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QUANTUM CHROMODYNAMICS

by Elaine Jennifer Goode

We present results for the ∆I = 3/2 K → ππ decay amplitude computed using

lattice quantum chromodynamics. The calculation is performed using 2 + 1 flavours

of domain wall fermion and the Iwasaki gauge action modified by the dislocation

suppressing determinant ratio, on a lattice volume of 323 × 64× 32 at lattice spacing

a−1 = 1.364 GeV. The resulting valence pion mass ismπ = 142.11 MeV, and the kaon

mass is mK = 505.5 MeV. A total of 146 configurations are analysed, giving ReA2 =

1.381(46)stat(258)syst × 10−8 GeV and ImA2 = −6.54(46)stat(120)syst × 10−8 GeV.

The experimental results for ReA0 and ReA2 and ǫ′/ǫ are combined with this lattice

result for ImA2 to give ImA0/ReA0 = −1.61(28) × 10−4.

We also present reslts from a second calculation where both the ∆I = 1/2 and

∆I = 3/2 K → ππ decay amplitudes are calculated. This calculation is performed

using 2 + 1 flavours of domain wall fermions with the Iwasaki gauge action and a

lattice size of 163 × 32 × 16. Since the evaluation of A0 is technically challenging,

this first ever determination of A0 is performed at threshold with a heavy pion mass

of mπ ∼ 420 MeV. The results are Re(A0) = 3.80(82) × 10−7 GeV and Im(A0) =

−2.5(2.2) × 10−11 GeV.
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Chapter 1

Introduction

A quantitative understanding of the origin of CP-violation, both within and beyond

the Standard Model, remains one of the principal goals of particle physics research.

It was in 1964 that indirect CP-violation in K → ππ decays was first

discovered [11], demonstrating that the neutral kaon mass eigenstates were not CP

eigenstates. More than twenty years after this discovery, direct CP-violation was

observed in neutral kaon decays [12, 13, 14, 15], where the CP-odd eigenstate of a

neutral kaon can decay to a two-pion state, which is CP-even.

Direct CP violation is characterised by the parameter Re(ǫ′/ǫ), which will be

defined in Chapter 2. While forty years of experimental effort have produced the

measured result Re(ǫ′/ǫ) = 1.65(26) × 10−3 [3], with only a 16% error, there is no

reliable theoretical calculation of this quantity based on the Standard Model.

The Cabibbo-Kobayashi-Maskawa (CKM) theory for the weak interactions of the

quarks, when combined with QCD, provides a framework describing in complete

detail all the properties and interactions of the six quarks. This framework appears

capable of explaining all observed phenomena in which these quarks participate.

However, to date, the non-perturbative character of low energy QCD has obscured

many of the consequences of the CKM theory. In particular, both the direct CP

violation seen in K meson decays and the factor of 22.5 enhancement of the I = 0,

K → ππ decay amplitude A0 relative to the I = 2 amplitude A2 (the ∆I = 1/2

rule) lack a quantitative explanation.
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Calculations of the K → ππ decay amplitudes are usually studied in the framework

of a low-energy effective theory, where the Hamiltonian is written in terms of local

low-energy operators, and the high energy effects of the W-boson and heavy quarks

are encoded in Wilson coefficients which can be calculated in perturbation theory.

Wilson coefficients evaluated at a QCD scale of about 2 GeV represent the short

distance physics and can be evaluated from the CKM theory using QCD and

electro-weak perturbation theory. However, these factors explain only a factor of

two enhancement of the I = 0 amplitude [16, 17]. The remaining enhancement must

arise from the hadronic matrix elements which require non-perturbative treatment.

Direct CP violation in kaon decays provides a critical test of the Standard Model’s

CKM mechanism of CP violation. Lattice QCD provides the opportunity of

computing the non-perturbative QCD effects in general and in hadronic

CP-violating processes in particular. A direct lattice calculation of K → ππ decay

is extremely important to provide an explanation for the ∆I = 1/2 rule and to test

the standard model of CP violation from first principles. A previous lattice QCD

calculation using 2+1 dynamical domain wall fermions failed to give a conclusive

result because of the large systematic errors associated with the use of chiral

perturbation theory at the scale of the kaon mass [18]. However, there are on-going

efforts using chiral perturbation theory [19]. Earlier quenched results [20, 21] are

subject to this same difficulty together with uncontrolled uncertainties associated

with quenching [22, 23, 24].

Major progress has been made in this thesis by peforming a calculation at

nearly-physical kinematics of the (complex) decay amplitude A2, corresponding to

the decay in which the two-pion final state has isospin 2. This represents the first

realistic ab initio calculation of a weak hadronic decay in Lattice QCD and forms

the main result of this thesis. The lattice ensemble on which this calculation is

performed is referred to in the Table of Contents and List of Figures as the IDSDR

lattices.

The evaluation of the isospin= 0 amplitude is an unusually difficult calculation

because a contribution from the vacuum obscures the K → ππ signal. The K → ππ

2



signal decays exponentially in Euclidean time while the vacuum contribution is

constant in time. Consequently, extracting the K → ππ signal from the noisy

background vacuum contribution requires the collection of large statistics. However,

with the continuing increase of available computing power and the development of

improved algorithms, calculations of this kind are now no longer out of reach.

This thesis takes a major step towards the computation of the physical I = 0

K → ππ amplitudes by performing a complete calculation at unphysical kinematics

with pions of mass 422MeV at rest in the kaon rest frame. With this simplification

it has been possible to resolve ReA0 from zero for the first time, with a 25%

statistical error. Methods for computing the complete, complex amplitude A0, a

calculation central to understanding the ∆ = 1/2 rule and testing the standard

model of CP violation in the kaon system, have also been developed. The lattices

on which this calculation is performed are referred to in the Table of Contents and

List of Figures as the 163 Iwasaki lattices.

The format for the rest of this thesis is as follows. In Chapter 2 an introduction to

kaon phenomenology and CP violation within the Standard Model is given. This

chapter defines the conventions used throughout the remainder of the thesis for the

K → ππ decay amplitudes and CP violating parameters ǫ′ and ǫ. Chapter 3

establishes the theoretical framework for the calculation of the K → ππ decay in

terms of the operator product expansion. The basis of operators used in the

calculation is made explicit and a description of how the high-energy contributions

are included in the form of Wilson coefficients is given. An introduction to Lattice

QCD is presented in Chapter 4, and the calculation of the renormalisation

constants which relate the bare operators used in the lattice calculation to suitably

renormalised operators is given in Chapter 5. The lattice evaluation of K → ππ

decays must necessarily take place in a finite volume. A detailed description of how

to account for this finite volume in the case of a two-pion final state is given in

Chapter 6. Technical details relating to the lattice calculation of K → ππ decays in

general are given in Chapter 7. The main work of this thesis, a calculation of A2 at

nearly-physical kinematics, is presented in Chapter 8. Chapter 9 includes the

results from the first ever calculation of A0, albeit at unphysical kinematics. In the

3



final chapter the conclusions from Chapters 8 and 9 are drawn together.
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Chapter 2

Kaon Phenomenology and CP

Violation

This chapter begins with an introduction to the phenomenology of K → ππ decays

and a definition of the conventions that will be used throughout the remainder of

the thesis. The chapter then goes on to discuss CP violation in neutral kaon decays,

before parameterising the CP violation in terms of K → ππ decay amplitudes.

2.1 Phenomenology

Single pions have isospin I = 1, with the third component of isospin, Iz = 1, 0,−1

for π+, π0 and π− respectively. A state containing two pions may then have isospin

I = 0, 1 or 2. In the decays of K → ππ, the two final state pions are in an l = 0

state. In order to obtain a symmetric state the total isospin must therefore be even.

This restricts the pions to be in a state with I = 0 or I = 2. Since kaons, which

contain one s-quark and one light quark have isospin I = 1/2, transitions to an

I = 0, 2 final state are referred to as ∆I = 1/2 and ∆I = 3/2 respectively.

The K → ππ decay amplitudes with isospin I and third component of isospin Iz are

defined as follows:

AI =
√
2
〈

(ππ)IIz=0|L|K0
〉

, (2.1)
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where the two-pion states of definite isospin are

∣

∣(ππ)I=2
Iz=2

〉

=
∣

∣π+π+
〉

(2.2a)

∣

∣(ππ)I=2
Iz=1

〉

=
1√
2

{∣

∣π+π0
〉

+
∣

∣π0π+
〉}

(2.2b)

∣

∣(ππ)I=2
Iz=0

〉

=
1√
6

{∣

∣π+π−
〉

+ 2
∣

∣π0π0
〉

+
∣

∣π−π+
〉}

(2.2c)

and

∣

∣(ππ)I=0
Iz=0

〉

=
1√
3

{∣

∣π+π−
〉

−
∣

∣π0π0
〉

+
∣

∣π−π+
〉}

. (2.2d)

In order to establish the conventions used throughout this calculation, the K → ππ

decay widths, which are measured experimentally, are written in terms of the

following decay amplitudes:

AK+→π+π0 ≡ A+0 =
〈

π+(p)π0(−p)
∣

∣LW

∣

∣K+
〉

(2.3a)

AKS→π+π− ≡ A+− =
〈

π+(p)π−(−p)
∣

∣LW |KS〉 (2.3b)

AKS→π0π0 ≡ A00 =
〈

π0(p)π0(−p)
∣

∣LW |KS〉 . (2.3c)

In terms of these amplitudes, the corresponding decay widths are

Γ+0 =
1

8π
|A+0|2

√

m2
K+/4− (m2

π+ +m2
π0)/2 + (m2

π0 −m2
π+)2/4m

2
K+

m2
K+

(2.4a)

Γ+− =
1

8π

|A+−|2
m2

KS

√

m2
KS

4
−m2

π+ (2.4b)

Γ00 =
1

16π

|A00|2
m2

KS

√

m2
KS

4
−m2

π0 . (2.4c)

The amplitudes in Eq. (2.3) can then be parametrised in terms of A0 and A2 as

6



follows:

A+− =

√

2

3
A2e

iδ2 +
2√
3
A0e

iδ0

A00 = 2

√

2

3
A2e

iδ2 − 2√
3
A0e

iδ0

A+0 =

√

3

2
A+

2 e
iδ2 .

(2.5)

Final state interactions of the two pions introduce the ππ phase shifts δI as

described by Watson’s Theorem [25]. This follows from the unitarity of the

scattering operator, which is used to provide a constraint for the transition operator

T , where T is defined by S = 1− iT . Matrix elements of T must obey

i(〈f |T |i〉 − 〈i|T |f〉∗) =
∑

n

〈n|T |f〉∗ 〈n|T |i〉 . (2.6)

In the special case of K → ππ followed by a strong final-state interaction of the two

pions, i = K and n = f = ππ. If the weak and strong matrix elements are denoted

|TW |eiδW and |TS |eiδS it follows from time-reversal invariance that δW = δS

In the presence of isospin violation, a ∆I = 5/2 contribution will distinguish

between the amplitudes A2 and A+
2 entering in the K0 and K+ decays respectively.

There are two sources of isospin breaking in the Standard Model. These are strong

isospin breaking due to mu 6= md and electromagnetic corrections. Electromagnetic

isospin breaking has I = 0, 1, 2 components, while to O(mu −md), strong isospin

breaking is purely I = 1. Thus a ∆I = 5/2 K → ππ transition can arise from either

a ∆I = 3/2 transition combined with strong isospin breaking effects, or a ∆I = 1/2

transition followed by the I = 2 component of the electromagnetic interaction. In

Eqns. 2.7 and 2.8 we will see that the ∆I = 1/2 transition is enhanced compared to

the ∆I = 3/2 transition, so the dominant ∆I = 5/2 effect is expected to arise from

electromagnetic isospin breaking [26]. However, if isospin breaking effects are

ignored then within the Standard Model we have A+
2 = A2. This is the assumption

made throughout this thesis. The effects of isospin breaking in K → ππ decays and

in two-pion scattering have been investigated in several publications, including

7



Table 2.1: Parameters used to evaluate A0 and A2

mK+ 493.667 ± 0.016 MeV
mK0 497.614 ± 0.024 MeV
mπ+ 139.57018 ± 0.00035 MeV
mπ0 134.9766 ± 0.0006 MeV
τKs (0.89530 ± 0.0005) × 10−10 s
τK+ (1.2380 ± 0.0021) × 10−8 s

Br(K0 → π0π0) (30.69 ± 0.05)%
Br(K0 → π+π−) (69.20 ± 0.05)%
Br(K+ → π+π0) (20.66 ± 0.08)%
Γ(KS → π0π0) (2.2563 ± 39) × 10−12 MeV
Γ(KS → π+π−) (5.0875 ± 46) × 10−12 MeV
Γ(K+ → π+π0) (1.0984 ± 90) × 10−14 MeV

δ2 − δ0 47.7°
Refs. [26],[27],[28] and [29].

The pion and kaon masses and the kaon decay widths and branching ratios are

known experimentally [3]. The relevant branching ratios and meson masses are

listed in Tab. 2.1, and using these numbers the experimental decay amplitudes are

found to be

|A0| ≈ ReA0 = 3.3197(14) × 10−7GeV

|A2| ≈ ReA2 = 1.570(53) × 10−8GeV

(2.7)

from neutral kaon decays, and

ReA0 = 3.3201(14) × 10−7GeV

ReA2 = 1.4787(31) × 10−8GeV

(2.8)

where A2 is taken from charged kaon decays.

From Eq. (2.8) the ratio ReA0/ReA2 = 22.45. Although the kaon decays via the

W-boson, a calculation which fully takes into accout the QCD corrections is

necessary in order to fully understand this enhancement of the ∆I = 1/2 transition,

commonly referred to as the ∆I = 1/2 rule.

In the following section CP violation in the neutral kaon sector is discussed. In

chapter 2.3 it will become clear that the isospin amplitudes A0 and A2 feature in

the description of CP-violation within the neutral kaon sector.
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2.2 Mass matrix phenomenology in the neutral kaon

system

The subject of CP violation in the neutral kaon sector is related to the mixing

between the K0 and K̄0. In describing the mixing of neutral kaons, it is convenient

to write the neutral kaon system in terms of a two-component column vector

|ψ(t)〉 ≡







a(t)

b(t)






= a(t)

∣

∣K0
〉

+ b(t)
∣

∣K̄0
〉

. (2.9)

The time development is described in terms of the hamiltonian H

i
d

dt
|ψ(t)〉 = H |ψ(t)〉 ,

where H is non hermitian in order to allow for kaon decays. If H were hermitian

the above equation would only describe mixing in the K0 − K̄0 system. It is

possible to write H in terms of two hermitian matrices, H =M − i
Γ

2
. The diagonal

elements of M and Γ are associated with flavour conserving transitions, while the

off-diagonal elements describe mixing between the K0 and K̄0 states. Since M and

Γ are hermitian, it must be the case that M∗
12 =M21 and Γ∗

12 = Γ21. The diagonal

elements of H are equal by CPT invariance, leading to the general form

M − i
Γ

2
=







A p2

q2 A






. (2.10)

The states
∣

∣K0
〉

and
∣

∣K̄0
〉

are related by the operation CP
∣

∣K0
〉

= eiξ
∣

∣K̄0
〉

,

CP
∣

∣K̄0
〉

= e−iξ
∣

∣K0
〉

. In this thesis the CP phase ξ is chosen such that

CP
∣

∣K0
〉

= −
∣

∣K̄0
〉

. The CP eigenstates K0
± are then

∣

∣K0
±
〉

=
1√
2

(∣

∣K0
〉

∓
∣

∣K̄0
〉)

, (2.11)
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with

CP
∣

∣K0
±
〉

= ±
∣

∣K0
±
〉

. (2.12)

Experimentally it is observed that kaon decays are not CP invariant, and so the

mass eigenstates of the Hamiltonian, denoted KL and KS , are not the CP

eigenstates. The parameter ǭ is introduced in order to include this CP-violation in

the formalism. The mass eigenstates can then be expressed in terms of the CP

eigenstates as follows:

∣

∣

∣KL
S

〉

=
1

√

1 + |ǭ|2
(∣

∣K0
∓
〉

+ ǭ
∣

∣K0
±
〉)

. (2.13)

The names KL, KS are clear if one considers the phase space available for the

decays. In the limit of CP conservation, |KS〉 →
∣

∣K0
+

〉

and |KL〉 →
∣

∣K0
−
〉

. The KS

would decay to a CP–even final state such as ππ and KL would decay to CP–odd

final state such as πππ. At mK , the two-pion phase space is much larger than the

three-pion phase space, so the KS has a much shorter lifetime than KL.

The eigenvalues of H are given by λ± =M11 − iΓ11/2± pq, with

p

q
=

√

M12 − iΓ12/2
√

M∗
12 − iΓ∗

12/2
. (2.14)

The difference in eigenvalues is

2pq = (mL −mS)− i/2(ΓL − ΓS)

= 2

(

M12 −
i

2
Γ12

)1/2(

M∗
12 −

i

2
Γ∗
12

)1/2

.

(2.15)

In the limit where CP violation is small, the approximation 2pq ≃ 2ReM12 − iReΓ12

is valid, resulting in the following relations:

mL −mS ≃ 2ReM12 (2.16a)

ΓL − ΓS ≃ 2ReΓ12. (2.16b)
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Using these relations along with the property that M and Γ are hermitian, ǭ can be

expressed as follows:

p

q
=

1 + ǭ

1− ǭ
, (2.17a)

ǭ =
p− q

p+ q
=
i

2

ImM12 − i
2ImΓ12

ReM12 − i
2ReΓ12

≃ 1

2

M12 −M21 − i
2(Γ12 − Γ21)

mL −mS − i
2(ΓL − ΓS)

. (2.17b)

The KL −KS mass difference and decay widths are measured experimentally and

found to be mL −mS = (3.483 ± 0.006) × 10−12 MeV and

ΓKS
− ΓKS

= (7.339 ± 0.004) × 10−12 MeV, which leads to the numerical result

∆M/∆Γ = 0.4749 ± 0.0009 ≈ 1/2. Making this approximation in Eq. (2.17b), an

alternative expression for ǭ is obtained:

ǭ ≃ eiπ/4√
2

(

ImM12

∆m
− i

ImA0

ReA0

)

. (2.18)

2.3 CP Violation in Neutral Kaon Systems

There are three types of CP violation in neutral meson decays: CP violation during

the decay (type 1), CP violation in mixing (type 2) and CP violation in the

interference between mixing and decay (type 3). In the previous section the

mixture of CP eigenstates generated by the K − K̄ mixing was described, which

provides one souce of CP violation in KL decays. However, the possibility of direct

CP violation, where a CP-odd kaon eigenstate decays directly to ππ is also present.

If such direct CP violation occurs, the K → ππ isospin amplitudes defined in

Eq. (2.5), are complex valued: AI = |AI |eiξI . The phases ξI characterise the CP

violation in the decay.

It is standard to define the following measures of CP violation:

〈π+π−|HW |KL〉
〈π+π−|HW |KS〉

≡ η+− ≡ ǫ+ ǫ′,

〈

π0π0|HW |KL

〉

〈π0π0|HW |KS〉
≡ η00 ≡ ǫ− 2ǫ′ (2.19)

where ǫ = ǭ+ iImA0/ReA0 parametrises indirect CP violation while

ǫ′ =
ReA2e

i(δ2−δ0)

√
2ReA0

(

ImA2

ReA2
− ImA0

ReA0

)

(2.20)
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parametrises direct CP violation. In particular Re(ǫ) measures CP violation in

mixing, Re(ǫ′) measures CP violation in decay, and Im(ǫ) and Im(ǫ′) measure type3

CP violation.

It is conventional to use Eq. (2.18) to write a formula for ǫ as follows:

ǫ = ǭ+ i
ImA0

ReA0
≃ eiπ/4√

2

(

ImM12

∆m
− i

ImA0

ReA0

)

+ i
ImA0

ReA0

=
eiπ/4√

2

(

ImM12

2ReM12
+ i

ImA0

ReA0

)

,

(2.21)

where the phase convention is the same as in Ref. [1].

This leads to the well known formula for Re(ǫ′/ǫ):

Re

(

ǫ′

ǫ

)

=
ω√
2|ǫ|

(

ImA2

ReA2
− ImA0

ReA0

)

, (2.22)

where ω ≡ Re(A2)/Re(A0). Experimental values for the CP violating parameters

can be found in [3]:

Re

(

ǫ′

ǫ

)

= (1.65 ± 0.26) × 10−3 and |ǫ| = (2.228 ± 0.011) × 10−3.

2.4 The CKM Matrix

Electroweak interactions are included within the Standard Model in the form of a

local SU(2)L ⊗ U(1)Y gauge symmetry which is spontaneously broken by the Higgs

mechanism to a U(1)Q symmetry, where Y and Q refer to the hypercharge and

electric charge generators respectively.

The left-handed quarks and leptons transform as SU(2)L doublets







νe

e−







L







νµ

µ−







L







ντ

τ−







L

(2.23)







u

d′







L







c

s′







L







t

b′







L

(2.24)
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while the right-handed fields, eR, µR, τR, uR, d
′
R, transform as SU(2)L singlets. The

primes on the down-type quarks indicate that the weak eigenstates (d′, s′, b′) are

not the same as the mass eigenstates (d, s, b). The two are related by the unitary

Cabibo-Kobayashi-Maskawa (CKM) matrix [30]:













d′

s′

b′













=













Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

























d

s

b













. (2.25)

The CKM matrix is parametrised by three Euler angles and one phase. The

standard parametrisation of the CKM matrix is

VCKM =













c12c13 s12c13 s13e
iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s

iδ
13 s23c13

s12s23 − c12c23s
iδ
13 −c12s23 − s12c23s13e

iδ c23c13













(2.26)

If δ 6= 0 or π then the CKM matrix is complex, which leads to CP violation in the

Standard Model.
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Chapter 3

Weak Hamiltonian and Operator

Basis

3.1 Operator Product Expansion

The energy binding the quarks in hadrons is typically O(ΛQCD), where the scale

ΛQCD ≈ 200 MeV. This is much lower than the scale of the weak interactions,

which take place at energies of O(MW ). Perturbation theory is not valid at energies

O(ΛQCD), so to make progress when calculating hadronic decays it is helpful to

construct a low energy effective theory describing the weak decay of the quarks. The

operator product expansion provides the appropriate theoretical framework for this.

The operator product expansion allows the product of two charged currents to be

expanded into a series of local effective operators, whose contributions are weighted

by Wilson coefficients. In this effective theory the W-boson is integrated out, and

the effects of the short-range force mediated by the W-boson are approximated by a

point interaction. Similarly, loop effects due to the Z-boson and heavy quarks can

also be integrated out, until a theory containing f light quarks remains. The high

energy effects of the W boson, Z boson, and heavy quarks are included in the

Wilson coefficients, while the low energy non-perturbative physics is encoded in

matrix elements of the effective operators.
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In the calculation of K → ππ matrix elements a 3-flavour effective theory is

adopted, where only the u, d, and s quarks are included in the local operators. The

perturbative calculation of the Wilson coefficients is described in section 3.3.

3.2 Operator Basis

The ∆S = 1 effective Hamiltonian can be written in a 3-flavour effective theory as

follows

Heff =
GF√
2
V ∗
usVud

10
∑

i=1

Ci(µ)Qi(µ), (3.1)

and the K → ππ decay amplitudes are evaluated in terms of matrix elements of this

effective Hamiltonian. The energy scale µ provides the separation of scales between

the low energy physics encoded in the operators Qi(µ) and the perturbative

corrections encoded in the Wilson coefficients Ci(µ). The operators and Wilson

coefficients must be renormalised at the same scale (µ) and in the same scheme, so

that the resulting Hamiltonian is independent of µ. The conventional choice for the

evaluation of the Wilson coefficients is the MS-NDR scheme. There are ten

operators in the ∆S = 1 Hamiltonian. These are enumerated below, where

(q̄iqj)V±A(q̄jqi)V±A ≡ (q̄iγ
µ(1± γ5)qj)αβ(q̄jγ

µ(1± γ5)qi)γδ ,

α, β, γ and δ label the spinor indices and i and j label the colour indices. The sum

over repeated µ indices is implicit.

Q1 = (s̄iuj)V −A(ūjdi)V −A Q3 = (s̄idi)V −A

∑

q=u,d,s

(q̄jqj)V −A Q7 =
3

2
(s̄idi)V −A

∑

q=u,d,s

eq(q̄jqj)V +A

Q2 = (s̄iui)V −A(ūjdj)V −A Q4 = (s̄idj)V −A

∑

q=u,d,s

(q̄jqi)V −A Q8 =
3

2
(s̄idj)V −A

∑

q=u,d,s

eq(q̄jqi)V +A

Q5 = (s̄idi)V −A

∑

q=u,d,s

(q̄jqj)V +A Q9 =
3

2
(s̄idi)V −A

∑

q=u,d,s

eq(q̄jqj)V −A

Q6 = (s̄idj)V −A

∑

q=u,d,s

(q̄jqi)V +A Q10 =
3

2
(s̄idj)V −A

∑

q=u,d,s

eq(q̄jqi)V −A

(3.2)

The operators Q2, Q3, Q5, Q7 and Q9 are colour diagonal, while the remaining

operators are referred to as colour mixed. Operators Q1 and Q2 are current-current

16



operators arising from the interactions depicted in Fig. 3.1, Q3, . . . , Q6 arise from

QCD-penguin diagrams illustrated in Fig. 3.2(a) and Q7, . . . , Q10 arise from

electroweak penguin diagrams illustrated in Fig. 3.2(b).

All ten operators contribute to the ∆I = 1/2 K → ππ amplitude. A simplification

can be made in the case of the ∆I = 3/2 calculation, where the ∆I = 3/2 effective

Hamiltonian can be written in terms of just three operators. These operators are

classified by their transformation properties under SU(3)L × SU(3)R symmetry:

Q
3/2
(27,1) = (s̄idi)V−A(ūjuj − d̄jdj)V−A + (s̄iui)V−A(ūjdj)V −A

Q
3/2
(8,8) = (s̄idi)V−A(ūjuj − d̄jdj)V+A + (s̄iui)V−A(ūjdj)V +A

Q
3/2
(8,8)mx = (s̄idj)V−A(ūjui − d̄jdi)V+A + (s̄iuj)V−A(ūjdi)V+A.

(3.3)

The effective Hamiltonian for the ∆I = 3/2 transition is

H
I=3/2
eff =

GF√
2
V ∗
usVud

10
∑

i=1

Ci(µ)Qi(µ)

∣

∣

∣

∣

3/2

=
GF√
2
V ∗
usVud

[

C
3/2
(27,1)Q

3/2
(27,1) + C

3/2
(8,8)Q

3/2
(8,8) + C

3/2
(8,8)mxQ

3/2
(8,8)mx

]

.

(3.4)

The Wilson coefficients for the three ∆I = 3/2 operators are related to the Wilson

coefficients in the full 10-operator basis as follows:

C
3/2
(27,1) =

(C1 + C2)

3
+

(C9 + C10)

2
(3.5)

C
3/2
(8,8)

=
C7

2
(3.6)

C
3/2
(8,8)mx =

C8

2
. (3.7)

This is clear if one considers the full decomposition of the operators Q1, . . . , Q10 in

terms of operators with definite isospin and chirality, which can be found in

Appendix B of [20].
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Figure 3.1: Current-Current interaction generating Q1 and Q2.
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(a) QCD penguin
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W

(b) Electroweak penguin

Figure 3.2: Penguin diagrams

3.2.1 The Chiral Basis

The ten operators enumerated in section 3.2 are not linearly independent. Three of

the operators can be eliminated with the following relations:

Q4 = Q2 +Q3 −Q1

Q9 =
3

2
Q1 −

1

2
Q3

Q10 =
1

2
(Q1 −Q3) +Q2.

(3.8)

The remaining seven operators can be recombined according to their transformation

properties under the chiral flavour-symmetry group SU(3)L × SU(3)R. This new
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basis of seven operators is known as the chiral basis:

Q′
1 = 3Q1 + 2Q2 −Q3

Q′
2 =

1

5
(2Q1 − 2Q2 +Q3)

Q′
3 =

1

5
(−3Q1 + 3Q2 +Q3)

Q′
5,6 = Q5,6

Q′
7,8 = Q7,8.

(3.9)

In this basis there is a single (27, 1) operator Q′
1. The operators Q′

7 and Q′
8

transform according to the (8, 8) irreducible representation and the remaining

operators transform according to the (8, 1) irreducible representation of

SU(3)L × SU(3)R.

3.2.2 Operators for K → π+π+

The operators of Eq. (3.3) all have Iz = 1/2 and would be suitable to describe the

physical decay of K+ → π+π0 for example. However, when A2 is to be evaluated at

close to physical kinematics, it is the K+ → π+π+ matrix element that is

computed. The advantages of computing the K+ → π+π+ matrix element are

explained in detail in Chapter 7.1, and are related to the mechanism used for giving

the final-state pions momentum. Using the Wigner-Eckart theorem, the

〈π+π+|QI=3/2
Iz=3/2 |K+〉 matrix element is related to the

〈

π+π0
∣

∣Q
I=3/2
Iz=1/2 |K+〉 matrix

element via a Clebsch-Gordan coefficient:

〈

π+π0
∣

∣Q
I=3/2
Iz=1/2

∣

∣K+
〉

=

√
3

2
√
2

〈

π+π+
∣

∣Q
I=3/2
Iz=3/2

∣

∣K+
〉

(3.10)

where we have used
〈

π+π0
∣

∣Q
I=3/2
Iz=1/2 |K+〉 = 1√

2

〈

(ππ)I=2
Iz=1

∣

∣Q
I=3/2
Iz=1/2 |K+〉, and the

〈

π+π0
∣

∣ state is not symmetrised.

By applying the isospin raising operator to the operators of Eq. (3.3) an expression

for ∆I = 3/2, ∆Iz = 3/2 operators can be found:

Q
I=3/2
Iz=3/2 = −

√
3(s̄Γµ,ad)(ūΓµ,bd), (3.11)
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where Γµ,x = γµ(1∓ γ5). The convention is that u annihilates an up-quark and u

creates an up-quark. Similarly d annihilates a down quark and d creates a

down-quark. The raising operator transforms u to −d and d to u.

The operators used in the lattice simulation are

Q
′3/2
(27,1) = (s̄idi)V-A(ūjdj)V-A, Q

′3/2
(8,8) = (s̄idi)V-A(ūjdj)V+A,

Q
′3/2
(8,8)

=(s̄idj)V-A(ūjdi)V+A.

(3.12)

Specifically, 〈π+π+|QI=3/2
Iz=3/2 |K+〉 = −

√
3 〈π+π+|Q′I=3/2

j |K+〉 where Q′I=3/2
j is one

of the operators defined in Eq. (3.12).

3.3 Wilson Coefficients

Expressions for the ∆S = 1 Wilson Coefficients evaluated at MW are given in

Eqns. (7.3) - (7.12) of [4]. The running of the Wilson coefficients from MW down to

scales below mc is described in [4] and summarised here.

At scales of O(MW ) the Wilson coefficients may be calculated using ordinary

perturbation theory. While αs is a valid expansion parameter down to scales

O(1 GeV), the presence of large logarithms αs logM
2
W/µ

2 when µ≪MW render

the perturbative expansion invalid at such low energies. These large logarithms can

be resummed using renormalisation group techniques. In the leading logarithm

approximation (LLA), all terms of O [αs(µ) ln (MW/µ)]
n are resummed. This leads

to renormalisation group improved perturbation theory. The final result of this

section will be the evaluation of the Wilson Coefficient functions Ci(µ) at energies

O(1 GeV) at next-to-leading order in renormalisation group improved perturbation

theory.
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3.3.1 Renormalisation group evolution matrix

The renormalisation group equation for the Wilson Coefficient functions is

d

d lnµ
~C(µ) = γTs (g)

~C(µ), (3.13)

where γs(g) is the QCD anomalous dimension matrix

γs(αs) = γ(0)s

αs(µ)

4π
+ γ(1)s

(

αs(µ)

4π

)2

(3.14)

and αs(µ) =
g2(µ)

4π
.

Equation(3.13) has solution

~C(µ) = U(µ,MW ) ~C(MW ) (3.15)

where the evolution matrix U is given by

U(m1,m2) ≡ Tg exp

∫ g(m1)

g(m2)
dg′

γT (g′2)
β(g′)

. (3.16)

The beta-function β(g) is given at next-to-leading order in perturbation theory by

β(g) = −β0
g3

16π2
− β1

g5

(16π2)2
, (3.17)

where β0 = (11N − 2f)/3 and β1 = (34N2/3− 10Nf/2− 2CF f). Here N is the

number of colours, f is the number of active quark flavours and CF = (N2 − 1)/2N .

The g-ordering operator Tg orders functions of the coupling g such that the

coupling constants increase from right to left.

At next-to-leading order, the first two terms of Eq. (3.14) and Eq. (3.17) and are

kept and the evolution matrix can be written in terms of U (0), the evolution matrix

in the LLA, along with a next-to-leading order correction J :

U(µ,m) = (1 +
αs(µ)

4π
J)U (0)(µ,m)(1 − αs(m)

4π
J). (3.18)
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Working in a basis where γ(0) is diagonal, the expression for U (0)(µ,m) is

U (0)(µ,m) = V

(

[

αs(m)

αs(µ)

]~γ(0)/2β0
)

D

V −1, (3.19)

where V diagonalises γ
(0)T
s :

γ
(0)
D = V −1γ(0)Ts V. (3.20)

A detailed description of how to calculate the matrix J is given in [4]. Equation

(3.18) is valid in the absence of electromagnetic interactions. However, since

operators Q7, . . . , Q10 originate from electromagnetic-penguin interactions it is

necessary to modify Eq. (3.18) to include electromagnetic effects.

The perturbative expansion of the anomalous dimension matrix including QCD and

QED effects is given by Eq. (3.14) plus an additional term proportional to the

electromagnetic coupling α:

γ(g2, α) = γs(g
2) +

α

4π
Γ(g2), (3.21)

where Γ(g2) has the expansion

Γ(g2) = γ(0)e +
αs

4π
γ(1)se + · · · . (3.22)

The anomalous dimension matrices are calculated in [4], where expressions for γ
(0)
s ,

γ
(1)
s , γ

(0)
e and γ

(1)
se in the MS-NDR scheme can be found in Eq (6.25) + Tab. XIV,

Eq (6.26) + Tab. XV, Tab. XVI, and Tab. XVII respectively.

In analogy with Eq. (3.18), where the NLO corrections were included in the matrix

J , the evolution matrix now gains an additional term proportional to α:

U(m1,m2, α) = U(m1,m2) +
α

4π
R(m1,m2). (3.23)

The matrix R in Eq. (3.23) is analogous to the matrix J in Eq. (3.18). Full

expressions for R are given in Eqns. (7.23) - (7.28) of [4]. A notable feature is that

R contains a contribution of O(1) along with a contribution O(1/αs). Thus, in the
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power counting adopted in [4], the evolution matrix as written in Eq.(3.23) contains

terms of O(1), O(αs), O(α) and O(α/αs).

3.3.2 Matching Matrix

The Wilson coefficients of the ten operators in Eq. (3.2) are first evaluated at a scale

O(MW ) in a five-flavour effective theory. The evolution matrix in Eq. (3.23) can

then be used to calculate the Wilson coefficients at scales down to µ ≈ mb, the mass

of the bottom-quark. In order to evaluate the Wilson coefficients at scales lower

than mb, we can formulate a new effective theory for µ < mb where the b-quark is

removed as an explicit degree of freedom. The Wilson coefficients in the four-flavour

theory are related to those in the five-flavour theory by a matching matrix M .

To establish the notation, let the matrix elements of the ten operators in Eq. (3.2),

written in vector form ~Q and renormalised at the scale m, be related to the tree

level matrix elements
〈

~Q(0)
〉

, by

〈

~Qf (m)
〉

=

(

1 +
α
(f)
s (m)

4π
r(f)s +

α

4π
r(f)e

)

〈

~Q
(0)
f

〉

, (3.24)

where r
(f)
s and r

(f)
e are matrices characterising the QCD and EM radiative

corrections.

In the general case of matching from an f -flavour theory to an (f − 1)-flavour

theory, the matching matrix M is calculated by imposing the condition

〈

~Qf (m)
〉T

~Cf (m) =
〈

~Qf−1(m)
〉T

~Cf−1(m), (3.25)

where m = mb,mc is a flavour threshold. Using Eq. (3.24), it is then apparent that

〈

~Qf (m)
〉

=

(

1 +
αs(m)

4π
δrs +

α

4π
δre

)

〈

~Qf−1(m)
〉

(3.26)

where the matrices δr = r(f) − r(f−1) are given in Eqns. (7.31)-(7.34) of [4]. Thus

the Wilson coefficients in an f -flavour theory at scale m are related to those in an
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(f − 1)-flavour theory (also at scale m) by

~Cf−1(m) =M(m) ~Cf (m) (3.27)

where

M(m) = 1 +
αs(m)

4π
δrTs +

α

4π
δrTe . (3.28)

One result of a non-trivial matching matrix is the presence of discontinuities in the

Wilson coefficients.

3.3.3 Wilson Coefficients in a 3-flavour theory

At scales below mc the ∆S = 1 effective Hamiltonian in Eq. (3.1) can be rewritten:

Heff(∆S = 1) =
GF√
2
V ∗
usVud

10
∑

i=1

(zi(µ) + τyi(µ))Qi(µ), (3.29)

with

τ = − V ∗
tsVtd

V ∗
usVud

.

Numerical values for the Fermi constant GF and the CKM matrix elements are

GF = 1, Vus = 0.2253, Vud = 0.97429 and τ = 0.0014606 − 0.00060408i. This

factorisation of the Wilson coefficients arises because there is no GIM mechanism in

the 3-flavour theory. The Wilson coefficients yi(µ) and zi(µ) and related by the

elements of the vector ~v(µ) by

yi(µ) = vi(µ)− zi(µ) (3.30)

where

~v(µ) = U3(µ,mc)M(mc)U4(mc,mb)M(mb)U5(mb,MW ) ~C(MW ) (3.31)

and

~z(µ) = U3(µ,mc)~z(mc). (3.32)
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The subscript f = 3, 4, 5 on the evolution matrices indicates the number of flavours

active in the effective theory. The Wilson coefficients are evaluated in the NDR

scheme at NLO in perturbation theory using Eqns. (3.30), (3.31) and (3.32). The

convention of [4] is to keep only the terms that are O(1), O(αs), O(α), and

O(α/αs) in the matrix multiplication of Eq. (3.31). The power counting is such

that terms O(αs)×O(α/αs) are counted as O(α).

Using this counting, the results of tables XVIII - XX of [4] in the NDR scheme have

been reproduced. Tables 3.1 and 3.2 give the Wilson coefficients yMS and zMS at

2.15 GeV and 3 GeV in a 3-flavour theory using PDG(2010) values (in the case of

2.15 GeV) and PDG(2011) values (in the case of 3 GeV) wherever standard model

parameters are required as input.

The coupling constant αs is calculated by solving the equation

dαs

d ln µ
= β(g), (3.33)

where β(g) was given at next-to-leading order in Eq. (3.17). The beta function

depends on the number of active quark flavours, and so the coupling constant must

be matched across flavour thresholds. The calculation of the strong coupling

constant is based on the initial condition α
(5)
s (MZ) = 0.1184 for

MZ = 91.1876 MeV. The evaluation of the Wilson coefficients at 2.15 GeV used the

two-loop formula for αs given in Eq. (3.19) of [4], with the result

α
(3)
s (2.15GeV) = 0.286758. However, the evaluation of the Wilson coefficients at

3 GeV which are used in Chapter 8 were evaluated using a four-loop formula for αs,

given in Appendix A of [31], with the result is α
(3)
s (3GeV) = 0.24544.

Wilson Coefficients in the chiral basis

The weak Hamiltonian is independent of the choice of operator basis, so it must be

the case that
7
∑

i=1

C
′MS
i (µ)Q

′MS
i (µ) =

10
∑

i=1

CMS
i (µ)QMS

i (µ), (3.34)
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Table 3.1: Wilson Coefficients in the MS scheme, at energy scale
µ = 2.15GeV.

Weak Operator zMS
i (µ) yMS

i (µ)

Q1 -0.29829 0
Q2 1.14439 0
Q3 -0.0024382 0.02414
Q4 0.0099515 -0.058119
Q5 -0.0011054 0.010248
Q6 0.006574 -0.069970
Q7 0.000070158 -0.00021118
Q8 -0.0000901047 0.000776652
Q9 0.0000150176 -0.0106552
Q10 0.000065648 0.00297397

Table 3.2: Wilson Coefficients in theMS scheme, at energy scale
µ = 3GeV.

weak operator zMS
i yMS

i

Q1 -0.241415 0
Q2 1.11228 0
Q3 -0.00392423 0.0211096
Q4 0.0169695 -0.0558734
Q5 -0.00349963 0.0117843
Q6 0.0120747 -0.0610235
Q7 0.0000940198 -0.000161911
Q8 -0.000104478 0.000652032
Q9 0.0000275290 -0.0103828
Q10 0.0000798557 0.00243775

Q
3/2
(27,1) 0.290342 -0.00397252

Q
3/2
(8,8)

4.70099 ×10−5 -8.09555×10−5

Q
3/2
(8,8)mix

-5.22390×10−5 3.26016 ×10−4

where the prime (’) referes to the operator basis defined in Eq. (3.9). The relation

between the Wilson coefficients in the chiral basis and the physical basis is found in

[32]:

C
′MS
j (µ) = CMS

i (µ)(Tij +∆Tij) (3.35)
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with

T =





















































1/5 1 0 0 0 0 0

1/5 0 1 0 0 0 0

0 3 2 0 0 0 0

0 2 3 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

3/10 0 −1 0 0 0 0

3/10 −1 0 0 0 0 0





















































(3.36)

and

∆T =
αs

4π



























































0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 3
Nc

− 2 2
Nc

− 3 1
Nc

−1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



























































(3.37)

3.3.4 Wilson Coefficients at leading order

In Sec. 3.7 of Chapter 8, an attempt is made to estimate the systematic error in the

calculation of the decay amplitude A2 due to the truncation in the perturbative

evaluation of the Wilson coefficients. To this end the LO contribution to the Wilson

coefficients is evaluated in the MS scheme at energy scale 3 GeV. The LO

contribution to the Wilson coefficients is evaluated using a one-loop formula for the

beta-function and anomalous dimension matrices. Furthermore, the QED

corrections introduced in Eqns. (3.21) and (3.23) are neglected. The LO

contribution to the Wilson coefficients are then defined according to the following

27



procedure:

1. A value is chosen for the Λ parameter of four-flavor QCD. An appropriate

choice of Λ is obtained by first using a four-loop running formula to evaluate

αs(Mb). The energy scale Λ(4) ≡ ΛQCD is then evaluated in a four-flavour

theory using the leading-order formula for αs:

α(f)
s (µ) =

4π

β
(f)
0 ln(µ2/Λ(f))

, (3.38)

with the result ΛQCD = 328 MeV. With this value for ΛQCD, αs can be

evaluated at all other energy scales using Eq. (3.38) and matching at flavour

boundaries as usual.

2. In setting the initial conditions for the Wilson coefficients at the scale of the

W mass, corrections of O(α) and O(αs) are only included when they depend

on the top-quark mass. This also applies when calculating the coefficients zi

at the scale of the charm mass (Eq.(VII.17) in [4]).

3. In the QCD running to lower energies the one-loop expressions for the

anomalous dimension matrix and β-function are used. In the presence of

electromagnetic interactions, the LO anomalous dimension matrix also

includes the term
α

4π
γ
(0)
e .

4. At leading order the Wilson coefficients are continuous when crossing

quark-mass thresholds, i.e. at LO the matching matrices defined in section

3.3.2 are trivially the identity matrix.

The LO contribution to the Wilson coefficients, evaluated at energy scale 3 GeV,

are given in Tab. 3.3.
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Table 3.3: Leading order contribution to the Wilson Coefficients
in the MS scheme, at energy scale µ = 3GeV.

weak operator zMS
i yMS

i

Q1 -0.391608 0
Q2 1.19262 0
Q3 -0.00590226 0.0245797
Q4 0.0227256 -0.0592354
Q5 -0.00818322 0.0180197
Q6 0.0199481 -0.0698914
Q7 -0.0000852011 0.000405289
Q8 0.000020126 0.000489482
Q9 -0.0000708857 -0.0103101
Q10 -0.0000233252 0.00327317

Q
3/2
(27,1) 0.26696 -0.0035185

Q
3/2
(8,8) 4.260055 ×10−5 -2.026445×10−4

Q
3/2
(8,8)mix

-1.0063×10−5 2.44741×10−4
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Chapter 4

Quantum Field Theory on the

Lattice

4.1 Introduction

The fundamental objective of quantum field theory is the computation of

correlation functions, the vacuum expectation of a time ordered product of

operators. The path integral expression for such an object is

〈0|O1(x1)...On(xn) |0〉 =
1

Z

∫

D[A,ψ, ψ]O1(x1)...On(xn)e
iSQCD (4.1)

where SQCD is the action for QCD, and the partition function Z is given by

Z =

∫

D[A,ψ, ψ]eiSQCD . (4.2)

Lattice QCD allows correlation functions to be computed by evaluating the path

integral in a brute force fashion. This is achieved by first Wick-rotating to

Euclidean space-time, where the coordinates are defined in terms of

Minkowski-space coordinates as:

x0 = −ix4E, xi = xiE (4.3)
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and the Euclidean gamma matrices are related to the Minkowski gamma matrices

by

γEi = iγi, γE4 = γ0. (4.4)

The Euclidean-space partition function is then given by

Z =

∫

D[A,ψ, ψ]e−(SG+SF ), (4.5)

where SG is the pure gauge part of the action and SF = ψ
(

/D +m
)

ψ ≡ ψKψ is the

fermionic action. K is a function of the fermion mass and the gauge fields, and will

often be referred to as the Dirac operator. The Euclidean-space path integral is to

be interpreted as a statistical mechanics partition function with weighting e−SE
QCD ,

where SE
QCD is a shorthand for the Euclidean QCD action SE

QCD = (SG + SF ). The

superscript E will subsequently be dropped.

4.2 Lattice Actions

Lattice actions are built by replacing integrals with sums and derivatives with finite

differences. There is no unique choice for the discretised action, provided that the

formal QCD Lagrangian is recovered in the limit that the lattice spacing a→ 0. A

desirable lattice action will preserve as far as possible the symmetries of the

continuum theory. Gauge invariance and chiral symmetry are of particular

importance.

4.2.1 Gauge Actions

Lattice implementations of gauge fields are non-trivial because a gauge symmetry is

a relation between the gauge field Aµ and the derivatives of other fields. When

quantum field theory is formulated on a lattice, derivatives are replaced by finite

differences. The fermion fields are defined on the lattice sites, and so a gauge

transformation of a fermion field at lattice site x must be compensated for by a

transformation at site x+ µ̂. To make this explicit, consider the following example.
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The fermion fields transform under a gauge transformation according to

ψ(x) → Ω(x)ψ(x) and ψ̄(x) → ψ̄(x)Ω†(x), so the term

ψ̄(x)ψ(x + µ̂) → ψ̄(x)Ω†(x)Ω(x+ µ̂)ψ(x+ µ̂) (4.6)

is not gauge invariant. In order to construct a covariant derivative, the gauge fields

must be implemented in a way that connects the gauge transformation at the site x

with the transformation at the site x+ µ̂. This can be achieved by introducing

SU(3) matrix-valued link variables, Uµ(x) with the transformation property

Uµ(x) → Ω(x)Uµ(x)Ω(x+ µ̂)†. (4.7)

It is now possible to construct a covariant derivative for the fermion fields:

ψ̄ /Dψ = ψ̄(x)γµ

(

Uµ(x)ψ(x + µ̂)− U †
µ(x− µ̂)ψ(x− µ̂)

2a

)

. (4.8)

The link variables are related to the Lie algebra valued gauge fields Aµ(x) by

Uµ(x) = eiaAµ(x), (4.9)

and have the property U−ν(x+ ν̂) = U †
ν (x). Any closed loop of link variables will

form a gauge invariant object. In particular, the plaquette variable Uµν , illustrated

in Fig. 4.1, is the shortest nontrivial closed loop of link variables:

Uµν(x) = Uµ(x)Uν(x+ µ̂)U−µ(x+ µ̂+ ν̂)U−ν(x+ ν̂)

= Uµ(x)Uν(x+ µ̂)U †
µ(x+ ν̂)U †

ν (x).

(4.10)

Wilson proposed a gauge invariant action for the gauge fields defined in terms of

plaquette variables.

SG =
2

g2

∑

x∈Λ

∑

µ<ν

Re Tr [1− Uµν(x)] . (4.11)

The sum in Eq. (4.11) is over all plaquettes, with each plaquette counted with only

one orientation. The discretisation of space and time introduces errors proportional
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x x+ µ̂

x+ µ̂+ ν̂x+ ν̂

Uµ(x)

Uν(x+ µ̂)

U †
µ(x+ ν̂)

U †
ν(x)

Figure 4.1: Plaquette variable

to some power of the lattice spacing. The tree level Wilson gauge action

approximates the continuum gauge action up to O(a2) corrections, which only

vanish as the lattice spacing is sent to zero.

In order to reduce the size of the discretisation errors, different actions can be

considered. The Iwasaki and DBW2 gauge actions are renormalisation group

improved actions in truncated two-parameter space. They can be written down as

SG[U ] =
−β
3



(1− 8c1)
∑

x;µ<ν

P [U ]x,µν + c1
∑

x;µ6=ν

R[U ]x,µν



 (4.12)

where P [U ]x,µν is the real part of the trace of the path ordered product of links

around the 1× 1 plaquette in the µ, ν plane at point x, β ∼ 1/g20 and R[U ] denotes

the real part of the trace of ordered product of SU(3) link matrices along 1× 2

rectangles in the µ, ν plane. The coefficient c1 is chosen to be c1 = −0.331 for the

Iwasaki gauge action and c1 = −1.4069 for the DBW2 gauge action. The Iwasaki

and DBW2 actions are particularly significant because they have been shown to

reduce the chiral symmetry breaking in domain wall fermion formulations for the

fermion action [33].
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4.3 Fermions on the Lattice

The naive discretisation of the fermion action is

SF = a4
∑

x,µ

[

ψ̄(x)γµ

(

Uµ(x)ψ(x + µ̂)− U †
µ(x− µ̂)ψ(x− µ̂)

2a

)

+mψ̄(x)ψ(x)

]

≡ a4
∑

x,µ

ψ̄(x)K(x, y)ψ(y),

(4.13)

where the link variables U were defined in the previous section and

K(x, y) =

(

γµUµ(x)δx+µ̂,y − U †
µ(x− µ̂)δx−µ̂,y

)

2a
+mδx,y (4.14)

will be referred to as the Dirac operator. The spin and colour indices in Eqns. (4.13)

and (4.14) have been suppressed. The naive fermion action suffers from artefacts

known as fermion doublers. Working in the unit gauge, where all Uµ(x) = 1, the

momentum space fermion propagator (given by the inverse of the Dirac operator) is

K−1(p) =
m− ia−1

∑

µ γµ sin(pµa)

m2 + a−2
∑

µ sin(pµa)
2
. (4.15)

In the massless limit, the fermion propagator is

K−1(p)

∣

∣

∣

∣

m=0

=
−ia−1

∑

µ γµ sin(pµa)

a−2
∑

µ sin(pµa)
2

a→0−−−→
−i∑µ γµpµ

p2
.

(4.16)

The last line of Eq. (4.16) has a single pole in the propagator at p = (0, 0, 0, 0).

This pole corresponds to a single fermion which is described by the continuum

Dirac operator. However, looking at the first line of Eq. (4.16) it is clear that on the

lattice the propagator has more than one pole. The denominator sin(pµa)
2 is equal

to zero whenever the elements of p are all equal to 0 or π/a. Thus the lattice

fermion propagator describes a total of 16 fermions. These additional fermions are

referred to as the doublers.
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A possible solution to avoid introducing the doublers was proposed by Wilson, who

added an irrelevant operator to the fermion action in the form of a second

derivative, SF → SF + SWilson, where

SWilson =
−a3r
2

∑

µ,x

ψ̄(x)
(

Uµ(x)ψ(x + µ̂)− 2ψ(x) + U †
µ(x− µ̂)ψ(x− µ̂)

)

→ −ar
2
ψ̄�ψ,

(4.17)

r is known as the Wilson parameter, and the second line of Eq. (4.17) shows the

behaviour of SWilson in the continuum limit.

The free Dirac operator for Wilson fermions is

K(x, y) =



m+
4r

a
− 1

2a

4
∑

µ=1

{(r − γµ)δx+µ̂,y + (r + γµ)δx−µ̂,y}



 , (4.18)

and the corresponding momentum-space propagator is

K−1(p) =
m+ r

a

∑4
µ=1(1− cos(pµa))− i

a

∑4
µ=1 γµ sin(pµa)

(

m+ r
a

∑4
µ=1(1− cos(pµa))

)2
+ 1

a2
∑4

µ=1 sin
2(pµa)

(4.19)

The extra term r
a

∑4
µ=1(1− cos(pµa)) is large at pµ = π/a ensuring that at the

edges of the Brillouine zone the doublers become very heavy and decouple from the

theory. The Wilson term successfully removes the doublers from the fermion action,

but this comes at the cost of explicitly breaking chiral symmetry.

The loss of chiral symmetry in a lattice formulation of fermions where the doublers

have been removed from the theory appears to be an inevitable consequence of the

Nielsen-Ninomiya theorem, which states that in a lattice regularisation which is

hermitian, translationally invariant, and whose Dirac operator has a well defined

fourier transform and continuous first derivative everywhere in the Brillouine zone,

it is not possible to remove the doublers without breaking chiral symmetry. Chiral

symmetry can be expressed by the fact that a massless Dirac operator K

anticommutes with γ5:

Kγ5 + γ5K = 0. (4.20)
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Ginsparg and Wilson suggested an alternative formulation of chiral symmetry on

the lattice, in the form of the Ginsparg-Wilson equation:

Kγ5 + γ5K = aKγ5K. (4.21)

Chiral symmetry is recovered in the naive continuum limit a→ 0 while the

restrictions of the Nielsen-Ninomiya theorem can be avoided. A solution to the

Ginsparg-Wilson equation is given by Neuberger’s overlap operator

Kov =
1

a
(1 + γ5sign[H]) , (4.22)

where H = γ5A, A is a γ5-hermitian Dirac operator such as Wilson and

sign[H] = H(H2)−1/2. Overlap fermions are particularly expensive to simulate.

4.3.1 Domain Wall Fermions

Domain wall fermions (DWF) provide an alternative method for eliminating

fermion doublers from the theory while maintaining chiral symmetry on the lattice.

The DWF discretisation of the Dirac action was proposed by Kaplan [34] and

developed by Furman and Shamir [35, 36]. Kaplan showed that for free Wilson-like

fermions in five dimensions, the inclusion of a mass term that can vary in the fifth

dimension, and takes the shape of a step-function (domain wall), results in a single

chiral fermion which is bound to the four-dimensional wall. On a finite lattice with

periodic boundary conditions an anti domain wall appears with a bound chiral

fermion of opposite chirality. For large fifth dimension the fermions have

exponentially small ovelap and do not mix. Kaplan’s fermions retain the full

SU(3)L × SU(3)R continuum chiral symmetry on the lattice. The interacting

theory is defined by coupling the fermions to a four-dimensional gauge field.

The fermionic action for a single flavour has the following form:

SF (Ψ̄,Ψ, U) = −
∑

x,x′,s,s′

Ψ̄x,s(DDWF)x,s;x′,x′Ψx′,s′ (4.23)
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where the Grassmann valued fields Ψ(x, s) and Ψ̄(x, s) are functions of a space-time

coordinate x and and fifth-dimensional coordinate s. The extent of the fifth

dimension will be denoted Ls, and s is in the range 0 < s < Ls − 1. The domain

wall Dirac operator, (DDWF )x,s;x′,s′(M5,mf ) contains two terms,

(DDWF)x,s;x′,s′(M5,mf ) = δs,s′D
‖
x,x′(M5) + δx,x′D⊥

s,s′(mf ). (4.24)

The first term in Eq. (4.24), D
‖
x,x′(M5), is the usual four dimensional Dirac

operator for massive Wilson fermions:

D
‖
x,x′(M5) =

1

2

4
∑

µ=1

[

(1− γµ)Uµ(x)δx+µ̂,x′ + (1 + γµ)U
†
µ(x

′)δx−µ̂,x′

]

+ (M5 − 4)δx,x′ .

(4.25)

The second term, D⊥, is independent of the gauge fields

D⊥
s,s′(mf ) =

1

2

[

(1− γ5)δs+1,s′ + (1 + γ5)δs−1,s′ − 2δs,s′
]

−mf

2

[

(1− γ5)δs,Ls−1δ0,s′ + (1 + γ5)δs,0δLs−1,s′
]

.

(4.26)

In Eq. (4.25), M5 is a Dirac mass term, and forms the height of the domain wall.

The fermion mass mf in Eq. (4.26) explicitly couples the wall at s = 0 with the wall

at s = Ls − 1. The simplest way to define operators which create and destroy light

four-dimensional quarks is

q(x) =
(1− γ5)

2
Ψ(x, 0) +

(1 + γ5)

2
Ψ(x,Ls − 1)

q̄ = Ψ̄(x, 0)
(1 + γ5)

2
+ Ψ̄(x,Ls − 1)

(1 − γ5)

2
.

(4.27)

The fermion modes described by Eq. (4.27) describe left- and right-handed quark

fields coupled to opposite walls in the fifth dimension. The residual mass, mres,

measures the residual chiral symmetry breaking due to the finite extend of the fifth

dimension. The outcome of mres is an additive renormalisation to the bare quark
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masses,

mf → m̃ = mf +mres. (4.28)

However, it was shown in Ref. [35] that the current mass of the light Dirac fermion,

mq, is proportional to the bare quark mass mf ,

mq = mfM5(2−M5), (4.29)

so the fermion mass is both additively and multiplicatively renormalised.

At coarse lattice spacings, domain wall fermions exhibit increased chiral symmetry

breaking. The residual mass can be approximated by [37]

mres ∼ R4

∫ ∞

0
dλρ(λ)e−Lsλ (4.30)

where λ are the eigenvalues of the four-dimensional Hamiltonian which describes

the propagation of quarks in the fifth dimension and ρ(λ) is the eigenvalue density.

It was shown in [37] that a mobility edge, denoted λc exists, dividing the eigenstates

into two regions. Eigenmodes with λ > λc are extended, while eigenmodes with

λ < λc are localised. Picking out the dominant terms above and below the mobility

edge in Eq. (4.30), the expected behaviour of mres is

mres = R4
eρ(λc)

e−λcLs

Ls
+R4

l ρ(0)
1

Ls
, (4.31)

where ρ(0) is now the density of near-zero eigenmodes. The first term in Eq. (4.31)

can be reduced by increasing the extent of the fifth dimension. Modern simulations

are performed at relatively large Ls, so mres is dominated by the second term in

Eq. (4.31). Thus, in order to reduce the chiral symmetry breaking, ρ(0) must be

reduced. This can be achieved with the Dislocation Suppressing Determinant Ratio

(DSDR). This is a term which is applied to the gauge action as a multiplicative

weight. The DSDR term allows the near-zero eigenmodes to be suppressed, without

eliminating the the very-near-zero modes which are necessary to ensure adequate

topological sampling.
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In order to make contact with the four-dimensional overlap theory, the

five-dimensional path integral must also contain pseudofermion fields Φ,Φ which

have the same indices as the fermion fields but are bosonic variables. These fields

are often referred to as Pauli-Villars fields. The five-dimensional partition function

is

Z =

∫

D[ΨΨ,Φ,Φ, U ]e−S . (4.32)

The action is given by

S = SG(U) + SF (Ψ,Ψ, U) + SPV (Φ,Φ, U), (4.33)

where SG is an appropriate choice of gauge action such as Iwasaki, SF was defined

in Eq. (4.23) and the Pauli-Villars action is

SPV = (Φ,Φ, U) =
∑

x,x′,s,s′

Φ(x, s)Dpf (x, s;x′, s′)Φ(x′, s′), (4.34)

with

Dpf = DDWF(M5, 1), (4.35)

and DDWF was defined in Eq. (4.24). Neuberger showed that

det(DDWF ) = det(Dov
N5)det(D

pf). Applying this relation to the path integral leads

to,
∫

D[Ψ,Ψ,Φ,Ψ]e(−SDWF
F −Spf

B ) =
det(DDWF )

det(Dpf)
= det(Dov

N5), (4.36)

so it is clear the the PV fields should be included to relate the five-dimensional

DWF formalism to the four-dimensional overlap formalism. This step can be viewed

as a change of integration variables with det[Dpf] being the corresponding Jacobian.

4.4 Numerical Simulations

Even on a modest lattice, it would be impossible to evaluate the partition function

of Eq. (4.5) in full. Consider for example a 104 space-time lattice, in which case the

number of link variables is approximately 4× 104. Each SU(3) link variable is a
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function of 8 real parameters, so there are 320000 integrations to be done. Using a

mesh of only 10 points per integration, the path integral will be approximated by a

sum of 10320000 terms. In order to evaluate the ensemble average, it is therefore

necessary to employ statistical methods.

The expectation value of an observable Ω(φ) that depends on a general field φ is

〈Ω〉 = 1

Z

∫

dφe−S(φ)Ω(φ). (4.37)

In order to evaluate this expectation value, a sequence of field configurations

(φ1, φ2, · · · φn) is generated and chosen from the probability distribution

P (φt)dφt =
1

Z
e−S(φt). (4.38)

The observable is then measured on each configuration, and the ensemble average

Ω ≡ 1

N

N
∑

t=1

Ω(φt) (4.39)

is calculated. In the limit that N → ∞, the ensemble average is equal to the

expectation value. The central limit theorem establishes the result that the

ensemble average approaches a Gaussian distribution with 〈Ω〉 as its mean and a

standard deviation which falls as 1/
√
N .

The QCD action is quadratic in the fermion fields, and these can be integrated out

by hand, leading to the following expression for a typical correlation function

〈Ω(U,K(U))〉 = 1

Z

∫

D[U ]Ω(U,S(U))e−(SG[U ])det[K(U,m)]. (4.40)

In Eq. (4.40) K(U) is used to denote the Dirac operator. The gauge field

configurations should be drawn according to the probability distribution

P (Ui) = det[K(U,m)]e−(SG[U ]). (4.41)

There are various Monte-Carlo algorithms designed to generate gauge ensembles
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according to this probability distribution. In particular the ensembles studied in

this thesis were generated using a variation of the Rational-Hybrid-Monte-Carlo

(RHMC) algorithm, the details of which are beyond the scope of this thesis.

4.4.1 Reweighting

In order to overcome problems such as long autocorrelation times associated with

using very light sea-quark masses in ensemble generation, simulations are usually

performed with a heavier light-quark mass than the target valence light-quark mass.

Reweighting is a technique that allows the sea-quark masses to be tuned after

ensemble generation to match those used in the valence sector [38]. Let m1 denote

the light-sea-quark mass used in the ensemble generation and m2 denote the target

light-quark mass. The configurations that were generated with light sea quark mass

m1 can be reweighting to sea-quark mass m2 by computing a reweighting factor

w(m1,m2) for each configuration on which measurements were performed. The

reweighting factor is defined by

w(m1,m2) =
det
{

K†(m2)K(m2)
}

det {K†(m1)K(m1)}
. (4.42)

The goal is to calculate the expectation value of an observable O[U ] computed with

light sea quark mass m2. This quantity will be denoted 〈O〉2. The reweighting

factor allows 〈O〉2 to be calculated from the ensemble generated with the sea-quark

mass m1. To see this, 〈O〉2 is first written in terms of an ensemble generated with

sea quark mass m2. This is seen in Eq. (4.43), where Z2 is the partition function for

the sea quark mass m2, and K(m) denotes the Dirac operator generated with sea

quark mass m. The discussion is phrased in 2 + 1 flavours, so the quantity ms is

introduced to denote the mass of the strange quark.

〈O〉2 =
1

Z2

∫

DUO[U ]e−SGdet
{

K†(m2)K(m2)
}
√

det {(K†(ms)K(ms)} (4.43)
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The expression for 〈O〉2 is then modified by multiplying and dividing by both Z1

and det
{

K†(m1)K(m1)
}

, to obtain

〈O〉2 =
Z1

Z2

1

Z1

∫

DU [O[U ]w(m1,m2)] e
−SGdet

{

K†(m1)K(m1)
}
√

det {K†(ms)K(ms)}

=
〈O[U ]w(m1,m2)〉1

〈w(m1,m2)〉1
.

(4.44)

In the last line of Eq. (4.44) the ratio Z1/Z2 has been rewritten as 〈w(m1,m2)〉1,

where the subscript 1 denotes that the ensemble average is for an ensemble

generated with mass m1.

A stochastic estimate can be used to evaluate the reweighting factor:

w(m1,m2) =

∫

Dξe−〈ξ†K(m1)†K(m2)†−1K(m2)−1K(m1)ξ−ξ†ξ〉e−ξ†ξ

∫

DUe−ξ†ξ

=
〈

e−〈ξ†K(m1)†K(m2)†−1K(m2)−1K(m1)ξ〉−ξ†ξ
〉

1,ξ

(4.45)

where ξ is a stochastic variable drawn from a random Gaussian distribution

exp (−ξ†ξ). The expectation value in the lower line of Eq. (4.45) is with respect to

both ξ and the gauge fields at mass m1, and these averages commute. It follows

that the expectation value 〈O〉2 can be evaluated with a single estimator si for the

reweighting factor per configuration i:

si = e−ξ†iK(Ui;m1)†K(Ui;m2)†−1K(Ui;m2)−1K(Ui;m1)ξi−ξ†i ξi . (4.46)

4.5 Measuring Observables

4.5.1 Propagators

After applying Wick’s theorem, correlation functions contain products of spin

matrices with quark propagators S.
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The quark propagator is the inverse of the Dirac matrix, and satisfies γ5-hermiticity:

S(x, t;x0, t0) = γ5S
†(x0, t0;x, t)γ5. (4.47)

In this notation, the convention is that S(x, t;x0, t0) is a propagator with a source

at x0, t0 and a sink at x, t. The propagator matrix is extremely large, so typically

only a subset is calculated. This is achieved by solving the matrix equation

ψ(~x, t) =
∑

~y,t′

K−1(~x, t; ~y, t′)η(~y, t′). (4.48)

In Eq. (4.48), η is a complex matrix source and ψ is the solution matrix, describing

the propagator. This will be made more explicit below, when specific examples of

sources are considered. This thesis makes use of several choices for the source η;

these are the wall-source, stochastic-source and cosine-source.

In the case of the wall-source, η is set equal to the identity matrix at all points on a

single timeslice at t0. Solving Eq. (4.48) then leads to the wall-source propagator,

Sl(~x, t; t0) =
∑

~y

S(~x, t; ~y, t0). (4.49)

The notation is that Sl(~x, t; t0) will be used to denote a light-quark propagator with

a wall-source along the timeslice t0 and a sink at space-time position (~x, t).

Similarly Ss(~x, t; t0) will be used to denote a strange-quark propagator with a wall

source at t0. Summing over the position of the sink leads to a propagator with a

wall-sink:

Sq
W (t; t0) =

∑

~x

Sq((~x, t); t0), (4.50)

where q = l, s indicates a light/strange quark respectively.

Cosine wall sources are used in the calculation of correlation functions with

non-zero momentum. The cosine source is defined by

ηcos(~x; ~p) = cos (pxx) cos (pyy) cos (pzz) (4.51)
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on the timeslice at t0. The components of momentum are given by pi = ni(π/L)

where ni is an even or odd integer depending on whether periodic or antiperiodic

boundary conditions were imposed on the quark field in direction i. The solution

vector is thus

ψ(x, t) =
∑

y

ηcos(~x; ~p)S(~x, t; ~y, t0). (4.52)

Finally, stochastic sources are introduced. Stochastic sources will be important for

evaluating eye-type diagrams in chapter 9. Elements of the source η with colour

index a and spinor index α are randomly chosen from a Gaussian distribution D. A

set of N random sources

{

η(n)(x)a,α ∈ D|n = 1 . . . N
}

(4.53)

has the property that, in the limit N → ∞

〈

η(n)a,α(x)η
†(n)
b,β (y)

〉

n
≡ 1

N

N
∑

n=1

η(n)a,α(x)η
†(n)
b,β (y) → δx,yδa,bδα,β. (4.54)

The average over stochastic hits happens automatically when the ensemble average

of a correlation function is performed. This means that only one stochastic “hit” is

needed per propagator per configuration.

This calculation makes use of stochastic “wall” sources at t = τ , where

η(x, t|τ) ∈ D t = τ

= 0 t 6= τ.
(4.55)

Propagators with stochastic wall sources along the timeslice t0 will be denoted

Sq
R(~x, t0; t0), where once again q = l, s labels the flavour of the quark.

4.5.2 Correlation Functions

Once the propagators have been calculated, the correlation functions can be

measured. The correlation functions are traces over colour and spinor indices of the

products of spin matrices and propagators mentioned previously.
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After inserting a complete set of states, a generic correlation function can be

written,

C(t) ≡
〈

O(~0, t)O†(~0, 0)
〉

=
∑

n

〈0|O |n〉 〈n|O†(~0, 0)
∣

∣

∣0(~0, 0)
〉

e−Ent. (4.56)

At large enough t, excited states with n > 0 will decay and only the ground state

will remain. For mesons, propagation in t and T − t is identical, and the expected

form for the correlation function is

C(t) = 2A0 cosh((T/2 − t)E0)e
−TE0/2. (4.57)

By fitting the correlation functions as a function of t to the fit form in Eq. (4.57), it

is straightforward to extract the meson masses. In order to determine a suitable

fitting region where excited states have died away and the remaining signal is that

of the ground state, effective mass plots are examined. The effective mass meff is

found by solving

C(t)

C(t+ 1)
=

cosh(meff(T/2− t))

cosh(meff(T/2 − t− 1))
(4.58)

at each time t. A plot of the effective mass should show a plateau in the region

where excited states can be neglected.

In this thesis all fits are performed using uncorrelated χ2 fits. The error on each fit

is then determined using the jackknife technique as follows. Consider a data set of

N configurations and an observable θ, and let θ̂ denote the value of the observable

computed using all N configurations. In the jackknife procedure N subsets are

constructed by removing the nth (n = 1, . . . , N) configuration from the original set.

The value of the observable θn is determined for each subset. The variance is then

σ2
θ̂
≡ N − 1

N

N
∑

n=1

(θn − θ̂)2, (4.59)

and the square root of the variance estimates the standard deviation on θ̂.

Measurements made on different ensembles can be assumed to be statistically

independent, and the contributions from the different ensembles should be kept
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separate so as to avoid accidental cancellations. This can be accommodated in the

jackknife procedure by embedding the jackknife series of observables in an extended

series that includes all the separate ensembles. Let {θX} denote the jackknife

distribution of the observable θ measured on ensemble X. The extended

distribution of θ measured on several ensembles labelled A,B, · · · is

{θ} = ({θA}, {θB}, . . .). (4.60)

The error on the total distribution is then found by combining in quadrature the

errors from the different distributions

σ2({θ}) = σ2({θA}) + σ2({θB}) + . . . . (4.61)

This technique, known in the literate as the super-jackknife technique, is described

in detail in [39, 40].
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Chapter 5

Non-Perturbative

Renormalisation

In order to obtain physical results for the K → ππ decay amplitudes, the ∆S = 1

four-quark operators must be renormalised at the same scale and in the same

scheme as the Wilson coefficients in the effective Hamiltonian. Since the Wilson

coefficients were evaluated in the MS-NDR scheme in Chapter 3, this means

renormalising the operators in the MS-NDR scheme. A non-perturbative treatment

for the renormalisation of the four-quark operators is desirable in order to avoid

lattice perturbation theory, which frequently converges more slowly than continuum

perturbation theory. In order to perform the non-perturbative renormalisation

(NPR) of the four-quark operators an intermediate scheme which is independent of

the regulator (RI) is chosen so that the renormalisation can be implemented both

numerically on the lattice and in continuum perturbation theory. This allows the

lattice results to be converted to the MS-NDR scheme, which is not directly

implementable on the lattice. The numerical renormalisation procedure used is

based on the Rome-Southampton method introduced in [41].

This thesis describes two separate calculations of K → ππ matrix elements, a

calculation of only the ∆I = 3/2 channel performed at nearly-physical kinematics

on the “IDSDR” ensemble, and a full calculation on the smaller “163 Iwasaki”

ensemble. The latter calculation includes additional operators and suffers from
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difficulties due to operator mixing that are not present in the ∆I = 3/2 calculation.

With this in mind, this chapter includes two separate results sections for the NPR;

Section 5.1 gives the NPR factors for the ∆I = 3/2 opeartors, calculated on the

IDSDR ensemble, while Section 5.2 gives the NPR factors for all seven operators in

the chiral basis (defined in Eq. (3.9)), calculated on the 163 Iwasaki ensemble.

The successful implementation of the Rome-Southampton renormalisation

procedure requires that a window in lattice momentum must exist, such that the

renormalisation scale µ must satisfy

ΛQCD ≪ µ≪ 1/a. (5.1)

The scale µ must be small enough that discretisation effects are suppressed in the

numerical renormalisation to the RI scheme, but must also be large enough for the

perturbative matching to MS to converge. This window can be extended if a

non-perturbative step-scaling function is introduced. Such a function allows

renormalisation constants computed at a low energy scale to be run

non-perturbatively up to a higher scale more suitable for continuum perturbation

theory.

In RI schemes, one imposes the renormalisation condition that amputated Green’s

functions with given off-shell external states at a given momentum point and in a

fixed gauge coincide with their tree level value. In practice this renormalisation

condition is imposed by tracing the amputated Green’s function Λ with a suitable

projection operator P , such that

ZO
Z2
q

[TrPΛ]

∣

∣

∣

∣

q2=µ2

= F (5.2)

where

F = limαs→0 [PΛ]

∣

∣

∣

∣

q2=µ2

(5.3)

The RI-SMOM scheme was introduced in [42] and generalised for the four-quark

operator in [43]. The “SMOM” kinematics specifiy that the momentum of the
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four-quark operator being renormalised be symmetric so that no exceptional

channels are available, i.e. there are no channels where zero momentum is inserted

at the operator. This prevents IR chiral symmetry breaking effects. For example,

for the renormalisation of the (27, 1) operator defined in Eq. (3.12), the Green’s

function to be calculated is

d(p1)s(−p2) → d(−p1)u(p2) (5.4)

and the momenta are chosen to satisfy p21 = p22 = (p1 − p2)
2 = µ2.

Since Q(27,1) is multiplicatively renormalisable, the relation between the bare lattice

and renormalised operator is of the form:

Q
(Iv ,Iq)
(27,1) = Z

(Iv,Iq)
(27,1) Q

(latt)
(27,1) , (5.5)

where Iv labels the choice of the intermediate (one-particle irreducible) vertex

renormalisation scheme and Iq the intermediate scheme for the wave function

renormalisation. The index “latt” indicates that the operator on the right-hand

side is the bare lattice operator. The overall renormalisation constant is obtained

by evaluating a trace of Λ with a projection operator P (Iv)

Z
(Iv ,Iq)
(27,1) = Z

(Iq) 2
q

1

P
(Iv) ij,kl
αβ,γδ Λ

(27,1) ij,kl
αβ,γδ

, (5.6)

where Z
(Iq)
q is the wave function renormalisation constant which will be discussed

below. The two choices that are made for the projection operators are labelled by

Iv = γµ or Iv = /q [43]:

P
(γµ) ij,kl
αβ,γδ =

1

128N(N + 1)

[

(γµ)βα(γ
µ)δγ + (γµγ5)βα(γ

µγ5)δγ
]

δijδkl (5.7)

P
(/q) ij,kl

αβ,γδ =
1

32q2N(N + 1)

[

(/q)βα(/q)δγ + (/qγ
5)βα(/qγ

5)δγ
]

δijδkl , (5.8)

where N = 3 is the number of colours. These projectors are constructed to give 1

when contracted with the tree-level results for Λ
(27,1) ij,kl
αβ,γδ .
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For the wave function renormalisation, schemes defined as RI-SMOM and

RI-SMOMγµ in ref. [42] are used, which for compactness of notation, are labeled as

Iq = 6q and Iq = γµ respectively. The corresponding renormalisation constants are

defined as

Z
(/q)
q =

qµ

12q2
Tr[Λµ

V /q] and Z
(γµ)
q =

1

48
Tr[Λµ

V γ
µ] , (5.9)

where Λµ
V is the amputated Green function of the conserved vector current. This

completes the description of the determination of the renormalisation constant for

Q(27,1) in the four schemes in which each of Iq and Iv are either /q or γµ.

In general, operators will mix under renormalisation. The renormalisation constants

for the four-quark operators are then defined such that

~Q
Iv,Iq
R = Z(Iv,Iq) ~Qlatt. (5.10)

The vector ~Q represents a column vector of ∆S = 1 four-quark operators and

Z(Iv,Iq) is a matrix. Operators in an irreducible representation of a given symmetry

only mix with operators transforming in the same irreducible representation.

Consequently, if a chiral basis is used to describe the operators, the matrix of

renormalisation constants Z will be block diagonal.

5.1 Renormalisation Constants for the IDSDR Lattices

The renormalisation of the remaining two ∆I = 3/2 operators is a natural extension

of the renormalisation of the (27, 1) operator, outlined in the previous section.

The operators O(8,8) and O(8,8)mx mix under renormalisation. Two projectors are
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now defined for each of the electroweak penguin operators as follows:

[

P
(γµ)
(8,8)

]ij,kl

αβ,γδ
=
[

(γµ)βα (γ
µ)δγ −

(

γµγ5
)

βα

(

γµγ5
)

δγ

]

δijδkl (5.11)

[

P
(γµ)
(8,8)mx

]ij,kl

αβ,γδ
=
[

(γµ)βα (γ
µ)δγ −

(

γµγ5
)

βα

(

γµγ5
)

δγ

]

δilδkj (5.12)

[

P
(/q)
(8,8)

]ij,kl

αβ,γδ

=
1

q2

[

(/q)βα(/q)δγ −
(

/qγ
5
)

βα

(

/qγ
5
)

δγ

]

δijδkl (5.13)

[

P
(/q)
(8,8)mx

]ij,kl

αβ,γδ

=
1

q2

[

(/q)βα(/q)δγ −
(

/qγ
5
)

βα

(

/qγ
5
)

δγ

]

δilδkj (5.14)

The renormalisation constants for these electroweak penguin (EWP) operators are

then determined by solving

1

Z2
q

ZM = F (5.15)

where M is the matrix constructed with elements

Mab ≡ Tr
[

[Pb]
ij,kl
αβ,γδ [Λ

a]ij,klαβ,γδ

]

(5.16)

where a, b label the (8, 8) and (8, 8)mx operators.

5.1.1 Step-scaling

In order to minimise discretisation effects in the calculation of the Z-factors on the

IDSDR lattices, where a is large (a−1 = 1.364 GeV on the IDSDR ensemble, see

chapter 8) and only one lattice spacing is available, the matching point is chosen to

be the low scale µ0 = 1.136 GeV. Note that the matching point is actually chosen in

lattice units, and can only be determined in physical units once the lattice spacing

has been calculated. This leads ot the seemingly arbitrary value µ0 = 1.136 GeV. A

step-scaling function[44, 45] is evaluated to convert the results to 3 GeV, where

perturbation theory is more convergent than the conventional matching scale of

2 GeV. The use of step-scaling, and in particular its recent generalization to the

RI-MOM and RI-SMOM schemes being used in this thesis [43, 46, 47], allows the

renormalisation constants evaluated at µ = 1.136 GeV to be related to

renormalisation constants at 3 GeV, so that perturbative matching to MS may take
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place. The step-scaling approach can also be generalised to operators which mix

under renormalisation [48, 49] and this is applied in this calculation.

The renormalisation constants Z
(Iv,Iq)
(27,1)

(µ0) and Z
(Iv ,Iq)
ab (µ0), (a, b = (8, 8), (8, 8)mx),

are evaluated on two ensembles, each generated with 2 + 1 flavours of domain wall

fermions and the Iwasaki gauge action. These lattices have dimensions 323 × 64× 16

and 243 × 64× 16 and are generated at β = 2.25 and β = 2.13 respectively [50, 51].

Renormalization constants on the Iwasaki ensembles were presented in [48].

The benefit of doing this is that on these finer lattices the renormalisation constants

can be run non-perturbatively from µ0 = 1.136 GeV to a larger scale µ = 3 GeV.

Taking Q(27,1) as an example, the step-scaling function on the finer lattices is

defined as:

Σ
(Iv,Iq)
(27,1) (µ, µ0, a) = lim

m→0

[

Z
(Iv,Iq)
(27,1) (µ, a,m)

(

Z
(Iv ,Iq)
(27,1) (µ0, a,m)

)−1
]

, (5.17)

where m is the quark mass. Since we have results at two different lattice spacings

on the finer Iwasaki lattices we can perform the continuum extrapolation and define

the continuum step-scaling functions as

σ
(Iv ,Iq)
(27,1)

(µ, µ0) = lim
a→0

Σ
(Iv,Iq)
(27,1)

(µ, µ0, a) . (5.18)

The step-scaling function σ(27,1)(µ, µ0) describes the continuum non-perturbative

running of the 4 quark operator Q(27,1) in a given scheme. Because it does not

depend on the lattice action, it can be used to run the Z factor obtained from the

IDSDR lattice at the low scale µ0 to a higher energy µ where perturbation theory is

more convergent. Finally, the operator Q(27,1), renormalised in the intermediate

scheme (Iv, Iq) at a perturbative scale µ is related to the IDSDR lattice operator by:

Q
(Iv,Iq)
(27,1) (µ) = σ

(Iv ,Iq)
(27,1) (µ, µ0)Z

(Iv,Iq)
(27,1) (µ0)Q

(latt)
(27,1). (5.19)

For the electroweak operators the above equations become 2×2 matrix equations

with the constants Z
(Iv ,Iq)
(27,1) replaced by the matrices Z

(Iv,Iq)
ab and similarly for the
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step-scaling factors.

5.1.2 NPR Results

The results for the renormalisation constants in the (γµ, γµ) and (/q, /q) schemes,

evaluated at µ0 = 1.136 GeV are:

Z(γµ,γµ)(µ0) =













0.443 (1) 0 0

0 0.505 (1) −0.114 (1)

0 −0.022 (3) 0.231 (2)













(5.20)

Z(/q,/q)(µ0) =













0.489 (1) 0 0

0 0.510 (2) −0.116 (1)

0 −0.077 (6) 0.305 (4)













, (5.21)

where the quoted errors are statistical only.

The conversion to MS-NDR is calculated to one loop in perturbation theory. The

renormalisation constants in the MS-NDR scheme are related to those in the

intermediate RI schemes by the matching matrix RIv,Iq according to

ZMS
(Iv ,Iq)

= R(Iv ,Iq)Z(Iv,Iq) (5.22)

The matching factors R(Iv,Iq) are known at one loop [32]. Using

αMS
s (3 GeV) = 0.24544 the SMOM → MS matching matrices are

R(γµ,γµ)(3 GeV) =













1.00414 0 0

0 1.00084 −0.00253

0 −0.03152 1.08781













(5.23)

R(/q,/q)(3 GeV) =













0.99112 0 0

0 1.00084 −0.00253

0 −0.01199 1.02921













(5.24)
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The (γµ, γµ) and (/q, /q) schemes are preferred over the (γµ, /q) and (/q, γµ) because

they are better approximated by perturbation theory for µ ≈ 3 GeV. Retaining the

labels (γµ, γµ) and (/q, /q) as a reminder of the intermediate scheme used in the

NPR, the final results for the renormalisation constants in the MS-NDR scheme at

3 GeV are

ZMS
(γµ,γµ)(3 GeV) =













0.419(2)(1) 0 0

0 0.479(5)(8) −0.022(5)(20)

0 −0.047(13)(11) 0.552(19)(28)













(5.25)

ZMS
(/q,/q)

(3 GeV) =













0.424(4)(4) 0 0

0 0.472(6)(8) −0.020(5)(21)

0 −0.067(23)(30) 0.572(28)(20)













(5.26)

where the first error is statistical and the second error is systematic. The

systematic error has been propagated through from the continuum extrapolation of

the step-scaling function. A conservative estimate of this error is made, using the

difference between the result for the step-scaling function on the finest Iwasaki

lattice and the continuum extrapolation.

Following conversion to the MS scheme, the renormalisation constants should no

longer depend on the choice of intermediate scheme. The difference in Eq. (5.25)

and Eq. (5.26) can be interpreted as a measure of the truncation error in the

continuum perturbation theory, as well as giving some indication of the scaling

errors on the DSDR lattices.

5.2 Renormalisation Constants for the 163 Iwasaki

Lattices

The renormalisation factors for all seven of the ∆S = 1 operators in chiral basis

defined in Eq. (3.9) were calculated on the 163 Iwasaki ensemble in [52]. RI-SMOM

kinematics were used, while the choice of operator projector corresponded to the

/q scheme. The resulting renormalisation matrix ZRI
ij (µ, a) can be used to convert
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the lattice normalization into that of the RI scheme:

QRI(µ)i =

7
∑

j=1

Z lat→RI
ij (µ, a)Q′

j . (5.27)

However, these equalities hold only when the operators appear in physical matrix

elements of on-shell states. Since the RI/SMOM renormalisation conditions are

being imposed for off-shell, gauge-fixed external quark lines, a larger number of

operators should in principal be included, rather than the minimal set of seven

independent operators which can represent all gauge invariant matrix elements

between physical states of HW . Therefore, a correspondingly larger set of

conditions must also be employed to distinguish among this larger set of operators.

This larger set of operators is required if the calculation is to use these RI operators

to reproduce all the gauge-fixed, off-shell Green’s functions that can be constructed

using the original, chiral basis of lattice operators Q′
i.

However, the ultimate goal is to evaluate on-shell, physical matrix elements of these

operators. For such matrix elements there are only seven independent operators

and the expanded set of operators referred to above can be collapsed back to the

seven, four-quark, chiral basis operators QRI
i . This is the meaning of the 7× 7

matrix Z lat→RI matrix given in Tab. 5.1: gauge symmetry and the equations of

motion must be imposed to reduce to seven the RI-normalized operators to which

the seven lattice operators are equated. In the calculation of Z lat→RI presented in

Ref. [52] such extra operators are neglected. For all but one, this might be justified

because these operators enter only at two loops or beyond and the perturbative

coefficients that we are using in later steps are computed at only one loop. A single

operator, given in Eq. 146 of Ref. [20] and Eq. 12 of Ref. [32] does appear at one

loop but has also been neglected because it is expected to give a smaller

contribution than other two-quark operators with quadratically divergent

coefficients whose effects are indeed small. A final imperfection in the results

presented in Tab. 5.1 is that the subtraction of a third dimension-four, two-quark

operator which contains a total derivative was not performed. However, the effect

of subtracting this third operator is expected to be similar to those of the two

57



Table 5.1: Z/Z2
q in the RI-SMOM(γµ/q) scheme at 2.15 GeV

1 2 3 4 5 6 7
1 0.825(7) 0 0 0 0 0 0
2 0 0.882(38) -0.111(41) -0.009(12) 0.010(10) 0 0
3 0 -0.029(69) 0.962(92) 0.013(22) -0.011(25) 0 0
4 0 -0.04(12) -0.01(13) 0.924(42) -0.149(35) 0 0
5 0 0.17(18) 0.08(23) -0.042(55) 0.649(63) 0 0
6 0 0 0 0 0 0.943(8) -0.154(9)
7 0 0 0 0 0 -0.0636(53) 0.680(11)

operators which were subtracted, effects which were not visible outside of the

statistical errors (see e.g. Tabs. XIV and XVIII in Ref. [20]).

Results for the inverse of Z/Z2
q , evaluated at 2.15 GeV at three different unitary

mass points are tabulated in tables 40-42 of [52]. Since there is no visible mass

dependence, the error-weighted average of the three tables is used in order to

reduce the statistical error. The final table of renormalisation constants Z/Z2
q is

presented in Tab. 5.1. The results of Tab. 5.1 must be converted to the MS-NDR

scheme. The conversion factor R(/q,γµ) which relates Z(/q,γµ) to ZMS
(/q,γµ)

is taken from

Tab. VIII of Ref. [32] using αs(2.15 GeV) = 0.286758, giving

R(/q,γµ) =







































0.944 0 0 0 0 0 0

0 0.937 0.00725 0 0 0 0

0 0.00218 0.925 0.00169 −0.00507 0 0

0 0 0 0.940 −0.00296 0 0

0 −0.0380 −0.0887 −0.0241 1.00 0 0

0 0 0 0 0 0.940 −0.00296

0 0 0 0 0 −0.0368 1.04







































.

(5.28)

Using Zq = 0.8016, which was evaluated using the /q scheme defined in Eq. (5.9) and

the results of Eq. (5.28) the renormalisation constants in the MS at 2.15 GeV are

given in Tab. 5.2.
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Table 5.2: Z in the MS-NDR scheme at 2.15 GeV

1 2 3 4 5 6 7

1 0.500 0 0 0 0 0 0
2 0 0.531 -0.0621 -0.00516 0.00594 0 0
3 0 -0.0169 0.571 0.00888 -0.00891 0 0
4 0 -0.0217 -0.00319 0.558 -0.0913 0 0
5 0 0.0878 -0.00266 -0.0418 0.422 0 0
6 0 0 0 0 0 0.570 -0.0944
7 0 0 0 0 0 -0.0649 0.459
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Chapter 6

Two Particles in a Finite Volume

The Lüscher quantisation condition gives the two-pion energy spectrum on a lattice

in terms of the s-wave phase shift δ and a kinematic function φ,

δ(k) + φ(q) = nπ, (6.1)

where k is related to the centre of mass energy by E = 2
√

m2
π + k2 and q = kL/2π

where L is the length of the lattice. Lüscher’s derivation of this formula was based

on non-relativistic quantum mechanics [53]. An alternative derivation of the

quantisation condition, based on summation formulae which relate sums and

integrals and formulated entirely in field theory, was presented in [54] and is

described in this chapter.

6.1 Summation Formulae

The derivation begins with the Poisson summation formula,

1

L3

∑

~k

g(~k) =

∫

d3k

(2π)3
g(~k) +

∑

~l 6=~0

∫

d3k

(2π)3
eiL

~l.~kg(~k), (6.2)

where the summation on the left-hand side is over all integer values of

~n = (n1, n2, n3), with ~k = 2π~n/L, and the summation on the right-hand side is over

integer values of ~l = (l1, l2, l3) excluding l = (0, 0, 0). For functions f(~k) whose
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Fourier transforms f̃(~r) are non-singular and are either contained in a finite volume

or decrease exponentially as |r| → ∞, the Poisson summation formula allows the

sum on the left hand side of Eq. (6.2) to be replaced by an integral,

1

L3

∑

~k

f(~k) =

∫

d3k

(2π)3
f(~k). (6.3)

Eq. (6.3) is valid up to exponentially small corrections, as the right-most term in

Eq. (6.2) decreases at least exponentially as the box size is sent to infinity.

Later we will show that for two-pion correlators with energy below the inelastic

threshold, the finite-volume corrections are contained in summations of the form

S(~q) ≡ 1

L3

∑

~k

f(~k)

q2 − k2
(6.4)

where it is assumed that q2 ≡ |~q|2 is such that there is no term in the sum with

k2 ≡ |~k|2 = q2 and that f(~k) has the properties described above. In particular it is

important that f(~k) has no singularities for real ~k. Eq. (6.3) cannot be applied to

Eq. (6.4) because there is a singularity at k2 = q2. Working in spherical polar

coordinates ~k = (k, θ, φ), f is expanded in spherical harmonics as follows

f(~k) =

∞
∑

l=0

l
∑

m=−l

flm(k)kl
√
4πYlm(θ, φ), (6.5)

leading to

S(~q) =
∑

l,m

Slm(q) where Slm(q) ≡ 1

L3

∑

~k

flm(k)

q2 − k2
kl
√
4πYlm(θ, φ). (6.6)

The authors of [54] proceed by subtracting from the summand a function chosen to

cancel the pole at k2 = q2. The subtraction includes a factor exp(α(q2 − k2)) in

order to avoid introducing an ultraviolet divergence. Once the pole has been

cancelled, Eq. (6.3) can be applied. The result, which is valid up to exponentially
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small corrections, is

1

L3

∑

~k

flm(k)− flm(q)eα(q
2−k2)

q2 − k2

√
4πklYlm(θ, φ) =

∫

d3k

(2π)3
flm(k) − flm(q)e

α(q2−k2)

q2 − k2
kl
√
4πYlm(θ, φ).

(6.7)

It is now possible to find an expression for Slm(q):

Slm(q) = δl,0P
∫

d3k

(2π)3
f00(k)

q2 − k2

√
4πY00 + flm(q)Zlm(q) (6.8)

where

Zlm(q) =
1

L3

∑

~k

eα(q
2−k2)

q2 − k2
kl
√
4πYlm(θ, φ)− δ0,lP

∫

d3k

(2π)3
eα(q

2−k2)

q2 − k2
kl
√
4πY00. (6.9)

The principal value prescription, P has been chosen to regularise the integrals in

Eq. (6.8). The function Zlm(q) in Eq. (6.9) appears to depend on α. However, in

the case of l = 0, the sum and integral in Eq. (6.9) both have an ultraviolet

divergence which is proportional to α−1/2 and these cancel. This is one example of

the more general result that Zlm(q) should not depend on the ultraviolet regulator,

which has been checked numerically by the authors of [54].

6.2 Derivation of the Quantisation Condition

The two-pion energy spectrum in a finite volume can be established by studying the

correlation function C(t). The correlation function is expressed in terms of

interpolating operators σ(~x, t) which overlap with two-pion states. If the two-pion

state is studied in the centre of mass frame, C(t) can be written as

C(t) = 〈0|σ(t)σ†(~0, 0) |0〉 , (6.10)

where

σ(t) =

∫

d3xσ(~x, t) (6.11)
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projects onto zero three-momentum, and the time ordering in Eq. (6.10) is implicit.

The two-pion correlator in energy space is

C̃(E) =

∫

dt e−iEtC(t). (6.12)

The two-pion energy spectrum in an infinite volume in Minkowski space is

described by a branch-cut in the s-plane beginning at s = 4m2. This branch-cut is

replaced by a series of poles if the two-pion scattering is restricted to a finite

volume where momenta are quantised. Thus the energy spectrum in a finite volume

can be determined from the location of these poles.

The two-pion correlator can be expressed in terms of the amputated two-particle

irreducible four-particle correlation function K, through the series shown in

Fig. 6.1. The two-pion energy E is chosen to lie below the four-pion threshold,

0 < E2 < 16m2, so there are no intermediate states with four or more pions and the

finite volume effects in K are exponentially suppressed. The only power-law

finite-volume corrections arise through the two-pion loops in Fig. 6.1.

+ +σ σ σ σ σ σ + · · ·K K K

k

P − k

Figure 6.1: Diagramatic expansion of the two-pion correlator. K
is the amputated two-particle irreducible four-particle correlation
function and P = (E, 0).

If the time extent is infinite, the generic loop integration appearing in Fig. 6.1 is of

the form

I ≡ 1

L3

∑

~k

∫

dk0
2π

f(k0, ~k)

(k20 − ω2
k + iǫ)((E − k0)2 − ω2

k + iǫ)
(6.13)

where ωk =
√

~k2 +m2. A minus sign arising from a factor of i2 from the

propagators has been left out, but will be corrected for later. All remaining

energy-momentum dependence arising from the renormalised propagators, the

kernels either side of the loop integral, or the matrix element of the operator σ at

the ends of the diagram, is contained in the function f . After performing the k0
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integral in Eq. (6.13), the loop summation becomes

I = −i 1
L3

∑

~k

{

f(ωk, ~k)

2ωk((E − ωk)2 − ω2
k)

+
f(E + ωk, ~k)

2ωk((E + ωk)2 − ω2
k)

}

. (6.14)

For 0 < E2 < 16m2 the only singularity in I is the pole in the first term at

E = 2ωk. Eq. (6.3) can be used to replace the second term with an integral since it

is free from singularities. The loop summation I can then be expressed as

I = I1 + I2 (6.15)

where

I1 = −i 1
L3

∑

~k

f(ωk, ~k)

2ωk((E − ωk)2 − ω2
k)

(6.16)

and

I2 = −i
∫

d3k

(2π)3
f(E + ωk, ~k)

2ωk((E + ωk)2 − ω2
k)
. (6.17)

In order to implement the summation formula derived in the previous section, it is

convenient to rewrite I1 as follows:

I1 = −i 1
L3

1

2E

∑

~k

f(k)

q2 − k2
E + 2ωk

4ωk
. (6.18)

Direct application of Eq. (6.8) leads to

I1 = −i 1

2E
P
∫

d3k

(2π)3
f(~k)

q2 − k2
E + 2ωk

4ωk
− i

2E

∞
∑

l=0

l
∑

m=−l

flm(q)Zlm(q2). (6.19)

The final step in deriving the finite volume correction to I is to rewrite the

principal-value integral in terms of the corresponding integral with the Feynman iǫ

prescription in the propagator and a δ-function term:

I1 = −i 1

2E

∫

d3k

(2π)3
f(~k)

q2 − k2 + iǫ

E + 2ωk

4ωk

+
qf00(q)

8πE
− i

2E

∞
∑

l=0

l
∑

m=−l

flm(q)Zlm(q2).

(6.20)

The first line of Eq. (6.20) is exactly the infinite volume expression for I1 in
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Minkowski space, which leads to the final result

I = I∞ + IFV (6.21)

IFV =

{

qf00(q)

8πE
− i

2E

∞
∑

l=0

l
∑

m=−l

flm(q)Zlm(q2)

}

(6.22)

An important point to note is that q is a momentum determined by the energy E,

and so it can take any positve value. In particular, q is not constrained by the finite

volume. This will allow the finite volume corrections to be expressed in terms of

physical scattering amplitudes.

Each of the loop summations in Fig. 6.1 can now be evaluated using Eq. (6.21), and

the series reorganised. The correlation function C̃(E) can be written in terms of an

infinite volume correlator plus a finite volume correction

C̃(E) = C̃∞(E) + C̃FV (E). (6.23)

If I∞ were to be kept in each loop in Fig. 6.1 then the infinite volume correlator

C̃∞(E) would be recovered. It follows that in order to work out the finite volume

corrections, at least one insertion of IFV must be included in the sum. The

contributions to C̃FV (E) are depicted in Fig. 6.2.

+ +A A′ A A′ A A′ + · · ·M M M

F F F F FF

Figure 6.2: Finite volume corrections to the two-pion correlator.

An insertion of IFV in Fig. 6.2 is denoted by the dashed line. The initial and final

two-pion states, labelled A and A′, are given by

A = out 〈ππ;E| σ†(~0, 0) |0〉Zπ A′ = Zπ 〈0| σ(0,~0) |ππ;E〉 (6.24)

and contain a geometric series of contributions with any number of insertions K

with the intermediate loops containing the infinite volume integral I∞. M is the
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on-shell scattering amplitude, obtained by summing a similar geometric series, and

F is a kinematic factor determined by the form of IFV . After adding all the

contributions in Fig. 6.2, the finite volume correction to the two-pion correlator is

C̃FV (E) = −A′FA+AF (iM/2)FA + · · ·

= −A′F
1

1 + iMF/2
A.

(6.25)

The factor of 1/2 is included because it is assumed that the two pions are identical.

The quantity M can be rewritten in terms of partial waves, where δl will denote the

phase shift in the lth partial wave, as follows:

Ml1m1;l2;m2 = δl1l2δm1m2

16πE

q

(exp[2iδl1(q)]− 1)

2i
. (6.26)

The form of F can be found by comparing directly with Eq. (6.22):

Fl1m1;l2;m2 =
q

8πE

(

δl1l2δm1m2 + iFFV
l1m1;l2;m2

)

(6.27)

with

FFV
l1m1;l2;m2

= −4π

q

∞
∑

l=0

l
∑

m=−l

√
4π

ql
Zlm(q2)

∫

dΩY ∗
l1,m1

Y ∗
l,mYl2,m2 . (6.28)

The arguments of the spherical harmonics are (θ, φ) and the asterixes on the

spherical harmonics denote complex conjugation. The factor F will contain poles at

energies corresponding to two free pions both having momenta allowed by the finite

volume. Rescattering of the final state pions shifts the position of the poles in

C̃FV (E) to energies determined by the condition that 1 + iMF/2 has zero

eigenvalue. Equivalently the quantisation condition is

det(1 + iMF/2) = 0. (6.29)

Eq. (6.29) demonstrates that the finite volume energy shifts depend on interactions

only through the infinite volume scattering amplitude M , as was shown by

Lüshcher in [53]. To make use of Eq. (6.29) the number of partial waves
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contributing to the rescattering is restricted to be s-wave. The s-wave quantisation

condition is then simply

1 + iMF/2 = 0 (6.30)

with

M =
16πE

q

(e2iδ(q) − 1)

2i
, (6.31)

δ is the s-wave phase shift and

F =
q

8πE
− i

2E
Z00(q

2). (6.32)

The quantisation condition can be rearranged to give

tan[δ(q)] = − tan[φ(q)] where tan[φ(q)] =
q

4π
[Z00(q

2)]−1. (6.33)

This is equivalent to the usual form of the quantisation condition given in Eq. (6.1).

A method for numerically determining the value of Z00(q
2) in Eq. (6.33) can be

found in [55].

6.3 Relation between Finite Volume and Infinite

Volume Matrix Elements

The two pion correlation function in a finite volume can be written as

CV
σ (t) =

∫

d3x 〈0|σ(~x, t)σ(~0, 0) |0〉V

=V
∑

n

| 〈0| σ(~0, 0) |ππ, n〉V |2e−Ent

V→∞−−−−→V

∫

dEρV (E)| 〈0| σ(~0, 0) |ππ〉V |2e−Et,

(6.34)

where ρV (E) = dn/dE describes the density of states. The corresponding infinite

volume correlator is

C∞
σ (t) =

1

16π2

∫

dE
q

E
| 〈0| σ(~0, 0) |ππ,E〉∞ |2e−iEt. (6.35)
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Comparing Eq. (6.35) with Eq. (6.34),

|ππ,E〉∞ ↔ 4π

√

V Eρ(q)

q
|0〉V . (6.36)

Similarly, the relation for a kaon state is

|K〉∞ ↔
√
2EV |K〉V . (6.37)

The quantisation condition in Eq. (6.1) allows the density of states in Eq. (6.34) to

be evaluated:

ρV (E) =
dn

dE
=

E

4πq

{

∂δ

∂q
+
∂φ

∂q

}

. (6.38)

The main result of this chapter, relating the finite volume K → ππ matrix element

with the infinite volume K → ππ matrix element is found by combining

eqs. (6.36),(6.37) and (6.38):

|A|2 = 8πV 2mKE
2

q2

{

∂δ

∂q
+
∂φ

∂q

}

|M |2 (6.39)

where

A = ∞ 〈ππ;E|HW |K〉∞ (6.40)

and

M = V 〈ππ;E|HW |K〉V . (6.41)

6.4 Finite Volume Corrections for Non-Interacting

Pions

In this section the relation between finite volume matrix elements and infinite

volume amplitudes is worked out for the simpler free field case, where the two

final-state pions do not interact with each other.

The wavefunction for a single particle plane-wave state in a finite volume is

ψFV
~p (~x) =

1

L3/2
ei~p.~x. (6.42)
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In an infinite volume where the state has a relativistic normalisation, the equivalent

wave function is

ψ∞
~p (~x) =

√
2Eei~p.~x. (6.43)

Thus for single-particle states, the relation between finite and infinite volume is

|p〉∞ =
√
2EL3 |p〉FV . (6.44)

For a two-particle state occupied by identical pions, the finite volume wavefunction

is

ψ~p1~p2(~x1, ~x2) =























1√
2L3

(ei~p1.~x1ei~p2.~x2 + ei~p1.~x2ei~p2.~x1) p1 6= p2

1
L3 e

i~p1.(~x1+~x2) p1 = p2

. (6.45)

The infinite volume wavefunction is

ψinf
~p1~p2

(~x1~x2) =
1√
2

√

2E1

√

2E2(e
i~p1.~x1ei~p2.~x2 + ei~p1.~x2ei~p2.~x1) (6.46)

which leads to the relation

|p1, p2〉∞ =























√
2E1

√
2E2L

3 |p1, p2〉FV ~p1 6= ~p2

√
2
√
2E1

√
2E2L

3 |p1, p2〉FV ~p1 = ~p2

. (6.47)

The calculation of K → ππ matrix elements in an isospin=0 final state will be

performed at threshold where ~p1 = ~p2 = 0, in which case the relation between finite-

and infinite-volume K → ππ matrix elements is

〈π(0)π(0)| LW |K(0)〉∞ = 2(mKL)
3/2 〈π(0)π(0)|HW |K(0)〉FV . (6.48)
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Chapter 7

Lattice Methods for K → ππ

Two separate calculations of the K → ππ decay amplitudes are discussed in this

thesis. The first calculation focusses on the amplitude A2, and provides the first

calculation of A2 at nearly physical kinematics. The second calculation is

performed with large quark masses on a relatively small lattice volume, allowing

large statistics to be collected for the evaluation of A0. The purpose of this chapter

is to discuss the details of the technical aspects of the lattice evaluation of the

K → ππ correlation functions in general. Results from the two calculations will

then be presented in Chapters 8 and 9.

An essential ingredient in the evaluation of the K → ππ matrix elements is the

two-pion correlation function. As such, this chapter begins with a discussion of

two-pion scattering. Ensuring the two final state pions have non-zero momentum is

a fundamental aspect of the evaluation of A2, and a discussion of how this is

achieved is given in Sec. 7.1. In Sec. 7.2, the correlation functions and Wick

contractions relevant to the evaluation of the K+ → π+π+ matrix elements are

given. Finally, the details of computing the K0 → ππ matrix elements at zero

momentum are given in Sec. 7.3.
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7.1 Two-Pion Scattering

For physical K → ππ decays in the centre-of-mass (CM) frame, the final state pions

will have non-zero momentum. If periodic boundary conditions are used on the

quark fields, the allowed two-pion energies are approximately 2
√

m2
π + (2πn/L)2

where n = 0, 1, 2, . . .. Thus extracting the two-pion state with energy ≃ mK

requires both the careful tuning of the lattice volume and the fitting of the

correlation function to an excited state. This entails extracting the next-to-leading

exponential in the large time limit, which is difficult to perform with high accuracy.

However, for the I = 2 two-pion state a special choice of boundary condition can be

applied to the quark fields in order to simulate the two final-state pions at non-zero

momentum. This is made possible by the Wigner-Eckart theorem, which relates the

K+ → π+π0 matrix element to the K+ → π+π+ matrix element according to

Eq. (3.10). With anti-periodic boundary conditions in one or more spatial direction

on one of the quark fields in each π+-meson, the allowed pion momenta are

p = (nπ/L), with n = 1, 2, . . ., in each spatial direction where anti-periodic

boundary conditions have been applied. The non-zero momentum pions are now

the ground state, and so the correlation function can be fitted to the leading

exponential.

The Wigner-Eckart theorem is necessary in order to successfully simulate the

isospin=2 two-pion final state with the desired momentum. Using different

boundary conditions for the up and down quarks breaks isospin, and would allow

the final state pions to mix with the I = 0 two-pion state. However, the π+π+ final

state is the only charge-2 state, and is protected from such mixing by charge

conservation. The inability to use the Wigner-Eckart relation to circumvent the

isospin breaking prevents the same trick from being used for the calculation of the

∆I = 1/2 decay amplitude; this constitutes one of the major technical hurdles in

this calculation.

The π+π+ correlation function is

Cπ+π+(~p; t; tπ) = 〈0|Oπ+π+(~p, t)Ocos †
π+π+(~p, t) |0〉 , (7.1)
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where the interpolating operators are

Oπ+π+(~p, t) =
∑

~w~x~y~z

ei~p·~we−i~p·~y d(~w, t)γ5u(~x, t)d(~y, t)γ5u(~z, t) (7.2a)

Ocos
π+π+(~p, t) =

∑

~w~x~y~z

ηcos(~w; ~p)ηcos(~y; ~p) d(~w, t)γ
5u(~x, t)d(~y, t)γ5u(~z, t). (7.2b)

The d-quark is generated by imposing antiperiodic boundary conditions in one or

more of the spatial directions and using Coulomb gauge-fixed momentum wall

sources of the “cosine” type, defined in Eq. (4.51). The I = 2 two-pion correlation

function at momentum ~p is calculated by evaluating

Cπ+π+(~p, t; tπ) = 2(D − C), (7.3)

where D and C label two different Wick contractions. These Wick contractions are

shown in Fig. 7.1 and the naming convention for the diagrams is taken from [56].

Inserting a complete set of two-pion states in Eq. (7.3), the expected form of the

correlation function at large t is

Cππ(~p; t; tπ) = 〈0|Oππ(~p, t) |ππ〉 〈ππ|Ocos †
ππ (~p, t) |0〉 e−Eππt + C

≡ Ze
ππ(Z

c
ππ)

∗e−Eππt + C, (7.4)

where Ze
ππ = 〈0|Oππ(~p, t) |ππ〉, Zc

ππ = 〈0|Ocos
ππ (~p, t) |ππ〉, and the labels e and c have

been introduced to distinguish between the use of an exponential momentum source

or a cosine momentum source. The constant C is included to describe the leading

“around-the-world” effect. This constant term arises from a contribution in the

corresponding functional integral where each of O†
π+π+ and Oπ+π+ annihilate one

pion and create another, so that a single pion propagates across the entire lattice.

This contribution to the correlation function is independent of t, and although it

contains the small factor e−Eπ T , where T is the temporal size of the lattice, it may

nevertheless lead to a loss of precision.

When studying the propagation of two π+ mesons, the same cosine source is used

for each d-quark, which introduces cross terms in correlation functions that couple

73



to two-pion states with non-zero total momentum. For illustration, consider the

case ~p = (π/L, 0, 0) so that the product of the sources of the two d-quarks is

ηcos(~x1, ~p)ηcos(~x2, ~p) = cos
(π

L
x1

)

cos
(π

L
x2

)

=
1

4

(

ei
π
L
x1ei

π
L
x2 + ei

π
L
x1e−i π

L
x2 + e−i π

L
x1ei

π
L
x2 + e−i π

L
x1e−i π

L
x2

)

.

(7.5)

The two pions are required to have individual momenta ~p1 =
π
L x̂ and ~p2 = − π

L x̂ (or

vice-versa), but the first and last terms on the right hand side of Eq. (7.5) couple to

two-pion states with total momentum 2 π
L and −2 π

L respectively. The unwanted

terms in the two-pion correlation functions are eliminated by using different sinks,

exp(±iπxi/L), for the two d quarks ensuring that they carry equal and opposite

momenta which constrains the final state to have zero total momentum. In the

K → ππ correlation functions, the kaon has zero momentum and the sum over the

spatial position of the weak operator then ensures that the two-pion final state also

has zero total momentum.

The advantage of using the cosine sources is that it halves the number of inversions

which have to be performed for the d-quark. Had the more conventional momentum

source,

η~p(~x) = ei~p·~x , (7.6)

been used, it would have been necessary to perform two separate d-quark inversions

with momentum +~p for one and −~p for the other. The cosine source eliminates one

of these inversions.

It was shown in [57] that it is sufficient to use the antiperiodic boundary conditions

only on the valence down anti-quarks in the π+ mesons, and to use periodic

boundary conditions for the sea quarks used in the simulations. Thus it is only

necessary to generate one lattice ensemble with periodic boundary conditions

imposed on all sea quarks.

The calculation of the two-pion scattering in the I = 0 channel differes from the

I = 2 channel in three key ways. Firstly there are two extra Wick contractions

which contribute to the correlation function. These are shown in Fig. 7.1. Secondly,
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there is a vacuum contribution which must be subtracted, and finally it is not

possible with current techniques to simulate the two pions at non-zero momentum.

Two-pion states with I = 0, 2 and third component of isospin Iz = 0 are

constructed from |π+π−〉 and |π0π0〉 states as described in Eqns. (2.2c) and (2.2d).

The interpolating operators used to overlap with |π+π−〉 and
∣

∣π0π0
〉

states are

Oπ+π−(t) =
∑

~w~x~y~z

d(~w, t)γ5u(~x, t)u(~y, t)γ5d(~z, t) (7.7a)

Oπ0π0(t) =
1√
2

∑

~w~x~y~z

{

u(~w, t)γ5u(~x, t)− d(~w, t)γ5d(~x, t)
}

×

{

u(~y, t)γ5u(~z, t)− d(~y, t)γ5d(~z, t)
}

. (7.7b)

At zero momentum, the |π+π−〉 state is identical to the |π−π+〉 state, and the

two-pion correlation functions with Iz = 0 are calculated by evaluating

Cππ
0 (t, tπ) ≡ 〈Oππ

0 (t)Oππ
0 (tπ)

†〉 = 1
3

{

4
〈

Oπ+π−(t)O†
π+π−(tπ)

〉

+ 4
〈

Oπ+π−(t)O†
π0π0(tπ)

〉

+
〈

Oπ0π0(t)O†
π0π0(tπ)

〉}

(7.8a)

= 2D(t, tπ) + C(t, tπ)− 6R(t, tπ) + 3V (t, tπ) (7.8b)

Cππ
2 (t, tπ) ≡ 〈Oππ

2 (t)Oππ
2 (tπ)

†〉 = 1
3

{

2
〈

Oπ+π−(t)O†
π+π−(tπ)

〉

+ 2
〈

Oπ+π−(t)O†
π0π0(tπ)

〉

+4
〈

Oπ0π0(t)O†
π0π0(tπ)

〉}

(7.8c)

= 2
(

D(t, t′)− C(t, t′)
)

(7.8d)

where D, C, R and V refer to the four different wick contractions which contribute

to the two pion scattering [56]. For convenience, the minus sign arising from the

number of fermion loops is not included in the definition of these contractions. The

vacuum contraction, labelled V, should be accompanied by a vacuum subtraction.

These contractions can be calculated in terms of the light quark propagator
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Sl(tsnk, tsrc) for a Coulomb gauge fixed wall source located at the time tsrc and a

similar wall sink located at tsnk. The resulting complete vacuum amplitude,

including the vacuum subtraction, is given by

V (t, t′) =

{

〈

Tr[Sl(t′, t′)Sl(t′, t′)†]Tr[Sl(t, t)Sl(t, t)†]
〉

(7.9)

−
〈

Tr[Sl(t′, t′)Sl(t′, t′)†]
〉〈

Tr[Sl(t, t)Sl(t, t)†]
〉

}

,

where the indicated traces are taken over spin and colour and the hermiticity

properties of the domain wall propagator have been used to eliminate factors of γ5.

In order to improve statistics, the results from sources on each of the Nt time slices

can be explicitly averaged (Nt is the temporal extent of the lattice), as follows

V (t) =
1

Nt

Nt−1
∑

t′=0

V (t, t′)

=

{

〈

Tr[Sl(t′, t′)Sl(t′, t′)†]Tr[Sl(t+ t′, t+ t′)Sl(t+ t′, t+ t′)†]
〉

(7.10)

−
〈

Tr[Sl(t′, t′)Sl(t′, t′)†]
〉〈

Tr[Sl(t+ t′, t+ t′)Sl(t+ t′, t+ t′)†]
〉

}

.

D C R V

Figure 7.1: The four diagrams which contribute to π−π scattering

Inserting a complete sets of two-pion states in Eqns. (7.8b) and (7.8d) the expected

form of the two-pion correlation function at large t is

Cππ
I (t, 0) = |Zππ,I |2 {exp(−Eππ

I t) + exp(−Eππ
I (T − t)) +AI} , (7.11)
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where Zππ,I = 〈0|Oππ
I |ππ〉, and AI describes the leading around-the-world

contribution.

7.2 Expressions for K+ → π+π+ Correlation Functions

This section introduces the correlation functions and Wick contractions that must

be computed in order to evaluate the K+ → π+π+ matrix elements at non-zero

momentum. Discussion of the zero momentum calculation of the K0 → ππ matrix

elements, with particular emphasis on the evaluation of A0, are postponed until the

next section. The main motivation for dividing the chapter in this way is the

appearance of both disconnected and divergent diagrams in the I = 0 channel. In

the case of the I = 2 final state no disconnected diagrams appear, there are no

divergent eye diagrams, and isospin conservation requires that four valence quark

propagators must join the kaon and weak operator with the operators creating the

two final-state pions.

In addition to the two-pion correlation function discussed in Sec. 7.1, the

correlation functions which were computed for this calculation of K+ → π+π+ are

Cπ(t, tπ) = 〈0|Oπ+(t)O†
π+(t) |0〉 (7.12a)

CK(t; tK) = 〈0|OK(t)O†
K(t) |0〉 (7.12b)

CKππ(~p; tπ; top; tK) = 〈0|Ocos
ππ (~p, tπ)Qi(~xop, top)O

†
K(tK) |0〉 (7.12c)

where the interpolating operators are

Oπ+(t) =
∑

~x,~y

d(~x, t)γ5u(~y, t) (7.13a)

OK(t) =
∑

~x,~y

s(~x, t)γ5u(~y, t) (7.13b)

and Qi(~xop, top) is one of the operators defined in Eq. (3.12). Equation (7.12c)

results in six Wick contractions, labelled D+
Lχ,1, D

+
Lχ,2,

˜D+
LR,1 and ˜D+

LR,2, where 1, 2

label the topology of the Wick contractions, χ = L,R depending on whether the

operator is LL or LR, and the ∼ indicates that the operator is colour mixed. The
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superscript + reminds the reader that these contractions are for K+ → π+π+. Full

expressions for all six Wick contractions can be found in A.1. Quark-flow diagrams

depicting the traces over spinor indices are presented in Fig. 7.2, where γχ = γL if

the weak operator is in the (27,1) representation. Alternatively γχ = γR if the weak

operator is in an (8,8) representation. The diagrams in Fig. 7.2 do not carry a

minus sign for odd numbers of fermion traces. This minus sign is included explicitly

in Eq. (7.14). The K → ππ correlation function for each of the three operators in

the ∆I = 3/2 channel of the decay can then be written in terms of the diagrams

D+
Lχ,i,

˜D+
LR,i (which are implicit functions of ~p, tπ, top and tK) as follows:

C
(27,1)
K→ππ(~p; tπ; top; tK) = 2(D+

LL,1 −D+
LL,2)

C
(8,8)
K→ππ(~p; tπ; top; tK) = 2(D+

LR,1 −D+
LR,2)

C
(8,8)mx
K→ππ (~p; tπ; top; tK) = 2( ˜D+

LR,1 − ˜D+
LR,2).

(7.14)

K+

π+

π+γχ

γL

s

u

d

u
d

K+

π+

π+γL

γχ

s

u

d

u

d

Figure 7.2: K+ → π+π+ quark flow diagrams. The solid lines
depict traces over spinor indices. The left-hand image is labelled
D+

L,χ,1 and the right-hand image is labelled D+
L,χ,2.

The pion and kaon masses and K → ππ matrix elements can all be extracted from

the correlation functions in Eq. (7.12). This is achieved by inserting complete sets

of states between the operators as described in Eq. (4.56), with the result

Cπ(t, tπ) = | 〈0|Oπ(t) |π〉 |2(e−mπt + e−mπ(T−t))

≡ |Zπ|2(e−mπt + e−mπ(T−t)) (7.15a)

CK(t; tK) = | 〈0|OK(t) |π〉 |2(e−mK t + e−mK(T−t))

≡ |ZK |2(e−mK t + e−mK(T−t)) (7.15b)

CKππ(~p; tπ; top; tK) = Zc
ππZKMe−mK (tK−t)e−Eππ(t−tπ) (7.15c)

where Mi = 〈ππ|Qi(~xop, top) |K〉 and Zc
ππ was defined in Sec. 7.1.

An analysis of these correlation functions, computed on an ensemble of large
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γL

γχ

DLχ,1

s

K

π

π

γχ

γL

DLχ,2

s

K

π

π

Figure 7.3: Diagrams representing the eight K0 → ππ contrac-
tions of type1, where χ = L or R, and γL,R = γµ(1 ± γ5). The
blue dot indicates a γ5 matrix, which is present in each operator
creating or destroying a pseudoscalar meson.

323 × 64 × 32 lattices at almost physical kinematics is described in Chapter 8.

7.3 Wick Contractions for K0 → ππ Decays

In this section we describe some of the techniques used to evaluate the K0 → ππ

matrix elements on the lattice. The calculation of A0 requires evaluating the

K0 → π+π− and K0 → π0π0 matrix elements of all ten operators listed in

Eq. (3.2). Particular emphasis must be placed on collecting large statistics. The

I = 0 two-pion final state implies the presence of disconnected graphs in the

correlation functions and makes the calculation very difficult. For these graphs, the

noise does not decrease with increasing time separation between the source and

sink, while the signal does. Therefore, substantial statistics are needed to get a

clear signal. This difficulty is compounded by the presence of diagrams which

diverge as 1/a2 as the continuum limit is approached (a is the lattice spacing).

While these divergent amplitudes must vanish for a physical, on-shell decay they

substantially degrade the signal to noise ratio even for an energy-conserving

calculation such as the one presented in Chapter 9. Studying the properties of the

1/a2 terms and learning how to successfully subtract them is one of the important

objectives of this calculation. Domain wall fermions are used in this calculation in

order to preserve chiral symmetry, which is necessary to control operator mixing.

There are 48 different contractions which contribute to the matrix elements
〈

ππ|Qi|K0
〉

. These are illustrated in Figs. 7.3-7.6.
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Figure 7.4: Diagrams for the type2 K0 → ππ contractions.
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Figure 7.5: Diagrams for the type3 K0 → ππ contractions.
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Figure 7.6: Diagrams for the type4 K0 → ππ contractions.
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Figure 7.7: Divergent diagrams
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Figure 7.8: Examples of K → |0〉 contractions.

These contractions are labeled in the figures and grouped into four categories

labeled as type1, type2, type3, and type4 according to their topology. The labels are

of the form DLχ,n or D
(q)
Lχ,n, where n describes one of eight specific topologies,

χ = L,R depending on whether the operator is LL or LR and the superscript (q) is

sometimes included to specify which flavour of quark appears in certain diagrams.

If the operator is colour diagonal, the quark-flows in Figs. 7.3-7.6 are traces over

both spin and colour. If the operator is not colour-diagonal then the diagram is

described as mixed. In this case separate traces over spin and colour appear in the

expressions for the diagrams. The mixed diagrams are denoted by D̃Lχ,n, D̃
(q)
Lχ,n in

place of DLχ,n or D
(q)
Lχ,n. Once we have calculated all of these contractions, the

correlation functions
〈

Oππ
I (tπ)Qi(top)K

0(tK)
〉

are then obtained as combinations of

these contractions. In order to simplify the following formulae, we use the

amplitude AI,i(tπ, t, tK) to represent three point function 〈Oππ
I (tπ)Qi(top)K(tK)〉.
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Using this notation, the I = 2 amplitudes can be written,

A2,1(tπ, top, tK) =

√

2

3
{DLL,1 −DLL,2} (7.16a)

A2,2(tπ, top, tK) =

√

2

3
{D̃LL,1 − D̃LL,2} (7.16b)

A2,3(tπ, top, tK) = 0 (7.16c)

A2,4(tπ, top, tK) = 0 (7.16d)

A2,5(tπ, top, tK) = 0 (7.16e)

A2,6(tπ, top, tK) = 0 (7.16f)

A2,7(tπ, top, tK) =

√

3

2
{DLR,1 −DLR,2} (7.16g)

A2,8(tπ, top, tK) =

√

3

2
{D̃LR,1 − D̃LR.2} (7.16h)

A2,9(tπ, top, tK) =

√

3

2
{DLL,1 −DLL,2} (7.16i)

A2,10(tπ, top, tK) =

√

3

2
{D̃LL,1 − D̃LL,2} (7.16j)

and in the I=0 case,
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A0,1 = − 1√
3
{DLL,1 + 2DLL,2 − 3DLL,3 − 3D

(d)
LL,5 + 3D

(d)
LL,7} (7.17a)

A0,2 =
1√
3
{2DLL,1 +DLL,2 − 3DLL,4 − 3D

(d)
LL,6 + 3D

(d)
LL,8} (7.17b)

A0,3 = −
√
3{DLL,2 − 2DLL,3 +DLL,4 − 2D

(d)
LL,5 −D

(s)
LL,5

+D
(d)
LL,6 +D

(s)
LL,6 + 2D

(d)
LL,7 +D

(s)
LL,7 −D

(d)
LL,8 −D

(s)
LL,8} (7.17c)

A0,4 =
√
3{DLL,1 +DLL,3 − 2DLL,4 +D

(d)
LL,5 +D

(s)
LL,5 (7.17d)

− 2D
(d)
LL,6 −D

(s)
LL,6 −D

(d)
LL,7 −D

(s)
LL,7 + 2D

(d)
LL,8 +D

(s)
LL,8}

A0,5 = −
√
3{DLR,2 − 2DLR.3 +DLR,4 − 2D

(d)
LR,5 −D

(s)
LR,5 +D

(d)
LR,6

+D
(s)
LR,6 + 2D

(d)
LR,7 +D

(s)
LR,7 −D

(d)
LR,8 −D

(s)
LR,8} (7.17e)

A0,6 = −
√
3{D̃LR,2 − 2D̃LR.3 + D̃LR,4 − 2D̃

(d)
LR,5 − D̃

(s)
LR,5 + D̃

(d)
LR,6

+ D̃
(s)
LR,6 + 2D̃

(d)
LR,7 + D̃

(s)
LR,7 − D̃

(d)
LR,8 − D̃

(s)
LR,8} (7.17f)

A0,7 = −
√
3

2
{DLR,1 +DLR,2 −DLR,3 −DLR,4 −D

(d)
LR,5 +D

(s)
LR,5 −D

(d)
LR,6

−D
(s)
LR,6 +D

(d)
LR,7 −D

(s)
LR,7 +D

(d)
LR,8 +D

(s)
LR,8} (7.17g)

A0,8 = −
√
3

2
{D̃LR,1 + D̃LR,2 − D̃LR,3 − D̃LR,4 − D̃

(d)
LR,5 + D̃

(s)
LR,5 − D̃

(d)
LR,6

− D̃
(s)
LR,6 + D̃

(d)
LR,7 − D̃

(s)
LR,7 + D̃

(d)
LR,8 + D̃

(s)
LR,8} (7.17h)
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A0,9 = −
√
3

2
{DLL,1 +DLL,2 −DLL,3 −DLL,4 −D

(d)
LL,5 +D

(s)
LL,5 −D

(d)
LL,6

−D
(s)
LL,6 +D

(d)
LL,7 −D

(s)
LL,7 +D

(d)
LL,8 +D

(s)
LL,8} (7.17i)

A0,10 = −
√
3

2
{DLL,1 +DLL,2 −DLL,3 −DLL,4 −D

(d)
LL,5 −D

(s)
LL,5 −D

(d)
LL,6

+D
(s)
LL,6 +D

(d)
LL,7 +D

(s)
LL,7 +D

(d)
LL,8 −D

(s)
LL,8}. (7.17j)

The contractions identified in Figs. 7.3 - 7.6 do not carry the minus sign required

when there is an odd number of fermion loops. Instead, the signs are included

explicitly in Eqns. (7.16) and (7.17). A line represents a light quark propagator

unless it is explicitly labeled. In general, up and down quarks and particular flavors

of pion are not distinguished in Figs. 7.3 - 7.6. The exception is that occasionally

down-quarks are labelled explicitly when two diagrams differ only by an insertion of

a d/s quark and we wish to distinguish between them. These specific contractions

of strange and light quark propagators are combined in Eqns. (7.16) and (7.17) to

give the I = 2 and I = 0 amplitudes directly. Using Fierz symmetry, it can be

shown that there are 12 identities among these contractions:

DLL,1 = −D̃LL,2, D
(d)
LL,5 = −D̃(d)

LL,6, D
(d)
LL,7 = −D̃(d)

LL,8

DLL,2 = −D̃LL,1, D
(d)
LL,6 = −D̃(d)

LL,5, D
(d)
LL,8 = −D̃(d)

LL,7

DLL,3 = −D̃LL,4, D
(s)
LL,5 = −D̃(s)

LL,6, D
(s)
LL,7 = −D̃(s)

LL,8

DLL,4 = −D̃LL,3, D
(s)
LL,6 = −D̃(s)

LL,5, D
(s)
LL,8 = −D̃(s)

LL,7 (7.18)

A consequence of these identities is that Eq. (7.17) is consistent with only seven of
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the ten operators Qi being linearly independent and with the three usual relations:

Q10 −Q9 = Q4 −Q3 (7.19a)

Q4 −Q3 = Q2 −Q1 (7.19b)

2Q9 = 3Q1 −Q3. (7.19c)

The loop contractions of type3 and type4 are calculated using the Gaussian,

stochastic wall sources described in Sec. 9.1.

In order to make the approach more explicit, some examples are included. First

consider the two contractions of type1 identified as DLL,1 and D̃LL,1, both depicted

by the left-most diagram in Fig. 7.3:

DLL,1 =
〈

Tr
{

γµ(1− γ5)S
l(~xop, top; tπ)S

l(~xop, top; tπ)
†
}

× (7.20)

Tr
{

γµ(1− γ5)S
l(~xop, top; tπ)γ

5Sl(tπ; tK)Ss(~xop, top; tK)†
}〉

D̃LL,1 =
〈

Trc

[

Trs

{

γµ(1− γ5)S
l(~xop, top; tπ) S

l(~xop, top; tπ)
†
}

(7.21)

× Trs

{

γµ(1− γ5)S
l(~xop, top; tπ)γ5S

l(tπ; tK)Ss(~xop, top; tK)†
}]〉

,

where tK is the time of the kaon wall source, tπ the time at which the two pions are

absorbed and xop = (~xop, top) the location of the weak operator. The angle-brackets

〈· · · 〉 denote an average over configurations. The wall-source propagators were

defined in Eq. (4.49). Each propagator is a 12× 12 spin-colour matrix. The

hermitian conjugation operation, †, operates on these 12× 12 matrices. Traces over

spinor indices are denoted Trs, traces over colour indices are denoted Trc, and

traces over both spinor and colour indices are denoted Tr. The γ5 hermiticity of the

quark propagators is used to realise the combination of quark propagators given in

Eqns. (A.5) and (7.21), allowing both contractions to be constructed from light and

strange propagators computed using Coulomb gauge fixed wall sources located only

at the times tπ and tK . The spatial location, ~xop, of the weak operator is summed

over to project onto zero spatial momentum and improve statistics.
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As a third example, which illustrates the use of stochastic wall sources, consider

contraction D
(l)
LR,5 shown in Fig. 7.5. Using the notation introduced above, this

contraction is given by

D
(l)
LR,5 =

〈

Tr
{

γµ(1 + γ5)S
l
R(~xop, top; top)

}

η(xop)
∗×

Tr
{

γµ(1− γ5)S
l(~xop, top; tπ)S

l(tπ; tπ)
†Sl(tπ, tK)Ss(~xop, top; tK)†

}〉

.

(7.22)

Here η(x) is the value of the complex, Gaussian random wall source at the

space-time position x, while Sl
R(xsink, tsrc) is the propagator whose source is

η(x)δ(x0 − tsrc). The Dirac delta function δ(x0 − tsrc) restricts the source to the

time plane t = tsrc. In the usual way, the average over the random source η(~x)

which accompanies the configuration average, will set to zero all terms in which the

source and sink positions for the propagator Sl
R(xop, top) in Eq. (7.22) differ, giving

us the contraction implied by the closed loop in the top left panel of Fig. 7.5. By

using Nt separate propagators each with a random source non-zero on only one of

the Nt time slices, the results obtained better statistical accuracy than would result

from a single random source spread over all times.

All of the remaining expressions for the K → ππ contractions are collected in

section A.2 of the appendix.

7.3.1 Divergent Diagrams

An important objective of this calculation is to learn how to accurately evaluate the

quark loop integration that is present in type3 and type4 graphs and which contains

a 1/a2, quadratically divergent component. As can be recognised from the structure

of the diagrams, these divergent terms can be interpreted as arising from the

mixing between the dimension-six operators Qi (for all i but 7 and 8) and a

dimension-3 “mass” operator of the form sγ5d. Such divergent terms are expected

and do not represent a breakdown of the standard effective Hamiltonian written in

Eq. (3.1). In fact, given the good chiral symmetry of domain wall fermions all other

operators with dimension less than six which might potentially mix with those in

Eq. (3.1) will vanish if the equations of motion are imposed. Therefore these
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operators cannot contribute to the Green’s functions evaluated in Eqns. (7.16) and

(7.17) where the operators in HW are separated in space-time from those operators

creating the K meson and destroying the π mesons, a circumstance in which the

equations of motion can be applied.

The problematic operator sγ5d is not explictly removed from the effective

Hamiltonian because, again using the equations of motion, sγ5d can be written as

the divergence of an axial current and hence will vanish in the physical case where

the weak operator HW carries no four-momentum and is evaluated between on-shell

states. While we can explicitly sum the effective Hamiltonian density HW over

space to ensure HW carries no spatial momentum, to ensure that no energy is

transferred we must arrange that the kaon mass and two-pion energy are equal. We

may achieve this condition, at least approximately, but there will be contributions

from heavier states, which are normally exponentially suppressed, but which will

violate energy conservation and hence will be enhanced by this divergent sγ5d term.

Since sγ5d will not contribute to the physical, energy-conserving K → ππ

amplitude, there is no theoretical requirement that it be removed. The coefficient of

this sγ5d piece is both regulator dependent and irrelevant. The contribution of

these terms in a lattice calculation of K → ππ decay amplitudes will ultimately

vanish as the equality of the initial and final energies is made more precise and as

increased time separations are achieved. However, the unphysical effects of this

sγ5d mixing are much more easily suppressed by reducing the size of this irrelevant

term than by dramatically increasing the lattice size and collecting the substantially

increased statistics required to work at large time separations. Furthermore, the

condition imposed in Eq. (7.23) automatically subtracts the vacuum contribution

from the type4 diagrams, so there is no need to make an explicit vacuum

subtraction in the type4 diagrams once this sγ5d piece has been subtracted.

A direct way to remove this 1/a2 enhancement is to explicitly subtract an αisγ5d

term from each of the relevant operators Qi where the coefficient αi can be fixed by

imposing the condition:

〈0|Qi − αisγ5d|K〉 = 0. (7.23)
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The K → vacuum matrix elements, 〈0|Qi|K〉 and 〈0|sγ5d|K〉 are constructed from

the Wick contractions depicted in the top and bottom lines of Fig. 7.8 respectively.

Of course, the arbitrary condition in Eq. (7.23) will leave a finite,

regulator-dependent sγ5d piece behind in the subtracted operator Qi − αisγ5d.

However, this unphysical piece will not contribute to the energy-conserving

amplitude being evaluated. Since it is no longer 1/a2-enhanced its effects on our

calculation will be similar to those of the many other energy non-conserving terms

which we must suppress by choosing equal energy K and ππ states and using

sufficient large time separation to suppress the contributions of excited states.

Following Eq. (7.23) we will choose the coefficient αi from the ratio

αi =

〈

0|Qi|K0
〉

〈0|sγ5d|K0〉 . (7.24)

(Note, with this definition the coefficient αi is proportional to the difference of the

strange and light quark masses.) Thus, we will improve the accuracy when

calculating graphs of type3 and type4 by including an explicit subtraction term for

those operators Qi where mixing with sγ5d is permitted by the symmetries (all but

Q7 and Q8):

〈

Oππ
0 (tπ)Qi(top)K

0(tK)
〉

sub
=
〈

Oππ
0 (tπ)Qi(top)K

0(tK)
〉

− αi

〈

Oππ
0 (tπ)sγ5d(top)K

0(tK)
〉

.

(7.25)

We should recognise that there is a second, divergent, parity-even operator sd

which mixes with our operators Qi. However, we choose to neglect this effect

because parity symmetry prevents it from contributing to either the K → ππ or

K → |0〉 correlation functions being evaluated here.

The correlator
〈

Oππ
0 (tπ)sγ5d(top)K

0(tK)
〉

includes two contractions, one connected

and one disconnected as shown in Fig. 7.7. These terms, which arise from the

mixing of the operators Qi with sγ5d, are labeled mix3 and mix4. To better

visualize the contributions from different types of contractions, we can write the

88



right hand side of Eq. (7.25) symbolically as

type1 + type2 + type3 + type4− α · (mix3 +mix4)

= type1 + type2 + sub3 + sub4, (7.26)

where sub3 = type3− α ·mix3 and sub4 = type4− α ·mix4. Note, here and in later

discussions we refer to the term being subtracted as “mix” and the final difference

as the subtracted amplitude “sub”.

This completes the technical background to the K0 → ππ calculation. Details of a

full analysis performed on an ensemble of 163 × 32 lattices with heavy pion masses

can be found in Chapter 9.
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Chapter 8

Evaluation of K → ππ decay

amplitudes on DSDR lattices

This chapter details the calculation of the ∆I = 3/2 K → ππ decay amplitude with

nearly-physical kinematics. The results presented in this chapter are the first

realistic ab-initio calculation of the decay amplitdue A2, and form the main results

of this thesis. The analysis of this chapter is perfomed on a single ensemble of 2 + 1

flavour domain wall fermions with the DSDR-Iwasaki (IDSDR) gauge action at

β = 1.75 and a lattice size of 323 × 64× 32. The residual mass is

amres = 0.001843(8) [58]. The ensemble was generated with a simulated

strange-quark mass of amh = 0.045 and light-quark mass of aml = 0.001, with

corresponding unitary pion mass of approximately 170 MeV. The inverse lattice

spacing has been determined to be a−1 = 1.364(9) GeV [58], using the Ω baryon

mass to set the scale and the masses of the pion and kaon to determine the physical

quark masses.

The lattice spacing and two physical quark masses mud and ms were obtained using

a combined analysis of the IDSDR ensemble described above, along with a second

IDSDR ensemble generated with aml = 0.0042 also at β = 1.75 and the

323 × 64 × 16 and 243 × 64× 16 domain wall fermion configurations with the

Iwasaki gauge action at β = 2.25 and β = 2.13 respectively. The two Iwasaki

ensembles were introduced in Chapter 5, and the properties of all the ensembles
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used in this chapter are summarised in Table 9.1. This involves a combined fit of

the pion and kaon masses and decay constants and the mass of the Ω-baryon as

functions of the quark masses and lattice spacing. Three different ansätze were used

for the quark-mass dependence in order to estimate the systematic error on the

chiral extrapolations. Two of these are obtained from next-to-leading order (NLO)

partially-quenched chiral perturbation theory with and without finite-volume

corrections, and the third assumes a simple linear mass dependence (labelled

analytic in the following). Following the analysis [51] of the two Iwasaki lattices,

the extrapolation to the continuum limit is made along a family of scaling

trajectories (lines of constant physics) that are defined by constant values of mπ,

mK and mΩ; i.e. by imposing the condition that these masses have no lattice cutoff

dependence on the scaling trajectory. The leading dependence on a of the

remaining quantities is expected to be O(a2) and the fits assume such a quadratic

dependence. Note that the coefficients of the a2 terms are not constrained to be

equal for the two different lattice actions. From the combined chiral and continuum

fits the lattice spacings and physical quark masses required for the pion, kaon and

Ω masses to match their physical values are determined, obtaining for the IDSDR

ensembles an inverse-lattice spacing of a−1 = 1.364(9) GeV and dimensionless

physical quark masses of m̃l = 0.00178(3) and m̃s = 0.0490(6), which correspond to

3.09 ± 0.11 and 84.1 ± 2.0MeV respectively when expressed in physical units in the

MS scheme at 3GeV. Here m̃ = m+mres and the quoted errors contain both

statistical and systematic contributions estimated using the procedures developed

in ref. [51]. Note that the value for m̃l that would correspond to a physical pion

mass is actually smaller than mres, indicating that the chiral symmetry must be

improved before physical pion masses can be simulated.

In order to correctly propagate the correlations between the data used in the

determination of the lattice spacing with that of the present calculation of the

K → ππ matrix elements the super-jackknife method is used.

Measurements are made on a total of 146 gauge configurations, each separated by 8

molecular dynamics time units. With the aim of reducing the correlations between

successive measurements, the gauge fields are shifted by 16 lattice spacings in the
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Table 8.1: Ensemble details. The main analysis of this chapter is
performed using the IDSDR enemble with ml = 0.001. The addi-
tional ensembles listed in this table are used in the determination
of the IDSDR lattice spacing and physical quark masses.

Lattice β amh aml number of trajectories

IDSDR (323 × 64) 1.75 0.045 0.001 146
1.75 0.045 0.0042 148

Iwasaki (323 × 64) 2.25 0.03 0.004 300
2.25 0.03 0.006 312
2.25 0.03 0.008 252

Iwasaki (243 × 64) 2.13 0.04 0.005 202
2.13 0.04 0.01 178

time direction relative to the previous configuration prior to measuring the quark

propagators.

The d-quark propagators are computed with antiperiodic boundary conditions in

either 0 or 2 spatial directions, corresponding to pions with ground-state momenta

|~p| = 0 and |~p| =
√
2π/L. This choice is motivated by the expectation that, with

the simulated quark masses, |~p| =
√
2π/L corresponds to on-shell kinematics, i.e.

that the energy of the two-pion state is (almost) equal to mK . Gauge fixed wall

sources are used for the case p = 0, while cosine wall sources are used when the

d-quark has non-zero momentum. The u and s quarks are generated with periodic

spatial boundary conditions and Coulomb gauge-fixed wall sources.

Quark propagators with periodic and antiperiodic boundary conditions in the time

direction were computed on each configuration with a source at t = 0. They were

then combined so as to effectively double the time extent of the lattice. Meson

correlation functions formed using the sum of the propagators with periodic and

antiperiodic boundary conditions can be interpreted as containing forward

propagating mesons originating at time t = 0, whereas those calculated with the

difference can be interpreted as containing backward propagating mesons

originating from a source at t = 64. The purpose of this procedure is to suppress

the around the world effects. The leading around the world effects in two-pion and

K → ππ correlation functions have been described in previous chapters.

Strange-quark propagators with periodic + antiperiodic combinations were

generated with sources at tK = 20, 24, 28, 32, 36, 40 and 44 in order to calculate
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Figure 8.1: Effective mass plots for the pion and kaon. Results
for mπ and mK obtained from the fits of the correlation functions
to Eqns. (7.15a,7.15b) are shown as the horizontal lines in each
plot.

K → ππ correlation functions with kaon sources at these times, while the two-pion

sources remained at either t = 0 or t = 64. Thus it was possible to achieve time

separations between the kaon and two pions of 20, 24, 28 and 32 lattice time units

in two different ways which increased the statistics. These separations were chosen

so that the signals from the kaon and two pions did not decay into noise before

reaching the four-quark operator Qi.

8.1 Analysis

Results from the analysis of the correlation functions described in Chapter 7,

computed on the IDSDR lattices, are presented in this section. While the results

presented in Eq. (8.11) towards the end of this section contain estimates of the

uncertainties, detailed discussion of the determination of the systematic errors is

postponed until Sec. 8.3.

The pion and kaon two-point correlation functions at zero momentum are fit to the

form given in Eqns. (7.15a) and (7.15b), with T = 128 being the total effective time

extent of the lattice.

For both the pion and kaon, results for mπ, mK , Zπ, and ZK are obtained by fitting

between t = 5 and t = 63. The masses extracted from these fits are superimposed

on the effective mass plots in Figs. 8.1(a) and 8.1(b), and the numerical results are

given in Tab. 8.2.

94



Table 8.2: Results for meson masses and energies. The subscripts
0, 2 denote p = 0 and p =

√
2π/L respectively, where p = |~p|.

units mπ mK Eπ,2 Eππ,0 Eππ,2 mK − Eππ,2

lattice 0.10421(22) 0.37066(68) 0.17386(91) 0.21002(43) 0.3560(23) 0.0146(23)
MeV 142.11(94) 505.5(3.4) 237.1(1.8) 286.4(1.9) 485.5(4.2) 20.0(3.1)
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Figure 8.2: Effective energy plot for a pion with momentum p =√
2π/L. The horizontal line corresponds to value of Eπ obtained

from a fit to Eq. (8.1).

The pions in the final state for K → ππ decays have momentum |~p| =
√
2π/L and

in Fig. 8.2 the effective energy for a pion with this momentum is plotted. Since the

correlation functions become noisier when the pion has a non-zero momentum, the

fit is over the time interval t = [5, 35] where the contribution from the backward

propagating pion can be ignored. The fit form is

Cπ(t, p =
√
2π/L) = |Zπ(p =

√
2π/L)|2e−Eπt , (8.1)

where p = |~p| and Eπ is the corresponding energy. The value Eπ,2 = 0.17386(91)

obtained from the fit (see Tab. 8.2) is nicely consistent with the (continuum)

dispersion relation for a pion with mass 0.10421(22). The subscript 2 in Eπ,2

indicates that the momentum of the pion is
√
2π/L, i.e. that anti-periodic

boundary conditions have been imposed on the d quark in two directions.

The expected behaviour of the two-pion correlation functions is described in

Eq. (7.4). The effects of pions propagating around the world are expected to be

small after doubling the effective time extent of the lattice. An effective technique

to reduce the statistical errors in the fit to the two-pion correlation function is to

calculate the quotient of two-pion and single-pion correlators and fit the ratio to the
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form

Cππ(t)

(Cπ(t))2
≃ R2e−∆E t , (8.2)

where ∆E = (Eππ − 2Eπ) and R
2 =

|Zππ,e|2
2ntw |Zπ|4 . The energy difference ∆E is not

equal to zero because of the repulsive interaction between the two pions with

isospin 2 in a finite volume. The two-pion energy Eππ is then given by

Eππ = ∆E + 2Eπ, and Zππ,e is found from

Zππ,e = (2
ntw
2 )Z2

πR . (8.3)

Eq. (8.2) can be used for values of t which are sufficiently large to neglect excited

states and sufficiently smaller than T/2 so that the backward propagating states

(and the around-the-world effects) can also be neglected. In practice, in order to

improve the statistical precision, the correlation functions are folded, averaging the

equivalent results at t and T − t. The ratio in Eq. (8.2) is calculated for p = 0, in

which case Zπ and Eπ are just the normalisation factor and pion mass found from

the fit to Eq. (7.15a) and for p =
√
2π/L in which case Zπ and Eπ are taken from

the fit to Eq. (8.1). The fit regions for the quotients are t = [5, 48] for p = 0 and

[5, 22] for p =
√
2π/L. Plots of the quotients at the two values of p are shown in

Fig. 8.3. The results for all the meson masses and energies are presented in Tab. 8.2.

The difference between the kaon mass and two-pion energy, mK − Eππ, is also

calculated to demonstrate that the kinematics are close to being energy conserving.

The momentum kπ of each pion in the two-pion state is defined from the two-pion

energy using the dispersion relation Eππ = 2
√

m2
π + k2π. The interactions between

the two pions lead to kπ being different from 0 or
√
2π/L.

In the calculation of the K → ππ matrix elements, the two-pion source is placed at

time tππ = 0 (or equivalently at 64) and the position of the kaon source tK is varied

using the different s-quark sources described in the previous section. In total, the

analysis is performed for four separations δt between the kaon and two-pions

sources, δt = 20, 24, 28 and 32. The operators of the weak Hamiltonian are inserted

between tππ and tK . The symmetries of lattice QCD (including translation
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Figure 8.3: The ratios Cππ(t)/(Cπ(t))
2 defined in Eq. (8.2) at

p = 0 (left-hand plot) and at p =
√
2π/L (right-hand plot). The

minimum seen in the left-hand panel around t = 52 results from
the different large-time behavior of the numerator and denomina-
tor. While the denominator decreases exponentially as t increases
from 0 to 64, the numerator contains a small t-independent con-
stant (caused by one backward propagating pion) which lessens its
decrease at large time. If examined for 0 ≤ t ≤ 128 the ratio shown
in the left-hand panel is symmetrical about the point t = 64.

invariance and time-reversal) allow the translation of the results into K → ππ

matrix elements.

For each of the three operators Qi in Eq. (3.12), where i labels the operator, the

corresponding K → ππ matrix element Mi ≡ 〈π+π+ |Qi |K+〉 is extracted by

calculating the ratios

R(tQ) ≡
Ci
Kππ(t)

CK(tK − t)Cππ(t)
=

Mi

ZKZππ,e
(8.4)

and fitting to a constant in time t. The quantity Ci
Kππ is the K → ππ correlator

with the operator Qi inserted at t and the kaon and two-pion interpolating

operators placed at fixed times tK and 0 respectively. ZK and Zππ,e are determined

from the kaon and two-pion correlation functions using Eqns. (7.15b) and (8.2). For

illustration, the left-hand side of Eq. (8.4) is plotted in Fig. 8.4 for each of the three

operators for the choice δt = 24. The two-pion source is shown at t = 0 on this plot,

and the kaon source is located at tK = 24. The x-axis is labelled tQ and illustrates

the insertion of the weak-operator. The figure demonstrates that sufficiently far

from the kaon and two-pion sources the data is indeed consistent with the expected
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Table 8.3: The two-pion energy Eππ, kπ, qπ and s-wave phase
shift

p Eππ (MeV) kπ (MeV) qπ δ (degrees)

0 286.4(1.9) 17.63(36) 0.0659(13) -0.311(18)√
2π/L 485.5(4.2) 196.8(2.2) 0.7350(72) -7.96(2.07)

constant behavior. The matrix elements are determined by fitting the data between

t = 5 and t = tK − 5, where t denotes the time distance from the two-pion source.

The results for Mi/(ZKZππ,e) obtained from the fits are indicated on the plot

together with their errors. Additional plots showing the quotient R(tQ) for

separations δt = 20, 28 and 32 are included in Appendix B.

The finite-volume matrix elements computed in the lattice simulations Mi are

related to the corresponding infinite-volume ones Ai by the Lellouch-Lüscher factor

given in Eq. (6.39),

Ai =

[√
2ntw

2πqπ

√

∂φ

∂qπ
+

∂δ

∂qπ

]

2√
2ntw

L3/2√mKEππMi , (8.5)

where the quantity in square brackets (denoted by LL in Tab. 8.4) contains the

effects of the Lellouch-Lüscher factor beyond the free-field normalisation. δ is the

s-wave phase shift, qπ is a dimensionless quantity related to the pion momentum kπ

by qπ = kπL/2π and φ is a kinematic function defined in [59]. Once Eππ has been

measured and qπ determined, δ can be calculated using the Lüscher quantisation

condition [53]:

nπ = δ(kπ) + φ(qπ). (8.6)

Results for Eππ, kπ, qπ and δ are presented in Tab. 8.3.

Since ∂φ/∂qπ can be calculated analytically the only unknown in Eq. (8.5) is

∂δ/∂qπ . The results for the phase shift are plotted against kπ and compared with

experimental results [60, 61] in Fig. 8.5; the results show good agreement. Near

p = 0, δ is assumed to be linear in kπ in order to calculate ∂δ/∂qπ (see Fig. 8.5).

For p =
√
2π/L the phenomenological curve [62] shown in Fig. 8.5 is used to

calculate the derivative of the phase shift at the corresponding value of qπ. The

derivative of the phase shift is found to be a small term in comparison with ∂φ/∂qπ.
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Table 8.4: Contributions to Lellouch-Lüscher factor. The second
and third columns provide numerical values for two of the quan-
tities entering the Lellouch-Lüscher factor given within the square
brackets in Eq. (8.5), while the fourth column gives the value of the
complete factor.

p ∂φ/∂qπ ∂δ/∂qπ LL

0 0.2413(90) -0.0824(32) 0.9632(14)√
2π/L 5.014(21) -0.2911(23) 0.9411(71)

Results for ∂φ/∂qπ and ∂δ/∂qπ are presented in Tab. 8.4.

The physical decay amplitude A2 is given in terms of the matrix elements Ai by

Aδt
2 = a−3

√
3

2

GF√
2
VudV

∗
us

∑

i,j

Ci(µ)Zij(µa)Aδt
j , (8.7)

where the label δt has been added to indicate the K − ππ separation being used

and the labels i and j run over the three operators in Eq. (3.12). Ci are the Wilson

coefficients, which have been calculated in the MS-NDR scheme. The Zij are the

renormalisation constants which relate the bare weak operators defined in the

lattice theory (where the lattice spacing a acts as a cut-off) to those in the

MS-NDR scheme at scale µ. The (27, 1) operator renormalises multiplicatively,

whereas the (8, 8) and (8, 8)mix operators mix under renormalisation. The

calculation of the Zij is described in detail in Chapter 5 and involves a

non-perturbative calculation of the renormalisation constants in RI-SMOM

schemes, step-scaling to run the results to µ = 3GeV and matching perturbatively

to the MS-NDR scheme. As explained in Chapter 5, four possible choices for the

intermediate RI-SMOM schemes are considered. The results presented in Tab. 8.5

are calculated using the renormalisation constants with the intermediate scheme

(Iv, Iq) = (/q, /q) (see Chapter 5).

Results for ReA2 and ImA2 for the four different separations δt are shown in

Tab. 8.5 for the (almost) physical choice p =
√
2π/L. Our final result for A2 is an

error weighted average (EWA) over the four separations, defined by

AEWA
2 =

∑

δtA
δt
2 /(eδt)

2

∑

δt 1/(eδt)
2
, (8.8)
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where eδt is the statistical error in the evaluation of Aδt
2 .

Table 8.5: Final results for A2. The errors on each Aδt
2 and the

first error in the EWA(b) (error weighted average) are the statisti-
cal errors only. In the EWA(b) result the second error is that due
from the statistical uncertainty in the renormalisation constants
given in Eq. (5.26).

δt ReA2(units of 10
−8 GeV) ImA2(units of 10

−13 GeV)

20 1.411(56) -6.59(19)
24 1.346(64) -6.67(22)
28 1.427(73) -6.28(25)
32 1.295(94) -6.56(33)

EWA(a) 1.381(38) -6.54(15)

EWA(b) 1.381(44)(12) -6.54(19)(42)

The errors in the results labelled by EWA(a) in Tab. 8.5 are due to the statistical

fluctuations on the Ai calculated using Eq. (8.5). In the row marked EWA(b) the

first error combines the uncertainty due to these fluctuations with the statistical

uncertainty in the value of the lattice spacing and the second error is ∆Z , which

arises from the statistical uncertainty in the evaluation of the renormalisation

constants Zij. This is calculated using:

∆2
Z =

[

C(27,1) δZ(27,1) A(27,1)

]2
+
∑

i,j

[

Ci δZij Aj

]2
, (8.9)

where i, j run over (8, 8) and (8, 8)mix and the δZ are the statistical uncertainties in

the corresponding renormalisation constants given by the first error in Eq. (5.26).

The presence of the four terms in the sum over i and j reflects the mixing of Q(8,8)

and Q(8,8)mix
under renormalisation. A(27,1), A(8,8) and A(8,8)mix

on the right-hand

side of Eq. (8.9) are obtained from the corresponding bare matrix elements using

Eq. (8.5). The numerical results presented here were obtained by using the

statistical errors eδt in the evaluation of A2 so that for example:

A(27,1) =

∑

δtAδt
(27,1)/(eδt)

2

∑

δt 1/(eδt)
2

, (8.10)

and similarly for the remaining operators. We have checked that performing the

error weighted average on each operator using the statistical error corresponding to

the operator makes only a negligible difference to the estimate of the final errors.
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Using the procedures described above along with the Wilson coefficients given in

Tab. 3.2, the final results for the complex amplitude A2 are:

ReA2 = 1.381(46)stat(258)syst 10
−8 GeV, ImA2 = −6.54(46)stat(120) syst10

−13 GeV .

(8.11)

The result for ReA2 agrees well with the experimental value of 1.479(4) × 10−8 GeV

obtained from K+ decays and 1.573(57) × 10−8 GeV obtained from KS decays (the

small difference arises from the unequal u and d quark masses and from

electromagnetism, two small effects not included in our calculation). ImA2 is

unknown so that the result in Eq. (8.11) provides its first direct determination

(updating the value quoted in [6]).

A detailed discussion of the determination of the systematic errors will be presented

in the following sections. As explained earlier, the statistical error was obtained by

analysing configurations each separated by 8 molecular dynamics time units, and

the gauge fields were shifted by 16 lattice spacings in the time direction prior to

successive measurements. In order to check that shifting the gauge fields is

sufficient to overcome potential autocorrelations, the entire analysis has been

repeated, including the determination of the physical quark masses and lattice

spacings, by binning all quantities over four successive measurements (32 molecular

dynamics time units). This is a natural choice as it matches the periodicity of the

quark propagator measurements. The effects of the binning are completely

negligible. For illustration Tab. 8.6 shows a comparison of the results for A2

obtained with and without the binning.

8.2 Reweighting the light sea quarks

The technique of reweighting was introduced in Chapter 4.4.1. In this section the

light quark mass is reweighted in order to investigate the effects of its partial

quenching.

The reweighting is performed in 30 increments from the simulated mass

amsea
l = 0.001 down to a value of amsea

l = 0.0001 which corresponds to the valence
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Table 8.6: Final results for ReA2 in units of 10−8 GeV and
ImA2 in units of 10−13 GeV. The table shows a comparison be-
tween the results obtained as in Tab. 8.5 (146 bins each with a
single configurations) and those with bin-size 4 (36 bins each with
4 configurations). The error on EWA(a) was defined in Tab. 8.5.

ReA2 ImA2

δt 146 bins 36 bins 146 bins 36 bins

20 1.411(56) 1.418(52) -6.59(19) -6.55(16)
24 1.345(64) 1.344(57) -6.67(22) -6.60(20)
28 1.427(73) 1.411(83) -6.28(25) -6.23(29)
32 1.295(94) 1.28(10) -6.56(33) -6.58(31)

EWA(a) 1.381(38) 1.386(34) -6.54(15) -6.52(14)

Table 8.7: A2 before and after reweighting. The quoted errors
correspond to the statistical fluctuations in the correlation func-
tions only. The statistical uncertainties in the determination of
the lattice spacing and non-perturbative renormalisation have been
omitted here.

aml = 0.001 aml = 0.0001 (reweighted)

ReA2 1.381(38) × 10−8 GeV 1.367(65) × 10−8 GeV
ImA2 −6.54(15) × 10−13 GeV −6.91(23) × 10−13 GeV

light-quark mass and the results are shown in Fig. 8.6. For a more accurate

indication of the relative decrease of the masses from 0.001 to 0.0001, note that

aml + amres decreases from 0.0028 to 0.0019. The rightmost point in Fig. 8.6(a)

shows the result for ReA2 before reweighting, while the remaining points show the

results after reweighting to the mass indicated on the x-axis, ending with

amsea
l = 0.0001 for the leftmost point. Similarly Fig. 8.6(b) shows the effects of

reweighting on ImA2. The final results after reweighting are shown in Tab. 8.7 where

they are compared with the results before reweighting. In this table, for illustration

of the effects of reweighting, only the statistical error from the correlation functions

themselves is included; the statistical errors from the determination of the lattice

spacing and renormalisation are not included, nor are any of the systematic errors.

Examining the figures, it can be seen that, as expected, the statistical errors on

ReA2 and ImA2 grow. Table 8.7 shows that, within errors, the real part of A2 does

not change after reweighting. By contrast, the imaginary part of A2 decreases by

5.7%. After including all of the statistical and systematic errors, the reweighted
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Table 8.8: Systematic error budget for ReA2 and ImA2.

ReA2 ImA2

lattice artefacts 15% 15%
finite-volume corrections 6.0% 6.5%

partial quenching 3.5% 1.7%
renormalisation 1.8% 5.6%

unphysical kinematics 0.4% 0.8%
derivative of the phase shift 0.97% 0.97%

Wilson coefficients 6.6% 6.6%

Total 18% 19%

result for for the complex amplitude A2 is:

ReA2 = 1.367(70)stat(246)syst 10
−8 GeV, ImA2 = −6.91(51)stat(131) syst10

−13 GeV .

(8.12)

The results of Eq. (8.12) should be compared with Eq. (8.11), and it is clear that the

differences due to reweighting are well within the total error. The conclusion is that

partial quenching has a negligible effect on the final answer for the decay

amplitudes.

8.3 Error Budget

The sources of systematic error in the calculation of ReA2 and ImA2 include those

from lattice artefacts, finite-volume effects, partial quenching, the uncertainty in the

non-perturbative renormalisation, the unphysical kinematics used in the calculation,

the determination of the derivative of the phase shift and the Wilson coefficients. A

brief discussion of each of the sources of systematic error is included in this section.

Each contribution to the total systematic error can be found in Tab. 8.8.

8.3.1 Estimating the Error due to Lattice Artefacts

The calculation of the complex K → ππ amplitude was performed at a single,

rather large, value of the lattice spacing, a−1 = 1.364(9) GeV. This value of the

lattice spacing was obtained in Ref. [58] by using the mass of the Ω-baryon to set

the scale and the masses of the pion and kaon to determine the physical quark
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Table 8.9: Values of the inverse lattice spacing obtained using
different physical quantities to set the scale. The value r0 =
2.433(50)(18)(13)GeV−1 = 0.4795(99)(35)(26) fm, taken from a
detailed analysis in [58], is used for the Sommer scale. The two
columns of results correspond to the use of finite-volume SU(2)
chiral perturbation theory or the analytic ansatz for the light-quark
mass dependence.

Quantity ChPTFV Analytic

mΩ 1.364(8) GeV 1.362(11) GeV
fπ 1.410(27) GeV 1.386(19) GeV
fK 1.413(29) GeV 1.392(28) GeV
r0 1.357(4) GeV 1.362(7) GeV

masses. With the IDSDR action, all other computed physical quantities have errors

of O(a2), but without a simulation at a second lattice spacing it is not possible to

determine these lattice artefacts directly. In this section an indirect estimate of the

O(a2) effects, which represent the largest single contribution to the systematic

uncertainty, is described.

Two related methods are used to estimate the artefacts. In the first of these,

quantities other than mΩ are used to set the scale and the corresponding variation

is ascribed to the artefacts. The results are presented in Tab. 8.9. The difference

between the largest and smallest entry in the table is about 4%. Recalling that the

K → ππ matrix elements are of dimension 3, the corresponding uncertainty in the

amplitudes is estimated to be 10-15%. On the other hand, it could be argued that

the physical value of r0 is not very well known, and that a more suitable criteria is

to impose that the same value of r0 is obtained on both the Iwasaki and IDSDR

lattices. This fixes the ratio of lattice spacings on the two ensembles. Combining

this ratio with the well determined lattice spacing on the Iwasaki ensembles from

mΩ leads to the IDSDR value a−1 = 1.363(22) GeV, closer to those obtained from

mΩ and the decay constants. Although this may suggest that the 10-15% estimate

is conservative, because of the indirect nature of these estimates, it is better to be

conservative when quoting the uncertainties.

As a second approach the scale is set from mΩ and the matrix element

M∆S=2 = 〈K̄0|(s̄γµ(1− γ5)d) (s̄γµ(1− γ5)d)|K0〉 is studied on both the Iwasaki

and IDSDR lattices. This matrix element gives the dominant contribution to the
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indirect CP-violation parameter ǫ and is in the same representation of the chiral

symmetry as Q(27,1). The next step is to perform a global chiral and continuum fit

using the form

M∆S=2 = c0(1+ cI,IDSDR
a a2)+ clm̃l+ ch(m̃h− m̃h0)+ cxm̃x+ cy(m̃y − m̃h0) , (8.13)

where m̃l and m̃x are the sea and valence light-quark masses, m̃h and m̃y the

corresponding strange-quark masses and m̃h0 is the physical bare strange quark

mass. The coefficient ca depends on the action as indicated. By performing the

global fits, cIDSDR
a can be determined and the size of the lattice artefacts can be

determined. Using all of the available data the artefacts are found to be 12% in the

SU(2) chiral limit and 18% at the physical quark masses. If the data are restricted

to pions with masses less than 350MeV, the artefacts are found to be 10% in the

chiral limit and 14% for physical quark masses.

Based on these calculations, the uncertainty due to the lattice artefacts is estimated

as being 15%, which will be combined with the remaining uncertainties in

quadrature. This estimate of the discretization error includes possible artefacts in

the conversion of the renormalisation constants from the IDSDR to the Iwasaki

lattices. Comparing this error with the other errors in Tab. 8.8, it is clear that

lattice artefacts are the dominant source of systematic error. However, they will be

reliably reduced when the calculations are repeated at a second lattice spacing.

8.3.2 Finite-Volume Corrections

In order to estimate the systematic error due to the finite volume of the lattice,

SU(3) finite-volume chiral perturbation theory is used, in which the loop-integrals

in Feynman diagrams are replaced by discrete sums over the allowed momenta.

Expressions for the ∆I = 3/2 K → ππ matrix elements,

M(27,1) =
〈

π+π−|Q(27,1)|K0
〉

and M(8,8) =
〈

π+π−|Q(8,8)|K0
〉

are known to

next-to-leading order in SU(3) chiral perturbation theory. Since in chiral

perturbation theory to leading order there is a single ∆I = 3/2 operator

constructed from the Goldstone boson fields which transforms as the (8,8)
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representation, the estimates derived below are the same for Q(8,8) and Q(8,8)mix
.

There is also a single operator at lowest order which transforms as the (27,1)

representation. We will be considering the leading order terms (labelled by “LO”)

and leading (one-loop) logarithmic terms (labelled by “log”). The LO expressions

are well known and can be found in [64] and [65]. For Mlog
(27,1) we use Eq. (C5) in

[64], (where we have added logarithmic terms from (m2
K −m2

π)1-loop by hand as

necessitated by Eq. (25) of [64] and corrected a factor of 1/f2 in equation (A2)),

and for Mlog
(8,8) we use Eq. (E3) in [65].

We denote the finite-volume corrections to the logarithmic terms in M(27,1) and

M(8,8) by ∆Mlog
(27,1) and ∆Mlog

(8,8) respectively. We estimate the relative size of these

corrections, by using the pion and kaon masses in our lattice calculation finding,

∆Mlog
(27,1)

MLO
(27,1)

= 0.0597 and
∆Mlog

(8,8)

MLO
(8,8)

= 0.0649 (8.14)

if we normalise to the leading order expressions of the matrix elements, and

∆Mlog
(27,1)

∣

∣

∣MLO
(27,1) +Mlog

(27,1)

∣

∣

∣

= 0.0352 and
∆Mlog

(8,8)
∣

∣

∣MLO
(8,8) +Mlog

(8,8)

∣

∣

∣

= 0.0438 (8.15)

if we normalise to the leading order plus leading logarithmic expressions. More

details can be found in [5].

Evidently the leading logarithmic terms make significant corrections to the leading

order terms. To have confidence that the chiral perturbation theory is converging

we should check the size of the next-to-leading-order terms, but as these have

unknown coefficients we are unable to make a numerical estimate. We therefore

make a conservative estimate by taking the larger relative finite-volume correction

of Eq. (8.14) and conclude that the (27,1) operator carries a 6.0% finite-volume

correction and that the (8,8) operator carries a 6.5% finite-volume correction. Since

ReA2 is dominated by the (27,1) operator and ImA2 is dominated by the (8, 8)mix

operator, these are the percentage errors due to finite-volume effects we assign to

ReA2 and ImA2 respectively.
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Table 8.10: The amplitude A2, computed on the Iwasaki ensem-
bles, after extrapolation to physical kaon and pion masses. The
two pions in the final state are at rest (up to finite-volume effects)
and energy is not conserved in these amplitudes (see text).

ml = 0.004 ml = 0.006 ml = 0.008

Re(A2)×108 GeV 0.697(44) 0.748(41) 0.719(38)
Im(A2)× 1013 GeV -14.73(37) -14.99(35) -15.23(34)

8.3.3 Partial Quenching

The calculations described in this chapter were designed to have almost physical

kinematics, i.e. the kaon and pions have masses which are close to their physical

values. This is achieved however, by the sea and valence quark masses being

different; the sea-quark masses are msea
l = 0.001 and msea

h = 0.045 and the valence

masses are mvalence
l = 0.0001 and mvalence

h = 0.049. The dependence on the

sea-quark mass is not expected to be very significant, and this was demonstrated in

Sec. 8.2. This section collects the results of a previous investigation of the sea-quark

mass dependence performed with 323 Iwasaki lattice [5].

Sea-quark mass dependence on the 323 Iwasaki lattices

K → ππ correlation functions were also computed on the 323 × 64, Ls = 16 Iwasaki

lattices (a−1 = 2.285(29) GeV) with three different light sea-quark masses

msea
l = 0.004, 0.006, 0.008 [5, 66]. For each of the sea-quark masses, the correlation

functions were calculated using several valence masses:

mvalence = 0.002, 0.004, 0.006, 0.008, 0.025, 0.03. Periodic boundary conditions were

used, so the pions have zero momentum, resulting in a decay which does not

conserve energy. For each of the three sea-quark masses, a chiral extrapolation was

performed over the valence masses to determine the K → ππ amplitudes

corresponding to physical kaon and pion masses (for the strange quark in the kaon

this was an interpolation). The results are summarised in Tab. 8.10.

From the table it can be seen that any dependence on the light sea-quark mass is

small, and generally within the statistical uncertainties. The standard deviation of

the results obtained with the different sea light-quark masses is used as an estimate
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of the uncertainty; 3.5% for Re(A2) and 1.7% for Im(A2). Although the kinematics

are different from those for the physical decay on the IDSDR lattice, this result is

still taken to be an estimate of the error due to partial quenching. The range of

sea-quark masses on the Iwasaki lattices and the long length of the extrapolation

suggest that this may be a conservative estimate. No attempt is made to estimate

the error due to the partial quenching of the strange quark, but note that the

deviation from unitarity in the strange-quark mass is relatively small (msea
h = 0.045

compared to mvalence
s = 0.049) .

8.3.4 Uncertainties due to the Renormalisation

Two main sources of systematic error from the calculation of the renormalisation

constants are discussed in this section. The first is designed to take into account

lattice artefacts of higher order than O(a2) in the continuum extrapolation of the

step-scaling function using the Iwasaki lattices, as described in Sec. 5.1.1, and

corresponds to the second error in Eq. (5.25). This systematic error is estimated in

the same way that the statistical NPR error on A2 is calculated, i.e. Eq. (8.9) is

used, but in this case δZ denotes the systematic errors on the Z-factors. The

resulting error is displayed in Tab. 8.11 and is labelled NPR-sys. This is found to be

a 1.1% effect for ReA2 and a 5.0% effect for ImA2 (see the second row of the table).

The second source of systematic error in the renormalisation constants is due to the

truncation error in the perturbative matching to the MS scheme and to O(a2)

scaling errors since only one lattice spacing is available and the Z-factors in the

different schemes need not approach the continuum limit along the same scaling

trajectory. Following conversion to the MS scheme, the four intermediate NPR

schemes described in Chapter 5 should give equivalent answers. An estimate of the

resulting systematic error is made by considering the spread in results when A2 is

calculated in the RI-SMOM(γµ, γµ) scheme and in the RI-SMOM(/q, /q) scheme.

The results for A2 in the RI-SMOM(γµ, γµ) and RI-SMOM(/q, /q) schemes are

presented in Tab. 8.11. A spread of 1.4% is observed for ReA2 and a 2.5% spread is

observed for ImA2. Combining the two sources of error in quadrature, the result is
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Table 8.11: ReA2 and ImA2 calculated in the two different
schemes.

ReA2 ×108 GeV ImA2 ×1013 GeV

RI-SMOM(/q, /q) 1.381(46)stat(15)(NPR-sys) −6.54(46)stat(33)(NPR-sys)

RI-SMOM(γµ, γµ) 1.362(44)stat(03)(NPR-sys) −6.35(34)stat(42)(NPR-sys)

a 1.8% error for ReA2 and a 5.6% error for ImA2.

8.3.5 Uncertainties due to the Unphysical Kinematics

When choosing the parameters of the simulation, including the quark masses, the

coupling constant and even the volume, the aim was to obtain physical kaon and

pion masses and Eππ = mK . Once the simulation has been performed, it is natural

to find that this is not quite the case (see Tab. 8.2) and in this section an attempt is

made to estimate the systematic error that these non-physical kinematics

contribute to the calculation.

In addition to the results from the current simulation, a large collection of K → ππ

amplitudes has been calculated on quenched lattices with a variety of light and

strange quark masses and pion momenta. The observed dependence of the

amplitudes with the quark masses is used to estimate the uncertainty due to the

unphysical kinematics. A total of 60 values for the K → ππ amplitudes has been

collected on the quenched lattices, obtained with all combinations of

aml = 0.0023, 0.0047, 0.0071, ams = 0.046, 0.062, 0.078, 0.094, 0.110 and with

n = 0, 1, 2 and 3, where n is the number of spatial directions in which antiperiodic

boundary conditions are imposed. The allowed momentum of a each pion with

antiperiodic boundary conditions in n directions is
√
nπ/L, so n parameterises the

pion momenta.

The procedure for estimating the systematic error due to non-physical kinematics

uses these quenched amplitudes, extrapolating the results in aml and interpolating

them in ams and n, first to physical kinematics, and then to the kinematics

simulated on the IDSDR lattices. This procedure is described in detail in [5], and is

very similar to the extrapolation procedure described in Sec. 8.3.3 when computing

the error due to partial quenching. The difference here is that it is now possible to
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interpolate to the correct pion-momenta. This is achieved by fitting the two-pion

energy as a function of n, and interpolating to find nphys, the value of n which

corresponds to the desired two-pion energy. This in turn allows the decay

amplitude to be interpolated and evaluated at nphys.

After extrapolation to physical kinematics, the results from the quenched lattices

are:

ReA2 = 2.25 × 10−8 GeV, ImA2 = −13.45 × 10−13 GeV , (8.16)

while the extrapolation to mπ, mK and Eππ simulated in this chapter gives

ReA2 = 2.26 × 10−8 GeV, ImA2 = −13.56 × 10−13 GeV . (8.17)

The percentage differences between the two extrapolations is taken as a measure of

the systematic error due to simulating at non-physical kinematics, with results of

0.4% for ReA2 and 0.8% for ImA2.

8.3.6 Uncertainty in the Derivative of the Phase Shift

The derivative of the s-wave phase shift ∂δ/δk appearing in the Lellouch-Lüscher

factor was found by evaluating the derivative of the phenomenological curve at the

momentum simulated in our lattice calculation. This was discussed in Sec. 8.1 and

illustrated in Fig. 8.5. Alternatively the slope of the straight line between the phase

shift at 17.63 MeV and 196.8 MeV could have been used to make a crude estimate

of the derivative of the phase shift. (c.f. the results of Tab 8.3). The systematic

error is estimated to be 0.97%, which is found by calculating the percentage

difference between the final results as obtained by the two different approaches.

Since the derivative of the phase-shift only contributes a small fraction to the

Lellouch-Lüscher factor (see Tab. 8.4) it is not surprising that the corresponding

error is negligible. The derivative of the phase-shift can also be calculated directly

using the method proposed in [67].
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Table 8.12: ReA2 and ImA2 as calculated with LO Wilson co-
efficients and NLO Wilson coefficients. The errors quoted here
represent the total statistical uncertainty.

LO NLO

ReA2 1.289(42)×10−8 GeV 1.381(46)×10−8 GeV
ImA2 -6.11(36)×10−13 GeV -6.54(46) ×10−13 GeV

8.3.7 Uncertainties in the evaluation of the Wilson coefficients

The Wilson coefficients, which are calculated in perturbation theory and hence are

not part of the lattice computations, are a necessary ingredient in the

determination of the amplitude A2. The values presented in Tab. 3.2 were

calculated at next-to-leading order (NLO) following the procedure outlined in

Chapter 3. In this section as estimate is made of the systematic error due to the

truncation of perturbation theory. To this end the LO Wilson coefficeints, given in

Tab. 3.3, are used instead of the NLO values and the effect this has on the final

results for ReA2 and ImA2 are measured.

Table. 8.12 shows how the decay amplitude varies when the LO Wilson coefficients

are used instead of the NLO Wilson coefficients. The error in A2 due to the

truncation in the perturbative calculation of the Wilson coefficients is very

conservatively estimated by taking the difference between the NLO result and the

LO result, and calculating this as a percentage of the LO result. The resulting

estimate of the systematic error is 7.1% for ReA2 and 8.1% for ImA2.

8.4 Results

The main result of this thesis is the final value for the complex amplitude A2,

ReA2 = 1.381(46)stat(258)syst 10
−8 GeV, ImA2 = −6.54(46)stat(120) syst10

−13 GeV .

(8.18)

This result was obtained with nearly-physical kinematics and a full consideration of

all sources of systematic error.

In the remainder of this chapter the results are presented for each of the three
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matrix elements which contribute to A2 (Sec. 8.4.1) and the value of the unknown

quantity ImA0 is also deduced by combining the result obtained for ImA2 with the

experimental values of ǫ′/ǫ and other quantities (Sec. 8.4.3).

8.4.1 Results for the matrix elements

Equation (8.11) contains the final results for A2 within the Standard Model. In

order to facilitate detailed comparisons with results from future computations and

to enable these results to be used in extensions of the Standard Model for which the

Wilson coefficient functions are different, results for the K → ππ matrix elements

are now presented. The results are presented for operators renormalised in the

MS-NDR scheme at a renormalisation scale of 3GeV.

K+ → π+π+ matrix elements

The amplitude A2 is given in terms of the K+ → π+π+ matrix elements of the

operators defined in Eq. (3.12) by

A2 =
GF√
2
VudV

∗
us

√
3

2

∑

i

Ci(3 GeV)AMS-NDR
i (3 GeV) , (8.19)

where AMS-NDR
i = 〈π+π+ |Qi |K+〉 and the label i runs over (27,1), (8,8) and

(8,8)mix . The Ai take the values

AMS-NDR
(27,1) (3 GeV) = 0.03071(97) GeV3 (8.20a)

AMS-NDR
(8,8) (3 GeV) = 0.583(33) GeV3 (8.20b)

AMS-NDR
(8,8)mix

(3 GeV) = 2.64(15) GeV3 . (8.20c)
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K+ → π+π0 matrix elements

Alternatively A2 may be expressed in terms of the matrix elements for the physical

K+ → π+π0 decay. In this case

A2 =
GF√
2
VudV

∗
us

1√
3

∑

i

Ci(3 GeV)A′MS-NDR
i (3 GeV). (8.21)

where the two-pion final state is symmetrised ( 1√
2
(〈π+(~p)π0(−~p)|+ 〈π+(−~p)π0(~p)|).

The results are

A′MS-NDR
(27,1) (3 GeV) = 0.0461(14) GeV3 (8.22a)

A′MS-NDR
(8,8) (3 GeV) = 0.874(49) GeV3 (8.22b)

A′MS-NDR
(8,8)mix

(3 GeV) = 3.96(23) GeV3 . (8.22c)

8.4.2 Contributions to A2 from the Matrix Elements

The separate contributions to A2 in Eq. (8.11) from the matrix elements of the

three different operators are now given:

(27, 1) ReA2 = (1.398 ± 0.044) 10−8 GeV; ImA2 = (1.55 ± 0.36) 10−13 GeV

(8, 8) ReA2 = (4.29 ± 0.24) 10−11 GeV; ImA2 = (4.47 ± 0.25) 10−14 GeV

(8, 8)mx ReA2 = (−2.14 ± 0.12) 10−10 GeV; ImA2 = (−8.14 ± 0.47) 10−13 GeV .

(8.23)

Since the (8, 8) and (8, 8)mx operators mix under renormalisation, these exact

figures are only valid at the renormalisation scale 3 GeV. Nevertheless, they

demonstrate that the largest contribution to ReA2 is from the (27, 1) operator while

the largest contribution to ImA2 is from the (8, 8)mx operator Q8.
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8.4.3 Prediction for ImA0

Having calculated A2, and recalling that ReA0 is known from experiment, the

unknown quantity ImA0 may be determined by combining the lattice result for

ImA2/ReA2 from Tab. 8.5 with the experimental values of Re (ǫ′/ǫ) defined in

Eq. (2.22), ǫ and ω ≡ ReA2/ReA0.

The numerical values which are used for these quantities are given in Tab. 8.13. The

systematic error on ImA2/ReA2 is found by combining in quadrature the

systematic error on ReA2 and ImA2 with the error due to lattice artefacts excluded.

A single estimate of 5% systematic error on ImA2/ReA2 due to lattice artefacts is

then added in quadrature. This estimate is based on the Symanzik theory of

improvement which implies that the artefacts are proportional to a2 and in the

absence of any knowledge of the constant of proportionality, the spread of the

derived values of the lattice spacing in Tab 8.9 below is used as a guide. The result

and error for ImA0/ReA0 are very insensitive to the estimate of the artefacts in

ImA2/ReA2.

Rearranging Eq. (2.22), the imaginary part of A0 is found within the Standard

Model to be

ImA0 = −5.34(62)stat(68)syst × 10−11 GeV. (8.24)

The error on ImA0 is obtained by combining the errors on the quantities in

Tab. 8.13 in quadrature. In Eq. (8.25) below we compare the relative contribution to

ImA0/ReA0 from ImA2/ReA2 and the term containing the experimentally known

contributions:

ImA0

ReA0
=

ImA2

ReA2
−

√
2 |ǫ|
ω

ǫ′

ǫ

−1.61(19)stat(20)syst × 10−4 = −4.42(31)stat(89)syst × 10−5 − 1.16(18) × 10−4 .

(8.25)

After studying Eq. (8.25) it is apparent that the contribution of ImA2/ReA2 to

ImA0/ReA0 is significant at approximately 25%. A direct calculation of Im(A0) will

be presented in Chapter 9. However, the unphysical kinematics that are used in
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Table 8.13: Experimental values of the components of Eq. (2.22)
used in the determination of ImA0, together with the result for
ImA2/ReA2 from this chapter.

ǫ′/ǫ (1.65 ± 0.26) × 10−3

ω 0.04454(12)
|ǫ| (2.228 ± 0.011) × 10−3

ReA0 3.3201(18) × 10−7 GeV
ImA2/ReA2 (lattice) −4.42(31)stat(89)syst × 10−5

Chapter 9 mean that it is unfortunately not meaningful to compare this

determination of ImA0 with the result of the direct calculation given in Eq. (9.15).

The ratio ImA0/ReA0 features in the parametrisation of the effect of direct

CP-violation in KL → ππ on ǫ, customarily denoted by κǫ [68]. If the result for

ImA0/ReA0 given in Eq. (8.25) is used as input, the result is

(κǫ)abs = 0.924 ± 0.006. The subscript “abs” denotes that at present only the

absorptive long-distance contribution (Im Γ12) is included [69] (the error is now

dominated by the experimental uncertainty in ǫ′/ǫ). The analogous contribution

from the dispersive part (Im M12) [69] is yet to be determined in lattice QCD, but

progress towards being able to do this described in [70].

Using the lattice result for ImA2 in Eq. (8.11) and taking the experimental value

given above for ReA2 from K+ decays gives the electroweak penguin (EWP)

contribution to ǫ′/ǫ, Re(ǫ′/ǫ)EWP = −(6.25± 0.44stat ± 1.19syst)× 10−4 (the

experimental value for the complete Re(ǫ′/ǫ) is 1.65(26) × 10−3 [3]). Even though

this contribution has been labelled EWP, and indeed it is dominated by the matrix

element of the EWP operator Q(8,8)mix
, the result contains contributions from all

three components to ImA2 in Eq. (8.23). The contribution from the two EWP

operators Q(8,8) and Q(8,8)mix
is −(7.34 ± 0.52stat ± 1.39syst)× 10−4.

This chapter ends with a brief comparison of an earlier result obtained using

finite-energy sum rules [71], where the contribution to ǫ′/ǫ from the operator

Q(8,8)mix
(renormalised at 2GeV) was found to be −(11.0± 3.6) × 10−4.
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Figure 8.4: The ratios defined in Eq. (8.4) for p =
√
2π/L. The

two-pion source is at t = 0 while the kaon source is at tK = 24.
The dashed line shows the error on the fit
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Figure 8.5: Plots of the I = 2 two-pion s-wave phase shift
against momentum kπ. The resutls of our calculation at p = 0 and
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√
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kπ region, demonstrating the approximate linear behaviour of the
phenomenological curve in the region of p = 0. The scattering
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perturbation theory [63].
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Chapter 9

Evaluation of K → ππ decay

amplitudes on Iwasaki lattices

The main objective of this chapter is to calculate the ∆I = 1/2 decay amplitude

A0. Recognising the difficulty of this problem, this calculation is performed on a

lattice which is relatively small compared to the one used in the previous chapter,

and a somewhat heavy pion mass (mπ ≈ 421MeV) is chosen so that large statistics

can more easily be collected. The calculation is performed at threshold, where the

kaon mass is approximately equal to the two-pion energy and the two final state

pions are at rest. A complete evaluation of the K → ππ matrix elements in the

I = 0 channel has never been done before, and the results presented in this chapter

represent a major breakthrough. A calculation of the ∆I = 3/2 decay amplitude is

included for comparison and completeness.

Although physical kinematics are not employed in this calculation, the final results

for the complex amplitudes A0 and A2 are otherwise physical. The matrix elements

are renormalised at 2.15 GeV in the MS scheme using the techniques described in

Chapter 5. Specifically, the renormalisation constants which are used can be found

in Tab. 5.2.

Because of the unphysical, threshold kinematics and focus on controlling the

statistical errors associated with the disconnected diagrams, no attempt is made to
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Table 9.1: Ensemble details. The analysis of this chapter is per-
formed using a single Iwasaki enemble with β = 2.13.

Lattice β amh aml number of trajectories

Iwasaki (163 × 32) 2.13 0.032 0.01 800

estimate the size of possible systematic errors. The quoted errors on the results are

statistical only. Similarly the systematic and statistical errors associated with the

Rome-Southampton renormalisation factors have not been included. Both these

sources of error could be made substantially smaller than the statistical errors when

required.

9.1 Computational Details

This calculation uses the Iwasaki gauge action with β = 2.13 and 2+1 flavours of

domain wall fermions (DWF). While the computational costs of DWF are much

greater than those of Wilson or staggered fermions, as has been shown in earlier

papers [72, 73, 20, 21], accurate chiral symmetry at short distances is critical to

avoid extensive operator mixing, which would make the lattice treatment of ∆S = 1

processes much more difficult.

The analysis of this chapter is performed on a single lattice ensemble with

space-time volume 163 × 32, a fifth-dimensional extent of Ls = 16 and light and

strange quark masses of aml = 0.01, ams = 0.032, respectively. This ensemble is

similar to the aml = 0.01 ensemble reported in Ref. [74] except for the use of the

improved RHMC-II algorithm of Ref. [50] and a more physical value for the strange

quark mass. The inverse lattice spacing for these input parameters was determined

to be 1.73(3) GeV resulting in a lattice volume of (1.83 fm)3 and the residual mass

is amres = 0.00308(4) [50]. The total number of configurations analysed is 800, each

separated by 10 molecular dynamics time units. The Dirac operator is computed

with anti-periodic boundary conditions in the time direction, and periodic

boundary conditions in the space directions. The propagators are calculated using a

Coulomb gauge fixed wall source (used for meson propagators) and a random wall

source (used to calculate the loops in the type3 and type4 graphs shown in Figs. 7.5
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and 7.6). The large statistics that are needed for a successful calculation are

obtained by placing propagator sources on each of the 32 time slices in the lattice

volume. These propagators are then used to create two-pion sources on every

timeslice. The two-pion correlation functions are averaged over the common

separations between the two-pion source and two-pion sink. This was made explicit

in Eq. (7.10) for the type-V diagram in Sec. 7.1. Similarly in the case of K → ππ

correlation functions, the kaon source is created on all time slices, the time

separation between the kaon and two pions is fixed and labelled ∆, and the

correlation functions are averaged over all common separations between the kaon

source and insertion of the weak operator at fixed ∆. For each time slice and source

type, twelve inversions are required corresponding to the possible 3 colour and 4

spin choices for the source. Thus, a total of 768 inversions are performed for each

quark mass on a given configuration. As will be shown below, this large number of

inversions, performed on 800 configurations, provides the substantial statistics

needed to resolve the real part of the I = 0 amplitude A0 with 25% accuracy.

In order to obtain energy-conserving K0 → ππ decay amplitudes, the mass of the

valence strange quark in the kaon is assigned a value different from that appearing

in the fermion determinant used to generate the ensembles, i.e. the strange quark is

partially quenched. Since the mass of the dynamical strange quark is expected to

have a small effect on amplitudes of the sort considered here [50, 66], this use of

partial quenching is appropriate for the purposes of this calculation. Valence

strange quark masses are chosen to be ams = 0.066, 0.099 and 0.165, which are

labeled s0, s1 and s2 respectively.

9.2 Analysis
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The simulated pion and kaon masses are measured by fitting the data to

CK(t) ≡ 1

32

31
∑

t′=0

〈

OK(t+ t′)O†
K(t′)

〉

= Z2
K

(

e−mK t + e−mK(T−t)
)

(9.1)

Cπ(t) ≡
1

32

31
∑

t′=0

〈

Oπ(t+ t′)O†
π(t

′)
〉

= Z2
K

(

e−mK t + e−mK(T−t)
)

(9.2)

where the average over different source positions for the propagators has been made

explicit. This fit form is easy to understand based on Eq. (4.57). The results of the

fits are shown in tables 9.2-9.3, and the corresponding effective mass plots are

presented Figs. 9.1-9.2. Fit regions for all the fits in this chapter are shown in table

9.4. The simulated kaon masses can be used to interpolate to energy-conserving

decay kinematics for both the I = 2 and I = 0 channels.

The two-pion correlation functions for isospin I and Iz = 0, defined in Eq. (7.8), are

fit with the functional form

1

32

31
∑

t′=0

Cππ
I (t+ t′, t′) = Z2

ππ,I

(

e−Eππ
I t + e−Eππ

I (T−t) +A
)

. (9.3)

In this equation, the correlation function has been computed with two-pion sources

on every time slice and averaged over common separations between source and sink.

122



0 5 10 15
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

t

 

 

s0

s1

s2

Figure 9.2: Kaon effective masses, with fitted masses superim-
posed on the data. The legend indicates if valence strange-quark
mass is ams = 0.066 (s0),ams = 0.099 (s1) or ams = 0.165 (s2).

The fitted energies are summarized in Tab. 9.2. In order to see clearly the effect of

the disconnected graph, the calculation is also performed for the I = 0 channel

without the disconnected graphs. This result is given in Tab. 9.2 with a label with

an additional prime (′) symbol. The resulting effective mass plots for each case are

shown in the right panel of Fig. 9.3. For comparison, a plot of twice the fitted pion

mass is also shown. This figure clearly demonstrates that the two-pion interaction

is attractive in the I = 0 channel with the finite volume, I = 0 π − π energy Eππ
0

lower than 2mπ. In contrast, the I = 2 channel is repulsive with Eππ
2 larger than

2mπ. The fitted parameters Z2
ππ,I and Eππ

I will be used to extract weak matrix

elements from the K0 → ππ correlation functions discussed below in which these

same operators Oππ
I (t) are used to construct the two-pion states.

Table 9.2: Mass of pion and energies of the two-pion states. Here
the subscript I = 0 or 2 on the π−π energy, Eππ

I , labels the isospin
of the state and Eππ′

0 represents the isospin zero, two-pion energy
obtained when the disconnected graph V is ignored. The error in
MeV is dominated by the lattice spacing.

mπ Eππ
0 Eππ′

0 Eππ
2

lattice units 0.24373(47) 0.443(13) 0.4393(41) 0.5066(11)
MeV 422(30) 766(38) 760(31) 876(30)
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Figure 9.3: Left: Results for the four types of contractions, direct
D, C, R and V represented by the graphs in Fig. 7.1. Right: Ef-
fective mass plots for correlation functions for states with isospin
two (I2), isospin zero (I0), isospin zero without the disconnected
graph ((I0)

′) and twice the fitted pion mass (2mπ).

Table 9.3: Masses of the kaons.The superscript (s0), (s1) or (s2)
on the kaon mass distinguishes our three choices of valence strange
quark mass, ms = 0.066, 0.099 and 0.165 respectively. The error
in MeV is entirely dominated by the error on the lattice spacing.

m
(s0)
K m

(s1)
K m

(s2)
K

lattice units 0.42571(44) 0.50688(46) 0.64470(51)
MeV 736(30) 877(30) 1115(30)

9.2.1 K0 → ππ ∆I = 3/2 amplitude

As Eq. (7.16) and the first column of Eq. (7.18) show, the ∆I = 3/2 K0 → ππ

decay amplitude includes only type1 contractions and four of the correlation

functions are related:

A2,10 = A2,9 =
3

2
A2,1 =

3

2
A2,2. (9.4)

Table 9.4: Fit regions on the Iwasaki lattices.

pseudoscalar meson fit region

kaon 7-15
pion 6-15

two-pion, I0 5-9
two-pion, (I0)′ 6-15
two-pion, I2 6-15

K → ππ, ∆ = 12 5-7
K → ππ, ∆ = 16 5-11
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Table 9.5: Results for the lattice ∆I = 3/2, K → ππ transition
amplitudes obtained from fitting the 3-point correlation functions
to the functional form given in Eq. (9.6) for the six operators with
∆I = 3/2 components. The second column gives the lattice matrix

elements M
3/2,lat
i (×10−2) while the third and fourth column give

their contributions to the real and imaginary parts of A2. These
results are for ∆ = 12 and ams = 0.099.

i M
3/2,lat
i (×10−2) ReA2(GeV) ImA2(GeV)

1 0.4892(16) -1.724(9)e-08 0
2 =M1 6.613(36)e-08 0
7 6.080(18) 2.677(15)e-11 4.498(25)e-14
8 21.26(6) -2.148(12)e-10 -1.042(57)e-12
9 =1.5M1 -4.974(27)e-15 5.133(28)e-13
10 =1.5M1 6.055(33)e-12 -1.433(7)e-13

Total - 4.871(31)e-08 -5.502(40)e-13

Therefore, it is sufficient to calculate A2,1, A2,7 and A2,8 only. The corresponding

three correlation functions, C2,i(∆, t) for i = 1, 7 and 8, with the choice of m
(1)
K for

the kaon mass, are shown in Fig. 9.4. The calculation of propagators with sources

on each of the 32 time slices is exploited to compute C2,i(∆, t) from an average over

all 32 source positions:

C2,i(∆, t) =
1

32

31
∑

t′=0

A2,i(tπ = t′ +∆, top = t+ t′, tK = t′). (9.5)

In Figs. 9.4(a)-9.4(c), C2,i(∆, t) for 0 < t < ∆ are plotted at fixed ∆ = 12 or 16.

Tables 9.2 and 9.3 show that m
(s1)
K is almost equal to the energy of I = 2, two-pion

state, so the 3-point correlation function C2,i(∆, t) should be approximately

independent of t in the central region where the time coordinate of the operator is

far from both the kaon and the two-pion sources, 0 ≪ t ≪ ∆.

The correlators C2,i(∆, t) are fit using a single free parameter M
3/2,lat
i :

C2,i(∆, t) = M
3/2,lat
i ZππZKe

−Eππ∆e−(mK−Eππ)t, (9.6)

where ZK , mK and Zππ, Eππ are determined from the fits in Eqns. (9.1) and (9.3).

The fit regions for C2,i(∆, t) are 5− 7 for ∆ = 12 and 5− 11 for ∆ = 16. The fitted

results for the matrix elements M
3/2,lat
i with ∆ = 12 and ams = 0.099 are listed in

Tab. 9.5 in lattice units.
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Fits to the K → ππ, I = 2 correlators, C2,i(∆, t) for i = 1, 7, 8 and ∆ = 12 and 16

are compared in Figs 9.4(a)-9.4(c). In each plot the data are multiplied by a factor

of eEππ∆, so that the results for ∆ = 12 and ∆ = 16 may be compared.

Figure 9.4 shows that for the operators Q7 and Q8 the larger separation, ∆ = 16,

between the kaon source and two-pion sink gives a much shorter plateau region

than the case ∆ = 12. This behavior is inconsistent with the usual expectation that

it is the contributions from excited states of the kaon and pion, contributions which

should be suppressed for larger ∆, that cause the poor plateau. An alternative,

consistent explanation attributes the shortened plateau region seen for ∆ = 16 to

the ‘around-the-world’ effect. This is the contribution to the correlation function in

which the two-pion interpolating operator at the sink annihilates one pion and

creates another (instead of annihilating two pions as in the K → ππ contribution

we are seeking) and the process at the weak operator is Kπ → π (instead of

K → ππ). While one pion travels from the weak operator to the π − π sink the

second is created at the sink and travels forward in time, passing through the

periodic boundary to reach the weak operator together with the kaon. The

corresponding dominant path is shown in Fig. 9.10. The time dependence of the

leading around-the-world behavior can be estimated as

∼M
3/2,lat
i Z2

πZKe
−mπT e−(EKπ−mπ)t (9.7)

which is ∆ independent but suppressed by the factor exp(−mπT ), where Zπ is the

analogue of ZK for the case of single pion production and T = 32 is the temporal

extent of the lattice. In contrast, the physical contribution in Eq. (9.6) is

suppressed by exp(−Eππ∆). Thus, the second, standard term falls with increasing

∆ and the two factors are of similar size when ∆ = T/2. The expectation is that

there will be a large contamination from such around-the-world effects in the

∆ = 16 case, consistent with Fig. 9.4.

The conclusion is that it is important to increase the lattice extent in the time

direction both to suppress this around-the-world effect and to permit the use of a

larger source-sink separation giving a longer plateau. Around-the-world effects will
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Table 9.6: The calculated quantities which appear in the Lellouch-
Lüscher factor F for I = 2. The corresponding factor for the case
of non-interacting particles is Ffree = 31.42. The difference reflects
the final two-pion scattering in a box.

k q ∂φ(q)∂q k ∂δ(k)
∂k F

0.0690(13) 0.221(10) -0.0849(43) 26.01(18)

be discussed again in the next section for the ∆I = 1/2 kaon decay.

A good approximation to the infinite volume decay amplitude can be obtained by

including the Lellouch-Lüscher factor, which was discussed in Chapter 6. The letter

F =

√

8π

(

E2
ππmK

k3

){

k
∂δ2(k)

∂k
+ q

∂φ(q)

∂q

}

will be used when quoting the results. Here k is defined through

Eππ = 2
√

m2
π + k2, q = kL/2π and δ2(k) is the s-wave, I = 2, π − π scattering

phase shift for pion relative momentum k. The I = 2 phase shift δ2(k) is

determined from the measured two-pion energy Eππ = 0.5066(11) given in Tab. 9.2

and the finite volume quantization condition given in Eq. (6.1),

φ(q) + δ2(p) = nπ. (9.8)

For this threshold case the integer n is set to zero which gives δ2(k) = −0.0849(43).

At small momentum k, the phase shift δ2(k) is assumed to be a linear homogenous

function of k. This allows the derivative of the phase shift to be evaluated by

writing δ2(k) = k∂δ2(k)/∂k.

In the limit of non-interacting pions, the factor F becomes F 2
free = 2(2mπ)

2mKL
3,

which reflects the different normalization of states in a box and plane wave states in

infinite volume. Results for F in this I = 2 case and the quantities used to

determine it are given in Tab. 9.6. Applying the finite volume correction F gives a

finite-volume corrected amplitude for a ∆I = 3/2, K → ππ decay that is slightly

above threshold by the amount Eππ
2 − 2mπ = 33(1) MeV.
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Table 9.7: The complex, K0 → ππ, ∆I = 3/2 decay amplitudes
in units of GeV.

mK ReA2 ImA2

m
(s0)
K 4.234(23)(×10−8) GeV -0.6386(39) (×10−12)

m
(s1)
K 4.871(26)(×10−8) GeV -0.6268(39) (×10−12)

m
(s2)
K 5.935(33)(×10−8) GeV -0.6087(39) (×10−12)

The final expression for the K0 → ππ decay amplitudes is,

A2/0 = F
GF√
2
VudVus

10
∑

i=1

7
∑

j=1

[

(

zi(µ) + τyi(µ)
)

Z lat→MS
ij M

3
2
/ 1
2
,lat

j

]

, (9.9)

where the matrix of renormalisation constants, Zij is given in Tab. 5.2 and the

Wilson coefficients are given in Tab. 3.1. The results for the complex ∆I = 3/2

decay amplitude A2 are summarized in Tab. 9.7, including those for the other two,

energy-non-conserving choices of kaon mass. Since m
(s1)
K differs from the isospin-2

π − π energy by only 0.2 percent, this case is quoted as the energy-conserving kaon

decay amplitude. Therefore, in physical units, the energy-conserving ∆I = 3/2,

K0 → ππ complex, threshold decay amplitude for mK = 877 MeV and mπ = 422

MeV is given by:

ReA2 = 4.871(26) × 10−8GeV (9.10)

ImA2 = −0.6268(39) × 10−12GeV. (9.11)

This result for ReA2 can be compared with the experimental value of

1.479(3) × 10−8 GeV given in Eq. (2.8). The larger result found in this calculation

is likely explained by the unphysically heavy kaon and pions.

9.2.2 K0 → ππ ∆I = 1/2 amplitude

Following the prescription given by Eq. (7.17), the ∆I = 1/2 K → ππ correlation

functions,

C0,i(∆, t) =
1

32

31
∑

t′=0

A0,i(tπ = t′ +∆, top = t+ t′, tK = t′), (9.12)
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have been calculated for each of the ten effective weak operators. In the calculation

each of these ten operators are treated as independent and the identities shown in

Eq. (7.19) are then verified.

The calculation is also performed without the disconnected, type4 diagrams of

Fig. 7.6, and these results are labeled with an additional prime symbol, as was the

case for the two-pion correlation function without the disconnected V diagrams.

Figures 9.5(a)- 9.7(d) show the resulting correlation functions for the operators Q1

to Q10, in the case of the lightest kaon m
(s0)
K and a separation between the kaon and

pions of ∆ = 16. Each figure compares the full calculation with the calculation

where disconnected diagrams are not included. Tables 9.2 and 9.3 show that the

mass of this kaon is very close to the energy of the I=0 two-pion state. Therefore,

the plots are expected to show a reasonably flat plateau when the operator is far

from both the source and sink.

Given this good agreement between the energies of the kaon and two-pion states,

the unphysical, dimension three operator, sγ5d which mixes with the (8, 1)

operators in Eq. (3.2) and is itself a total divergence, might be expected to also give

a negligible contribution to such an energy and momentum conserving matrix

element. However, as can be seen from Figs. 9.8(a) and 9.9(a), the matrix element

of this term is large and the explicit subtraction described in Sec. 7.3 is necessary.

This difficulty is created by the combination of two phenomena. First the mixing

coefficient which multiplies the sγ5d operator when it appears in our weak (8, 1)

operators is large, of order (ms −ml)/a
2. Second, in this lattice calculation the

necessary energy conserving kinematics (needed to ensure that this total divergence

does not contribute) is only approximately valid. The required equality of the

spatial momenta of the kaon and π − π states is assured by our summing the

location of the weak vertex over a complete temporal hyperplane. On the other

hand, the equality of the energies of the initial and final states results only if we

have adjusted the kaon mass to approximately that of the two-pion state and

chosen the time extents sufficiently large that other states with different energies

have been suppressed. However, as can be seen in Figs. 9.8(a) and 9.9(a) the
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subtraction term mix3 shows strong dependence on the time at which it is

evaluated. This implies that there are important contributions coming from initial

and final states which have significantly different energies. One or both of these

states is then not the intended K or π − π state but instead an unwanted

contribution which has been insufficiently suppressed by the time separations

between source, weak operator and sink.

Thus, instead of relying on large time extents and energy conserving kinematics to

suppress this unphysical, O(1/a2) term, it must explicitly be removed. As explained

in Sec. 7.3 this can be done by including an explicit subtraction which is fixed by

the requirement that the kaon to vacuum matrix element of the complete

subtracted operator vanishes as in Eq. (7.23). Thus, the divergent coefficient of this

mixing term is determined from the ratio αi = 〈0|Qi|K〉/〈0|sγ5d|K〉 and then

perform the explicit subtraction of the resulting terms, labeled αi ·mix3 and

αi ·mix4 in Figs. 9.8 and 9.9. Imposing the condition that the kaon to vacuum

matrix element of the complete subtracted operator vanishes also has the effect of

removing the unwanted vacuum contribution to the type4 diagrams.

Of course, the finite part of such a subtraction is not determined from first

principles and our choice, specified by Eq. (7.23) is arbitrary. Thus, we must rely on

our identification of a plateau and the approximate energy conservation of our

kinematics to make the arbitrary part of this subtraction small, along with the

other errors associated with evaluating the decay matrix element of interest

between initial and final states with slightly different energies.

The very visible time dependence in Figs. 9.8(a) and 9.9(a) for both the original

matrix elements and the subtraction terms is now examined in greater detail. As

discussed above one might expect these divergent subtraction terms to contribute

to excited state matrix elements in which the energies of the initial and final states

are very different. Typical terms should be exponentially suppressed as the

separation between the weak operator and the source or sink is increased, with the

time behavior exp{−(m∗
K −mK)t} or exp{−(E∗

ππ − Eππ)(∆ − t)}, which ever is

larger. (The ∗ denotes an excited state.) However, by carefully examining the time
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behavior of the mix3 amplitude, we find that the time dependence, at least in the

vicinity of the central region, is less rapid than might be expected from such excited

states suggesting that it is probably not due primarily to contamination from

excited states.

The most likely explanation is that the dominant, energy-nonconserving matrix

elements which cause the significant time dependence in Figs. 9.8(a) and 9.9(a)

arise from the around-the-world effects identified and discussed in the previous

∆I = 3/2 section. In fact, for the reasons just discussed associated with divergent

operator mixing, such around-the-world effects are a more serious problem in the

∆I = 1/2 case. The dominant around-the-world graphs are shown in Fig. 9.11. An

estimate of the time dependence of these graphs gives,

〈

K0π|Qi|π
〉

ZπZKZπe
−mπT e−(EKπ−mπ)t

+
〈

0|Qi|K0ππ
〉

ZπZKZπe
−mK((T−∆)+(∆−t)) , (9.13)

where the first term comes from the graphs in Figs. 9.11(a), 9.11(b), while the

second term comes from Fig. 9.11(c). (Recall that t = top − tK and ∆ = tπ − tK).

Notice that these two terms involve amplitudes which are far from energy

conserving and therefore contain large divergent contributions from mixing with the

operator sγ5d which will be removed only when combined with the corresponding

around-the-world paths occuring in the mix3 contraction.

Thus the conclusion is that it is these around-the-world matrix elements which are

the reason for the observed large divergent subtraction in the type3 graph. The

largest divergent contribution is thus not the subtraction for the matrix element

this calculation aims to evaluate,
〈

ππ|Qi|K0
〉

; rather, it is the divergent subtraction

for the matrix elements
〈

K0π|Qi|π
〉

and
〈

0|Qi|K0ππ
〉

which arise from the

around-the-world paths which are not sufficiently suppressed by the small lattice

size. Two important lessons can be learned from this analysis. First, it is important

to perform an explicit subtraction of the divergent mixing with the operator sγ5d.

While this term will not contribute to the energy conserving matrix element of

interest, in a Euclidean space lattice calculation there are in general, other,

131



unwanted, energy non-conserving terms which may be uncomfortably large if this

subtraction is not performed. Second it would be wise to work on a lattice with a

much larger size T in time direction in order to suppress further the

around-the-world terms which give such a large contribution in the present

calculation. Using the average of propagators computed with periodic plus

anti-periodic boundary conditions to effectively double the length in the time

direction would be a good solution.

It should be emphasised that these divergent, around-the-world contributions do

not pose a fundamental difficulty. The largest part of these amplitudes are removed

by the corresponding subtraction terms constructed from the operator sγ5d. The

remaining finite contributions from this and other around-the-world terms are

suppressed by the factor exp(−mπT ) or exp(−mk(T −∆)). The results suggest

that the separation of ∆ = 16 gives a relatively longer plateau region, and so this is

the K − ππ time separation that is used in the analysis below.

The lattice matrix elements are determined by fitting the I = 1/2 correlators

Ci
0(∆, t) given in Eq. (9.12) using the fitting form:

C0,i(∆, t) = M
1/2,lat
i ZππZKe

−Eππ∆e−(mK−Eππ)t. (9.14)

The fitted results for the weak, ∆I = 1/2 matrix elements of all ten operators for

∆ = 16 are summarized in Tab. 9.8-9.10. To see the effects of the disconnected

graph clearly, a second fit is performed to the amplitude from which the

disconnected, type4 graphs have been omitted and the calculated results are shown

with an additional ′ label, as in the earlier two-pion scattering section.

The calculation of the ∆I = 1/2 decay amplitude A0 from the lattice matrix

elements M
1/2,lat
i given in Tab. 9.8-9.10 is very similar to the ∆I = 3/2 case: the

values of M
1/2,lat
i are simply substituted in Eq. (9.9). However, the attractive

character of the I = 0, π − π interaction and resulting negative value of p2 makes

the Lellouch-Lüscher treatment of finite volume corrections inapplicable. For the

repulsive I = 2 case, it was possible to apply this treatment to obtain the decay

amplitude for a two-pion final state which was slightly above threshold
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Table 9.8: Fitted results for the weak, ∆I = 1/2 kaon decay

matrix elements using the kaon mass m
(s0)
K . The column M lat

i

shows the complete result from each operator. The column M ′ lat
i

shows the result when the disconnected graphs are omitted while
the 4th and 5th columns show the contributions of each operator
the real and imaginary parts of the physical decay amplitude A0.
These results are obtained using a source-sink separation ∆ = 16,
and a fit range 5 ≤ t ≤ 11.

i M
1/2,lat
i ReA0(GeV) ImA0(GeV)

1 -0.0015(15) (7.6±6.4)×10−8 0
2 0.00148(59) (2.86±0.97)×10−7 0
3 -0.0003(41) (2.0±13.6)×10−10 (1.1±7.6)×10−12

4 0.0027(32) (4.2±4.4)×10−09 (1.4±1.4)×10−11

5 -0.0032(37) ( 3.1±5.3)×10−10 (1.6±2.8)×10−12

6 -0.0076(47) (-5.6±3.3)×10−09 (-3.3±2.0)×10−11

7 0.0106(14) (5.2±1.2)×10−11 (8.8±2.0)×10−14

8 0.0348(27) (-3.66±0.28)×10−10 (-1.78±0.14)×10−12

9 -0.0021(11) (1.94±0.93)×10−14 (-2.00±0.96)×10−12

10 0.0009(12) (1.2±1.1)×10−11 (-2.7±2.7)×10−13

Total - (3.60±0.78) ×10−7 (-2.1 ± 2.1) ×10−11

i M
′1/2,lat
i ReA′

0(GeV) ImA′
0(GeV)

1 -0.00107(36) (6.1±1.5) ×10−8 0
2 0.00187(15) (3.70±0.24) ×10−7 0
3 0.00029(95) (0.1±3.2) ×10−10 (5.6±178) ×10−14

4 0.00324(76) (5.5±1.1) ×10−9 (1.80±0.34) ×10−11

5 -0.00664(84) (5.7±1.2) ×10−10 (3.0±6.4) ×10−12

6 -0.01911(92) (-1.376±0.067) ×10−8 (-8.27±0.40) ×10−11

7 0.01483(41) (7.71±0.31) ×10−11 (1.296±0.053) ×10−13

8 0.04613(99) (-4.85±0.11) ×10−10 (-2.359±0.052) ×10−12

9 -0.00175(28) (1.76±0.23) ×10−14 (-1.81±0.24) ×10−12

10 0.00121(28) (1.55±0.27) ×10−11 (3.67±0.63) ×10−13

Total - (4.23±0.20) ×10−7 (-6.60±0.43) ×10−11
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Table 9.9: Fitted results for the weak, ∆I = 1/2 kaon decay

matrix elements using the kaon mass m
(s1)
K . The column M lat

i

shows the complete result from each operator. The column M ′ lat
i

shows the result when the disconnected graphs are omitted while
the 4th and 5th columns show the contributions of each operator
the real and imaginary parts of the physical decay amplitude A0.
These results are obtained using a source-sink separation ∆ = 16,
and a fit range 5 ≤ t ≤ 11.

i M
1/2,lat
i ReA0(GeV) ImA0(GeV)

1 -0.0015(15) (9.8±8.4)×10−8 0
2 0.00148(59) (3.5±1.3)×10−7 0
3 -0.0003(41) (0.7±1.7)×10−10 (3.7±9.6)×10−12

4 0.0027(32) (3.8±5.5)×10−09 (1.2±1.8)×10−11

5 -0.0032(37) (5.9±6.8)×10−10 (3.1±3.5)×10−12

6 -0.0076(47) (-9.3±4.2)×10−09 (-5.6±2.6)×10−11

7 0.0106(14) (5.9±1.4)×10−11 (9.9±2.4)×10−14

8 0.0348(27) (-4.07±0.36)×10−10 (-1.97±0.17)×10−12

9 -0.0021(11) (2.0±1.2)×10−14 (-2.1±1.2)×10−12

10 0.0009(12) (2.0±1.3)×10−11 (-4.7±3.2)×10−13

Total - (4.5±1.0) ×10−7 (-4.1 ± 2.6) ×10−11

i M
′1/2,lat
i ReA′

0(GeV) ImA′
0(GeV)

1 -0.00107(36) (7.0±1.8) ×10−8 0
2 0.00187(15) (4.27±0.29) ×10−7 0
3 0.00029(95) (-2.0±3.8) ×10−10 (-1.1±2.1) ×10−14

4 0.00324(76) (7.1±1.2) ×10−9 (2.34±0.41) ×10−11

5 -0.00664(84) (6.1±1.5) ×10−10 (3.22±0.76) ×10−12

6 -0.01911(92) (-1.510±0.074) ×10−8 (-9.49±0.44) ×10−11

7 0.01483(41) (8.14±0.37) ×10−11 (1.367±0.062) ×10−13

8 0.04613(99) (-5.19±0.12) ×10−10 (-2.517±0.056) ×10−12

9 -0.00175(28) (2.24±0.28) ×10−14 (-2.31±0.29) ×10−12

10 0.00121(28) (1.50±0.31) ×10−11 (3.57±0.74) ×10−13

Total - (4.87±0.24) ×10−7 (-7.45±0.47) ×10−11
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Table 9.10: Fitted results for the weak, ∆I = 1/2 kaon decay

matrix elements using the kaon mass m
(s2)
K . The column M lat

i

shows the complete result from each operator. The column M ′ lat
i

shows the result when the disconnected graphs are omitted while
the 4th and 5th columns show the contributions of each operator
the real and imaginary parts of the physical decay amplitude A0.
These results are obtained using a source-sink separation ∆ = 16,
and a fit range 5 ≤ t ≤ 11.

i M
1/2,lat
i ReA0(GeV) ImA0(GeV)

1 -0.0019(25) (1.2±1.3)×10−7 0
2 0.00225(93) (5.4±1.9)×10−7 0
3 -0.0011(63) (0.6±2.6)×10−9 (0.3±1.4)×10−12

4 0.0031(50) (6.5±8.4)×10−9 (2.1±2.8)×10−11

5 -0.0065(59) (0.7±1.0)×10−9 (3.9±5.4)×10−12

6 -0.0170(71) (-1.52±0.62)×10−9 (-9.1±3.7)×10−11

7 0.0108(20) (6.1±2.2)×10−11 (1.03±0.37)×10−13

8 0.0371(36) (-4.81±0.46)×10−10 (-2.34±0.23)×10−12

9 -0.0023(18) (4.4±2.8)×10−14 (-2.9±1.9)×10−12

10 0.0018(18) (2.7±2.1)×10−11 (-6.4±4.9)×10−13

Total - (6.5±1.5) ×10−7 (-6.8 ± 3.9) ×10−11

i M
′1/2,lat
i ReA′

0(GeV) ImA′
0(GeV)

1 -0.00117(50) (8.3±2.6) ×10−8 0
2 0.00213(20) (5.13±0.40) ×10−7 0
3 0.0003(13) (0.2±5.4) ×10−10 (0.1±3.0) ×10−12

4 0.0036(10) (7.5±1.8) ×10−9 (2.46±0.58) ×10−11

5 -0.0076(12) (8.3±2.1) ×10−10 (4.3±1.1) ×10−12

6 -0.0213(11) (-1.879±0.095) ×10−8 (-1.128±0.057) ×10−11

7 0.01430(47) (9.21±0.47) ×10−11 (1.547±0.080) ×10−13

8 0.04415(99) (-5.69±0.13) ×10−10 (-2.771±0.064) ×10−12

9 -0.00194(37) (3.73±0.58) ×10−14 (-2.44±0.38) ×10−12

10 0.00137(37) (2.19±0.44) ×10−11 (5.2±1.0) ×10−13

Total - (5.84±0.32) ×10−7 (-8.94±0.47) ×10−11
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corresponding to the actual finite volume kinematics. In the present case there is no

corresponding infinite-volume decay into two pions below threshold and an

unphysical increase of mπ to compensate for the finite volume π − π attraction will

introduce an O(1/L3) error in the decay amplitude of the same size as that which

the Lellouch-Lüscher treatment corrects. Thus, for this ∆I = 1/2 decay amplitude,

the finite volume corrections are not included, and instead the free-field value for

the factor F is used in Eq. (9.9).

Although it is not possible to consistently apply the Lellouch-Lüscher finite volume

correction factor to improve the result for the I = 0, K → ππ decay amplitude, it

might still be possible to use the quantisation condition of Eq. (9.8) to determine

the I = 0 π − π scattering phase shift δ0(k). Even though Eq. (9.8) can be

analytically continued to imaginary values of the momentum k, its application for

large negative k2 is uncertain since the function φ(k) becomes ill defined. In fact,

the value of k2 sits very close to a singular point of φ(q). We believe this happens

because the condition on the interaction range R≪ L/2 used to derive the

quantization condition in Eq. (9.8) is not well satisfied for our small volume. This

impediment to determining δ0(p) will naturally disappear once we work with lighter

pions in a larger volume.

The results for ReA0 and ImA0 are summarized in Tab. 9.11 and the individual

contribution from each of the operators at ams = 0.066 is detailed in the last two

columns of Tab. 9.8. Within a large uncertainty Tab. 9.8 shows that the largest

contribution to ReA0 comes from operator Q2, and that to ImA0 from Q6 as found,

for example, in Refs. [20, 21].

Since the choice m
(s0)
K for the kaon mass is not precisely equal to the energy of the

I = 0 ππ state, a simple linear interpolation between m
(0)
K and m

(s1)
K is carried out

to obtain an energy conserving matrix element, which is shown in the last row of

Tab 9.11. In terms of physical units, therefore, our full calculation gives the energy

conserving, K0 → ππ, ∆I = 1/2, complex decay amplitude A0 for mK = 766 MeV
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Table 9.11: Amplitudes for ∆I = 1/2 K0 → ππ decay in units of
GeV. The energy conserving amplitudes are obtained by a simple

linear interpolation between m
(s0)
K =0.42599 and m

(s1)
K =0.50729 to

the energy of two-pion state. As in the previous tables, the ′ indi-
cates results from which the disconnected graphs have been omitted.

mK ReA0(×10−8) ReA′
0(×10−8) ImA0(×10−12) ImA′

0(×10−12)

mK(s0) 36.0(78) 42.3(20) -21(21) -66.1(43)
mK(s1) 45(10) 48.8(24) -41(26) -74.6(47)
mK(s2) 65(15) 58.4(32) -68(39) -89.4(63)
Energy conserving 38.0(82) 43.4(21) -25(22) -67.5(44)

Table 9.12: Comparison of results between 400 and 800 configu-
rations.

# of configurations ReA0(×10−8) ReA′
0(×10−8) ImA0(×10−12) ImA′

0(×10−12)

400 27.2(72) 36.5(20) -17(17) -52.2(46)
800 36.0(78) 42.3(20) -21(21) -66.1(43)

and mπ = 422 MeV:

ReA0 = 3.80(82) × 10−7GeV (9.15)

ImA0 = −2.5(2.2) × 10−11GeV. (9.16)

These complete results can be compared with those obtained when the disconnected

graphs are neglected given in Tab. 9.11 and the experimental value for

ReA0 = 3.3201(14) × 10−7 GeV. As in the case of ReA2, the larger value obtained

in this calculation is likely the result of the unphysically heavy kaon and pion.

9.3 Discussion and Conclusions

Comparing the results of ReA2 in Tab. 9.7 and ReA0 in Tab. 9.11, the ∆I = 1/2

enhancement ratio ReA0/ReA2 is found to be roughly 7-9. This comparison is

degraded by the threshold kinematics which, since the I = 0 and I = 2 two-pion

states have different energies in a finite volume, causes this calculation to use a

different kaon mass in the calculations of A2 and A0 in order to have energy

conserving decays in each case. These two energy conserving amplitudes have a

ratio of 38.0/4.911 = 7.7, while if energy conservation is ignored and the same m
(1)
K

value for kaon mass are used, the ratio becomes 45.0/4.911 = 9.2. Of course, both
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estimates are far from the experimental ratio of 22.5 suggesting that the 422 MeV

pion mass, 736 and 877 MeV kaon masses and small lattice volume are far from

physical.

For completeness, the measure of direct CP violation ǫ′/ǫ defined in Eq. (2.22) is

evaluated. Using the threshold kinematics, the kaon mass m
(1)
K and substituting the

experimental value for ǫ, the result is Re(ǫ′/ǫ) = (2.7± 2.6) × 10−3. If the

experimental value of ω = ReA2/ReA0 is used instead, the result is

Re(ǫ′/ǫ) = (1.11 ± 0.91) × 10−3.

This calculation is sufficiently far from physical kinematics that it is not

appropriate to compare these results with experiment.1 Instead, the objective of

this calculation is to show how well the method performs. ReA0, the key element

needed to explain the ∆I = 1/2 rule, has been calculated successfully, with a 25%

statistical error. Table 9.12 compares the results for ReA0 obtained on a

sub-sample of 400 and all 800 configurations and shows that the statistical errors on

the quantities measured scale approximately as 1/
√
N . Therefore, we believe that

the non-zero signal for ReA0 is real and that this statistical error could be reduced

to 10 percent by quadrupling the size of our sample to 3200 configurations. It is

interesting to note the results for primed (disconnected graphs omitted) and

unprimed (all graphs included) quantities contributing to ReA0 have similar values

suggesting that the disconnected graphs, while contributing significantly to the

statistical error, have an effect on the final result for ReA0 at or below 25%.

In contrast, the result for ImA0 has an 80% error. Thus, it is not clear whether the

size of the result will survive a quadrupling of the sample with its statistical error

reducing to a 40% error or whether the result itself will shrink, remaining

statistically consistent with zero. Considering the substantial systematic errors

associated with the small volume and the fact that the kinematics are far from the

physical, this trial calculation is presented as a guideline for future work and a

proof of method rather than giving accurate numbers to compare with experiment.

1A further unphysical aspect of these kinematics is the inequality of the strange quark mass used
in the fermion determinant and the self contractions appearing in the eye graphs (ms = 0.032) and
strange quark masses used in the valence propagator of the K meson (ms = 0.066, 0.99 and 0.165).
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From the observation of the around-the-world effect, the conclusion is that it is

important to use the average of quark propagators obeying periodic and

anti-periodic boundary conditions to extend the lattice size in the time direction. In

addition, explicit subtraction of the divergent mixing term sγ5d is necessary even

for kinematics which are literally energy conserving because the around-the-world

path and possibly other excited state matrix elements are far off shell and can be

substantially enhanced by such a divergent contribution. Finally, future work

should be done using a much larger lattice which can contain two pions without any

worry about finite size effects.

The focus of this chapter is on developing techniques capable of yielding

statistically meaningful results from the challenging lattice correlation functions

involved in the amplitude A0. However, there are other important problems that

will also require careful attention if physically meaningful results are to be obtained

for this amplitude with an accuracy of better than 20%. Two important issues are

associated with operator mixing. As discussed in Chapter 5.2, a proper treatment

of the non-perturbative renormalisation of the four independent (8, 1) four-quark

operators requires that additional operators containing gluonic variables (some of

which are not gauge invariant) be included. While including such operators is in

principle possible and the subject of active research, controlling such mixing using

RI/MOM methods offers significant challenges.

A second problem is operator mixing induced by the residual chiral symmetry

breaking of the DWF formulation. The mixing of such wrong-chirality operators

should be suppressed by a factor of order mres. However, the K → ππ matrix

elements of the important (8, 1) four-quark operators are themselves suppressed by

at least one power of m2
K , a suppression that is absent from similar matrix elements

of the induced, wrong-chirality operators. Therefore, such mixing has been ignored

in this study because its effect on the matrix elements of interest are expected to be

of order mres/ms ≈ 0.08, suggesting that these effects will be smaller than the 25%

statistical errors. To perform a more accurate calculation in the future, these

mixing effects may be further suppressed by adopting a gauge action with smaller

residual chiral symmetry breaking. For example, this ratio reduces to 0.04 for the

139



IDSDR gauge action used in Chapter 8 and to 0.023 for those ensembles with the

smallest lattice spacing created to date using the Iwasaki gauge action [51]. When

greater accuracy is required either an improved fermion action, larger Ls or explicit

subtraction of wrong-chirality mixing must be employed.

As lattice calculations move closer to the physical pion mass a further important

difficulty must be overcome: giving physical relative momentum to the two pions.

This can be accomplished while keeping the two-pion state in which we are

interested as the ground state, if the kaon is given non-zero spatial momentum

relative to the lattice. In this case the lowest energy final state can be arranged to

have one pion at rest while the other pion carries the kaon momentum, as in the

∆I = 3/2 calculation of Ref. [75]. However, this requires the momentum carried by

the initial kaon and final pion to be 739 MeV, which is 5.4 times larger than the

physical pion mass. Such a large spatial momentum will likely make the calculation

extremely noisy. For the ∆I = 3/2 calculation, it is possible to use anti-periodic

boundary conditions in one or more spatial directions for one of the light quarks so

that each pion necessarily carries the physical, 206MeV momentum present in the

actual decay while the kaon can be at rest [8, 76]. This is the strategy which was

adopted in the previous chapter. However, this approach cannot be used in the case

of the I = 0 final state being studied in this chapter. Instead, the use of G-parity

boundary conditions [77] may be the solution to this problem.
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Figure 9.4: ∆I = 3/2 K → ππ correlation functions with ams =
0.099. The fit regions are 5-7 for ∆ = 12 and 5-11 for ∆ = 16.
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Figure 9.5: K → ππ correlation functions with ∆ = 16 and
ams = 0.066 with current-current operators.

0 5 10 15
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

9

t

 

 

Q
3

Q′
3

(a) C0,3(t, 16)

0 5 10 15
−0.5

0

0.5

1

1.5

2

2.5

3
x 10

9

t

 

 

Q
4

Q′
4

(b) C0,4(t, 16)

0 5 10 15
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

9

t

 

 

Q
5

Q′
5

(c) C0,5(t, 16)

0 5 10 15
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

9

t

 

 

Q
6

Q′
6

(d) C0,6(t, 16)

Figure 9.6: K → ππ correlation functions with ∆ = 16 and
ams = 0.066 with QCD-penguin operators.
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Figure 9.7: K → ππ correlation functions with ∆ = 16, ams =
0.066, and electroweak-penguin operators. Triangles indicate all
four types of contraction are included, while crosses indicate that
type4 diagrams have been omitted.
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Figure 9.8: Terms contributing to C0,2(t, 16).

144



0 5 10 15
−0.5

0

0.5

1

1.5

2

2.5

3
x 10

10

t

 

 

type3
α

3
*mix3

sub3

(a) C0,6(t, 16) type3, subtraction of divergent
term

0 5 10 15

−2

−1.5

−1

−0.5

0

x 10
14

t

 

 

type4
α

6
 × mix4

sub4

(b) C0,6(t, 16) type4, subtraction of divergent
term

0 5 10 15
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

10

t

 

 

type1 type2 sub3 sub4

(c) Contributions to C0,6(t, 16)

Figure 9.9: Terms contributing to C0,6(t, 16).
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Figure 9.10: Leading around the world diagrams for type1 K →
ππ decays.
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Chapter 10

Conclusions

This final chapter draws together the main conclusions from chapters 8 and 9.

In chapter 9, a first direct calculation of ReA0 was made, albeit at unphysical

kinematics. The result, obtained at threshold and with a pion mass of ∼ 420 MeV is

ReA0 = 3.80(82)× 10−7 GeV. The imaginary part of the ∆I = 1/2 decay amplitude

was found to be ImA0 = −2.5(2.2) × 10−11 GeV. It has been demonstrated that it

is possible to successfully evaluate the real part of the ∆I = 1/2 decay amplitude.

The unphysical kinematics mean, however, that it is not meaningful to compare

this result with experiment. Improved statistical techniques, such as those proposed

in [78] are needed in order to evaluate the imaginary part of ImA0 successfully.

Further advancements, such as G-parity boundary conditions, must still be made

before a calculation of A0 may be made at physical kinematics.

The main result of this thesis was presented in chapter 8, where the ∆I = 3/2

decay amplitude was evaluated at nearly-physical kinematics. All aspects of this

calculation, including the operator renormalisation, finite volume corrections using

the Lellouch-Lüscher and the momentum of the final-state pions is understood, and

a full account of the remaining systematic errors was given. This calculation

representes a major breakthrough. It is the first time that a direct determination of
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ImA2 had been made. The final result, evaluated at the simulated quark masses, is

ReA2 = 1.381(46)stat(258)syst 10
−8 GeV, ImA2 = −6.54(46)stat(120) syst10

−13 GeV .

(10.1)

With further advances in super-computing capabilities and continued research into

G-parity boundary conditions, it should soon be possible to make a calculation of

A0 with a similar degree of precision and control over systematic uncertainties.
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Appendix A

Expressions for K → ππ

contractions

A.1 K+ → π+π+ Contractions

D+
Lχ,1 =

〈

Tr
{

γ5S
s(~xop, top; tK)† γLS

l
cos(~xop, top; tπ)S

l
W (tK ; tπ)

†
}

×

Tr
{

Sl(~xoptop; tπ)
†γ5γχS

l
cos(~xop, top; tπ)

}〉

(A.1)

D+
Lχ,2 =

〈

Tr
{

γ5S
s(~xop, top; tK)† γLS

l
cos(~xop, top; tπ)S

l
W (tK ; tπ)

† γ5γχ×

Sl
cos(~xop, top; tπ) S

l(~xoptop; tπ)
†
}〉

(A.2)

D̃+
LR,1 =

〈

Trc

{

Trs

[

γLS
l
cos(~xop, top; tπ)S

l
W (tK ; tπ)

†γ5S
s(~xop, top; tK)†γ5

]

×

Trs

[

Sl
cos(~xop, top; tπ) S

l(~xoptop; tπ)
†γ5γR

]}〉

(A.3)

D̃+
LR,2 =

〈

Trs

{

Trc

[

γLS
l
cos(~xop, top; tπ)S

l(~xoptop; tπ)
† γ5

]

Trc

[

γR Sl
cos(~xop, top; tπ)S

l
W (tK ; tπ)

†γ5S
s(~xop, top; tK)†γ5

]}〉

(A.4)
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A.2 K0 → ππ Contractions

DLL,1,DLR,1 = ±
〈

Tr
{

γµ(1− γ5)S
l(~xop, top; tπ)S

l(~xop, top; tπ)
†
}

×

Tr
{

γµ(1∓ γ5)S
l(~xop, top; tπ)γ

5Sl
W (tπ; tK)Ss(~xop, top; tK)†

}〉

(A.5)

D̃LL,1, D̃LR,1 = ±
〈

Trc

{

Trs

[

γµ(1− γ5)S
l(~xop, top; tπ)γ5S

l
W (tπ; tK)Ss(~xop, top; tK)†

]

×

Trs

[

Sl(~xop, top; tπ)S
l(~xop, top; tπ)

†γµ(1∓ γ5)
]}〉

(A.6)

DLL,2,DLR,2 = ±
〈

Tr
{

γµ(1− γ5)S
l(~xop, top; tπ)S

l(~xop, top; tπ)
†γµ(1∓ γ5)S

l(~xop, top; tπ)

γ5S
l
W (tπ; tK)Ss(~xop, top; tK)†

}〉

(A.7)

D̃LL,2, D̃LR,2 = ±
〈

Trs

{

Trc

[

Sl(~xop, top; tπ)S
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Appendix B

Quotient Plots for ∆I = 3/2

K → ππ Matrix Elements

The quotient defined in Eq. (8.4) is plotted for tK − tππ = 20, 28 and 32. These

plots are intended to supplement those shown in Fig. 8.4.
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Figure B.1: The ratios defined in Eq. (8.4) for p =
√
2π/L. The

two-pion source is at t = 0 while the kaon source is at tK = 20.
The dashed line shows the error on the fit
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Figure B.2: The ratios defined in Eq. (8.4) for p =
√
2π/L. The

two-pion source is at t = 0 while the kaon source is at tK = 28.
The dashed line shows the error on the fit
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Figure B.3: The ratios defined in Eq. (8.4) for p =
√
2π/L. The

two-pion source is at t = 0 while the kaon source is at tK = 32.
The dashed line shows the error on the fit
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