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ON LEPTOGENESIS, FLAVOUR EFFECTS AND THE LOW ENERGY

NEUTRINO PARAMETERS

by Luca Marzola

Contemporary Physics is testing the boundaries of one of its existent paradigms, the

Standard Model of Particle Physics. In recent years many attempts have been made in

order to overcome the di�culties arising within this well-known framework. Along with

the e↵ort made on the experimental side, for example the search for the Higgs boson

at the Large Hadron Collider, there is a present requirement for testable theoretical

scenarios describing Physics beyond the current paradigms. To this purpose we consider

the type I Seesaw extension of the Standard Model, in which the neutrino mass puzzle is

possibly solved and the baryon asymmetry of the Universe explained via Leptogenesis.

After reviewing the basis of the Seesaw mechanism and its recent developments we

present a rigorous investigation which confirms the validity of the adopted description.

Encouraged by this success we then employ the interplay of light and heavy neutrino

flavour e↵ects to address the problem of initial conditions in Leptogenesis. Our analysis

identifies the ⌧ N
2

-dominated scenario as the only possible answer, proposing a well

defined setup in which successful strong thermal Leptogenesis is achieved. Attracted

by the properties of our solution we consequently investigate its compatibility with the

SO(10)-inspired model of Leptogenesis. The result is indeed intriguing: the strong

thermal solutions of the SO(10)-inspired model deliver sharp predictions on the low-

energy neutrino parameters that fall within the reach of future neutrino experiments,

opening up the possibility of a full test of this attractive Leptogenesis scenario.
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Chapter 1

Introduction: two limitations of

the Standard Model

Since the discovery of the neutral current interactions in 1973, the Standard Model

[4–6] has been increasingly regarded as the paradigm of modern Particle Physics. The

theoretical setup of this framework proposes two types of fermionic fields, quarks and

leptons, which interact with the gauge bosons imposed by the local SU(3)C ⇥SU(2)L⇥
U(1)Y symmetry group. The particle content of the model is completed by a further

field, associated to the Higgs boson, which triggers the breaking of the SU(2)L⇥U(1)Y

symmetry group down to the U(1)Q of Quantum ElectroDynamics. After the phase

transition, the Weak Interaction gauge bosons, as well as quarks and leptons acquire a

mass proportional to the characteristic energy scale of the symmetry breaking, in a way

that preserves the gauge-invariance of the original theory [7]. On the experimental side,

the extensive examination of Standard Model led to an impressive list of achievements.

For example the mass of Z and W bosons, measured for the first time in 1983 [8–11], are

in striking agreement with the predictions of the theory. On top of that, also the third

generation of quarks and leptons involved in this framework has been experimentally

confirmed, with the discovery of the bottom quark in 1977 [12], the top quark in 1995

[13, 14] and the ⌧ neutrino in the year 2000 [15]. The latest success of the Standard

Model is indeed the recent discovery of the Higgs boson at the LHC [16, 17], which

concludes the experimental search of the particle content proposed by this theory.

Yet, despite the appealing theoretical framework and the numerous experimental con-

firmations, the Standard Model is not an exhaustive description of Nature. For instance,

the Standard Model does not explain one of the fundamental forces, Gravity, being sub-

stantially incompatible with the theory of General Relativity. On top of that, recent

cosmological observations revealed that the particles of the Standard Model account

only for a small fraction of the energy budget of the Universe. The biggest contributions

1



2 Chapter 1 Introduction: two limitations of the Standard Model

into the latter are in fact provided by the Dark Energy and the Dark Matter, two mys-

terious agents that remain unexplained within this framework. Further issues arise also

on the theoretical side, with the strong-CP and the hierarchy problems for example.

The former concerns strong interactions, which respect the CP symmetry despite the

underlying theory, the Quantum Chromo Dynamics (QCD), presenting no arguments

preventing the violation of this quantity. The hierarchy problem regards instead the

mass of the Higgs boson, detected well below the Grand Unified Theory and Planck

scales where the relevant quantum correction seem to push it.

In this Thesis we will focus on two further problems that the Standard Model leaves un-

solved, connected respectively to the observation of an asymmetry between matter and

antimatter in our Universe, reviewed in Section 1.2, and to the properties of neutrinos,

as depicted by the neutrino oscillation experiments discussed below.

1.1 A first puzzle: neutrino oscillations

Neutrinos have always been a puzzle to physicists. Even nowadays, after more than

forty years of dedicated studies, some fundamental properties and the exact number of

neutrino species are still unknown1. This Section is dedicated to the analysis of neutrino

oscillations, originally proposed by B. Pontecorvo in 1968 [18]. After presenting a basic

review of the mechanism and the supporting experimental evidences, we will discuss the

compatibility of neutrino oscillations with the framework of the Standard Model.

1.1.1 Neutrino oscillations: basics and experimental evidences

Neutrinos are indeed elusive particles, bearing no colour nor electric charges. They

are only involved in Weak Interactions, coupled to the charged leptons and the gauge

bosons of the broken SU(2)L symmetry in the specific case of charge current interactions

– Section A.2:

Lm
⌫

6=0

cc = � gp
2

X

i=1,2,3
↵=e,µ,⌧

h

niL �µ (U †)i↵ l↵L
i

Wµ + H.c.. (1.1.1)

Here the subscript “L” denotes the left-handed components of the involved fields, re-

marking the chiral nature of Weak Interactions. Considering three neutrinos species, the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix U [19,20] is a unitary 3⇥ 3 matrix

which regulates the mixing of the fields ni, diagonalising the neutrino mass term, into

1The results obtained by the LEP experiment on the invisible decay width of the Z boson indicate
the existence of three species of neutrinos, associated to masses m

i

. m

Z

/2. The existence of further
neutrino species characterised by a higher mass scale cannot consequently be excluded. Similarly, also
the presence of additional sterile neutrinos, which are not directly involved in the Weak Interactions, is
not disproved by the LEP result.
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the flavour neutrinos ⌫↵ that diagonalise eq. (1.1.1) in the flavour space:

⌫↵L :=
3

X

i=1

U↵i niL, ↵ = e, µ, ⌧ (1.1.2)

To understand the basics of neutrino oscillations we focus on the evolution of a one-

particle state generated by one of the above flavour neutrino fields. For sake of simplicity

we will neglect the complications brought by the presence of matter and simplify our

notation by leaving the subscript “L” understood. Furthermore, for the rest of the

Section, greek subscripts will run on the three flavours (e, µ, ⌧) while the latin subscripts

are reserved for (1, 2, 3).

The definition of flavour neutrino fields in eq. (1.1.2) induces an analogous mixing on

the corresponding particle states denoted by a ket2:

|⌫↵i =
3

X

i=1

U⇤
↵i |nii . (1.1.3)

Notice that the neutrino particles |⌫↵i that experiments involve, should be therefore

regarded as superpositions of the mass eigenstates |nii, satisfying the orthogonality

condition

hni|nji = �ij (1.1.4)

and corresponding to physical particles of mass mi. The Schrödinger equation controls

the time evolution of these particle states, hence after a time t we have:

|⌫↵(t)i =
3

X

i=1

U⇤
↵i e

�iE
i

t |nii . (1.1.5)

With the term neutrino oscillations we refer to flavour transitions related to variations

in the flavour of a neutrino state. For this e↵ect a neutrino co-emitted with a charged

lepton of flavour ↵, |⌫↵i, could subsequently be measured as a neutrino |⌫�i of flavour

� 6= ↵. Experimentally these processes are detected in reactions as ⌫↵(t)+N 0 ! l� +N ,

where ↵ 6= �, with transition probability proportional to the oscillation probability

P⌫
↵

!⌫
�

(t) = |h⌫� |⌫↵(t)i|2 =

�

�

�

�

�

�

3

X

i,j=1

U�jU
⇤
↵i e

�iE
i

t �ij

�

�

�

�

�

�

2

(1.1.6)

where the orthogonality condition in eq. (1.1.4) was used. Notice that the typical energy

spectrum of neutrino fluxes is peaked around (1 – 103) MeV, hence neutrinos can be

regarded as relativistic particles with Ei ' E +
m2

i

2E . In addition to that, we can here

identify t = L, being L the length that the particle travelled during the time t of its

2In the next Sections this notation is left understood when we unambiguously refer to one-particle
states.
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evolution. Finally, by defining �m2

ik := m2

i �m2

k, the oscillation probability becomes:

P⌫
↵

!⌫
�

(t) =
3

X

i,k=1

U�i U
⇤
↵i U

⇤
�k U↵k e�i

�m

2
ik

L

2E . (1.1.7)

Some remarks follow:

• the neutrino squared mass di↵erences �m2

ik drive the oscillations. Consequently,

in a framework involving three neutrinos, at least two non-degenerate mass eigen-

states are required in order to provide a non-zero oscillation mode. Furthermore,

the independence of the presented mechanism from the absolute neutrino mass

scale implies, on the experimental side, the impossibility of detecting the latter

through neutrino oscillation experiments.

• The PMNS matrix elements set the amplitude of the oscillations. We emphasise

also that the quartic product in eq. (1.1.7) is invariant under the rephasing U↵k !
ei ↵U↵kei�k . Consequently, as the explicit form of the PMNS matrix in eq. (1.1.12)

will make clear, neutrino oscillation experiments cannot probe the Majorana phases

⇢ and � in U .

Having said that, the final formula for the oscillation probability follows from eq. (1.1.7)

after some algebra:

P⌫
↵

!⌫
�

(t) = �↵� � 4Re
X

i>k
i,k=1,2,3

U�i U
⇤
↵i U

⇤
�k U↵k sin2

✓

�m2

ikL

2E

◆

+ (1.1.8)

+ 2Im
X

i>k
i,k=1,2,3

U�i U
⇤
↵i U

⇤
�k U↵k sin

✓

�m2

ikL

2E

◆

.

We now discuss the experimental evidences supporting the neutrino oscillation mechan-

ism sketched above. A first hint that neutrino oscillations are realised in Nature dates

back to the 1960s, with the Homestake experiment.

By employing a chlorine-based detector, sensitive to electron neutrinos via the charged

current (CC) interaction ⌫e + 37Cl! e� + 37Ar, this experiment measured for the first

time the flux of electron neutrinos emitted by the Sun3. The result was a puzzling evid-

ence: the Homestake experiment revealed a serious deficit in the observed particles [21]

with respect to the Standard Solar Model predictions [22]. In this way the solar neutrino

problem was born.

To understand the origin of this anomaly several experiments repeated the measure-

ment in the following years, employing di↵erent technologies for the detection of the

3During nuclear fusions protons are converted into neutrons through the reaction p + e

� ! n + ⌫

e

.
The Sun is therefore a source of electron neutrinos with E ⇠MeV.
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neutrino flux. On one hand water Cherenkov detectors, as Kamiokande [23] and Super-

Kamiokande [24], measured the high-energy part of the spectrum relying on elastic

scattering (ES) processes ⌫↵ + e� ! ⌫↵ + e�, mainly sensitive to electron neutrinos due

to the enhanced cross section. On the other, the radiochemical Gallium-based exper-

iments GALLEX/GNO [25, 26] and SAGE [27] were sensitive to low-energy neutrinos,

observed through the CC interaction ⌫e + 71Ga! e� + 71Ge.

All the experiments confirmed the deficit in the detected flux. Furthermore, the depend-

ence of the phenomena on the energy of neutrinos was emphasised owing to the di↵erent

detection techniques.

The fundamental importance of the solar neutrino problem became explicit in the year

1998, when the Super-Kamiokande experiment measured a similar anomaly in the atmo-

spheric neutrino fluxes4. In particular, the observation was performed by comparing the

number of detected particles for incoming directions with opposite zenith angles. This

revealed a zenith-depenent deficit of neutrinos, which found in a ⌫µ – ⌫⌧ mixing the

most convincing explanation [28]. The Super-Kamiokande result was therefore strongly

supporting the solution of the solar neutrino problem in favour of the neutrino oscilla-

tion mechanism. The conclusive evidence was given three years later, when the SNO

experiment published its analysis of the solar neutrino flux [29]. By using a heavy water

Cherenkov detector relying on ES, CC interactions and the neutral current interactions

⌫↵ + d! p + n + ⌫↵, SNO measured both the electron and the µ – ⌧ components of the

neutrino flux. While an anomaly was once again detected in the electron channel, the

measurements of the total flux were found in agreement with the Standard Solar Model.

This resulted in a direct evidence for neutrino flavour transformations, confirming the

neutrino oscillation mechanism as the correct answer to the solar neutrino problem.

In the following years, further evidence supporting this solution was provided by the

so called reactor and accelerator experiments. These involve the detection of terrestrial

antineutrinos generated in the �-decay chains of the heavy nuclei in fission reactors

and particle accelerators. For the former category we mention here the KamLAND

experiment, which corroborated the large mixing angle solution of the solar neutrino

problem [30]. Amongst the accelerator experiments we recall instead K2K and MI-

NOS, that verified the result on the atmospheric neutrinos previously obtained by the

Super-Kamiokande experiment and confirmed the oscillation mechanism is the only cause

behind the detected flux anomaly [31], [32].

1.1.2 Neutrino oscillations and the Standard Model

Having sketched the basics of neutrino oscillations and reviewed the numerous support-

ing evidences, we can now discuss the compatibility of this mechanism with the Standard

4Protons from cosmic rays collide on the nuclei in the atmosphere, resulting in hadronic showers
containing especially pions. The pions then decay into muons ⇡

� ! µ

� + ⌫

µ

, ⇡

+ ! µ

+ + ⌫

µ

generating
neutrinos with energies E ⇠GeV.
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Model of Particle Physics.

In theories presenting degenerate neutrinos, and likewise for the Standard Model (SM),

the PMNS matrix U in eq. (1.1.2) can be reabsorbed by performing a redefinition of the

neutrino fields – more details are presented in Section A.2, after eq. (A.2.6) –

Lm
⌫

6=0

cc = � gp
2

X

i=1,2,3
↵=e,µ,⌧

h

niL �µ (U †)i↵ l↵L
i

Wµ + H.c.! (1.1.9)

! LSM
cc = � gp

2

X

↵=e,µ,⌧

⇥

n↵L �µ l↵L
⇤

Wµ + H.c. (1.1.10)

Notice that the eq. (1.1.9) hence implies

U↵i

�

�

�

�

SM

⌘ �↵i (1.1.11)

and that massless or degenerate neutrinos require as well �m2

ik ⌘ 0.

Clearly, these predictions can be investigated through neutrino oscillation experiments

and, in regard to this, our discussion in Section 1.1.1 has already revealed the outcome:

the description of neutrinos within the Standard Model is clearly in disagreement with

the outcomes of neutrino oscillation experiments.

In order to quantify this disagreement we focus now on the PMNS mixing matrix, as

delineated by experiments.

1.1.2.1 The PMNS mixing matrix

A general parametrization of a unitary 3 ⇥ 3 matrix is given by three mixing angles

and six phases. The number of the latter can be further reduced to one or three by

rephasing the lepton fields in the Lagrangian, depending on the Dirac/Majorana nature

of neutrinos. As a consequence the a general form of the PMNS matrix is

U =

0

B

B

@

c
12

c
13

s
12

c
13

s
13

e�i�

�s
12

c
23

� c
12

s
23

s
13

ei� c
12

c
23

� s
12

s
23

s
13

ei� s
23

c
13

s
12

s
23

� c
12

c
23

s
13

ei� �c
12

s
23

� s
12

c
23

s
13

ei� c
23

c
13

1

C

C

A

·

0

B

B

@

ei⇢ 0 0

0 1 0

0 0 ei�

1

C

C

A

(1.1.12)

where the cij ⌘ cos(✓ij), sij ⌘ sin(✓ij) and ⇢ = � = 0 for Dirac particles.

As remarked before, neutrino oscillations are not sensitive to the absolute neutrino mass

scale. In terms of the neutrino mass spectrum this leads to a further complication: beside

the normal ordering (NO) of neutrino masses for which eq. (1.1.12) holds, a second

pattern, the inverted ordering (IO), is allowed by current experiments. As shown in

Figure 1.1, maintaining the convention m
1

< m
2

< m
3

, IO corresponds to a permutation
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ne nm nt

Figure 1.1: Normal ordering and inverted ordering compared, adapted from [33].
The colour code represents the approximate flavour composition of the neutrino
mass eigenstates ni.

of the involved neutrinos and the appropriate mixing matrix is consequently obtained

from eq. (1.1.12) through a permutation of the corresponding columns.

The current status of the parameters measured through neutrino oscillation experiments

is presented in Table 1.1.

Parameter Best fit 1� range 3� range

(�m2

sol = �2m)/10�5 eV2 (NO and IO) 7.54 7.32 - 7.80 6.99 - 8.18

(�m2

atm ' �2m)/10�3 eV2 (NO) 2.43 2.33 - 2.49 2.19 - 2.62

(�m2

atm ' �2m)/10�3 eV2 (IO) 2.42 2.31 - 2.49 2.17 - 2.61

sin2 ✓
12

/10�1 (NO and IO) 3.07 2.91 - 3.25 2.59 - 3.59

sin2 ✓
13

/10�2 (NO) 2.41 2.16 - 2.66 1.69 - 3.13

sin2 ✓
13

/10�2 (IO) 2.44 2.19 - 2.67 1.71 - 3.15

sin2 ✓
23

/10�1 (NO) 3.86 3.65 - 4.10 3.31 - 6.37

sin2 ✓
23

/10�1 (IO) 3.92 3.70 - 4.31 3.35 - 6.63

Table 1.1: The current status of oscillation parameters for inverted ordering
(IO) and normal ordering (NO), from [34].

The investigations report two non-zero squared mass di↵erences, �m2

atm and �m2

sol,

respectively measured in atmospheric and solar neutrino oscillations. The picture is con-

sistent with a framework including three neutrino species, but these non-zero squared

mass di↵erences imply a first contrast with the requirement �m2

ik ⌘ 0 of the Standard

Model. As for the mixing angles, all the best values di↵er from null with a significance

of at least 5�, implying that also the prediction U↵i = �↵i of the theory is rejected.

Indeed a substantial inconsistency is found between the Standard Model and the data

that neutrino oscillation experiments present. This contrast is arising from the proposed
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description of neutrinos, which involving purely massless particles precludes the possib-

ility of accounting for neutrino oscillations. The experimental confirmation of the latter

thus underlines the necessity of additional mechanisms to address the neutrino mass

puzzle, providing in this way a first evidence for Physics beyond the Standard Model.

In this regard we postpone a possible solution to the next Chapter, focusing for the

moment once again on the neutrino phenomenology.

In commenting on Table 1.1, it would be a serious shortfall not mentioning the recent

merits of reactor experiments in relation to the first measurements of ✓
13

. This is the

only mixing angle that solar and atmospheric oscillations cannot test, constrained during

the last decade only by the upper bound resulting from the CHOOOZ experiment [35].

A first 2� indication for a non-zero ✓
13

was presented by the MINOS experiment [36]

in 2011, followed by the 3� evidence reported by the T2K collaboration [37] a few

months later. Finally, in 2012, the Daya Bay [38] and the Reno [39] collaborations

confirmed a non-zero mixing angle quoting a significance of respectively 5.2 and 4.9

standard deviations. The conclusive plots of the two investigations, involving the survival

probability

P⌫
e

!⌫
e

:= 1�
X

↵=µ,⌧

P⌫
e

!⌫
↵

(1.1.13)

are reported in Figure 1.2. We insist on the cruciality of these results for a complete

understanding of leptons, as the inferred values of ✓
13

remarkably allow for a direct

measurement of the CP violation in the sector, encoded in the Dirac phase � of the

PMNS Matrix.

6

uncertainties were not included in the analysis; the absolute
normalization " was determined from the fit to the data. The
best-fit value is

sin2 2✓13 = 0.092 ± 0.016(stat) ± 0.005(syst)

with a �2/NDF of 4.26/4. All best estimates of pull parameters
are within its one standard deviation based on the correspond-
ing systematic uncertainties. The no-oscillation hypothesis is
excluded at 5.2 standard deviations.

The accidental backgrounds were uncorrelated while the
Am-C and (alpha,n) backgrounds were correlated among
ADs. The fast-neutron and 9Li/8He backgrounds were site-
wide correlated. In the worst case where they were correlated
in the same hall and uncorrelated among different halls, we
found the best-fit value unchanged while the systematic un-
certainty increased by 0.001.

Fig. 4 shows the measured numbers of events in each de-
tector, relative to those expected assuming no oscillation. The
6.0% rate deficit is obvious for EH3 in comparison with the
other EHs, providing clear evidence of a non-zero ✓13. The
oscillation survival probability at the best-fit values is given
by the smooth curve. The �2 versus sin22✓13 is shown in the
inset.

Weighted Baseline [km]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ex
pe

ct
ed

 / 
N

de
te

ct
ed

N

0.9

0.95

1

1.05

1.1

1.15

EH1 EH2

EH3

13θ22sin
0 0.05 0.1 0.15

2 χ

0
5

10
15
20
25
30
35

σ1

σ3

σ5

FIG. 4. Ratio of measured versus expected signal in each detector,
assuming no oscillation. The error bar is the uncorrelated uncertainty
of each AD, including statistical, detector-related, and background-
related uncertainties. The expected signal is corrected with the best-
fit normalization parameter. Reactor and survey data were used to
compute the flux-weighted average baselines. The oscillation sur-
vival probability at the best-fit value is given by the smooth curve.
The AD4 and AD6 data points are displaced by -30 and +30 m for
visual clarity. The �

2 versus sin2 2�13 is shown in the inset.

The observed ⌫e spectrum in the far hall is compared to
a prediction based on the near hall measurements in Fig. 5.
The disagreement of the spectra provides further evidence of
neutrino oscillation. The ratio of the spectra is consistent with
the best-fit oscillation solution of sin2 2✓13 = 0.092 obtained
from the rate-only analysis [31].
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FIG. 5. Top: Measured prompt energy spectrum of the far hall (sum
of three ADs) compared with the no-oscillation prediction from the
measurements of the two near halls. Spectra were background sub-
tracted. Uncertainties are statistical only. Bottom: The ratio of mea-
sured and predicted no-oscillation spectra. The red curve is the best-
fit solution with sin2 2�13 = 0.092 obtained from the rate-only anal-
ysis. The dashed line is the no-oscillation prediction.

In summary, with a 43,000 ton-GWth-day livetime expo-
sure, 10,416 reactor antineutrinos were observed at the far
hall. Comparing with the prediction based on the near-hall
measurements, a deficit of 6.0% was found. A rate-only anal-
ysis yielded sin2 2✓13 = 0.092 ± 0.016(stat) ± 0.005(syst).
The neutrino mixing angle ✓13 is non-zero with a significance
of 5.2 standard deviations.

The Daya Bay experiment is supported in part by the Min-
istry of Science and Technology of China, the United States
Department of Energy, the Chinese Academy of Sciences, the
National Natural Science Foundation of China, the Guang-
dong provincial government, the Shenzhen municipal govern-
ment, the China Guangdong Nuclear Power Group, Shanghai
Laboratory for Particle Physics and Cosmology, the Research
Grants Council of the Hong Kong Special Administrative Re-
gion of China, University Development Fund of The Univer-
sity of Hong Kong, the MOE program for Research of Ex-
cellence at National Taiwan University, National Chiao-Tung
University, and NSC fund support from Taiwan, the U.S. Na-
tional Science Foundation, the Alfred P. Sloan Foundation, the
Ministry of Education, Youth and Sports of the Czech Repub-
lic, the Czech Science Foundation, and the Joint Institute of
Nuclear Research in Dubna, Russia. We thank Yellow River
Engineering Consulting Co., Ltd. and China railway 15th Bu-
reau Group Co., Ltd. for building the underground laboratory.
We are grateful for the ongoing cooperation from the China
Guangdong Nuclear Power Group and China Light & Power
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2 distribution as a function of sin2 2�13. Bot-
tom: Ratio of the measured reactor neutrino events relative
to the expected with no oscillation. The curve represents the
oscillation survival probability at the best fit, as a function of
the flux-weighted baselines.

Gd-loaded liquid scintillator, and a 229 day exposure to
six reactors with total thermal energy 16.5 GWth. In the
far detector, a clear deficit of 8.0% is found by compar-
ing a total of 17102 observed events with an expectation
based on the near detector measurement assuming no os-
cillation. From this deficit, a rate-only analysis obtains
sin2 2✓13 = 0.113 ± 0.013(stat.) ± 0.019(syst.). The neu-
trino mixing angle ✓13 is measured with a significance of
4.9 standard deviation.

The RENO experiment is supported by the Ministry
of Education, Science and Technology of Korea and the
Korea Neutrino Research Center selected as a Science
Research Center by the National Research Foundation
of Korea (NRF). Some of us have been supported by
a fund from the BK21 of NRF. We gratefully acknowl-
edge the cooperation of the Yonggwang Nuclear Power
Site and the Korea Hydro & Nuclear Power Co., Ltd.
(KHNP). We thank KISTI’s providing computing and
network resources through GSDC, and all the technical
and administrative people who greatly helped in making
this experiment possible.
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1.1.3 Exploring the neutrino mass scale

We analyse now another important aspect of neutrino phenomenology, related to the

detection of the mass scale associated to these particles.

As shown in Section 1.1.1 and confirmed by Table 1.1, neutrino oscillations provide

important informations on the neutrino mass hierarchy and the PMNS mixing para-

meters, with no sensitivity to the absolute neutrino masses scale. The complementary

experiments, dedicated to a direct measurement of this parameter, hunt distortions near

the kinematic endpoints of electron energy spectrums associated to allowed �-decays, for

which the nuclear matrix elements generate no energy dependence. The results constrain

the e↵ective electron neutrino mass

m2

� :=
3

X

i=1

|Uei|2 m2

i (1.1.14)

and latest upper bound

m� . 2.4 eV (95% CL) (1.1.15)

is due to the Mainz [40] and Troitzk [41] tritium experiments. The same collaborations

are currently preparing a new joint experiment, KATRIN, aiming to reach a sensitivity

of about 0.2 eV at 90% CL.

Beside m� , neutrino Physics is in principle sensitive to another energy scale: the e↵ect-

ive Majorana mass of neutrinoless double �-decays, mee.

The relevant process consists of two simultaneous �-decays with no emission of antineut-

rinos, as illustrated in the left panel of Figure 1.3. Each neutrinoless double �-decay

therefore leads to a lepton number violation of two units5, underlining that only Ma-

jorana neutrinos are involved. Clearly the process is forbidden in the Standard Model,

hence the observation of these events would provide further evidence for new Physics.

In particular, notice that neutrinoless double �-decay experiment can potentially decide

on the fundamental problem of the Dirac/Majorana nature of neutrinos.

Currently no positive signals have been observed and the Majorana e↵ective mass

mee :=

�

�

�

�

�

3

X

i=1

U2

ei mi

�

�

�

�

�

(1.1.16)

5The Standard Model presents an accidental U(1)
e

⇥U(1)
µ

⇥U(1)
⌧

symmetry associated to the three
generations of lepton doublets. For the Noether theorem this symmetry corresponds to the conservation
of three charges, the family lepton numbers L

e

, L

µ

, and L

⌧

. The total lepton number L =
P

↵

L

↵

is
therefore conserved as well. With respect to the latter, a lepton carries a charge L = +1 while antileptons
are associated to negative charges. If Majorana particles are involved no lepton number is conserved as
the accidental symmetry is completely broken, while for Dirac massive neutrinos the symmetry breaks
to U(1)

L

, corresponding to the conservation of the total lepton number defined above [42].
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has been constrained to

mee . (0.3 – 1.0) eV (90%CL). (1.1.17)

Nevertheless, it should be stressed that future experiments as MAJORANA [43] and

GERDA [44] declare sensibilities below the 0.05 eV level. As shown in the right panel

of Figure 1.3 this would constrain the neutrino mass spectrum, performing a complete

test of the region associated to quasi-degenerate neutrinos and probing a part of the one

associated to the inverted ordering.

d

d

u

u

e�

e�

W

W
Uei

Uei

⌫i ! mi m
ee
HeV
L

m1 HeVL

inverted ordering

normal ordering

quasi- degenerate

Figure 1.3: Neutrinoless double �-decay. Left panel: the tree level contribution
to the process. Majorana neutrinos are required in order to observe the lepton
number-violating transition.
Right panel: mee as a function of the lightest neutrino mass m

1

, adapted from
[45]. Regions corresponding to quasi-degenerate, normal-ordered and inverted-
ordered neutrinos are presented. The dashed line corresponds to mee = 0.05 eV
while the grey exclusion region is due to eq. (1.1.19).

Finally, a di↵erent probe of the neutrino mass scale is remarkably provided by Cosmo-

logy. The Baryon Acoustic Oscillations are in fact sensitive to the sum of the neutrino

masses. Hence, using the 7-years WMAP data and the latest measurements of H
0

[46]

yields
3

X

i=1

mi < 0.58 eV (95%CL) (1.1.18)

which, falling in the quasi degenerate regime m
1

�
p

|�m2

atm|, simply implies

m
1

. 0.19 eV (95%CL). (1.1.19)
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1.2 A cosmological puzzle: the baryon asymmetry of the

Universe

During the last decades, the observations of the Cosmic Microwave Background Radi-

ation (CMB), galaxies, supernova and the large scale structure of the Universe have

been dramatically improved due to theoretical and technological progress. As a result

Cosmology entered its precision era and the ⇤-CDM model, describing the evolution of

the Universe since few instants after its birth, was formulated.

For the precision of its predictions and the numerous connections to Particle Phys-

ics, the ⇤-CDM model can be regarded nowadays as a fundamental phenomenological

benchmark for theories of new Physics and the Standard Model itself. In this respect, we

already met a first constraint that contemporary Cosmology imposes on Particle Physics

in eq. (1.1.19), where the bound on the neutrino masses follows from pure cosmological

arguments. For a second example, which concerns the limitations of the current frame-

work, consider the energy budget of the Universe. The computation performed within

the ⇤-CDM model underlines that only a small share, about 5%, of the total energy

density is connected to the particles of the Standard Model. The biggest contributions

are due instead to two unknown agents, the Dark Energy and the Dark Matter, account-

ing respectively for the 73% and the 22% of the energy content of the Universe [47]. At

the present time very little is known about these mysterious components. Dark Energy

is supposed to drive the Universe expansion and its nature is still highly unclear. Dark

Matter, in contrast, is tentatively modelled after new particles that theories beyond the

Standard Model involve.

Let us focus now on a further issue that a comparison of the Standard Model to its

cosmological counterpart reveals, concerning the existence of an asymmetry between

baryonic matter and antimatter in our Universe. In fact, despite our laws of Physics

maintaining a high degree of symmetry between particles and anti-particles since 1928,

when P. A. M. Dirac proposed the existence of antimatter, Nature seems to have a

di↵erent attitude.

The present Section is therefore dedicated to the baryon asymmetry of the Universe.

Here we review the supporting experimental evidence and the conditions necessary for its

formation. Our analysis then concludes by discussing the compatibility of the described

scenario with the Standard Model.
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1.2.1 Supporting evidences

The absence of proton-antiproton annihilations in our everyday life proves that our world

is purely made of matter. On a larger scale, the exploration of the Solar System and

the study of solar cosmic rays revealed that our moon, the Sun and the near planets are

also made of matter. The first traces of antimatter appear in cosmic rays, which probe

the composition of the Universe on a galactic distance.
4

FIG. 3: Compilation of observed p/p flux ratios at the top of
the atmosphere, compared with model calculations for sec-
ondary and primary antiproton production: BESS 95&97
[6], BESS [7], IMAX [8], MASS91 [9], CAPRICE94 [10],
CAPRICE98 [11]. The calculations of the p/p ratio are from
[5] (MSR-1, MSR-2) and [18](SMR). Possible primary contri-
butions to the p/p spectrum arising from evaporating primor-
dial black holes [19] (MMO) and from neutralino annihilation
[20] (J&K) are also shown.

and solid line in Fig 3 show the results of calculations by
Moskalenko et al. [5] within a self-consistent CR propa-
gation model. The dashed line represents the case of a
proton injection spectrum that is much harder than lo-
cally observed, which has been proposed to explain the
observed high continuum gamma-ray emission above ⇠
1 GeV [21]. A standard proton injection spectrum, con-
sistent with the locally observed one, is reflected in the
solid line. The sensitivity of the p/p ratio to the nucleon
injection spectrum above a few GeV makes antiproton
measurements at energies above a few GeV an important
test for CR models. Our data are in good agreement with
the ‘standard spectrum’ calculations [5] at high energy,
and do not support an antiproton to proton ratio ap-
proaching 10�3 at energies above 20 GeV, in contrast to
recent CAPRICE measurements [11]. Our result does not
support models which are based on hard nucleon injec-

tion spectra. At energies covered by the measurements
presented here, secondary p production with a nucleon
injection spectrum consistent with the locally observed
one describes the data well.

The HEAT-pbar instrument is scheduled for additional
balloon flights and we expect to statistically improve the
data and to further clarify the experimental situation.
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Figure 1.4: The antiproton content of
cosmic rays, as reported after the HEAT
experiment [48]. The ratio of antipro-
ton to proton abundances, p̄/p, is plot-
ted against the detected energy and
compared to the predictions of primary
and secondary production mechanisms.

The detected antiproton to proton abundance

ratio is at most ⇠ 10�4 – Figure 1.4 – sug-

gesting a secondary production of the observed

antimatter in proton-interstellar medium col-

lisions. We can thus conclude that also our

galaxy is entirely made of matter. The idea

of dedicated antimatter galaxies is equally not

correct, leading to annihilation signals in the

�-background within the cluster that are not

observed [49]. For a similar reason, separated

antimatter domains of a larger scale are also

not viable: the annihilations taking place at

the boundaries with the matter regions would

result in distortions of the CMB spectrum ac-

tually not detected [49,50].

The asymmetry between matter and antimat-

ter is therefore a fundamental characteristic of

our Universe. To investigate this feature we

define the baryon asymmetry of the Universe

(BAU)

⌘B :=
nB � nB

n�
(1.2.1)

where nB, nB and n� are respectively the numerical density of baryons, antibaryons

and photons. As all the observations are consistent with the hypothesis of a maximal

asymmetry, nB ⌘ 0, ⌘B is quantified by measuring the baryonic content of the Universe.

To this purpose, we can avail ourself of two di↵erent phenomenologies that contemporary

Cosmology o↵ers: the Big Bang Nucleosynthesis and the Cosmic Microwave Background.

1.2.1.1 Big Bang Nucleosynthesis

The Big Bang Nucleosynthesis (BBN) describes the formation of nuclear abundances

occurred in the primordial Universe for a temperature T . 1 MeV. [51,52]. By assuming

the nuclear reactions involved be in kinetic and chemical equilibrium, the nucleosynthesis



Chapter 1 Introduction: two limitations of the Standard Model 13

is sensitive to three parameters only: the number of neutrino species N⌫ , the mean

neutron lifetime ⌧n and the same BAU.

• The number of neutrino species a↵ects the Hubble parameter H

H ' 1.66
p

g?
T 2

mP l
, mP l = 1.22⇥ 1019 GeV (1.2.2)

through g? = g?(T ), which represents the number of relativistic degrees of freedom

in the plasma. Larger values of N⌫ therefore result in a faster expansion rate and,

in terms of BBN, in an earlier freeze-out of the neutron-to-proton ratio with a

consecutive enhancement of the 4He production.

• The rate of the proton to neutron conversion e� + p! n+ ⌫e is normalised by the

neutron mean lifetime. A larger ⌧n leads to a reduction of this rate, resulting once

again in an earlier freeze-out of the neutron-to-proton ratio which increments the

final abundance of 4He.

• The mass fraction contribution XA of an atomic species (A, Z)

XA :=
A nA

np + nn +
P

i AinA
i

(1.2.3)

is directly proportional to the baryon asymmetry:

XA / ⌘A�1

B . (1.2.4)

Furthermore, notice that ⌘B also regulates the density of photons, which could

inhibit the production of D and 3He through photodissociation. Hence larger

baryon asymmetries lead to enhanced light elements abundances, especially the

deuterium one.

In this way, once the primordial nuclear abundances and the neutron mean life time have

been measured, the baryon asymmetry of the Universe can be inferred through BBN in

a given framework. In particular, by assuming three neutrino species the measured D/H

abundance ratio yields [53]

⌘BBN
B =

�

5.9 ± 0.5
�⇥ 10�10 (68% CL). (1.2.5)

1.2.1.2 The Cosmic Microwave Background Radiation

The Cosmic Microwave Background (CMB) is generated at the recombination era, when

the temperature of the Universe allowed electrons and nuclei to combine into neutral

atoms. The number of free electrons decreased dramatically, forcing the decoupling of
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radiation from baryons at Tdec ' 0.3 eV. During the consecutive eras photons have trav-

elled undisturbed through the Universe, constituting what today is detected as CMB.

The analysis of CMB by the COBE satellite in 1992 [54] revealed an interesting feature

of this background. On top of a perfect black body spectrum, corresponding to a tem-

perature T� ' 2.7 K, CMB presents a peculiar pattern of anisotropies arising from local

fluctuations of the temperature around the mean T� . This pattern is investigated by

measuring correlations in the temperature fluctuations associated to di↵erent couples of

points in the sky. Hence a correlation function can be obtained as a multipole expansion

depending on a set of measured coe�cients, the angular power spectrum C`, associated

to the multiple components denoted by `. As for the theoretical side, the angular power

spectrum can be calculated within every cosmological model in terms of a number of

fundamental parameters. By fitting the experimental measurements it is therefore pos-

sible to infer the latter. In the left panel of Figure 1.5 we present a comparison of the

best-fit ⇤-CDM model with the latest WMAP data [47].

multipole moment {

{H{+
1LC

{/2
p 

 (m
K

)

multipole moment {

{H{+
1LC

{/2
p 

 (m
K

)

Figure 1.5: Left Panel: the angular power spectrum of CMB, adapted from [47].
The points correspond to the 7-year WMAP dataset while the solid line is the
best-fit within the ⇤-CDM model. The shaded region represents theoretical
uncertainties due to the cosmic variance.
Right Panel: The sensitivity of the angular power spectrum to ⌦B, from [55].

In the proposed analysis the temperature fluctuations of CMB result in a characteristic

series of peaks in the angular power spectrum. These correspond to oscillations of the

original baryon-photon plasma driven by the contrast between the radiation pressure

and gravity – the baryon acoustic oscillations (BAOs). As shown in the right panel of

Figure 1.5, this mechanism is clearly sensitive to the abundance of baryons present in

the plasma. Consequently, within the ⇤-CDM model, CMB measurements constrain the

baryon density parameter

⌦B :=
⇢B
⇢c

(1.2.6)

where ⇢c is the critical energy density, defined as ⇢c := 3H2m2

P l/8⇡. It is then easy

to recast the bound on the density parameter as a measure of the baryon asymmetry.
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Adopting the 7-year WMAP dataset, BAO and the latest measurement of the Hubble

constant H
0

yields [46]

⌘CMB
B =

⇢B
n�mp

=
⌦B⇢c
n�mp

=
�

6.19 ± 0.15
�⇥ 10�10 (68% CL) (1.2.7)

where mp is the proton mass. Notice that for the observed thermal equilibrium of CMB,

it is highly unlikely that some mechanism could modify the baryon asymmetry of the

Universe after the recombination era. Consequently eq. (1.2.7) can also be regarded as

a measure of the baryon asymmetry today.

To conclude the present Section we comment on the agreement between eq. (1.2.7)

and (1.2.5). Beside being completely independent, the measurements that BBN and

CMB provide also frame the baryon asymmetry of the Universe in totally di↵erent times.

BBN probes this quantity for T ⇠ (10�1 – 10) MeV, corresponding to an age of the

Universe t ⇠ (10�2 – 102) seconds. Di↵erently CMB tests the baryon asymmetry at the

recombination, when T ⇠ 1 eV and t ⇠ 106 years. The fact that the two measurements

are compatible is therefore not trivial at all and, as the ⇤-CDM model strictly constrains

the evolution of ⌘B between these two eras, the agreement of eq. (1.2.7) and (1.2.5) can

indeed be regarded as a great success of this theory.

1.2.2 Generating the asymmetry

Persuaded of the baryon asymmetry existence by the BBN and CMB measurements, we

now concentrate on the conditions which led to its formation in our Universe.

The first issue we have to confront is whether or not this asymmetry was actually

generated. In fact, it could be sustained that the origin of the baryon asymmetry is an

initial set-up of the Universe, which favoured matter over antimatter. No explanation

would therefore be required to motivate the present value of ⌘B, owing to the initial

condition involved. This hypothesis is however invalidated, within the ⇤-CDM model,

by a key ingredient in the evolution of the Universe: Inflation. During the inflationary

stage the Universe undergoes an exponential expansion, which would quickly dilute

any present asymmetry. As a consequence our observable Universe would then contain

baryonic matter and antimatter in equal proportions after the Inflation era, contradicting

the current experimental observations. Not spoiling the successes of Inflation therefore

imposes the baryon asymmetry of the Universe be necessarily generated dynamically,

after the considered inflationary stage.
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The conditions that a mechanism must satisfy to dynamically produce such asymmetry

were pointed out in 1967 by A. D. Sakharov [56]. The analysis underlined three funda-

mental requirements6:

I Violation of the baryon number.

This condition is somewhat intuitive: starting from a null asymmetry, the mechan-

ism must account for the value of ⌘B we measure.

Notice that, in analogy to leptons, baryons and antibaryons are also associated to a

charge provided by an accidental symmetry of the Standard Model: the the baryon

number B. The above remark therefore trivially implies �B 6= 0.

II Violation of C and CP symmetries.

Also this condition can be easily understood, as the mechanism must generate more

matter than antimatter in order to give rise to the asymmetry. Violations of C and

CP are then necessary to discriminate between particles and antiparticles. If this

condition is not satisfied the B-violating interactions would produce baryons and

antibaryons at the same rate, resulting in a null asymmetry.

III Departure from equilibrium.

The departure from equilibrium is required for a twofold reason. Entropy, in chem-

ical equilibrium, is maximised when the chemical potentials of species associated

to non-conserved quantum numbers vanish. The requirement (I) postulates the

non-conservation of the baryon number, hence chemical equilibrium would enforce

µB = 0 and consequently a vanishing asymmetry, through the relation

nX � nX =
gXT 3

6

8

<

:

�µX + O�(�µX)3
�

X is a fermion

2�µX + O�(�µX)3
�

X is a boson
(1.2.8)

where � := 1/T and gX accounts for the number of internal degrees of freedom of

the species X.

On top of that, in thermal equilibrium the baryon number satisfies

hB(t)i =
Tr
�

e�H/TB(t)
�

Z
=

Tr
�

e�H/T e�iHtB(t = 0)eiHt
�

Z
⌘ hB(t = 0)i (1.2.9)

and clearly no baryon asymmetry can be generated as far as thermal equilibrium is

maintained – after the Inflation B(t = 0) = 0.

6In our analyses we will assume that the sphaleron processes, discussed in the upcoming Section, be
active during the Leptogenesis process. This implies a further condition quantified in a lower bound on
the temperature of the Universe of order of the Electro-Weak symmetry breaking scale: T & 102 GeV.
In the framework we propose this requirement will always be satisfied and consequently we disregard
the possibilities o↵ered by low scale Leptogenesis scenarios, in which the BAU asymmetry is generated
below the Electro-weak symmetry breaking scale through di↵erent mechanisms.
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The Sakharov conditions specified above clearly identify the requirements that the pro-

duction of a baryon asymmetry imposes. Our next step is to analyse whether these

prerequisites are satisfied within the specific framework provided by the Standard Model.

1.2.3 The Standard Model scenario: Electro-Weak Baryogenesis

To discuss how the Standard Model fulfils the above requirements we address each point

separately.

• Baryon number violations in the Standard Model: the sphaleron process.

As mentioned before, B and L conservations are respectively introduced in the

Standard Model by the accidental U(1)B and U(1)L symmetries. Strictly speak-

ing this is not correct, as non perturbative e↵ects – the instantons – break these

symmetries [57]. Instantons are related to transitions between topologically dif-

ferent vacuum states of Yang-Mills theories, accompanied by a violation of baryon

and lepton numbers. The typical transition rate is however negligible, hence the

above accidental symmetries are recovered.

The situation is di↵erent if we consider non-zero temperatures, as another non-

perturbative e↵ect is driving these transitions: the sphaleron [58]. The rate of these

processes is related to the free energy of the sphaleron-type configuration, a saddle

point in the gauge-Higgs bosons configuration space. The e↵ective operator cor-

responding to the Electro-Weak sphaleron transitions couples all the left-handed

fields of the Standard Model

Osph =
Y

i

�

QiLQiLQiL`iL
�

. (1.2.10)

Hence when in thermal equilibrium, for 102 GeV . T . 1014 GeV, sphalerons

induce a violation of baryon and lepton numbers

�B = �L = 3 (1.2.11)

and the first Sakharov condition is therefore satisfied within the Standard Model.

Notice that the sphaleron transitions conserve the B � L charge and also its indi-

vidual components B/3� L↵, ↵ = e, µ, ⌧ .

• C and CP violations: Weak Interactions.

The Weak Interactions are responsible for breaking C and CP in the Standard

Model. The former is explicitly broken, as Weak Interactions couple only particles

–and antiparticles – with definite chirality. As for CP , the quark mixing mech-

anism [59] is regulated by the Cabibbo-Kobayashi-Maskawa (CKM) matrix which

contains one CP -violating phase. Experiments investigating neutral K and B
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mesons oscillations tested this phase [60], confirming the presence of CP -violation

in the quark sector of the Standard Model.

• Out of equilibrium dynamics: a strong phase transition. The last ingredient neces-

sary in the Standard Model is the departure form equilibrium. This is provided,

at the Electro-Weak symmetry breaking, by a strong first-order phase transition

proceeding through nucleation and growth of bubbles [61]. In this case the Electro-

Weak symmetry is broken only inside the bubbles, hence particles and antiparticles

would enter the latter at di↵erent rates generating an asymmetry.

In principle all the Sakharov conditions are satisfied by the Standard Model, delineating

a straightforward solution to the puzzle posed by the existence of a baryon asymmetry in

our Universe: Electro-Weak Baryogenesis [62]. Unfortunately, a first issue disfavouring

this answer is brought by the same baryon asymmetry. In this regard, it was found that

even by assuming the required departure from equilibrium and violation of the baryon

number, the amount of CP asymmetry in the Standard Model is not enough to explain

the measured value of ⌘B [63]. On top of that, a more radical problem is underlined by

dedicated lattice simulations [64]. These proved that a first-order phase transition, as

strong as required for non equilibrium dynamics, yields a strict upper bound on the mass

of the Higgs boson mH . 45 GeV. Clearly this condition is not satisfied by the latest

measurements mH ' 126 GeV [16, 17], implying inevitably the failure of the proposed

scenario.

In conclusion, the Standard Model alone is not able to account for the baryon asymmetry

of the Universe that BBN and CMB quantify. The failure of Electro-Weak Baryogenesis

reveals the necessity of a new baryogenesis model, explaining the origin of such asym-

metry. For this reason, the latter can be thus regarded as a strong evidence in favour of

new Physics, further to the results of neutrino oscillation experiments that we considered

before.

Currently, many scenarios beyond the Standard Model are proposing di↵erent mechan-

isms able to address the problems that we exposed in this Section. We mention for ex-

ample, in connection to the neutrino mass puzzle, the possibilities o↵ered by large extra-

dimensions and by non-renormalizable operators. In the former approach, additional

spatial dimensions are employed to address the hierarchy problem and provide an al-

ternate explanation to the Seesaw mechanism for the generation of neutrino masses [65].

Regarding instead the Standard Model as an e↵ective theory, valid up to the scale of new

Physics ⇤nP , the underlying Lagrangian can be extended to non-renormalizable higher

dimensional operators. These are suppressed by powers of 1/⇤dim�4

nP , with the largest

e↵ects at low energy arising from the dim = 5 operators which can provide a Majorana

mass term to the ordinary neutrinos [66]. As for the problem concerning the generation

of a BAU, beside the traditional Grand Unified Theory (GUT) baryogenesis scenarios
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in which the decays of the GUT symmetry group bosons are responsible for the gener-

ation of the baryon asymmetry, we mention the solutions proposed by the A✏eck-Dine

scenario of inflation, within supersymmetric models, [67] and by the same Electro-Weak

Baryogenesis. Di↵erently from the Standard Model, scenarios of new Physics incorpor-

ating Supersymmetry or domain walls, for example, can in fact provide the strong first

order phase transition that the third Sakharov condition imposes.

In the present work we will however disregard these possibilities in favour of a simple

solution, which draws a connection between the neutrino mass puzzle and the observed

baryon asymmetry of the Universe proposing a common solution.

1.3 An appealing solution

To summarise, in the present Chapter we focused on two problems that contemporary

Physics is posing to the Standard Model, first with neutrino oscillation experiments, then

through the baryon asymmetry of the Universe. The proposed evidences and the implied

theoretical consequences underline the current necessity of new, testable, frameworks to

address the problems disclosed. In this regard, in the remaining of this Thesis we will

focus on a model yielding a possible answer.

The interesting feature of this solution is the nontrivial connection that it draws between

neutrino Physics and contemporary Cosmology, addressing the problem of neutrino

masses and the baryon asymmetry of the Universe at once. Chapter 2 is therefore dedic-

ated to the Seesaw extension of the Standard Model, introducing the Seesaw mechanism

and Leptogenesis to address respectively the neutrino mass puzzle and the problem of

the baryon asymmetry generation. For sake of clarity we present here a first simplified

scenario, N
1

Leptogenesis, which nevertheless is able to o↵er a significant insight into

the Physics that the considered Seesaw extension proposes. In Chapter 3 we analyse

the important consequences that flavour has within Leptogenesis. Flavours e↵ects are

exhaustively discussed within the classical Boltzmann-equations-approach to Leptogen-

esis, reserving to Chapter 4 a more precise formulation of the problem which employs

the density matrix technology. In Chapter 5 we consider the problem of the initial

conditions in Leptogenesis, employing the flavour e↵ects to identify a particular strong

thermal Leptogenesis scenario as the only possible solution. Then, considering the spe-

cific framework provided by the SO(10)-inspired model of Leptogenesis, in Chapter 6

we investigate the important phenomenological consequences that this strong thermal

Leptogenesis scenario implies on the Seesaw parameter space. Finally, in Chapter 7, we

conclude the present work summarising the results that our analyses of this fascinating

scenario of new Physics highlighted.





Chapter 2

A possible answer: the Seesaw

extension of the Standard Model

In the Introduction we exposed the present requirement for a new framework, to ad-

dress the puzzle of neutrino oscillations and the baryon asymmetry of the Universe.

The answer we consider is the Seesaw extension of the Standard Model, an interesting

scenario of new Physics where these issues are linked by a common solution. The appeal

of this framework is due to its twofold nature. On one hand we have the simplicity of

the model, which o↵ers a straightforward insight into the Physics beyond the Stand-

ard Model. On the other hand, for the non-trivial connection realised between Particle

Physics and Cosmology, this solution yields important phenomenological implications.

We will investigate the latter in the last Chapters of this work, focusing for the moment

on the former point.

Before detailing the characteristics of the Seesaw mechanism that we employ in our

analyses, we present a brief survey of the di↵erent variants proposed for this attractive

mechanism.

• Type I:

The type I is the simplest realisation of the Seesaw mechanism [68–71]. In this

framework at least two right handed (RH) neutrinos are added as singlets to the

content of the theory. The new particles are provided a Majorana mass term M

and the associated mass scale is traditionally close to the scale of grand unification.

These particles also couple to the lepton and Higgs doublets of the SM through

a new set of Yukawa coupling h. Integrating the RH neutrinos out of the theory

results in a dimension 5 operator which provides a Majorana mass to the usual

neutrinos involved in the Weak Interactions. The emerging mass scale is of order

[mµ] ⇠ [v2h2/M ], where v is proportional to the vacuum expectation value of the

neutral Higgs component.

21
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• Type II:

In the type II Seesaw mechanism [72–74] a new Higgs SU(2)L triplet, �, couples

to the lepton and Higgs doublets of the SM through the terms L � g`�`c and

L � g0�†�� respectively, where c indicates a charge conjugated field. Once the

neutral component of the Higgs triplet acquires a vacuum expectation value, v
�

,

a Majorana mass term of the order [mµ] ⇠ [gv
�

] is generated for the neutrinos.

We remark that the value of v
�

is controlled by the coupling of the new triplet to

the usual Higgs doublet of the SM: v
�

⇠ g0v2/M2

�

. Hence, overall, the generated

neutrino mass scale is given by [mµ] ⇠ [gg0v2/M2

�

].

• Type III:

The type III Seesaw mechanism [75] is a modification of the type I variant, where

three RH neutrinos are considered and assigned to a triplet of SU(2)L. Similarly

to the case of type I, integrating out the RH neutrinos results in a dimension 5

e↵ective operator which provides a Majorana mass term to the ordinary neutrinos.

The mass scale recovered for these particles is the same as in the type I variant,

[mµ] ⇠ [v2h2/M ], nevertheless within the type III Seesaw mechanism the RH

neutrinos interact with the SU(2)L gauge bosons.

• Radiative seesaw:

In the scenarios adopting a radiative seesaw mechanism, the dimension 5 operator

which provides the neutrino mass term is generated through quantum corrections.

These generally involve new heavy particles, which are charged under an imposed

discrete symmetry. A specific example is provided by the Scotogenic models [76],

in which the SM is extended by adding three neutral singlet fermions, the RH neut-

rinos, interacting with the lepton doublets through an additional scalar doublet.

As the new particles are all odd under an exactly conserved Z
2

symmetry, while

the SM content is kept even, the usual Dirac mass term for the neutrinos is forbid-

den in the theory and the type I Seesaw mechanism cannot be invoked. However,

once the RH neutrinos are provided heavy Majorana masses, the coupling to the

new scalar doublets results in a mass term for the ordinary neutrinos which is

suppressed by the RH neutrino mass scale and proportional to the relevant loop

factor. We remark that, owing to the Z
2

symmetry employed, the lightest of the

new particle introduced in the theory is stable and, therefore, represents a suitable

candidate for Dark Matter.

The scenario we consider is based on the type-I seesaw mechanism [68–71] and involves

three new particles, the right-handed (RH) neutrinos ⌫iR for i = 1, 2, 3, added to the

content of the Standard Model1. Within the proposed framework, these RH neutrinos

1It is indeed possible to account for the current experimental observations also by considering two RH
neutrino species only, in which case the lightest of the ordinary neutrino species is necessarily massless.
Nevertheless, as we will explicitly show in Chapter 5, the presence of a third RH neutrino species is
required within certain frameworks in order to explain the detected value of the BAU.
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are Majorana particles which transform as singlets under the SU(3)C⇥SU(2)L⇥U(1)Y

symmetry of the theory and couple to the lepton doublets of the SM through an addi-

tional Yukawa interaction term. The Lagrangian of the model is therefore given by

L = LSM + LSeesaw � i
3

X

i=1

⌫iR @µ �µ ⌫iR �
X

↵,�=e,µ,⌧

y↵� `0↵L l0�R �+

�
X

↵=e,µ,⌧
i=1,2,3

h0
↵i `

0
↵L ⌫iR �̃� 1

2

X

i,j=1,2,3

⌫c
iR Mij ⌫jR + H.c. (2.0.1)

where h0
↵i is a complex matrix containing the new set of Yukawa couplings while Mij

is the complex symmetric matrix of the RH neutrino masses. The RH neutrino fields

satisfy

⌫c
iR = C ⌫iR

T (2.0.2)

⌫c
iR = �⌫T

iR C† (2.0.3)

being C the representation of charge conjugation operator on the spinor space:

C�1 = C† (2.0.4)

CT = �C (2.0.5)

C(�µ)TC�1 = ��µ (2.0.6)

C(�5)TC�1 = �5. (2.0.7)

The last field we introduce is �̃, the negative Hypercharge Higgs doublet, defined in

terms of the usual Higgs fields � – Section A.1 – as

�̃ := i�
2

�⇤ =

 

�0

���

!

(2.0.8)

where �� := (�+)† and �
2

is the second Pauli matrix – eq. (A.1.3).

As in the previous Section, the greek subscripts are assigned to the charged-lepton

flavours (↵ = e, µ, ⌧) while the latin ones to the mass eigenstates (i = 1, 2, 3). Finally,

the subscripts “L” and “R” refer to the chirality of the involved fields, with obvious

meaning of the notation.

Without loss of generality, we can write our Lagrangian on a basis where both the

charged-lepton Yukawa couplings and the RH neutrino mass matrix are diagonal. To

this purpose we consider the bi-unitary diagonalisation of the former

y = U l†
L Dy U l

R (2.0.9)
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where with DX we indicate the diagonal form of a matrix X. The flavour lepton doublets

are then defined according to

`↵L := (U l
L)↵� `0�L =

 

⌫↵L

l↵L

!

(2.0.10)

while the RH components of the corresponding charged lepton mass eigenstates2 are:

l↵R := (U l
R)↵� l0�R. (2.0.11)

As for the RH neutrinos, the diagonalisation of the complex symmetric matrix M pro-

ceeds through the Takagi factorisation

M = V ⌫
R DM V ⌫T

R , DM = Diag(M
1

, M
2

, M
3

) (2.0.12)

where we assume M
1

< M
2

< M
3

. The RH components of the corresponding Majorana

mass eigenstates are then

NiR := (V ⌫T
R )ij ⌫jR (2.0.13)

and by defining the Yukawa couplings h through

h0 = h(V ⌫
R)T (2.0.14)

the Lagrangian (2.0.1) can be finally recast as

L � i
3

X

i=1

NiR @µ �µ NiR �
X

↵=e,µ,⌧

(Dy)↵ `↵L l↵R ��
X

↵=e,µ,⌧
i=1,2,3

h↵i `↵L NiR �̃+

� 1

2

3

X

i

N c
iR (DM )i NiR + H.c.. (2.0.15)

It is now clear that the scenario we analyse adds 18 new parameters to the Standard

Model: 15 entries3 in the complex matrix h and the three RH neutrino masses Mi in

DM . As the phenomenologies we aim to describe provide currently only 6 observables,

the value of ⌘B and the five parameters of Table 1.1, an issue concerning the predictivity

of this framework can indeed be raised. We postpone our answer to Chapter 6, focusing

for the moment on the basics of the presented scenario. In this regard, in the next

section we show how the neutrino mass puzzle is addressed in a remarkable way.

2We implicitly intend the right-handed components of the fields corresponding to these particles. In
the remaining part of the Thesis this remark will be understood.

3In general h is specified by nine real parameters and nine phases. The number of the latter can
however be reduced to six through a rephasing of the three lepton doublets.
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2.1 The Seesaw mechanism

Let us focus now on the last two terms in the Lagrangian (2.0.15), leading after the

Electro-Weak symmetry breaking

�(x)
h�0i6=0����!

0

@

0
V+Hp

2

1

A , �̃
h�0i6=0����!

0

@

V+Hp
2

0

1

A , V ' 246 GeV (2.1.1)

to

L � Lseesaw
M = �v

X

↵=e,µ,⌧
i=1,2,3

h↵i ⌫↵L NiR � 1

2

3

X

i

N c
iR (DM )i NiR + H.c. (2.1.2)

where v := V/
p

2 ' 174 GeV. The above equations clearly imposes a Dirac mass term

mD := vh to neutrinos. Consequently, even if we were to neglect any further implication

of the Lagrangian (2.1.2) by setting DM ⌘ 0, we could in principle address the neutrino

mass puzzle by picking an appropriate form for mD. The latter would then yield a

neutrino mass spectrum and a PMNS matrix in agreement with the current experimental

bounds. Yet, even so, we would have to face a further complication. More explicitly,

by adopting as a natural mass scale for neutrinos the one that oscillations experiments

suggest [mosc
⌫ ] ⇠ (10�3 – 10�2) eV, given that [v] ⇠ 105 eV, in the above scheme the

required Yukawa couplings result artificially small [h] ⇠ (10�8 – 10�7). This is not the

case within the Seesaw mechanism, which recovers the proposed neutrino mass scale

even when natural Yukawa couplings of order [h] ⇠ 1 are considered, provided the RH

neutrino mass scale is of the order of the typical Grand Unified Theory (GUT) scale

⇤GUT ⇠ (1015 – 1016) GeV. In fact, restoring the Majorana mass term DM 6= 0 in

our Lagrangian, we gather now the involved fields into arrays of definite chirality and

through the relation

⌫↵LNiR = N c
iR⌫c

↵L (2.1.3)

the Lagrangian (2.1.2) can be written in a compact but meaningful form:

Lseesaw
M = �1

2

⇣

⌫eL . . . N c
3R

⌘

 

0 mD

(mD)T DM

!

0

B

B

@

⌫c
eL
...

N
3R

1

C

C

A

+ H.c. ⌘ (2.1.4)

⌘ �1

2

6

X

j,k=1

⌫jL (MD+M )jk ⌫c
kL + H.c.. (2.1.5)

The formal structure of the above equation matches the one of the last term in eq. (2.0.1),

therefore, for the viability of Seesaw mechanism, neutrinos must be Majorana particles.

This clearly is an important prediction of the scenario, leading to a potential first test
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through the neutrinoless double �-decay experiments presented in Section 1.1.3. Hav-

ing said that, the neutrino mass eigenstates relevant for the oscillation mechanism are

calculated by diagonalising the block matrix MD+M . The resulting block eigenvalues,

at the leading order, are

�
1

=
1

2

✓

DM �
q

D2

M + 4mD(mD)T
◆

(2.1.6)

�
2

=
1

2

✓

DM +
q

D2

M + 4mD(mD)T
◆

(2.1.7)

while the 6⇥ 6 matrix V ⌫ involved in the diagonalisation, again at the leading order, is

V ⌫ '
 

1 mDD�1

M

�D�1

M m†
D 1

!

(2.1.8)

satisfying: V ⌫(V ⌫)† ' (V ⌫)†V ⌫ = 1 + O(D�2

M ). Until now we made no assumptions

about the origin of the RH neutrinos. To this regard, notice that many GUTs propose

the existence of these particles, which generally complete the representations of the GUT

group occupied by matter. For example, within SO(10) GUTs, the RH neutrinos appear

in the 16 dimensional spinor representations associated to the three fermion families of

the SM [77], while in SU(6) theories the complete the 6 and 15 representations [78].

We can therefore expect the RH neutrino mass scale [M ] to be naturally of the required

order ⇤GUT ⇠ (1015 – 1016) GeV. In this case the Seesaw limit [DM ] � [mD] ⇠ 102

GeV is satisfied and consequently:

V ⌫†MD+MV ⌫⇤ Seesaw limit�������!
 

m⌫ 0

0 DM

!

(2.1.9)

where

m⌫ := �mD D�1

M (mD)T . (2.1.10)

As clear from the above equation, imposing the Seesaw limit leads to a split neutrino

mass spectrum presenting two sectors associated to di↵erent energy scales:

• Low energy sector: light neutrinos.

The low energy sector contains three light neutrinos associated to the mass matrix

in equation (2.1.10). Notice that for the above values of mD ⇠ [v] and DM ⇠
[M ], the matrix m⌫ matches the estimate provided by the oscillation experiments

[m⌫ ] ⇠ (10�2 – 10�3) eV ⌘ [mosc
⌫ ] in a natural way. On top of that, by ascribing

the neutrino mass scale to the ratio of the Electro-Weak and GUT scales, the

Seesaw mechanism potentially provides a way to test the high energy sector of the

theory.

From the above discussion on the merits of this attractive scenario, it should

be clear that the proposed light neutrinos are suitable candidates to address the
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neutrino oscillations puzzle. To calculate the corresponding mass eigenstates we

therefore diagonalise the symmetric matrix m⌫

L⌫† m⌫ L⌫⇤ = �Dm
⌫

(2.1.11)

by means of the unitary 3⇥3 matrix L⌫ . Hence, the 4-component Majorana fields

associated to the eigenvalues mi of Dm
⌫

, nl
i = nl

iL + (nl
iL)c, are finally given by

nl
iL :=

X

j=1,2,3

(L⌫†)ij

"

6

X

k=1

⇣

V ⌫†
⌘

jk
⌫kL

#

, i = 1, 2, 3. (2.1.12)

• High energy sector: heavy neutrinos.

We consider now the lower block of the mass matrix in eq. (2.1.9). As no further

diagonalisation is required, the heavy neutrino mass eigenstates are simply given

by nh
i = nh

iL + (nh
iL)c, where

nh
iL :=

6

X

j=1

⇣

V ⌫†
⌘

(i+3)j
⌫jL, i = 1, 2, 3. (2.1.13)

With the complete neutrino mass spectrum given by the eigenvalues mi and Mi associ-

ated to respectively to light and heavy neutrinos, we can now focus on the PMNS matrix

that the Seesaw mechanism proposes.

2.1.1 The PMNS matrix in the Seesaw mechanism

To identify the leptonic mixing matrix we introduce the 6⇥ 6 matrix [79]

K :=

 

L⌫ 0

0 1

!

(2.1.14)

which relates the neutrino mass eigenstates to the array ⌫Lk of eq. (2.1.4):

 

nl
L

nh
L

!

j

=
6

X

k=1

⇣

K† V ⌫†
⌘

jk
⌫kL. (2.1.15)

As the Lagrangian (2.1.2) is already written on a basis that diagonalises the charged

lepton Yukawa couplings, the first three fields in the array ⌫Lk correspond to the flavour

neutrinos. Consequently eq.s (A.2.10) and (A.2.11) imply for the PMNS matrix

U↵k :=
6

X

j=1

(V ⌫)↵j (K)jk . (2.1.16)
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Hence, within the proposed framework, the lepton mixing matrix is a 3 ⇥ 6 matrix

satisfying UU † = 1
3⇥3

, but U †U 6= 1N⇥N . As a result, the non unitarity of U breaks

the Glashow-Iliopoulos-Maiani mechanism [80] and transitions between the di↵erent

mass eigenstates are in principle possible via neutral current interactions – the flavour

changing neutral currents.

We remark that the unitarity violation is in general a low-energy signal of the presence

of new Physics. For instance, a possible source of non-unitary e↵ects in the lepton

mixing is the hypothetical existence of additional light neutrino species which are not

involved in the Weak Interactions of the SM: the so-called sterile neutrinos. In more

detail, the light sterile neutrinos are fermions with no ordinary Weak Interactions which

could however mix significantly with ordinary neutrinos species. As a consequence the

neutrino oscillation probabilities and all the astrophysical and cosmological mechanisms

which involve neutrinos are potentially a↵ected by the presence of sterile neutrinos. For

example, as we saw in the previous Chapter, the same BBN is in principle sensitive to

– and currently disfavours – the existence of additional neutrino species.

Another important consequence of a non-unitary lepton mixing is instead connected

to the amount of CP violation present at low energy in the lepton sector, where these

e↵ects usually lead to a significant enhancement of this quantity. Finally, we remark that

the observation of non-unitary e↵ects within models presenting heavy sterile neutrinos

could potentially provide a window to analyse the Physics of the associated high energy

scale. For example, in the case of non-minimal Seesaw models, additional symmetry

arguments are imposed in order to maintain the heavy neutrino massed around the TeV

scale. This potentially gives rise to a significant light-heavy neutrino mixing and the

consequent deviation from the unitarity could manifest itself in tree level processes like

⇡ ! µ + ⌫ or in the rare charged lepton flavour violating decays as µ! e + �.

In this regard, for the Seesaw scenario we propose, considering the explicit form of the

matrix

U =
⇣

L⌫ mDD�1

M

⌘

(2.1.17)

the 3⇥ 3 block regulating the heavy neutrino mixing results clearly suppressed as D�1

M .

We thus expect the unitarity violation to be of order O(D�2

M ) so, in the considered

Seesaw limit, we can safely disregard this e↵ect and identify the PMNS matrix with the

3⇥ 3 unitary matrix L⌫ ⌘ U . In this way equation (2.1.11) is recast as

Dm
⌫

= �U †m⌫U
⇤ (2.1.18)

and the neutrino mass eigenstates of eq.s (2.1.12) and (2.1.13) satisfy

nl
iL = niL :=

X

↵=e,µ,⌧

⇣

U †
⌘

i↵
⌫↵L, i = 1, 2, 3 (2.1.19)

and

nh
iL = NiL ⌘ N c

iR, i = 1, 2, 3. (2.1.20)
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The solution that the considered scenario proposes to the neutrino oscillations puzzle is

therefore clear. In the Seesaw limit, the LH components of three Majorana neutrinos ni

are involved in the Weak Interactions. The mismatch between the basis diagonalising

m⌫ and the charged lepton Yukawa couplings y, quantified by U , gives rise to neutrino

oscillations. As the latter do not involve the heavy neutrinos Ni, no sterile neutrinos

appear in the present scheme. In Chapter 6, beside commenting on the predictivity of

our framework, we also show the impact of the actual oscillation data on the Seesaw

mechanism when a concrete model is considered. For the moment we focus again on

the heavy neutrinos Ni and tackle the puzzle posed by the baryon asymmetry of the

Universe.

2.2 Leptogenesis

By means of the usual chirality projection operators

PR :=
1 + �5

2
, PL :=

1� �5

2
(2.2.1)

the Yukawa interactions that the Seesaw extension introduced in the Lagrangian (2.0.15)

can be written in terms of the heavy neutrinos Ni = NiR + N c
iR that the Seesaw mech-

anism involves

L � �
X

↵=e,µ,⌧
i=1,2,3

h↵i `↵PR Ni �̃�
X

↵=e,µ,⌧
i=1,2,3

h⇤
↵i �̃†NiPL `↵. (2.2.2)

Several new processes are therefore implied, for example we have:

• |�L| = 1 decays and inverse-decays of the heavy neutrinos into lepton and Higgs

doublets or antilepton and antiHiggs doublets

• |�L| = 1 scatterings mediated by the Higgs doublets, involving mainly top quarks

and gauge bosons

• |�L| = 2 scatterings mediated by heavy neutrinos4.

We can consequently sketch a new baryogenesis mechanism, Leptogenesis, in which the

baryon asymmetry of the Universe is explained as a product of an original lepton asym-

metry generated by the heavy neutrino decays. To illustrate the basics of this appealing

scenario, we discuss now three fundamental points of the Leptogenesis process, closely

related to Sakharov conditions of Section 1.2.2.
4The on-shell part of s-channel scatterings is already accounted for by decays and inverse-decays.
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2.2.0.1 Lepton and baryon number violations in Leptogenesis: the role of

B � L

To link lepton and baryon asymmetries, Leptogenesis clearly requires a connection

between the lepton and baryon number violations that the first Sakharov condition

imposes in the present framework5. The latter is provided again by the sphaleron pro-

cesses of the Standard Model, while the Majorana mass term in eq. (2.0.15) ensures the

explicit violation of the former. To investigate now the connection between the corres-

ponding asymmetries we consider the processes that are active in the Early Universe,

as well as the implications that chemical equilibrium has on the associated chemical

potentials [81–83]:

Process Corresponding condition

W�  ! �� + �0 µW = µ�� + µ�0

W�  ! uiL + diL µW = µd
iL

� µu
iL

W�  ! ⌫↵L + l↵L µW = µl
↵L

� µ⌫
↵L

�0  ! uiL + uiR µ�0 = µu
iR

� µu
iL

�0  ! diL + diR µ�0 = µd
iL

� µd
iR

�0  ! l↵R + l↵L µ�0 = µl
↵L

� µl
↵R

Table 2.1: Active processes in the Early Universe. The relevant reactions are
presented in the left column. The right column shows the corresponding condi-
tions that chemical equilibrium implies for the chemical potentials of the spe-
cies involved. The subscript “i” labels the SM generations, u and d indicate
respectively up-type and down-type quarks, while “↵” is reserved for the lepton
flavours.

Assuming now an e�cient particle mixing due to

• quark mixing: µu
iL

! µu
L

, µu
iR

! µu
R

, µd
iL

! µd
L

, µd
iR

! µd
R

• lepton mixing: µl
↵L

! µl
L

, µl
↵R

! µl
R

, µ⌫
↵L

! µ⌫
L

as well as in-equilibrium SU(2)L gauge interactions, which level the chemical potentials

of species belonging to the same SU(2)L multiplet

µ�� ⌘ µ�0 = µ
�

, µu
L

⌘ µd
L

= µQ
L

, µ⌫
L

⌘ µl
L

= µ`
L

(2.2.3)

the reactions of Table 2.1 yield

8

>

>

>

>

<

>

>

>

>

:

µ
�

= µu
R

� µQ
L

µ� = µq
L

� µd
R

µ� = µ`
L

� µl
R

.

(2.2.4)

5On top of the usual barion number violations, lepton number violations are required to generate the
lepton asymmetry.
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In addition to that, the Hypercharge neutrality of the Universe implies – Table A.1

µQ
L

+ 2µu
R

� µd
R

� µ`
L

� µl
R

+
2

3
µ
�

= 0 (2.2.5)

while the Electro-Weak sphaleron processes, in equilibrium for temperatures T 100 GeV .
T . 1014 GeV, impose

3µQ
L

+ µ`
L

= 0 (2.2.6)

leading to a system of five equations for the six chemical potentials involved. Notice

that owing to eq. (1.2.8), the latter actually measure the asymmetry densities between

particles and antiparticles of the relative species. In particular, for baryons and leptons

we consequently have

nB � nB = 3� (2µQ
L

+ µu
R

+ µd
R

) , nL � nL = 3� (2µ`
L

+ µl
R

) (2.2.7)

where � = T 2/6 and the factor 3 is due to the considered number of generations. Then,

by means of the system composed by eq.s (2.2.4, 2.2.5, 2.2.6), it follows

nB � nB = �4 �µ`
L

, nL � nL =
51

7
�µ`

L

(2.2.8)

showing explicitly the connection that the presented reactions established between ba-

ryon and lepton asymmetries. Going further, an e↵ective measure for µ`
L

is given by

the B � L asymmetry density, defined according to:

nB�L := nB � nB � (nL � nL) = �79

7
�µ`

L

(2.2.9)

Hence, by parametrizing the baryon and lepton asymmetry densities in terms of the

above quantity

nB � nB =
28

79
nB�L, nL � nL = �51

79
nB�L (2.2.10)

it is evident that the first Sakharov condition actually implies the violation of the B�L

number within Leptogenesis. We anticipate that this will be a fundamental quantity

in our analyses as, being conserved by all the Standard Model processes, it is purely

determined by the Leptogenesis mechanism.

The way this scenario operates is therefore clear: by enforcing µ`
L

6= 0 through the heavy

neutrino decays, the Leptogenesis process violates B � L and results in an asymmetry

that is partially converted into a baryon asymmetry, as prescript by eq. (2.2.10).

To conclude this Section, it should be stressed that the conversion factors in eq. (2.2.10)

are valid only as far as the B � L violation occurs in the temperature regime where

Electro-Weak sphalerons are in equilibrium. This will always be the case in the present

work, nevertheless we refer to the analysis in [82] for an expression of the same coe�cients

valid for temperatures below the Electro-Weak phase transitions.
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2.2.0.2 C and CP violation in Leptogenesis: CP -asymmetries

The second point we consider is the violation of C and CP . Within the current frame-

work, the former is still provided by the same Weak Interactions of the SM. As for

the latter, notice that the heavy neutrino decays of Leptogenesis will result in a lepton

asymmetry only if the leptonic and antileptonic decay channels do not compensate. Lep-

togenesis therefore explicitly requires a violation of the CP symmetry. Given the decay

rates of the heavy neutrinos Ni

�i↵ = �i↵

 

|Nii !
X

a

(|`a↵i+ |�ai)
!

(2.2.11)

�i↵ = �i↵

 

|Nii !
X

a

⇣

|`a↵i+ |�ai
⌘

!

(2.2.12)

where ↵ = e, µ, ⌧ and a = 1, 2 is the SU(2)L index, such violation is then quantified

through the CP -asymmetries introduced for GUT baryogenesis [84]:

"i :=
X

↵=e,µ,⌧

"i↵ =
X

↵=e,µ,⌧

2

6

4

� �i↵ � �i↵
P

�

⇥

�i� + �i�

⇤

3

7

5

. (2.2.13)

In the same context it was also noticed that non-zero CP -asymmetries arise form the

interference between the tree-level and one-loop decay diagrams, provided tree level

coupling constants be complex and on-shell particles run in the loops. In Leptogenesis

these conditions are indeed satisfied, being h↵i a complex matrix and given the presence

of more then one Ni. Hence an explicit calculation of the diagrams reported in Figure 2.1

yields [85, 86] for hierarchical heavy neutrinos M
1

< M
2

< M
3

"i =
X

↵

"i↵ =
3

16 ⇡ (h†h)ii

X

j 6=i

Im
h

(h†h)2ij

i ⇠(xj/xi)
p

xj/xi
(2.2.14)

where xi := M2

i /M2

1

and Mi is the mass of the heavy neutrino Ni. The function

⇠(x), which regulates the sensitivity of the CP -asymmetries on the heavy neutrino mass

spectrum, is defined as [87]

⇠(x) :=
2

3
x



(1 + x) ln

✓

1 + x

x

◆

� 2� x

1� x

�

(2.2.15)

and represented in Figure 2.2.

It is therefore clear that beside satisfying the second Sakharov condition, Leptogenesis

provides an additional source of CP violation that potentially addresses the issue raised

by the magnitude of ⌘B proposed by CMB and BBN.
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|`a↵Li

|�ai
|Nii

⇥(
|`a↵Li

|�ai

|Nii

|`b�Li

|�bi

�

�Nj
↵

+

|`a↵Li

|�ai

|Nii
|`�Lbi

|�bi

�

�Nj
↵

+

|`a↵Li

|�ai

|Nii
|`�Lbi

|�bi

�

�Nj
↵ )

Figure 2.1: CP -asymmetry in Leptogenesis, the relevant diagrams. Double
lines indicate the Majorana heavy neutrinos. The arrows are tracking the usual
fermion flow along the fermion lines and the Hypercharge flow along the scalar
ones.
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Figure 2.2: CP -asymmetry in Leptogenesis, the ⇠ function of eq. (2.2.14).

2.2.0.3 Out-of-equilibrium decays and departure from equilibrium

The last point we consider is the departure from equilibrium, which determined the non-

viability of Electro-Weak Baryogenesis. We focused until now on the role that heavy

neutrino decays have in Leptogenesis, neglecting the part of inverse-decays. Yet, when

inverse-decays and decays are both active, through the reactions N  ! ` + � and

N  ! ` + � chemical equilibrium implies:

µN = µ`
L

+ µ� = 0. (2.2.16)
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Hence we are provided a sixth relation, that along with eq.s (2.2.4, 2.2.5, 2.2.6) forms a

closed system having for solution

µ`
L

= µ� = µu
R

= µl
R

= µd
R

= µq
L

⌘ 0 (2.2.17)

and obviously no asymmetry can be generated. In addition, notice that the interplay

of decays and inverse-decays forces the heavy neutrino abundance to track its equilib-

rium value, so thermal equilibrium is also realised. A departure from equilibrium must

therefore occur, satisfying the third Sakharov condition.

Within Leptogenesis, out-of-equilibrium dynamics is provided by the expansion of Uni-

verse. A species will be able to maintain thermal and chemical equilibrium in this

background only as far as all the rates �I , of the interactions I that thermalise its

abundance, are fast enough to overcome the e↵ects due to the expansion. Hence, with

the Hubble parameter H quantifying the expansion rate, if �I � H 8 I thermal and

chemical equilibrium are maintained. Conversely, when �I ⌧ H reactions are said to

freeze-in and the equilibrium regime is lost. In the specific case of Leptogenesis, focus-

ing on a heavy neutrino Ni, the non-equilibrium-dynamics therefore results from the

freeze-in of decay processes
�D,i

H
⌧ 1 (2.2.18)

or the freeze-in of inverse decays
�ID,i

H
⌧ 1 (2.2.19)

or from both the above conditions. Here �D,i is the total decay rate of the considered

neutrino

�D,i :=
X

↵

�

�i↵ + �i↵
�

=

�

h†h
�

ii
Mi

8⇡
(2.2.20)

and the last equality holds at the tree-level. The inverse-decay rate is calculated through

the condition neq
` �ID,i = �D,i n

eq
N

i

. Introducing now the decay parameter Ki

Ki :=
�D,i(T = 0)

H(T = Mi)
(2.2.21)

it is clear that this parameter discriminates between the above possibilities. In this

regard, the limit cases Ki � 1 and Ki ⌧ 1 which respectively characterise the strong

washout regime and the weak washout regime, correspond to separated regions of the

Seesaw parameter space. The connection between Ki and the latter is made explicit by

defining the e↵ective neutrino mass

m̃i :=
8v2⇡

M2

i

�D,i =
(m†

DmD)ii
Mi

(2.2.22)
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and the equilibrium neutrino mass

m? :=
8v2⇡

M2

i

H(T = Mi) ' 1.08⇥ 10�3 eV. (2.2.23)

Hence the decay parameters can be recast as

Ki =
m̃i

m?
. (2.2.24)

Notice that a natural value for m̃i is provided by m̃i ' mosc
⌫ & m?, excluding the

weak washout regime. Attracted by this possibility, in the remaining part of this Thesis

we will concentrate on Leptogenesis scenarios characterised by strong washout regimes.

The out-of-equilibrium-decays that satisfy the third Sakharov condition will therefore be

provided by the freeze-in of the inverse decays.

To summarise our discussion, Leptogenesis is indeed the explanation that the Seesaw

extension proposes for the baryon asymmetry of the Universe. In this attractive scenario

of baryogenesis, the out-of-equilibrium decays of the heavy neutrinos that the Seesaw

mechanism involves break the CP symmetry, producing a lepton asymmetry. This

process entails a violation of the B �L number, which results in a partial conversion of

the original lepton asymmetry into the desired baryon asymmetry.

As the connection between B, L and B � L have already been disclosed, in the next

Section we quantify the B � L violation produced within the clear framework provided

by N
1

Leptogenesis.

2.2.1 N1 Leptogenesis

N
1

Leptogenesis [81, 88, 89] is a simple scenario of Leptogenesis obtained by neglecting

the contributions of the heaviest neutrinos N
2

and N
3

to the baryon asymmetry of the

Universe. By focusing on the dynamics of a single neutrino, N
1

Leptogenesis provides a

straightforward framework that nevertheless unfolds the fundamentals of more complex

scenarios. Not to complicate this picture, in the present Section we discuss the evolution

of the baryon asymmetry in a strong washout regime accounting only for the decays and

inverse-decays of N
1

. In particular we choose to disregard in our analyses the impact of

scattering processes and flavour, discussing the modifications that the former introduces

in a dedicated Subsection. A full analysis of Leptogenesis in relation to flavour e↵ects

is instead postponed to the next Chapter.

Under the proposed assumptions, the Boltzmann equation which regulates the abund-

ance of N
1

in the expanding Universe is

d NN1

d z
= �D

1

(z)
⇣

NN1(z)�N eq
N1

(z)
⌘

(2.2.25)
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where z := M
1

/T and NX denotes the abundance of particle or asymmetry X, normal-

ised to a comoving volume which contains one heavy neutrino in ultra-relativistic regime

and thermal equilibrium. The decay factor D
1

(z) is defined as

D
1

(z) :=
�D,1(T )

H z
= K

1

z

⌧K
1

(z)

K
2

(z)

�

(2.2.26)

and accounts for the e↵ect of a non-zero temperature on the total decay width. The

thermally averaged dilation factor is expressed through the modified Bessel functions of

second kind Ki. The equilibrium abundance N eq
N1

of the heavy neutrinos is also given on

terms of Bessel functions

N eq
N1

(z) =
1

2
z2K

2

(z). (2.2.27)

Hence, the abundance of N
1

is completely determined by two parameters: the decay

parameter K
1

and the unknown initial abundance N in
N1

= NN1(z ⌧ 1).

The evolution of the baryon asymmetry is tracked by eq. (2.2.25) on top of the Boltzmann

equations that regulate the modifications of B and L. As remarked before, we can restrict

our analysis to the pure Leptogenesis processes by considering the B � L number, non-

anomalous within the Standard Model. Hence, by subtracting the equation for the

evolution of the lepton asymmetry from the one controlling the baryon asymmetry, we

obtain:
d NB�L

d z
= ✏

1

D
1

(z)
⇣

NN1 �N eq
N1

⌘

�NB�L W ID
1

(z). (2.2.28)

The above formula is explained straightforwardly. The first term on the RHS accounts for

the interplay of decays and inverse-decays. When an overabundance of heavy neutrinos

arises – NN1 > N eq
N1

– the B � L asymmetry receives a positive contribution from the

decay processes. Conversely, when NN1 < N eq
N1

, a negative contribution is originated

from the inverse-decays which consume leptons and antileptons in di↵erent quantities

to restore the N
1

abundance. The conversion factor between NB�L and NN1 is the

CP -asymmetry "
1

, previously defined in eq.s (2.2.13) and (2.2.14). As for the second

term on the RHS of eq. (2.2.28), the washout factor W ID
1

(z) accounts for a statistical

rebalancing which hinders the B � L production and is driven by the inverse decays:

W ID
1

(z) :=
1

2

�ID,1(z)

H(z)z
=

1

4
K

1

K
1

(z)z3. (2.2.29)

Here

�ID,1 N eq
` = �D,1 N eq

N1
(2.2.30)

and for the adopted conventions it is N eq
` ⌘ 1. The Boltzmann equation for B � L is

then completely determined in terms of three parameters: K
1

, N in
N1

and the initial B�L

abundance Npreex
B�L , which potentially comprises the contributions from N

2

and N
3

.

Within this framework, the amount of baryon asymmetry of the Universe that Lepto-

genesis produced is completely determined by the final abundance of B�L asymmetry,

Nf
B�L ⌘ NB�L(z ! 1). In fact, by means of the conversion factor in eq. (2.2.10) and
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accounting for the dilution factor in eq. (B.0.10) we obtain6

⌘B(T = Trec) =
28

79

nf
B�L

n�

g?S(T = Trec)

g?S(T = Toff )
=

28

79

Nf
B�L

N�

g?S(T = Trec)

g?S(T = Toff )
=

= 0.96⇥ 10�2 Nf
B�L (2.2.31)

where Trec and Toff indicate the temperature of the Universe at the end of, respectively,

recombination and Leptogenesis eras. To detail the B � L production we consider now

the following solution to eq. (2.2.28)

NB�L(z) = Npreex
B�L (z = 0) exp

2

4�
z
Z

0

W ID
1

(z0) d z0

3

5+ "
1


1

(z) (2.2.32)

where the e�ciency factor i does not depend on the CP -asymmetries


1

(z) := �
z
Z

0

d NN1

d z0
exp

2

4�
z
Z

z0

W ID
1

(z00) d z00

3

5 d z0 (2.2.33)

and approximatively quantifies the number of heavy neutrinos which decay out of equi-

librium. Notice that in a strong washout regime it is K
1

� 1, hence the preexisting

component Npreex
B�L is exponentially washed out and the final B � L abundance is con-

sequently determined solely by the second term in the RHS of eq. (2.2.32), corresponding

to the asymmetry that N
1

Leptogenesis produced. Therefore, given the expression for

the CP -asymmetry in eq. (2.2.14), in order to calculate Nf
B�L we concentrate on the

e�ciency factor k
1

, neglecting any preexisting contribution by setting Npreex
B�L = 0.

Suppose a vanishing initial abundance of N
1

and consider the resulting thermal Lepto-

genesis scenario in which the required heavy neutrinos are thermally produced through

inverse-decays and, more in general, also through scatterings. By defining zeq as the

value of z for which the abundance of N
1

reaches its equilibrium value

NN1(zeq) = N eq
N1

(zeq) (2.2.34)

we can discriminate between two contributions that the e�ciency factor comprises. The

first one, �
1

, is due to the interplay of inverse-decays and washout processes. For z < zeq

the e↵ect of decays in eq. (2.2.25) is in fact negligible owing to the low N
1

abundance.

Integrating this equation therefore yields

NN1(z < zeq) = 2

z
Z

0

W ID
1

(z0) d z0 ' K
1

6
z3 (2.2.35)

6The presence of the dilution factor is necessary for a comparison with the experimental measurements
of ⌘

B

. In this regard, for the higher precision reported, we will explicitly employ the CMB result (1.2.7)
as our benchmark value.
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where we used K
1

(x) ' 1/x valid for x < 1. Hence �
1

:= 
1

(z < zeq) is given by

�
1

(z, K) = �
z
Z

0

D
1

(z0) N eq
N1

(z0) exp

2

4�
z
Z

z0

W ID
1

(z00) d z00

3

5 d z0 =

= �2

✓

1� exp



� 1

12
K

1

z3
�◆

. (2.2.36)

The final value of this contribution, as found after the Leptogenesis process, is then

calculated by accounting for the additional washout that will be performed for z > zeq.

An approximate expression is given by [89]

f�
1

(K
1

) := �
1

(z !1, K
1

) = �2e�
1
2N(K1)

⇣

e
1
2
¯N(K1) � 1

⌘

(2.2.37)

which holds in the weak washout regime as well. In the above formula, the factor

containing N(K
1

) := 3⇡K
1

/4 represents the e↵ect of the washout executed for z > zeq,

while

N̄(K
1

) :=
N(K

1

)
⇣

1 +
p

N(K
1

)
⌘

2

(2.2.38)

extrapolates between NN1(zeq) = 1, valid for7 K � 1, and NN1(zeq) = N(K
1

) of the

weak washout regime.

The second contribution to the e�ciency factor arises for z > zeq, in connection to the

decay processes of N
1

. By defining � := NN1(z) �N eq
N1

(z) we can solve eq. (2.2.25) in

powers of 1/K
1

�(z) ' � 1

D
1

d N eq
N1

d z
(2.2.39)

where we substituted d NN1/ d z ' d N eq
N1

/ d z. For z > zeq the neutrino abundance is

in fact tracking closely its equilibrium value, since D
1

/ K
1

and K
1

� 1 owing to the

strong washout regime. From eq. (2.2.29) it follows

�(z) =
1

D
1

2

K
1

z
W ID

1

(z) (2.2.40)

and the contribution to the e�ciency factor is therefore given by

+

1

(z, K
1

) :=

z
Z

z
eq

D
1

(z0)
⇣

NN1(z
0)�N eq

N1
(z0)
⌘

e
�

zR

z

0
W ID

1 (z00
) d z00

d z0 =

=
2

K
1

z
Z

z0

1

z0
W ID

1

(z0) e
�

zR

z

0
W ID

(z00
) d z00

d z0. (2.2.41)

7From eq. (2.2.25) we expect the N1 abundance to rapidly converge to its equilibrium value within a
strong washout regime. This implies z

eq

< 1 and therefore N

N1(zeq) = 1.



Chapter 2 A possible answer: the Seesaw extension of the Standard Model 39

This integral is dominated by the contribution given by an interval around z = zL, where

the exponent is minimised. Requiring a stationary point yields the condition

W ID
1

(zL) =

⌧K
2

(zL)

K
1

(zL)

�

� 3

zL
(2.2.42)

which consequently implies

zL(K
1

) ' 2 + 4K0.13
1

exp

✓

�2.5

K
1

◆

. (2.2.43)

An expression for the final value of +, which also holds in the weak washout regime, is

given as [89]

f+
1

(K
1

) := +

1

(z !1, K
1

) =
2

zLK
1

⇣

1� e�
1
2 zL(K1)K1 ¯N(K1)

⌘

(2.2.44)

where N̄ was previously defined in eq. (2.2.38).

The final value of the total e�ciency factor is therefore given by

f
1

(K
1

) := 
1

(z !1, K
1

) = f�
1

(K
1

) + f+
1

(K
1

) (2.2.45)

and the produced B � L asymmetry consequently is

N lept,f
B�L = ✏

1

f
1

. (2.2.46)

Three remarks follow:

• The signs of f�
1

and f+
1

are opposite. We will explain this disparity below, when

commenting on the evolution of the B � L asymmetry within N
1

Leptogenesis.

• As we anticipated, the washout processes hinder the B � L production. In par-

ticular, notice that a strong washout regime enforces the exponential suppression

of the asymmetry generated for z < zeq – eq. (2.2.37). Hence the asymmetry

is e↵ectively produced only for z > zeq where the suppression factor is 1/K
1

–

eq. (2.2.44).

• Imposing an initial thermal abundance N in
N1

= 1 corresponds to neglecting the

dynamics taking place for z < zeq. As a result, the final e�ciency factor in this

case is simply given by eq. (2.2.45) with f�
1

⌘ 0.

A comprehensive description of N
1

Leptogenesis that builds on top of the presented

analysis is given by Figure 2.3, where we plotted the numerical solutions of eq.s (2.2.25)

and (2.2.28). We can clearly distinguish between three stages that characterise the

evolution of the B � L asymmetry:
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I N
1

production.

In the first step, for z < zd, decays are not active – Figure 2.4 – and the neutrino

abundance is being produced by the inverse-decays. The latter consume leptons

and antileptons in di↵erent quantities, resulting in a first B � L asymmetry that

we parametrized through �
1

(z). For z > zin the washout process is also active –

Figure 2.4.

II Decays, inverse-decays and washout.

For z > zd decays are finally active and at z = zeq the heavy neutrino abundance

reaches its thermal equilibrium value. The B�L asymmetry is now generated from

an interplay of decays, inverse decays and washout processes accounted by +

1

(z).

The asymmetry generated in the previous step is quickly depleted as, on top of the

exponential suppression that the washout process enforces, decays contribute to the

B � L asymmetry with opposite sign.

III Out-of-equilibrium decays.

The interplay between decays, inverse-decays and washout processes breaks down

at z = zout, where W ID
1

drops below the rate of the Universe expansion quantified

by H – Figure 2.4 – and the inverse-decays freeze-in. The consequent deviation

from equilibrium satisfies the third Sakharov condition and the B � L asymmetry

stabilises to its final abundance. The final value of the relevant contribution to

the e�ciency factor, f+
1

, is therefore mainly determined by the out-of-equilibrium

decays which take place for z > zout ' zL8 and the disparity of sign between f+
1

and f�
1

is consequently explained.

8The last step follows from eq. (2.2.42) in a strong washout regime.
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Figure 2.3: The B � L asymmetry evolution in N
1

Leptogenesis and the three
stages it comprises, adapted from [89]. The black dashed line corresponds to
N eq

N1
(z) of eq. (2.2.27), while the blue line represents the actual N

1

abundance.

The evolution of |NB�L| is tracked by the red line for the typical value "
1

= 10�6.
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Figure 2.4: Washout and decay processes in Leptogenesis, adapted from [89].
The red line is associated to the washout term W ID

1

(z) defined in eq. (2.2.29),
the blue line represents instead z D

1

(z), where the decay factor D
1

(z) is given in
eq. (2.2.26). The values of zin and zout, enclosing the interval where the inverse-
decays and washout processes are in equilibrium, is revealed by the condition
W ID

z = 1. Similarly, the condition zD
1

(z) � 2 identified the region z > zd
where the decay processes of N

1

are in equilibrium.
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2.2.1.1 Constraining N1 Leptogenesis

We describe now the impact that the measurements reported in Chapter 1 have on N
1

Leptogenesis. In this regard, considering the strong hierarchic limit M
3

� M
2

� M
1

the eq. (2.2.13) for "
1

simplifies due to the behaviour of ⇠(xj/xi). Hence we have

"
1

=
3M

1

16⇡(h†h)
11

3

X

j=1

Im



⇣

h†h
⌘

2

1j

�

= � 3M
1

16v2⇡(h†h)
11

Im
h⇣

h†m⌫h⇤
⌘

11

i

(2.2.47)

where the summation in the first step has been extended to the null term that arises for

j = 1. Introducing now the orthogonal matrix ⌦ [90]

⌦ := v D�1/2
m⌫

U † h D�1/2
M (2.2.48)

we have

Im(⌦T⌦)
11

= 0) v2

M
1

Im
h

hTU⇤D�1

m U †h
i

11

= 0 (2.2.49)

and the consequent identity

1

m
1

Im
h

(U †h)2
11

i

= �
X

j 6=1

1

mj
Im
h

(U †h)2j1

i

. (2.2.50)

Finally, by rewriting

Im
h

h†m⌫h⇤
i

11

= �m
1

Im
h

(U †h)⇤
11

(U †h)⇤
11

i

� Im
X

j 6=1

h

(U †h)⇤j1(U
†h)⇤j1

i

(2.2.51)

we have [91]

✏
1

= � 3M
1

16 v2 ⇡

X

j 6=1

m2

j �m2

1

mj

Im
h

(h̃)2j1

i

(h̃†h̃)
11

(2.2.52)

where we defined h̃ := U †h. It is therefore possible to constrain the CP -asymmetry

through the mass spectrum of the light neutrinos ni [87, 92]. In particular, for normal

ordered neutrinos we have the upper bound

|"
1

| 6 "max
1

:=
3

16 ⇡

M
1

(�m2

atm)1/2

v2
(2.2.53)

where �2matm is given in Table 1.19. In this way, considering the value of the ba-

ryon asymmetry of the Universe as measured by CMB (1.2.7) for instance, through the

relation

⌘leptB := 0.96⇥ 10�2N lept,f
B�L = 0.96⇥ 10�2"

1

kf
1

(2.2.54)

9The corresponding upper bound for inverted ordering is straightforwardly obtained by considering
that in such scheme m2 ⇠ m3. This results in an extra factor of 2 in the RHS of eq. (2.2.53).
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the upper bound on the CP -asymmetry can be recast as a lower bound on the mass of

N
1

. Hence, requiring ⌘leptB � ⌘CMB
B yields

M
1

& 6.34⇥ 108 GeV

✓

⌘CMB
B

6⇥ 10�10

◆✓

0.05 eV

(�m2

atm)1/2

◆

1

kf
(2.2.55)

representing a first condition that neutrino oscillation experiments and the measure-

ments of the baryon asymmetry of the Universe impose to the Seesaw parameter space.

2.2.1.2 The impact of scattering processes

We neglected so far the impact that scatterings have on Leptogenesis. In order to

account for these processes the Boltzmann equations for N
1

Leptogenesis are modified

as follows
d NN1

d z
= � (D

1

(z) + S
1

(z))
⇣

NN1 �N eq
N1

⌘

(2.2.56)

d NB�L

d z
= ✏

1

(D
1

(z) + S
1

(z))
⇣

NN1 �N eq
N1

⌘

�NB�L W
1

(z) (2.2.57)

where the scattering factor S
1

is defined similarly to the counterpart of decay processes

S
1

(z) =
�|�L|=1

s

Hz
(2.2.58)

and the washout factor is generalised to

W
1

(z) = W ID
1

+ W |�L|=1

1

+ W |�L|=2

1

(2.2.59)

with clear meaning of the notation.

The |�L| = 1 processes, mediated by the Higgs boson in t and s channels, mainly

involve top quarks and gauge bosons. Nevertheless, as the present situation concerning

the reaction densities of the latter is controversial [93, 94], we will not discuss here this

component. The main e↵ect of |�L| = 1 quark scatterings is to boost the heavy neutrino

production, leading to an enhanced e�ciency factor in the weak washout regime. On top

of that, through the term W |�L|=1

1

these processes contribute also to the washout and

therefore correct the e�ciency factor in the strong washout regime as well. A detailed

analysis yields [89]

D
1

+ S
1

' 0.1 K
1



1 + ln

✓

M
1

mH

◆

z2 ln
⇣

1 +
a

z

⌘

�

(2.2.60)

where

a :=
10

ln(M
1

/mH)
(2.2.61)
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and mH , the mass of the Higgs boson, regularises the infra-red divergence of the t

channel. The washout factor satisfies instead

W |�L|=1

1

= j(z) W ID
1

(2.2.62)

where the function j(z) is defined as

j(z) =
hz

a
ln
⇣

1 +
a

z

⌘

+
r

z

i

✓

1 +
15

8z

◆

(2.2.63)

and r = 1, 2/3 respectively in strong and weak washout regime. A numerical analysis

of the e�ciency factor that eq. (2.2.57) implies reveals that within a strong washout

regime the impact of |�L| = 1 scattering described above is limited. In the following

Chapters we therefore choose to neglect these processes, in favour of the simpler picture

that decays and inverse decays provide.

The |�L| = 2 scatterings can also be safely neglected for reasonable values of M
1

< 1014

GeV, provided the light neutrinos ni are hierarchical [89, 95]. By net these processes

modify the washout parameter only in the non-relativistic regime, for z � 1, where the

relative contribution is modelled in:

W |�L|=2

1

=
!

z2
M

1

1010 GeV

m̄2

(eV)2
. (2.2.64)

Here ! ' 0.186 while m̄ defines the light neutrino mass scale: m̄2 := m2

1

+m2

2

+m2

3

. We

remarked before that, beside the necessary initial conditions, the Boltzmann equations

for NN1 and NB�L are completely determined by one parameter, K
1

, which involves the

mass scale m̃
1

and the equilibrium mass m?. Clearly, when |�L| = 2 scatterings are

considered, this is no longer the case and the B � L production is sensitive to M
1

and

m̄ through the above factor. The e�ciency factor is a↵ected by the extra washout that

|�L| = 2 scatterings perform in the following way

f
1

(K) �! f,|�L|=2

1

(K, M
1

, m̄) := f
1

(K)e
�

R 1
z

L

W |�L|=2
1 (z) d z

(2.2.65)

and the requirement of successful Leptogenesis, ⌘LeptB ⇠ ⌘CMB
B , therefore selects now a

region in the M
1

, m̄ and m̃
1

parameter space associated to the N
1

Leptogenesis model.

As a result it is possible to impose a second experimental constraint, quantified in the

upper bound [87,96]:

m̄ < (0.20 – 0.30) eV. (2.2.66)



Chapter 3

Flavour e↵ects in Leptogenesis

N
1

Leptogenesis has been regarded as the classic scenario of Leptogenesis until the year

2006, when two independent groups underlined the radical impact that flavour has on

this mechanism [97, 98]. The analyses we proposed in the previous Chapter excluded

the consequences of flavour by focusing on the evolution of the total B � L asymmetry

abundance, as well as by disregarding the flavour composition of the leptons that the

decays of N
1

produce. In this Chapter we therefore intend to rectify our description,

moving away from the simplicity of N
1

Leptogenesis in favour of a more complex scenario

where the e↵ects of flavour are completely exploited.

To this purpose, in our analysis we distinguish between heavy neutrino flavour e↵ects

and light flavour e↵ects when addressing the modifications that the considered neutrino

and charged-lepton Yukawa interactions respectively impose to the theory.

3.1 Heavy neutrino flavour e↵ects

As a first step toward the description of flavour e↵ects we generalise the framework

of N
1

Leptogenesis, accounting for the contributions of the heaviest neutrinos that we

previously neglected. To simplify our treatment, again we neglect the e↵ect of scattering

processes and focus only on hierarchical Leptogenesis scenarios, where the heavy neutrino

mass spectrum respects the condition

Mi+1

& 3Mi, i = 1, 2 (3.1.1)

in a way that the processes associated to di↵erent heavy neutrino species do not over-

lap [99]. The Leptogenesis process consequently comprises three separated eras, each

presenting the dynamics of a singular heavy neutrino species Ni, taking place for T ⇠Mi.

The three resulting stages all resemble the scenario of N
1

Leptogenesis described in the

previous Chapter through the Boltzmann equations given for NN1 , eq. (2.2.25), and

45
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NB�L, eq. (2.2.28). Hence, with clear meaning of the notation, for the heavy neutrino

abundances we have

d NN
i

d zi
= �Di(zi)

⇣

NN
i

(zi)�N eq
N

i

(zi)
⌘

, i = 1, 2, 3 (3.1.2)

where zi := Mi/T . Introducing again xi := M2

i /M2

1

, it follows zi = z
p

xi and the below

expressions for the decay factors and the equilibrium abundances generalise those of

Section 2.2.1:

Di(z) := Ki zi

⌧K
1

(z)

K
2

(z)

�

(3.1.3)

N eq
N

i

(zi) =
1

2
z2i K2

(zi). (3.1.4)

The decay parameters Ki were instead already presented in eq. (2.2.21).

Focusing now on the B�L asymmetry that Leptogenesis produces, the condition (3.1.1)

neglects on one hand the possibilities that resonant Leptogenesis o↵ers [100]. On the

other, it e↵ectively prevents the overlapping of the Leptogenesis processes associated to

di↵erent heavy neutrinos [99]. In this way the final abundance of B � L asymmetry is

determined by the asymmetries N
�

i

, resulting from the separated stages we mentioned.

The relevant Boltzmann equations, analogous to eq. (2.2.28), are therefore

d N
�

i

d z
= ✏i Di(z)

⇣

NN
i

�N eq
N

i

⌘

�N
�

i

W ID
i (z), i = 1, 2, 3 (3.1.5)

and represent three independent relations that, together with eq.s (3.1.2), form three

decoupled systems of equations for NN
i

, N
�

i

and i = 1, 2, 3. The CP-asymmetries "i

are given according to eq. (2.2.14), while the washout factor are generalised to

W ID
i (zi) =

1

4
Ki K1

p
xi (zi) z3i . (3.1.6)

Then, in analogy to eq. (2.2.32), we have

N
�

i

(z) = NB�L(z
0

i

) exp

2

6

4

�
z
Z

z0
i

W ID
i (z0) d z0

3

7

5

+ ✏ii(z; Ki) (3.1.7)

where z
0

i

' zin,i indicates the beginning of the considered Leptogenesis stage and

the contributions of heavier neutrinos Nj>i to the B � L asymmetry are contained

in NB�L(z
0

i

). The expression for the e�ciency factor generalises the one previously

given within N
1

Leptogenesis:

i(z; Ki) := �
z
Z

z0i

d NN
i

d z0
exp

2

4�
z
Z

z0

W ID
i (z00) d z00

3

5 d z0. (3.1.8)
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Imposing for simplicity a vanishing preexisting asymmetry Npreex
B�L (z = 0) = 0, the final

value of NB�L is given by

Nf
B�L = "

1

f
1

+ "
2

f
2

e�
3⇡
8 K1 + "

3

f
3

e�
3⇡
8 (K1+K2). (3.1.9)

Clearly, considering a strong washout regime, the asymmetries generated by the heaviest

neutrinos are erased by the washout performed by the lightest and the dynamics of the

whole Leptogenesis process therefore recovers the proposed N
1

Leptogenesis scenario.

An alternative formulation of the proposed Leptogenesis process is given by focusing on

the total B � L asymmetry. In this case, from the linearity of the involved Boltzmann

equations, it follows [101,102]

d NB�L

d z
=

3

X

i=1

h

✏i Di(z)
⇣

NN
i

�N eq
N

i

⌘i

�NB�L

3

X

i=1

W ID
i (z) (3.1.10)

and employing eq. (3.1.2) we have

Nf
B�L = Npreex

B�L (z = 0) exp

2

6

4

�
3

X

i=1

z
Z

z0
i

W ID
i (z0) d z0

3

7

5

+
3

X

i=1

"i
f
i (K1

, K
2

, K
3

) (3.1.11)

where the e�ciency factor  is here defined as

i(z; K
1

, K
2

, K
3

) := �
z
Z

z0
i

d NN
i

d z0
exp

2

4�
3

X

j=1

z
Z

z0

W ID
j (z00, Kj) d z00

3

5 d z0 (3.1.12)

and implicitly accounts for the washout that lighter neutrinos Ni perform on the B �L

asymmetries that heavier neutrinos Nj>i generate.

3.1.1 The origin of heavy neutrino flavour e↵ects

The heavy neutrino flavour states designate the quantum states that the dynamics of

a heavy neutrino species involves. Consider again, in this regard, the neutrino Yukawa

term in the Seesaw Lagrangian:

L � �
X

↵=e,µ,⌧
i=1,2,3

h↵i `↵PR Ni �̃�
X

↵=e,µ,⌧
i=1,2,3

h⇤
↵i �̃†NiPL `↵. (3.1.13)

Here `↵ are the flavour lepton doublets, ↵ = e, µ, ⌧ , while �̃ has been previously defined

in eq. (2.0.8). For the proposed structure, at the tree-level each heavy neutrino couples

only to the particular combination of lepton doublets that the corresponding column of

the Yukawa coupling matrix states. Then, at one-loop level, according to the diagrams of

Figure 2.1 the decay process of Ni receives additional contributions from the other heavy
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neutrino species Nj . The flavour compositions of the lepton and antilepton states that

the decays of Ni produce can therefore be specified, suggesting the following definitions

for the heavy neutrino flavour states |`ii and |`ii:

|Nii �! |`ii :=
X

↵=e,µ,⌧

Ci↵ |`↵i , Ci↵ := h`↵|`ii (3.1.14)

|Nii �! |`ii :=
X

↵=e,µ,⌧

Ci↵ |`↵i , Ci↵ := h`↵|`ii . (3.1.15)

The heavy neutrino flavour states thus correspond to the coherent superpositions of

flavour lepton or antilepton doublets associated to the processes of a specific heavy

neutrino Ni. Due to the loop correction of Figure 2.1, in general Ci↵ 6= C⇤
i↵ and therefore

the heavy neutrino flavour states associated to a heavy neutrino do not form a CP -

conjugated couple: CP (|`ii) 6= |`ii. The coe�cients Ci↵ and Ci↵, discussed extensively

in the Appendix C, correspond to the normalised amplitudes for the processes |Nii �!
|`↵i+ |�i and |Nii �! |`↵i+ |�i, in a way that

X

↵=e,µ,⌧

|Ci↵|2 = 1,
X

↵=e,µ,⌧

�

�Ci↵

�

�

2

= 1. (3.1.16)

We underline that, barring special situations, the heavy neutrino flavour states do not

satisfy any orthogonality condition [98]

h`i|`ji 6= �ij , i, j = 1, 2, 3. (3.1.17)

The states |`↵i, appearing in eq. (3.1.14) and (3.1.15), are associated to the usual fla-

vours e, µ and ⌧ and within the present context are referred to as light flavour states.

Di↵erently form the heavy neutrino flavour states, |`↵i and |`↵i satisfy

CP (|`↵i) = |`↵i (3.1.18)

and are necessarily orthogonal

h`↵|`�i = h`↵|`�i = �↵� , ↵, � = e, µ, ⌧. (3.1.19)

A handy depiction of heavy neutrino flavour states that we will employ later is obtained

by introducing the leptonic (antileptonic) flavour space, spanned by light flavours e, µ, ⌧

(e, µ, ⌧). In this space the heavy neutrinos are associated to decay directions i, i = 1, 2, 3,

which reflect the flavour compositions of the resulting leptons (antileptons) and that,

generally, are therefore neither mutually orthogonal nor parallel – Figure 3.1. The

abundances N`
i

(N`
i

) of the leptons (antileptons) described through the heavy neutrino

flavour states can then be represented by arrows along the relative decay directions.
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e

m

t

1 2

3

Figure 3.1: A depiction of leptonic light flavour and heavy neutrino flavour
states in the flavour space. The former, corresponding to the charged lepton
flavours e, µ and ⌧ , are mutually orthogonal and can be chosen as a basis for the
flavour space. The latter are instead associated to the directions characterising
the flavour compositions of the leptons that the heavy neutrinos Ni, i = 1, 2, 3,
produce. These heavy neutrino decay directions “i”, i = 1, 2, 3, generally possess
no peculiar mutual alignment. The abundances of the leptons that the heavy
neutrino flavour lepton states describe are represented through arrows along the
associated decay directions.
A similar depiction holds for the antileptons, in which case the flavour space is
spanned by e, µ, ⌧ and the directions of the heavy neutrino flavour states refer
to the flavour compositions of the produced antileptons.

As remarked before, the heavy neutrino flavour states |`ii and |`ii, i = 1, 2, 3, thus des-

ignate the quantum states that the dynamics of the corresponding heavy neutrino Ni

involves. In particular, for the resulting heavy neutrino flavour e↵ects, the decays and

inverse-decays of a heavy neutrino species therefore only a↵ect leptons and antileptons

associated to the relative heavy neutrino flavour states. Nevertheless, as the latter gen-

erally are not mutually orthogonal1, some interplay between the processes and particles

associated to di↵erent heavy neutrinos is still possible.

Consider for instance the coherent state |`ii (|`ii), describing the leptons (antileptons)

which participate in the processes of Ni. As soon as active, the inverse processes of

a di↵erent heavy neutrino Nj 6=i are fast enough to e↵ectively resolve in the considered

state a component which lies along the flavour direction of the Nj decays. This leads to

the decoherence of |`ii (|`ii), and the resulting incoherent mixture comprises a state |`ji
(|`ji), involved in the dynamics of Nj , and an orthogonal state |`j?

i

i (|`j?
i

i). The latter,

having no projection along the decay direction of Nj , is not involved by the dynamics of

this heavy neutrino species. [103, 104]. The described interplay clearly depends on the

probabilities pij for a lepton, or antilepton, on the heavy neutrino decay direction i to

1It should be stressed that the quantum corrections leading to non-zero CP asymmetries require at
lest two heavy neutrino flavour states be non mutually orthogonal.
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be actually measured as the corresponding particle on a heavy neutrino decay direction

j. These probabilities are clearly regulated by the overlap of the associated states

pij := |h`j |`ii|2 =

�

�

�

�

�

X

↵

C⇤
j↵Ci↵

�

�

�

�

�

2

pij :=
�

�h`j |`ii
�

�

2

=

�

�

�

�

�

X

↵

C⇤
j↵Ci↵

�

�

�

�

�

2

(3.1.20)

and satisfy

pij + pij?
i

= 1, pij + pij?
i

= 1 (3.1.21)

for i, j = 1, 2, 3. An explicit expression for these quantities, at the tree-level, is then

given by

p0ij = p0ij =

�

�

�

(m†
DmD)ij

�

�

�

2

(m†
DmD)ii(m

†
DmD)jj

=
|Pk mh⌦⇤

ki⌦kj |2
m̃im̃j

(3.1.22)

where for the last step we employed the orthogonal parametrization in eq. (2.2.48) and

defined m̃i as in eq. (2.2.22). As we are going to show now, these probabilities quantify

the heavy neutrino flavour e↵ects within Leptogenesis.

3.1.2 Leptogenesis with heavy neutrino flavour e↵ects

We focus here on the modifications that heavy neutrino flavour e↵ects impose on the

Leptogenesis process. To this purpose we describe the three stages the latter comprises,

disregarding for sake of simplicity the di↵erences in flavour composition between leptons

and antileptons associated to the same heavy neutrino species2. In this way Ci↵ = C⇤
i↵

and it follows pij = pij . Furthermore, to further simplify our description, we impose a

vanishing preexisting asymmetry Npreex
B�L (z = 0) = 0, postponing to Chapter 5 a detailed

discussion of this component.

I T ⇠M3: N3 Leptogenesis.

The first stage of the Leptogenesis process takes pace for T ⇠ M
3

, when the pro-

cesses involving N
3

are active. The relevant Boltzmann equations are

d NN3

d z
= �D

3

(z)
⇣

NN3(z)�N eq
N3

(z)
⌘

(3.1.23)

d N
�3

d z
= ✏

3

D
3

(z)
⇣

NN3 �N eq
N3

⌘

�N
�3W

ID
3

(z) (3.1.24)

2A more general treatment of heavy neutrino flavour e↵ects which does not impose this simplifica-
tion is shown in the next Chapter, where we employ a rigorous density matrix formalism to describe
Leptogenesis with flavour e↵ects.
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and clearly the dynamics of this stage resembles the one previously proposed within

N
1

Leptogenesis. Hence, by imposing N
�3(z = 0) = 0 and NN3(z = 0) = 0 we have

NB�L(M
3

> T > M
2

) ⌘ Nf
�3

= "
3

f
3

(K
3

, zL3) (3.1.25)

where zL3 = zL(K
3

) – cf. eq. (2.2.43). Notice that heavy neutrino flavour e↵ects

ascribe the above asymmetry to the disparity between the abundances of particles

associated to two specific quantum states: the heavy neutrino flavour lepton states

|`
3

i and antilepton states |`
3

i, corresponding to the decay products of N
3

.

II T ⇠M2: N2 Leptogenesis.

For the condition imposed on the heavy neutrino mass spectrum by eq. (3.1.1), the

evolution of the B �L asymmetry is frozen until the temperature reaches T ⇠M
2

,

where the second stage of Leptogenesis is active. The processes involving N
2

are

regulated by a system of Boltzmann equations analogous to the one of the previous

stage, nevertheless a non-zero initial asymmetry is stored in the quantum states

|`
3

i and |`
3

i as a result of N
3

Leptogenesis. According to our description of the

interplay between di↵erent heavy neutrino flavour states, consequently to the N
2

inverse-decays |`
3

i and |`
3

i break down to incoherent mixtures of states |`
2

i, |`
2

i
and |`

2

?
3
i, |`

2

?
3
i respectively parallel and orthogonal to the decay direction of N

2

– Figure 3.2. The inverse decays of N
2

a↵ect only the leptons and antileptons

measured along the heavy neutrino decay direction “2”, hence only the component

of Nf
�3

associated to these particles is washed out during the considered processes.

The B � L asymmetry arising form the states |`
2

?
3
i and |`

2

?
3
i, orthogonal to |`

2

i,
is protected from the washout and therefore left unmodified. We refer to this

important consequence of the interplay between heavy neutrino flavour states as

the projection e↵ect.

With clear meaning of the notation, the Boltzmann equations to be solved in the

present Leptogenesis stage are

d NN2

d z
= �D

2

(z)
⇣

NN2(z)�N eq
N2

(z)
⌘

(3.1.26)

and
d N

�2

d z
= "

2

D
2

(z)
⇣

NN2 �N eq
N2

⌘

�N
�2W

ID
2

(z) (3.1.27)

d N
�2?

d z
= 0 (3.1.28)

which describe the evolution of the asymmetries respectively due to states along

the decay direction of N
2

and the orthogonal ones. The relevant initial conditions

follow from eq. (3.1.20) as well as our initial assumptions:

N
�2(z02) = p

32

Nf
�3

N
�2? (z

02) = (1� p
32

) Nf
�3

(3.1.29)
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d
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3
{2
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{2¶3

Figure 3.2: A depiction of the decoherence e↵ects resulting from the interplay
between heavy neutrino flavour states. Here � and � are specific superpositions
of light flavours spanning the plane that contains the heavy neutrino decay
directions 2 and 3. The washout processes of N

2

break the coherence of the
heavy neutrino flavour leptonic states |`

3

i. The resulting incoherent mixture is
composed by leptons associated to the state |`

2

i, on the decay direction of N
2

,
or to |`

2

?
3
i, orthogonal to the latter. The inverse decays of N

2

clearly a↵ect only
the former component.

In this way, at the end of the second Leptogenesis stage we have

NB�L(M
2

> T > M
1

) = Nf
�2

+ Nf
�2?

=

= "
2

f
2

+ p
32

"
3

f
3

e�
3⇡
8 K2 + (1� p

32

)"
3

f
3

. (3.1.30)

III T ⇠M1: N1 Leptogenesis.

The heavy neutrino hierarchy prevents again the evolution of the B�L asymmetry

until T ⇠ M
1

, where the last stage of the Leptogenesis process begins. The N
1

processes are active and, in analogy to the previous steps, a B � L asymmetry

is generated by the out-of-equilibrium decays of these heavy neutrinos along the

corresponding decay direction. At the same time the coherence of the leptonic and

antileptonic states inherited from the previous Leptogenesis stages is broken by the

inverse-decays of N
1

. For the projection e↵ect, the consequent washout a↵ects only

the preexisting asymmetries arising from leptons and antileptons measured along

the decay direction “1”. The amount of B � L asymmetry found at the end of the
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Leptogenesis process is therefore given by

Nf
B�L = Nf

�1
+ Nf

�1?
=

= "
1


1

+ p
21

"
2


2

e�
3⇡
8 K1 + p

21

p
32

"
3


3

e�
3⇡
8 (K2+K1) + (1� p

21

) "
2


2

+

+ (1� p
21

) p
32

"
3


3

e�
3⇡
8 K2 + p

2

?
3 1

(1� p
32

) "
3


3

e�
3⇡
8 K1+

+ (1� p
2

?
3 1

) (1� p
32

) "
3


3

. (3.1.31)

As anticipated, the e↵ect of the interplay between heavy neutrino flavour states is en-

capsulated in the probabilities previously introduced by eq. (3.1.20). A comparison

to the unflavoured calculation reveals that eq. (3.1.9), supporting N
1

Leptogenesis, is

recovered only for the special case pij = 1. This implies the total alignment of the

three decay directions. For more general configurations, in light of flavour e↵ects, the

correct description of the generated B � L asymmetry is provided by eq. (3.1.31). We

underline that due to the projection e↵ect parts of the asymmetries generated by the

heaviest neutrinos evade the washout performed by N
1

. In this sense the heavy neut-

rino flavour e↵ects show the limitations of N
1

Leptogenesis and require, at the same

time, more complete models in which the dynamics of the other heavy neutrinos are

considered. We also remark that in the limit of negligible washout, for Ki ⌧ 1, the

results of equations (3.1.9) and (3.1.31) coincide again. In this regard, as we will see

in the next Section, non-negligible washout processes are a necessary condition for both

light flavour and heavy neutrino flavour e↵ects to have an impact on the Leptogenesis

process.

Notice furthermore that within every thermal Leptogenesis scenario, a strong washout

regime is an essential prerequisite for the heavy neutrino abundance that Leptogenesis

requires to be built thermally, independently of its initial value. Consequently, owing to

the strong washout regime, the amount of baryon asymmetry that the Leptogenesis pro-

cess generates is also independent of the value of the initial heavy neutrino abundance.

In scenarios of Leptogenesis which propose a weak washout regime, on the contrary, the

initial heavy neutrino abundance plays a central role in the determination of the final

asymmetry.

3.2 Light flavour e↵ects

Focusing on one heavy neutrino species, we further modify our formalism to address the

light flavour e↵ects that originate from the SM charged-lepton Yukawa interactions:

L � �
X

↵=e,µ,⌧

(Dy)↵ `↵L l↵R � + H.c.. (3.2.1)
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Assuming a Higgs mass mH = 120 GeV, the reaction rate of the corresponding processes

`↵L + l↵R  ! �, ↵ = e, µ, ⌧ , is quantified in [105]

�↵ ' 5⇥ 10�3 (Dy)
2

↵ T (3.2.2)

and due to the presence of the Yukawa couplings (Dy)↵ is manifestly flavour sensitive.

Notice that for the expression of the Hubble rate H given in eq. (1.2.2), the equilibrium

criterion already introduced in Section 2.2.0.3 respects

�↵
H
/ 1

T
. (3.2.3)

Hence, as the temperature in the Universe drops consequently to the ongoing expan-

sion, the Yukawa interactions progressively come into equilibrium. In particular the ⌧

interactions satisfy �⌧ > H for T . 1012 GeV, while, due to the hierarchy in the rel-

evant couplings, the µ interactions satisfy an analogous equilibrium condition only for

T . 109 GeV. Finally, the electron Yukawa interactions enter their equilibrium regime

when T . 106 GeV.

If the charged-lepton Yukawa interactions are in equilibrium and the condition

�↵ &
X

i

�ID,i, ↵ = e, µ, ⌧ (3.2.4)

is also satisfied [106], the e↵ects of light flavours on the Leptogenesis process cannot be

neglected. In fact consequently to eq. (3.2.4) the heavy neutrino flavour lepton states

(antilepton states) generated by the decays of Ni interact, on average, first with the

RH components of the charged-lepton (antilepton) fields of flavour ↵ and then with

a Higgs doublet. The involved charged-lepton Yukawa interactions are therefore fast

enough to break the coherence of the heavy neutrino flavour states |`ii (|`ii) prior to

their absorption in inverse-decay processes.

The lepton Yukawa interactions that our model proposes are thus competing in the

determination of the relevant quantum states: the neutrino ones support the heavy

neutrino flavour states while the charged-lepton Yukawa interactions select the light

flavour ones.

In the full decoherence limit, which defines a fully flavoured regime, only one kind of

lepton Yukawa interaction dominates. Should this be the charged-lepton one, the inverse-

decays would then involve the Higgs doublets and an incoherent mixture that comprises

the following statistically independent components: the light flavour states |`↵i (|`↵i),
of definite light flavour ↵, and any remaining orthogonal state |`↵?

i

i (|`↵?
i

i) remnant of

the original heavy neutrino flavour states. The evolution of these particle species must

consequently be tracked individually and the associated B�L asymmetries are therefore

regulated by dedicated Boltzmann equations. In this regard, recall that beside B�L, the

sphaleron transitions also conserve the flavoured quantities B/3�L↵. To account for the
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e↵ects of light flavours it is therefore convenient to introduce the flavoured asymmetries

N
�

↵

:= NB/3�L
↵

, which satisfy

NB�L =
X

↵=e,µ,⌧

N
�

↵

. (3.2.5)

For the hierarchy presented by the charged lepton Yukawa couplings we therefore distin-

guish between the following fully flavoured regimes and relative flavoured asymmetries:

• T & 1012 GeV: heavy neutrino flavour regime.

For T > 1012 GeV all the Yukawa interactions associated to light flavours are

out of equilibrium. The Leptogenesis process is therefore subject only to heavy

neutrino flavour e↵ects and the relevant asymmetries are N
�

i

and N
�

i

? .

• 1012 GeV & T & 109 GeV: two-flavour regime.

In this regime the ⌧ Yukawa interactions are in equilibrium and fast enough to

break the quantum coherence of the heavy neutrino flavour states:

|`ii �! |`⌧ i , |`⌧?
i

i
|`ii �! |`⌧ i , |`⌧?

i

i (3.2.6)

Notice that the states orthogonal to the flavour “⌧” are still a coherent superpos-

ition of e and µ leptons. The relevant flavoured asymmetries are here N
�

⌧

and

N
�

⌧

?
i

.

• 109 GeV & T & 106 GeV: three-flavour regime.

On top of ⌧ reactions also the µ Yukawa interactions satisfy the equilibrium con-

dition. The heavy neutrino flavour states are completely projected on the three

light flavours

|`ii �! |`⌧ i , |`µi , |`ei
|`ii �! |`⌧ i , |`µi , |`ei (3.2.7)

as the electronic component of |`ii (|`ii) is e↵ectively measured in this regime as a

non-⌧ , non-µ state. The relevant asymmetries are therefore the three N
�

↵

already

introduced in eq. (3.2.5).

3.2.1 Quantifying the e↵ect

The impact of charged-lepton Yukawa interactions on the Leptogenesis process can be

modelled in a set of flavoured probabilities [97, 98], defined by

pi↵ := |h`↵|`ii|2 (3.2.8)
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pi↵ :=
�

�h`↵|`ii
�

�

2

(3.2.9)

where ↵ = ⌧, ⌧?
i or ↵ = e, µ, ⌧ depending on the considered fully flavoured regime. In

terms of the definitions given for the heavy neutrino flavour states

|`ii :=
X

↵=e,µ,⌧

Ci↵ |`↵i , |`ii :=
X

↵=e,µ,⌧

Ci↵ |`↵i (3.2.10)

the flavoured probabilities are given as

pi↵ = |Ci↵|2 , pi↵ =
�

�Ci↵

�

�

2

(3.2.11)

and consequently quantify the relative probabilities of observing the reactions Ni �!
|`↵i+|�i and Ni �! |`↵i+|�i within a fully flavoured regime. In this regard, considering

the flavoured rates �i↵ and �i↵ of eq. (2.2.11) and (2.2.12) and by introducing the heavy

neutrinos decay rates

�i :=
X

↵=e,µ,⌧

�i↵ (3.2.12)

�i :=
X

↵=e,µ,⌧

�i↵ (3.2.13)

an alternative expression for the flavoured probabilities is in fact given by

pi↵ =
�i↵

�i
(3.2.14)

pi↵ =
�i↵

�i
. (3.2.15)

Hence, correctly, these quantities satisfy the completeness relations

X

↵=e,µ,⌧

pi↵ = 1 (3.2.16)

X

↵=e,µ,⌧

pi↵ = 1. (3.2.17)

It is useful to introduce the following parameterisation

pi↵ = p0i↵ + �pi↵ (3.2.18)

pi↵ = p0i↵ + �pi↵ (3.2.19)

which isolates the tree-level contribution p0i↵
3 from the one given by the quantum cor-

rections depicted in Figure 2.1. Evaluating the relevant decay rates at the tree-level,

3At the tree-level (C0
i↵

)⇤ = C0
i↵

and from eq. (3.2.11) it thus follows p

0
i↵

= p

0
i↵

.
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denoted by the subscript “0”, therefore yields

p0i↵ ⌘
�

�C0

i↵

�

�

2

=
|h↵i|2
(h†h)ii

(3.2.20)

or, in terms of the orthogonal matrix ⌦ of eq. (2.2.48):

p0i↵ =

�

�

P

k
p

mkU↵k⌦�i

�

�

2

P

j mj |⌦ji|2
. (3.2.21)

These quantities then also satisfy a completeness relation:

X

↵=e,µ,⌧

p0i↵ = 1. (3.2.22)

Di↵erently form the tree-level contribution, the quantum corrections in �pi↵ and �pi↵ are

generally di↵erent for leptons and antileptons as a consequence of CP -violation. Hence,

as already remarked, C⇤
i↵ 6= Ci↵ and the flavour composition of the heavy neutrino flavour

lepton states di↵ers from that of the corresponding flavour antilepton states. Within

a fully flavoured regime these particles consequently originate two di↵erent incoherent

mixtures, comprising the relevant light flavour states in di↵erent abundances.

From the properties of pi↵ and p0i↵ the quantum correction contributions obey

X

↵

�pi↵ = 0,
X

↵

�pi↵ = 0 (3.2.23)

and, by defining

�pi↵ := pi↵ � pi↵ (3.2.24)

it follows
X

↵

�pi↵ = 0. (3.2.25)

The importance of these flavour probabilities is exposed by introducing the flavoured

CP-asymmetries, which measure the asymmetry potentially stored in each light flavour

"i↵ := � �i↵ � �i↵
P

�

⇥

�i� + �i�

⇤ . (3.2.26)

Adopting the definitions proposed we can then decompose "i↵ as follows:

"i↵ =
pi↵ + pi↵

2
"i � �pi↵

2
. (3.2.27)

The first term on the RHS represents the averaged flavour branching of the usual un-

flavoured contribution, quantified by "i, that the CP -asymmetry receives from the dis-

parity between the leptonic and antileptonic decay rates of an heavy neutrino. The

novelty of the flavoured CP -asymmetries then consists in the second term that the RHS
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of eq. (3.2.27) presents. This contribution is in fact a new source of CP -asymmetry,

driven by the possible di↵erences in the flavour compositions of |`ii and |`ii quantified

by �pi↵. Notice that, for eq. (3.2.25), the term we are analysing automatically vanishes

when considering the total CP -asymmetry

"i =
X

↵

"i↵ (3.2.28)

and therefore it is a unique feature of the flavoured CP -asymmetries. Furthermore, we

also remark that whereas the first term in eq. (3.2.27) is subject to the same bounds

and limitations that the total CP -asymmetry "i respects, �pi↵ is not. The relative con-

tribution could then potentially dominate the flavoured asymmetry, yielding significant

modifications to the bounds which hold within N
1

Leptogenesis [107].

The new contribution found in the expression for "i↵ is not the only e↵ect that fast

charged-lepton Yukawa interactions have on the Leptogenesis process. Consider again,

in this regard, the proposed picture of full decoherence that applies to the fully flavoured

regimes. The washout processes which take place under this condition involve, as a con-

sequence of decoherence, the flavour states |`↵i and |`↵i rather than the original heavy

neutrino flavour states |`ii and |`ii, i = 1, 2, 3. The dynamics a↵ecting the flavoured

asymmetries N
�

↵

are then independent one of the others and, also, sensitive only to

the processes that involve the leptonic and antileptonic states of the corresponding light

flavour. In particular, focusing for example on one light flavour generically denoted by

“�”, the inverse-decays that can potentially erase the asymmetry N
�

�

are only those

which involve the Higgs doublets and the leptons (antileptons) |`�i (|`�i). Since the

relative abundance of the latter is suppressed by a factor pi� (pi�), with respect to the

unflavoured case, it follows that the rate of the washout process acting on N
�

�

is also

reduced by the same factor with respect to W ID
i .

3.2.1.1 The flavoured Boltzmann equations

In light of the twofold e↵ect that the charged-lepton Yukawa interactions have on the

Leptogenesis process, we modify our Boltzmann equations to provide a description valid

within the fully flavoured regimes which involve light flavours. The relations we seek

must track the evolution of the flavoured asymmetries N
�

↵

and account for the reduc-

tion of the relevant washout rate that pi↵ regulates. On top of that, the contribution of

�pi↵ to the CP -asymmetry is also to be included.

Within the SM, beside B � L, also the quantities B/3 � L↵ are not-anomalous. Con-

sequently, the amount of N
�

↵

asymmetry present in the Universe at the end of the

Leptogenesis process is solely determined by the latter. The relevant Boltzmann equa-

tions are then written by considering the evolution of leptonic and antileptonic states of

definite light flavour, subtracting consecutively the Boltzmann equation regulating the
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baryon number suitably weighted by the factor 1/3. In this way the e↵ects due to the

sphaleron process cancel out and focusing on one heavy neutrino species we have [97,98]

d NN
i

d zi
= �Di(zi)

⇣

NN
i

(zi)�N eq
N

i

(zi)
⌘

, i = 1, 2, 3 (3.2.29)

and

d N
�

↵

d z
= "i↵ Di(zi)

⇣

NN
i

(zi)�N eq
N

i

(zi)
⌘

� p0i↵ W ID
i (z) (N`

↵

+ N
�

) (3.2.30)

where ↵ = ⌧, ⌧?
i or e, µ, ⌧4.

The structure of the above equation indeed resembles that of eq. (3.1.5). The pos-

sible di↵erences in the flavour compositions of the involved states are addressed by the

flavoured CP -asymmetries

"i↵ :=
3

16 ⇡ (h†h)ii

X

j 6=i

(

Im[h⇤
↵ih↵j(h

†h)ij ]
⇠(xj/xi)
p

xj/xi
+

2

3(xj/xi � 1)
Im[h⇤

↵ih↵j(h
†h)ji]

)

(3.2.31)

where, as usual, xi := M2

i /M2

1

and

⇠(x) :=
2

3
x



(1 + x) ln

✓

1 + x

x

◆

� 2� x

1� x

�

. (3.2.32)

Equation (3.2.30) also accounts for the desired reduction of the washout rate. In this

regard, notice that �pi↵, �pi↵ / "i↵ ⇠ O(N
�

↵

) – cf. eq. (3.2.27) – hence, neglecting

terms of order O((N
�

↵

)2), we approximated pi↵, pi↵ ' p0i↵ in the washout term. Some

care is however still required, as the latter is currently formulated in terms of the lepton

and Higgs asymmetries N` and N
�

.

To disentangle the washout term we introduce the flavour coupling matrices [97,98,103,

108] C` and C� which satisfy

N`
↵

= (C`)↵� N
�

�

, N
�

= (C�)� N
�

�

(3.2.33)

and determine the relative entries through a procedure similar to the one proposed in

Section 2.2.0.1. We need in fact to identify the connections between the asymmetries

stored in the di↵erent species, hence we consider again the network that the reactions

active in the early Universe form. For T > TEW the active processes comprise

• Lepton Yukawa interactions:

µ`
↵L

� µ
�

� µl
↵R

= 0, ↵ = e, µ, ⌧.

4In cases where more heavy neutrinos participate to the Leptogenesis process within the same fully
flavoured regime, eq. (3.2.30) is generalised by summing over the involved species.
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• Quark down-type Yukawa interactions:

µQ
iL

� µ
�

� µd
iR

= 0, i = 1, 2, 3.

• Quark up-type Yukawa interactions:

µQ
iL

+ µ
�

� µu
iR

= 0, i = 1, 2, 3.

Here µ`
↵L

and µQ
iL

respectively indicate the chemical potentials associated to each

component of the lepton and quark SU(2)L doublets. On top of these reactions we have

• Hypercharge neutrality:

3

X

i=1

[µQ
iL

+ 2µu
iR

� µd
iR

]�
X

↵=e,µ,⌧

[µ`
↵L

+ µl
↵R

] + 2µ
�

= 0

• QCD and EW sphaleron processes:

3

X

i=1

[2µQ
iL

� µu
iR

� µd
iR

] = 0

X

x

[2µQ
xL

� µ`
xL

] = 0.

Notice that the EW sphaleron processes populate the SM generations equally,

e↵ectively levelling the baryon asymmetries associated to di↵erent generations:

Bi = Bj , i 6= j.

Through the relations imposed by the Yukawa interactions, as far as the equilibrium

condition is maintained, the asymmetry that Leptogenesis stores in the LH doublets

is partially transferred to the relative RH counterparts, to the Higgs doublets and to

the quarks through the latter. Nevertheless, in the fully flavoured regimes we aim to

describe, not all of the above Yukawa interactions are actually in equilibrium. Within

a three-flavour regime, in fact, the rates of electron, down and up-quark reactions do

not respect the condition �x > H. Furthermore, in the temperature range interested

by the two-flavour regime, also the µ and strange interactions are out of equilibrium.

The associated chemical potentials therefore no longer respect the relations that these

Yukawa interactions imply, and the latter are then replaced by the following conditions:

• leptons: µl
↵R

= 0, if �↵ < H.

• quarks: µd
iR

= µd
jR

= µu
iR

= µu
jR

, if �i, �j < H.

When equilibrium is lost the asymmetry stored in the lepton RH singlets simply vanishes.

The di↵erent treatment reserved for quarks is due to the QCD sphaleron processes,
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which still allow the transfer of some asymmetry form the SU(2)L doublets to the

RH counterparts. As QCD sphalerons create an equal number of singlets in each SM

generation, the given condition is implied.

Introducing now the matrix C := C` + C�, by solving for constraints the presented

reaction network leads to the following expressions, holding respectively for a three-

flavour and a two-flavour regime5

C(3) =

0

B

B

@

�151/358 10/179 10/179

25/716 �172/537 �7/537

25/716 �7/537 �172/537

1

C

C

A

(3.2.34)

C(2) =

 

�417/1178 60/589

15/589 �195/589

!

. (3.2.35)

In deriving the matrix for the two-flavour regime we summed over the rows corresponding

to N
�e and N

�

µ

, consequenlty averaging of the columns associated to N`
e

and N`
µ

.

Given the above expressions for the C matrix and eq. (3.2.30), we could in principle

calculate the flavoured asymmetries N
�

↵

. For the hierarchy that the entries of these

matrices present, it is however usual to approximate C ' I and consequently simplify

the Boltzmann equations. We shell respect this tradition and describe the evolution of

the flavoured asymmetries through

d NN
i

d zi
= �Di(zi)

⇣

NN
i

(zi)�N eq
N

i

(zi)
⌘

, i = 1, 2, 3 (3.2.36)

and
d N

�

↵

d z
= "i↵ Di(zi)

⇣

NN
i

(zi)�N eq
N

i

(zi)
⌘

� p0i↵ W ID
i (z)N

�

↵

. (3.2.37)

The corresponding solution is then written as

N
�

↵

(z) = "i↵i(z; Ki, p
0

i↵) + N
�

↵

(z
0

i

) e
�p0

i↵

zR

z0
i

W ID

i

(z0
) d z0

(3.2.38)

where the flavoured CP -asymmetries are given as in eq. (3.2.31) and the e�ciency factor

is defined by

i(z; K
1

, p0i↵) := �
z
Z

z0
i

d NN
i

d z0
e
�p0

i↵

zR

z

0
W ID

i

(z00
) d z00

d z0. (3.2.39)

Once again we disregard the impact of any preexisting asymmetry by imposing N
�

↵

(z
0

i

) =

0. Neglecting the e↵ects due to other heavy neutrino species then yields

Nf
�

↵

:= N
�

↵

(z =1) = "i↵f
i (Ki, p

0

i↵) (3.2.40)

5As in [97], our abundances have been normalised to one degree of freedom.
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with the final value of the e�ciency factor comprising two contributions [109]

f
i (Ki, p

0

i↵) = i(z =1; Ki, p
0

i↵) = f�
i (Ki, p

0

i↵) + f+
i (Ki, p

0

i↵) (3.2.41)

which generalise the counterparts of N
1

Leptogenesis – eq. (2.2.45):

f�
i (Ki, p

0

i↵) = � 2

p0i↵
e�

3⇡
8 K

i↵

✓

e
p

0
i↵

2
¯N(K

i

) � 1

◆

(3.2.42)

f+
i (Ki, p

0

i↵) =
2

zL(Ki↵)Ki↵

⇣

1� e�
1
2 zL(Ki↵

)K
i↵

¯N(K1)
⌘

. (3.2.43)

In the present context we also introduced the flavoured decay parameters

Ki↵ := p0i↵ Ki =
v2

Mi

|hi↵|2
m?

=

�

�

�

�

�

�

X

j

r

mj

m?
U↵j⌦ji

�

�

�

�

�

�

2

(3.2.44)

while zL and N̄ are respectively given by eq. (2.2.43) and eq. (2.2.38). Notice that

the latter still depends on the unflavoured decay parameter K
1

: the heavy neutrino

production is not a↵ected by the light flavour e↵ects.

For the orthogonality of the involved light flavours, ↵ = ⌧, ⌧?
i or ↵ = e, µ, ⌧ , the total

B � L asymmetry that is produced within a fully flavoured regime is then given by

Nf
B�L =

X

↵

Nf
�

↵

(3.2.45)

and finally the corresponding amount of BAU generated follows, as usual, from eq. (2.2.31):

⌘B = 0.96⇥ 10�2 Nf
B�L. (3.2.46)

To conclude the Chapter we present now a detailed calculation of the final B�L asym-

metry within a two-flavour regime. This exercise has the purpose of illustrating the

light flavour e↵ects which are hidden in the above formalism. Starting with the relevant

equations
d NN

i

d zi
= �Di(zi)

⇣

NN
i

(zi)�N eq
N

i

(zi)
⌘

, i = 1, 2, 3 (3.2.47)

and
d N

�

⌧

d zi
= "i⌧ Di(zi)

⇣

NN
i

(zi)�N eq
N

i

(zi)
⌘

� p0i⌧ W ID
i (zi)N�⌧ (3.2.48)

d N
�

⌧

?
i

d zi
= "i⌧?

i

Di(zi)
⇣

NN
i

(zi)�N eq
N

i

(zi)
⌘

� p0i⌧?
i

W ID
i (zi)N

�⌧?
i

(3.2.49)

we disregard again possible preexisting asymmetries and, for the relations (3.2.38) to

(3.2.45), the solution we seek therefore is

Nf
B�L = "i⌧

f
i (Ki, p

0

i⌧ ) + "i⌧?
i

f
i (Ki, p

0

i⌧?
i

). (3.2.50)
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The light flavour e↵ects are then disclosed by employing the parametrization of the

flavoured CP -asymmetries proposed in eq. (3.2.27). Approximating (pi↵ + pi↵)/2 ' p0i↵
and considering that �pi⌧ = ��pi⌧?

i

it follows

Nf
B�L =

X

↵=⌧,⌧?
i

⇥

p0i↵ "i i(Ki, p
0

i↵)
⇤� �pi⌧

2

h

(Ki, p
0

i⌧ )� (Ki, p
0

i⌧?
i

)
i

(3.2.51)

and some remarks are to be given:

• For the definitions given in eq.s (3.2.42) and (3.2.43), the final expressions of the

flavoured e�ciency parameters satisfy the relation

f
i (Ki, p

0

i↵) ' 1

p0i↵
f
i (Ki) (3.2.52)

where f
i (Ki) was first introduced in eq. (3.1.7). The first term on the RHS of

eq. (3.2.51) then reads

X

↵=⌧,⌧?
i

⇥

p0i↵ "i i(Ki, p
0

i↵)
⇤ ' 2"i i(Ki) (3.2.53)

leading to an enhancement of a factor 2 with respect to the unflavoured calculation.

In general, the light flavour e↵ects thus amplify the B �L asymmetry production

by a factor equal to the number of light flavours interested by the considered

regime.

• If the condition p0i⌧ 6= p0
i⌧?

i

is satisfied, the di↵erent flavour composition of the

involved heavy neutrino lepton and antilepton states yields an additional contri-

bution to the final B�L asymmetry. As we underlined before, the terms �pi↵ are

not subject to the bounds that "i respects. In the general case we consequently

expect large flavour e↵ects arise if the following condition are both satisfied:

I the heavy neutrino flavour lepton and antilepton states originating the in-

coherent mixtures comprising the light flavour states have di↵erent flavour

compositions: �i↵ 6= �i↵ 6= 0

II the washout process is asymmetric: the washout rates for the involved fla-

voured asymmetries must be di↵erent. As we will see in Chapter 6 for a

specific model, this condition is verified in large regions of the Seesaw para-

meter space.

• Likewise heavy neutrino flavour e↵ects, also the light flavour e↵ects require a

non negligible washout to have an impact on the Leptogenesis process. In the

weak washout regime, Ki⌧ , Ki⌧?
i

⌧ 1, eq. (3.2.51) recovers in fact the unflavoured

expression for the final asymmetry.
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• In schemes where more than one heavy neutrino species are involved, the asym-

metric washout proposed by a flavoured treatment of Leptogenesis and the condi-

tion (3.2.22) imply that part of the asymmetry created by the heaviest neutrinos

could survive the washout processes performed by the lighter, at least for partic-

ular configurations [98,99]. In this sense the light flavour e↵ects therefore provide

a further reason to move beyond the N
1

Leptogenesis scenario.



Chapter 4

Light and heavy neutrino flavour

e↵ects in a density matrix

approach

The description of the heavy neutrino dynamics we considered so far relies on the

Boltzmann equations. In most cases this classical picture is su�cient for the calculation

of the final asymmetry [89,91,94,95,102,103,110,111]. Yet, when the flavour e↵ects are

taken into account [94, 98, 112], the di↵erent sets of Boltzmann equations described in

the previous Chapter are to be employed depending on whether the asymmetry is gen-

erated in the heavy-flavour, two-flavour or in the three-flavour regime. These specialised

Boltzmann equations still provide a good description of the B � L asymmetry in the

above classical regimes, where the decoherence of the involved quantum states can be

interpreted as an instantaneous collapse of the relative wave functions due to a measure-

ment process. On the contrary, in the transition regimes characterised by Mi ⇠ 109 GeV

or Mi ⇠ 1012 GeV where the dynamics of the decoherence process is actually relevant,

the Boltzmann equations fail in reproducing the correct results.

The importance of an alternative description covering these last cases could indeed be

questioned. In this regard, consider that when light flavour e↵ects and heavy neutrino

flavour e↵ects are both taken into account, a reliable calculation of the final asymmetry

cannot neglect the contributions of the heaviest neutrino species [103,113]. The classical

regimes mentioned above consequently define a large number of possible heavy neutrino

mass patterns in an implicit way [2] – Figure 4.1 – and the requirement that all the

neutrino masses do not fall within a transition regime clearly becomes quite restrictive.

Furthermore, consider that each of the proposed mass patterns involves di↵erent sets

of Boltzmann equations, hence the need for a more general formalism is also clearly

evident.

65
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~ 1012 GeV

~ 1012 GeV

~ 109 GeV

~ 109 GeV

Mi

Mi

Figure 4.1: The possible mass pattern that the fully-flavoured regimes define for
three heavy neutrino species. The grey areas for Mi ' 109 GeV and Mi ' 1012

GeV denote the transition regimes.

The natural choice in tackling these problems is to employ density matrix methods and

in this Chapter we therefore aim to generalise the density matrix treatment already

proposed within N
1

Leptogenesis [103,112,114]. In particular, we intend to account for

the heavy neutrino flavour e↵ects and multiple neutrino species in the calculation of the

final asymmetry, which should now hold for an arbitrary choice of the mass pattern.

Beside that, in light of this improved formalism, we also intend to verify the results that

we previously obtained within the simple description that an instantaneous quantum-

collapse proposes. We will then focus on the projection e↵ect that plays a main role in

the next Chapter, addressing also the elusive phantom terms which we introduce below.

4.1 N1 Leptogenesis revisited and phantom terms

We begin by recalling the basic steps behind the derivation of the Boltzmann equation

that regulates the B � L asymmetry within N
1

Leptogenesis. Considering that the

sphaleron processes conserve this quantity, we can write

d NB�L

d z
=

d N`1

d z
� d N`1

d z
(4.1.1)
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where the variation rates of the lepton and antilepton abundances are given by the di↵er-

ence between the production rate, due to the heavy neutrino decays, and the depletion

rate driven by the inverse decays. Neglecting the reprocessing action of sphalerons,

which eventually cancels out in the equation for B � L, we therefore have

d N`1

d z
=

�
1

H z
NN1 �

�ID,1

H z
N`1 (4.1.2)

while for the antileptons it is

d N`1

d z
=

�
1

H z
NN1 �

�ID,1

H z
N`1

. (4.1.3)

As showed in Section 2.2.1, the inverse-decay rate is related to the decay rate through

�ID,1 = �
1

N eq
N1

N eq
`1

, �ID,1 = �
1

N eq
N1

N eq

`1

(4.1.4)

where N eq
`1

= N eq

`1
= 1 quantify the number of leptons `

1

and antileptons `
1

at the

thermal equilibrium for a vanishing B�L asymmetry. These quantities can respectively

be recast as

N`1 =
1

2

⇣

N`1 + N`1

⌘

+
1

2

⇣

N`1 �N`1

⌘

= N eq
`1
� 1

2
NB�L + O(N2

B�L) (4.1.5)

and

N`1
=

1

2

⇣

N`1 + N`1

⌘

� 1

2

⇣

N`1 �N`1

⌘

= N eq
`1

+
1

2
NB�L + O(N2

B�L) (4.1.6)

hence, by inserting the above relations into eq. (4.1.1), we obtain the familiar equation

governing the B � L asymmetry already introduced in Section 2.2.1:

d NB�L

d z
= ✏

1

D
1

(z)
⇣

NN1 �N eq
N1

⌘

�NB�L W
1

(z). (4.1.7)

Notice that in writing our final result we neglected terms of order O(N2

B�L) and we

defined, as usual,

D
1

(z) :=
�D,1(T )

H z
= K

1

z

⌧K
1

(z)

K
2

(z)

�

(4.1.8)

and

W
1

(z) 'W ID
1

(z) :=
1

2

�ID,1(z)

H(z)z
=

1

4
K

1

K
1

(z)z3. (4.1.9)

On top of reproducing the above results, the formalism we seek must be able to generalise

our description of the Leptogenesis process by addressing the asymmetry evolution in the

intermediate regimes. Here the lepton quantum states are interacting with the thermal

bath via the charged-lepton Yukawa interactions, but the latter are not e�cient enough

for the instantaneous collapse approximation to hold. In this cases the ensemble of
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lepton and antilepton quantum states is neither to be described in terms of pure states,

nor as an incoherent mixture and clearly the classical description encapsulated in the

Boltzmann equations cannot be employed. As remarked before, during the Leptogenesis

process the neutrino and the charged-lepton Yukawa interactions compete with each

other in determining the average properties of the quantum states, but in these transition

regimes the outcome is actually a draw. Consequently, a complete description of the

system cannot regard the involved leptons and antileptons as decoupled from the thermal

bath and the density matrix formalism results particularly appropriate [115]. Such a

formulation allows in fact the description of the lepton-antilepton subsystem in a separate

way, neglecting back-reaction e↵ects and encoding the coupling with the thermal bath

in the evolution of the o↵-diagonal terms in the lepton and antilepton density matrices

[103,112,114].

Attracted by these features, we derive now a density matrix equation that reproduces

eq. (4.1.6) when the charged-lepton Yukawa interactions are negligible. To this purpose

we consider the heavy neutrino flavour states [1]

|`
1

i = C
1⌧ |`⌧ i+ C

1⌧?
1

|`⌧?
1
i , C

1↵ := h`↵|`
1

i (4.1.10)

CP |`
1

i = C
1⌧ |`⌧ i+ C

1⌧?
1

|`⌧?
1
i , C

1↵ := h`↵| (CP |`
1

i) (4.1.11)

defined with respect to the flavours ↵ = ⌧, ⌧?
1

.

We remark that the notation adopted in this Chapter is slightly di↵erent from the one

presented in the rest of the Thesis. The rescaled amplitudes Ci↵ quantify here the flavour

composition of the lepton state CP |`
1

i, obtained through the CP -conjugation of the

state |`
1

i that the N
1

decays identify. With respect to the quantities introduced in

the previous Chapter and discussed in Appendix C, the Ci↵ present an extra complex-

conjugation. Hence, for example, the one-loop contributions of Figure 2.1 imply here

Ci↵ 6= Ci↵, underlining as usual the di↵erent flavour compositions of the above states.

In order to define a complete basis on which we can specify our density matrix, we

introduce now the states |`
1

?i and CP |`
1

?i, respectively orthogonal to |`
1

i and CP |`
1

i:

|`
1

?i = �C⇤
1⌧?

1
|`⌧ i+ C⇤

1⌧ |`⌧?
1
i (4.1.12)

CP |`
1

?i = �C⇤
1⌧?

1
|`⌧ i+ C⇤

1⌧ |`⌧?
1
i . (4.1.13)

In the bases 1, 1? and CP (1, 1?) the lepton and antilepton density matrices are therefore

given by

⇢`ij = |`
1

i h`
1

| ⌘
 

1 0

0 0

!

, ⇢`ij = CP |`
1

i h`
1

| CP ⌘
 

1 0

0 0

!

(4.1.14)
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Here we are implicitly disregarding the presence of leptons and antileptons which are not

produced by the N
1

decays, assuming furthermore that the latter thermalised through

the Yukawa interactions only. These assumptions clearly hold only in the heavy neutrino

flavour regime, where M
1

> 1012 GeV, provided that the considered Yukawa interactions

are e�cient and in absence of other thermalisation mechanisms. For the moment we

will maintain this approximation, promising to discuss in a second time the important

role that gauge interactions play in this framework.

By introducing now the density matrices which quantify the lepton and antilepton

abundances respectively as

N `
ij ⌘ N`1 ⇢`ij (4.1.15)

and

N `
ij ⌘ N`1

⇢`ij (4.1.16)

for T ⇠ TL1 we have

d N `
ij

d z
=

✓

�
1

H z
NN1 �

�ID,1

H z
N`1

◆

⇢`ij ,
d N `

ij

d z
=

✓

�
1

H z
NN1 �

�ID,1

H z
N`1

◆

⇢`ij .

(4.1.17)

In order to obtain an equation for the total B�L asymmetry matrix, NB�L := N `�N `,

these equations must be written in the same flavour basis so that their di↵erence can

be performed. In this regard, we choose for convenience the basis ⌧, ⌧?
1

and define the

rotation matrices

R(1)

i↵ =

0

@

C⇤
1⌧ C⇤

1⌧?
1

�C
1⌧?

1
C
1⌧

1

A , R
(1)

i↵ =

0

@

C⇤
1⌧ C⇤

1⌧?
1

�C
1⌧?

1
C
1⌧

1

A (4.1.18)

acting respectively on the leptons and on the CP-conjugated states of the original anti-

leptons. For example, the representations of the state |`
1

i therefore satisfy

 

1

0

!

= R

0

@

C
1⌧

C
1⌧?

1

1

A . (4.1.19)

For the adopted notation, the superscript enclosed in round brackets indicates the heavy

neutrino decay direction index for a matrix. Since we are dealing with leptons and the

CP -conjugated of antilepton states, we also employ the same flavour labels to distinguish

between the entries of the matrices associated to both these species. We nevertheless

emphasise that due to the di↵erent flavour compositions of the states involved the two

rotation matrices generally do not coincide and, in particular, N `
ij and N `

ij are diagonal

on di↵erent bases.

A common expression for the rotation matrices, in fact, can only be given by neglecting

the one-loop contributions in the heavy neutrino decay process. At the tree-level we
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consequently have

R0(1)

i↵ =

0

@

C0⇤
1⌧ C0⇤

1⌧?
1

�C0

1⌧?
1

C0

1⌧

1

A ⌘ R
0(1)

i↵ . (4.1.20)

In the charged-lepton flavour basis, the equation for the B � L asymmetry matrix con-

sequently reads

d NB�L
↵�

d z
=
⇣

R
(1)†
⌘

↵i

d N `
ij

d z
R

(1)

j� � (R(1) †)↵i
d N `

ij

d z
R(1)

j� (4.1.21)

and the trace gives the B � L asymmetry NB�L.

Moving further, we now define the projectors

P(1)

↵� :=
⇣

R(1)†
⌘

↵i

 

1 0

0 0

!

R(1)

j� =

0

@

p
1⌧ C⇤

1⌧?
1

C
1⌧

C⇤
1⌧ C

1⌧?
1

p
1⌧?

1

1

A (4.1.22)

and

P(1)

↵� :=
⇣

R
(1)†
⌘

↵i

 

1 0

0 0

!

R
(1)

j� =

0

@

p
1⌧ C⇤

1⌧?
1

C
1⌧

C⇤
1⌧ C

1⌧?
1

p
1⌧?

1

1

A (4.1.23)

whose diagonal elements are the same flavoured probabilities introduced in Chapter 3.

At tree level these quantities are also given by a common expression:

P0(1)

↵� =
⇣

R0(1)†
⌘

↵i

 

1 0

0 0

!

R0(1)

j� = P(1)0

↵� =
1

(h†h)
11

0

@

|h⌧1|2 h⌧1h⇤
⌧?
1 1

h⇤
⌧1h⌧?

1 1

�

�

�

h⌧?
1 1

�

�

�

2

1

A . (4.1.24)

Using these results we can now rewrite eq. (4.1.21) as

d NB�L
↵�

d z
=

✓

�
1

H z
NN1 �

�ID,1

H z
N`1

◆

P(1)

↵� �
✓

�
1

H z
NN1 �

�ID,1

H z
N`1

◆

P(1)

↵� (4.1.25)

and by means of eqs. (4.1.5) and (4.1.6) it is:

d NB�L
↵�

d z
= "(1)↵� D

1

⇣

NN1 �N eq
N1

⌘

�W
1

NB�L

2

4

P(1)

↵� �
1

+ P(1)

↵� �
1

�
1

+ �
1

3

5 . (4.1.26)

Finally, neglecting terms of order O("
1

NB�L) and O(�p NB�L), it follows

d NB�L
↵�

d z
= "(1)↵� D

1

(NN1 �N eq
N1

)�W
1

NB�L P0(1)

↵� . (4.1.27)

The CP asymmetry matrix "(1)↵� is defined according to [103]

"(1) =
P(1)

�
1

� P(1) �
1

�
1

+ �
1

= "
1

P(1)

+ P(1)

2
� �P(1)

2
(4.1.28)
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where �P(1) := P(1) �P(1)

, and generalises eq. (3.2.27) that still holds for the diagonal

terms: "(1)↵↵ ⌘ "
1↵. The o↵-diagonal terms obey instead the relation "(1)↵� = ("(1)�↵)⇤ and

are not necessarily real. Explicitly we have [116]

"(i)↵� =
3

32⇡(h†h)ii

X

j 6=i

(

i
h

h↵ih
⇤
�j(h

†h)ji � h⇤
�ih↵j(h

†h)ij
i ⇠(xj/xi)
p

xj/xi

+i
2

3(xj/xi � 1)

h

h↵ih
⇤
�j(h

†h)ij � h⇤
�ih↵j(h

†h)ji
i

�

(4.1.29)

where the ⇠ function was already defined in eq. (2.2.15). Notice that the presented

expression for the flavoured asymmetry matrix correctly vanishes if ✏
1

= 0 and, at

the same time, Ci↵ = Ci↵ prevents the possibility o↵ered by di↵erences in the flavour

compositions of |1i and CP |1i.
The diagonal components of eq. (4.1.27) o↵er a flavoured insight in the N

1

Leptogenesis

process, yielding for the considered heavy neutrino flavour regime:

d NB�L
⌧⌧

d z
= "(1)⌧⌧ D

1

(NN1 �N eq
N1

)� p0
1⌧ W

1

NB�L (4.1.30)

d NB�L
⌧?
1 ⌧

?
1

d z
= "(1)

⌧?
1 ⌧

?
1

D
1

(NN1 �N eq
N1

)� p0
1⌧?

1
W

1

NB�L. (4.1.31)

Notice that, with respect to eq. (3.2.48) and (3.2.49) which hold in a two-flavour regime,

here the washout factor is multiplying the total B � L asymmetry. By summing these

equations we achieve our first goal, correctly reproducing eq. (4.1.7) for the total B �L

asymmetry NB�L = Tr[NB�L
↵� ]. On the top of that, from the relations (4.1.30) and

(4.1.31), it follows

1

p0
1⌧

d NB�L
⌧⌧

d z
� 1

p0
1⌧?

1

d NB�L
⌧?
1 ⌧

?
1

d z
= ��p

1⌧

2

 

1

p0
1⌧

+
1

p0
1⌧?

1

!

D
1

(NN1 �N eq
N1

) (4.1.32)

which, together with eq. (4.1.7) and

d NN1

d z
= �D

1

(NN1 �N eq
N1

) (4.1.33)

form a system of equations for the flavoured asymmetries NB�L
↵↵ that can be solved

analytically.

At the end of the Leptogenesis process, for T ⌧ TL1 ⌧ M
1

and TL1 := M
1

/zL1, we

therefore have [117]:

NB�L,f
⌧⌧ ' p0

1⌧ Nf
B�L �

�p
1⌧

2
N in

N1
(4.1.34)

NB�L,f
⌧?
1 ⌧

?
1

' p0
1⌧?

1
Nf

B�L +
�p

1⌧

2
N in

N1
.

These solutions show the flavour composition of the asymmetry produced by N
1

in
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the considered heavy neutrino flavour regime. The sum of the first terms on the RHS

correctly reproduces the total B � L asymmetry that the out-of-equilibrium decays

produced

Nf
B�L = "

1

f
1

(K
1

) (4.1.35)

which, as usual, is washed out at the production – eq. (2.2.45). The remaining con-

tributions are instead the so-called phantom terms [117]: flavoured asymmetries which

are proportional to the initial abundance of heavy neutrinos N in
N1

and avoid the washout

at the production. In the considered heavy neutrino flavour regime, where under the

current assumptions the flavoured asymmetries are not measured by any process, the

phantom terms do not result in any physical e↵ect and e↵ectively compensate in the

calculation of the total asymmetry NB�L. Yet, within setups in which the present

Leptogenesis phase is followed by a further stage, the phantom terms could a↵ect this

quantity provided an asymmetric washout prevent the mutual cancellation.

4.1.1 Turning gauge and ⌧ Yukawa interactions on

We investigate now the impact that charged-lepton Yukawa interactions and gauge in-

teractions have on the picture presented above. To account for these e↵ects we therefore

generalise the eq.s (4.1.17) to [112,116,118]

d N `
↵�

d z
=

�
1

H z
NN1 P(1)

↵� �
1

2

�ID,1

H z

n

P(1), N `
o

↵�
+ ⇤↵� + G↵� (4.1.36)

d N `
↵�

d z
=

�
1

H z
NN1 P(1)

↵� �
1

2

�ID,1

H z

n

P(1)

, N `
o

↵�
+ ⇤↵� + G↵�

where ⇤↵� and ⇤↵� describe the e↵ects of charged-lepton Yukawa interactions:

⇤↵� = �i
Re(⇤⌧ )

H z

" 

1 0

0 0

!

, N `

#

↵�

� Im(⇤⌧ )

H z

0

@

0 N `
⌧⌧?

1

N `
⌧?
1 ⌧

0

1

A (4.1.37)

⇤↵� = +i
Re(⇤⌧ )

H z

" 

1 0

0 0

!

, N `

#

↵�

� Im(⇤⌧ )

H z

0

@

0 N `
⌧⌧?

1

N `
⌧?
1 ⌧

0

1

A . (4.1.38)

Introducing the tau Yukawa coupling y⌧ , the real and imaginary parts of the tau-lepton

self-energy are respectively written as [105,119]

Re(⇤⌧ ) ' y2⌧
64

T, Im(⇤⌧ ) ' 8⇥ 10�3 y2⌧ T. (4.1.39)

The former enters the commutator structure presented by third term on the RHS of

eq. (4.1.36), consequently driving the flavour oscillations. The latter, instead, controls

the damping of the o↵-diagonal elements in the involved density matrices.
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Finally, the gauge interactions which have the e↵ect of thermalising the above abund-

ances in a way that equilibrium conditions can be assumed during the transition between

heavy neutrino flavour and two-flavour regimes, are addressed by G↵� . Notice that these

reactions are CP conserving, hence both the total and flavoured asymmetries cannot

be directly modified by the imposed thermalisation process. Nevertheless there is an

indirect repercussion that gauge interactions yield.

4.1.1.1 Gauge interactions and the heavy neutrino flavour regime

We investigate here the impact of gauge interactions on the results of Section 4.1, derived

for N
1

Leptogenesis within the heavy neutrino flavour regime.

As we have seen – cf. eq.s (4.1.5), (4.1.6) and (4.1.25) – assuming that the lepton

abundances involved in the N
1

Leptogenesis are only thermalised through the Yukawa

interactions results in the following density matrices:

N ` = N`1 P(1) (4.1.40)

and

N ` = N`1
P(1)

. (4.1.41)

Taking now into account the e↵ects of gauge interactions, the above relations are mod-

ified as follows

N ` = N eq
` I +N`1 P(1) � N`1 + N`1

2
P0(1) (4.1.42)

N ` = N eq
` I +N`1

P(1) � N`1 + N`1

2
P0(1).

Notice that being flavour-blind, the gauge interactions not only thermalise the leptons

|`
1

i and the antileptons |`
1

i independently of the strength of the neutrino Yukawa inter-

actions, but also reconstruct the thermal abundances of the orthogonal states |`
1

?i and

|`
1

?i. The first terms on the RHSs of the above equations are therefore accounting for

this e↵ect, while the second terms are the usual contributions of N
1

decays we discussed

before. The third terms describe instead how the lepton doublet annihilations, mediated

by gauge interactions, reveal the tree-level components of |`
1

i and |`
1

i which are also

thermalised1.

Considering now eq.s (4.1.5) and (4.1.6) we linearise the above equations

N ` = N eq
` I +

✓

N`1 + N`1

2

◆

(P(1) � P0(1))� 1

2
NB�L P(1) (4.1.43)

N ` = N eq
` I +

✓

N`1 + N`1

2

◆

(P(1) � P0(1)) +
1

2
NB�L P(1)

1In this regard, notice that this contribution involves CP -conjugated states, hence its presence should
not a↵ect the calculation of the final B � L asymmetry.
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and performing the di↵erence obtain an explicit expression for the B � L asymmetry

matrix:

NB�L =
N`1 + N`1

2

⇣

P(1) � P(1)

⌘

+
NB�L

2

⇣

P(1) + P(1)

⌘

. (4.1.44)

In analogy to eq. (4.1.28), the first term in the above equation accounts for the con-

tribution to the flavoured asymmetries that arises from the discrepancies in the flavour

compositions of |`
1

i and CP |`
1

i: the phantom terms. The second term, instead, rep-

resents the usual contribution proportional to the total asymmetry. Notice that the

quantity (N`1 + N`1
)/2 should be regarded as dynamical, likewise the total asymmetry

NB�L
2.

At this stage we can also give an explicit expression for the sum N ` + N `, which will

prove useful for later

N `+` := N ` + N ` = 2N eq
` I +

N`1 + N`1

2

⇣

�P(1) + �P(1)

⌘

+
NB�L

2

⇣

P(1) � P(1)

⌘

(4.1.45)

where we defined �P(1) := P(1) � P0(1) and �P(1)

:= P(1) � P0(1).

An equation for the asymmetry matrix, NB�L, follows from the di↵erence of the relation

in eq. (4.1.36). Under the current assumptions we therefore neglect the e↵ects due to

charged-lepton interactions and by disregarding terms of order O(" �P) and O(�P2) we

obtain:

d NB�L

d z
= "(1) D

1

(NN1�N eq
N1

)�1

2
W

1

N`1 + N`1

2

⇣

P(1) � P(1)

⌘

�W
1

NB�L

2

⇣

P(1) + P(1)

⌘

.

(4.1.46)

Considering now that on the tree-level basis i
0

, j
0

= 1
0

, 1?
0

it is

R0(1)

i0↵
�P1

↵�(R
0(1)†)�j0 = �P(1)

i0j0
=

 

0 �p

�p? 0

!

(4.1.47)

with �p := C0

1⌧?
1

�C
1⌧ � C0

1⌧ �C
1⌧?

1
and �C

1↵ ⌘ C
1↵ � C0

1↵, we have

n

P(1), �P(1)

o

= �P(1) + O(�P2),
n

P(1)

, �P(1)

o

= �P(1)

+ O(�P2

) (4.1.48)

hence we can simplify eq. (4.1.46) obtaining our final expression for the asymmetry

matrix in the heavy neutrino flavour regime:

2In this regard, we emphasise that the above equation holds also when the gauge interactions are
disregarded. In fact, di↵erentiating eq. (4.1.44) with respect to z and considering the relations (4.1.2),
(4.1.3) as well as the Boltzmann equation regulating N

B�L

yields the expression for the asymmetry
matrix we gave in eq. (4.1.27).
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d NB�L

d z
= "(1) D

1

(NN1 �N eq

N1
)� 1

2
W

1

n

P0(1), NB�L
o

. (4.1.49)

The above equation therefore generalises eq. (4.1.27) to the e↵ect of gauge interactions.

In this regard, an important remark follows. Equations (4.1.46) and (4.1.49) imply,

non trivially, that accounting for the unflavoured thermal bath brought by the gauge

interactions results in a washout of the phantom terms. More in detail. di↵erently from

the results presented in Section 4.1, the phantom terms undergo here a washout at the

production which is half the one acting on the total B � L asymmetry.

To show this explicitly we investigate the solutions encoded in the diagonal components

of the asymmetry matrix, corresponding in the charged-lepton flavour basis to NB�L
⌧⌧

and NB�L
⌧?
1 ⌧

?
1

. To this purpose consider the tree-level basis in which "(1), appearing on the

RHS of eq. (4.1.28), specialises into

"(1)i0j0
=

 

"
1

0

0 0

!

+

 

0 �"

�"? 0

!

(4.1.50)

where �" = (�p � �p)/2 = �p/2. The term 1
0

1
0

clearly matches the total NB�L

asymmetry washed out by W
1

as prescript by eq. (4.1.7). The o↵-diagonal terms, instead,

upon a rotation to the charged lepton flavour basis correspond to the phantom terms.

Explicitly we have

NB�L,f
⌧⌧ ' p0

1⌧ Nf
B�L +

�p
1⌧

2
(K

1

/2) (4.1.51)

NB�L,f
⌧?
1 ⌧

?
1

' p0
1⌧?

1
Nf

B�L �
�p

1⌧

2
(K

1

/2).

confirming what we anticipated.

4.1.1.2 N
1

Leptogenesis in the two flavour regime

We focus now on the two-flavour regime, in which the states |`
1

i and CP |`
1

i break

down to an incoherent mixture of |`⌧ i, |`⌧?
1
i and |`⌧ i, |`⌧?

1
i as a result of ⌧ Yukawa

interactions in the limit of full decoherence. As a first step, we take the di↵erence of the

equations (4.1.36), obtaining

d NB�L
↵�

d z
= "(1)↵� D

1

NN1 �
1

2
D

1



�ID,1

�
1

+ �
1

n

P(1)

, N `
o

↵�
� �ID,1

�
1

+ �
1

n

P(1), N `
o

↵�

�

+�⇤↵� (4.1.52)
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with clear meaning of the notation. Hence, in analogy to eq.s (4.1.5) and (4.1.6), by

recasting N ` and N ` as

N ` =
N ` + N `

2
� NB�L

2
, N ` =

N ` + N `

2
+

NB�L

2
(4.1.53)

it is

d NB�L
↵�

d z
= "(1)↵� D

1

NN1 �
1

4
D

1

N eq
N1

N eq
`

n

"(1)↵� , N
`+`
o

↵�
(4.1.54)

�1

4
D

1



�ID,1

�
1

+ �
1

n

P(1)

, NB�L
o

↵�
+

�ID,1

�
1

+ �
1

n

P(1), NB�L
o

↵�

�

+�⇤↵�

and, by neglecting terms of order O(�P NB�L), we finally have

d NB�L
↵�

d z
= "(1)↵� D

1

NN1 �
1

4
D

1

N eq

N1

N eq

`

n

"(1)↵� , N
`+`
o

↵�
� 1

2
W

1

n

P0(1), NB�L
o

↵�

+ i
Re(⇤⌧ )

H z

" 

1 0

0 0

!

, N `+`

#

↵�

� Im(⇤⌧ )

H z

0

@

0 NB�L
⌧⌧?

1

NB�L
⌧?
1 ⌧

0

1

A .

(4.1.55)

We now need to employ the Boltzmann equation regulating the quantity N`+`, given by

d N `+`
↵�

d z
' �Re(⇤⌧ )

H z
(�

2

)↵�N
B�L
↵� � Sg (N `+`

↵� � 2 N eq
` �↵�) (4.1.56)

where Sg ⌘ �g/(Hz) accounts for the gauge interactions rescaled rate. As shown in [116],

this term has the e↵ect of damping the flavour oscillations: gauge interactions force in

fact N `+`
↵� ' 2 N eq

`1
�↵� , as showed explicitly by eq. (4.1.45). The oscillatory term is

therefore negligible and we obtain

d NB�L
↵�

d z
= "(1)↵� D

1

(NN1 �N eq
N1

)� 1

2
W

1

n

P0(1), NB�L
o

↵�
� Im(⇤⌧ )

H z
(�

1

)↵� NB�L
↵�

(4.1.57)

that generalises eq. (4.1.49).

When the tau interactions become e↵ective, for T ⇠ 1012 GeV, the o↵-diagonal elements

of eq. (4.1.36) are therefore progressively suppressed and the quantum coherence of the

original states is gradually lost. Eventually, when the o↵-diagonal terms are completely

damped, the remaining entries in the above equation correctly reproduce the Boltzmann

equations given for the considered fully flavoured regime: eq. (3.2.48) and (3.2.48). On

the other hand, when the charged lepton interactions are negligible, the usual equa-

tion (4.1.7) for the total asymmetry in the unflavoured regime is also recovered upon a
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rotation.

4.2 Heavy neutrino flavour e↵ects, phantom terms and the

projection e↵ect

In this Section we investigate the heavy neutrino flavour e↵ects and their consequences

on the proposed formalism. For sake of clarity, we will first carry out our study assuming

the presence of only two flavours ⌧ and ⌧?, generalising the equations to a realistic three

flavour case in the next Section.

For definiteness, we consider here masses Mi � 109 GeV, where only the tau lepton

Yukawa interactions have to be taken into account. In order to further simplify our

analysis we also assume that the heaviest neutrinos N
3

do not contribute to the final

asymmetry, imposing M
3

� TRH � M
2

to prevent the thermalisation of this neutrino

species.

The two flavour regime that the above assumptions define can therefore be regarded as

a special case in which the heavy neutrino flavour lepton states associated to N
1

and

N
2

lie on the same plane orthogonal to the one identified by the light flavours e and µ.

In particular we therefore impose |`⌧?
2
i = |`⌧?

1
i = |`⌧?i and consider the configuration

depicted in Figure 4.2.

1

t¶
e

m

t

2

Figure 4.2: The flavour configuration of the two heavy neutrino lepton states
considered in this Section.

Analogously, the two antilepton heavy neutrino flavour states |`
1

i and |`
2

i, are also taken

in the same plane orthogonal to e and µ, in a way that |`⌧?
2
i = |`⌧?

1
i = |`⌧?i and by

assuming here that |`⌧?i = CP |`⌧?i our analysis will be completely specified in terms

of the flavours ⌧ and ⌧?.
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The density matrix in eq. (4.1.57), valid for N
1

Leptogenesis, is straightforwardly gen-

eralised to

d NB�L
↵�

d z
= "(1)↵� D

1

(NN1 �N eq
N1

)� 1

2
W

1

n

P0(1), NB�L
o

↵�
(4.2.1)

+ "(2)↵� D
2

(NN2 �N eq
N2

)� 1

2
W

2

n

P0(2), NB�L
o

↵�

� Im(⇤⌧ )

H z
(�

1

)↵� NB�L
↵�

where (↵, � = ⌧, ⌧?) and the NN2 evolution is regulated as usual by eq. (3.1.2).

With this setup we now discuss three limit cases, characterised by M
2

� 1012 GeV �
M

1

, M
2

, M
1

� 1012 GeV and M
1

, M
2

⌧ 1012 GeV, in which our density matrix formal-

ism recovers the usual Boltzmann equations validating in this way the results presented

in previous Chapters.

4.2.1 Three stages phantom Leptogenesis: M
2

� 10

12

GeV�M
1

The B �L asymmetry, produced for T ⇠M
2

by the out-of-equilibrium decays of N
2

, is

described by the equation

d NB�L
↵�

d z
= "(2)↵� D

2

(NN2 �N eq

N2
)� 1

2
W

2

n

P0(2), NB�L
o

↵�
(4.2.2)

obtained from eq. (4.1.49) through the change of label 1 ! 2. Since M
2

> 1012 GeV

we neglected here any light flavour e↵ect. For T ' TL2 ⌘ M
2

/zL2, the ⌧ and ⌧?

asymmetries are then described by the eqs. (4.1.51), again with the substitution 1! 2:

NB�L
⌧⌧ (T ' TL2) ' p0

2⌧ NT'T
L2

B�L � �p
2⌧

2
(K

2

/2) (4.2.3)

NB�L
⌧?⌧?(T ' TL2) ' p0

2⌧? NT'T
L2

B�L +
�p

2⌧

2
(K

2

/2).

Notice that at this stage the phantom terms in the above equations mutually balance

in the calculation of the total asymmetry. Therefore, so far, the description of the

asymmetry evolution is completely analogous to the one given within N
1

Leptogenesis.

When the temperature drops below T = T? ⌧ 1012 GeV the o↵-diagonal terms in NB�L
↵�

are completely damped by the tau charged-lepton interactions. Hence, in this second

stage, the diagonal elements N
�

⌧

and N
�

⌧

? can be treated as measured quantities.

The last stage we present takes into account the washout performed on the B � L

asymmetry by the lightest neutrino species. For T ⇠M
1

, the ⌧ and the ⌧? asymmetries

are therefore washed out individually by the N
1

inverse-processes which proceed in the

present fully flavoured regime. When the N
1

processes freeze-in , for T ' TL1 = M
1

/zL1
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the values of the relevant flavoured asymmetries thus are

Nf
�⌧ '



p0
2⌧ NT'T

L2
B�L � �p

2⌧

2
(K

2

/2)

�

e�
3⇡
8 K1⌧ (4.2.4)

Nf
�⌧? '



p0
2⌧? NT'T

L2
B�L +

�p
2⌧

2
(K

2

/2)

�

e�
3⇡
8 K1⌧? (4.2.5)

and for the final total asymmetry it follows

Nf
B�L ' Nf

�⌧ + Nf
�⌧? . (4.2.6)

Consequently, if for the flavour ↵ = ⌧ (⌧?) it is K
1↵ . 1 while for the other flavour � =

⌧? (⌧) we have K
1� � 1, the final asymmetry is dominated by the former component:

Nf
B�L ' p0

2↵ NT'T
L2

B�L � �p
2↵

2
(K

2

/2). (4.2.7)

Phantom Leptogenesis has been first discussed in the approximation of an instantaneous

wave function collapse, neglecting the gauge interactions, in [117]. Here we have re-

derived its main features within a density matrix formalism, showing the important

impact of gauge interactions. Clearly, phantom Leptogenesis has some analogies with

the particular scenario of N
1

Leptogenesis characterised by "
1

= 0, discussed in [98].

In both the cases, in fact, the final asymmetry originates from the CP -violating terms

/ �pi↵ brought by the di↵erent flavour compositions of the lepton and antilepton heavy

flavour states, provided an asymmetric washout act on the two flavoured asymmetries.

There are however important di↵erences. In particular, for N
1

Leptogenesis with "
1

= 0,

production, decoherence and washout occur simultaneously while, in the case of phantom

Leptogenesis, these stages are e↵ectively separated. In this regard, as we show below,

phantom Leptogenesis does not require the N
2

production and the N
1

washout stages

occur in two di↵erent fully-flavoured regimes.

4.2.2 The projection e↵ect and two stages phantom Leptogenesis: M
2

&
3M

1

� 10

12 GeV

We consider now the case in which the heavy neutrino masses satisfy M
2

, M
1

� 1012

GeV, so the charged-lepton Yukawa interactions do not a↵ect the final B�L asymmetry

and we recover an heavy neutrino flavour scenario. The density matrix, eq. (4.2.1), is

then recast as

d NB�L
↵�

d z
= "(1)↵� D

1

(NN1 �N eq
N1

)� 1

2
W

1

n

P0(1), NB�L
o

↵�
(4.2.8)

+ "(2)↵� D
2

(NN2 �N eq
N2

)� 1

2
W

2

n

P0(2), NB�L
o

↵�
.
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4.2.2.1 The projection e↵ect in isolation

For illustrative purposes we focus first on the interplay between the heavy neutrino

flavour states involved in the N
1

and N
2

dynamics. To simplify our task we first impose

�p
1↵ = �p

2↵ = 0, neglecting in a first approximation the di↵erences in the flavour

compositions of the states associated to each heavy neutrino and consequently obtaining

|`
1

i = C
1⌧ |`⌧ i+ C

1⌧? |`⌧?i , |`
1

i = C?
1⌧ |`⌧ i+ C?

1⌧? |`⌧?i (4.2.9)

and

|`
2

i = C
2⌧ |`⌧ i+ C

2⌧? |`⌧?i , |`
2

i = C?
2⌧ |`⌧ i+ C?

2⌧? |`⌧?i . (4.2.10)

In the hierarchical limit, M
2

& 3 M
1

[99], the Leptogenesis process comprises two dif-

ferent stages. In the first one, for T ⇠ M
2

, the out-of-equilibrium decays of N
2

gen-

erate an amount of B � L asymmetry. The lepton density matrix is given here by

⇢`ij = Diag(1, 0) in the basis `
2

� `?
2

. Analogously the antilepton density matrix is given

by ⇢
¯`
ij = Diag(1, 0) in the basis ¯̀

2

� ¯̀
2

?
, that, under our assumptions, is CP -conjugated

to `
2

� `?
2

. As in the previous case the asymmetry production from N
2

is described by

eq. (4.2.2), hence disregarding the phantom terms we simply have

NB�L
⌧⌧ (T ' TL2) ' p0

2⌧ NB�L(T ' TL2)

NB�L
⌧?⌧?(T ' TL2) ' p0

2⌧? NB�L(T ' TL2) (4.2.11)

where NB�L(T ' TL2) ' "
2

(K
2

). We now have to consider the N
1

washout stage,

taking place for T ⇠ M
1

. As usual we neglect the N
1

asymmetry production imposing

"(1)↵� ⌘ 0 and assume furthermore that |`
1

i = |`⌧ i and |`
1

i = |`⌧ i to simplify our discus-

sion.

For T ⇠M
1

, the eq.s (4.2.8) for the asymmetry evolution in the charged-lepton flavour

basis are simply rearranged as (↵, � = ⌧, ⌧?)

d NB�L
↵�

d z
= �W

1

 

NB�L
⌧⌧

1

2

NB�L
⌧⌧?

1

2

NB�L
⌧?⌧

0

!

(4.2.12)

and at the end of the N
1

-washout we therefore have

NB�L
⌧⌧ (T ' TL1) ' e�

3⇡
8 K1 p0

2⌧ NB�L(T ' TL2)

NB�L
⌧?⌧?(T ' TL1) ' p0

2⌧? NB�L(T ' TL2). (4.2.13)

Finally, when T ⇠ 1012 GeV the charged-lepton interactions damp the o↵-diagonal terms

and the ⌧ and ⌧? asymmetries are measured.
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The above result is easily generalised to a less specific flavour configuration of N
1

. The

eq. (4.2.12) is now to be written in the basis `
1

� `?
1

d NB�L
i1j1

d z
= �W

1

 

NB�L
11

1

2

NB�L
11

?

1

2

NB�L
1

?
1

0

!

(4.2.14)

where i
1

, j
1

= 1, 1?, yielding the washout of the 11 term

NB�L
11

(T ' TL1) = e�
3⇡
8 K1 NB�L

11

(T ' TL2) (4.2.15)

and of o↵-diagonal terms. The 1?1? component is instead left untouched. The asym-

metry matrix for T ⇠ TL2 can be written in the `
1

� `?
1

basis by employing the rotation

matrices of eq. (4.1.20)

NB�L
i1j1

(T ' TL2) = NT'T
L2

B�L R0(1)

i1↵
R0(2)†
↵i2

 

1 0

0 0

!

R0(2)

j2�
R0(1)†
�j1

(4.2.16)

or, in a more contained way, by considering that

NB�L(T ' TL2) = NT'T
L2

B�L |`
2

i h`
2

| . (4.2.17)

Hence, we have

NB�L
i1j1

(T ' TL2) = NB�L(T ' TL2)

 

p
12

h`
1

|`
2

i h`
2

|`
1

?i
h`

1

? |`
2

i h`
2

|`
1

i 1� p
12

!

(4.2.18)

where p
12

:= |h`
1

|`
2

i|2 as prescript by eq. (3.1.22). The final asymmetry is then calcu-

lated through

Nf
B�L = Tr[NB�L

i1j1
(T ' TL1)] = e�

3⇡
8 K1 p

12

NB�L(T ' TL2) + (1� p
12

) NB�L(T ' TL2)

(4.2.19)

and rotated to the charged-lepton flavour basis as follows:

NB�L
↵� (T ' TL1) = R0(1)

†

↵i1
NB�L

i1j1
(T ' TL1) R0(1)

j1�
. (4.2.20)

For T ' 1012 GeV the charged lepton interactions damp the o↵-diagonal terms without

a↵ecting the total asymmetry which is given by the trace of the density matrix and

therefore results in eq. (4.2.19).

This result confirms the description of the heavy neutrino flavour e↵ects proposed in

Chapter 3. Correctly, the component of the asymmetry along |`
1

i undergoes the N
1

washout, while the orthogonal component is not modified by the latter [98,103]. On top

of that, even the washout strength is exactly quantified in the factor exp[�(3⇡K
1

/8)],

independently of the value of K
1

[2].
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As a last comment, it is straightforward to generalise the presented result to a possible

N
1

asymmetry production, in which case the final asymmetry reads

Nf
B�L = "

1

(K
1

) +
⇣

e�
3⇡
8 K1 p

12

+ 1� p
12

⌘

"
2

(K
2

). (4.2.21)

4.2.2.2 Projection e↵ect and phantom Leptogenesis

We now account for the projection e↵ect releasing the assumption made before on the

flavour composition of the involved heavy neutrino flavour states. As we are going to

show the result is a generalisation of eq. (4.2.21), with the phantom terms contributing

to the determination of the final asymmetry. A first complication arises in relation to

the basis in which to describe the N
1

washout. In this regard, notice that the bases

`
1

–`?
1

and `
1

� `?
1

here do not coincide. Therefore, to solve this ambiguity, we choose to

describe the Leptogenesis process on the tree-level basis 10 � 10?.

The heavy neutrino flavour states |`
2

i and |`
2

i are then decomposed according to

|`
2

i = h`
1

0 |`
2

i |`
1

0i+ h`
1

0? |`
2

i |`
1

0?i , |`
2

i = h`
1

0 |`
2

i |`
1

0i+ h`
1

0? |`
2

i |`
1

0?i (4.2.22)

and equation (4.2.2) is recast as

d NB�L
i01j

0
1

d z
= "(2)

i01j
0
1
D

2

(NN2 �N eq

N2
)� 1

2
W

2

n

P0(2), NB�L
o

i01j
0
1

(4.2.23)

where i0
1

, j0
1

= 10, 10? and the superscript “0” indicates the tree-level expression of the

associated quantity. Defining now �p
21

0 := |h`
1

0 |`
2

i|2 � ��h`
1

0 |`
2

i��, we therefore obtain

the following expressions for the flavoured asymmetries on the tree-level basis

NB�L
1

0
1

0 (T ' TL2) ' p0
12

"
2

(K
2

)� �p
21

0

2
(K

2

/2) (4.2.24)

NB�L
1

0?
1

0?(T ' TL2) ' (1� p0
12

) "
2

(K
2

) +
�p

21

0

2
(K

2

/2). (4.2.25)

As a last step we account for the washout and the asymmetry production due to N
1

,

yielding the final asymmetry:

Nf
B�L = "

1

(K
1

) +
h

p0
12

e�
3⇡
8 K1 + (1� p0

12

)
i

"
2

(K
2

) +
⇣

1� e�
3⇡
8 K1

⌘ �p
21

0

2
(K

2

/2).

(4.2.26)

As expected the phantom terms result in additional contributions to Nf
B�L. We under-

line that accounting for the di↵erent flavour compositions of |`
1

i and |`
1

i also leads to

phantom terms during the N
1

Leptogenesis stage. These contributions however undergo

no washout as the Leptogenesis era is concluded, hence they reciprocally cancel in the

final asymmetry.
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4.2.3 The two-flavour regime: 10

12

GeV�M
1

,M
2

Under the condition M
1

, M
2

⌧ 1012 GeV the asymmetry production takes place in a

two-flavour regime for both the heavy neutrino species considered. The N
2

Leptogenesis

stage as usual results in

NB�L
⌧⌧ (T ' TL2) = "

2⌧ (K
2⌧ ), NB�L

⌧?⌧?(T ' TL2) = "
2⌧? (K

2⌧?) (4.2.27)

and assuming a strong washout regime for the relevant flavours, K
2⌧? , K

2⌧ � 1, the

total asymmetry recovers eq. (3.2.51).

Consequently, when the temperature drops down to T ⇠M
1

, the washout process of N
1

are active and for the configuration depicted in Figure 4.2 we have

NB�L
⌧⌧ (T ' TL2) = "

2⌧ (K
2⌧ ) e�

3⇡
8 K1⌧ (4.2.28)

NB�L
⌧?⌧?(T ' TL2) = "

2⌧? (K
2⌧?) e�

3⇡
8 K1⌧? . (4.2.29)

At the same time the out-of-equilibrium decays of N
1

add on to the asymmetry produced

in the N
2

Leptogenesis stage, leading to our final formula

NB�L
⌧⌧ (T ' TL1) = "

2⌧ (K
2⌧ ) e�

3⇡
8 K1⌧ + "

1⌧ (K
1⌧ ) (4.2.30)

NB�L
⌧?⌧?(T ' TL1) = "

2⌧? (K
2⌧?) e�

3⇡
8 K1⌧? + "

1⌧? (K
1⌧?). (4.2.31)

4.3 A general formula

To conclude this Chapter we extend our results to the realistic case in which the three

light flavours e, µ and ⌧ are considered. The density matrix equations we proposed are

now to be written in terms of 3 ⇥ 3 matrices and the analysis must allow for general

orientations of the heavy neutrino flavour states in the flavour space.

A straightforward generalisation of eq. (4.2.1) then yields
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where ↵, � = ⌧, µ, e. The e↵ect of the gauge interactions has been addressed in the

evolution of the lepton and antilepton abundances – cf. eq. (4.1.42), resulting in the

anticommutators presented by the washout terms.

The master equation that we propose can now be employed to calculate the final B�L

asymmetry not only for the ten mass patterns presented in Figure 4.1, but also when

the heavy neutrino masses fall in one of the indicated transition regimes.

In these cases, though, solving the above equation is clearly much more di�cult as at

least two of the five considered Yukawa-interactions would be simultaneously active. This

goes beyond the purpose of the present Thesis and therefore, also in the remaining of

this work, we will consider only Leptogenesis processes with hierarchical heavy neutrinos

within the fully-flavoured regimes introduced in Chapter 3. On top of that, as our

analysis proved that under these conditions a multiple-stage Boltzmann equations setup

e↵ectively describes the Leptogenesis process, we will employ this simple formalism to

specify the evolution of the B � L asymmetry.

As a final remark we emphasise that for the expression given in eq. (4.1.29) for the CP -

asymmetry matrix, our master formula in eq. (4.3.1) applies exclusively to scenarios

presenting hierarchical heavy neutrinos. It is however straightforward to generalise our

result to the complementary class of resonant Leptogenesis scenarios, in which case

eq. (4.1.29) is to be modified in order to account for the resonant contributions in

"(1)↵� [120] that we previously neglected.



Chapter 5

The problem of initial conditions

in Leptogenesis

As a result of flavour e↵ects we are forced to move beyond N
1

Leptogenesis, consid-

ering a minimal scenario where the predicted final asymmetry depends on all the 18

parameters that the Lagrangian in eq. (2.0.15) introduced in the Theory [121]. These

describe the masses and mixings of heavy and light neutrinos, and whereas informations

on the latter are given by the neutrino experiments reviewed in Section 1.1, the high

energy sector of the Theory remains unexplored. Clearly, the implications from the Cos-

mological measurements of a baryon asymmetry that we presented in Section 1.2 result

in one additional constraint on the Seesaw parameter space, nevertheless performing a

complete scan of the latter seems apparently impossible.

In order to overcome this di�culty two complementary strategies are usually considered.

A first one consists in restricting the parameter space by imposing additional conditions

suggested by models of new Physics. In this regard, a remarkable example of this ap-

proach is presented in the next Chapter, where we analyse in detail the SO(10)-inspired

model.

The second strategy imposes additional phenomenological constraints on the Seesaw

parameter space, adding on those already provided by the low energy neutrino experi-

ments and Leptogenesis. In this case, important examples falling within the models of

Physics beyond the SM involve lepton flavour violation processes, the study of electric

dipole moments and the attempts to explain Dark Matter with RH neutrinos [122–128].

There is however a further issue that should be addressed in order to safely explore the

Seesaw parameter space, as the predicted final B�L asymmetry could depend, on top of

these 18 parameters, on the details of the cosmological history. The initial abundances

of the heavy neutrinos and B � L asymmetry are in fact sensitive, in principle, to the

particular dynamics involved in the evolution of the Early Universe. It could be then

sustained that, in analogy to the case of BBN, imposing thermal initial conditions for the

85
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heavy neutrinos abundances would be enough to define a strong thermal Leptogenesis

scenario, in which the final B � L asymmetry can be calculated independently of a

detailed knowledge of the initial conditions and the many other possible cosmological

ongoing processes. As we will now show, unfortunately, this is not the case.

5.1 On the consequences of a preexisting asymmetry and

the importance of strong thermal Leptogenesis

Thermal scenarios, on one hand, indeed address the issues related to the initial abund-

ances of the heavy neutrinos. Assuming a thermal production of these particles would

e↵ectively explain their origin, provided the reheating temperature is high enough for

the neutrino Yukawa interactions to thermalise the relative abundances. On the other

hand, the problem related to a possible amount of B � L asymmetry present in our

Universe before the Leptogenesis era is still open. In this regard, for the high reheating

temperatures involved, there are many mechanisms which could generate a large B �L

asymmetry prior to the onset of Leptogenesis. Examples include the A✏eck-Dine mech-

anism, gravitational Baryogenesis and even the more traditional decays of the GUT

bosons [67, 111,129–132].

The important consequences that this preexisting asymmetry Npreex
B�L has on Leptogen-

esis follow from the linearity of the Boltzmann equations employed. At the end of the

Leptogenesis process, the final amount of B�L asymmetry Nf
B�L comprises in fact two

contributions:

Nf
B�L = N lept,f

B�L + Npreex,f
B�L . (5.1.1)

The first term is the product of the heavy neutrino decays, hence it is completely determ-

ined by the considered Leptogenesis process. The second term, di↵erently, represents

the residual amount of preexisting asymmetry. The washout performed by the inverse-

processes of the heavy neutrinos on Npreex
B�L can be quantified within every Leptogenesis

model, nevertheless a precise calculation of the initial abundance of preexisting asym-

metry is not viable, as it relies on an accurate description of the state of the Universe

after the Inflation era. The magnitude of Npreex,f
B�L is therefore unknown and, a priori,

there is no reason to exclude preexisting contributions large enough to dominate the

final B � L asymmetry and consequently the same baryon asymmetry of the Universe.

In this way, if the preexisting contribution is not addressed, the informations that BBN

and CMB provide cannot be used to constrain the Seesaw parameter space, as it is

not clear how to disentangle the two components in the final asymmetry. In this sense

Npreex
B�L thus represents an unknown and problematic initial condition for all the models

of Leptogenesis.

As anticipated, a possible solution to this problem is given by strong thermal Lepto-

genesis. In these scenarios the same processes of Leptogenesis wash out any possible
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preexisting contribution, in a way that after the Leptogenesis era the B�L asymmetry

is necessarily dominated by N lept,f
B�L . Strong thermal Leptogenesis thus ensures the inde-

pendence from possible preexisting asymmetries and the – unknown – initial conditions

therein encapsulated. Under these conditions the baryon asymmetry of the Universe is

therefore determined by Leptogenesis only, and the Cosmological measurements can be

safely used to constrain the parameter space of the associated model. In this way, on

more practical grounds, any kind of constraint that the strong thermal solution impose

on the considered scenario is certainly more solid.

5.2 A systematic study

Attracted by the features of strong thermal Leptogenesis, we seek a scenario where the

following strong condition is fulfilled

�

�

�

N lept,f
B�L

�

�

�

�
�

�

�

Npreex,f
B�L

�

�

�

(5.2.1)

without preventing successful Leptogenesis, realised for

N lept,f
B�L ⇥ 0.0096 = ⌘leptB ⇠ ⌘CMB

B = (6.19 ± 0.15)⇥ 10�10. (5.2.2)

As we will see, this check will not require an explicit calculation of N lept,f
B�L , hence we

focus here on the evolution of the preexisting asymmetry. As for this, to quantify the

strength of the washout imposed on the latter by the Leptogenesis process, we introduce

the washout parameter

w(z) :=
Npreex

B�L (z)

Npreex,0
B�L

(5.2.3)

where Npreex,0
B�L := Npreex

B�L (z = 0). The final value of the washout parameter, wf , is

then the crucial quantity which we aim to calculate in order to check whether the

condition (5.2.1) holds.

As an example, for a preexisting asymmetry Npreex,0
B�l ⇠ O(1) inherited from an A✏eck-

Dine scenario of Inflation [67], the independence of the initial conditions requires wf ⌧
10�8.

Considering unflavoured Leptogenesis scenarios, the calculation of the washout para-

meter is actually straightforward. For N
1

Leptogenesis, given the Boltzmann equations

reported below
d NN1

d z
= �D

1

(z)
⇣

NN1(z)�N eq
N1

(z)
⌘

(5.2.4)

d NB�L

d z
= ✏

1

D
1

(z)
⇣

NN1 �N eq
N1

⌘

�NB�L W ID
1

(z) (5.2.5)



88 Chapter 5 The problem of initial conditions in Leptogenesis

we obtain for the final B � L asymmetry – eq. (2.2.32):

Nf
B�L = Npreex,0

B�L e�
3⇡
8 K1 + "

1

f
1

. (5.2.6)

Hence, we have N lept,f
B�L = "

1

f
1

while wf = e�
3⇡
8 K1 and it enough to impose a strong

washout regime K
1

& 10 to ensure wf . 10�8 and therefore the washout of a preexisting

asymmetry of order O(1)1.

When flavour e↵ects are taken into account these conclusions change dramatically. In

[133] it was shown that a simple condition K
1

& 10 is not su�cient to guarantee the

complete washout of an O(1) preexisting asymmetry. This is possible only if M
1

⌧
109 GeV and if K

1↵ ⌘ p0
1↵ K

1

& 10 for all ↵ = e, µ, ⌧ , where we defined Ki↵ according

to eq. (3.2.44). Notice however that such a drastic condition is not compatible with

successful Leptogenesis: any asymmetry produced from the heavier neutrinos is washed

out together with the preexisting asymmetry and, at the same time, the CP -asymmetries

of N
1

are far too suppressed – cf. eq. (2.2.55). We consequently must extend our analysis

to more general cases where the assumption M
3

, M
2

� Ti � M
1

is relaxed and more

heavy neutrino species are involved. In order to pin down the conditions for successful

strong thermal Leptogenesis, assuming again hierarchical heavy neutrinos Mi>j > 3Mj ,

we follow the evolution of the preexisting asymmetry through the resulting multiple-

stage Leptogenesis process.

In this regard, notice that in order to account for the light and heavy neutrino flavour

e↵ects, we have to specialise the treatment of the heavy neutrinos dynamics depending

on the relevant fully flavoured regime. In our discussion we must therefore distinguish

between the possible mass patterns defined with respect to these regimes – Figure 4.1

– and the same heavy neutrino mass spectrum consequently plays a key role in the

analysis we present. This is the novelty of our work: a systematic study of the evolution

of Npreex
B�L for the many possible scenarios that the interplay between light and heavy

neutrino flavour e↵ects creates.

The preexisting asymmetry Npreex,0
B�L is generally shared not only between lepton doublets,

but also between the RH charged-leptons and quarks. Nevertheless, by assuming that

T < 1014 GeV throughout the analysis, the sphaleron processes are in equilibrium and

the asymmetries in the di↵erent species are related according to the conditions that we

presented in Section 2.2.0.1. In particular, the preexisting B � L asymmetry in then

related to the one in the lepton doublets by – cf. eq. (2.2.10)

N`
p

' �2

3
Npreex

B�L (5.2.7)

hence, assuming that only the heavy neutrino decays and inverse processes modify the

B � L asymmetry, any change in Npreex
B�L can only be triggered by a variation in N`

p

.

1In order to quantify the required w

f , in the present Chapter we will always refer to an abundance
of initial preexisting asymmetry as large as O(1).
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In analogy to the heavy neutrino flavour states, the leptons responsible for this preexist-

ing asymmetry can also be regarded as a coherent superposition of light flavour states:

|`pi :=
X

↵=e,µ,⌧

Cp↵ |`↵i , Cp↵ := h`↵|`pi (5.2.8)

|`pi :=
X

↵=e,µ,⌧

Cp↵ |`↵i , Cp↵ := h`↵|`pi . (5.2.9)

In general, C⇤
p↵ 6= Cp↵ and therefore the preexisting leptons |`pi and antileptons |`pi are

not CP -conjugated states. To simplify our analysis we will however impose C⇤
p↵ = Cp↵

2

and introduce, with clear meaning of the notation, the probabilities

pp↵ := |Ci↵|2 (5.2.10)

and

ppi := |h`i|`pi|2 =

�

�

�

�

�

X

↵=e,µ,⌧

C⇤
i↵Cp↵

�

�

�

�

�

2

(5.2.11)

respectively satisfying
X

↵=e,µ,⌧

pp↵ = 1 (5.2.12)

and

ppi + ppi?
p

= 1, i = 1, 2, 3. (5.2.13)

These sets of probabilities regulate the interplay between the preexisting leptons – and

antileptons –, the heavy neutrino flavour states and the light flavour ones. As mentioned

before, the preexisting leptons are in fact subject to the same flavour e↵ects that we

discussed in Chapter 3, the projection e↵ect and consecutive washout due to the heavy

neutrino inverse-decays in particular. Whether these processes will take place in a heavy

neutrino flavour, two-flavour or three-flavour regime is strictly controlled by the heavy

neutrino mass spectrum.

We start our discussion with the so-called heavy neutrino flavour scenario, where all the

three heavy neutrino masses satisfy the condition Mi > 1012 GeV and the three stages

of the Leptogenesis process therefore take place in the heavy neutrino flavour regime.

5.2.1 Heavy neutrino flavour scenario

The heavy neutrino mass pattern associated to this scenario is presented in Figure 5.1.

In this regime the relevant flavour directions are those associated to the heavy neau-

trino flavour states, since the charged-lepton Yukawa interactions are not fast enough

to e↵ectively measure the light flavour composition of the states involved. As a work-

ing hypothesis we assume an initial temperature Ti � M
3

, so that all the three heavy

2We will review this assumption when presenting our conclusions in Chapter 7, especially in connec-
tion to the phantom terms of Section 4.1 .
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Figure 5.1: The heavy neutrino mass pattern defining the heavy neutrino flavour
scenario.

neutrino species are e↵ectively thermalised and can washout the preexisting asymmetry.

Should we prove that some fraction of the preexisting asymmetry survives in this, most

conservative, case, then some – at least equal – part will necessarily survive also in heavy

neutrino flavour scenarios involving less neutrino species.

5.2.1.1 First stage: Ti > T �M
3

There are di↵erent stages in the evolution of Npreex
B�L (z). In the first one, for Ti > T �M

3

,

all the heavy neutrino processes are ine↵ective and the B�L asymmetry does not evolve.

The preexisting leptons and antileptons can then be regarded as coherent superpositions

of two flavour states: a component parallel to |`
3

i and an orthogonal one. Explicitly we

have

|`pi = Cp3 |`
3

i+ Cp3?
p

|`
3

?
p

i (5.2.14)

and clearly

pp3 + pp3?
p

= |Cp3|2 +
�

�

�

Cp3?
p

�

�

�

2

= 1. (5.2.15)

This decomposition is depicted in the upper-right panel of Figure 5.2, and a similar

analysis holds and is understood for the preexisting antileptons. In this regard, under

the given assumptions we have pp3 = pp3 and also pp3?
p

= pp3?
p

, hence the preexisting

B � L asymmetry can be decomposed as

Npreex,0
B�L = Npreex,0

�3
+ Npreex,0

�

3?
p

(5.2.16)

where we defined Npreex,0
�3

= pp3 Npreex,0
B�L and Npreex,0

�

3?
p

= (1� pp3) Npreex,0
B�L .
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Figure 5.2: The four stages of the heavy neutrino flavour scenario. In a first step,
for T � M

3

(a), the preexisting leptons are a coherent superposition of light
flavour states. When T ⇠ M

3

(b), the N
3

decays and inverse-processes break
the coherent evolution of |`pi that becomes an incoherent mixture comprising
an |`

3

i and an |`
3

?
p

i states. The ket notation represents here the direction of the

associated preexisting component in the flavour space. For T ⇠ M
2

(c), these
states are both re-projected with respect to the direction associated to the heavy
neutrino decay direction “2”. We indicate respectively with `preexi and `preex

i?
j

the preexisting leptons components of flavour compositions “i” and “j”that
contribute to the residual preexisting asymmetry and experienced a di↵erent
washout history. For example, `preexi is the component of `preex that underwent
a washout performed by the inverse-decays of Ni. In the same way `preex

1

?
2

is

the component of `preex that has been first measured along `
2

, underwent the
relevant washout, and finally has been measured on a direction orthogonal to
`
1

. This component will therefore escape the washout from the latter. In each
stage the red arrows indicate the components which are subject to a washout,
the yellow ones instead represent those left untouched. We remark that at any
stage components with a di↵erent washout history might be measured in the
same quantum state and therefore be projected on a common direction.
For T ⇠ M

1

(d), the |`
2

i and the orthogonal components are finally projected
along “1” and the relative orthogonal directions, identified by the states |`

1

i and
|`
1

?
i

i. This stage therefore comprises 8 contributions to the final asymmetry that
experienced di↵erent washout histories. Notice the yellow component which is
completely ‘unwashed’.
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5.2.1.2 Second stage: M
3

& T & TL3

We discuss now the second stage of the heavy neutrino flavour scenario, taking place

for M
3

& T & TL3, where TL3 ' M
3

/zL3 is the freeze-in temperature of the N
3

inverse

processes and zB3

= O(1� 10) is defined in eq. (2.2.43). The interaction of a quantum

lepton state |`pi with a Higgs doublet can be regarded, in a statistical picture, as a meas-

urement process. We thus have a probability pp3 that |`pi collapse on |`
3

i, producing

a N
3

in the inverse-decay, and a probability 1 � pp3 that the same state be measured

as |`
3

?pi. In the latter case no inverse-process occurs3. In this way, supposing a strong

washout regime, only the component Npreex,0
�3

of the preexisting B � L asymmetry is

erased, while the orthogonal component Npreex,0
�

3?
p

is left untouched – Figure 5.2 (b).

Beside the preexisting asymmetry, we should take also into account the B�L production

due to the states |`
3

i and |`
3

i arising from the CP -violating decays of the heaviest

neutrinos N
3

. Within the adopted classical description we can employ the Boltzmann

equations to describe the relevant dynamics. For the present stage these simply read –

cf. Section 3.1.2 –

d NN3

d z
3

= �D
3

(NN3 �N eq
N3

) (5.2.17)

d N
�3

d z
3

= "
3

D
3

(NN3 �N eq
N3

)�W
3

N
�3 (5.2.18)

d N
�

3?
p

d z
3

= 0. (5.2.19)

The evolution of the asymmetry produced from the heavy neutrino decays within the

heavy neutrino flavour regime has already been discussed in Section 3.1.2. As previously

mentioned, we focus here here only the dynamics involving the residual preexisting

asymmetry. After this stage, for T ⇠ TL3, the latter is then

Npreex
B�L (TL3) = Npreex,0

�3
e�

3⇡
8 K3 + Npreex,0

�

3?
p

= (5.2.20)

= pp3 Npreex,0
B�L e�

3⇡
8 K3 + (1� pp3) Npreex,0

B�L (5.2.21)

and the corresponding washout factor is therefore

w(TL3) = pp3 e�
3⇡
8 K3 + 1� pp3. (5.2.22)

Clearly no condition can be imposed on the Seesaw parameters in order to guarantee

an e�cient washout of the preexisting asymmetry characterised by a generic flavour

composition – pp3 6= 1. If we impose K
3

� 1, at the end of the present stage the lepton

doublets are an incoherent mixture of |`
3

i and |`
3

?
p

i states. Analogously the antileptons

3An analogous situation is presented by active-sterile neutrino oscillations when described in terms
of classical Boltzmann equations [134,135]. The orthogonal component plays here the role of the sterile
component.
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are an incoherent mixture of |`
3

i and |`
3

?
p

i and only the asymmetry in the components

along “3” is e�ciently washed out.

5.2.1.3 Third stage: TL3 & T & TL2

In the subsequent stage, for T ⇠M
2

the N
2

inverse processes are active. The quantum

states |`
3

i and the |`
3

?
p

i either collapse onto |`
2

i or on the orthogonal directions con-

taining |`
2

?
i

i, i = 3, p. We therefore perform exactly the same decomposition as in the

previous stage, writing the inherited residual preexisting asymmetry as the sum of two

terms

Npreex
B�L (TL3) = Npreex

�2
(TL3) + Npreex

�2?
(TL3) (5.2.23)

where

Npreex
�2

(TL3) = p
32

Npreex
�3

(TL3) + p
3

?
p

2

Npreex
�

3?
p

(TL3) = (5.2.24)

= p
32

pp3 Npreex,0
B�L e�

3⇡
8 K3 + p

3

?
p

2

(1� pp3) Npreex,0
B�L

and

Npreex
�2?

(TL3) = (1� p
32

) Npreex
�3

(TL3) + (1� p
3

?
p

2

) Npreex
�

3?
p

(TL3) = (5.2.25)

= (1� p
32

) pp3 Npreex,0
B�L e�

3⇡
8 K3 + (1� p

3

?
p

2

) (1� pp3) Npreex,0
B�L .

These are the two terms of the asymmetry that provide the initial conditions for the pro-

cesses involving N
2

. The relevant Boltzmann equations are obtained from the eq.s (5.2.18)

presented in the previous stage, by means of a simple replacement of the labels 3 ! 2.

Explicitly we have

d NN2

d z
2

= �D
2

(NN2 �N eq
N2

) (5.2.26)

d N
�2

d z
2

= "
2

D
2

(NN2 �N eq
N2

)�W
2

N
�2 (5.2.27)

d N
�2?

d z
2

= 0. (5.2.28)

and it is straightforward to give an expression for the residual preexisting asymmetry at

T ⇠ TL2:

Npreex
B�L (TL2) = Npreex

�2
(TL3) e�

3⇡
8 K2 + Npreex

�2?
(TL3). (5.2.29)
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Imposing now K
2

, K
3

& 10, we neglect all the terms which are exponentially suppressed,

hence4

Npreex
B�L (TL2) = Npreex

�

2?
3?

p

(TL3) (5.2.30)

and the washout factor reduces to

w(TL2) ' (1� p
3

?
p

2

) (1� pp3). (5.2.31)

This result shows that in general, even at this stage that comprises the washout pro-

cesses performed by two heavy neutrinos, no condition can be imposed on the Seesaw

parameters to guarantee an e�cient washout of a generic preexisting asymmetry.

5.2.1.4 Fourth stage: TL2 & T & TL1

The washout process from the lightest heavy neutrino species can now be calculated

along the same lines as above. At the end of the present stage, for T ⇠ TL1, the

asymmetry freezes-in at its final value, given by

Npreex
B�L (TL1) ⌘ Npreex,f

B�L = Npreex
�1

(TL2) e�
3⇡
8 K1 + Npreex

�1?
(TL1). (5.2.32)

By splitting the last term on the RHS of the previous equation into two components,

the residual preexisting asymmetry can now be written as

Npreex,f
B�L = Npreex,f

�1
(TL1) + Npreex,f

�

1?
2

(TL1) + Npreex,f
�

1?
2?

(TL1) (5.2.33)

and comprises eight di↵erent contributions. More in detail, the first term accounts

for the residual preexisting asymmetry found along the states of heavy neutrino decay

direction “1”

Npreex,f
�1

(TB1

) = Npreex,0
B�L

h

p
21

p
32

pp3 e�
3⇡
8 (K1+K2+K3) + (5.2.34)

+p
21

p
3

?
p

2

(1� pp3) e�
3⇡
8 (K1+K2) +

+p
2

?
3 1

(1� p
32

) pp3 e�
3⇡
8 (K1+K3) +

+p
2

?
3?
p

1

(1� p
3

?
p

2

) (1� pp3) e�
3⇡
8 K1

�

.

4Notice that the notation `

preex

x

?
y

?
indicates components obtained by projecting the preexisting quantum

state |`
p

i and |`
p

i first on a plane orthogonal to the flavour y, and then on the plane orthogonal to the
flavour x. Hence, with N

preex

�
x

?
y

?
we indicate the asymmetry stored in these states.
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The second term is the contribution brought by the |`
1

?
2
i leptons and the relative anti-

leptons, quantified in

Npreex,f
�

1?
2

(TB1

) = Npreex,0
B�L

h

(1� p
21

) p
32

pp3 e�
3⇡
8 (K2+K3) + (5.2.35)

+(1� p
21

) p
3

?
p

2

(1� pp3) e�
3⇡
8 K2

i

.

Finally, the third contribution arising from the lepton states |`
1

?
2?
i and the associated

antileptons, is given by

Npreex,f
�

1?
2?

(TB1

) = Npreex,0
B�L

h

(1� p
2

?
3 1

) (1� p
32

) pp3 e�
3⇡
8 K3 + (5.2.36)

+(1� p
2

?
3?
p

1

) (1� p
3

?
p

2

) (1� pp3)

�

.

This is our final result for the residual value of the preexisting asymmetry. Of the repor-

ted eight terms, seven undergo at least one washout process resulting in an exponential

suppression and only one component escapes the washout of the three heavy neutrinos.

Imposing K
1

, K
2

, K
3

& 10 therefore erases seven contributions and the final value of

the washout factor is then dominated by the remaining one, left completely unwashed.

Explicitly we have

wf ' (1� p
2

?
3?
p

1

) (1� p
3

?
p

2

) (1� pp3). (5.2.37)

It is clear that, barring very special situations, the washout of a preexisting asymmetry

cannot be enforced in the considered scenario. These special situations are realised either

when the preexisting leptons and antileptons lie along the decay direction of the heaviest

neutrino – pp3 = 1 – or when the heavy neutrino flavour states form an orthonormal basis

– in which case, necessarily p
3

?
2?
p

1

= 1. The latter configuration corresponds to a special

Dirac mass matrix obtained by an orthogonal matrix ⌦ – eq. (2.2.48) that is either the

identity or one of its permutations. These special forms correspond to so called form

dominance models [136] and are enforced typically by discrete flavour symmetries, such

as A4 [137], invoked in order to reproduce the tri-bimaximal mixing [138]. However,

notice that in the limit of exact form dominance, the total [139] and the flavour CP -

asymmetries vanish [140] and deviations from the orthogonality condition are therefore

necessary. In models employing discrete symmetries, for example, this deviation has to

be of the order of the symmetry breaking parameter ⇠ ⇠ 10�2 to generate the correct

B � L asymmetry. Nevertheless, the same small deviations yields wf ⇠ ⇠ in our case,

which still is not su�cient to guarantee an e�cient washout of an asymmetry as large

as O(1).
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5.2.2 Light flavour scenarios

In this Section we consider heavy neutrino mass patterns in which at least one Mi

is below 1012 GeV. The preexisting lepton states |`pi and |`pi are therefore partially

or fully projected on the light flavour basis, depending on whether the Ni decays and

inverse-processes are active in a two or three-flavour regime.

5.2.2.1 Two-flavour scenarios

We start by analysing the three mass patterns obtained for M
1

� 109 GeV, reported in

Figure 5.3, where only the ⌧ component is ‘measured’ through the tau charged-lepton

Yukawa interactions.

Figure 5.3: The three mass patterns of the two-flavour scenarios, where at least
for one heavy neutrino 109 GeV < Mi < 1012 GeV.

• Pattern I: M2,M3 � 1012 GeV

The first case we consider presents the two heaviest neutrinos with masses M
2

, M
3

�
1012 GeV, while the mass of the lightest heavy neutrino satisfies 1012 GeV�M

1

�
109 GeV. The evolution of the residual preexisting asymmetry, Npreex

B�L , proceeds

here through the same steps which we discussed in the heavy neutrino flavour scen-

ario until the end of the N
2

washout, for T ⇠ TL2. At that stage the asymmetry is

given by eq. (5.2.29) and by supposing that K
3

> 10 we can safely neglect the terms

suppressed by the associated exponential factor. An important di↵erence arises

now between the two scenarios. In the light flavour case we are considering, before

the onset of the N
1

washout processes, the tau charged-lepton interactions enter

equilibrium. The ⌧ component of the involved quantum states are consequently

‘measured’ and the resulting incoherent mixture therefore comprises components

along the following three states: |`⌧ i, the projection of |`
2

i on the plane orthogonal

to ⌧ |`⌧?
2
i, and |`⌧?

2?
i, resulting from the projection of the remaining preexisting
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leptons on the ⌧? plane5. The residual value of the preexisting asymmetry can

then be decomposed accordingly:

Npreex
B�L (1012 GeV� T �M

1

) = Npreex
�

⌧

+ Npreex
�

⌧

?
2

+ Npreex
�

⌧

?
2?

(5.2.38)

where

Npreex
�

⌧

= p
2⌧ Npreex

�2
(TL3) e�

3⇡
8 K2 + p

2

?⌧ Npreex
�2?

(TL3) (5.2.39)

Npreex
�

⌧

?
2

= (1� p
2⌧ ) Npreex

�2
(TL3) e�

3⇡
8 K2

Npreex
�

⌧

?
2?

= (1� p
2

?⌧ ) Npreex
�2?

(TL3). (5.2.40)

The N
1

washout processes act then on the preexisting asymmetry and, in this

regard, we must distinguish between the washout acting along the ⌧ direction,

controlled by K
1⌧ ⌘ p0

1⌧ K
1

– cf eq. (3.2.44) – and the one acting on Npreex
�

⌧

?
1

,

regulated by K
1⌧? := (1 � p0

1⌧ ) K
1

. At the end of this stage, for T ⇠ TL1, Npreex
�

⌧

is therefore given by

Npreex
�⌧ (TL1) =

h

p
2⌧ Npreex

�2
(TL3) e�

3⇡
8 K2 + p

2

?⌧ Npreex
�2?

(TL3)
i

e�
3⇡
8 K1⌧ (5.2.41)

and by imposing K
1⌧ & 10 this component is completely washed out. In the same

way, for K
2

& 10, the washout of Npreex
�

⌧

?
2

is also enforced. The contribution Npreex
�

⌧

?
2?

is not modified by either of the above conditions and is to be now decomposed as

the sum of two terms: Npreex
�

⌧

?
1

, accounting for the asymmetry stored in the states

resulting from the projection of |`⌧?
2?
i on the direction delineated by |`⌧?

1
i, and

Npreex
�

⌧

?
1?

, due to the states orthogonal both to |`
1

i and to |`⌧ i. The first term is

then exponentially washed out by N
1

inverse processes

Npreex
�

⌧

?
1

(TL1) = p⌧?
2?⌧

?
1

(1� p
2

?⌧ ) Npreex
�2?

(TL3) e�
3⇡
8 (K1�K1⌧ ) (5.2.42)

while the second one is not:

Npreex
�

⌧

?
1?

(TL1) = (1� p⌧?
2?⌧

?
1

) (1� p
2

?⌧ ) Npreex
�2?

(TL3). (5.2.43)

Employing now eq. (5.2.25) for an explicit expression of Npreex
�2?

(TL3), it is clear

that also in the limit K
3

> 10 there is still a completely unwashed term, generated

by the preexisting states orthogonal to the heavy neutrino decay direction “3”. In

5In principle for these states we should distinguish between the preexisting leptons, `

preex

⌧

?
2?
3?
p

, and `

preex

⌧

?
2?3

,

anyway the strong washout regime we imposed for the dynamics of N3 already erased the asymmetry
associated to the latter and we can safely disregard its further evolution.
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detail

Npreex
�

⌧

?
1?

(TL1) = (1� p⌧?
2?⌧

?
1

) (1� p
2

?⌧ ) (1� p
3

?
p

2

) (1� pp3) Npreex,0
B�L (5.2.44)

and it follows that, even by imposing K
1⌧ , K2

, K
3

, (K
1

�K
1⌧ ) & 10, it is

wf ' (1� p⌧?
2?⌧

?
1

) (1� p
2

?⌧ ) (1� p
3

?
p

2

) (1� pp3). (5.2.45)

Consequently, in this scenario, there is no e�cient washout of the preexisting

asymmetry which is a↵ected here only by the reduction resulting from the proposed

geometrical projections. It is therefore clear that, also in the present case, a sensible

fraction of a large preexisting asymmetry escapes the washout performed by the

three heavy neutrinos inverse-processes. The fundamental stages of our analysis

are summarised in Figure 5.4.
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Figure 5.4: The three main steps for the evolution of the residual preexisting
asymmetry in the two-flavour scenario characterised by M

2

, M
3

� 1012 GeV
and 1012 GeV �M

1

� 109 GeV.
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• Pattern II: M3 � 1012 GeV �M2 �M1 � 109 GeV

It is straightforward to extend the result in eq. (5.2.45) to a scenario where M
3

�
1012 GeV � M

2

� M
1

� 109 GeV. The derivation of the washout factor is in

fact slightly di↵erent from the one in the previous case.

As before, we impose the condition K
3

& 10 to washout at T ⇠M
3

the component

Npreex
�3

= pp3 Npreex,0
B�L . At T ⇠ 1012 GeV then, the lepton quantum states become

an incoherent mixture of a ⌧ component and of a ⌧? one. The condition K
1⌧ +

K
2⌧ & 10 hence clearly guarantees the washout of the asymmetry due to the

former. For T ⇠ M
2

, the preexisting quantum states orthogonal to ⌧ are then to

be regarded as an incoherent mixture composed by |`⌧?
2
i, lying along the projection

of the heavy neutrino decay direction “2” on the ⌧? plane, and by |`⌧?
2?
i, which

instead represent the projection of the states orthogonal to the heavy neutrino

decay direction “2” on the considered plane. The condition K
2⌧? := K

2e + K
2µ &

10 thus guarantees the washout of the preexisting asymmetry component stored in

the former, but does not a↵ect the one due to the latter. Finally, in the last stage

for T ⇠ M
1

, the surviving components of the preexisting leptons and antileptons

are projected with respect to the direction ⌧?
1

that the decay direction of N
1

defines. The resulting incoherent mixtures therefore comprise components along

the states |`⌧?
1
i and |`⌧?

1?
i, and imposing K

1⌧? := K
1e + K

1µ & 10 only the

washout of the asymmetry along the former is enforced. Consequently, at the end

of the Leptogenesis process there will still be a completely unwashed fraction of

the preexisting asymmetry given by

Npreex,f
B�L ' (1� p⌧?

2?⌧
?
1

) (1� p⌧?
3?⌧

?
2

) (1� p⌧?
3?

) (1� pp3) Npreex,0
B�L (5.2.46)

showing that, also in this scenario, the washout of Npreex,0
B�L is not complete.

• Pattern III: 1012 GeV �M3 �M2 �M1 � 109 GeV

In this last scenario, characterised by 1012 GeV � M
3

� M
2

� M
1

� 109 GeV,

the result for the final washout factor is a straightforward generalisation of the two

previous cases. We can directly write our final result as

wf ' (1� p⌧?
2?⌧

?
1

) (1� p⌧?
3?⌧

?
2

) (1� p⌧?
p

⌧?
3

) (1� pp⌧ ) (5.2.47)

proving that in general, also in this case, Npreex,0
B�L cannot be completely washed

out.

We can conclude, therefore, that for all the mass patterns with M
1

� 109 GeV it

is not possible to enforce an e�cient washout of a large preexisting asymmetry.
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5.2.2.2 Three-flavour scenarios

We discuss now the mass patterns where at least one Mi ⌧ 109 GeV, sketched in

Figure 5.5.

Figure 5.5: The six possible mass patterns with M
1

⌧ 109 GeV. Only the second
and the third configurations allow for successful strong thermal Leptogenesis.

It is clear, from our previous discussions, that in all the proposed cases it is always

possible to enforce here a strong washout of the preexisting asymmetry by imposing

K
1e, K1µ, K

1⌧ & 10 [133]. In fact, for T ⇠ TL2 when the N
2

inverse-processes that drive

the washout freeze-out, the residual value of the preexisting asymmetry is given by

Npreex
B�L (T ⇠ TL2). Consequently, for T ⇠M

1

⌧ 109 GeV and irrespectively of the value

of TL2, this asymmetry is re-distributed on the light flavour states that constitute the

incoherent mixture of the three-flavour regime. The N
1

washout will then act separately

on each flavour contribution Npreex
�

↵

, ↵ = e, µ, ⌧ , and the final value of the residual

preexisting asymmetry is therefore given by

Npreex,f
B�L =

X

↵=e,µ,⌧

Npreex
�

↵

e�
3⇡
8 K

↵ . (5.2.48)

Consequently, the condition K
1e, K1µ, K

1⌧ & 10 always ensures a su�ciently strong

washout also for a large preexisting asymmetry – wf . 10�8. Yet, notice that such a

strong condition would also washout the contribution N lept,f
B�L produced from the decays

of the heaviest neutrino species. Furthermore, for M
1

⌧ 109 GeV, the CP -asymmetries
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of N
1

are too suppressed to guarantee the production of a BAU compatible with the

Cosmological observations – cf. eq. (2.2.55) –, hence we conclude that the proposed

condition is incompatible with successful Leptogenesis 6.

We have then to find a weaker condition, for which simultaneously wf . 10�8 and

N lept,f
B�L ⇠ 10�7, so that successful strong thermal Leptogenesis is allowed. Clearly at

least in one flavour it must therefore be K
1↵ . 1 and the washout of the preexisting

asymmetry stored in this flavour is then to be carried out by the heaviest neutrinos.

Notice that, consequently, the decays of these neutrino species will necessary produce

an asymmetry N lept,f
B�L stored in the same flavour ↵.

• A first attempt: M3,M2 � 1012 GeV

Our first attempt is focused on a mass pattern where M
3

, M
2

� 1012 GeV. For

T ⇠ TL2 the residual value of the preexisting asymmetry is given by the eq. (5.2.29).

Hence, imposing K
2

& 10, only the contribution from the components orthogonal

to the |`
2

i and |`
2

i states survives – the second term on the RHS of eq. (5.2.29). The

asymmetry produced from the N
2

decays at T ⇠ TL2 is, by definition, contained

on the direction associated to the decays of this heavy neutrino species, hence

N lept
B�L(TL2) = N lept

�2
(TL2). (5.2.49)

For T ⇠ 1012 GeV, all the involved quantum states become an incoherent mix-

ture of a ⌧ component and of a ⌧? one. Below T ⇠ 109 GeV the contributions

to the final asymmetry that come from states orthogonal to ⌧ , comprising both

the residual preexisting asymmetry and the one produced by heavy neutrino de-

cays are further reprocessed. As the µ Yukawa interactions are fast enough to

break the coherence of the heavy neutrino flavour states, these asymmetries are

re-distributed to an incoherent mixture of muon and electron components. There-

fore, there is a residual fraction of the preexisting asymmetry in each light flavour

and consequently it is impossible to impose a condition for which all the residual

preexisting asymmetry is washed out and, at the same time, the contribution due

to the heavy neutrino decays is maintained.

5.3 The ⌧ N2-dominated scenario

We consider finally a scenario with M
1

⌧ 109 GeV and 1012 GeV � M
2

� 109 GeV.

As usual, for T ⇠ M
2

the lepton and antilepton states are to be described as an in-

coherent mixture of a ⌧ and ⌧? components. We again impose K
2⌧ & 10, in a way

6There is a loophole. In [107] it was shown that the flavour CP -asymmetries contain a term that
is not upper bounded if strong cancellations in the light neutrino masses from the seesaw formula are
allowed. In these particular situations successful Leptogenesis from the N1 decays is then possible for
M1 ⌧ 109 GeV.
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that any residual preexisting asymmetry . O(1) in the tau flavour is completely washed

out. Di↵erently from before, in the present two-flavour regime where the dynamics of

N
2

takes place, a part of B � L asymmetry su�cient to have successful Leptogenesis is

now produced by the out-of-equilibrium decays in the tau flavour. Then, by imposing

K
1e, K1µ & 10 we get rid of the preexisting asymmetry also along the remaining light

flavour directions and therefore we have finally pinned down a configuration in which

successful strong thermal Leptogenesis is allowed, defining the ⌧ N
2

-dominated scenario.

Notice that successful Leptogenesis requires "
2⌧ ⇠ 10�6 so that, eventually – Sec-

tion 3.2.1.1

⌘B ⇠ "
2⌧ (K

2⌧ ) ⇠ 10�9. (5.3.1)

In this regard, we remark that in the ⌧ N
2

-dominated scenario the presence of a third

heavy neutrino species, N
3

, is necessary for "
2⌧ not to be suppressed as – cf. eq. (3.2.31)

"
2⌧ / M

1

M
2

⇥ 10�6

M
1

1010 GeV
. (5.3.2)

We also underline that there cannot be a scenario of successful strong thermal Lepto-

genesis where the final asymmetry is dominantly in the electron or in the muon flavour.

Suppose, in fact, that we imposed K
2e+K

2µ & 10 so that all the preexisting asymmetry

in the ⌧?
2

component was washed out at T ⇠ M
2

. Suppose also that, afterwards, a

su�ciently high B � L asymmetry was generated in the same ⌧?
2

component by the

out-of-equilibrium decays of N
2

at T ⇠ TL2. Hence, we would have a ⌧?
2

? component,

Npreex
�

⌧

?
2?

(TL2), that escapes the washout. Indeed, for T ⌧ 109 GeV, the lepton quantum

states would become an incoherent mixture of electron and muon components and if we

imposed K
1⌧+K

2⌧ & 10 we could washout e�ciently the residual preexisting asymmetry

in the tau flavour. However, either K
1e or K

1µ have now to necessarily satisfy K
1� . 1,

otherwise also N lept
B�L would be washed out. Suppose then K

1e . 1, consequently there

would still be a residual value of the preexisting asymmetry in the electron flavour given

by

Npreex,f
�

e

= p⌧?
2?e Npreex

�

⌧

?
2?

(TL2) (5.3.3)

that cannot be washed out. Clearly the same would happen if we were to choose K
1µ . 1

instead of K
1e . 1.

This being said, notice that for the mass pattern presenting both M
2

and M
3

in the

range (109 – 1012) GeV, things work exactly as for the ⌧ N
2

-dominated scenario. In

this case, in fact, the less restrictive condition K
2⌧ + K

3⌧ & 10 can be imposed in order

to washout the preexisting asymmetry stored in the tau flavour. A ⌧ N
3

-dominated

scenario is also in principle possible if K
3⌧ & 10 and K

2⌧ . 1, however the maximal

value of "
3⌧ is suppressed as / M

2

/M
3

with respect to "
2⌧ . Therefore, the asymmetry

produced from N
2

decays tends to be larger, both for the lower washout and the much
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larger CP -asymmetry. Still this possibility can be realised for a very fine tuned choice

of the Seesaw parameters and, in any case, only for a not too strong hierarchy between

M
2

and M
3

. For the same reasons the mass patterns presenting M
2

⌧ 109 GeV and

M
3

� 109 GeV do not lead to successful Leptogenesis.

We have finally shown that, assuming three hierarchical heavy neutrino species within

a framework involving only one Higgs doublet and neglecting the e↵ects due to the light

flavour coupling, the only possible scenario which allows for successful strong thermal

Leptogenesis is the ⌧ N
2

-dominated scenario. In this configuration, obtained for M
1

⌧
109 GeV and 1012 GeV� M

2

� 109 GeV, the final B � L asymmetry is dominantly

produced in the ⌧ flavour and the washout procedure of the preexisting asymmetry

Npreex
B�L follows the lines depicted in Figure 5.6.
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Figure 5.6: The ⌧ N
2

-dominated scenario: the evolution of the preexisting asym-
metry.
As in the previous Figures, the red arrows represent components that are un-
dergoing a washout process. The yellow arrows, instead, are reserved for the
components that escape the latter and in particular track the lepton states car-
rying an unwashed fraction of the preexisting asymmetry. Notice that no yellow
arrow is present after the final N

1

washout stage, for T ⇠M
1

. This is the only
configuration for which successful strong thermal Leptogenesis is possible.





Chapter 6

The SO(10)-inspired model of

Leptogenesis and its predictions

In this Chapter we introduce the SO(10)-inspired model of Leptogenesis [79, 141–144]

and discuss the resulting scenario accounting for light and heavy neutrino flavour ef-

fects and considering the impact of a potential preexisting asymmetry. After reviewing

the hypothesis which are beyond the definition of the model, we will detail the steps

that the Leptogenesis process here comprises. The novelty of our work [3,145,146] is in

the consequent study of the compatibility between the proposed model and the strong

Leptogenesis condition. In particular, as clear from the treatment of the preexisting

asymmetry exposed in the previous Chapter, it is our aim to investigate whether the

restrictive requirements defining the ⌧ N
2

-dominated scenario are satisfied within the

SO(10)-inspired model of Leptogenesis. Our analysis will therefore highlight the regions

in the parameter space associated to the model where successful strong thermal Lepto-

genesis is realised, identifying in this way a class of solutions for which the dependence

on the initial conditions is negligible. The result is indeed intriguing: adopting these

strong solutions of the SO(10)-inspired model delivers sharp predictions on the same

low energy neutrino parameters that experiments currently aim to measure.

6.1 The SO(10)-inspired model

We begin our review of the SO(10)-inspired model by introducing the parameters that

this scenario involves. The Seesaw mechanism we adopt is the minimalistic type I already

introduced in Chapter 2, relying on three RH neutrino species. The Lagrangian behind

our model, once written on a basis where the matrices of the charged-lepton Yukawa

105
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couplings and the heavy neutrino Majorana masses are diagonal, therefore reads:

L = LSM + LSeesaw � i
3

X

i=1

NiR @µ �µ NiR �
X

↵=e,µ,⌧

(Dy)↵ `↵L l�R �+

�
X

↵=e,µ,⌧
i=1,2,3

h↵i `↵L NiR �̃� 1

2

X

i=1,2,3

N c
iR (DM )i NiR + H.c. (6.1.1)

where NiR = PR Ni and the helicity projectors are defined according to eq. (2.2.1).

The Seesaw mechanism provides the following light neutrino mass matrix – eq. (2.1.10)

m⌫ := �mD D�1

M (mD)T (6.1.2)

which, for the basis we chose, is here diagonalised by the same PMNS mixing matrix

introduced in Section 1.1.2.1:

U †m⌫U
⇤ =: �Dm

⌫

. (6.1.3)

In its usual parametrisation the matrix U depends on three mixing angles, ✓ij , two

Majorana phases ⇢ and � and one Dirac phase �. Explicitly we have

U :=
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(6.1.4)

and

U :=

0

B

B

@

s
13

e�i� c
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(6.1.5)

where sij and cij indicate sines and cosines of the mixing angles and we distinguished

between the two configurations that neutrino oscillation experiments allow for the light

neutrino mass spectrum encoded in Dm
⌫

: normal ordering (NO) and inverted ordering

(IO). Adopting the convention m
1

< m
2

< m
3

for the eigenvalues of Dm
⌫

and by defining

msol :=
q

�m2

sol ' (0.00875 ± 0.00012) eV (6.1.6)

and

matm :=
q

�m2

sol + �m2

atm ' (0.050 ± 0.001) eV (6.1.7)
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results in the following possible light neutrino mass patterns –Figure 1.1:

m
1

, m
2

=
q

m2

1

+ m2

sol, m
3

=
q

m2

1

+ m2

atm (NO)

m
1

, m
2

=
q

m2

1

+ m2

atm �m2

sol, m
3

=
q

m2

1

+ m2

atm (IO). (6.1.8)

In order to specify the assumptions which define the SO(10)-inspired model, we consider

now the di↵erent relations that exist between the parameters introduced above. In

particular, by inverting the eq. (6.1.3) end employing the Seesaw formula (6.1.2) we

obtain

D�1

m
D

VLUDm
⌫

UTV T
L D�1

m
D

= URD�1

M UT
R (6.1.9)

where the following bi-unitary decomposition was considered for mD:

mD = V †
LDm

D

UR. (6.1.10)

We underline the importance of eq. (6.1.9), which connects the high energy parameters

describing the RH neutrinos, presented on the RHS, to the low energy ones on the

left-hand side. By defining now [79]

M�1 := URD�1

M UT
R (6.1.11)

it follows that

M�1

�

M�1

�†
= URD�2

M U †
R (6.1.12)

and therefore through the relation (6.1.9) we can also determine unambiguously the

heavy neutrino mass spectrum and the matrix UR
1.

As a result of the proposed exercise in the Seesaw algebra, we can parametrize the 18

new quantities that the Lagrangian (6.1.1) yields in the following way:

• 3 Dirac masses in Dm
D

• 3 mixing angles and 3 phases in the unitary matrix VL

• 3 mixing angles and 3 phases in the leptonic mixing matrix U

• 3 light neutrino masses in Dm
⌫

.

Despite the neutrino oscillation experiments and the e↵orts in pinning down the neutrino

absolute mass scale provide some informations on U and Dm
⌫

, performing a complete

test of the Seesaw parameter space clearly requires further constraints. In this regard,

owing to the adopted parametrization, we are free to impose additional requirements

on the matrix VL and the masses in Dm
D

which will implicitly define our model. Our

1The details regarding the precise determination of the phases in U

R

are discussed in [143].
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choice is the SO(10)-inspired relations [79, 141,144].

In these scenarios, which draw from the spirit of SO(10) GUT theories, the matrix VL

would play the same role as the CKM matrix of the quark sector, if we had no Seesaw

mechanism. Within SO(10)-inspired models the mixing angles in the former thus are

limited according to the range of their counterparts in the latter:

✓Lij ' ✓CKM
ij . (6.1.13)

We remark that, in the present scheme, the large mixing angles that neutrino experi-

ments detect are therefore to be interpreted as an e↵ective consequence of the Seesaw

mechanism.

The second constraint we impose regards the Dirac masses of neutrinos. In particular

we parametrize the eigenvalues �i of mD according to

�
1

:= ↵
1

mu, �
2

:= ↵
2

mc, �
3

:= ↵
3

mt (6.1.14)

where mu, mc and mt are, respectively, the masses of the up, charm and top quarks. For

the similarity between neutrinos and the up-type quarks that SO(10) GUT scenarios

propose we then expect ↵i ⇠ O(1) and replace the Dirac masses with these quantities

in our parametrization of the model.

The assumptions in eq.s (6.1.13) and (6.1.14) constitute the framework of our SO(10)-

inspired model. Of the 18 original parameter, beside the 6 phases which are limited

to their natural intervals, the proposed conditions constrain 5 masses and the 6 mixing

angles. On top of that we have the informations on the baryon asymmetry of the

Universe and, in this regard, as we will see in the next Section for the characteristic of

the Leptogenesis process ↵
1

and ↵
3

will also decouple from our analyses.

6.1.1 The Leptogenesis process

Through the Seesaw formula (6.1.2) the mass hierarchy of the quark sector is transferred

to the heavy neutrinos. If we exclude particular choices of parameters which result in a

degenerate mass spectrum, the heavy neutrino masses obey the relation [141]

M
1

: M
2

: M
3

= (↵
1

mu)
2 : (↵

2

mc)
2 : (↵

3

mt)
2 . (6.1.15)

By means of the SO(10)-inspired condition ↵i ⇠ O(1) we therefore have

M
1

⌧ 109 GeV . M
2

. 1012 GeV⌧M
3

(6.1.16)

and the B�L asymmetry production is generally dominated by the next-to-the-lightest

of the heavy neutrinos. In other words, the natural Leptogenesis scenario emerging from
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SO(10)-inspired conditions is N
2

-dominated. In our analysis we will focus on strongly

hierarchical solutions, characterised by Mi > 10 Mj<i. As long as the condition (6.1.16)

holds, we can therefore neglect the contributions to the generated asymmetry, N lept
B�L,

brought by the out-of-equilibrium decays of N
1

and N
3

. The former neutrino species is in

fact too light for the associated CP -asymmetries to be sizeable, whereas the contribution

of the latter is suppressed by the strong mass hierarchy imposed. Under these conditions,

it turns out that the values of ↵
1

and ↵
3

are actually irrelevant to the Leptogenesis

process2, which proceeds as detailed below.

Due to the hierarchy imposed on the heavy neutrinos, the Leptogenesis era is e↵ectively

composed by separated stages. As usual we neglect many complications by considering

only the picture that decays and inverse-decays provide. Furthermore we address all

flavour e↵ects only in the fully flavoured regimes presented in Chapter 3, where the

classic description provided by the Boltzmann equations is a good approximation. Under

our working assumptions, the impact of N
3

Leptogenesis is absolutely negligible. The

presence of a third heavy neutrino species in the model, in fact, is only required for "
2

not to be suppressed as explained in the previous Chapter. The Leptogenesis process

therefore comprises only two e↵ective stages:

• Stage I: N2 Leptogenesis.

This first e↵ective stage takes place for T ⇠ M
2

, when the processes of N
2

are

active. In the present two-flavour regime the ⌧ components of the involved heavy

neutrino flavour states are measured, hence the Boltzmann equations describing

the evolution of the resulting incoherent mixture are

d NN2

d z
= �D

2

(z)
⇣

NN2(z)�N eq
N2

(z)
⌘

, i = 1, 2, 3 (6.1.17)

and

d N
�

⌧

d z
= "

2⌧ D
2

(z)
⇣

NN2(z)�N eq
N2

(z)
⌘

� p0
2⌧ W ID

2

(z)N
�⌧ (6.1.18)

d N
�

⌧

?
2

d z
= "

2⌧?
2

D
2

(z)
⇣

NN2(z)�N eq
N2

(z)
⌘

� p0
2⌧?

2
W ID

2

(z)N
�⌧?

2
. (6.1.19)

In analogy to eq. (3.2.50) we can consequently write the generated B�L asymmetry

as

N lept
B�L(T ⇠M

2

/zL2) ' "
2⌧2

(K
2

, p0
2⌧ ) + "

2⌧?
2


2

(K
2

, p0
2⌧?

2
) (6.1.20)

where, for the considered thermal scenario, the e�ciency factor 
2

(K
2

, p0
2�), � =

⌧, ⌧?
2

comprise two contributions


2

(K
2

, p0
2�) = f�

2

(K
2

, p0
2�) + f+

2

(K
2

, p0
2�) (6.1.21)

2Equation (6.1.16) holds for a broad range of values of ↵

i

s, provided that ↵1 be not as large as
required to push M1 & 109 GeV and achieve successful N1 Leptogenesis.
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previously introduced in eq.s (3.2.42) and (3.2.43).

• Stage II: the N1 washout.

As a consequence of the hierarchical heavy neutrino mass spectrum, eq. (6.1.20)

e↵ectively describes the B � L asymmetry until T ⇠ M
1

, when the N
1

processes

become active and the second Leptogenesis stage begins. As mentioned before we

can safely neglect the N
1

asymmetry production, as M
1

⌧ 109 GeV. Nevertheless,

the washout processes driven by the N
1

inverse-decays cannot be neglected. For

T ⇠ 109 GeV the quantum coherence of the states |`⌧?
2
i and |`⌧?

2
i is broken by

the µ Yukawa interactions. The washout process is therefore performed in a three-

flavour regime, where the involved states are fully projected on the light flavour

basis. The final B � L asymmetry is then given by a sum of three flavoured

contributions N lept,f
�

↵

:

N lept,f
B�L =

X

↵=e,µ,⌧

N lept,f
�

↵

=

=
p0
2e

p0
2⌧?

2

"
2⌧?

2

2

(K
2

, p0
2⌧?

2
)e�

3⇡
8 K1e+

+
p0
2µ

p0
2⌧?

2

"
2⌧?

2

2

(K
2

, p0
2⌧?

2
)e�

3⇡
8 K1µ+

+ "
2⌧(K

2

, p0
2⌧ )e

� 3⇡
8 K1⌧ . (6.1.22)

From our previous discussion it is clear that successful Leptogenesis can only be achieved

in the SO(10)-inspired model when, at least for one flavour, K
1↵ . 1. As we will

explicitly show in the next Section, in concordance to previous analyses [142, 143], this

regions delineate a well-defined subspace in the parameter space of the model. If, as we

hope, the same subspace is then further refined by the strong Leptogenesis condition we

are going to investigate, the predictions of the SO(10)-inspired model will consequently

become even sharper.

6.1.2 The washout factor

In the previous Section we addressed the evolution of the asymmetry that the out-

of-equilibrium decays of N
2

generate. We can therefore focus now on the preexisting

component Npreex
B�L and on the strong Leptogenesis condition which ensures its complete

washout. Our analysis [2] already pointed out that, considering light and heavy neutrino

flavour e↵ects as well as hierarchical heavy neutrinos, only the setup corresponding to

the ⌧ N
2

-dominated scenario is able to guarantee successful and strong Leptogenesis

at the same time. Hence, although the SO(10)-inspired model naturally proposes a

N
2

-dominated scenario, we still have to verify whether the restrictive conditions on

the flavoured decay parameters which define the ⌧ N
2

-dominated scenario are satisfied.
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Proceeding along the same lines as before, we introduce the washout parameter w(T ),

such that

Npreex
B�L (T ) = w(T )Npreex,0

B�L (6.1.23)

and follow the evolution of Npreex
B�L step-by-step to quantify the final value wf of w(T ).

• Stage 1: T > 1012 GeV

Given the initial amount of preexisting asymmetry Npreex,0
B�L , the first step in the

evolution of this component takes place for T ⇠ M
3

, when the processes of N
3

Leptogenesis are active. Barring specific flavour configurations, within the present

framework the N
3

processes have only a little impact on the evolution of the

preexisting asymmetry and therefore can be safely neglected. In this way we can

assume that

Npreex
B�L (TL3) = Npreex,0

B�L (6.1.24)

where we defined TL3 := M
3

/zL3, denoting the freeze-in temperature for the N
3

processes.

• Stage 2: 1012 GeV > T > 109 GeV

The preexisting asymmetry starts e↵ectively to evolve only when T ⇠M
2

and the

processes of N
2

are active. We remark that in the SO(10)-inspired model the mass

of the next-to-the-lightest heavy neutrino respects the condition 109 GeV < M
2

<

1012 GeV, implying that N
2

Leptogenesis takes place in a two-flavour regime.

Therefore, we decompose Npreex
B�L into the flavoured asymmetries corresponding to

the components resulting from the action of the relevant Yukawa interactions [2].

Explicitly we have

Npreex
B�L (T ⇠M

2

) = Npreex
�

⌧

(T ⇠M
2

) + Npreex
�

⌧

?2
(T ⇠M

2

) + Npreex
�

⌧

?
2?

(T ⇠M
2

)

(6.1.25)

where

Npreex
�

⌧

= pp⌧N
preex,0
B�L (6.1.26)

Npreex
�

⌧

?2
= pp⌧?

2
(1� pp⌧ )N

preex,0
B�L (6.1.27)

Npreex
�

⌧

?2⌧
= (1� pp⌧?

2
)(1� pp⌧ )N

preex,0
B�L . (6.1.28)

After the N
2

washout has been performed, the preexisting B � L asymmetry is

then given by

Npreex
B�L (TL2) = Npreex

�

⌧

(TL2) + Npreex
�

⌧

?2
(TL2) + Npreex

�

⌧

?
2?

(TL2) =

= pp⌧e
� 3⇡

8 K2⌧ Npreex,0
B�L +

+ pp⌧?
2

(1� pp⌧ )e
� 3⇡

8 (K2�K2⌧ )Npreex,0
B�L +

+ (1� pp⌧?
2

)(1� pp⌧ )N
preex,0
B�L (6.1.29)
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and at this stage the washout factor is therefore

w(TL2) = pp⌧e
� 3⇡

8 K2⌧ + pp⌧?
2

(1� pp⌧ )e
� 3⇡

8 (K2�K2⌧ ) +(1� pp⌧?
2

)(1� pp⌧ ). (6.1.30)

Even if the SO(10)-inspired model imposed a strong washout regime, K
2� > 10

for � = ⌧, ⌧?
2

, the last term in eq. (6.1.29) would still survive. This component

corresponds in fact to the fraction of preexisting B�L asymmetry stored in lepton

and antilepton states which are orthogonal both to ⌧ and the projection of the

decay direction of N
2

on the e–µ plane.

• Stage 3: 109 GeV > T

Again, for the heavy neutrino mass hierarchy, the expression (6.1.29) for the preex-

isting asymmetry holds until the temperature reaches T ⇠ 109 GeV, when the µ

Yukawa interactions are no longer negligible. The quantum states contributing into

Npreex
B�L are then to be regarded as incoherent mixtures of the light flavour states

which form the basis of our flavour space. Accordingly, each term in eq. (6.1.29)

has also to be decomposed in the flavoured asymmetries Npreex
�

↵

, where ↵ = e, µ, ⌧ .

Then, for T ⇠ M
1

, the N
1

inverse-processes perform the final washout of these

asymmetries in a three-flavour regime. Proceeding along the same lines as before,

at the end of the Leptogenesis era we therefore have

Npreex,f
B�L = Npreex

B�L (TL1) = Npreex
�

⌧

(TL1) + Npreex
�

µ

(TL1) + Npreex
�e (TL1) =

= pp⌧e
� 3⇡

8 K2⌧ e�
3⇡
8 K1⌧ Npreex,0

B�L +

+ p⌧?
2 µpp⌧?

2
(1� pp⌧ )e

� 3⇡
8 (K2�K2⌧ )e�

3⇡
8 K1µNpreex,0

B�L +

+ p⌧?
2?µ(1� pp⌧?

2
)(1� pp⌧ )e

� 3⇡
8 K1µNpreex,0

B�L + (6.1.31)

+ (1� p⌧?
2 µ)pp⌧?

2
(1� pp⌧ )e

� 3⇡
8 (K2�K2⌧ )e�

3⇡
8 K1eNpreex,0

B�L +

+ (1� p⌧?
2?µ)(1� pp⌧?

2
)(1� pp⌧ )e

� 3⇡
8 K1eNpreex,0

B�L (6.1.32)

and, from the above equation, we can easily extract our final expression for wf

wf = pp⌧e
� 3⇡

8 (K2⌧+K1⌧ ) + p⌧?
2 µpp⌧?

2
(1� pp⌧ )e

� 3⇡
8 (K1µ+K2�K2⌧ )+

+ p⌧?
2?µ(1� pp⌧?

2
)(1� pp⌧ )e

� 3⇡
8 K1µ + (1� p⌧?

2 µ)pp⌧?
2

(1� pp⌧ )e
� 3⇡

8 (K1e+K2�K2⌧ )+

+ (1� p⌧?
2?µ)(1� pp⌧?

2
)(1� pp⌧ )e

� 3⇡
8 K1e . (6.1.33)
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6.2 Predictions on the Seesaw parameter space

With the final formula for the produced B�L asymmetry given by eq. (6.1.22) and the

above result on the washout factor, we can finally perform a systematic examination of

the parameter space of the model. Our aim is to detect the regions corresponding to

successful strong thermal solutions of the theory, giving rise to solid predictions which

are not a↵ected by the details of the history of our Universe before the Leptogenesis era.

6.2.1 Methodology and successful Leptogenesis

From a procedural point of view, we performed a scan of the parameter space of the

model restricting the involved quantities to the intervals that neutrino experiments and

the SO(10)-inspired conditions delineate. In Table 6.1 we report the values denoting

the boundaries of the explored region.

Neutrino parameters

✓
12

2 (31.30 – 36.27)�, ✓
23

2 (35.06 – 52.54)�, ✓
13

2 (0.00 – 11.54)�,

� 2 (�⇡ – ⇡), ⇢, � 2 (0 – 2⇡), m
1

, mee 2 (0 – 10�4) eV.

Remaining parameters

✓L
12

2 (0.00 – 13.00)�, ✓L
23

2 (0.00 – 2.37)�, ✓L
13

2 (0.00 – 0.21)�,

�L⇢L, �L 2 (0 – 2⇡), ↵
2

= 5.

Table 6.1: The explored region in the parameter space of the SO(10)-inspired
model. The lower bounds for m

1

and mee, respectively the lightest neutrino
mass and the Majorana e↵ective mass – cf. eq. (1.1.16) –, have been limited
to the presented values after a preliminary analysis excluded the region 10�10

– 10�4 eV. The quantities carrying a superscript “L” denote the parameters of
the matrix VL.

As a first step we focused on the implications of successful SO(10)-inspired Leptogenesis

only. The relevant condition has been quantified in

⌘leptB := 0.0096⇥N lept,f
B�L 2 (5.9 – 6.5)⇥ 10�10 (6.2.1)

yielding the results reported in Figure 6.1 and 6.2 respectively for a normal and inverted

ordering of the light neutrino mass spectrum.
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Figure 6.1: Results from successful Leptogenesis in the SO(10)-inspired model
on the low energy neutrino parameters for normal ordering, based on [142,143].
The hatched area for m

1

> 0.19 eV is due to the upper-bound obtained by
Cosmology on the sum of the neutrino masses [46]. The areas presenting a lighter
hatching indicate instead the range of ✓

13

values falling outside the current 2�
region 7.7� 6 ✓

13

6 10.2�.
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Figure 6.2: Results from successful Leptogenesis in the SO(10)-inspired model
on the low energy neutrino parameters for inverted ordering, based on [142,143].
As in the normal ordering case, the hatched area for m

1

> 0.19 eV represents
the upper-bound due to Cosmology [46] and indicate for ✓

13

the values falling
outside the current 2� region 7.7� 6 ✓

13

6 10.2�.
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In both the Figures, the hatched area for m
1

> 0.19 eV is due to the upper-bound

that Cosmology places, already discussed in eq. (1.1.19). The areas presenting a lighter

exclusion pattern refer instead to the values of ✓
13

which fall outside the current 2�

range 7.7� 6 ✓
13

6 10.2� [38, 39]. Relying on a larger statistics, our analysis refines

the one already presented in [143]. For an easier comparison between the two works

– a necessary cross-check for the codes employed – we restricted here ✓
23

to the range

(35.65 – 52.54)�.

Notice first that, for both the schemes, the SO(10)-inspired conditions e↵ectively lead

to the required hierarchical heavy neutrino mass spectrum. The resulting Leptogenesis

process is therefore indeed N
2

-dominated.

Focusing now on the results obtained for normal ordering – Figure 6.1 – our work con-

firms the presence of two adjacent regions that lead to successful Leptogenesis, outlined

by the boundary at m
1

' 10�2 eV. A similar situation is presented in the last plot, where

mee ' 10�2 eV delineates two regions both linear in ✓
13

. This should not surprise, as

due to the required values of the Majorana phases ⇢ and �, in this model there is a

strong correlation between m
1

and mee, testified by the relative plot.

As for the inverted ordering, the lower-bound on ✓
23

is less strong but still present.

More importantly, the prediction emerging from this scheme on m
1

and mee confirms

the previous analyses and will hopefully allow in the next years for a first experimental

test of the light neutrino mass spectrum within this model.

6.2.2 Successful strong thermal Leptogenesis

On top of the previous constraint we impose now the strong Leptogenesis condition

and scan on the full range proposed for ✓
23

in Table 6.1. Starting form eq. (6.1.33)

we therefore seek regions in the parameter space where wf ⌧ 10�8. Using the same

averaged flavour configuration for |`pi and |`pi 3

pp⌧ = 1/3, pp⌧?
2

= p⌧?
2 µ = p⌧?

2?µ = 1/2 (6.2.2)

the strong Leptogenesis condition has been tested at every considered point for three

di↵erent values of the initial preexisting asymmetry: Npreex,0
B�L = 10�1, 10�2, 10�3. We

remark that the strong Leptogenesis solutions we identify are a subset of the successful

ones, therefore they e↵ectively delineate the regions in the parameter space of the model

where successful strong thermal Leptogenesis is allowed.

Before presenting our results, we have however to face a last consistency check regarding

the conditions which define the ⌧ N
2

-dominated scenario we aim to identify.

3Ad-hoc flavour configurations would result in changes of order O(1) in the final preexisting asym-
metry and therefore in w

f . As we are concerned here with the magnitude of the latter, for our analysis
we can clearly adopt the proposed averaged flavour configuration.



Chapter 6 The SO(10)-inspired model of Leptogenesis and its predictions 117

6.2.2.1 An explicit check of the successful strong thermal Leptogenesis con-

dition

In Chapter 5 we identified in the ⌧ N
2

-dominated scenario the unique setup which allows

for successful and strong Leptogenesis at the same time. The DNA of this solution is

summarised in the following points

• a heavy neutrino mass spectrum leading to N
2

-dominated Leptogenesis: M
3

> 1012

GeV > M
2

> 109 GeV > M
1

.

• a strong washout in the flavour ⌧ driven by the N
2

inverse-decays: K
2⌧ & 10.

• a strong washout in the flavours e and µ performed by the N
1

inverse-processes:

K
1e, K

1µ & 10.

• a weak washout by N
1

in the ⌧ flavour: K
1⌧ ⌧ 10.

The solutions we seek must therefore match this profile in order to be associated to the

scenario we proposed. In this regard, our analysis highlighted the results in Figure 6.3

Starting with the normal ordering case, reported in the left column, the strong solutions

we identified clearly respect the characteristics of the ⌧ N
2

-dominated scenario. Beside

presenting the required mass spectrum, the flavoured decay parameter K
2⌧ respects the

strong washout condition K
2⌧ & 10. The preexisting asymmetry lying on the ⌧ direction

is therefore washed out during the N
2

Leptogenesis phase while, at the same time, the

out-of-equilibrium decays of N
2

generate the amount of B � L asymmetry required to

satisfy the successful Leptogenesis condition. Notice that the strong condition selected

those regions in the parameter space where, beside K
2⌧ > 10, also K⌧?

2
> 10. The

washout performed along the ⌧?
2

directions has the net e↵ect of reducing the preexisting

asymmetry which is confined on the e – µ plane, adding on to the washout that N
1

will

perform. This further condition is here necessary because, as shown in Figure 6.3, in the

SO(10)-inspired model the values of K
1e and K

1µ cannot be both arbitrarily large at

the same time. In particular, K
1e is bounded to K

1e . 30 by the requirement K
1⌧ . 1,

necessary for successful Leptogenesis. Strong successful Leptogenesis is therefore only

allowed in those regions of the parameter space where a compromises between K
1e,

K
1µ and K

1⌧ is found. The former must be large enough to suppress the residual

preexisting asymmetry while the latter should be small, not to compromise the product

of N
2

Leptogenesis. In this regard, as K
1⌧ . 1, the resulting asymmetry is necessarily

produced mainly in the ⌧ flavour.

We can then safely a�rm that the presented results carry, for the normal ordering case,

the trademark of the ⌧ N
2

-dominated scenario.
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Figure 6.3: Strong Leptogenesis condition in the SO(10)-inspired model for
normal and inverted ordering, from [3, 145]. The colour code indicates the
magnitude of the preexisting B � L asymmetry which can be washed out in
the corresponding point of the parameter space. Blue dots are for O(10�3), the
green dots for O(10�2) and red stars are for O(10�1). The points indicated by
yellow dots correspond to the regions where only the successful Leptogenesis
condition is satisfied – eq. (6.2.1). The grey squares represent the necessary
reheating temperature. The left column corresponds to the result obtained
for a normal ordering of the light neutrino mass spectrum, the right one is
for inverted ordering. In the latter, for the considered initial values of the
preexisting asymmetry, the strong Leptogenesis condition is never satisfied in
the investigated portion of the parameter space.
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Interestingly, the situation is dramatically di↵erent if we consider inverted ordering. As

clear from the corresponding plots, in spite of the correct mass pattern, the flavour

decay parameters of N
1

do not match the requirement imposed by the ⌧ N
2

-dominated

scenario. More in detail, notice that K
1µ is limited to K

1µ . 10. Consequently, a

sizeable fraction of preexisting asymmetry is always found in the corresponding flavour

at the end of the Leptogenesis process.

These preliminary analyses therefore yield an important conclusion: successful strong

thermal Leptogenesis within the S0(10)-inspired model is allowed only for a normal

ordering of the light neutrinos.

6.2.2.2 Results on the Seesaw parameters

We present in Figure 6.4 the results on the Seesaw parameters that we obtained by

constraining the parameter space with successful strong thermal Leptogenesis in the

SO(10)-inspired model. Obviously, the study is for a normal ordering of the light neut-

rino mass spectrum only.

At a first glance, the regions corresponding to the solutions we seek appear remarkably

well-defined. The contours corresponding to more severe strong Leptogenesis conditions

are included in the ones obtained for lower initial abundances of preexisting asymmetry.

This is an important point which testifies the stability of our analysis with respect to

the value of Npreex,0
B�L .

A striking feature of these solutions is the presence of new bounds a↵ecting two of the

three mixing angles contained in the PMNS mixing matrix. In particular, requiring the

washout of a preexisting asymmetry as large as O(10�1) implies the following lower-

bound for ✓
13

:

✓
13

& 2�. (6.2.3)

We underline that this is a genuine prediction arising from the strong Leptogenesis

solutions: no informations on the distribution function of ✓
13

have been employed in

performing the present analysis. The presence of a lower-bound on ✓
13

can therefore

be regarded as a first proof of the compatibility between the solutions we propose and

the latest experimental trend [37–39]. On top of this result, the sharp upper-bound

proposed for ✓
23

✓
23

. 41� (6.2.4)

is also in line with the latest global analyses of neutrino data [34]. Furthermore this fea-

ture potentially o↵ers a first way to discriminate between the successful strong thermal
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solutions and other models of neutrino phenomenology.

The third panel of Figure 6.4 shows traces of a linear correlation between the maximum

values of the implied mixing angles that our solutions allow. This is interpreted as a rem-

nant of the relation between ✓
23

and ✓
13

, noticed first in [143], that the SO(10)-inspired

model imposes for small values of m
1

. As for the last mixing angle, ✓
12

, the successful

strong thermal solutions deliver no predictions in this case, being rather insensitive to

changes in this parameter for the considered range.

Figure 6.4: Successful strong thermal Leptogenesis: predictions on the low en-
ergy neutrino parameters for normal ordering, [142,143]. As before, the hatched
area indicate the exclusion limit due to Cosmology and the current 2� interval
for ✓

13

. The yellow regions in the present plots di↵er from the corresponding
ones of Figure 6.1 due to the larger statistics and the extended range for ✓

23

employed here. The remaining colour code is intended as in Figure 6.3.

The next two panels of Figure 6.4, regarding � and JCP , are particularly important in

the light of the latest experimental results on ✓
13

. As we mentioned before, large values

of this parameter open up the possibility for a direct testing of the CP -asymmetry in

the lepton sector of the SM, controlled by the Dirac phase �. Considering the latest 2�

interval for ✓
13

, the bulk of our solutions predicts a negative value for � and, accordingly,

for the Jarlskog invariant given by

JCP = cos(✓
12

) sin(✓
12

) cos(✓
23

) sin(✓
23

) cos2(✓
13

) sin(✓
13

) sin(�). (6.2.5)
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Hence, the successful strong thermal Leptogenesis solutions will be almost completely

ruled out if the future experiments will measure positive value of these quantities. Con-

versely, negative entries for � and JCP would provide a first strong hint in their support.

To conclude, we consider now the prediction on the neutrino mass scales mee and m
1

which indeed represent the signature of our framework. Due to the rather specific values

of the Majorana phases that our conditions selected, successful strong thermal Lepto-

genesis leads in the SO(10)-inspired model to a remarkably sharp prediction:

m
1

, mee 2 (1 – 3)⇥ 10�2 eV. (6.2.6)

According to our scenario the value of m
1

falls between the two regimes considered

before, while mee is substantially insensitive to variations in ✓
13

. This behaviour is

explained considering that for m
1

. 0.01 eV we have K
1µ � 1, while the solutions for

m
1

& 0.01 eV are characterised by K
1e � 1 [143]. Both these conditions are required in

strong thermal Leptogenesis, therefore our analysis correctly selected the points around

m
1

' 0.01 eV for which these constraints are simultaneously satisfied. This being said,

we also remark that both the predictions on m
1

and mee fall nicely within the reach of

the next-generation neutrinoless double-� decay and absolute mass scale experiments.

Owing to the many predictions that the SO(10)-inspired model delivers through its

successful strong thermal solutions, we have presented a simple and predictive framework

in which the parameter space of the Seesaw mechanism can be e↵ectively constrained.

In this regard, it is our hope that the investigations of future neutrino experiments

will probe our predictions, consequently providing an exhaustive test of this appealing

Leptogenesis scenario.

To conclude our discussion, we present in Figure 6.5 our results on the mixing angles and

the phases contained in the matrix VL. Potentially these could provide indications on

possible rigorous SO(10) GUT scenarios, where a small misalignment of order UCKM [79]

is expected between the basis diagonalising yy† and hh† – cf. eq. (6.1.1). Unfortunately

in this case our solutions provides no indications, being basically insensitive to these

parameters barring a slight preference for the limiting values of ⇢L.
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Figure 6.5: Successful strong thermal Leptogenesis: predictions on the para-
meters in VL for normal ordering, [142, 143]. The colour code is intended as in
Figure 6.3: blue dots are for O(10�3), the green dots for O(10�2) and red stars
are for O(10�1). The points indicated by yellow dots correspond to the regions
where only the successful Leptogenesis condition is satisfied.

6.3 Refining our analysis

The analyses we presented so far disregard the detailed informations that neutrino ex-

periments provide on the probability distribution functions of the low energy parameters.

Our conclusions are therefore based on a scan of the Seesaw parameter space which is

not sensitive to the likelihood of the configuration under examination. In particular, the

condition that we employed to identify the regions corresponding to successful Leptogen-

esis, eq. (6.2.1), does not account for the statistical significances of the values adopted for

the low energy parameter during the calculation of the asymmetry produced. Likewise,

for the latter, the indications of CMB measurements have not been completely exploited.

Hence, whereas on one hand the yellow regions proposed in the previous Section indeed

indicate the combinations of the low energy parameters for which Leptogenesis is suc-

cessful, on the other our analysis is not able to discriminate against the likelihood of the

selected configurations.

In the present Section we therefore intend to add to our study by better employing the

indications that neutrino experiments and CMB measurements provide. In particular,

we aim to investigate the impact of these experimental informations on the solutions that

we previously identified. We therefore specialise our discussion to the regions where

the successful Leptogenesis condition is met, moving by net toward a first statistical
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analysis of the successful Leptogenesis solution presented by the SO(10)-inspired model.

Successful strong thermal Leptogenesis will then be allowed in the SO(10)-inspired model

if the corresponding sub-regions are not ruled out by the improved treatment of the

experimental constraints that we consider here.

6.3.1 Toward a statistical analysis

The first step toward a statistical analyses is modelling the experimental informations

that neutrino oscillations experiments and CMB provide. In this regard, we remark that

a complete statistical analysis is beyond our current purposes. This would in fact require

to derive the probability distribution functions (PDFs) of the involved parameters from

scratch, by fitting the dataset of the relevant experiments and consequently marginalising

to extract the required PDF from the joint one. In a first approximation, to understand

the impact of statistics on our scatterplots, we therefore neglect the correlations that

exist between the neutrino oscillation parameters and perform our analyses adopting the

following distributions:

• Mixing angles:

The indications on the mixing angles that neutrino oscillation experiments provide

have been modelled in the gaussian distributions reported in the following Table:

Parameter: Best fit: Standard deviation:

sin2 ✓
12

0.312 0.016

sin2 ✓
23

0.450 0.050

sin2 ✓
13

0.025 0.007

Table 6.2: The distributions adopted for the PMNS mixing angles in light of
the results from neutrino oscillation experiments [34, 147, 148]. The reported
values have been chosen to reproduce the actual 1� and 2� ranges as accurately
as possible in the adopted approximation. The standard deviation adopted for
sin2 ✓

13

reflects the design sensitivity of the Daya Bay experiment [149].

• The remaining low energy parameters:

The Dirac phase � and the Majorana phases ⇢ and � –cf. eq. (6.1.4), are not

constrained by the current experiments. To our purposes we consequently assume

for these parameters flat probability distributions over the relevant intervals.

In the absence of a signal from the absolute mass scale experiments, the same

conservative choice has been also employed in modelling m
1

. The light neutrino

mass spectrum is then calculated according to eq. (6.1.8) by assuming the mean

values for msol and matm.
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In order to quantify the likelihood of the configurations that successful Leptogenesis

selected, we intend to derive now the joint probability distributions for the same quant-

ities which appear in the plots of Figure 6.4 and 6.5. In this regard, it could be indeed

sustained that under our working assumption the functions we seek are simply given

by the product of the relevant one-parameter PDFs we presented. We therefore remark

that, beside the informations resulting from the neutrino experiments encapsulated in

the above distributions, our analysis aims to account also for the details in the profile

of the baryon asymmetry of the Universe that CMB reveals. More in detail, the joint

probability distributions we seek must describe the low energy parameters of the Seesaw

mechanism under the assumption that the baryon asymmetry of the Universe be gener-

ated as prescript by the SO(10)�inspired model of Leptogenesis. Within the proposed

scheme, the informations that the CMB measurements provide on the baryon asym-

metry of the Universe are then to be combined to those of the neutrino experiments and

consequently result in a further constraint on the parameters we aim to describe. An

additional step in the derivation of the relevant PDFs is therefore necessary.

The results of CMB fittings, on top of the Baryon Acoustic Oscillations and the latest

measurements of H
0

are extensively discussed in [46, 47]. With a good approximation,

the baryon asymmetry of the Universe is then described by the following gaussian dis-

tribution

Parameter: Best fit: Standard deviation:

⌘B ⌘CMB
B = 6.19⇥ 10�10 �⌘ = 0.15⇥ 10�10

Table 6.3: The distributions adopted for the baryon asymmetry of the Universe,
[46, 47].

We need now to find a proper way to combine these informations. To this purpose let ✓

be the seven low energy parameters4 and let the function p✓ be their joint probability dis-

tribution function, obtained by normalising the product of the individual PDFs proposed

before. In the same way we also introduce the gaussian distribution p⌘, which charac-

terises the baryon asymmetry of the Universe. Quantitatively, our aim is to calculate

the joint probability distribution for the low energy parameters given that the baryon

asymmetry calculated through the SO(10)-inspired model is distributed as specified by

p⌘:

pSO(10)

⇣

✓|⌘leptB = ⌘B
⌘

= pSO(10)

(⌘CMB
B , �⌘,✓

best, �✓). (6.3.1)

The distribution pSO(10)

is then specified by the same parameters, ⌘CMB
B , �⌘, ✓best and

�✓ which regulate the individual PDFs. From a formal point of view, a relation between

pSO(10)

, p⌘ and p✓ can be obtained by employing the Bayes’ theorem [150–153]

pSO(10)

⇣

✓|⌘leptB = ⌘B
⌘

= p
⇣

⌘leptB = ⌘B|✓
⌘

p✓(✓) (6.3.2)

4As remarked before, we neglect the errors associated to m

atm

and m

sol

.
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Here we neglected a normalisation factor by choosing to normalise our final distribution

function in a second moment. We now employ the following decomposition property

p(x) =

Z

p(x|y) p(y) d y (6.3.3)

where p(x|y) is the conditional probability of x given the parameter y. In our case we

have

p
⇣

⌘leptB = ⌘B|✓
⌘

=

Z

p
⇣

⌘leptB = ⌘B|⌘B,✓
⌘

p(⌘B|✓) d ⌘B. (6.3.4)

We recall that ⌘B is a quantity distributed according to the function p⌘, characterised

in turn by the parameters of Table 6.3. As the experimental distribution p⌘ is ob-

tained through the CMB measurements only, independently of the low energy Seesaw

parameters, it follows p(⌘B|✓) ⌘ p⌘(⌘B) and therefore

pSO(10)

⇣

✓|⌘leptB = ⌘B
⌘

=

Z

p
⇣

⌘leptB = ⌘B|⌘B,✓
⌘

p⌘(⌘B) p✓(✓) d ⌘B. (6.3.5)

At this stage, to require that the SO(10)-inspired model explain the baryon asymmetry

of the Universe, we impose

pSO(10)

⇣

⌘leptB = ⌘B|⌘B,✓
⌘

= �
⇣

⌘leptB (✓)� ⌘B
⌘

(6.3.6)

leading to our final result that, once properly normalised, reads:

pSO(10)

⇣

⌘leptB ⌘B|✓
⌘

=
p⌘
⇣

⌘leptB (✓)
⌘

p✓(✓)
R

p⌘
⇣

⌘leptB (✓)
⌘

p✓(✓) d✓
. (6.3.7)

The joint distribution function we seek is therefore given by the PDFs which describes

the Seesaw low energy parameters alone, p✓(✓), weighted at every point of the parameter

space by the distribution that the CMB measurements propose for the baryon asym-

metry. The two-parameter joint PDFs, that quantify the likelihood of the successful

Leptogenesis regions we identified before, can be consequently obtained from pSO(10)

by marginalization. The results of our procedure are proposed in Figure 6.6 and 6.7,

where the scatterplots of our previous analysis are compared with the corresponding

probability distribution functions.

The impact of the adopted statistical treatment is clearly visible. By comparing the

yellow regions of the left column to the light green areas presented in the right one,

which denote a confidence level as large as CL ' 95%, the subspace characterised by

the successful Leptogenesis condition appears noticeably reduced. A first, obvious, e↵ect

of the profiles adopted for the low energy parameter and the baryon asymmetry of the

Universe is in fact to collapse the viable subspace, disfavouring the regions characterised

by extremal values of the involved quantities. Notice that while such a reduction was ex-

pected, the presence of regions that still allow for successful strong thermal solutions of
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the model could not be given for granted. The fact that many of these solutions survived

can therefore be regarded as a further important proof of the compatibility between the

picture we propose and the one that neutrino experiments and CMB provide. Con-

sider for definiteness the red regions presented by the scatterplots in the left column,

which correspond to successful strong thermal solutions obtained for an initial preex-

isting asymmetry of order O(10�1). As clear from the comparison we propose, even by

restricting our discussion to a confidence level of CL ' 68% indicated by the dark green

areas of the PDFs in the right column, the regions corresponding to successful strong

thermal solutions are not ruled out.

Allowing for a confidence level as high as CL ' 95%, we reconsider the predictions we

made on the low energy parameters, discussed in Section 6.2.2.2, in light of the new stat-

istical treatment adopted. Starting with ✓
13

, successful strong thermal solutions placed

a lower-bound for ✓
13

& 2�. Now, the statistical treatment alone places a lower-bound

✓
13

& 4.5�, for m
1

2 (1 – 5) ⇥ 10�3 eV at CL ' 95%. Accounting for the strong lep-

togenesis conditions this constraint is basically unmodified, yielding ✓
13

& 4.5 � 5� for

m
1

2 (1 – 3)⇥ 10�2 eV at the same CL.

Di↵erently, for ✓
23

our prediction maintains its full strength. For m
1

> 10�3 eV, cur-

rent experiments indicate values of the mixing angle as high as ✓
23

= 48� as possible.

The successful strong Leptogenesis solutions in this case once again restrict the viable

subspace re-proposing the same upper-bound ✓
23

= 41� for m
1

2 (1 – 3) ⇥ 10�2 eV at

CL = 95%.

As for the Majorana phases of the PMNS matrix, ⇢ and �, our original analysis pro-

poses four main regions – Figure 6.7 – delineated by ⇢ 2 (0.6⇡ – ⇡) or ⇢ 2 (1.6⇡ – 2⇡)

and, correspondingly, � 2 (0.1⇡ – 0.3⇡) or � 2 (1.1⇡ – 1.3⇡). These are supported by

four subdominant configurations, which could play an important role in case of initial

preexisting asymmetries as large as O(10�2) but are strongly disfavoured by our refined

treatment. In spite of that, the important prediction that successful strong thermal

solutions deliver for mee are una↵ected by this selection. This is a crucial point, as

the bounds that the solutions we consider place on m
1

and mee represent, in fact, the

signature of the proposed framework. Interestingly, the current experimental inform-

ation do not discriminate between the values of these quantities on the broad interval

m
1

, mee 2 (10�3 – 10�1) eV. On the contrary, once again the successful strong thermal

solution are able to place a sharp bound, as only for m
1

' mee 2 (1 – 3)⇥ 10�2 eV the

washout of a preexisting asymmetry of order O(10�1) can be ensured.
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Figure 6.6: A statistical analysis of the successful Leptogenesis condition in the
SO(10)-inspired model: results on the lepton mixing angles, [146]. We compare
the yellow regions of the results in Figure 6.4, presented in the left column, to
the corresponding two-parameter joint probability distribution functions, in the
right column. For the latter, the dark green regions indicate a confidence level
(CL) CL ' 68% while the light green areas correspond to CL ' 95%. The
direct comparison of scatterplots and PDFs highlights the regions of the Seesaw
parameter space which are disfavoured by a statistical treatment. The proposed
PDFs are based on the latest global analyses of the neutrino oscillation data [34]
and encapsulate the assumption that the SO(10)-inspired model of Leptogenesis
explains the baryon asymmetry of the Universe, modelled according to Table 6.3.
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Figure 6.7: A statistical analysis of the successful Leptogenesis condition in the
SO(10)-inspired model: results on the PMNS phases and neutrino mass scales,
[146]. We compare again the scatterplots of Figure 6.4 to the corresponding
two-parameter joint probability distribution functions. The colour codes for
the latter are intended as in Figure 6.7.



Chapter 7

Epilogue

In this conclusive Chapter we summarise our work and comment on the validity of the

presented original results in light of the underlying assumptions we made. The discussion

we propose is organised in sections, each corresponding to one of the Chapters that

delineate the structure of this Thesis.

On the present status of the Standard Model and Physics

The Standard Model of Particle Physics is indeed one of the most elegant and successful

theories ever formulated. The precision of its predictions and the numerous successful

experimental confirmations lead to an impressive list of achievement for which this The-

ory can be regarded as the paradigm of contemporary Particle Physics.

In the normal evolution of Science, however, after a paradigm is established, a number

of anomalies which cannot be explained within the corresponding framework is accumu-

lated over the time. These anomalies, when unsolved, reveal the weaknesses of the old

theory, test its boundaries, and eventually lead to a paradigm shift. Science then enters

its revolutionary phase and a new Theory is consequently formulated [154].

It is exciting that we are witnessing this transition right now in Physics. In the last

decades, in fact, many experiment underlined results which are left unexplained within

the framework of the Standard Model. We focused in particular on a first issue which

arises in the lepton sector of the Theory, in connection to the properties of neutrinos.

For the last fifty years these elusive particles have been the subject of an extensive testing,

resulting in an increasing disagreement between theory and experiments. On one hand,

in fact, the neutrino oscillation experiments underline that at least two neutrino species

must be massive in order to reproduce the measured oscillation pattern [33, 66]. On

the other, the Standard Model requires its three neutrinos be purely massless particles

[4–6,155,156], leaving no space for any oscillation. In Section 1.1 we exposed this clash,

129
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reviewing the current description of neutrinos and pointing out its incompatibility with

the oscillation mechanism that the experiments support.

We also discussed a further issue that recent Cosmological observations arise within

the Standard Model. Beside the fundamental puzzles posed by the Dark Energy and

the Dark Matter components of the Universe, we reviewed how the analyses of the

Cosmic Microwave Background [46, 47] and the measurement of the primordial nuclear

abundances within the Big Bang Nucleosynthesis [52, 53] point out the existence of

a baryon asymmetry in our Universe. Interestingly the Standard Model possesses all

the ingredients required to develop such an asymmetry [56], nevertheless the emerging

scenario of Electro-Weak Baryogenesis [62] is unfortunately not viable [63, 64].

The neutrino mass puzzle and the baryon asymmetry of the Universe are therefore

two problems that currently find no solution within the boundaries of the Standard

Model. Consequently, the results that the neutrino oscillation experiments and the

recent Cosmological measurements expose can be regarded as solid evidences for new

Physics and it follows the present requirement for new, testable, theoretical frameworks

in which the Physics beyond the current paradigms can be modelled.

On the Seesaw mechanism and Leptogenesis

To address the neutrino mass puzzle and the problem raised by the baryon asymmetry of

the Universe at once, we consider the minimal type I Seesaw extension of the Standard

Model [68–71] in which three right-handed neutrinos are added to the particle content

of the Theory. These particles, which transform as singlets under the symmetry group

of the Standard Model, are provided a Majorana mass term and couple to the lepton

and Higgs doublets through a new set of Yukawa couplings. As the RH neutrinos are

typically introduced within GUTs theories, where they complete the representations

occupied by the remaining particles of the model, the associated mass scale is naturally

of order ⇤GUT . As we saw in Chapter 2, it is then possible in this setup to explain the

mass scale of ordinary neutrinos and the baryon asymmetry of the Universe, respectively

through the Seesaw mechanism and Leptogenesis.

• The origin of neutrino masses: the Seesaw mechanism.

Owing to the right-handed neutrinos and the new set of Yukawa coupling intro-

duced by the Seesaw extension, a Dirac mass term is generated in the theory for

the ordinary neutrinos after the Electro-Weak symmetry breaking. In the pro-

posed framework the mass scale associated to the three right-handed neutrinos is

much larger than the the Electro-Weak scale ⇤EW , which characterises the new

Dirac masses. Then, as a consequence of the Seesaw mechanism introduced in

Section 2.1, the neutrino mass spectrum e↵ectively splits into two sectors. The
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high energy one presents three heavy Majorana neutrinos Ni with masses of order

⇤GUT , whose right-handed components roughly correspond to the new particles

originally introduced by the Seesaw extension. The low energy sector comprises in-

stead three light Majorana neutrinos, associated to the energy scale ⇠ ⇤2

EW /⇤GUT

which, surprisingly, matches the typical neutrino mass scale inferred through the

oscillation experiments. The three light neutrinos are therefore ideal candidates

to address the neutrino mass puzzle and the fact that the detected neutrino mass

scale emerges in the theory as a natural consequence of the Seesaw mechanism is

indeed a very attractive feature of the proposed scenario.

We remark that the neutrino oscillation and absolute mass scale experiments have

therefore the potential to probe at least part of the Seesaw parameter space. In

this regard we also underline the importance of the experiments dedicated to the

neutrinoless double-� decays, which directly probe the Seesaw prediction made on

the Dirac/Majorana nature of neutrinos.

• Generating the baryon asymmetry: Leptogenesis.

There is another fundamental consequence of the Seesaw mechanism, entangling

the dynamics of the heavy neutrino species which populate the high energy sector of

the theory to the latest Cosmological measurements. In this regard, consider that

through the Yukawa interactions introduced by the Seesaw extension the heavy

neutrinos can decay into lepton and Higgs doublets or antilepton and antiHiggs

doublets, owing to their Majorana nature. We can therefore sketch a new scenario

of baryogenesis, Leptogenesis, in which the baryon asymmetry of the Universe is

explained as a product of an original lepton asymmetry generated by the decays of

these particles. In order to e↵ectively give rise to a lepton asymmetry, the heavy

neutrino decays must satisfy the restrictive conditions originally detailed by A.

D. Sakharov [56] that we reviewed in Section 2.2. The generated asymmetry is

then distributed to the remaining particle species through the network of reactions

that the active gauge and Yukawa interactions imply in the Early Universe. In

particular, to recast the lepton asymmetry as a baryon asymmetry, the Seesaw

extension of the Standard Model relies on the non-perturbative sphaleron e↵ects,

which violate both the lepton and baryon numbers but conserve their di↵erence.

By net a Leptogenesis process is then able to account for an amount of baryon

asymmetry roughly speaking given by 1/100 of the produced B � L asymmetry.

Attracted by the features o↵ered by the Seesaw extension of the Standard Model, in

Section 2.2 we presented a first model of Leptogenesis in which the contributions of

the heaviest neutrino species and the impact of flavour were neglected. In discussing

the resulting N
1

-dominated scenario we first reviewed how the Sakharov conditions are

satisfied within Leptogenesis, introducing consequently the Boltzmann equations which

regulate the evolution of the heavy neutrino abundance and the B � L asymmetry.

In this simplified scenario we detailed the Leptogenesis process focusing in particular
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on the strong washout regime, which currently the neutrino experiment indicate – cf.

eq. (2.2.24). Supposing a strong washout regime and a thermal production of the relev-

ant heavy neutrinos, within N
1

Leptogenesis, the final B � L asymmetry amount does

not depend on the initial conditions adopted to solve the Boltzmann equations. Addi-

tionally, in this regime, the simple picture that decays and inverse-decays provide allows

an accurate description of the final asymmetry even if scattering processes and thermal

corrections are neglected [89].

On top of that, interestingly, even in the simple case of N
1

-Leptogenesis a few constraints

on the parameters of the model can be derived. As we showed it is the case of M
1

, the

mass of the lightest of the heavy neutrino species, that for successful Leptogenesis can-

not be lighter than about 109 GeV [87,92].

Once the corrections due to the |�L| = 2 scattering are taken into account, the amount

of asymmetry produced becomes sensitive to the light neutrino mass scale m̄ – Sec-

tion 2.2.1.2 – which regulates the strength of the corresponding washout process. Con-

sequently, successful Leptogenesis also implies within this framework a second bound

m̄ < (0.20 – 0.30) eV [87,96].

Flavour e↵ects and the minimal Leptogenesis scenario

In Chapter 3 we improved our description of the Leptogenesis process addressing the

flavour e↵ects. To investigate the modifications that flavour introduces, we distinguished

between light and heavy neutrino flavour e↵ects when referring, respectively, to the

impact of charged-lepton and neutrino Yukawa interactions.

• The impact of neutrino Yukawa interactions: heavy neutrino flavour

states and their interplay.

The flavour compositions of the leptons and antileptons produced in the decays

of the heavy neutrinos are regulated by neutrino Yukawa interactions according

to the diagrams of Figure 2.1. This suggests the definition of the heavy neutrino

flavour states |`ii and |`ii, i = 1, 2, 3 as the particular coherent superpositions of

flavoured lepton doublets or antidoublets involved in the dynamics of a specific

heavy neutrino species Ni. Explicitly, the decay of a neutrino Ni therefore results

in a Higgs doublet (or antiHiggs doublet) and in a lepton (or antilepton) specified

by the heavy neutrino flavour state |`ii (|`ii).
Following the analysis presented in Appendix C, it is clear that the lepton and

antilepton states associated to the same heavy neutrino species possess, in general,

di↵erent flavour compositions and therefore CP (|`ii) 6= |`ii.
Under the assumption of hierarchical heavy neutrinos [99], Mi+1

> 3Mi for i = 1, 2,

the Leptogenesis process comprises three distinct phases, corresponding to the sep-

arated dynamics of these particles which take place for T ⇠ Mi. All these stages
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individually resemble the scenario proposed for N
1

Leptogenesis, therefore it is

straightforward to generalise the adopted description accounting for the two heav-

iest neutrino species.

Taking now into account the heavy neutrino flavour e↵ects, the decays and inverse-

decays of an heavy neutrino species a↵ect only leptons and antileptons associated

to the corresponding heavy neutrino flavour states. We remark, however, that

these states do not generally satisfy any orthogonality relation, hence some inter-

play between the processes and particles associated to di↵erent heavy neutrinos is

allowed.

Consider for instance the coherent state |`ii (|`ii), associated to the leptons (an-

tileptons) which participate in the processes of Ni. As soon as active, the inverse

processes of a di↵erent heavy neutrino Nj 6=i are fast enough to e↵ectively resolve

in the considered state a component lying along the relative heavy neutrino state

|`ji (|`ji). Within the classical approximation of an instantaneous collapse of the

wave-function of the involved quantum states, this process can be regarded as a

‘measurement’ leading to the decoherence of |`ii (|`ii). The resulting incoherent

mixture therefore comprises a state |`ji (|`ji), involbed in the dynamics of Nj , and

an orthogonal state |`j?
i

i (|`j?
i

i), which does not take part in the latter [103,104].

The inverse-decays of Nj can consequently washout only a part of the asymmetry

produced by Ni, corresponding to the components of the original heavy neutrino

lepton and antilepton states measured along the heavy neutrino flavour states as-

sociated to Nj . The asymmetry stored in the states |`j?
i

i and |`j?
i

i is instead

protected from the washout, hence is not modified by the dynamics of Nj – the

projection e↵ect. The described interplay clearly depends on the probabilities pij

for a lepton, or antilepton, associated to the dynamics of Ni to be actually meas-

ured as the corresponding particle of involved in the processes of a di↵erent heavy

neutrino Nj . These can be specified in terms of the same coe�cient which detail

the flavour composition of the heavy neutrino flavour states.

The projection e↵ect is a first, important consequence of flavour e↵ects within

Leptogenesis. As a result of the former, the B � L asymmetry produced by the

heaviest neutrino species is given a new way to evade the washout of the lightest

one, yielding a non-negligible contribution at the end of the Leptogenesis era. In

this sense the projection e↵ect provides a first motivation to move beyond the

simple N
1

-dominated scenario, underlining the importance of the other Leptogen-

esis stages toward the final amount of B � L asymmetry generated.

• The role of charged-lepton Yukawa interactions: the light flavour ef-

fects.

As the temperature of the Universe drops consequently to its expansion, the

charged-lepton Yukawa interactions progressively come into equilibrium. When
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the associated rate �↵, ↵ = e, µ, ⌧ , satisfy �↵ & P

i �ID,i for at least one fla-

vour, the impact of these interactions on the Leptogenesis process cannot be neg-

lected [106]. Metaphorically, we are witnessing a duel between the lepton Yukawa

interactions, that compete to identify the relative flavours in the involved lepton

and antilepton states. When the above condition is satisfied, the heavy neutrino

flavour lepton (antilepton) states generated by the decays of Ni interact, on av-

erage, first with the right-handed components of the charged-lepton (antilepton)

fields of flavour ↵ and then with a Higgs doublet. Assuming again a classical pic-

ture, the involved charged-lepton Yukawa interactions are therefore fast enough to

break the coherence of the heavy neutrino flavour states |`ii (|`ii) prior to their

absorption in inverse-decay processes. In this full decoherence limit, which defines

a fully flavoured regime, the inverse-decays thus involve the Higgs doublets and

an incoherent mixture that comprises the following components: the light flavour

states |`↵i (|`↵i), of definite flavour ↵ = e, µ, ⌧ , and possibly an orthogonal state

|`↵?
i

i (|`↵?
i

i), remnant of the original heavy neutrino flavour state.

The light flavour states correspond to lepton doublets of ordinary flavours e, µ, ⌧ ,

associated to the corresponding charged leptons. Di↵erently from the case of heavy

neutrino flavour states, they satisfy the orthogonality condition h`↵|`�i = �↵� , as

well as CP (|`↵i) = |`↵i. For these reasons, in our depictions of the heavy neutrino

flavour e↵ects, the light flavours have been employed as a basis of the flavour space.

This being said, in the limit of full decoherence, the resulting incoherent mix-

tures comprise statistically independent components whose evolutions must con-

sequently be individually tracked. The associated flavoured B � L asymmetries

are therefore to be regulated by dedicated flavoured Boltzmann equations [97,98].

From the condition �↵ & P

i �ID,i, owing to the hierarchy of the charged-lepton

Yukawa couplings, we identify the following fully flavoured regime

– T & 1012 GeV: heavy neutrino flavour regime.

In this regime no charged-lepton Yukawa interaction satisfies the above con-

dition and the Leptogenesis process is therefore regulated by the interplay of

the heavy neutrino flavour states only.

– 1012 GeV & T & 109 GeV: two-flavour regime.

Here the ⌧ Yukawa interactions are in equilibrium and fast enough to break

the quantum coherence of heavy neutrino flavour lepton and antilepton states.

The resulting incoherent mixture therefore comprises |`⌧ i and |`⌧ i states,

together with the orthogonal |`⌧?
i

i and |`⌧?
i

i. The latter, being a remnant of

the original heavy neutrino flavour states, are still a coherent superposition

of e and µ leptons. In this regime the Leptogenesis process is detailed by the

flavoured asymmetries N
�

⌧

and N
�

⌧

?
i

.

– 109 GeV & T : three-flavour regime.

On top of ⌧ reactions, in this regime also the µ Yukawa interactions satisfy the
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equilibrium condition. The heavy neutrino flavour states are therefore com-

pletely projected on the tree light flavours states |`↵i (or |`↵i). Notice that

the electron component of |`ii (|`ii) is e↵ectively measured in this regime as

a non-⌧ , non-µ state. Under these conditions, the Boltzmann equations must

track the evolution of the flavoured asymmetry N
�

↵

, ↵ = e, µ, ⌧ , introduced

in eq. (3.2.5).

To expose the impact of light flavour e↵ects within Leptogenesis, we introduced in

Section 3.2.1 the flavoured probabilities pi↵ and pi↵ to detail the flavour content of

the heavy neutrino flavour states |`ii and |`ii. The resulting flavoured Boltzmann

equations, which describe the Leptogenesis process within a two or three-flavour

regime, present three key di↵erences with respect to the case where the light flavour

e↵ects are disregarded:

– The source term of the flavoured Boltzmann equation regulating the B � L

production is proportional to the flavoured CP -asymmetry "i↵.

– The strength of the washout performed on a flavour ↵ is reduced, with respect

to the unflavoured case, by the flavoured probabilities.

– The dynamics of di↵erent flavour components is coupled through the flavour

coupling matrix C↵� – Section 3.2.1.1.

Starting with the flavoured CP -asymmetries, our analysis showed that these quant-

ities comprise two distinct contributions. Beside the averaged flavour branch-

ing of the usual ‘unflavoured’ contribution, quantified by "i, the flavoured CP -

asymmetries encapsulate in fact a new source of CP -violation. This is driven by

the possible di↵erences in the flavour compositions of |`ii and |`ii, measured by

�pi↵ := pi↵�pi↵. When calculating the total B�L asymmetry, the former contri-

bution yield an enhancement of a factor 2 or 3 with respect to the unflavoured cal-

culation, considering respectively a two or a three-flavour regime. The remarkable

novelty that flavour e↵ects introduce is however related to the second contribution,

quantified in �pi↵, which is not proportional to the total CP -asymmetry "i. This

new source of CP -asymmetry therefore evades the bounds that constrain "i [87,92]

and, provided the washout a↵ects di↵erent flavour with di↵erent strengths, could

potentially dominate the final asymmetry production relaxing the bounds given

for N
1

Leptogenesis [107].

Focusing now on the washout term, the presence of the flavoured projectors is

explained considering that, within a fully flavoured regime, the evolution of a

flavoured asymmetry N
�

↵

is only sensitive to the abundances of leptons and an-

tileptons of the corresponding flavour ↵. Since the relative abundances of light

flavour states, with respect to the unflavoured case, are clearly suppressed by the

same flavoured probabilities, it follows that the rate of the washout process acting

on N
�

↵

is correspondingly suppressed.

Lastly, to explain the presence of the flavour coupling matrix [97, 98,103,108], we
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recall that the asymmetries stored in the di↵erent species are correlated through

the network that the active gauge and Yukawa interactions form in the Early

Universe. Considering all these constraints, as well as the ones imposed by the

neutrality of the plasma and the sphaleron processes leads to the formulation of

the matrix under examination. However, as remarked before, owing to the hier-

archy that the entries of the flavour coupling matrix present, it is a usual practise

to approximate C↵� ' �↵� , decoupling by net the evolution of the di↵erent flavour

asymmetries.

As a result of light and heavy neutrino flavour e↵ects the Leptogenesis process is now

to be described through di↵erent sets of Boltzmann equations corresponding to the

di↵erent stages that the Leptogenesis era comprises. Within this setup it is not possible

to disregard the role that the heaviest neutrino species play in the production of the

final B � L asymmetry [103, 113]. Owing to the flavour e↵ects, we are therefore forced

to move beyond the N
1

Leptogenesis scenario, considering more complex frameworks,

the minimal leptogenesis scenarios [121], in which the B�L asymmetry depends on all

the 18 parameters that the Seesaw extension introduced.

An introspective analysis: density matrix formalism and

Boltzmann equations

Within the classical formalism of Boltzmann equations, the interplay of light and heavy

neutrino flavour e↵ects distinguishes between the ten di↵erent heavy neutrino mass pat-

terns reported in Figure 4.1. These are obtained in the limits where the masses obey the

hierarchical constraint Mi+1

> 3Mi for i = 1, 2 and do not fall in the transition regimes

which cannot be described within the proposed classical picture.

Given this premise, in Chapter 4 we generalised the density matrix formalism for the

calculation of the matter-antimatter asymmetry in Leptogenesis [103,112,114] account-

ing for the heavy neutrino flavour e↵ects. Our result is a set of density matrix equations

which can be employed to describe the evolution of the B�L asymmetry for any choice

of the heavy neutrino masses.

Within this more general description, the ten hierarchical mass patterns of Figure 4.1

correspond to the cases in which only one of the five relevant Yukawa interactions is

e↵ective within each given range of temperatures. As we showed, in these cases the

evolution of the asymmetry can be described through separated stages where the density

matrix equations always recover one of the sets of Boltzmann equations proposed in

the Chapter 3, depending on the temperature regime and therefore on the relevant

lepton Yukawa interaction. We consequently confirmed and extended the results that we

derived within the simpler description previously proposed, based on the instantaneous

collapse of the wave function of the involved quantum states.
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In particular, the projection e↵ect that characterises the interplay between heavy neut-

rino flavour states, is confirmed. In fact, also within the rigorous density matrix de-

scription of Leptogenesis, the orthogonal component of the B � L asymmetry that the

heaviest neutrino species generate escapes the washout performed by the lightest heavy

neutrinos. At the same time we also proved that the parallel components of these

asymmetries are instead washed out, with the resulting suppression factor that recovers

the value previously given within a classical treatment, independently of the considered

washout regime – cf. Section 4.2.2.

Beside this, the phantom terms emerge as genuine feature of flavoured Leptogenesis.

As proved by eq. (4.1.51) , di↵erently from the expectations of the classical calculation,

these contributions should be taken into account even in thermal scenarios where a van-

ishing initial abundance is imposed to the heavy neutrinos.

In this regard, the discrepancy between the density matrix formulation and the classical

treatment of the phantom terms that we highlighted is due to the gauge interactions,

which were neglected in the latter approach. Once the e�cient thermalisation that these

interactions imply for the lepton and antilepton abundances is taken into account – cf.

eq. (4.1.42) – we are lead to conclude that, likewise the contributions proportional to

the total CP -asymmetry "i, the phantom terms also undergo a washout process at the

production. Interestingly, the corresponding washout rate is half the one acting on the

total asymmetry.

This being said, notice that the phantom terms contribute to the final asymmetry even

in scenarios where the production, due to a certain heavy neutrino, is followed by the

washout performed by a lighter neutrino species within the same fully flavoured re-

gime. Their presence therefore goes beyond the N
2

-dominated scenario where they were

originally discussed [117].

It would be desirable in future to calculate the asymmetry beyond the ten asymp-

totic limits presented, solving the full density matrix equations in which more than one

lepton Yukawa interactions are simultaneously active. In this way our description of the

matter-antimatter asymmetry evolution would be suitable for a generic heavy neutrino

mass pattern, including also the cases in which the Leptogenesis process of a heavy

neutrino species falls within one of the indicated transition regimes. These general solu-

tions should therefore also hold when the quantum decoherence e↵ects, induced by the

charged-lepton Yukawa interactions, are balanced by the neutrino Yukawa interactions

that drive the asymmetry generation and the washout process. In this way an e↵ective

interpolation between the asymptotic limits of the two regimes under analysis could be

given, consequently allowing for the identification of the exact conditions under which

the density matrix formalism proposed can be abandoned in favour of a simpler classical

treatment.
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The problem of initial conditions in Leptogenesis

The rigorous density matrix formulation that we proposed in Chapter 4 availed the

classical description of Leptogenesis proposed within the di↵erent fully flavoured regimes

in Chapter 3. Adopting the latter for its simplicity, we subsequently focused in Chapter 5

on the evolution of the preexisting asymmetry Npreex
B�L . We already remarked how, within

N
1

Leptogenesis, this component is easily controlled by imposing a strong washout

regime. Nevertheless, when the interplay of light and heavy neutrino flavour e↵ects is

considered, the preexisting asymmetry is given many ways to evade an e�cient washout.

The importance of this tedious component follows form the linearity of the Boltzmann

equations. The amount of B � L asymmetry present in our Universe at the end of

the Leptogenesis process, in general, comprises in fact two contributions. The first one

is due to the out-of-equilibrium decays of the heavy neutrinos, therefore is completely

determined by the Leptogenesis process. The other contribution is given instead by the

residual value of the preexisting asymmetry, as found after the Leptogenesis era – cf

eq. (5.1.1). Whereas within every Leptogenesis model we can calculate the suppression

that this preexisting contribution receives, owing to the washout processes operated by

the inverse-decays of the heavy neutrinos, a precise calculation of its initial abundance is

not viable at the moment. The latter would in fact rely on an accurate description of the

state of the Universe after the Inflation era and the magnitude of the residual preexisting

asymmetry is therefore unknown. A priori, there is consequently no reason to exclude

preexisting contributions large enough to dominate the final B � L asymmetry and

therefore the same baryon asymmetry of the Universe. In this way, if this component is

not addressed, the informations that BBN and CMB provide cannot be used to constrain

the Seesaw parameter space, as it is not clear how to disentangle the two contributions

in the final B � L asymmetry. In this sense Npreex
B�L thus represents an unknown and

problematic initial condition for all the models of Leptogenesis.

To address the problem that Npreex
B�L poses, we presented a systematic study in which the

light and heavy neutrino flavour e↵ects have been exhaustively addressed. Considering

all the mass patterns of Figure 4.1, we followed the evolution of the preexisting asym-

metry through the resulting Leptogenesis scenarios. Our procedure then selected only

the configurations leading to strong thermal Leptogenesis, which allows for the complete

washout of the preexisting component even if an initial abundance as large as O(1) is

assumed.

It is quite intriguing that there is only one well defined case, corresponding to the ⌧ N
2

dominated scenario, in which successful and strong thermal Leptogenesis are possible at

the same time. On one hand, the flavour e↵ects therefore seem to spoil the attractiveness

of thermal Leptogenesis, providing many ways for the preexisting asymmetry to avoid

the washout process. On the other, they indicate a well defined scenario in which the

Leptogenesis contribution necessarily dominates the baryon asymmetry of the Universe
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and, at the same time, the independence from possible preexisting asymmetries and the

initial conditions therein incapsulated is ensured.

In the setup we propose, as a consequence of the strong thermal Leptogenesis conditions

we identified, the final B�L asymmetry is necessarily produced by the decays of the next-

to-the-lightest heavy neutrino species, N
2

, prevalently in the ⌧ flavour. It is remarkable

that this kind of model emerges naturally within the context of grand unified theories.

An important example that we discussed in detail is provided by the SO(10)-inspired

model [3,141–143,145,146], that could therefore explain the observed baryon asymmetry.

A detailed analysis of the strong thermal conditions and their implications within the

SO(10)-inspired model has been presented in Chapter 6 and will be discussed in the

next Section.

To conclude our review of Chapter 5 we comment on the assumptions at the basis of

our analyses and indicate some caveats regarding the results that we have found.

• Beyond the hierarchical limit.

Our conclusions have been derived assuming the heavy neutrino masses obey the

hierarchy imposed by Mi+1

> 3Mi for i = 1, 2. Releasing this assumption, if

the two lightest heavy neutrinos have a similar mass below 109 GeV successful

Leptogenesis is possible owing to the resonant enhancement presented by the CP -

asymmetries [85]. On top of that, as in this configuration the relevant dynamics

takes place in the three flavour regime, before the onset of Leptogenesis the preex-

isting leptons and antileptons responsible for the preexisting asymmetry break

down to an incoherent mixture comprising all the light flavour states. In this case,

as discussed in Chapter 5, an e�cient washout of the preexisting component is

enforced simply by imposing K
1↵ & 10 on all the light flavours. Clearly this would

not spoil the successful Leptogenesis condition, leading for example to the scenario

described in [93].

Less trivially, also a scenario where all the heavy neutrino masses are quasi-

degenerate should realise successful strong thermal leptogenesis for any value of

Mi. In this regard, our results were obtained under the assumption that the

washout processes operated by di↵erent heavy neutrinos occur at di↵erent stages.

In this way we can employ the projection e↵ect, as validated by our analysis in

Chapter 4. Under these assumptions, in fact, at any stage there is a well defined

flavour basis where the density matrix can be taken of the diagonal form. If the

washout processes of di↵erent heavy neutrinos occur simultaneously along three

di↵erent directions, it is seems clearly enough the latter be linearly independent to

carry out an e�cient washout of a preexisting asymmetry. However, we remark,

this heuristic argument should first be proven within a rigorous density matrix

formulation.
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• Supersymmetry and multiple Higgs scenarios.

In the case of supersymmetric models, and likewise in framework invoking more

than one Higgs doublet, the charged-lepton Yukawa interactions proceed faster

than in the Standard Model and the condition Mi . 109 GeV, denoting the be-

ginning of the three flavour regime, is relaxed to [157] Mi ⌧ 109 GeV (1 + tan2 �).

On the other hand, the lower bound on the heavy neutrino mass for successful

Leptogenesis does not change significantly. Therefore, if 1 + tan2 � & 20, it is

possible to have a complete washout of the preexisting asymmetry by imposing

K
1e, K1µ, K

1⌧ & 10 and, at the same time, successful Leptogenesis from the N
1

decays. In other words, within this class of models, it is possible that the tradi-

tional N
1

-dominated scenario lead to strong thermal Leptogenesis.

• Phantom Leptogenesis. In our analysis we assumed that the flavour composi-

tions of the preexisting leptons and antileptons are the same. If the corresponding

quantum states are instead allowed a di↵erent flavour composition, we have to

take into account the possible presence of phantom terms, as well as the addi-

tional contributions to the flavoured asymmetries that is consequently originated.

Phantom terms clearly provide further ways for a preexisting asymmetry to avoid

an e�cient washout in all the proposed scenarios but the ⌧ N
2

-dominated one [2].

In fact, for the proposed setup, within the N
2

Leptogenesis phase the possible

phantom term in the ⌧ flavour is exposed owing to the e↵ect of the corresponding

Yukawa interaction. The condition K
2⌧ & 10 then ensures its complete washout.

The remaining phantom terms, hidden in the e and µ flavours, are washed out in

a similar way during the N
1

Leptogenesis stage: first these components are singu-

larly resolved within a three-flavour regime, then the remaining strong conditions

K
1e, K1µ & 10 ensure their suppression.

The further aspect concerning the di↵erent flavour compositions of the involved

heavy neutrino flavour states is addressed in a similar way. Within the ⌧ N
2

-

dominated scenario, phantom terms could only appear in connection to possible

di↵erences in the flavour compositions of the heavy neutrino flavour states |`
2

i
and |`

2

i, It is then clear that in the proposed setup the same strong conditions

K
2⌧ , K1e, K1µ & 10 would ensure again the complete washout of these elusive com-

ponents. The solutions which respect the strong thermal leptogenesis conditions

are consequently independent of the unknown initial conditions encapsulated in

the preexisting asymmetry, and also una↵ected by possible discrepancies in the fla-

vour compositions of the heavy neutrino flavour states which generated the B�L

asymmetry.
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A well defined framework: SO(10)-inspired Leptogenesis

The subject of Chapter 6 is a concrete example of minimal Leptogenesis scenario: the

SO(10)-inspired model. As we remarked before, the type I Seesaw extension we consider

brings eighteen new parameters in the game, which regulate the masses and mixings of

the heavy and light neutrinos. Currently the dedicated experiments provide only indic-

ations on five of these quantities, hence the predictive power of the proposed framework

could indeed be questioned.

In order to perform a first test of the Seesaw parameter space it is therefore necessary to

provide further constraints, invoking models of new Physics or extending the involved

phenomenology. In this regard, after adopting a suitable parametrization, we consider

the additional conditions provided by the SO(10)-inspired relations [79,141,144]. Within

this framework, which draws from the SO(10) grand unified theories, the neutrino Dirac

masses resulting form the new Yukawa interactions that the Seesaw extension introduced

are proportional to the ones of the up-type quarks. Furthermore the matrix VL, that

regulates the mixing of the left-handed components of the light neutrino fields, is to be

modelled here after the CKM matrix. In total the low energy neutrino experiments and

the SO(10)-inspired conditions therefore provide eleven constraints, adding on to the

information regarding the baryon asymmetry of the Universe that we can employ owing

to Leptogenesis. Hence, as the parameters which remain unconstrained are six phases,

an exploration of the parameter space associated to the model is now in reach.

Considering a thermal scenario and negligible discrepancies in the flavour composition

of the heavy neutrino flavour states, we began our investigation by reproducing and ex-

tending the results previously obtained in [142,143] under the assumptions of successful

Leptogenesis. We performed this preliminary analysis for both the possible orderings of

the light neutrino mass spectrum, confirming that the SO(10)-inspired relations indeed

lead to a N
2

-dominated scenario under the current assumptions. In the case of nor-

mal ordering, reported in Figure 6.1, our work confirmed the presence of two adjacent

regions of the parameter space which lead to successful Leptogenesis. The parameter

discriminating between these solutions is m
1

, with a boundary found for m
1

' 10�2 eV.

A similar situation is presented by mee, where mee ' 10�2 eV delineates two separated

regions both linear in ✓
13

. This coincidence is explained by the strong correlation that

the required values of the Majorana phases impose in this model between m
1

and mee,

testified by the relative plot.

Regarding the results obtained for the inverted ordering of the light neutrino mass spec-

trum, this preliminary analysis confirmed the presence of a lower-bound on ✓
23

. More

importantly, the predictions on m
1

and mee are significantly di↵erent from the cor-

responding solutions presented by normal ordering. In fact, as delineated in previous

studies [143], this could allow for a future test of the neutrino mass ordering itself within

the SO(10)-inspired model.
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Attracted by the features of strong thermal Leptogenesis, we investigated the compat-

ibility of the proposed model with the ⌧ N
2

-dominated scenario discussed in Chapter 5.

Assuming di↵erent values for the initial preexisting asymmetry, we performed a scan of

the parameter space of the model selecting only the regions were successful and strong

thermal Leptogenesis are allowed at the same time. Our results show that a well defined

subset of the proposed successful solutions respects the non trivial conditions which allow

for the complete washout of the preexisting asymmetry. Interestingly, even the cross-

check presented in Figure 6.3 highlights some important results. At a first glance, in fact,

it is already clear that the successful strong thermal solutions of the SO(10)-inspired

model exclude the inverted ordering of the light neutrino mass spectrum. Further to

that, our analysis confirms the results in [2], proposing a ⌧ N
2

-dominated scenario as

the only possible setup that allows for the required kind of solutions. In this regard,

notice that the values that our procedure selected for the flavoured decay parameters

and the heavy neutrino mass spectrum recover the same bounds that our previous study

pointed out. In light of these results, the failure of strong thermal Leptogenesis solutions

for an inverted ordering of the light neutrino masses can be attributed to K
1µ, which

here satisfies K
1µ . 10.

Encouraged by the successful outcome of our cross-check, we consequently focused on

the impact that the successful strong thermal solutions have on the predictions of the

SO(10)-inspired model. Disregarding the possibilities o↵ered by the inverted order, the

solutions we propose selected once again well defined subspaces in the parameter space

of the model, giving rise to sharp predictions which the neutrino experiments are already

testing – Figure 6.4.

It is the case of ✓
13

, one of the angles contained in the PMNS matrix, which recently has

been subject of an extensive investigation [35–39]. In trend with the latest results, the

successful strong thermal solutions show a net preference for large values of this mixing

angle, placing the lower-bound ✓
13

& 2�. We stress on the importance of this first result,

which underlines the agreement between the proposed theoretical framework and the

latest experimental picture.

A further important result concerns another mixing angle: ✓
23

. The successful strong

thermal solutions of the model predict in fact a stringent upper-bound, ✓
23

. 41�, which

also is in line with the latest global analyses of neutrino data [34] and, potentially, allows

the identification of the framework we are proposing.

Another important indication supporting our scenario is potentially provided by JCP ,

the Jarlskog invariant, which barring a little number of configurations is negative within

this scheme.

On top of that, we showed the remarkable predictions that the model delivers for m
1

and mee, respectively the lightest neutrino mass and the Majorana e↵ective mass.

Owing to the precise values that our procedure selected for the Majorana phases,

the SO(10)-inspired model highlights for both these quantities the bound m
1

, mee 2
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(1 – 3) ⇥ 10�2 eV. These constraints, which nicely fall within the reach of the dedic-

ated next generation experiments, encapsulate the signature of the proposed framework

and therefore provide a straightforward way to test the strong thermal solutions of the

SO(10)-inspired model.

The last topic we faced in our exploration of this attractive scenario is the stability of

the above conclusions with respect to the experimental data. The proposed analysis

disregarded, so far, any information on the likelihood of the selected configurations that

neutrino oscillations experiments and CMB provide. To address this issue and refine

our investigation, we consequently modelled the available experimental informations in

a set of independent probability distribution functions. Then we derived a collective

distribution function, which describes the parameter space of the model under the as-

sumption that the baryon asymmetry of the Universe is e↵ectively produced according

to the proposed framework. We remark that the adopted method clearly neglects any

possible correlation between the involved parameters, relying furthermore on approxim-

ate probability distribution functions to describe the behaviour of the latter. Hence, far

from being a rigorous statistical analysis of the model, our attempt is to be regarded as

a first step in this direction.

Given this premise, in Figure 6.6 and 6.7 we compare the scatterplots previously ob-

tained to the corresponding joint probability distribution functions, derived under the

hypothesis of successful SO(10)-inspired Leptogenesis.

The impact of our improved treatment is clearly exposed by the visible reduction of

the subspace associated to the successful Leptogenesis solutions. In this regard, we

emphasise that the adopted statistical considerations nevertheless confirm the presence

of the same regions that were previously associated to the ⌧ N
2

-dominated scenario.

This fact can therefore be regarded as the proof supporting the stability of our conclu-

sions that we were seeking. More in detail, the bounds that we previously derived are

substantially unmodified by this refined analysis and consequently maintain their full

predictive power, with the only notable exception of ✓
13

. In the case of this quantity,

in fact, the statistical analysis alone implies the stringent lower-bound ✓
13

& 4.5�, for

m
1

2 (1 – 5)⇥10�3 eV at a confidence level of 95%, which clearly overrides our previous

result. The new constraint is then substantially left unmodified if the strong thermal

conditions are imposed, yielding m
1

2 (1 – 5)⇥ 10�3 eV at the same confidence level.

Summing up, we presented an extensive analysis of the attractive scenario of Leptogen-

esis provided by SO(10)-inspired model. Our investigation focused on the compatibility

of this framework with the successful strong thermal solutions identified in the ⌧ N
2

-

dominated scenario. It would be interesting in the future to test the stability of the

proposed results accounting for the e↵ects introduced by the flavour coupling and ad-

dressing the running of the involved Yukawa couplings. Beside this, it would be also

interesting to investigate the impact of a proper statistical treatment, improving on the

method that we adopted in our investigation.
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Appendix A

Leptons in The Standard Model

In this Appendix we settle down our conventions by reviewing selected topics regarding

leptons within the Standard Model.

A.1 Fields and Symmetries

Before the symmetry breaking, the lepton sector of the Standard Model is described in

terms of a non-Abelian field theory, built on the SU(2)L ⇥ U(1)Y symmetry group of

Weak Isospin and Hypercharge [7].

The interactions associated to the SU(2)L group of Weak Isospin couple non-trivially

only the left-handed components of the leptonic fields, denoted by a subscript “L”. The

generators of SU(2), Ia for a = 1, 2, 3, form the Lie algebra of the group and obey the

commutation relation

[Ia, Ib] = i"abc Ic, a, b, c = 1, 2, 3 (A.1.1)

with the tensor "abc, the structure constant of the group, being totally antisymmetric

under permutations of its indices and such that "
123

= 1. A representation of the

Lie algebra of SU(2) is a mapping of the generators onto a set of traceless Hermitian

matrices which respect the relation (A.1.1). In particular, an important bi-dimensional

representation of the algebra is obtained by mapping the generators onto the three Pauli

matrices:

Ia ! �a

2
, a = 1, 2, 3 (A.1.2)

where

�
1

= �x =

 

0 1

1 0

!

, �
2

= �y =

 

0 �i

i 0

!

, �
3

= �z =

 

1 0

0 �1

!

. (A.1.3)
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Once the fields are assigned to representations of the symmetry group, the action of an

element of SU(2) is defined by the transformation it induces on the fields themselves.

For Lie groups we can consider each finite transformation as a series of infinitesimal ones,

continually connected to the identity. As a consequence, we can relate the particular

transformation induced by an element of the group to a specific linear combination of

the group generators ✓ · I:

GSU(2)

(✓) = 1 + i✓ · I + · · · ' exp (i✓ · I) . (A.1.4)

It is therefore clear that representations of the group elements can be obtained from

the ones given for the generators by exponentiation. For example, in case of the bi-

dimensional representation discussed above, we have:

GSU(2)

(✓)! USU(2)

(✓) = exp

✓

i

2
✓ ·�

◆

. (A.1.5)

The U(1)Y group accounts for the Hypercharge symmetry in the Standard Model.

Its generator is the Hypercharge operator Y , connected to I
3

and the generator Q of

Quantum ElectroDynamics by the relation

Q = I
3

+
Y

2
. (A.1.6)

Again a representation of the group elements, GY , is given by exponentiating the rep-

resentation of the generator, Y :

GY (⌘)! UY (⌘) = exp

✓

i⌘
Y

2

◆

. (A.1.7)

Thus, for the total symmetry group acting on the leptonic sector of the Standard Model,

we have

SU(2)L ⇥ U(1)Y 3 G(✓, ⌘) = GSU(2)

(✓)GY (⌘). (A.1.8)

and the generic element is given by:

G(✓, ⌘)! U(✓, ⌘) = USU(2)

(✓)UY (⌘) (A.1.9)

With respect to SU(2)L, leptons are assigned to three generations of doublets

`0↵L :=

 

⌫ 0
↵L

l0↵L

!

, ↵ = e, µ, ⌧ (A.1.10)

and three singlets l0↵R, which provide, after the Electro-Weak symmetry breaking, the

right-handed components to the fields corresponding to the massive charged-lepton. The

phase transition associated to this symmetry breaking is instead triggered by the Higgs
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doublet:

� :=

 

�+

�0

!

. (A.1.11)

The Hypercharge is assigned to fields as prescript by Table A.1, in order to produce

the correct electric charge for the associated particles after the symmetry breaking,

eq. (A.1.6). The transformations laws of the considered fields therefore are

`0↵L �! U(✓, ⌘) `0↵L = e
i

2✓ ·�� i

2⌘ `0↵L (A.1.12)

� �! U(✓, ⌘) � = e
i

2✓ ·�+

i

2⌘ � (A.1.13)

l0↵R �! U(✓, ⌘) l0↵R = e�i⌘ l0↵R (A.1.14)

where ↵ = e, µ, ⌧ . For local transformations, ⌘, ✓ ⌘ ⌘(x), ✓(x), the invariance of the

Standard Model Lagrangian requires the adoption of the covariant derivative

Dµ := @µ � igAµ · I� ig0 Bµ
Y

2
(A.1.15)

which introduces four gauge bosons and their interactions in the theory.

Field |I| I
3

Y

⌫↵L 1/2 1/2 -1

l↵L 1/2 -1/2 -1

l↵R 0 0 -2

�+ 1/2 1/2 +1

�0 1/2 -1/2 +1

Table A.1: Standard Model, the matter content of the leptonic sector.

A.2 Neutrinos and the charged current interaction

We focus now on a specific aspect of Weak Interactions after the phase transition, the

charged current interactions, which couple neutrinos to charged leptons and W bosons:

Llep
cc = � g

2
p

2
jµW Wµ + H.c.. (A.2.1)

jµW = 2
X

↵=e,µ,⌧

`0↵L �µ I
+

`0↵L (A.2.2)

The matrix I
+

:= (�
1

+ i�
2

)/2 of eq. (A.2.2) is the raising operator in the SU(2)L

algebra, associated to the gauge field Wµ :=: (A
1

� iA(2))/
p

2. Then, considering the
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explicit form of I
+

, eq. (A.2.2) and (A.2.1) become

Llep
cc = � gp

2

X

↵,�=e,µ,⌧

h

⌫ 0
↵L �µ (U l†

L )↵� l�L
i

Wµ + H.c. (A.2.3)

where l�L are the left handed components of the fields corresponding to the charged

lepton mass eigenstates, defined by the diagonalisation of the charged lepton Yukawa

term

LSM � Llep
m = �v

X

↵,�=e,µ,⌧

l0↵L y↵� l0�R + H.c. (A.2.4)

= �v
X

↵=e,µ,⌧

(Dy)↵ l↵Ll↵R + H.c. (A.2.5)

with y = U l†
L Dy U l

R and

0

B

B

@

leL

lµL

l⌧L

1

C

C

A

:= U l
L

0

B

B

@

l0eL

l0µL

l0⌧L

1

C

C

A

=

0

B

B

@

eL

µL

⌧L

1

C

C

A

,

0

B

B

@

leR

lµR

l⌧R

1

C

C

A

:= U l
R

0

B

B

@

l0eR

l0µR

l0⌧R

1

C

C

A

=

0

B

B

@

eR

µR

⌧R

1

C

C

A

. (A.2.6)

It should be now stressed that the Lagrangian of the SM does not provide a mass term for

neutrinos, which are therefore purely massless particles within this theory. Consequently

we can pick an arbitrary basis for the fields associated to the degenerate neutrino mass

eigenstates, as no unique prescription for a rotation corresponding to eq. (A.2.6) is given

for these particles. In particular we can choose the mass eigenstate basis in a way that

the related field ni satisfy

niL =
X

↵=e,µ,⌧

(U l
L)i↵ ⌫ 0

↵L, i = 1, 2, 3 (A.2.7)

diagonalising by net equation eq. (A.2.3) in the flavour space:

LSM � � gp
2

X

i=1,2,3
↵=e,µ,⌧

[niL �µ �i↵ l↵L] Wµ + H.c.. (A.2.8)

As a consequence the neutrino mass eigenstates created by the fields in eq. (A.2.7)

possess a definite flavour, determined by the coupling to a specific charged lepton mass

eigenstate.

Di↵erently, in theories which allow for massive neutrinos, the matrix U⌫
L and the as-

sociated left-handed components of the fields describing the neutrino mass eigenstates,

niL, are completely defined by the diagonalisation of the neutrino mass term. Hence
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eq. (A.2.3) generalises to

LSM /�Lm
⌫

6=0

cc = � gp
2

X

i=1,2,3
↵=e,µ,⌧

h

niL �µ (U †)i↵ l↵L
i

Wµ + H.c. (A.2.9)

where the PMNS mixing matrix U is given by:

U := U l
L U⌫†

L . (A.2.10)

The PMNS matrix thus provides a measure of the mismatch between two basis, which re-

spectively diagonalise the charged-lepton mass matrix and the neutrino one. The flavour

neutrino fields involved in the charged current interactions are, therefore, superpositions

of the left-handed components of the fields ni

⌫↵L ⌘
3

X

i=1

U↵i niL, ↵ = e, µ, ⌧. (A.2.11)

corresponding to the neutrino mass eigenstates.





Appendix B

On the definition of baryon

asymmetry

In this Appendix we focus on the definition of baryon asymmetry given in eq. (1.2.1).

In the expanding Universe a unitary comoving volume corresponds to a physical volume

of size V (t) = R(t)3 =
�

a(t)R
0

�

3

, where R(t) is the scale factor of the Friedmann-

Robertson-Walker metric and the subscript “0” refers to quantities calculated at the

reference time t
0

. Hence, for the definition of entropy

S / g?ST 3a3R3

0

(B.0.1)

it is clear that the entropy per coming volume is conserved during the expansion of the

Universe, provided that g?S is constant. The latter quantifies the contribution to the

entropy of a relativistic species i in thermal equilibrium with radiation. Explicitly

g?S :=
X

i=bosons

gi +
X

i=fermions

7

8
gi. (B.0.2)

where gi is the internal number of degrees of freedom that the species i possesses. Going

further, eq. (B.0.1) implies

T / g�1/3
?S (aR

0

)�1 (B.0.3)

and therefore

T = T
0

✓

g?S,0
g?S

◆

1/3

a�1. (B.0.4)

Recalling now that the photon number density

n� =
⇣(3)

⇡2

g� T 3 (B.0.5)
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scales with the Universe expansion as

n� / a�3 R�3

0

if g?S = const. (B.0.6)

it follows that n� is implicitly a measure of the physical size of a unitary comoving

volume. Notice also that equation (B.0.4) implies

n� = n�,0
g?S,0
g?S

a�3 (B.0.7)

while the net baryon density is diluted by the Universe expansion in the same way as

n� :

nB � nB =
�

nB � nB

�

0

a�3. (B.0.8)

Hence, the baryon asymmetry of the Universe defined by

⌘B :=
nB � nB

n�
(B.0.9)

implicitly provides a measure of the net number of baryons contained in a unitary co-

moving volume. Furthermore, in absence of baryon violating interactions, the evolution

of ⌘B is regulated by

⌘B,0 = ⌘B
g?S,0
g?S

. (B.0.10)

accounting for the dilution factor due to photon production.
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The rescaled amplitudes Ci↵ and

the CP-asymmetries

The present Appendix is dedicated to the relation between the CP -asymmetries and the

rescaled amplitudes Ci↵ and Ci↵.

The CP -asymmetries are traditionally evaluated through an explicit calculation of the

diagrams in Figure 2.1 [85, 102, 158]. This straightforward approach, despite leading to

the correct result for "i↵, is however not well-formulated under a formal point of view.

In fact, the employed S-matrix formalism is able to describe only processes between

input and output asymptotic states that correspond to stable physical particles. In the

depiction of Quantum Field theories o↵ered by the Feynman diagrams, these states are

associated to fully-renormalised external legs, involving dressed propagators that account

for all the relevant quantum corrections. For stable particles, the S-matrix element under

investigation can then be evaluated considering the necessary amputated diagrams, as

well as the renormalisation factors that the external lines involve [159]. Unfortunately

the same procedure does not hold in case of unstable particles: the associated self-energy

diagrams have non-zero imaginary parts, consequently the corresponding counterterms

spoil the unitarity of the S-matrix as the renormalised Lagrangian is no longer Hermitian.

The properties of unstable particles are then to be inferred only from the study of the

on-shell scattering processes that the same particles mediate. This rigorous approach has

been previously applied to Leptogenesis, [160] and [120], confirming the results obtained

from a naive calculation of the decay diagrams.

Adopting the formalism proposed in [160] and [120], we provide now a rigorous definition

for the factors Ci↵ and Ci↵ which appear in the expressions for the heavy neutrino flavour

states

|`ii :=
X

↵=e,µ,⌧

Ci↵ |`↵i (C.0.1)
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|`ii :=
X

↵=e,µ,⌧

Ci↵ |`↵i . (C.0.2)

The relations presented in Section 3.2.1, reported below for convenience

|Ci↵|2 =
�i↵

�i
(C.0.3)

�

�Ci↵

�

� =
�i↵

�i
(C.0.4)

suggest that Ci↵ and Ci↵ can be interpreted as rescaled flavoured amplitudes for the

associated decay process of a heavy neutrino Ni. At the tree-level, we therefore identify

C0

i↵ =
h↵i

p

(h† h)ii

C0

i↵ =
h⇤
↵i

p

(h† h)ii
(C.0.5)

while, at one-loop level, our rescaled amplitudes read

Ci↵ =
1

p

(h†h)ii � 2<(h†h⇠u)ii
[h↵i � (h ⇠u)↵i] (C.0.6)

Ci↵ =
1

p

(h†h)ii � 2<(h†h⇠⇤v)ii
[h⇤
↵i � (h⇤ ⇠v)↵i] (C.0.7)

and the quantum correction generated by the self-energies and the vertex diagrams have

been modelled in the functions ⇠u and ⇠v. More in detail, introducing the diagonal mass

matrix Mki := Mi�ki, the proposed corrections comprise two contributions [160], [120]:

⇥

⇠u(M
2

i )
⇤

ki
:=
h

uT (M2

i ) + Mb(M2

i )(h† h)TM
i

ki
⇥

⇠v(M
2

i )
⇤

ki
:=
h

vT (M2

i ) + Mb(M2

i )(h† h)M
i

ki
. (C.0.8)

The functions u and v enter the diagonalisation of the heavy neutrino propagator and

depend on the on-shell part of the latter, !ik(q2 = M2

i ), as well as on the self-energies

⌃N,ki(q2) ⌘ a(q2)(h† h)ki, where the involved loop factor a(q2) is also to be evaluated

on the mass-shell:

uki(M
2

i ) := !ki(M
2

i )
⇥

Mk⌃N,ik(M
2

i ) + Mi⌃N,ki(M
2

i )
⇤

vki(M
2

i ) := !ki(M
2

i )
⇥

Mk⌃N,ki(M
2

i ) + Mi⌃N,ik(M
2

i )
⇤

. (C.0.9)

The second term on the RHS of eq. (C.0.8) is instead due to the vertex correction, being

b(q2) the relevant loop factor.

It can be easily checked that generally ⇠v 6= ⇠⇤u, therefore Ci↵ 6= C⇤
i↵ and a di↵erent

flavour composition of leptons and antileptons is implied.
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We can now employ the presented rescaled amplitudes to calculate the flavoured and

the total CP -asymmetries. Defining the di↵erence within the flavoured branching ratios

�pi↵ := |Ci↵|2 � ��Ci↵

�

�

2

, from eq. (3.2.27) in fact it follows

�pi↵ ' 2(p0i↵ "i � "i↵) (C.0.10)

where we neglected terms of orders higher than O(h6

↵i) and the factor “2” on the RHS is

due to the fact that decay rates have been summed over the SU(2)L index. A straight-

forward calculation of �pi↵ can be performed starting from eq.s (C.0.6) and (C.0.7),

resulting in

|Ci↵|2 � ��Ci↵

�

�

2

=
1

(h† h)ii

X

k

n

4MiMk Im
⇥

bki(M
2

i )
⇤

Im
h

h⇤
↵ih↵k(h

† h)ik
i

(C.0.11)

+ 4Mk Re
⇥

!ki(M
2

i )
⇤

Im
⇥

a(M2

i )
⇤

Im
h

h⇤
↵ih↵k(h

† h)ik
i

+ 4Mi Re
⇥

!ki(M
2

i )
⇤

Im
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�

.

As a next step we plug in the expression for the on-shell loop coe�cients, given by

Im
⇥

a(M2

i )
⇤

= �1/(16⇡) (C.0.12)

and

Im
⇥

bki(M
2

i )
⇤

=
1

16⇡MiMk
f(xk/xi) (C.0.13)

where xi ⌘ M2

i /M2

1

and f(x) =
p

x
�

1� (1 + x) log
�

1+x
x

��

. As for the real part of the

on-shell propagator we have

Re
⇥

!ki(M
2

i )
⇤

=
Mi(M2

k �M2

i )

(M2

k �M2

i )2 + (Mk�i �Mi�k)2
(C.0.14)

which further simplifies by neglecting the term (Mk�i �Mi�k)2 in the denominator,

corresponding to the assumption of hierarchical heavy neutrinos. In this way from the

last line of eq. (C.0.11) it follows by inspection

"i =
3

16 ⇡ (h† h)ii

X

j 6=i

Im
h

(h†h)2ij

i ⇠(xj/xi)
p

xj/xi
(C.0.15)

where the function ⇠(x) is as usual defined according to:

⇠(x) =
2

3
x



(1 + x) ln

✓

1 + x

x

◆

� 2� x

1� x

�

. (C.0.16)
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The flavoured CP -asymmetries are instead contained in the first three lines of eq. (C.0.11),

which correctly read

"i↵ =
3

16 ⇡(h† h)ii

X

j 6=i

(

Im
h

h⇤
↵ih↵j(h

†h)ij
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p

xj/xi
+

2

3(xj/xi � 1)
Im
h

h⇤
↵ih↵j(h

†h)ji
i

)

.

(C.0.17)



Bibliography

[1] S. Blanchet, P. Di Bari, D.A. Jones and L. Marzola, (2011), 1112.4528.

[2] E. Bertuzzo, P. Di Bari and L. Marzola, Nuclear Physics B 849 (2011) 521,

1007.1641.

[3] L. Marzola, Proceedings presented for the Electroweak Interaction and Unified

Theories session of the 47th edition of the Recontres de Moriond, 2012.

[4] S. Glashow, Nucl.Phys. 22 (1961) 579.

[5] A. Salam, Conf.Proc. C680519 (1968) 367.

[6] S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264.

[7] E. Abers and B.W. Lee, Physics Reports 9 (1973) 1.

[8] UA1 Collaboration, G. Arnison et al., Phys.Lett. B122 (1983) 103.

[9] UA1 Collaboration, G. Arnison et al., Phys.Lett. B126 (1983) 398.

[10] UA2 Collaboration, P. Bagnaia et al., Phys.Lett. B129 (1983) 130.

[11] UA2 Collaboration, M. Banner et al., Phys.Lett. B122 (1983) 476.

[12] S. Herb et al., Phys.Rev.Lett. 39 (1977) 252.

[13] D0 Collaboration, S. Abachi et al., Phys.Rev.Lett. 74 (1995) 2632, hep-

ex/9503003.

[14] CDF Collaboration, F. Abe et al., Phys.Rev.Lett. 74 (1995) 2626, hep-ex/9503002.

[15] DONUT Collaboration, K. Kodama et al., Phys.Lett. B504 (2001) 218, hep-

ex/0012035.

[16] CMS Collaboration, CERN preprint CMS-PAS-HIG-12-020 (2012).

[17] ATLAS Collaboration, CERN preprint ATLAS-CONF-2012-093 (2012).

[18] B. Pontecorvo, Soviet Journal of Experimental and Theoretical Physics 26 (1968)

984.

159



160 BIBLIOGRAPHY

[19] B. Pontecorvo, Soviet Journal of Experimental and Theoretical Physics 6 (1958)

429.

[20] Z. Maki, M. Nakagawa and S. Sakata, Progress of Theoretical Physics 28 (1962)

870.

[21] R. Davis, Phys. Rev. Lett. 12 (1964) 303.

[22] J.N. Bahcall, Phys. Rev. Lett. 12 (1964) 300.

[23] Kamiokande Collaboration, Y. Fukuda et al., Phys.Rev.Lett. 77 (1996) 1683.

[24] Super-Kamiokande Collaboration, J. Hosaka et al., Phys.Rev. D73 (2006) 112001,

hep-ex/0508053.

[25] GALLEX Collaboration, W. Hampel et al., Phys.Lett. B447 (1999) 127.

[26] GNO Collaboration, M. Altmann et al., Phys.Lett. B616 (2005) 174, hep-

ex/0504037.

[27] SAGE Collaboration, J. Abdurashitov et al., J.Exp.Theor.Phys. 95 (2002) 181,

astro-ph/0204245.

[28] Super-Kamiokande Collaboration, Y. Fukuda et al., Phys. Rev. Lett. 81 (1998)

1562.

[29] SNO Collaboration, Q. Ahmad et al., Phys.Rev.Lett. 89 (2002) 011301, nucl-

ex/0204008.

[30] KamLAND Collaboration, K. Eguchi et al., Phys.Rev.Lett. 90 (2003) 021802,

hep-ex/0212021.

[31] K2K Collaboration, M. Ahn et al., Phys.Rev.Lett. 90 (2003) 041801, hep-

ex/0212007.

[32] MINOS Collaboration, D. Michael et al., Phys.Rev.Lett. 97 (2006) 191801, hep-

ex/0607088.

[33] S.F. King, Contemporary Physics 48 (2007) 195.

[34] G. Fogli et al., Phys.Rev. D86 (2012) 013012, 1205.5254.

[35] CHOOZ Collaboration, M. Apollonio et al., Phys.Lett. B466 (1999) 415, hep-

ex/9907037.

[36] MINOS Collaboration, P. Adamson et al., Phys.Rev.Lett. 107 (2011) 181802,

hep-ex/1108.0015.

[37] T2K Collaboration, K. Abe et al., Phys.Rev.Lett. 107 (2011) 041801, hep-

ex/1106.2822.



BIBLIOGRAPHY 161

[38] DAYA-BAY Collaboration, F. An et al., Phys.Rev.Lett. 108 (2012) 171803, hep-

ex/1203.1669.

[39] RENO collaboration, J. Ahn et al., Phys.Rev.Lett. 108 (2012) 191802, hep-

ex/1204.0626.

[40] C. Kraus et al., Eur.Phys.J. C40 (2005) 447, hep-ex/0412056.

[41] V. Lobashev et al., Physics Letters B 460 (1999) 227 .

[42] S.M. Bilenky and S.T. Petcov, Rev. Mod. Phys. 59 (1987) 671.

[43] Majorana Collaboration, R. Gaitskell et al., (2003), nucl-ex/0311013.

[44] GERDA Collaboration, A.A. Smolnikov, (2008), nucl-ex/0812.4194.

[45] F. Feruglio, A. Strumia and F. Vissani, Nucl.Phys. B637 (2002) 345, hep-

ph/0201291.

[46] WMAP Collaboration, E. Komatsu et al., Astrophys.J.Suppl. 192 (2011) 18,

1001.4538.

[47] WMAP Collaboration, N. Jarosik et al., Astrophys.J.Suppl. 192 (2011) 14,

1001.4744v1.

[48] A. Beach et al., Phys.Rev.Lett. 87 (2001) 271101, astro-ph/0111094.

[49] G. Steigman, Ann.Rev.Astron.Astrophys. 14 (1976) 339.

[50] A.G. Cohen, A. De Rujula and S. Glashow, Astrophys.J. 495 (1998) 539, astro-

ph/9707087.

[51] E. Kolb and M. Turner, The Early Universe (Westview Press, 1994).

[52] G. Steigman, Ann.Rev.Nucl.Part.Sci. 57 (2007) 463, 0712.1100.

[53] D. Kirkman et al., Astrophys.J.Suppl. 149 (2003) 1, astro-ph/0302006.

[54] G.F. Smoot et al., Astrophys.J. 396 (1992) L1.

[55] A. Strumia, Les Houches Summer School on Theoretical Physics, pp. 655–680,

2005, hep-ph/0608347.

[56] A. Sakharov, Pisma Zh.Eksp.Teor.Fiz. 5 (1967) 32.

[57] G. ’t Hooft, Phys. Rev. Lett. 37 (1976) 8.

[58] F.R. Klinkhamer and N.S. Manton, Phys. Rev. D 30 (1984) 2212.

[59] M. Kobayashi and T. Maskawa, Progress of Theoretical Physics 49 (1973) 652.

[60] CKMfitter Group, J. Charles et al., Eur.Phys.J. C41 (2005) 1, hep-ph/0406184.



162 BIBLIOGRAPHY

[61] W. Bernreuther, Lect.Notes Phys. 591 (2002) 237, hep-ph/0205279.

[62] V. Rubakov and M. Shaposhnikov, Usp.Fiz.Nauk 166 (1996) 493, hep-ph/9603208.

[63] M. Gavela et al., Mod.Phys.Lett. A9 (1994) 795, hep-ph/9312215.

[64] K. Jansen, Nucl.Phys.Proc.Suppl. 47 (1996) 196, hep-lat/9509018.

[65] N. Arkani-Hamed et al., 65 (2002) 024032, arXiv:hep-ph/9811448.

[66] M.C. Gonzalez-Garcia and M. Maltoni, Phys. Rept. 460 (2008) 1, 0704.1800.

[67] I. A✏eck and M. Dine, Nucl.Phys. B249 (1985) 361.

[68] M. Gell-Mann, P. Ramond and R. Slansky, Conf.Proc. C790927 (1979) 315.

[69] P. Minkowski, Physics Letters B 67 (1977) 421.

[70] R.N. Mohapatra and G. Senjanovic, Physical Review Letters 44 (1980) 912.

[71] T. Yanagida, Conf.Proc. C7902131 (1979) 95.

[72] M. Magg and C. Wetterich, Phys.Lett. B94 (1980) 61.

[73] R.N. Mohapatra and G. Senjanovic, Phys.Rev. D23 (1981) 165.

[74] G. Lazarides, Q. Shafi and C. Wetterich, Nucl.Phys. B181 (1981) 287.

[75] R. Foot et al., Z.Phys. C44 (1989) 441.

[76] E. Ma, Phys. Rev. D 73 (2006) 077301.

[77] C. Aulakh et al., Physics Letters B 588 (2004) 196 .

[78] A. Hartanto and L. Handoko, Phys.Rev. D71 (2005) 095013, hep-ph/0504280.

[79] G.C. Branco et al., Nuclear Physics B 640 (2002) 202, arXiv:hep-ph/0202030.

[80] S.L. Glashow, J. Iliopoulos and L. Maiani, Physical Review D 2 (1970) 1285.

[81] W. Buchmuller, R.D. Peccei and T. Yanagida, Ann. Rev. Nucl. Part. Sci. 55 (2005)

311, hep-ph/0502169.

[82] J.A. Harvey and M.S. Turner, Phys. Rev. D 42 (1990) 3344.

[83] E. Nardi et al., Journal of High Energy Physics 1 (2006) 68, arXiv:hep-ph/0512052.

[84] E.W. Kolb and M.S. Turner, Annual Review

of Nuclear and Particle Science 33 (1983) 645,

http://www.annualreviews.org/doi/pdf/10.1146/annurev.ns.33.120183.003241.

[85] L. Covi, E. Roulet and F. Vissani, Phys. Lett. B384 (1996) 169, hep-ph/9605319.



BIBLIOGRAPHY 163

[86] M. Flanz, E.A. Paschos and U. Sarkar, Phys.Lett. B345 (1995) 248, hep-

ph/9411366.

[87] W. Buchmüller, P.D. Bari and M. Plümacher, Nuclear Physics B 665 (2003).
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