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Summary

Calibration weighting provides an important class of techniques for the efficient
combination of data sources. These techniques have been developed under classical
sampling assumptions in the absence of non-sampling error. In practice, however,
calibration is often used to correct for non-response bias. This paper explores the
properties of calibration estimation in the presence of both nonresponse and
measurement errors. The ideas are illustrated with a simple example concerning the
estimation of the number of sight tests carried out in Great Britain.

1 Introduction
It is often desirable to make use of several data sources when producing statistical
estimates. First, a more accurate estimate may be achievable from a combination of
sources than from any single source. Second, the presence of common variables in
different data sources may lead to incoherence if estimates from the different sources are
produced separately.
Calibration estimation (Deville and Särndal, 1992) provides a valuable class of
techniques for combining data sources. The basic idea is to use estimates from one set of
sources, which may be treated as sufficiently accurate to act as ‘benchmarks’. Estimates
based on data from a further sample source are then adjusted so as to agree with these
benchmarks. The process of adjustment is called ‘calibration’. The constraints that the
estimates of the benchmarks based on this source should agree with the benchmarks are



called ‘calibration constraints’.
A practical attraction of calibration estimation is that it may be achieved computationally
in two straightforward steps. First, the benchmark information is used to construct a
simple set of weights for all units in the sample source and then these common weights
may be used to adjust any estimates based on this source. Such computation may be
implemented in software such as CALMAR, CLAN and GES developed at INSEE,
Statistics Sweden and Statistics Canada, respectively.
Simple examples of calibration estimation are provided by ratio estimation and
postratification. In the classical case it is assumed that population values are available for
an auxiliary variable and that these data are combined with sample data on some survey
variable to estimate the mean or total of this variable. In ratio estimation it is assumed
that the population total or mean of a continuous auxiliary variable is known. In
postratification it is assumed that the population proportions falling into the categories of
a discrete auxiliary variable are known. Classical sampling textbooks, such as Cochran
(1977), demonstrate how such techniques may lead to improved precision, i.e. reduction
of the variance of the sampling error, compared to estimators which make no use of the
auxiliary information.
The classical framework assumes that the auxiliary population information is correct and
that the sample source is obtained using a known probability sampling scheme. In
particular it is assumed that there are no sources of non-sampling error such as non-
response, noncoverage or measurement error. Within this framework, Deville and
Särndal (1992) demonstrate that a wide class of calibration estimators are consistent and
that the large-sample efficiency of many calibration estimators is equal to that of a
generalised regression estimator. The choice between alternative calibration estimators
may then depend more on non-asymptotic considerations such as the desirability for
weights to be non-negative and not too variable (e.g. Chambers, 1996). Alternative
calibration estimators might also be considered to improve efficiency (Montanari, 1987,
1998; Rao, 1994) or to reduce mean squared error by relaxing the calibration constraints
(Chambers, 1996).
In this paper, we go beyond the classical framework and allow, more realistically, for
non-sampling error. Calibration estimation is, indeed, widely used to reduce bias from
non-response (e.g. Bethlehem, 1988; Fuller et al, 1994) and noncoverage and some have
argued (e.g. Kalton and Flores-Cervantes, 1998) that, in practice, this is usually the main
purpose of such adjusted estimation. In this paper we shall allow for both nonresponse
and measurement error and consider to what extend calibration estimation leads to
improved estimation quality.

2 An Example: Estimating the Number of Sight Tests
To provide a simple illustration of the ideas developed in this paper we consider a simple
example. The British Department of Health wishes to produce estimates of the number
of sight tests carried out in Great Britain each year. Sight tests may be conducted by
either Optometrists or Ophthalmic Medical Practitioners, who will be referred to jointly
as ‘opticians’ for simplicity. A principal data source for estimates of numbers of sight
tests is the Sight Tests Volume and Workload Survey which involves the completion of
questionnaires and diary sheets by a sample of opticians. Sight tests may be divided
between private tests and tests which are funded by the government’s National Health
Service (NHS), part of the Department of Health. Roughly equal numbers of each type
of test have been conducted recently (in 1994/95 it was estimated that 50.3% of tests
were private). Administrative records are also kept of the number of NHS tests paid for



and these provide an alternative data source for producing estimates of the total number
of NHS tests carried out. This information may also be used for calibration estimation of
the numbers of all tests. For example, in one quarter of 1993-94 the number of NHS tests
estimated from administrative sources was

Tx = 1.672 M (M = million)
The corresponding survey estimate was

xsT̂ = 1.579 M

This estimate may be expressed as ∑= iixs xdT̂ where di is the basic survey weight, xi

is the number of NHS tests conducted by a sampled optician and the sum is over the
sample. A ratio estimate of the total of a variable yi then takes the form

∑= ,ywT̂ iiy  where ixsxii d059.1T̂/Tdw ==
and the sum is again over the sample. Note that the ratio estimate of the number of NHS
tests is

( )∑ ∑ ==== .M672.1T̂/TT̂T̂/TxdxwT̂ xsxxsxsxiiiix

Thus, the ratio estimation procedure constrains survey estimates so that the estimate of
the total number of NHS tests is equal to the benchmark value obtained from
administrative sources. This defines the calibration constraint.
The basic survey estimate of the number of private sight tests was 1.578M and so the
corresponding ratio estimate is 1.059 × 1.578 = 1.670M. Because the weighting is linear,
the ratio estimate of the number of all sight tests is 1.672 + 1.670 = 3.342M.

3 Calibration Methods
Suppose that the aim is to estimate the total Ty of a (scalar) variable yi across units i in a
population P. Data are assumed available from two sources. First, values yi

s and xi
s are

recorded in a sample survey for units in a set r of respondents. If yi is measured without
error in the survey then we simply write
yi

s = yi. Otherwise yi
s denotes the measured value, yi the true value and yi

s - yi the
measurement error. In general xi

s is a 1 × J vector of values.
A second source of data provides the vector Tx of population totals of the 1 × J vector xi

a

It is useful to distinguish two cases:
Case 1: xi

s = xi
a for all responding i, that is both data sources lead to identical

measurements;
Case 2: xi

s ≠ xi
a for some responding i, that is there is some variation between the

measurements obtained in the sources.
These two cases will be considered further in Section 5. In neither case will it be
necessary to introduce notation for true values corresponding to xi

s and xi
a. In the

classical framework it is assumed that yi
s = yi, xi

s = xi
a = xi, say, for all units i in the

respondent set r, which is drawn from the population using a probability sampling
scheme with known inclusion probabilities πi. In this case a general calibration estimator
of Ty is defined by

∑=
r

iiy ywT̂

where the weights wi are chosen to minimise ∑r iii )d,w(G , which measures the

distance between the wi and the design weights 1
iid −π= , subject to the following J



calibration constraints being obeyed:

.Txw
r

xii∑ =

Different choices of the functions Gi will lead to different estimators. The choice

ii
2

iiiii qd2/)dw()d,w(G −=  leads to the generalised regression (GREG) estimator
with a closed form expression for the optimal wi, namely
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r
iixs xdT̂  and the qi are constraints to be specified, usually dependent upon

an assumed variance function for yi given xi.
An important result of Deville and Särndal (1992) is that, within the classical framework
and under further regularity conditions, estimators yT̂  with different choices of function

Gi are asymptotically equivalent and, in particular, are all consistent for Ty with the same
asymptotic variance. Thus, the choice of function Gi will depend more on considerations
about the ease of computation of the wi or about the ‘small sample’ properties of the wi.
One of these properties concerns the occurrence of negative wi. In the classical
asymptotic framework, the weights wi will converge to the design weights as the sample
size increases and (under weak conditions) the probability that any wi is negative will
tend to zero (since all di are positive). In finite samples, however, some wi may be
negative and Gi might be chosen in order to avoid this possibility.
Another ‘small sample’ property is that the variance of the calibration estimator can
increase when there are very many calibration constraints and so some selection of
constraints (Nascimento Silva and Skinner, 1997) or weakening of these constraints to
the requirement that they only hold approximately (Chambers, 1996) may be desirable.

4 Nonresponse
In practice most surveys are subject to nonresponse and many sampling frames from
which the sample is drawn are subject to noncoverage. In this case, if auxiliary
population information is available then calibration estimation may be used to attempt to
reduce bias. Some adaption of the estimator will be necessary, however, since the
inclusion probabilities will generally be unknown and some may be equal to zero.
As in the classical framework we assume yi

s = yi and xi
s = xi

a = xi, say. The basic survey
weights di may now involve some adjustment of the reciprocals of the sampling
inclusion probabilities πi. One possibility, for example, would be to set di = (n/r)πi

-1,
where n is the intended sample size and r the number of respondents. In fact the choice of
adjustment may not have a great effect on bias (see Bethlehem, 1988; Lundström, 1997).
For example, the bias of the GREG estimator may be shown (following the approach of
Lundström, 1997) to be approximately
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 and θi is the

probability of unit i being
included in the data, that is the sampling inclusion probability πi multiplied by the
probability that a unit responds given that it is sampled. This result assumes the qi may be



expressed as a linear combination of the vector xi, i.e. qi = cxi
T. Now if the nonresponse

and sampling are ignorable given x and if y has a linear regression on x,
β=ξ iii x)x|y(E , then the model expectation of B is equal to β and is free of the

choice of adjustment used to define di . In any case it is clear that B is unaffected by the
multiplication of di by a constant such as (n/r).
Example: A simplified version of the sight test example from Section 2 follows. The
sampling design involves (mildly) disproportionate stratification and the basic survey-
based estimator is

∑=
r

iiys ,ydT̂

where di is the ratio of the population size to the number of respondents in the stratum
containing i. The ratio estimator is
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Under nonresponse the approximate expectations with respect to the response and
sampling mechanisms are
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Clearly both estimators are unbiased if 1
iid −θ= , which would occur here if

nonresponse is completely at random within strata. A common linear regression through
the origin across strata for y = number of all sight tests (or number of private tests) on x =
number of NHS tests ( )β= iii x)x|y(E  provides a good fit to the respondent data.
Assuming this model applies to both nonrespondents and respondents, so that
nonresponse is ignorable given x, the biases of the estimators with respect to both the
model and the response and sampling mechanisms are approximately

0)TT̂(E,x)1d()TT̂(E yyi
P

iiyys =−β−θ=− ∑
For this reason, the ratio estimator may lead to reduced bias if the rate of nonresponse
varies within strata according to the size variable xi, but not otherwise with respect to yi.
A further problem with nonresponse is concealed ‘overcoverage’. The sampling frame
consists of a set of registers of opticians who are qualified to undertake sight tests. Some
of the opticians on these registers are not in fact practising, for example because they
have retired or they are devoting their work to other activities, so that their values of yi
and xi will be zero. A greater proportion of nonrespondents than respondents may be
expected to fall into this group. This will tend to lead to upward bias in the survey-based
estimator ysT̂ . Because of this, some attempt is made to use estimated practising rates to

adjust the population sizes used to calculate the di. Problems in estimating practising rates
may, however, lead to further biases. Following a similar argument to that above, the
ratio estimator may be expected to be subject to less bias, even without adjusting for
estimated practising rates, provided it is reasonable to suppose that there is little
correlation between any variable regression slopes β in different strata and between any
different practising rates in different strata.
The calibration constraints imply that the calibration estimator will have zero error for
any choice of Gi function if yi is a linear combination of the elements of xi. In general,
however, the asymptotic bias of the calibration estimator will depend on the Gi function
when nonresponse is present, unlike the classical case. The classical asymptotic



distribution fails to hold, in particular because xsx T̂T −  no longer converges to a zero
vector in general. If the survey weights are taken to be proportional to the reciprocals of
the sample inclusion probabilities then one condition under which the calibration
estimator is approximately unbiased is when the probability of response φi is equal to
di/wi.. Clearly this condition varies for different choices of Gi function. For example,
Kalton and Maligalig (1991) note that this holds if the φi take a multiplicative form for a
raking ratio estimator.
A further general consequence of nonresponse is that the weights wi will not converge to
the original weights di as the sample size increases. For example, for the GREG
estimator

,)xq1(dw~w iiiii ψ+=→
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In particular, the presence of nonresponse may be expected to lead to negative weights
much more frequently.
Yet another consequence of nonresponse is that the variance of the calibration estimator
will be dependent on the Gi function and revised methods of variance estimation need to
be considered (Lundström, 1997).

5 Measurement Error
The possibility of measurement error in either the survey variables or the benchmark
variables is now considered. We first recall the distinction made in Section 3.
Case 1 (xi

s = xi
a for all responding i).

This arises for example in business surveys where the same source, a business register, is
used to derive both the values xi

s for the respondents and the xi values upon which the
auxiliary vector X is based.
Case 2 (xi

s ≠ xi
a for all responding i).

This arises when xi
s is obtained as a survey measurement, e.g. the number of NHS sight

tests reported by an optician, and the auxiliary total xi
a is based on a different data source,

e.g. administrative records.
These cases are treated in turn.
Case 1 (xi

s = xi
a)

In this case measurement error in the auxiliary variables will not tend to introduce bias
into the calibration estimator but only lead to a loss of precision. For example, suppose
that xi

a is the number of employees in a firm as recorded on a business register. If this
figure becomes out of date and thus subject to error, it may become less correlated with
the yi variables of interest and thus reduce precision in calibration estimates. The option
of replacing the register employment by a figure obtained in the survey may reduce the
variance of the estimator but is likely to introduce bias (see Case 2)).
The presence of zero mean measurement error in a continuous yi variable may be
expected to lead to a similar loss of precision in either the survey estimator or the
calibration estimator. Similarly the presence of measurement error with non-zero mean
may be expected to lead to a similar bias in either estimator.
Case 2 (xi

s ≠ xi
a)

In this case, the use of calibration estimation may introduce bias and be undesirable.
Steel (1997) provides an example on the use of Labour Force Survey data in Great



Britain to estimate the number of unemployed, according to the ILO definition. A
possible auxiliary variable for which the population total is known is the binary variable
xi, indicating whether or not a person claims unemployment benefit. Postratification by xi
may improve precision, reducing the variance by 35%. The problem is that claimant
status is underreported in the LFS so that xi

s ≠ xi
a. As a result postratification may lead to

the estimate of ILO unemployment being 12% too high. This bias effect far outweighs
the gain in precision in term of mean squared error.
Calibration estimation should not, however, be dismissed immediately in Case 2. It is
possible for it to reduce bias if yi is also subject to error. Consider, for example, the sight
test example, where yi

s = number of private sight tests recorded in survey, xi
s = number

of NHS sight tests recorded in survey,
xi

a = number of NHS tests recorded in administrative sources. Suppose that both yi
s and

xi
s are subject to the same kind of underreporting, common in diaries, so that yi

s = 0.9 yi
and xi

s = 0.9 xi
a (the administrative source here is assumed error free). Then the usual

survey estimator will be biased downwards by 10%. But, the ratio estimator will be
approximately unbiased because the underreporting in yi

s and xi
s cancel each other out.

Of course, the observed difference reported in Section 2 of M579.1T̂xs = and Tx =
1.672M could be due to error in the auxiliary figure Tx rather than underreporting in the
survey and so ratio estimation need not necessarily reduce bias here.
Finally, it is worth noting that in some circumstances, Case 2 can be changed to Case 1
by matching records between data sources and reconciling the xi

s and xi
a values. Often

this will be difficult or impossible, however, for practical or confidentiality reasons.

6 Testing for Non-Sampling Bias
Let di be the basic survey weight, possibly adjusted by some nominal response
probability, and let ∑= iixs xdT̂ be the corresponding basic survey estimator of the

vector of benchmarks Tx. If xsT̂ is asymptotically unbiased for Tx then calibration will
not affect asymptotic bias and, in particular, not introduce it if none is present. It may
therefore be useful to check whether this condition holds. A natural approach is to use a
Wald test based on the statistic

( ) ( ) ,TT̂VTT̂X
T

xxs
1

xxs
2
w −−= −

where V is an estimate of the covariance matrix of xsT̂ . If 2
wX  lies in the critical region

of the chi-squared distribution with J degrees of freedom then the hypothesis that xsT̂ is
asymptotically unbiased for Tx may be rejected. If this is the case then a variety of
possible explanation are possible. First, nonresponse or noncoverage may be differential
with respect to xi, in a way which is not controlled for by any initial adjustment of the di

weights. Second, there may be a systematic difference between the survey measures s
ix

and the auxiliary measures aix  (Case 2 of Section 5), that is measurement bias may
exist.
In order to distinguish between these rival explanations it is likely to be necessary to
make judgements which go beyond the data. In the sight tests example, both possibilities
seem plausible as initial hypotheses. Thus, it is plausible that nonresponse is differential
by workload and it is plausible that underreporting may occur in diary data. Follow-up of
the survey process seems necessary to investigate these hypotheses further.



7 Conclusions
Non-sampling errors are critical determinants of the quality of official statistics. They
may interact with calibration adjustments in complex ways and many of the classical
properties of calibration estimation no longer apply. We have outlined circumstances in
which calibration estimation may be expected to reduce bias from both nonresponse,
noncoverage and measurement error. We have also noted one instance where calibration
may introduce severe bias, i.e. when the measurement of the auxiliary variables differs
systematically between the survey and benchmark data sources. More research is needed
to investigate the properties of calibration estimates in the presence of non-sampling
errors, to investigate possible adjustments to calibration estimators e.g. using multiphase
information, to consider variance estimation of calibration estimators in the presence of
nonsampling errors and to consider strategies for the choice of calibration constraints and
estimators in the presence of non-sampling errors. See Lundström (1997) and Skinner
and Nascimento Silva (1997) for some further ideas on these issues.
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