-) -

@)

whereR™"(_;) is defined as

R™(0_;) = min R(0},0-) =

min E
’

i JEN|m;(0],0_;)=1

v ((0;,0-3)—5,a5,d;)

Note that the redistribution function is from the class of DSIC func-

total redistribution (right-hand side):

c 1 min
>ooow (9—i»ai,di)2g;R 0-5) (8

iEN|m;(0)=1

R(0)

O

Recall from Lemma 4 that one can construct a problem instance
with a zero ratio for anyn andn. However, we can provide pos-
itive results when enough agents are present and the total revenue
collected is higher than the highest vaiua single agent may have.

THEOREM 2. The worst-case ratio guaranteed by the redistri-
bution function in Equation 7 is:

n — 2T
n
PROOF Since there arf’ items, at mosf’ agents can be al-
located. Payment of each allocated aggit v°(0—;,a;,d;) =
MiNie N\ {}[t;(6_;)€{ay ... d;} Vi wheret;(0_;) denotes the day
when agent is allocated in the market with agemis.; or O if
agent: is not allocated. Clearly, each payment is determined by

2

(R(0) — )

r(m,n,v)

tions characterized in Lemma 1. Also, observe that this mechanismexactly one agent. Thus, we have at nibstifferent agents setting

is a generalization of Cavallo’s redistribution [2], which is recov-
ered by setting” = 1.

We remark thatR™"(6_;) is given by one of the following two
cases:(1) agent; reporting zero andR™"(6_;) = R(A_;) as in
Example 1; or(2) agent: reporting a high value to take an item
away from a high-paying agent, and a long enough windows to
have a low payment as in the example in Figure 1.

Next, we show that the mechanism is weakly budget-balanced,
and prove performance guarantees.

payments for the allocated agents. In total, we have at Rifst
agents that are either allocated or set payments.

Removing any of the other— 27" agents, does not affect the rev-
enue, and for any such agentR(_;) = R(¢). From Lemma 6,
R™"(0_;) > R(A—;) — . Thus, for each of the — 2T agents, the
amount redistributed is at least(R(6_;) — ) = L (R(6) — 0).
The total amount redistributed to these agent$4$* (R(0) —
¥). The amount redistributed to any of the remainiig is non-
negative, thus at least-2~ (R(¢) — v) is redistributed. [J



The performance guarantee in Theorem 2 is not tight, but it
shows that the mechanism is asymptotically optimal.

OBSERVATION 2. The redistribution function is asymptotically
optimal asn — oo: for a fixedT', the undistributed revenue goes
to zero as the number of agents in the market goes to infinity.

Redistributing at some last time period may appear to be a sig-
nificant limitation. However, it fits naturally with many settings
encountered in practice, where there is a natural maximal window
in which the online redistribution takes place (such as a day). Con-
sider, for example, the problem of allocating electricity charging
slots to a set of electric vehicles, discussed in [5, 14]. The elec-
tricity supply is scarce only during some interval during each day
(e.g. 6am to 11 pm), and we only need to design an online mech-
anism that allocates in this high-demand interval. Nonetheless, in
other applications where online redistribution can be applied there
is not such a natural maximal window, and in the next section we
present and analyze a function that redistributes continuously, on
each agent’s departure.

5. REDISTRIBUTION AT EACH AGENT’S
DEPARTURE

Previous section described a redistribution mechanism that waits
until all agents depart before computing redistribution. It is more
desirable (but also more difficult) to provide redistribution sooner.
Here we design a function that provides redistribution to each agent
on her departure. The main difficulty in designing such a function
is ensuring weak budget balance at each period. Specifically, we

need to guarantee that the amount of revenue redistributed up to
each period, does not exceed the revenue collected until then. How- .

ever, in determining the part of the revenue that can be redistributed
to agent;, DSIC requires us to only include the revenue collected
independently of agents report. Furthermore, unlike the static
case and the mechanism from the previous section, the number o
agents that divide the same revenue is not clear.

We approach this problem by “charging” the rebate of agent
against payments of the agents that contribute to it. Specifically, for
agent we define the set of agents that give part of their payment
to agenti. To maintain truthfulness, their payment is computed
assuming agentis not present. Similarly, we specify the set of
agents from that receive part of agerits payment.

We propose a redistribution function, under which agerg-
ceives ond; the following redistribution:

- (% o)

jEto
wheretQ = {k € N | di € [a;,d;]}andfrom ={k € N | d; €
[ak, dk]}

Essentially, this means that agegets redistribution from agents
who depart when agenis present. Symmetrically, the payment of
agent; is redistributed among the agents who are present when
agentj departs. We subtract theax term in order to ensure weak
budget-balance in the face of non-monotonicity of revenue. Note
that the rule is DSIC as it satisfies the conditions of Lemma 1.

Intuitively, note that the size of set frons always known on the
departure of agentfrom the market, because all agents from;

(i.e. all agents that must receive a partial redistribution from agent
7) must have already arrived in the marketdyy(because,; < d;).
Moreover, the number of agents in the set fosalso known at
the time in which agentsget redistribution, i.e., at their departure,
becausel; > d;.

#;(0-4)

B (0, i, d) Jor [from;|

9)

|from; |

f

The following theorem characterizes the function in terms of the
crucial property of weak budget balance.

THEOREM 3. The redistribution function in Equation 9 is weakly
budget-balanced.

PrROOF Recall#; defined in Equation 1.

2;(0-s)
h? (60— J
Z i ai di) XZ:J%; \from] lejné?gf |from; |
b (0
DI D e e (10
|from\ — jeto; [from;|
j i€from; i
- % 25(0-4) ~ 3 max &5(0-4) (11)
7 ictom; [from;| — jeto; |from;|
i (0_i)=1
_ 2 (0-i) ;(0—3)
_Z Z |from; | +Z Z |from; |
J i€from; 7 i€from;
mi(0_;)=1 mi(0—;)=1
i (0)=1 m;(0)=0
— max 2;(0-4)
— jeto; |from;|
N &;(0-:) £;(0-:)
< z;(0) + J — max —2 (12)
; J 2]: Ze%;ﬂj [from;| zi:]Etoi [from;|
mi(0_;)=1
7 (0)=0

<%

J

= R(9)

Equation 10 follows from the definition of the redistribution func-
tion: amount redistributed to each agent comes from the payments
of other agents. We obtain Equation 11, by observingthé&i_;)

is positive only if agenj is allocated in the market with agerits;.

To prove Equation 12 observe that when agestallocated regard-
less of the presence of(i.e., 7;(0—;) = m;(0) = 1) the payment

of 7 is his critical value, which can only increase with the presence
of agent:: Z; (0 ) = UC((O,Z'),ﬁ aj, d]) < UC(G*JW aj, dJ) =
Z;(0). Finally, we prove the last inequality below. We want to
show that

J i€from;

i (0_i)=1
;5 (0)=0

#;(0- )

[from;| — (13)

Z max 2(0-:)

jeto; |from;|

We first show that for every there is at most one agepitsuch
thatm;(0_;) = 1 andx;(#) = 0. First, note thatr;(f_;) = 1
andr;(0) = 0 imply m;(v) = 1: if agenti had not been allo-
cated, then excluding him, would not have changed the allocation,
and ageng would have remained unallocated. By Lemma 5, the
allocation when agent enters the market changes by forcing ex-
actly one agent out. Thus, there is only one agehtr; (0_;) =

1, m;(6) = 0, and we obtain
25(0-4)
Znétol \fromJ Z Z |from; |
vl (0—¢)=1,
7 (0)=0
-y ¥ Z;(0-:)
[from;|

Joilmi(0—;)=1,
;(0)=0

The last equality holds as the summations on either side exhaus-
tively cover all non-zero terms; (0—;). [



h b b b item is sold. The arrival time of each agent is sampled uniformly

between[1,T]. An important simulation parameter is the agent’s

Agentl . - : Agentl : : patience defined as the length of the time window she is active in
=l : : v =100 : : : the market before she has to leave, regardless of whether she ac-
Agent2 . : Agent2 : : quired her desired item or not. We consider two types of agents:
=10 FERS : v2=99 ¢ : ; patient agentswhose active window is sampled from a uniform
Agent3 : : Agent3 : : : distributionU[1, 20] andimpatient agentsvhose active window is
vp=9 T vy =101 =TT sampled uniformly from a distributio®i [1, 4].
Agenta PR Agenta PR For the agent's val_ué:we consider two scenariog: one in which
=8 - vp=0 - they are sampled uniformly betweé®, 1), and one in which they
Agent5 are sampled from a normal distributidv( = 1,0 = 0.2), trun-
vs=7 — cated at zero. The total number of agents present in the market
varied betweem = 20 andn = 500 in different simulation runs,
@ () and each simulation set-up was averaged over 200 runs, with the
critical value standard error bars computed in each case.
present s A10CAED  m w'm m f agenti The performance metric we use is the raﬁ% averaged over

multiple simulation runs. Our experiments compare the perfor-
mance of two redistribution functiong” andh?.

Several effects can be observed from the results shown in Figure
5. First, thehT function (Equation 7) that distributes payments at
the end of the time interval is highly effective, quickly reaching the
expected ratio of over 99%. Moreover, it is not affected much by

We illustrate the redistribution function using the example in part €ither the type of valuation distribution or the agents’ patience. This
(a) of Figure 4. The only agent that departs when agent 1 is still €&n be explained by the fact that end of period redistribution can
present (actually, at the same time as agent 1 departs) is agent odistribute to any agent present in the market at any time, and dqes
Thus, ta = {2}. The payment of agent 2 is distributed among not depend on the amount of overlap between the agents’ active
agents fros = {1,3} present at her departure. Thus, agents 1 ime windows. - 4 , , o , .
receives redistribution from the payment of agent 2 (when agent 1 _ FOr the functionn® (Equation 9), which redistributes immedi-
is not present, agent 2 is allocated and pays 9). Since part of thedtely on the departure of each agent, several effects can be ob-

payment of agent 2 will also go to agent 3, agent 1 only gets half served. First, both the number of agents in the simulation and the
of agent 2's paymenk(6_;,1,1) = 2 — 2 ' Similarly, agent 2 patience play a crucial role, with a much better redistribution being

receives redistribution only from ager21t 1, \QN'hO pays 9 when agent 2 achieved for markets with patient agents. This can be explained by

; _9_9 strib a greater overlap between agents’ windows (which allows for more
}for:r(])t;geerrﬁsaf 01;(6’4, 2é$615;:(6 ) %) igg“ f S eJ:sZreflztrlbli(t)lon redistribution), and by the fact that the largest fractional payment
etc T 5 2 20202 2 (which we need to leave undistributed, in order to ensure weak

A udget balance) plays a smaller role in a larger market. For both

We demonstrate that the second term in Equation 9 is necessar)P

to guarantee budget balance. Consider the instance illustrated inunlform and normally distributed valuations scenarios, we see that,

part (b) of Figure 4. The revenue collectedA6) — 0. The with a large enough number of agents, the redistribution ratio tends

redistribution agent 3 gets when only the positive part of Equation 9 to Stalzj"gse‘;myp(i ell certain vtalue.”Fotr t:e unléorm \c/ial?gglotn dcgse,
is considered i&%(6_3,1,2) = % violating budget balance. aroun o of total payments collected can be redistributed in a

Finally, we apply the redistribution rule to the static case and market with patient agents, but only around 55% in a market with

compare it to the mechanism of Cavallo in the next observation. impatient agents. For the normal valuation Q|str|but|on case, this
percentages go up to 94%, and 62%, respectively.

Figure 4: (a) Example of the “distribution-on-departure” rule,
(b) Example that is not budget-balanced without subtracting
the second term in Equation 9.

OBSERVATION 3. When applied to the static case, the redistri- ~ Thus, despite the fact that one can construct a worst-case ex-
bution function in Equation 9 becomes ample where the ratio of payments distributed is 0, our numerical
simulations show that these cases are quite rare and that the ex-
he(0_s, a5, dy) = Z #;(0-4) ) ma 25(0—5) pected ratio, for both the redistribution functions proposed, when
=i @iy &) = | — [from, | Jetor |from, | there are more than 100 patient agents in the market, is above 80%
m m It ) 1 when the valuations are uniformly distributed and above 90% when
L A B A . the valuations are normally distributed.
n—1 n-1 n-1 (R(v-:) mR(U_Z))
-1
= hR(vﬂ') 7. CONCLUSIONS AND FUTURE WORK

This work has initiated the study of redistribution in online mecha-

This redistribu}gi(on i)S slightly smaller than the Bailey-Cavallo re-  nisms. We first characterized properties of online mechanisms rel-
v_4

distribution of ——-. evant to redistribution and then designed two redistribution func-
tions. The first one generalizes the static mechanism of Cavallo,
6. NUMERICAL SIMULATIONS and redistributes at the last period when the types of all agents

are available to compute redistribution. This function is asymp-
totically optimal (as the number of agents increases), but unsatis-
fying for settings where agents are not available after they depart,

In order to get a better insight into the performance of the two redis-
tribution functions we propose, we implemented and tested them in
numerical simulations.

Our simulation set-up is as follows. We consider a time hori- “Note that, unlike time which is discretized, the valuations are real
zon of T = 100 discrete time periods, in each of which exactly 1 numbers.
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Figure 5: Redistribution amount as a fraction of total revenue fora setting with uniformly distributed valuations (left) and normally
distributed valuations (right).

or there is no natural end period. The second function remedies [3] R. Cavallo. Efficiency and redistribution in dynamic
these shortcomings, by making redistribution to each agent on her
departure. We do not provide worst-case guarantees for the sec-

ond function, but evaluate it in numerical simulations. We find
this function performs well for various distributions of problem in-

(4]

stances redistributing at least one half and in some cases over 90%

of the collected revenue.

We know only one other paper studying redistribution in a se-
quential settings. The work of Cavallo [3] focuses dynamic

(3]

mechanism design. EC’08, pages 220-229, New York, NY,
USA, 2008. ACM.

G. de Clippel, V. Naroditskiy, M. Polukarov, A. Greenwald,
and N. R. Jennings. Destroy to saGames and Economic
Behavior 2013.

E. Gerding, V. Robu, S. Stein, D. Parkes, A. Rogers, and
N. Jennings. Online mechanism design for electric vehicle
charging. INAAMAS’11 pages 811-818, 2011.

mechanisms where agents are present for the entire time horizon 6] J. R. Green and J.-J. Lafforibcentives in public

and it is their types that change from period to period. Importantly,
distributional information about future types is available, and an
efficient in expectation allocation function is used. In contrast, in

(7]

the online setting studied here, arrival and departure dates are pri-

vate information of the agents, and allocation decisions are made
at each time period with a greedy rule and without any knowledge

about the types of agents arriving in the future.

There are a number of directions for future study. One such di-
rection is to optimize the allocation function along with redistribu-
tion function. This has proved fruitful in the static case where in-
efficient allocations allowed for much higher social welfare when
allocating identical items [4, 7]. Another direction involves look-
ing at redistribution in other types of online allocation mechanisms,

(8]

9]

[10]

such as models with items that do not expire, are heterogeneous, or
where agents have multi-unit demand. Also, one can study redistri- [11]

bution given a model of future arrivals [13]. Finally, we intend to

consider the performance of our online redistribution mechanism

in practical applications, such as electric vehicle charging [5, 14].
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