HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk



http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON
FACULTY OF PHYSICAL AND APPLIED SCIENCES

School of Physics and Astronomy

Southampton High Energy Physics Group

The Evaluation of K — 7w Decay
Amplitudes from Lattice Quantum
Chromodynamics

by

Elaine Jennifer Goode

Presented for the degree of

Doctor of Philosophy

July 2012






UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

School of Physics and Astronomy

DOCTOR OF PHILOSOPHY

THE EVALUATION OF K — mm DECAY AMPLITUDES FROM LATTICE
QUANTUM CHROMODYNAMICS

by Elaine Jennifer Goode

We present results for the AI = 3/2 K — 7w decay amplitude computed using
lattice quantum chromodynamics. The calculation is performed using 2 + 1 flavours
of domain wall fermion and the Iwasaki gauge action modified by the dislocation
suppressing determinant ratio, on a lattice volume of 323 x 64 x 32 at lattice spacing
a~! = 1.364 GeV. The resulting valence pion mass is m, = 142.11 MeV, and the kaon
mass is mg = 505.5 MeV. A total of 146 configurations are analysed, giving ReAy =
1.381(46)stat (258)syst X 1078 GeV and ImAy = —6.54(46)stat (120)syst x 1078 GeV.
The experimental results for ReAy and ReAy and €' /e are combined with this lattice

result for ImAs to give ImAg/ReAy = —1.61(28) x 1074

We also present reslts from a second calculation where both the AI = 1/2 and
Al = 3/2 K — 7 decay amplitudes are calculated. This calculation is performed
using 2 + 1 flavours of domain wall fermions with the Iwasaki gauge action and a
lattice size of 163 x 32 x 16. Since the evaluation of Ay is technically challenging,
this first ever determination of Ay is performed at threshold with a heavy pion mass
of my ~ 420 MeV. The results are Re(Ag) = 3.80(82) x 1077 GeV and Im(Ag) =
—2.5(2.2) x 10711 GeV.
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Chapter 1

Introduction

A quantitative understanding of the origin of CP-violation, both within and beyond
the Standard Model, remains one of the principal goals of particle physics research.
It was in 1964 that indirect CP-violation in K — 7w decays was first

discovered [11], demonstrating that the neutral kaon mass eigenstates were not CP
eigenstates. More than twenty years after this discovery, direct CP-violation was
observed in neutral kaon decays [12, 13, 14, 15|, where the CP-odd eigenstate of a

neutral kaon can decay to a two-pion state, which is CP-even.

Direct CP violation is characterised by the parameter Re(e’/e), which will be
defined in Chapter 2. While forty years of experimental effort have produced the
measured result Re(e’/e) = 1.65(26) x 1073 [3], with only a 16% error, there is no

reliable theoretical calculation of this quantity based on the Standard Model.

The Cabibbo-Kobayashi-Maskawa (CKM) theory for the weak interactions of the
quarks, when combined with QCD, provides a framework describing in complete
detail all the properties and interactions of the six quarks. This framework appears
capable of explaining all observed phenomena in which these quarks participate.
However, to date, the non-perturbative character of low energy QCD has obscured
many of the consequences of the CKM theory. In particular, both the direct CP
violation seen in K meson decays and the factor of 22.5 enhancement of the I = 0,
K — w7 decay amplitude Ay relative to the I = 2 amplitude Ay (the AT =1/2

rule) lack a quantitative explanation.



Calculations of the K — mm decay amplitudes are usually studied in the framework
of a low-energy effective theory, where the Hamiltonian is written in terms of local
low-energy operators, and the high energy effects of the W-boson and heavy quarks
are encoded in Wilson coefficients which can be calculated in perturbation theory.
Wilson coefficients evaluated at a QCD scale of about 2 GeV represent the short
distance physics and can be evaluated from the CKM theory using QCD and
electro-weak perturbation theory. However, these factors explain only a factor of
two enhancement of the I = 0 amplitude [16, 17]. The remaining enhancement must

arise from the hadronic matrix elements which require non-perturbative treatment.

Direct CP violation in kaon decays provides a critical test of the Standard Model’s
CKM mechanism of CP violation. Lattice QCD provides the opportunity of
computing the non-perturbative QCD effects in general and in hadronic
CP-violating processes in particular. A direct lattice calculation of K — 7w decay
is extremely important to provide an explanation for the AT = 1/2 rule and to test
the standard model of CP violation from first principles. A previous lattice QCD
calculation using 241 dynamical domain wall fermions failed to give a conclusive
result because of the large systematic errors associated with the use of chiral
perturbation theory at the scale of the kaon mass [18]. However, there are on-going
efforts using chiral perturbation theory [19]. Earlier quenched results [20, 21] are
subject to this same difficulty together with uncontrolled uncertainties associated

with quenching [22, 23, 24].

Major progress has been made in this thesis by peforming a calculation at
nearly-physical kinematics of the (complex) decay amplitude As, corresponding to
the decay in which the two-pion final state has isospin 2. This represents the first
realistic ab initio calculation of a weak hadronic decay in Lattice QCD and forms
the main result of this thesis. The lattice ensemble on which this calculation is
performed is referred to in the Table of Contents and List of Figures as the IDSDR

lattices.

The evaluation of the isospin= 0 amplitude is an unusually difficult calculation

because a contribution from the vacuum obscures the K — 7w signal. The K — 7



signal decays exponentially in Euclidean time while the vacuum contribution is
constant in time. Consequently, extracting the K — 7w signal from the noisy
background vacuum contribution requires the collection of large statistics. However,
with the continuing increase of available computing power and the development of

improved algorithms, calculations of this kind are now no longer out of reach.

This thesis takes a major step towards the computation of the physical I =0

K — 7 amplitudes by performing a complete calculation at unphysical kinematics
with pions of mass 422 MeV at rest in the kaon rest frame. With this simplification
it has been possible to resolve ReAq from zero for the first time, with a 25%
statistical error. Methods for computing the complete, complex amplitude Ag, a
calculation central to understanding the A = 1/2 rule and testing the standard
model of CP violation in the kaon system, have also been developed. The lattices
on which this calculation is performed are referred to in the Table of Contents and

List of Figures as the 163 Iwasaki lattices.

The format for the rest of this thesis is as follows. In Chapter 2 an introduction to
kaon phenomenology and CP violation within the Standard Model is given. This
chapter defines the conventions used throughout the remainder of the thesis for the
K — w7 decay amplitudes and CP violating parameters ¢ and e. Chapter 3
establishes the theoretical framework for the calculation of the K — mmw decay in
terms of the operator product expansion. The basis of operators used in the
calculation is made explicit and a description of how the high-energy contributions
are included in the form of Wilson coefficients is given. An introduction to Lattice
QCD is presented in Chapter 4, and the calculation of the renormalisation
constants which relate the bare operators used in the lattice calculation to suitably
renormalised operators is given in Chapter 5. The lattice evaluation of K — 77
decays must necessarily take place in a finite volume. A detailed description of how
to account for this finite volume in the case of a two-pion final state is given in
Chapter 6. Technical details relating to the lattice calculation of K — 77 decays in
general are given in Chapter 7. The main work of this thesis, a calculation of A at
nearly-physical kinematics, is presented in Chapter 8. Chapter 9 includes the

results from the first ever calculation of Ag, albeit at unphysical kinematics. In the



final chapter the conclusions from Chapters 8 and 9 are drawn together.



Chapter 2

Kaon Phenomenology and CP

Violation

This chapter begins with an introduction to the phenomenology of K — 7wm decays
and a definition of the conventions that will be used throughout the remainder of
the thesis. The chapter then goes on to discuss CP violation in neutral kaon decays,

before parameterising the CP violation in terms of K — 77 decay amplitudes.

2.1 Phenomenology

Single pions have isospin I = 1, with the third component of isospin, I, = 1,0, —1
for 71, 70 and 7~ respectively. A state containing two pions may then have isospin
I =0,1or 2. In the decays of K — 7m, the two final state pions are in an [ = 0
state. In order to obtain a symmetric state the total isospin must therefore be even.
This restricts the pions to be in a state with I =0 or I = 2. Since kaons, which
contain one s-quark and one light quark have isospin I = 1/2, transitions to an

I =0, 2 final state are referred to as AI = 1/2 and AT = 3/2 respectively.

The K — nw decay amplitudes with isospin I and third component of isospin I, are

defined as follows:

Ar =V2{(rm)] _o|L|K°), (2.1)



where the two-pion states of definite isospin are

(=

i) = () + )

rmiZ) = e {lr) 2l )
and

it = {lrt) [+ ).

(2.2a)
(2.2b)

(2.2¢)

(2.2d)

In order to establish the conventions used throughout this calculation, the K — 7w

decay widths, which are measured experimentally, are written in terms of the

following decay amplitudes:

AK+—>7r+7r0 = A+0 = <7T+(p)7'('0(—p)‘ 'CW ‘K+>
AKS—>7r+7r* = AJr* = <7T+(p)7T7(_p)‘ Lw |KS>

AKS—>7r07r0 = AOO = <7T0(p)7T0(—p)‘ Lw |KS> .

In terms of these amplitudes, the corresponding decay widths are

F+O = D)
mK+
2 2
P _ 1 ’A‘F_‘ mKS 2
+- = 8_ 2 T mﬂ+
T M, 4

1 |Agol? Mk
Loo = —% —=5 _ mfro-
167 M 4

I e e R e
g +0

(2.3a)
(2.3b)

(2.3c)

(2.4a)

(2.4Db)

(2.4c)

The amplitudes in Eq. (2.3) can then be parametrised in terms of Ag and Ay as



follows:

Final state interactions of the two pions introduce the 77 phase shifts d; as
described by Watson’s Theorem [25]. This follows from the unitarity of the
scattering operator, which is used to provide a constraint for the transition operator

T, where T is defined by S = 1 — ¢T". Matrix elements of 7" must obey

i((fIT]8) = GIT1F)") =Y (nlTLf)" (nlTi) - (2.6)
n
In the special case of K — 7w followed by a strong final-state interaction of the two
pions, i = K and n = f = ww. If the weak and strong matrix elements are denoted

|Tyw [¢°W and |Ts|es it follows from time-reversal invariance that oy = dg

In the presence of isospin violation, a Al = 5/2 contribution will distinguish
between the amplitudes Ay and A;r entering in the K° and K+ decays respectively.
There are two sources of isospin breaking in the Standard Model. These are strong
isospin breaking due to m,, # mg and electromagnetic corrections. Electromagnetic
isospin breaking has I = 0, 1,2 components, while to O(m, — my), strong isospin
breaking is purely I = 1. Thus a AI =5/2 K — mr transition can arise from either
a AT = 3/2 transition combined with strong isospin breaking effects, or a AI = 1/2
transition followed by the I = 2 component of the electromagnetic interaction. In
Eqns. 2.7 and 2.8 we will see that the Al = 1/2 transition is enhanced compared to
the AI = 3/2 transition, so the dominant Al = 5/2 effect is expected to arise from
electromagnetic isospin breaking [26]. However, if isospin breaking effects are
ignored then within the Standard Model we have Al = Ay. This is the assumption
made throughout this thesis. The effects of isospin breaking in K — 77 decays and

in two-pion scattering have been investigated in several publications, including



Table 2.1: Parameters used to evaluate Ay and Ao

M+ 493.667 4 0.016 MeV
M 0 497.614 4 0.024 MeV
Myt 139.57018 =+ 0.00035 MeV
M0 134.9766 + 0.0006 MeV
TK, (0.89530 + 0.0005) x 10710 s
TR+ (1.2380 4 0.0021) x 1078 s

Br(K° — 7970) (30.69 £ 0.05)%

Br(K° — 7t77) (69.20 £ 0.05)%

Br(K+ — ntn0) (20.66 & 0.08)%

['(Ks — 707%) | (2.2563 4 39) x 107!2 MeV

['(Kg—mrn~) | (5.0875+£46) x 10712 MeV

(Kt — 7t70%) | (1.0984 £90) x 10~1* MeV

5o — o 47.7°

Refs. [26],[27],[28] and [29).

The pion and kaon masses and the kaon decay widths and branching ratios are
known experimentally [3]. The relevant branching ratios and meson masses are
listed in Tab. 2.1, and using these numbers the experimental decay amplitudes are

found to be

|Ag| ~ ReAg = 3.3197(14) x 107" GeV

(2.7)
|Ag| ~ ReAy = 1.570(53) x 10 8GeV
from neutral kaon decays, and
ReAq = 3.3201(14) x 107 "GeV
(2.8)

ReAy = 1.4787(31) x 1078GeV

where As is taken from charged kaon decays.

From Eq. (2.8) the ratio ReAg/ReAy = 22.45. Although the kaon decays via the
W-boson, a calculation which fully takes into accout the QCD corrections is
necessary in order to fully understand this enhancement of the AI = 1/2 transition,

commonly referred to as the AI =1/2 rule.

In the following section CP violation in the neutral kaon sector is discussed. In
chapter 2.3 it will become clear that the isospin amplitudes Ag and As feature in

the description of CP-violation within the neutral kaon sector.



2.2 Mass matrix phenomenology in the neutral kaon

system

The subject of CP violation in the neutral kaon sector is related to the mixing
between the K and K. In describing the mixing of neutral kaons, it is convenient

to write the neutral kaon system in terms of a two-component column vector

l(t)) = alt) =a(t) |K°) +b(t) |K?). (2.9)
b(t)

The time development is described in terms of the hamiltonian H

d
i () = H1b(0),

where H is non hermitian in order to allow for kaon decays. If H were hermitian
the above equation would only describe mixing in the K° — K system. It is
possible to write H in terms of two hermitian matrices, H = M — zg The diagonal
elements of M and I are associated with flavour conserving transitions, while the
off-diagonal elements describe mixing between the K9 and K° states. Since M and
I" are hermitian, it must be the case that M7, = Ms; and I']y = I'g;. The diagonal

elements of H are equal by CPT invariance, leading to the general form

M —iz = : (2.10)

The states ‘KO> and ‘KO> are related by the operation CP ‘K0> = ¢ {f(0>,
CpP ‘R’O> =% |K0> . In this thesis the CP phase & is chosen such that
CP ‘K0> =— |I_(0>. The CP eigenstates K are then

1

KL) = 25 (1K) %K), @1



with

CP|KY)=+|KY). (2.12)

Experimentally it is observed that kaon decays are not CP invariant, and so the
mass eigenstates of the Hamiltonian, denoted K and Kg, are not the CP
eigenstates. The parameter € is introduced in order to include this CP-violation in
the formalism. The mass eigenstates can then be expressed in terms of the CP

eigenstates as follows:

‘K§> = % (|KL) +e|KD)). (2.13)
L+ e

The names Kj,, Kg are clear if one considers the phase space available for the
decays. In the limit of CP conservation, |Kg) — |K{) and |Kp) — |K"). The Kg
would decay to a CP—even final state such as 7w and K, would decay to CP—odd

final state such as wwmw. At my, the two-pion phase space is much larger than the

three-pion phase space, so the Kg has a much shorter lifetime than K7,.

The eigenvalues of H are given by Ay = My —il'11/2 & pq, with

Mz —iT13/2
p_ M= ily/2 (2.14)
q /M, —il'7,)/2

The difference in eigenvalues is

2pq = (mL — ms) — i/Q(FL — Fs)

; 1/2 ; 1/2
=2 <M12 - §F12> <M1*2 ~5 T2> .

In the limit where CP violation is small, the approximation 2pq ~ 2ReM;5 — iRel'1o

(2.15)

is valid, resulting in the following relations:

my, — mg ~ 2ReMis (2.16a)

FL — FS >~ 2R6F12. (216b)
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Using these relations along with the property that M and I' are hermitian, € can be

expressed as follows:

p 1+€
L 2.17
q 1-—¢€ (2.172)
c_P—q_ i ImMyp — $ImIy 1My — My — $(T12 — Tyy) (2.17b)
p+q 2ReMpp—LiRels 2 mp—ms— 5T —Ts) '

The Kj — Kg mass difference and decay widths are measured experimentally and
found to be my —mg = (3.483 £ 0.006) x 1072 MeV and

ks — Tig = (7.339 £ 0.004) x 10712 MeV, which leads to the numerical result

S

AM/AT = 0.4749 £ 0.0009 =~ 1/2. Making this approximation in Eq. (2.17b), an

alternative expression for € is obtained:

(2.18)

€~

6i7r/4 (Ilig ImAO >

V2 Am ReAy

2.3 CP Violation in Neutral Kaon Systems

There are three types of CP violation in neutral meson decays: CP violation during
the decay (type 1), CP violation in mixing (type 2) and CP violation in the
interference between mixing and decay (type 3). In the previous section the
mixture of CP eigenstates generated by the K — K mixing was described, which
provides one souce of CP violation in K decays. However, the possibility of direct
CP violation, where a CP-odd kaon eigenstate decays directly to 7 is also present.
If such direct CP violation occurs, the K — 7 isospin amplitudes defined in

Eq. (2.5), are complex valued: A; = |A;|e®®’. The phases &; characterise the CP

violation in the decay.
It is standard to define the following measures of CP violation:

(rtn~ |Hw|Kp)
(rtm~|Hw|Ks)

=n,_=e+¢€, ] =100 = € — 2¢ (2.19)
S

where € = € + ilmAg/ReA( parametrises indirect CP violation while

Age92=%) /ITmA, ImA
6,: Re 92€ <m 2 m 0> (2‘20)

\/iReAO RGAQ B ReAO
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parametrises direct CP violation. In particular Re(e) measures CP violation in
mixing, Re(€¢’) measures CP violation in decay, and Im(e) and Im(e") measure type3

CP violation.

It is conventional to use Eq. (2.18) to write a formula for € as follows:

_ ImAO 6i7r/4 ImM12 ImAO ImAO

€E=€+1 ~ —1 +1
ReAgq V2 Am ReAg ReAg

6i7r/4 ImM12 4 ZImAO

\/5 2R6M12 ReAO ’

(2.21)

where the phase convention is the same as in Ref. [1].

This leads to the well known formula for Re(€’/e):

e w ImA, ImA
Re(—) = — 2.22
e<€> \/5‘5‘ (RGAQ ReA0> ’ ( )

where w = Re(Ag)/Re(Ap). Experimental values for the CP violating parameters

can be found in [3]:

/
Re <5> = (1.65 £ 0.26) x 1072 and |e| = (2.228 +0.011) x 107>,
€

2.4 The CKM Matrix

Electroweak interactions are included within the Standard Model in the form of a
local SU(2);, ® U(1)y gauge symmetry which is spontaneously broken by the Higgs
mechanism to a U(1)g symmetry, where Y and @ refer to the hypercharge and

electric charge generators respectively.

The left-handed quarks and leptons transform as SU(2), doublets

(2.23)
e no T
L L L
U c t
(2.24)
d s’ b
L L L

12



while the right-handed fields, eg, ug, Tr, uR, dy, transform as SU(2), singlets. The
primes on the down-type quarks indicate that the weak eigenstates (d', s',b') are
not the same as the mass eigenstates (d, s,b). The two are related by the unitary

Cabibo-Kobayashi-Maskawa (CKM) matrix [30]:

dl Vud Vus Vub d
s 1= Vea Ves Vap s |- (2.25)
v Via Vis Vi b

The CKM matrix is parametrised by three Euler angles and one phase. The

standard parametrisation of the CKM matrix is

i6
C12€13 $12€13 s13€"
Verm = | —s12¢23 — c1a503513€" C12C23 — S12823813  $23C13 (2.26)
_ s _ i6
$12823 — C12€23S73 C12823 — $12€23513€"°  €23C13

If 6 # 0 or 7 then the CKM matrix is complex, which leads to CP violation in the

Standard Model.
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Chapter 3

Weak Hamiltonian and Operator

Basis

3.1 Operator Product Expansion

The energy binding the quarks in hadrons is typically O(Aqcp), where the scale
Aqcp ~ 200 MeV. This is much lower than the scale of the weak interactions,
which take place at energies of O(Myy ). Perturbation theory is not valid at energies
O(Aqcp), so to make progress when calculating hadronic decays it is helpful to
construct a low energy effective theory describing the weak decay of the quarks. The

operator product expansion provides the appropriate theoretical framework for this.

The operator product expansion allows the product of two charged currents to be
expanded into a series of local effective operators, whose contributions are weighted
by Wilson coefficients. In this effective theory the W-boson is integrated out, and
the effects of the short-range force mediated by the W-boson are approximated by a
point interaction. Similarly, loop effects due to the Z-boson and heavy quarks can
also be integrated out, until a theory containing f light quarks remains. The high
energy effects of the W boson, Z boson, and heavy quarks are included in the
Wilson coefficients, while the low energy non-perturbative physics is encoded in

matrix elements of the effective operators.
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In the calculation of K — 77 matrix elements a 3-flavour effective theory is
adopted, where only the u, d, and s quarks are included in the local operators. The

perturbative calculation of the Wilson coefficients is described in section 3.3.

3.2 Operator Basis

The AS =1 effective Hamiltonian can be written in a 3-flavour effective theory as

follows

Heff— \f Vi, uch (3.1)

and the K — ww decay amplitudes are evaluated in terms of matrix elements of this
effective Hamiltonian. The energy scale p provides the separation of scales between
the low energy physics encoded in the operators Q;(x) and the perturbative
corrections encoded in the Wilson coefficients C;j(u). The operators and Wilson
coefficients must be renormalised at the same scale (u) and in the same scheme, so
that the resulting Hamiltonian is independent of p. The conventional choice for the
evaluation of the Wilson coefficients is the MS-NDR scheme. There are ten

operators in the AS = 1 Hamiltonian. These are enumerated below, where
(@4j)v+a(@a)vea = (@™ (1 £7°)4))ap(@7" (1 £7°)4i)vs,

«, 3,7 and ¢ label the spinor indices and i and j label the colour indices. The sum

over repeated p indices is implicit.

_ _ _ 3, _
Q1= Giwy)v-a(@di)v-a Qs = (Sidi)v-a Y (Gg)v-a Q7= 5(5idi)v-a €q(qjq)v+a
q=u,d,s q=u,d,s
_ _ _ _ 3, _
Q2 = (S v-a(@yd))v-a Qu=(midj)v—a Y (Gg)v-a Qs= 5 (Bidj)v-a eq(qjqi)v+a
g=u,d,s q=u,d,s
_ 3, _
Qs = (Sidi)v—a Y (%gi)v+a Qo = 5 (Sidi)v-a eq(q;45)v-a
q=u,d,s q=u,d,s
_ _ 3, _
Qo= (Sidj)v-a Y (@Ga)via Qio= 5 (8idj)v-a eq(qjgi)v-a
q=u,d,s q=u,d,s
(3.2)

The operators (02, 3, @5, Q7 and Qg are colour diagonal, while the remaining

operators are referred to as colour mixed. Operators ()1 and ()9 are current-current
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operators arising from the interactions depicted in Fig. 3.1, Qs, ..., Qg arise from
QCD-penguin diagrams illustrated in Fig. 3.2(a) and Q7,..., Q1o arise from

electroweak penguin diagrams illustrated in Fig. 3.2(b).

All ten operators contribute to the AI = 1/2 K — 7w amplitude. A simplification
can be made in the case of the AT = 3/2 calculation, where the AT = 3/2 effective
Hamiltonian can be written in terms of just three operators. These operators are

classified by their transformation properties under SU(3);, x SU(3)r symmetry:

Q?Q/;l) = (Sidi)v—a(tju; — djdj)v_a + (Siui)v—a(tjd;)v_a
QY = Gidi)voaliyu; — didj)vea + (Gou)v-a(@id)yea  (33)

Q?8/28)mx = (Sidj)v—a(uju; — djd;) vy a + (Siuj)v—a(i;di)via.

The effective Hamiltonian for the AT = 3/2 transition is

1=3/2
Heff / \/— Vis UdZC
3/2 (3.4)

o % 3/2 3/2 3/2 3/2 3/2 3/2
—EVMVU [ 271)Q(271 (SS)Q +C88me(88)mx]'

The Wilson coefficients for the three AI = 3/2 operators are related to the Wilson

coefficients in the full 10-operator basis as follows:

32 (C1+Cs)  (Cg+ Cho)
Claryy = 3 + 5 (3.5)
32 _ O7
58 = 3 (3.6)
32 _ Cg
(BSmx = 5 ° (3.7)
This is clear if one considers the full decomposition of the operators Q1,..., Q1 in

terms of operators with definite isospin and chirality, which can be found in

Appendix B of [20].
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Figure 3.1: Current-Current interaction generating Q1 and Q2.

(a) QCD penguin (b) Electroweak penguin

Figure 3.2: Penguin diagrams

3.2.1 The Chiral Basis

The ten operators enumerated in section 3.2 are not linearly independent. Three of

the operators can be eliminated with the following relations:

Qs =Q2+ Q3 — Q1
Qo = ;Ql - %Q?, (3.8)
Qo = %(Ql - Q3) + Qa.

The remaining seven operators can be recombined according to their transformation

properties under the chiral flavour-symmetry group SU(3);, x SU(3)g. This new
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basis of seven operators is known as the chiral basis:

Q) =3Q1 +2Q2 — Q3
Q= £(201 ~ 202+ Q)

Q= +(-3Q1 +3Q2+Q3) (39)
Q56 = Qs
Qrs = Qrs.

In this basis there is a single (27, 1) operator Q). The operators @ and Q§
transform according to the (8, 8) irreducible representation and the remaining
operators transform according to the (8,1) irreducible representation of

SU(3)L X SU(3)R.

3.2.2 Operators for K — ntx*

The operators of Eq. (3.3) all have I, = 1/2 and would be suitable to describe the
physical decay of KT — 779 for example. However, when As is to be evaluated at
close to physical kinematics, it is the K — 777" matrix element that is
computed. The advantages of computing the K™ — 77T matrix element are
explained in detail in Chapter 7.1, and are related to the mechanism used for giving

the final-state pions momentum. Using the Wigner-Eckart theorem, the

(™| QL::B’?{?Z |K) matrix element is related to the (70| QL::?’{?Q |KT) matrix
element via a Clebsch-Gordan coefficient:
+.01 )I=3/2 | 7+\ _ V3 i ) =32 | et
(ntm ‘QIZ:1/2 ‘K )= 972 (mtm ‘lezs/z ‘K ) (3.10)

where we have used <7T+7T0‘ QI:3/2 |KT) =

- 1=3/2
I.=1/2 <(7T7T)i:21‘ Q / |KT), and the

1
E I.=1/2
(n 70| state is not symmetrised.
By applying the isospin raising operator to the operators of Eq. (3.3) an expression

for AI =3/2, AI, = 3/2 operators can be found:

Q1247 = —V3(5Tpad) (AT 4d), (3.11)
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where I'), » = 7,(1 F 75). The convention is that « annihilates an up-quark and @
creates an up-quark. Similarly d annihilates a down quark and d creates a

down-quark. The raising operator transforms u to —d and d to @.

The operators used in the lattice simulation are

Qi = Gidiv-a(@dvn, Qi) = (Sidi)v-a(ijdy)vea, (3.12)

Q/(?§/82> =(Sidj)v-a(U;di)via-

Specifically, (7| ijé% |Kt) = =3 (x| Q;.I:?’/Q |K) where Q;.I:?’ﬂ is one

of the operators defined in Eq. (3.12).

3.3 Wilson Coefficients

Expressions for the AS =1 Wilson Coefficients evaluated at My are given in
Eqns. (7.3) - (7.12) of [4]. The running of the Wilson coefficients from My, down to

scales below m, is described in [4] and summarised here.

At scales of O(Myy) the Wilson coefficients may be calculated using ordinary
perturbation theory. While ay is a valid expansion parameter down to scales

O(1 GeV), the presence of large logarithms «; log M3, /u? when p < My render
the perturbative expansion invalid at such low energies. These large logarithms can
be resummed using renormalisation group techniques. In the leading logarithm
approximation (LLA), all terms of O [ag(u) In (My/p)]" are resummed. This leads
to renormalisation group improved perturbation theory. The final result of this
section will be the evaluation of the Wilson Coefficient functions C;(u) at energies
O(1 GeV) at next-to-leading order in renormalisation group improved perturbation

theory.
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3.3.1 Renormalisation group evolution matrix

The renormalisation group equation for the Wilson Coefficient functions is

TG =+ (9)C (), (3.13)

dlnp

where v;(g) is the QCD anomalous dimension matrix

s(as) = véo)%:) + Y <%:)>2 (3.14)

9% (1)
A

and a,(p) =

Equation(3.13) has solution

—

C(n) = U, My )C(Myw) (3.15)

where the evolution matrix U is given by

g(m1) T2
7 (g7)
U(myi,mo) =T, exp/ g . 3.16
( ! 2) g g(mz2) /8(9/) ( )

The beta-function 3(g) is given at next-to-leading order in perturbation theory by

3 5

g g
51 (167'('2)2 )

B(g) = —bBo 162

(3.17)

where 3y = (11N —2f)/3 and 31 = (34N?/3 — 10N f/2 — 2Crf). Here N is the
number of colours, f is the number of active quark flavours and Cr = (N? —1)/2N.
The g-ordering operator T, orders functions of the coupling g such that the

coupling constants increase from right to left.

At next-to-leading order, the first two terms of Eq. (3.14) and Eq. (3.17) and are
kept and the evolution matrix can be written in terms of U, the evolution matrix
in the LLA, along with a next-to-leading order correction J:

as(m)

UGnm) = 1+ 228 ) g mya - 2

47

J). (3.18)
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Working in a basis where () is diagonal, the expression for U (1,m) is

*(0)/ o
U(O)(M,m) —V <|:Oés(m)]7 2 ) Vﬁl, (3.19)
D

where V diagonalises 7§O)T:

Ty = VOV (3.20)

A detailed description of how to calculate the matrix J is given in [4]. Equation
(3.18) is valid in the absence of electromagnetic interactions. However, since
operators Q7, ..., Q1o originate from electromagnetic-penguin interactions it is

necessary to modify Eq. (3.18) to include electromagnetic effects.

The perturbative expansion of the anomalous dimension matrix including QCD and
QED effects is given by Eq. (3.14) plus an additional term proportional to the
electromagnetic coupling a:

g% @) = %) + =L(6?), (3:21)

where I'(g?) has the expansion

g
D(g*) =7+ ol + (3.22)

(0)

The anomalous dimension matrices are calculated in [4], where expressions for s/,
ng), %(30) and ng) in the MS-NDR scheme can be found in Eq (6.25) 4+ Tab. XIV,

Eq (6.26) + Tab. XV, Tab. XVI, and Tab. XVII respectively.

In analogy with Eq. (3.18), where the NLO corrections were included in the matrix

J, the evolution matrix now gains an additional term proportional to a:

U(my, ma, ) = U(my, ma) + %R(ml,mg). (3.23)

The matrix R in Eq. (3.23) is analogous to the matrix J in Eq. (3.18). Full
expressions for R are given in Eqns. (7.23) - (7.28) of [4]. A notable feature is that

R contains a contribution of O(1) along with a contribution O(1/a;). Thus, in the
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power counting adopted in [4], the evolution matrix as written in Eq.(3.23) contains

terms of O(1), O(as), O(«a) and O(a/ay).

3.3.2 Matching Matrix

The Wilson coefficients of the ten operators in Eq. (3.2) are first evaluated at a scale
O(My) in a five-flavour effective theory. The evolution matrix in Eq. (3.23) can
then be used to calculate the Wilson coefficients at scales down to u &~ my, the mass
of the bottom-quark. In order to evaluate the Wilson coefficients at scales lower
than my, we can formulate a new effective theory for p < mj where the b-quark is
removed as an explicit degree of freedom. The Wilson coefficients in the four-flavour

theory are related to those in the five-flavour theory by a matching matriz M.

To establish the notation, let the matrix elements of the ten operators in Eq. (3.2),
written in vector form é and renormalised at the scale m, be related to the tree

level matrix elements <Q(O)>, by

(f)
(Grm)) = <1 o) ), %rgﬂ) (@0, 520

(f) (f)

where 7¢’’ and r¢’’ are matrices characterising the QCD and EM radiative

corrections.

In the general case of matching from an f-flavour theory to an (f — 1)-flavour

theory, the matching matrix M is calculated by imposing the condition

(Gsom) Crtm) = (Gpatm)) Cya(m) (3.25)

where m = my, m, is a flavour threshold. Using Eq. (3.24), it is then apparent that

<c§f(m)> - (1 + “j‘f;”)ars n %m) <¢§ff1(m)> (3.26)

where the matrices §r = /) — (/=1 are given in Eqns. (7.31)-(7.34) of [4]. Thus

the Wilson coefficients in an f-flavour theory at scale m are related to those in an
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(f — 1)-flavour theory (also at scale m) by

Cr1(m) = M(m)Cy(m) (3.27)
where
_ as(m) . @ o
M(m)=1+ pm ory + 471'6%' (3.28)

One result of a non-trivial matching matrix is the presence of discontinuities in the

Wilson coefficients.

3.3.3 Wilson Coefficients in a 3-flavour theory

At scales below m. the AS =1 effective Hamiltonian in Eq. (3.1) can be rewritten:

HGH(AS - 1) \/— us Udz ZZ +Ty2 ))Qi(u)v (329)

with
VieVia
Vtiks Vud

Numerical values for the Fermi constant G and the CKM matrix elements are

Gr =1, Vs = 0.2253, V,,g = 0.97429 and 7 = 0.0014606 — 0.00060408i. This
factorisation of the Wilson coefficients arises because there is no GIM mechanism in
the 3-flavour theory. The Wilson coefficients y;(x) and z;(p) and related by the

elements of the vector ¥(u) by

yi(p) = vi(p) — zi(p) (3.30)

where

() = Us(p, me) M (me)Us(me, my) M (my)Us (my, My ) C (M) (3.31)

and

&y

Z(p) = Us(p, me)Z(me). (3.32)
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The subscript f = 3,4,5 on the evolution matrices indicates the number of flavours
active in the effective theory. The Wilson coefficients are evaluated in the NDR
scheme at NLO in perturbation theory using Eqns. (3.30), (3.31) and (3.32). The
convention of [4] is to keep only the terms that are O(1), O(as), O(«), and
O(a/as) in the matrix multiplication of Eq. (3.31). The power counting is such

that terms O(a;) x O(a/as) are counted as O(a).

Using this counting, the results of tables XVIII - XX of [4] in the NDR scheme have
been reproduced. Tables 3.1 and 3.2 give the Wilson coefficients yM_S and zMS at
2.15 GeV and 3 GeV in a 3-flavour theory using PDG(2010) values (in the case of
2.15 GeV) and PDG(2011) values (in the case of 3 GeV) wherever standard model

parameters are required as input.
The coupling constant « is calculated by solving the equation

dog

Tt = Alg), (33

where ((g) was given at next-to-leading order in Eq. (3.17). The beta function
depends on the number of active quark flavours, and so the coupling constant must
be matched across flavour thresholds. The calculation of the strong coupling
constant is based on the initial condition ag’)(M z) = 0.1184 for

Mz = 91.1876 MeV. The evaluation of the Wilson coefficients at 2.15 GeV used the
two-loop formula for a; given in Eq. (3.19) of [4], with the result

a§3)(2.15 GeV) = 0.286758. However, the evaluation of the Wilson coefficients at

3 GeV which are used in Chapter 8 were evaluated using a four-loop formula for as,

given in Appendix A of [31], with the result is al? (3GeV) = 0.24544.

Wilson Coefficients in the chiral basis

The weak Hamiltonian is independent of the choice of operator basis, so it must be

the case that

25



Table 3.1: Wilson Coefficients in the MS scheme, at energy scale

w=2.15GeV.

Weak Operator 2MS () yMS ()
Q1 -0.29829 0
Qs 1.14439 0
Q3 -0.0024382 0.02414
Q4 0.0099515 -0.058119
Qs -0.0011054 0.010248
Qs 0.006574 -0.069970
Q7 0.000070158  -0.00021118
Qs -0.0000901047  0.000776652
Qo 0.0000150176  -0.0106552
Q1o 0.000065648 0.00297397

Table 3.2: Wilson Coefficients in the M S scheme, at energy scale

uw=3GeV.
weak operator ZZMS yZMS
Q1 -0.241415 0
Qs 1.11228 0
Qs -0.00392423 0.0211096
Qu 0.0169695 -0.0558734
Qs -0.00349963 0.0117843
Qs 0.0120747 -0.0610235
Q7 0.0000940198  -0.000161911
Qs -0.000104478  0.000652032
Qo 0.0000275290  -0.0103828
Q1o 0.0000798557  0.00243775
Qiyr oy 0.290342 -0.00397252
Q) 470099 x107°  -8.09555x 10~
Qi  -5.22390x107° 3.26016 x10~*

where the prime (’) referes to the operator basis defined in Eq. (3.9). The relation

between the Wilson coefficients in the chiral basis and the physical basis is found in

[32]:

C/‘MS

J

(1) = CMS(u)(T;; + ATy)
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with
1/5 1 0O 00 0O

/5 0 1 00 00

T=( 0o 0 0 1000 (3.36)

and
0 0 0 0 0 00
0 0 0 0 0 00
0 0 0 0 0 00
0 -2 -3 5 -1 00
AT:Z_;O 0 0 0 0 00 (337)
0 0 0 0 0 00
0 0 0 0 0 00
0 0 0 0 0 00
0 0 0 0 0 00
0 0 0 0 0 00

3.3.4 Wilson Coefficients at leading order

In Sec. 3.7 of Chapter 8, an attempt is made to estimate the systematic error in the
calculation of the decay amplitude As due to the truncation in the perturbative
evaluation of the Wilson coefficients. To this end the LO contribution to the Wilson
coefficients is evaluated in the M S scheme at energy scale 3 GeV. The LO
contribution to the Wilson coefficients is evaluated using a one-loop formula for the
beta-function and anomalous dimension matrices. Furthermore, the QED
corrections introduced in Eqns. (3.21) and (3.23) are neglected. The LO

contribution to the Wilson coefficients are then defined according to the following
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procedure:

1. A value is chosen for the A parameter of four-flavor QCD. An appropriate
choice of A is obtained by first using a four-loop running formula to evaluate
as(Mp). The energy scale AW = Agcp is then evaluated in a four-flavour

theory using the leading-order formula for ag:

() — An 3.38

with the result Agcp = 328 MeV. With this value for Agcp, a5 can be
evaluated at all other energy scales using Eq. (3.38) and matching at flavour

boundaries as usual.

2. In setting the initial conditions for the Wilson coefficients at the scale of the
W mass, corrections of O(«) and O(as) are only included when they depend
on the top-quark mass. This also applies when calculating the coefficients z;

at the scale of the charm mass (Eq.(VIL.17) in [4]).

3. In the QCD running to lower energies the one-loop expressions for the
anomalous dimension matrix and S-function are used. In the presence of
electromagnetic interactions, the LO anomalous dimension matrix also

()

«
includes the term —~e
47

4. At leading order the Wilson coefficients are continuous when crossing
quark-mass thresholds, i.e. at LO the matching matrices defined in section

3.3.2 are trivially the identity matrix.

The LO contribution to the Wilson coefficients, evaluated at energy scale 3 GeV,

are given in Tab. 3.3.
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Table 3.3: Leading order contribution to the Wilson Coefficients
in the M .S scheme, at energy scale = 3GeV.

weak operator szS y%VTS
Q1 -0.391608 0
Qs 1.19262 0
Qs -0.00590226 0.0245797
Qu 0.0227256 -0.0592354
Qs -0.00818322 0.0180197
Qs 0.0199481 -0.0698914
Q7 -0.0000852011  0.000405289
Os 0.000020126 0.000489482
Qg -0.0000708857 -0.0103101
Q1o -0.0000233252 0.00327317
Qo) 0.26696 20.0035185
Qix) 4.260055 x10~°  -2.026445% 104
Qs 1.0063x107°  2.44741x10~4
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Chapter 4

Quantum Field Theory on the

Lattice

4.1 Introduction

The fundamental objective of quantum field theory is the computation of
correlation functions, the vacuum expectation of a time ordered product of

operators. The path integral expression for such an object is

(0] O (21).--On () |0) = %/D[A,1/},mol(xl)...on(xn)eiscecn (1)

where Sqcp is the action for QCD, and the partition function Z is given by

7 = / D[A, v, ]etSacp . (4.2)

Lattice QCD allows correlation functions to be computed by evaluating the path
integral in a brute force fashion. This is achieved by first Wick-rotating to
Euclidean space-time, where the coordinates are defined in terms of

Minkowski-space coordinates as:

20 = —ixl, o' =2l (4.3)



and the Euclidean gamma matrices are related to the Minkowski gamma matrices

by

vE =i, v =0 (4.4)

The Euclidean-space partition function is then given by

7= / DA, 4, e~ (5e+5r), (4.5)

where S is the pure gauge part of the action and Sp = 1 (Iﬂ + m) W =YK is the
fermionic action. K is a function of the fermion mass and the gauge fields, and will
often be referred to as the Dirac operator. The Euclidean-space path integral is to
be interpreted as a statistical mechanics partition function with weighting e SCD,
where Sch is a shorthand for the Euclidean QCD action Sch = (Sg + SF). The

superscript £ will subsequently be dropped.

4.2 Lattice Actions

Lattice actions are built by replacing integrals with sums and derivatives with finite
differences. There is no unique choice for the discretised action, provided that the
formal QCD Lagrangian is recovered in the limit that the lattice spacing a — 0. A
desirable lattice action will preserve as far as possible the symmetries of the
continuum theory. Gauge invariance and chiral symmetry are of particular

importance.

4.2.1 Gauge Actions

Lattice implementations of gauge fields are non-trivial because a gauge symmetry is
a relation between the gauge field A* and the derivatives of other fields. When
quantum field theory is formulated on a lattice, derivatives are replaced by finite
differences. The fermion fields are defined on the lattice sites, and so a gauge
transformation of a fermion field at lattice site x must be compensated for by a

transformation at site x + 1. To make this explicit, consider the following example.
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The fermion fields transform under a gauge transformation according to

Y(x) — Qz)(x) and P(x) — P(2)Qf(x), so the term

@)z + ) = b(2)Qf (2)Qx + p)v(z + f) (4.6)

is not gauge invariant. In order to construct a covariant derivative, the gauge fields
must be implemented in a way that connects the gauge transformation at the site x
with the transformation at the site x + ji. This can be achieved by introducing

SU(3) matrix-valued link variables, U, (x) with the transformation property
Uu(z) = Qz)U,(2)Qx + ). (4.7)

It is now possible to construct a covariant derivative for the fermion fields:

_ _ Uy (2)(z + ) — Ul(z — p)v(z —
ww:ww( (@l + ) = Ubte — i)va = )). 48)
The link variables are related to the Lie algebra valued gauge fields A, (z) by
Uy (z) = eltAu(®@) (4.9)

and have the property U_, (z 4+ ©) = Uy} (z). Any closed loop of link variables will
form a gauge invariant object. In particular, the plaquette variable U,,, illustrated

in Fig. 4.1, is the shortest nontrivial closed loop of link variables:

(4.10)

Wilson proposed a gauge invariant action for the gauge fields defined in terms of

plaquette variables.

Sq = 9—22 S Re Tr[l - Up()] . (4.11)

e p<v
The sum in Eq. (4.11) is over all plaquettes, with each plaquette counted with only

one orientation. The discretisation of space and time introduces errors proportional
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T Uy(z) z4+fi

Figure 4.1: Plaquette variable

to some power of the lattice spacing. The tree level Wilson gauge action
approximates the continuum gauge action up to O(a?) corrections, which only

vanish as the lattice spacing is sent to zero.

In order to reduce the size of the discretisation errors, different actions can be
considered. The Iwasaki and DBW2 gauge actions are renormalisation group

improved actions in truncated two-parameter space. They can be written down as

SalUl=— [ (1=8c1) Y PlUleyw+c1 > RUlzw (4.12)
T p<v T3 pFY

where P[U], .. is the real part of the trace of the path ordered product of links
around the 1 x 1 plaquette in the y,v plane at point x, 8 ~ 1/¢g3 and R[U] denotes
the real part of the trace of ordered product of SU(3) link matrices along 1 x 2
rectangles in the u, v plane. The coefficient ¢; is chosen to be ¢; = —0.331 for the
Iwasaki gauge action and ¢; = —1.4069 for the DBW2 gauge action. The Iwasaki
and DBW2 actions are particularly significant because they have been shown to
reduce the chiral symmetry breaking in domain wall fermion formulations for the

fermion action [33].
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4.3 Fermions on the Lattice

The naive discretisation of the fermion action is

)z + ) — Ul (x — p)o(z — i -
Ty

=a' > (@)K (z,9)d(y),
Tk

where the link variables U were defined in the previous section and

<'YuUu(x)5m+ﬂ,y - U;E(m - /1)53:7,&,3/)
2a

K(z,y) = + Mgy (4.14)

will be referred to as the Dirac operator. The spin and colour indices in Eqns. (4.13)
and (4.14) have been suppressed. The naive fermion action suffers from artefacts
known as fermion doublers. Working in the unit gauge, where all U, (x) = 1, the

momentum space fermion propagator (given by the inverse of the Dirac operator) is

m —ia~! >, Vusin(pya)

K p) = : 4.15
(p) m?+a=23%7  sin(p,a)? (4.15)
In the massless limit, the fermion propagator is
. —ia ! > Y sin(pua)
K~ (p) = ;) P 2

m=0 a3}, sin(pya) (4.16)

a—0 —1 Zp YuPpu

I

The last line of Eq. (4.16) has a single pole in the propagator at p = (0,0,0,0).
This pole corresponds to a single fermion which is described by the continuum
Dirac operator. However, looking at the first line of Eq. (4.16) it is clear that on the
lattice the propagator has more than one pole. The denominator sin(pua)2 is equal
to zero whenever the elements of p are all equal to 0 or 7/a. Thus the lattice
fermion propagator describes a total of 16 fermions. These additional fermions are

referred to as the doublers.
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A possible solution to avoid introducing the doublers was proposed by Wilson, who
added an irrelevant operator to the fermion action in the form of a second

derivative, Sp — SF + Swilson, Where

—a’r -
Switson = —5— 3 (@) (Un(e)le + ) = 20(2) + Ule = il — i)
W,x (417)

— S0,

r is known as the Wilson parameter, and the second line of Eq. (4.17) shows the

behaviour of Swilson in the continuum limit.

The free Dirac operator for Wilson fermions is
4

K(z,y) = m+;_i2{ = Vu)Oztjuy + (7 + Yu)0a—pyl | (4.18)

and the corresponding momentum-space propagator is

K1) = T E T (1= () — £ Ty i) o)

<m +Z Zizl(l — cos(pua))>2 + a% Zi:l sin®(p,,a)

The extra term 7 Zizl(l — cos(pya)) is large at p, = m/a ensuring that at the
edges of the Brillouine zone the doublers become very heavy and decouple from the
theory. The Wilson term successfully removes the doublers from the fermion action,

but this comes at the cost of explicitly breaking chiral symmetry.

The loss of chiral symmetry in a lattice formulation of fermions where the doublers
have been removed from the theory appears to be an inevitable consequence of the
Nielsen-Ninomiya theorem, which states that in a lattice regularisation which is
hermitian, translationally invariant, and whose Dirac operator has a well defined
fourier transform and continuous first derivative everywhere in the Brillouine zone,
it is not possible to remove the doublers without breaking chiral symmetry. Chiral
symmetry can be expressed by the fact that a massless Dirac operator K

anticommutes with ~s:

Kvs + 5K = 0. (420)
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Ginsparg and Wilson suggested an alternative formulation of chiral symmetry on

the lattice, in the form of the Ginsparg-Wilson equation:
Kvys + K = aKvysK. (4.21)

Chiral symmetry is recovered in the naive continuum limit ¢ — 0 while the
restrictions of the Nielsen-Ninomiya theorem can be avoided. A solution to the
Ginsparg-Wilson equation is given by Neuberger’s overlap operator

L (1 4 ygsign[H]) (1.22)

a

Kov

where H = v5A, A is a ys-hermitian Dirac operator such as Wilson and

sign[H] = H(H?)~Y/2. Overlap fermions are particularly expensive to simulate.

4.3.1 Domain Wall Fermions

Domain wall fermions (DWF) provide an alternative method for eliminating
fermion doublers from the theory while maintaining chiral symmetry on the lattice.
The DWF discretisation of the Dirac action was proposed by Kaplan [34] and
developed by Furman and Shamir [35, 36]. Kaplan showed that for free Wilson-like
fermions in five dimensions, the inclusion of a mass term that can vary in the fifth
dimension, and takes the shape of a step-function (domain wall), results in a single
chiral fermion which is bound to the four-dimensional wall. On a finite lattice with
periodic boundary conditions an anti domain wall appears with a bound chiral
fermion of opposite chirality. For large fifth dimension the fermions have
exponentially small ovelap and do not mix. Kaplan’s fermions retain the full
SU(3)r, x SU(3)r continuum chiral symmetry on the lattice. The interacting

theory is defined by coupling the fermions to a four-dimensional gauge field.

The fermionic action for a single flavour has the following form:

SP(U,W,U) = = 3 Vo s(Dowr)a st ar Vo (4.23)

/ !/
z,x’,s,s
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where the Grassmann valued fields ¥(x, s) and ¥(z, s) are functions of a space-time
coordinate x and and fifth-dimensional coordinate s. The extent of the fifth
dimension will be denoted Ly, and s is in the range 0 < s < Ly — 1. The domain

wall Dirac operator, (Dpw F)g,s:.2’,s'(Ms, mf) contains two terms,
(DDWF)m,s;x’,s’(M57 mf) = 53,5’D27$/(M5) + 5m,m/DsL,s’(mf)' (424)

The first term in Eq. (4.24), D3|C| »(Ms), is the usual four dimensional Dirac

operator for massive Wilson fermions:

4
1
D} (M5) =5 3 [(1 = %) Un(@)d 4 0r + (143U (@)
- (4.25)
+ (M5 — 4)63:,:1:"

The second term, D=, is independent of the gauge fields

Dl (mf) [(1 - 75)5s+1,s/ + (1 + '75)5371,5’ - 253,3’]

N[\')l}—t

(4.26)
[(1 = 5)05,,~100,5 + (1 +75)05,00L,—1,5'] -

M‘S

In Eq. (4.25), M5 is a Dirac mass term, and forms the height of the domain wall.
The fermion mass my in Eq. (4.26) explicitly couples the wall at s = 0 with the wall
at s = Ly — 1. The simplest way to define operators which create and destroy light

four-dimensional quarks is

q(x) _ (1 _2'75)\11( ’0) + (1_;75)\1}( 7Ls 1)
) (4.27)
(j:\I/(CC,O)( +,75)—|—\II(CC,LS 1)( _'75)

The fermion modes described by Eq. (4.27) describe left- and right-handed quark
fields coupled to opposite walls in the fifth dimension. The residual mass, Mg,
measures the residual chiral symmetry breaking due to the finite extend of the fifth

dimension. The outcome of mye is an additive renormalisation to the bare quark
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masses,

My — M = Mf + Myes. (4.28)

However, it was shown in Ref. [35] that the current mass of the light Dirac fermion,

myg, is proportional to the bare quark mass my,
mg = me5(2 - M5), (429)

so the fermion mass is both additively and multiplicatively renormalised.

At coarse lattice spacings, domain wall fermions exhibit increased chiral symmetry

breaking. The residual mass can be approximated by [37]
Myes ~ RY / dAp(\)e EsA (4.30)
0

where A are the eigenvalues of the four-dimensional Hamiltonian which describes
the propagation of quarks in the fifth dimension and p(\) is the eigenvalue density.
It was shown in [37] that a mobility edge, denoted A. exists, dividing the eigenstates
into two regions. Eigenmodes with A > A, are extended, while eigenmodes with

A < A¢ are localised. Picking out the dominant terms above and below the mobility

edge in Eq. (4.30), the expected behaviour of mys is

e*)\cLs

+ Rflp(O)i, (4.31)

_ 4
Mres = Rep()‘c) Ls Ls

where p(0) is now the density of near-zero eigenmodes. The first term in Eq. (4.31)
can be reduced by increasing the extent of the fifth dimension. Modern simulations
are performed at relatively large Ly, so myes is dominated by the second term in
Eq. (4.31). Thus, in order to reduce the chiral symmetry breaking, p(0) must be
reduced. This can be achieved with the Dislocation Suppressing Determinant Ratio
(DSDR). This is a term which is applied to the gauge action as a multiplicative
weight. The DSDR term allows the near-zero eigenmodes to be suppressed, without
eliminating the the very-near-zero modes which are necessary to ensure adequate

topological sampling.
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In order to make contact with the four-dimensional overlap theory, the
five-dimensional path integral must also contain pseudofermion fields ®, ® which
have the same indices as the fermion fields but are bosonic variables. These fields
are often referred to as Pauli-Villars fields. The five-dimensional partition function
is

7 = / DUV, d, ®,Ule . (4.32)

The action is given by
S:SG(U)—FSF(W,\I’,U)—i—Spv(@,‘I),U), (4.33)

where S¢ is an appropriate choice of gauge action such as Iwasaki, Sp was defined

in Eq. (4.23) and the Pauli-Villars action is

Spy=@,2,U)= Y B(x,5)D" (2,52, )d(a', s, (4.34)
z,x’,s,s’
with
DP) = Dpwr(Ms, 1), (4.35)

and Dpwr was defined in Eq. (4.24). Neuberger showed that

det(Dpwr) = det(D%)det(DP). Applying this relation to the path integral leads
to,

SDWF _gpfy det(DDWF)

DIV, T, ®, W57 —%5) = “qel (D det(DS%), (4.36)

so it is clear the the PV fields should be included to relate the five-dimensional

DWF formalism to the four-dimensional overlap formalism. This step can be viewed

as a change of integration variables with det[DP'] being the corresponding Jacobian.

4.4 Numerical Simulations

Even on a modest lattice, it would be impossible to evaluate the partition function
of Eq. (4.5) in full. Consider for example a 10* space-time lattice, in which case the

number of link variables is approximately 4 x 10*. Each SU(3) link variable is a
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function of 8 real parameters, so there are 320000 integrations to be done. Using a
mesh of only 10 points per integration, the path integral will be approximated by a
sum of 10329900 terms. In order to evaluate the ensemble average, it is therefore

necessary to employ statistical methods.

The expectation value of an observable 2(¢) that depends on a general field ¢ is

Q) = % / dbe D0 (e). (4.37)

In order to evaluate this expectation value, a sequence of field configurations

1,02, - @) is generated and chosen from the probability distribution
o1, 0 Op) 1 d and ch f h bability d b
1
P(¢¢)de = 26_5(@)- (4.38)

The observable is then measured on each configuration, and the ensemble average

_ 1 &
Q= ; Q) (4.39)

is calculated. In the limit that N — oo, the ensemble average is equal to the
expectation value. The central limit theorem establishes the result that the
ensemble average approaches a Gaussian distribution with (€2) as its mean and a

standard deviation which falls as 1/v/N.

The QCD action is quadratic in the fermion fields, and these can be integrated out

by hand, leading to the following expression for a typical correlation function
1
QUKW = / DIUINU, S(U))e~ S6lUDdet[K (U, m)). (4.40)

In Eq. (4.40) K(U) is used to denote the Dirac operator. The gauge field

configurations should be drawn according to the probability distribution
P(U;) = det[K (U, m)]e~SalUD, (4.41)

There are various Monte-Carlo algorithms designed to generate gauge ensembles
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according to this probability distribution. In particular the ensembles studied in
this thesis were generated using a variation of the Rational-Hybrid-Monte-Carlo

(RHMC) algorithm, the details of which are beyond the scope of this thesis.

4.4.1 Reweighting

In order to overcome problems such as long autocorrelation times associated with
using very light sea-quark masses in ensemble generation, simulations are usually
performed with a heavier light-quark mass than the target valence light-quark mass.
Reweighting is a technique that allows the sea-quark masses to be tuned after
ensemble generation to match those used in the valence sector [38]. Let m; denote
the light-sea-quark mass used in the ensemble generation and mo denote the target
light-quark mass. The configurations that were generated with light sea quark mass
my can be reweighting to sea-quark mass mgy by computing a reweighting factor
w(my, mg) for each configuration on which measurements were performed. The

reweighting factor is defined by

~det {KT(m2)K(m2)}
w(my, mg) = Aot (KT () K (my)t (4.42)

The goal is to calculate the expectation value of an observable O[U] computed with
light sea quark mass mg. This quantity will be denoted (O),. The reweighting
factor allows (O), to be calculated from the ensemble generated with the sea-quark
mass mj. To see this, (O), is first written in terms of an ensemble generated with
sea quark mass mgy. This is seen in Eq. (4.43), where Zj is the partition function for
the sea quark mass mg, and K (m) denotes the Dirac operator generated with sea
quark mass m. The discussion is phrased in 2 + 1 flavours, so the quantity mg is

introduced to denote the mass of the strange quark.

(0), = Z% / DUO]e S det { KT (ms)K (ma) b y/det {(KH (mo)K(my)}  (4.43)
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The expression for (O), is then modified by multiplying and dividing by both Z;

and det {K(m;)K(my)}, to obtain

0), = 22 21 / DU [O[U]w(mi, ma)] e~ det {K! (m1)K (my) } /det {Kf(m,)K(m,)}

_ (O (mlym2)>1
(w(my,ma));

(4.44)

In the last line of Eq. (4.44) the ratio Z;/Z; has been rewritten as (w(mi,m2)),
where the subscript 1 denotes that the ensemble average is for an ensemble

generated with mass mq.

A stochastic estimate can be used to evaluate the reweighting factor:

[ Dée™ (1K (m1)T K (m2)T =LK (m2) 1 K (m1)6—€T¢) —¢'e

JDUe ¢t (4.45)
_ <6_<§TK(ml)TK(mQ)Tf1K(m2)71K(ml)§>_§T§>

w(my, me) =

175

where £ is a stochastic variable drawn from a random Gaussian distribution

exp (—£7€). The expectation value in the lower line of Eq. (4.45) is with respect to
both £ and the gauge fields at mass mq, and these averages commute. It follows
that the expectation value (O), can be evaluated with a single estimator s; for the

reweighting factor per configuration :

5; = B—EIK(Ui;ml)TK(Ui;m2)T_1K(Ui;?m)_IK(Ui;MNEi—ﬁZ&‘ (4.46)

4.5 Measuring Observables

4.5.1 Propagators

After applying Wick’s theorem, correlation functions contain products of spin

matrices with quark propagators S.
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The quark propagator is the inverse of the Dirac matrix, and satisfies y5-hermiticity:
S(m,t;xo,to) = ’)/5ST(1'0,t0;1',t)’)/5. (4.47)

In this notation, the convention is that S(x,t;x,to) is a propagator with a source
at xg,to and a sink at x,t. The propagator matrix is extremely large, so typically

only a subset is calculated. This is achieved by solving the matrix equation

=Y K Y@ 60,0 t). (4.48)
g7tl
In Eq. (4.48), n is a complex matrix source and 1) is the solution matrix, describing
the propagator. This will be made more explicit below, when specific examples of
sources are considered. This thesis makes use of several choices for the source 7;

these are the wall-source, stochastic-source and cosine-source.

In the case of the wall-source, 7 is set equal to the identity matrix at all points on a

single timeslice at ¢y. Solving Eq. (4.48) then leads to the wall-source propagator,
SUE tito) = ZS Tt 7, to). (4.49)

The notation is that S!(#,¢; o) will be used to denote a light-quark propagator with
a wall-source along the timeslice ¢y and a sink at space-time position (Z,1).
Similarly S*(Z, ¢;ty) will be used to denote a strange-quark propagator with a wall
source at tg. Summing over the position of the sink leads to a propagator with a

wall-sink:

@ (t; o) qu ((Z,1); to), (4.50)

where ¢ = [, s indicates a light /strange quark respectively.

Cosine wall sources are used in the calculation of correlation functions with

non-zero momentum. The cosine source is defined by

Neos (T3 P) = cos (pgyx) cos (pyy) cos (p.z) (4.51)
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on the timeslice at 3. The components of momentum are given by p; = n;(mw/L)
where n; is an even or odd integer depending on whether periodic or antiperiodic
boundary conditions were imposed on the quark field in direction 7. The solution

vector is thus

Y@, 1) = Neos (& P)S(Z, 1; 7, o). (4.52)

Y

Finally, stochastic sources are introduced. Stochastic sources will be important for
evaluating eye-type diagrams in chapter 9. Elements of the source n with colour
index a and spinor index « are randomly chosen from a Gaussian distribution D. A

set of N random sources
{77(”)(9;)&,& €Dln=1... N} (4.53)

has the property that, in the limit N — oo

N
n n 1 n n
<n§,&(x)ngf5)(y)>n = 5 2 @ (9) = Snybapdas. (4.54)
n=1

The average over stochastic hits happens automatically when the ensemble average
of a correlation function is performed. This means that only one stochastic “hit” is

needed per propagator per configuration.

This calculation makes use of stochastic “wall” sources at ¢t = 7, where

x,tlt) eD|t=r7
(e, t|7) .

=0 |t#T

Propagators with stochastic wall sources along the timeslice g will be denoted

SE(Z,to; to), where once again ¢ = [, s labels the flavour of the quark.

4.5.2 Correlation Functions

Once the propagators have been calculated, the correlation functions can be
measured. The correlation functions are traces over colour and spinor indices of the

products of spin matrices and propagators mentioned previously.
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After inserting a complete set of states, a generic correlation function can be

written,

o(t) = <o<6, £ 01(@, 0)> =3 (0|0n) (n] O1(0,0) ‘0(6,0)> et (4.56)

n

At large enough t, excited states with n > 0 will decay and only the ground state
will remain. For mesons, propagation in ¢ and T — t is identical, and the expected

form for the correlation function is
C(t) = 2Ag cosh((T/2 — t)Eg)e TFo/2, (4.57)

By fitting the correlation functions as a function of ¢ to the fit form in Eq. (4.57), it
is straightforward to extract the meson masses. In order to determine a suitable
fitting region where excited states have died away and the remaining signal is that
of the ground state, effective mass plots are examined. The effective mass meg is

found by solving
C(t)  cosh(meg(T/2 —1))
C(t+1) cosh(meg(T/2 —t —1))

(4.58)

at each time t. A plot of the effective mass should show a plateau in the region

where excited states can be neglected.

In this thesis all fits are performed using uncorrelated y? fits. The error on each fit
is then determined using the jackknife technique as follows. Consider a data set of
N configurations and an observable 0, and let 6 denote the value of the observable
computed using all N configurations. In the jackknife procedure N subsets are
constructed by removing the nth (n = 1,..., N) configuration from the original set.

The value of the observable 6,, is determined for each subset. The variance is then

g

> D

N

N -1 A

N ) (0 — ), (4.59)
n=1

and the square root of the variance estimates the standard deviation on 0.

Measurements made on different ensembles can be assumed to be statistically

independent, and the contributions from the different ensembles should be kept
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separate so as to avoid accidental cancellations. This can be accommodated in the
jackknife procedure by embedding the jackknife series of observables in an extended
series that includes all the separate ensembles. Let {§X} denote the jackknife
distribution of the observable 8 measured on ensemble X. The extended

distribution of § measured on several ensembles labelled A, B, --- is

0y = (8", (8", ). (4.60)

The error on the total distribution is then found by combining in quadrature the

errors from the different distributions
o2({0}) = ({0 }) + ({87} + ... (4.61)

This technique, known in the literate as the super-jackknife technique, is described

in detail in [39, 40].
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Chapter 5

Non-Perturbative

Renormalisation

In order to obtain physical results for the K — 7w decay amplitudes, the AS =1
four-quark operators must be renormalised at the same scale and in the same
scheme as the Wilson coefficients in the effective Hamiltonian. Since the Wilson
coefficients were evaluated in the MS-NDR scheme in Chapter 3, this means
renormalising the operators in the MS-NDR. scheme. A non-perturbative treatment
for the renormalisation of the four-quark operators is desirable in order to avoid
lattice perturbation theory, which frequently converges more slowly than continuum
perturbation theory. In order to perform the non-perturbative renormalisation
(NPR) of the four-quark operators an intermediate scheme which is independent of
the regulator (RI) is chosen so that the renormalisation can be implemented both
numerically on the lattice and in continuum perturbation theory. This allows the
lattice results to be converted to the MS-NDR. scheme, which is not directly
implementable on the lattice. The numerical renormalisation procedure used is

based on the Rome-Southampton method introduced in [41].

This thesis describes two separate calculations of K — 77 matrix elements, a
calculation of only the Al = 3/2 channel performed at nearly-physical kinematics
on the “IDSDR” ensemble, and a full calculation on the smaller “163 Iwasaki”

ensemble. The latter calculation includes additional operators and suffers from
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difficulties due to operator mixing that are not present in the Al = 3/2 calculation.
With this in mind, this chapter includes two separate results sections for the NPR;
Section 5.1 gives the NPR factors for the AI = 3/2 opeartors, calculated on the

IDSDR ensemble, while Section 5.2 gives the NPR factors for all seven operators in

the chiral basis (defined in Eq. (3.9)), calculated on the 163 Iwasaki ensemble.

The successful implementation of the Rome-Southampton renormalisation
procedure requires that a window in lattice momentum must exist, such that the

renormalisation scale p must satisfy

Aqep € p < 1/a. (5.1)

The scale p must be small enough that discretisation effects are suppressed in the
numerical renormalisation to the RI scheme, but must also be large enough for the
perturbative matching to MS to converge. This window can be extended if a
non-perturbative step-scaling function is introduced. Such a function allows
renormalisation constants computed at a low energy scale to be run
non-perturbatively up to a higher scale more suitable for continuum perturbation

theory.

In RI schemes, one imposes the renormalisation condition that amputated Green’s
functions with given off-shell external states at a given momentum point and in a
fixed gauge coincide with their tree level value. In practice this renormalisation

condition is imposed by tracing the amputated Green’s function A with a suitable

projection operator P, such that

Z
Z9 1Ty PA] —F (5.2)
Zg q2_ 2
=u
where
F =lim,, 0 [PA] (5.3)
q?=p?

The RI-SMOM scheme was introduced in [42] and generalised for the four-quark

operator in [43]. The “SMOM” kinematics specifiy that the momentum of the
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four-quark operator being renormalised be symmetric so that no exceptional
channels are available, i.e. there are no channels where zero momentum is inserted
at the operator. This prevents IR chiral symmetry breaking effects. For example,
for the renormalisation of the (27,1) operator defined in Eq. (3.12), the Green’s

function to be calculated is

d(p1)s(—p2) — d(—p1)u(p2) (5.4)

and the momenta are chosen to satisfy p? = p2 = (p; — p2)? = p2.

Since 27,1y is multiplicatively renormalisable, the relation between the bare lattice
and renormalised operator is of the form:

(Ivly)  (Iv,Iy) ~(latt)
Qur1) = Zern) Qe (5.5)

where I, labels the choice of the intermediate (one-particle irreducible) vertex
renormalisation scheme and I, the intermediate scheme for the wave function
renormalisation. The index “latt” indicates that the operator on the right-hand
side is the bare lattice operator. The overall renormalisation constant is obtained
by evaluating a trace of A with a projection operator PIv)

ZUely) _ (1)2 1

(27,1) - “q (Iv)ij,kl (27,1)ij,kl’
Pogns” Naphs

(5.6)

where Zélq) is the wave function renormalisation constant which will be discussed

below. The two choices that are made for the projection operators are labelled by

Iy =y, or Iy = ¢ [43]:

(yH)igkl 1 m m w5 w5 ij skl
(d)ig.kl 1 ii ok
Pabns = apnv 1) [Weelor + (17)salir’)n] 0707, (58)

where N = 3 is the number of colours. These projectors are constructed to give 1

when contracted with the tree-level results for A((fg ,1(); gl ’kl.
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For the wave function renormalisation, schemes defined as RI-SMOM and
RI-SMOM,, in ref. [42] are used, which for compactness of notation, are labeled as

Iy =4 and 1, = v, respectively. The corresponding renormalisation constants are
defined as

W _ 4" qopm ) = L opyrpmn
Zy = 1242 Tr[A7 4] and  Z;" = T Tr[ALAY], (5.9)

where A’{, is the amputated Green function of the conserved vector current. This

completes the description of the determination of the renormalisation constant for

((27,1) in the four schemes in which each of I and I, are either ¢ or .

In general, operators will mix under renormalisation. The renormalisation constants

for the four-quark operators are then defined such that
—»IRE,,Iq — Z(IV’IQ)Qlatt. (510)

The vector @ represents a column vector of AS = 1 four-quark operators and
Z(v1a) is a matrix. Operators in an irreducible representation of a given symmetry
only mix with operators transforming in the same irreducible representation.
Consequently, if a chiral basis is used to describe the operators, the matrix of

renormalisation constants Z will be block diagonal.

5.1 Renormalisation Constants for the IDSDR Lattices

The renormalisation of the remaining two Al = 3/2 operators is a natural extension

of the renormalisation of the (27,1) operator, outlined in the previous section.

The operators Ogg) and O(gg)mx mix under renormalisation. Two projectors are
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now defined for each of the electroweak penguin operators as follows:

117,kl ..
[P((;g;_ s [(v“)ga (")sy = ("7°) o (7“75)57} 59 §M (5.11)
() R 5 il sk
[P 8mx | 455~ [(v“)ga ()5 = (¥7°) 5o (7 &J §ilgks (5.12)

)
[P (82)qul :%[(ﬁ)ﬁa(ﬁ) —(47°) 4o (0° &J 5% gkt (5.13)
)

lapre 4
pl [ §il gki 5.14
(8,8)mx ; s P (Dsa(dsy — (47°) Ba (47°) &y (5.14)
- apyy

The renormalisation constants for these electroweak penguin (EWP) operators are
then determined by solving

—ZM=F (5.15)

where M is the matrix constructed with elements

My = Tr [R5 A1 (5.16)

where a, b label the (8,8) and (8, 8),,, operators.

5.1.1 Step-scaling

In order to minimise discretisation effects in the calculation of the Z-factors on the
IDSDR lattices, where a is large (a=! = 1.364 GeV on the IDSDR ensemble, see
chapter 8) and only one lattice spacing is available, the matching point is chosen to
be the low scale pg = 1.136 GeV. Note that the matching point is actually chosen in
lattice units, and can only be determined in physical units once the lattice spacing
has been calculated. This leads ot the seemingly arbitrary value pg = 1.136 GeV. A
step-scaling function[44, 45] is evaluated to convert the results to 3 GeV, where
perturbation theory is more convergent than the conventional matching scale of

2 GeV. The use of step-scaling, and in particular its recent generalization to the
RI-MOM and RI-SMOM schemes being used in this thesis [43, 46, 47|, allows the
renormalisation constants evaluated at p = 1.136 GeV to be related to

renormalisation constants at 3 GeV, so that perturbative matching to MS may take
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place. The step-scaling approach can also be generalised to operators which mix

under renormalisation [48, 49] and this is applied in this calculation.

The renormalisation constants Z((;‘;’l))( 0) and Z( . q)( 0), (a,b=(8,8),(8,8)mx),
are evaluated on two ensembles, each generated with 2 4+ 1 flavours of domain wall
fermions and the Iwasaki gauge action. These lattices have dimensions 323 x 64 x 16

and 242 x 64 x 16 and are generated at 3 = 2.25 and 3 = 2.13 respectively [50, 51].

Renormalization constants on the Iwasaki ensembles were presented in [48].

The benefit of doing this is that on these finer lattices the renormalisation constants
can be run non-perturbatively from pg = 1.136 GeV to a larger scale p = 3 GeV.
Taking Q(27,1) as an example, the step-scaling function on the finer lattices is

defined as:
Iy,I . Iy,I v -1
EE27,fl)) (,U,, Mo, a) = nllanO |:Z((27,1O;) (,U,, a, m) <Z((27 1(;) (Moa a, m)) :| ) (517)

where m is the quark mass. Since we have results at two different lattice spacings
on the finer Iwasaki lattices we can perform the continuum extrapolation and define

the continuum step-scaling functions as

I, .l
waa’(wo) lim EEW{*))(M 110, @) - (5.18)

The step-scaling function o(97,1)(, po) describes the continuum non-perturbative
running of the 4 quark operator Q(271) in a given scheme. Because it does not
depend on the lattice action, it can be used to run the Z factor obtained from the
IDSDR lattice at the low scale pg to a higher energy p where perturbation theory is
more convergent. Finally, the operator Q)27 1), renormalised in the intermediate

scheme (Iy,I4) at a perturbative scale p is related to the IDSDR lattice operator by:

Iy, I Iy,I v,L la
QEQ?JQ)) (M) = U((2771q)) (,u, MO) Z(27 1(3)( ) Qgg;tl (5.19)

For the electroweak operators the above equations become 2 x 2 matrix equations

with the constants Z &) replaced by the matrices Z Uvla) ond similarly for the

(27,1)
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step-scaling factors.

5.1.2 NPR Results

The results for the renormalisation constants in the (y*,~*) and (¢, ¢) schemes,

evaluated at pp = 1.136 GeV are:

0.443 (1) 0 0
720" (g) = 0 0.505 (1) —0.114 (1) (5.20)
0 —0022(3) 0.231(2)
0.489 (1) 0 0
290 () = | o 0.510(2) —0.116(1) | , (5.21)
0 —0.077(6)  0.305(4)

where the quoted errors are statistical only.

The conversion to MS-NDR is calculated to one loop in perturbation theory. The
renormalisation constants in the MS-NDR scheme are related to those in the

intermediate RI schemes by the matching matrix R»/« according to

MS
Z(IV 7Iq) -

_ R(IV 7Iq) Z(IV 7Iq)

The matching factors R(v!a) are known at one loop [32]. Using

ay_s(3 GeV) = 0.24544 the SMOM — MS matching matrices are

RO"Y)(3 GeV) =

RWA (3 GeV) =

1.00414
0
0

0.99112
0
0

55

0
1.00084
—0.03152

0
1.00084
—0.01199

0
—0.00253
1.08781

0
—0.00253
1.02921

(5.22)

(5.23)

(5.24)



The (v#,~") and (¢, ¢) schemes are preferred over the (#,¢) and (¢,7") because
they are better approximated by perturbation theory for p ~ 3 GeV. Retaining the
labels (v#,v*) and (¢, ¢) as a reminder of the intermediate scheme used in the

NPR, the final results for the renormalisation constants in the MS-NDR scheme at

3 GeV are
0.419(2)(1) 0 0
28 (3 GeV) = 0 0.479(5)(8)  —0.022(5)(20) (5.25)
0 —0.047(13)(11)  0.552(19)(28)
0.424(4)(4) 0 0
2045 (3 GeV) = 0 0.472(6)(8)  —0.020(5)(21) (5.26)
0 —0.067(23)(30)  0.572(28)(20)

where the first error is statistical and the second error is systematic. The
systematic error has been propagated through from the continuum extrapolation of
the step-scaling function. A conservative estimate of this error is made, using the
difference between the result for the step-scaling function on the finest Iwasaki

lattice and the continuum extrapolation.

Following conversion to the MS scheme, the renormalisation constants should no
longer depend on the choice of intermediate scheme. The difference in Eq. (5.25)
and Eq. (5.26) can be interpreted as a measure of the truncation error in the
continuum perturbation theory, as well as giving some indication of the scaling

errors on the DSDR lattices.

5.2 Renormalisation Constants for the 16° Iwasaki

Lattices

The renormalisation factors for all seven of the AS = 1 operators in chiral basis
defined in Eq. (3.9) were calculated on the 163 Iwasaki ensemble in [52]. RI-SMOM
kinematics were used, while the choice of operator projector corresponded to the

¢ scheme. The resulting renormalisation matrix Z}}I(u, a) can be used to convert

56



the lattice normalization into that of the RI scheme:
QRI Z Zlat—)RI )Q; (527)

However, these equalities hold only when the operators appear in physical matrix
elements of on-shell states. Since the RI/SMOM renormalisation conditions are
being imposed for off-shell, gauge-fixed external quark lines, a larger number of
operators should in principal be included, rather than the minimal set of seven
independent operators which can represent all gauge invariant matrix elements
between physical states of Hyy. Therefore, a correspondingly larger set of
conditions must also be employed to distinguish among this larger set of operators.
This larger set of operators is required if the calculation is to use these RI operators
to reproduce all the gauge-fixed, off-shell Green’s functions that can be constructed

using the original, chiral basis of lattice operators Q.

However, the ultimate goal is to evaluate on-shell, physical matrix elements of these
operators. For such matrix elements there are only seven independent operators
and the expanded set of operators referred to above can be collapsed back to the
seven, four-quark, chiral basis operators Q?I. This is the meaning of the 7 x 7
matrix Z#7Rl matrix given in Tab. 5.1: gauge symmetry and the equations of
motion must be imposed to reduce to seven the RI-normalized operators to which
the seven lattice operators are equated. In the calculation of Z'®=RI presented in
Ref. [52] such extra operators are neglected. For all but one, this might be justified
because these operators enter only at two loops or beyond and the perturbative
coefficients that we are using in later steps are computed at only one loop. A single
operator, given in Eq. 146 of Ref. [20] and Eq. 12 of Ref. [32] does appear at one
loop but has also been neglected because it is expected to give a smaller
contribution than other two-quark operators with quadratically divergent
coefficients whose effects are indeed small. A final imperfection in the results
presented in Tab. 5.1 is that the subtraction of a third dimension-four, two-quark
operator which contains a total derivative was not performed. However, the effect

of subtracting this third operator is expected to be similar to those of the two
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Table 5.1: Z/ZZ in the RI-SMOM(v,4) scheme at 2.15 GeV

1 2 3 4 5 6 7
1 0.825(7) 0 0 0 0 0 0
2 0 0.882(38) -0.111(41) -0.009(12)  0.010(10) 0 0
3 0 -0.029(69)  0.962(92)  0.013(22) -0.011(25) 0 0
4 0 -0.04(12)  -0.01(13)  0.924(42) -0.149(35) 0 0
5 0 0.17(18)  0.08(23) -0.042(55)  0.649(63) 0 0
6 0 0 0 0 0 0.943(8)  -0.154(9)
7 0 0 0 0 0 -0.0636(53)  0.680(11)

operators which were subtracted, effects which were not visible outside of the

statistical errors (see e.g. Tabs. XIV and XVIII in Ref. [20]).

Results for the inverse of Z/ ZqQ, evaluated at 2.15 GeV at three different unitary
mass points are tabulated in tables 40-42 of [52]. Since there is no visible mass
dependence, the error-weighted average of the three tables is used in order to
reduce the statistical error. The final table of renormalisation constants Z /Zq2 is
presented in Tab. 5.1. The results of Tab. 5.1 must be converted to the MS-NDR
scheme. The conversion factor R:) which relates Z#) to ZMS ) is taken from

(ﬁy’m
Tab. VIII of Ref. [32] using a5(2.15 GeV) = 0.286758, giving

0.944 0 0 0 0 0 0
0 0937 000725 0 0 0 0
0 000218 0925 000169 —0.00507 0 0
RUMm = | 0 0 0.940  —0.00296 0 0
0  —0.0380 —0.0887 —0.0241  1.00 0 0
0 0 0 0 0 0.940  —0.00296
0 0 0 0 0 ~0.0368  1.04

(5.28)

Using Z; = 0.8016, which was evaluated using the ¢ scheme defined in Eq. (5.9) and
the results of Eq. (5.28) the renormalisation constants in the MS at 2.15 GeV are

given in Tab. 5.2.
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Table 5.2: Z in the MS-NDR scheme at 2.15 GeV

1 2 3 4 5 6 7
1 0.500 0 0 0 0 0 0
2 0 0.531 -0.0621  -0.00516  0.00594 0 0
3 0 -0.0169 0.571 0.00888  -0.00891 0 0
4 0 -0.0217  -0.00319 0.558 -0.0913 0 0
) 0 0.0878 -0.00266 -0.0418 0.422 0 0
6 0 0 0 0 0 0.570  -0.0944
7 0 0 0 0 0 -0.0649  0.459
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Chapter 6

Two Particles in a Finite Volume

The Liischer quantisation condition gives the two-pion energy spectrum on a lattice

in terms of the s-wave phase shift § and a kinematic function ¢,

5(k) + 6(g) = n. (6.1)

where k is related to the centre of mass energy by E = 2y/m2 + k? and ¢ = kL/27
where L is the length of the lattice. Liischer’s derivation of this formula was based
on non-relativistic quantum mechanics [53]. An alternative derivation of the
quantisation condition, based on summation formulae which relate sums and
integrals and formulated entirely in field theory, was presented in [54] and is

described in this chapter.

6.1 Summation Formulae

The derivation begins with the Poisson summation formula,

- Bk~ d3k P
nggk / 3gk Z/ R g (k), (6.2)

where the summation on the left-hand side is over all integer values of
i = (n1,n9,ns), with k= 277/ L, and the summation on the right-hand side is over

integer values of [= (I1,12,13) excluding [ = (0,0,0). For functions f(E) whose
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Fourier transforms f(7) are non-singular and are either contained in a finite volume
or decrease exponentially as |r| — oo, the Poisson summation formula allows the

sum on the left hand side of Eq. (6.2) to be replaced by an integral,

- 3 -
7 I = [ @, (6.3)

Eq. (6.3) is valid up to exponentially small corrections, as the right-most term in

Eq. (6.2) decreases at least exponentially as the box size is sent to infinity.

Later we will show that for two-pion correlators with energy below the inelastic

threshold, the finite-volume corrections are contained in summations of the form

_ 1 SR
S(q :ﬁ . q2—k2
k

(6.4)

where it is assumed that ¢ = |¢]? is such that there is no term in the sum with

k? = |E|2 = ¢? and that f (E) has the properties described above. In particular it is
important that f (lg) has no singularities for real k. Eq. (6.3) cannot be applied to
Eq. (6.4) because there is a singularity at k*> = ¢°>. Working in spherical polar

coordinates k = (k,0,0), f is expanded in spherical harmonics as follows

[e'S) l
FE) =D fin(B)E'VATYi (0, 0), (6.5)
=0 m=-—1
leading to
_ — i Jim (k) l
S(@) = 3 Sim(a) where Sin(q) = 753 55k VATYim(0,9).  (66)
lm L

The authors of [54] proceed by subtracting from the summand a function chosen to
cancel the pole at k% = ¢?. The subtraction includes a factor exp(a(q? — k%)) in
order to avoid introducing an ultraviolet divergence. Once the pole has been

cancelled, Eq. (6.3) can be applied. The result, which is valid up to exponentially
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small corrections, is

2

~ a(a®~1?)
% Zflm<k> qz;:@zge I kY (6, 6) =
k

e fin(k) = fin(@)e™ @) | 7
&’k fim(k) = fim(@)e™ T ")
/(271)3 R ENAnYim (0, ¢).
It is now possible to find an expression for Sy, (q):
3k
Sim(q) = 6 07’/ fOO V Y00 + fim(q) Zim(q) (6.8)

where

a(g?—k?) B3k ex(@®—k?)

Zimla ng kFYlm< 9 — 50,17’/Wq_k2k\/_yoo( 9)

The principal value prescription, P has been chosen to regularise the integrals in
Eq. (6.8). The function Zj,,(q) in Eq. (6.9) appears to depend on «. However, in
the case of | = 0, the sum and integral in Eq. (6.9) both have an ultraviolet

—~1/2

divergence which is proportional to « and these cancel. This is one example of

the more general result that Z;,,(¢) should not depend on the ultraviolet regulator,

which has been checked numerically by the authors of [54].

6.2 Derivation of the Quantisation Condition

The two-pion energy spectrum in a finite volume can be established by studying the
correlation function C(t). The correlation function is expressed in terms of
interpolating operators o(&#,t) which overlap with two-pion states. If the two-pion

state is studied in the centre of mass frame, C(t) can be written as
C(t) = (0] o(t)o"(0,0)|0). (6.10)

where

o(t) = /dgxa(f,t) (6.11)
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projects onto zero three-momentum, and the time ordering in Eq. (6.10) is implicit.

The two-pion correlator in energy space is
C(E) = / dt e O (t). (6.12)

The two-pion energy spectrum in an infinite volume in Minkowski space is
described by a branch-cut in the s-plane beginning at s = 4m?. This branch-cut is
replaced by a series of poles if the two-pion scattering is restricted to a finite
volume where momenta are quantised. Thus the energy spectrum in a finite volume

can be determined from the location of these poles.

The two-pion correlator can be expressed in terms of the amputated two-particle
irreducible four-particle correlation function K, through the series shown in

Fig. 6.1. The two-pion energy F is chosen to lie below the four-pion threshold,

0 < E? < 16m?, so there are no intermediate states with four or more pions and the
finite volume effects in K are exponentially suppressed. The only power-law

finite-volume corrections arise through the two-pion loops in Fig. 6.1.

k
@ ® + e (P e () (Do
P—k

Figure 6.1: Diagramatic expansion of the two-pion correlator. K
s the amputated two-particle irreducible four-particle correlation
function and P = (E,0).

If the time extent is infinite, the generic loop integration appearing in Fig. 6.1 is of

the form

= _— Z/ dko f(k07 ];;) : (6.13)

21 (k3 — w? +i€)((E — ko)? — w? + ie)

where w, = V k2 +m2. A minus sign arising from a factor of 7> from the
propagators has been left out, but will be corrected for later. All remaining
energy-momentum dependence arising from the renormalised propagators, the
kernels either side of the loop integral, or the matrix element of the operator o at

the ends of the diagram, is contained in the function f. After performing the kg
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integral in Eq. (6.13), the loop summation becomes

=—ig ) J(B + i, B
I = 3 - {2wk((E —wp)? — W) + 2eon (B + om)” — 3 } . (6.14)

For 0 < E? < 16m? the only singularity in I is the pole in the first term at
E = 2wy. Eq. (6.3) can be used to replace the second term with an integral since it

is free from singularities. The loop summation I can then be expressed as

where
1 f(wk, /;;)
[ =—i— 6.16
! ZL3 - 2w ((E — wi)? — w}) (6.16)
and

. _Z,/ (d3k F(E +wp, k) (6.17)

2m)3 2w ((E + wy)? — wi)’
In order to implement the summation formula derived in the previous section, it is

convenient to rewrite I; as follows:

11 Fk) E+ 2wy,
I = —i—— . 6.18
VT TVIBE 2 2 — k2 duy (6.18)
k

Direct application of Eq. (6.8) leads to

d3k f E+2wk i o0 l
== 2E / 3 42 _kz Ay, —@Z > fim(@Zim(¢?). (6.19)

=0 m=-1

The final step in deriving the finite volume correction to [ is to rewrite the
principal-value integral in terms of the corresponding integral with the Feynman ie

prescription in the propagator and a J-function term:

B / d3/<: f(B)  E+ 2wy,
h=-i3g k2+ze 4wk
o (6.20)
qJoold
Q7 .
T8 87TE 2Elzg Zlflm m(4”)
o

The first line of Eq. (6.20) is exactly the infinite volume expression for I in
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Minkowski space, which leads to the final result

stE  2E
=0 m=—1

dfoole) I &« 2
Ipy = > fin(@) Zim(q?) (6.22)
An important point to note is that ¢ is a momentum determined by the energy FE,
and so it can take any positve value. In particular, ¢ is not constrained by the finite

volume. This will allow the finite volume corrections to be expressed in terms of

physical scattering amplitudes.

Each of the loop summations in Fig. 6.1 can now be evaluated using Eq. (6.21), and
the series reorganised. The correlation function C'(E) can be written in terms of an

infinite volume correlator plus a finite volume correction

C(E) = C®(E) + C'V(E). (6.23)

If I, were to be kept in each loop in Fig. 6.1 then the infinite volume correlator
C*°(E) would be recovered. It follows that in order to work out the finite volume
corrections, at least one insertion of Izy must be included in the sum. The

contributions to C*V(E) are depicted in Fig. 6.2.

Figure 6.2: Finite volume corrections to the two-pton correlator.

An insertion of Ipy in Fig. 6.2 is denoted by the dashed line. The initial and final

two-pion states, labelled A and A’, are given by

A= oy (7m; E| 01 (0,0)]0) Zx A= 7, (0|0(0,0) |rm; E) (6.24)

and contain a geometric series of contributions with any number of insertions K

with the intermediate loops containing the infinite volume integral I,,. M is the
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on-shell scattering amplitude, obtained by summing a similar geometric series, and
F'is a kinematic factor determined by the form of Izy. After adding all the

contributions in Fig. 6.2, the finite volume correction to the two-pion correlator is

CtV(E) = —A'FA+ AF(iM/2)FA + ---
1 (6.25)

= AF—— A
1+ iMF)2

The factor of 1/2 is included because it is assumed that the two pions are identical.
The quantity M can be rewritten in terms of partial waves, where §; will denote the

phase shift in the [*" partial wave, as follows:

167 E (exp|2id;, (¢)] — 1).

My taimay = 01115 0myms 5; (6.26)
The form of F' can be found by comparing directly with Eq. (6.22):
Frimistame = &TLE (511125m1nw + iﬂf%ulz;mz) (6.27)
with
B iy = Z Z Zlm / A 1 Vi Yig - (6.28)

1=0 m=-1

The arguments of the spherical harmonics are (6, ¢) and the asterixes on the
spherical harmonics denote complex conjugation. The factor I’ will contain poles at
energies corresponding to two free pions both having momenta allowed by the finite
volume. Rescattering of the final state pions shifts the position of the poles in
CFV(E) to energies determined by the condition that 1 +iM F/2 has zero

eigenvalue. Equivalently the quantisation condition is

det(1 + iMF/2) = 0. (6.29)

Eq. (6.29) demonstrates that the finite volume energy shifts depend on interactions
only through the infinite volume scattering amplitude M, as was shown by

Liishcher in [53]. To make use of Eq. (6.29) the number of partial waves
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contributing to the rescattering is restricted to be s-wave. The s-wave quantisation

condition is then simply

1+iMF/2=0 (6.30)
with
167 E (2@ — 1)
M = 6.31
T (6:31)
¢ is the s-wave phase shift and
q i 2
=— - —7 . .32
SE _ 2E 00(q”) (6.32)
The quantisation condition can be rearranged to give
q _
tan[d(q)] = —tan[é(q)]  where tan[o(q)] = -[Zoo(q”)] " (6.33)

This is equivalent to the usual form of the quantisation condition given in Eq. (6.1).
A method for numerically determining the value of Zgo(¢?) in Eq. (6.33) can be
found in [55].

6.3 Relation between Finite Volume and Infinite

Volume Matrix Elements

The two pion correlation function in a finite volume can be written as

Y () = / @z (0 o (7, 1)0(5,0) |0}y

=V > 1{0a(0,0) [w7, n)y, [P~ (6.34)

V-0

v / dEpy(E)| (0] 0(,0) |rm), 262",

where py (E) = dn/dE describes the density of states. The corresponding infinite

volume correlator is

00 1 q o —1
o (t) = W/dEE| (0 o(0,0) |, E)_ [P~ ", (6.35)
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Comparing Eq. (6.35) with Eq. (6.34),

|77, B) o < 4Ty | %p(q) 10)y . (6.36)

Similarly, the relation for a kaon state is
|K),, < V2EV |K),, . (6.37)

The quantisation condition in Eq. (6.1) allows the density of states in Eq. (6.34) to

be evaluated:

_dn _ B {05 9
pv(E)_@_Mq{anraq}. (6.38)

The main result of this chapter, relating the finite volume K — w7 matrix element

with the infinite volume K — 7w matrix element is found by combining

egs. (6.36),(6.37) and (6.38):

E? (06 0¢
A2 = g2 {—+—} M2 6.39
A 1 (6.39)
where
A= (nmm; E| Hw | K) (6.40)
and
M = vy (rm; E| Hy |K),, . (6.41)

6.4 Finite Volume Corrections for Non-Interacting

Pions

In this section the relation between finite volume matrix elements and infinite
volume amplitudes is worked out for the simpler free field case, where the two

final-state pions do not interact with each other.

The wavefunction for a single particle plane-wave state in a finite volume is

1 ...
IV(z) = P, (6.42)




In an infinite volume where the state has a relativistic normalisation, the equivalent

wave function is

V(%) = V2B, (6.43)

Thus for single-particle states, the relation between finite and infinite volume is

)™ = V2B |p)"" . (6.44)

For a two-particle state occupied by identical pions, the finite volume wavefunction

is
\/§1L3 (62171-51 e2-T2 eiﬁl-f26iﬁ2-fl) p1 % po
Vpipa (T1, T2) = : (6.45)
%eiﬁl(fl‘i’i’é) pL = po

The infinite volume wavefunction is
. 1 U, L
ot (1) = %\/2E1\/2E2(elp1'x162p2'”32 + iP1-T2 0221 ) (6.46)

which leads to the relation

V2EV2EL? p1,p2)Y B # o
[p1,p2)™ = : (6.47)

V2V2E2EL LR p1,pa)Y 1= e

The calculation of K — 7w matrix elements in an isospin=0 final state will be
performed at threshold where pj = po = 0, in which case the relation between finite-

and infinite-volume K — 77 matrix elements is

(m(0)m(0)] L [K(0))o = 2(mi L)*? (x(0)7(0)| Hy K (0)) py, - (6.48)
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Chapter 7

Lattice Methods for K — 77

Two separate calculations of the K — mw decay amplitudes are discussed in this
thesis. The first calculation focusses on the amplitude Ay, and provides the first
calculation of As at nearly physical kinematics. The second calculation is
performed with large quark masses on a relatively small lattice volume, allowing
large statistics to be collected for the evaluation of Ag. The purpose of this chapter
is to discuss the details of the technical aspects of the lattice evaluation of the

K — 77 correlation functions in general. Results from the two calculations will

then be presented in Chapters 8 and 9.

An essential ingredient in the evaluation of the K — 77 matrix elements is the
two-pion correlation function. As such, this chapter begins with a discussion of
two-pion scattering. Ensuring the two final state pions have non-zero momentum is
a fundamental aspect of the evaluation of Ay, and a discussion of how this is
achieved is given in Sec. 7.1. In Sec. 7.2, the correlation functions and Wick
contractions relevant to the evaluation of the K™ — 777" matrix elements are
given. Finally, the details of computing the K9 — 77 matrix elements at zero

momentum are given in Sec. 7.3.
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7.1 Two-Pion Scattering

For physical K — m7 decays in the centre-of-mass (CM) frame, the final state pions

will have non-zero momentum. If periodic boundary conditions are used on the

quark fields, the allowed two-pion energies are approximately 21/m2 + (27n/L)2
where n = 0,1,2,.... Thus extracting the two-pion state with energy ~ my
requires both the careful tuning of the lattice volume and the fitting of the
correlation function to an excited state. This entails extracting the next-to-leading

exponential in the large time limit, which is difficult to perform with high accuracy.

However, for the I = 2 two-pion state a special choice of boundary condition can be
applied to the quark fields in order to simulate the two final-state pions at non-zero
momentum. This is made possible by the Wigner-Eckart theorem, which relates the
K+ — 7770 matrix element to the K+ — 77t matrix element according to

Eq. (3.10). With anti-periodic boundary conditions in one or more spatial direction
on one of the quark fields in each 7 -meson, the allowed pion momenta are

p= (nmw/L), with n = 1,2,..., in each spatial direction where anti-periodic
boundary conditions have been applied. The non-zero momentum pions are now
the ground state, and so the correlation function can be fitted to the leading

exponential.

The Wigner-Eckart theorem is necessary in order to successfully simulate the
isospin=2 two-pion final state with the desired momentum. Using different
boundary conditions for the up and down quarks breaks isospin, and would allow
the final state pions to mix with the I = 0 two-pion state. However, the 777 final
state is the only charge-2 state, and is protected from such mixing by charge
conservation. The inability to use the Wigner-Eckart relation to circumvent the
isospin breaking prevents the same trick from being used for the calculation of the
ATl = 1/2 decay amplitude; this constitutes one of the major technical hurdles in

this calculation.

The 7 t7T correlation function is

Cortpt (it tr) = (0] Opi s (7, )OS (5,1)0) (7.1)
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where the interpolating operators are

Ontnt(Bt) = > PP PV d(w, )y u(@, )d(F, 1)y u(Z, 1) (7.2a)
WEYZ

CF e Bt) =) Neos (W3 P)eos (§: 5) d(, £)y°u(Z, 1)d(F, )y u(Z, 1). (7.2b)
WrYyZ

The d-quark is generated by imposing antiperiodic boundary conditions in one or
more of the spatial directions and using Coulomb gauge-fixed momentum wall
sources of the “cosine” type, defined in Eq. (4.51). The I = 2 two-pion correlation

function at momentum p'is calculated by evaluating

C7T+7T+ (ﬁ’ t; tﬂ') = 2(D - C), (73)

where D and C label two different Wick contractions. These Wick contractions are
shown in Fig. 7.1 and the naming convention for the diagrams is taken from [56].
Inserting a complete set of two-pion states in Eq. (7.3), the expected form of the

correlation function at large ¢ is

Crn(Pititx) = (0] Onn(pt) ) (| OFF T (5,1) [0) e 5t + C

= Z¢ (ZzE )e Bt 4O, (7.4)
where Z¢ = (0| Oxr (P, t) |7m), ZE,. = (0| OS2 (P, t) |7m), and the labels e and ¢ have
been introduced to distinguish between the use of an exponential momentum source
or a cosine momentum source. The constant C' is included to describe the leading
“around-the-world” effect. This constant term arises from a contribution in the
corresponding functional integral where each of Ojr+7r+ and O +,+ annihilate one
pion and create another, so that a single pion propagates across the entire lattice.
This contribution to the correlation function is independent of ¢, and although it

—E;:T

contains the small factor e , where T is the temporal size of the lattice, it may

nevertheless lead to a loss of precision.

When studying the propagation of two 7 mesons, the same cosine source is used

for each d-quark, which introduces cross terms in correlation functions that couple
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to two-pion states with non-zero total momentum. For illustration, consider the

case p = (7/L,0,0) so that the product of the sources of the two d-quarks is

- - 7T 7T
nCOS(xlamncos($2,m = COS <—£l31) CcOs (—$2)
. L (7.5)

1 s s s i i P _ix i
:Z(eszlezL:vg —|—€ZL:B1€ ZL:B2—|-e ZLmleleQ—i-e ITT1 zLx2>.

—

The two pions are required to have individual momenta p; = 7% and p» = —7Z (or

S

vice-versa), but the first and last terms on the right hand side of Eq. (7.5) couple to
two-pion states with total momentum 27 and —27 respectively. The unwanted
terms in the two-pion correlation functions are eliminated by using different sinks,
exp(+imz;/L), for the two d quarks ensuring that they carry equal and opposite
momenta which constrains the final state to have zero total momentum. In the

K — 7mm correlation functions, the kaon has zero momentum and the sum over the
spatial position of the weak operator then ensures that the two-pion final state also

has zero total momentum.

The advantage of using the cosine sources is that it halves the number of inversions
which have to be performed for the d-quark. Had the more conventional momentum

source,

np(T) = e 'f, (7.6)

been used, it would have been necessary to perform two separate d-quark inversions
with momentum +p for one and —p for the other. The cosine source eliminates one

of these inversions.

It was shown in [57] that it is sufficient to use the antiperiodic boundary conditions
only on the valence down anti-quarks in the 7 mesons, and to use periodic
boundary conditions for the sea quarks used in the simulations. Thus it is only
necessary to generate one lattice ensemble with periodic boundary conditions

imposed on all sea quarks.

The calculation of the two-pion scattering in the I = 0 channel differes from the
I = 2 channel in three key ways. Firstly there are two extra Wick contractions

which contribute to the correlation function. These are shown in Fig. 7.1. Secondly,
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there is a vacuum contribution which must be subtracted, and finally it is not

possible with current techniques to simulate the two pions at non-zero momentum.

Two-pion states with I = 0,2 and third component of isospin I, = 0 are
constructed from |77 ) and |797°) states as described in Eqns. (2.2c) and (2.2d).

The interpolating operators used to overlap with |77 ~) and |7TO7TO> states are

Opin-(t) = Y d(w, )y u(d, t)a(y, t)y°d(%, 1) (7.7a)
O0r0(t) = iQ > {u(@.0n°u(@, 1) - w07 d@.0)}) x

At zero momentum, the |77 ~) state is identical to the |[7~7T) state, and the

two-pion correlation functions with I, = 0 are calculated by evaluating

CE™(t:tx) = (05" MOF™(tn)) =% {4(Orrn- (DOL. _(ta)) +4(Ontr- (1)L (1))

+ <O7ro7ro( )Olo. 0 (tw)>}

= 2D(t,tz) + C(t,tz) —6R(t, 1) + 3V (L, tr)

C5™(ttn) = (05" (V05" (1)) =% {2(O0nen- (O], (t2) ) +2(Opir- (0L o (k) )

#4(0300(010,0:))

= 2(D(@t,t") = C(tt))

where D, C, R and V refer to the four different wick contractions which contribute
to the two pion scattering [56]. For convenience, the minus sign arising from the
number of fermion loops is not included in the definition of these contractions. The
vacuum contraction, labelled V, should be accompanied by a vacuum subtraction.

These contractions can be calculated in terms of the light quark propagator
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Sl(tsnk, tsrc) for a Coulomb gauge fixed wall source located at the time tg.. and a
similar wall sink located at tg,x. The resulting complete vacuum amplitude,

including the vacuum subtraction, is given by

V(t,t) = {<Tr[S’(t’,t’)Sl(t’,t’)T]Tr[Sl(t,t)S’(t,t)T]> (7.9)

—<Tr[Sl(t', )SL(, t’)T]><Tr[Sl(t, £)S!(t, 1) ]>}

where the indicated traces are taken over spin and colour and the hermiticity
properties of the domain wall propagator have been used to eliminate factors of 7°.
In order to improve statistics, the results from sources on each of the N; time slices

can be explicitly averaged (NN; is the temporal extent of the lattice), as follows

Ni—1

1
— t,t
t'=0

= {<Tr[Sl(t', SHE Y T[SH (¢ + ¢ 4+ ) SH(t + 1t + t’)T]> (7.10)

—(TelS' @, )8 (¢ )] ) (T[St + ¢t + ¢)S (L + 0+ t’)T]>}.

==L €

\Y

Figure 7.1: The four diagrams which contribute to m—m scattering

Inserting a complete sets of two-pion states in Eqns. (7.8b) and (7.8d) the expected

form of the two-pion correlation function at large ¢ is

OT™(t,0) = | Znn.1|* {exp(—E7™t) + exp(—ET™(T — t)) + Az}, (7.11)
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where Z.r 1 = (0| O™ |n7), and A describes the leading around-the-world

contribution.

7.2 Expressions for KT — 777" Correlation Functions

This section introduces the correlation functions and Wick contractions that must
be computed in order to evaluate the K — 777" matrix elements at non-zero
momentum. Discussion of the zero momentum calculation of the K° — 77 matrix
elements, with particular emphasis on the evaluation of Ag, are postponed until the
next section. The main motivation for dividing the chapter in this way is the
appearance of both disconnected and divergent diagrams in the I = 0 channel. In
the case of the I = 2 final state no disconnected diagrams appear, there are no
divergent eye diagrams, and isospin conservation requires that four valence quark
propagators must join the kaon and weak operator with the operators creating the

two final-state pions.

In addition to the two-pion correlation function discussed in Sec. 7.1, the

correlation functions which were computed for this calculation of K™ — 777" are

Cr(t,tzs) = (0|0 (H)OL, (1) ]0) (7.12a)
Ci(titx) = (0]Ox(H)OL()]0) (7.12b)
Cronn (B tritopi tie) = (0] O (5, t2)Qi(Fopy top) Ok (tx) [0)  (7.12¢)

where the interpolating operators are

Op+(t) = D dE@ )y u(f,t) (7.13a)
Ok(t) = > 5@ty u(y,t) (7.13b)

g
:B7y

and Q;(Zop, top) is one of the operators defined in Eq. (3.12). Equation (7.12c)
results in six Wick contractions, labelled sz,lv sz,w DfR,l and DfR,zv where 1,2
label the topology of the Wick contractions, y = L, R depending on whether the

operator is LL or LR, and the ~ indicates that the operator is colour mixed. The
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superscript 4+ reminds the reader that these contractions are for K+ — 777+, Full
expressions for all six Wick contractions can be found in A.1. Quark-flow diagrams
depicting the traces over spinor indices are presented in Fig. 7.2, where ~, = ~, if
the weak operator is in the (27,1) representation. Alternatively 7, = g if the weak
operator is in an (8,8) representation. The diagrams in Fig. 7.2 do not carry a
minus sign for odd numbers of fermion traces. This minus sign is included explicitly
in Eq. (7.14). The K — 7m correlation function for each of the three operators in
the AT = 3/2 channel of the decay can then be written in terms of the diagrams

D+

i DitR ; (which are implicit functions of p tr, top and tx) as follows:

27,1 -
C( L) (p§t7r§top§tK) = Q(DZL,I - D—L’—L,Q)

K—nr

K—nm

cies) (Pt tops tic) = Q(DZRJ - DZR,2) (7.14)

88)mx, - , . . _ £
C( ) (pa tﬂa t0p7 tK) - 2(‘DER71 - DERQ)'

K—nm

d d
o S ~
K& S U K&
x> Tt m Tt
Figure 7.2: KT — 777" quark flow diagrams. The solid lines

depict traces over spinor indices. The left-hand image is labelled
D"L"X 1 and the right-hand image is labelled DZ‘X 9

The pion and kaon masses and K — 7 matrix elements can all be extracted from
the correlation functions in Eq. (7.12). This is achieved by inserting complete sets

of states between the operators as described in Eq. (4.56), with the result

Crlt,tr) = [(0]Ox(t)|r) [*(e™ " 4 e~ =T
= 1z ) 150
Cr(titn) = (0] O (t)|m) [2(e=mxt 4 ¢=mu(T=1)
= |Zg (et 4 7m0 (7.15b)
Cronn(Pitritopitie) = ZSnZigMe M=t = Brn(t=tz) (7.15¢)

where M; = (17| Qi (Zop, top) |IK) and Z, was defined in Sec. 7.1.
An analysis of these correlation functions, computed on an ensemble of large
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Drya Dpye

Figure 7.3: Diagrams representing the eight K° — mn contrac-
tions of typel, where x = L or R, and vr,r = vu.(1 £ 5). The
blue dot indicates a ~vs matrix, which is present in each operator
creating or destroying a pseudoscalar meson.

323 x 64 x 32 lattices at almost physical kinematics is described in Chapter 8.

7.3 Wick Contractions for K — 77 Decays

In this section we describe some of the techniques used to evaluate the K° — 7
matrix elements on the lattice. The calculation of Ay requires evaluating the

K9 = 7t7~ and K° — 7970 matrix elements of all ten operators listed in

Eq. (3.2). Particular emphasis must be placed on collecting large statistics. The

I = 0 two-pion final state implies the presence of disconnected graphs in the
correlation functions and makes the calculation very difficult. For these graphs, the
noise does not decrease with increasing time separation between the source and
sink, while the signal does. Therefore, substantial statistics are needed to get a
clear signal. This difficulty is compounded by the presence of diagrams which
diverge as 1/a? as the continuum limit is approached (a is the lattice spacing).
While these divergent amplitudes must vanish for a physical, on-shell decay they
substantially degrade the signal to noise ratio even for an energy-conserving
calculation such as the one presented in Chapter 9. Studying the properties of the
1/a? terms and learning how to successfully subtract them is one of the important
objectives of this calculation. Domain wall fermions are used in this calculation in

order to preserve chiral symmetry, which is necessary to control operator mixing.

There are 48 different contractions which contribute to the matrix elements

(77|Qi|K"). These are illustrated in Figs. 7.3-7.6.
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K

Drys Dirya

Figure 7.4: Diagrams for the type2 K° — nm contractions.

(a) mix3 (b) mix4

Figure 7.7: Divergent diagrams
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Figure 7.8: Ezamples of K — |0) contractions.

These contractions are labeled in the figures and grouped into four categories
labeled as typel, type2, type3, and typed according to their topology. The labels are
of the form Dy, , or D(Lqi,n’ where n describes one of eight specific topologies,

X = L, R depending on whether the operator is LL or LR and the superscript (q) is
sometimes included to specify which flavour of quark appears in certain diagrams.
If the operator is colour diagonal, the quark-flows in Figs. 7.3-7.6 are traces over
both spin and colour. If the operator is not colour-diagonal then the diagram is
described as mixed. In this case separate traces over spin and colour appear in the
in

expressions for the diagrams. The mixed diagrams are denoted by DLX,n, ﬁ(Lq; n

(@)

place of Dy, , or Dpsn

Once we have calculated all of these contractions, the
correlation functions (O™ (tr)Q;(top) K°(tx)) are then obtained as combinations of
these contractions. In order to simplify the following formulae, we use the

amplitude Ay ;(tr,t,tx) to represent three point function (077 (tr)Qi(top) K (tK))-
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Using this notation, the I = 2 amplitudes can be written,

and in the I=0 case,

AZ,l(t7n top7 tK)

A272(t7r, top, tK)
A273(t7r, top, tK)
A274(t7r, top, tK)
A275(t7r, top, tK)
Ag6(tr,top,ti)

A2,7(t7r, tOp, tK)
A2,8 (t7r7 top7 tK)
A2,9 (tﬂ', tOp, tK)

A2,10 (t7r7 top7 tK)

2
\/;{DLL,l —Drr2}

9 _
\/;{DLL,I —Drr2}
0

0
0

0

3

\/;{DLR,I — Drpo}
3 - _
§{DLR,1 — Drpo}
3

\/;{DLL,I —Drro}
3 - 5
§{DLL,1 —Drr2}
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(7.16a)

(7.16D)
(7.16¢)
(7.16d)
(7.16¢)
(7.16f)

(7.16g)
(7.16h)
(7.161)

(7.16j)



1
Aoy = =—={Dur +2D112 = 3D1ss - 3DY)  +3DY) 1} (7.17a)

1
Ago = —3{2DLL,1 +Drr2—3Drpa — 3D(LdL)76 + 3D(LdL),8 (7.17Db)

RVE]

A0,3 = _\/g{DLL,Q — 2DLL,3 + DLL,4 — 2D(LdL)75 — ngﬁ

d s d s d s
+ D(LL),G + D(Lg,ﬁ + QDELL)j + DS;%; - D(LL),S - D(Lg,S} (7.17¢)
Aoa=V3{Drr1+Drrs—2Drra+ D(LdL)ﬁ + D(Lszf] (7.17d)

(d) (s) (d) (s) (d) (s)
— 2Dy 6 — DLSL,6 —Dir7— DLSL,7 +2D5; s+ DLSL,s}

Ags = —V3{Drr2 —2Drr3 + Drra — QDE;C%L:, - sz)m + Déd])m

s d s d s
+ D(LJ)%,()‘ + 2D(LJ)%,7 + D(LJ)%J - D(LJ)%,S - D(L})%,S} (7.17e)

Ao = _\/g{bLRQ —2Dpr3+ DLR,4 - 2D(Ld1)3,5 - f)f}w + D(Ldz)z,a

. i . » .
+ D+ 2D+ Dipr = Dips = Dipsh (7.176)

V3
Aor = _T{DLRJ +Dir2—Drrs = Drra — D(Ld})%,S + Dfl)m - D(Ldz)%,ﬁ

s d s d s
- D(LJ)%,()‘ + D(L}ZEJ - D(LJ)%J + D(LIZE,S + D(LJ)%,S} (7.17g)

Aog = =5 {Drr1+ Diro = Dirg — Dira — DY) s+ D) s — DYy

H(s) 7 (d) A (s) ~(d) A (s)
o DLSR,b‘ + DLR,7 - DLSR,7 + DLR,8 + DLSR,S (7.17h)
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V3
Ao = _7{DLL,1 +Drr2—Drrs—Drpa— D(LdL)g) + D(LSL5 — D(LdL)’6

s d s d s .
- D(Lg,ﬁ + DE;L)j - D(ng + D(LL)78 + D(Lg,s (7.171)

V3
Amo=—E%DMJ+Du2—DM3—DMA—Dﬁ5—Dg5—D%ﬁ

(s) (d) (s) (d) (s) .
T DLSL,G + DLL,7 + DLSL,7 + DLL,8 - DLSL,g . (7.17j)

The contractions identified in Figs. 7.3 - 7.6 do not carry the minus sign required
when there is an odd number of fermion loops. Instead, the signs are included
explicitly in Eqns. (7.16) and (7.17). A line represents a light quark propagator
unless it is explicitly labeled. In general, up and down quarks and particular flavors
of pion are not distinguished in Figs. 7.3 - 7.6. The exception is that occasionally
down-quarks are labelled explicitly when two diagrams differ only by an insertion of
a d/s quark and we wish to distinguish between them. These specific contractions
of strange and light quark propagators are combined in Eqns. (7.16) and (7.17) to
give the I = 2 and I = 0 amplitudes directly. Using Fierz symmetry, it can be

shown that there are 12 identities among these contractions:

Drry=—Drra, Dﬁbz_ﬁﬁﬂ Dﬁyz—bﬁs
— D (C) N ) (d)  _ [
DLL72 = _DLL,lv DLL,G - _DLL,57 DLL,8 - _DLL,7

Drrs=—Dira, Dgﬁz—ﬁg@ ng:—Dgﬁ

Dira=-Dirg, Dilg=-Df)s, DY) g=-Df); (7.18)

A consequence of these identities is that Eq. (7.17) is consistent with only seven of
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the ten operators (); being linearly independent and with the three usual relations:

Quo—Qo = Q41—0Q3 (7.19a)
Qi—Q3z = Q22— (7.19b)
2Q9 = 301 —Qs. (7.19¢)

The loop contractions of type3d and typed are calculated using the Gaussian,

stochastic wall sources described in Sec. 9.1.

In order to make the approach more explicit, some examples are included. First
consider the two contractions of typel identified as Drr, 1 and D LL,1, both depicted

by the left-most diagram in Fig. 7.3:

DLL,I = <TI' {’7#(1 - ’75)51(501)’7501);tW)Sl(j()patop;tw)T} X (720)
Te {7 (1 = 15)S' (Zops topi 1)1 (b 1) S (Fops tapi 1)1 | )
DLL,l = <Trc [Trs{'m(l - VS)Sl(fop7top§tn) Sl(fopatop§t7r)T} (7'21)

X Tl“s{’Y“(l - VS)Sl(fopa top§ tﬂ)’YSSl(uﬂ tK)SS(fopa top; tK)T}} > 5

where tx is the time of the kaon wall source, ¢, the time at which the two pions are
absorbed and x,, = (Zp,top) the location of the weak operator. The angle-brackets
(---) denote an average over configurations. The wall-source propagators were
defined in Eq. (4.49). Each propagator is a 12 x 12 spin-colour matrix. The
hermitian conjugation operation, }, operates on these 12 x 12 matrices. Traces over
spinor indices are denoted Trg, traces over colour indices are denoted Tr., and
traces over both spinor and colour indices are denoted Tr. The 4 hermiticity of the
quark propagators is used to realise the combination of quark propagators given in
Eqns. (A.5) and (7.21), allowing both contractions to be constructed from light and
strange propagators computed using Coulomb gauge fixed wall sources located only
at the times ¢, and tx. The spatial location, &, of the weak operator is summed

over to project onto zero spatial momentum and improve statistics.
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As a third example, which illustrates the use of stochastic wall sources, consider
contraction D(LIJ)Q 5 shown in Fig. 7.5. Using the notation introduced above, this

contraction is given by

! = *
D}A)Qé = <TI‘ {'Yu(l + 75)552(1'01)7 Lop; top)} n(xop) X

(7.22)
Te {7 (1 = 15)S" Fop. tops ) S (b tr)! S (b 1) S (Fops topi 1) } )

Here n(x) is the value of the complex, Gaussian random wall source at the
space-time position x, while Sﬁ(:ﬂsmk, tsrc) is the propagator whose source is
n(z)d(xg — tsre). The Dirac delta function §(zg — tsc) restricts the source to the
time plane ¢ = tg.. In the usual way, the average over the random source 7)(Z)
which accompanies the configuration average, will set to zero all terms in which the
source and sink positions for the propagator Sﬁ%(azop, top) in Eq. (7.22) differ, giving
us the contraction implied by the closed loop in the top left panel of Fig. 7.5. By
using IV; separate propagators each with a random source non-zero on only one of
the NV; time slices, the results obtained better statistical accuracy than would result

from a single random source spread over all times.

All of the remaining expressions for the K — 7m contractions are collected in

section A.2 of the appendix.

7.3.1 Divergent Diagrams

An important objective of this calculation is to learn how to accurately evaluate the
quark loop integration that is present in type3 and typed graphs and which contains
a 1/a?, quadratically divergent component. As can be recognised from the structure
of the diagrams, these divergent terms can be interpreted as arising from the
mixing between the dimension-six operators Q); (for all i but 7 and 8) and a
dimension-3 “mass” operator of the form Sy5d. Such divergent terms are expected
and do not represent a breakdown of the standard effective Hamiltonian written in
Eq. (3.1). In fact, given the good chiral symmetry of domain wall fermions all other
operators with dimension less than six which might potentially mix with those in

Eq. (3.1) will vanish if the equations of motion are imposed. Therefore these
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operators cannot contribute to the Green’s functions evaluated in Eqns. (7.16) and
(7.17) where the operators in Hyy are separated in space-time from those operators
creating the K meson and destroying the m mesons, a circumstance in which the

equations of motion can be applied.

The problematic operator $ysd is not explictly removed from the effective
Hamiltonian because, again using the equations of motion, sy5d can be written as
the divergence of an axial current and hence will vanish in the physical case where
the weak operator Hy, carries no four-momentum and is evaluated between on-shell
states. While we can explicitly sum the effective Hamiltonian density Hy, over
space to ensure Hyy carries no spatial momentum, to ensure that no energy is
transferred we must arrange that the kaon mass and two-pion energy are equal. We
may achieve this condition, at least approximately, but there will be contributions
from heavier states, which are normally exponentially suppressed, but which will

violate energy conservation and hence will be enhanced by this divergent svsd term.

Since $y5d will not contribute to the physical, energy-conserving K — 7w
amplitude, there is no theoretical requirement that it be removed. The coefficient of
this $y5d piece is both regulator dependent and irrelevant. The contribution of
these terms in a lattice calculation of K — 7 decay amplitudes will ultimately
vanish as the equality of the initial and final energies is made more precise and as
increased time separations are achieved. However, the unphysical effects of this
S$7v5d mixing are much more easily suppressed by reducing the size of this irrelevant
term than by dramatically increasing the lattice size and collecting the substantially
increased statistics required to work at large time separations. Furthermore, the
condition imposed in Eq. (7.23) automatically subtracts the vacuum contribution
from the type4 diagrams, so there is no need to make an explicit vacuum

subtraction in the type4 diagrams once this sv5d piece has been subtracted.

A direct way to remove this 1/a? enhancement is to explicitly subtract an a;3vsd
term from each of the relevant operators (); where the coefficient «; can be fixed by
imposing the condition:

(0[Q; — a;3v5d|K) = 0. (7.23)
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The K — vacuum matrix elements, (0|Q;|K) and (0|5y5d|K) are constructed from
the Wick contractions depicted in the top and bottom lines of Fig. 7.8 respectively.
Of course, the arbitrary condition in Eq. (7.23) will leave a finite,
regulator-dependent 5ysd piece behind in the subtracted operator Q; — a;5vs5d.
However, this unphysical piece will not contribute to the energy-conserving
amplitude being evaluated. Since it is no longer 1/a?-enhanced its effects on our
calculation will be similar to those of the many other energy non-conserving terms
which we must suppress by choosing equal energy K and 77 states and using

sufficient large time separation to suppress the contributions of excited states.

Following Eq. (7.23) we will choose the coefficient «; from the ratio

_ (0]Qi|K°)

(Note, with this definition the coefficient «; is proportional to the difference of the
strange and light quark masses.) Thus, we will improve the accuracy when
calculating graphs of type3 and typed by including an explicit subtraction term for

those operators (); where mixing with $vysd is permitted by the symmetries (all but

Q7 and Qg):

(OF" (t)Qiltop) K°(tK)) 4y, = (OF (t2) Qi (top) K (1K)

— 0 (OF (t)595(top) KO (tx0))

(7.25)

We should recognise that there is a second, divergent, parity-even operator sd
which mixes with our operators ;. However, we choose to neglect this effect
because parity symmetry prevents it from contributing to either the K — 7m or

K — |0) correlation functions being evaluated here.

The correlator (OF™ (tx)5v5d(top) K (tx)) includes two contractions, one connected
and one disconnected as shown in Fig. 7.7. These terms, which arise from the
mixing of the operators @); with $ysd, are labeled mix3 and mix4. To better

visualize the contributions from different types of contractions, we can write the
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right hand side of Eq. (7.25) symbolically as

typel + type2 + type3d + typed — « - (mix3 + mixd)

= typel + type2 + sub3 + sub4, (7.26)

where sub3 = type3 — a - mix3 and subd = typed — o - mixd. Note, here and in later
discussions we refer to the term being subtracted as “mix” and the final difference

as the subtracted amplitude “sub”.

This completes the technical background to the K — 7 calculation. Details of a
full analysis performed on an ensemble of 163 x 32 lattices with heavy pion masses

can be found in Chapter 9.
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Chapter 8

Evaluation of K — 7w decay

amplitudes on DSDR lattices

This chapter details the calculation of the AI = 3/2 K — 7w decay amplitude with
nearly-physical kinematics. The results presented in this chapter are the first
realistic ab-initio calculation of the decay amplitdue As, and form the main results
of this thesis. The analysis of this chapter is perfomed on a single ensemble of 2 + 1
flavour domain wall fermions with the DSDR-Iwasaki (IDSDR) gauge action at

B = 1.75 and a lattice size of 323 x 64 x 32. The residual mass is

amyes = 0.001843(8) [58]. The ensemble was generated with a simulated
strange-quark mass of amj, = 0.045 and light-quark mass of am; = 0.001, with
corresponding unitary pion mass of approximately 170 MeV. The inverse lattice
spacing has been determined to be a~! = 1.364(9) GeV [58], using the 2 baryon
mass to set the scale and the masses of the pion and kaon to determine the physical

quark masses.

The lattice spacing and two physical quark masses m,q and m, were obtained using
a combined analysis of the IDSDR ensemble described above, along with a second
IDSDR ensemble generated with am; = 0.0042 also at 5 = 1.75 and the

323 x 64 x 16 and 243 x 64 x 16 domain wall fermion configurations with the
Iwasaki gauge action at 5 = 2.25 and 8 = 2.13 respectively. The two Iwasaki

ensembles were introduced in Chapter 5, and the properties of all the ensembles
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used in this chapter are summarised in Table 9.1. This involves a combined fit of
the pion and kaon masses and decay constants and the mass of the Q2-baryon as
functions of the quark masses and lattice spacing. Three different ansidtze were used
for the quark-mass dependence in order to estimate the systematic error on the
chiral extrapolations. Two of these are obtained from next-to-leading order (NLO)
partially-quenched chiral perturbation theory with and without finite-volume
corrections, and the third assumes a simple linear mass dependence (labelled
analytic in the following). Following the analysis [51] of the two Iwasaki lattices,
the extrapolation to the continuum limit is made along a family of scaling
trajectories (lines of constant physics) that are defined by constant values of m,
my and mq; i.e. by imposing the condition that these masses have no lattice cutoff
dependence on the scaling trajectory. The leading dependence on a of the
remaining quantities is expected to be O(a?) and the fits assume such a quadratic
dependence. Note that the coefficients of the a® terms are not constrained to be
equal for the two different lattice actions. From the combined chiral and continuum
fits the lattice spacings and physical quark masses required for the pion, kaon and
) masses to match their physical values are determined, obtaining for the IDSDR
ensembles an inverse-lattice spacing of a=! = 1.364(9) GeV and dimensionless
physical quark masses of m; = 0.00178(3) and m, = 0.0490(6), which correspond to
3.09 £ 0.11 and 84.1 4+ 2.0 MeV respectively when expressed in physical units in the
MS scheme at 3 GeV. Here 7 = m + myes and the quoted errors contain both
statistical and systematic contributions estimated using the procedures developed
in ref. [51]. Note that the value for m; that would correspond to a physical pion
mass is actually smaller than m,es, indicating that the chiral symmetry must be

improved before physical pion masses can be simulated.

In order to correctly propagate the correlations between the data used in the
determination of the lattice spacing with that of the present calculation of the

K — 77 matrix elements the super-jackknife method is used.

Measurements are made on a total of 146 gauge configurations, each separated by 8
molecular dynamics time units. With the aim of reducing the correlations between

successive measurements, the gauge fields are shifted by 16 lattice spacings in the
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Table 8.1: Ensemble details. The main analysis of this chapter is
performed using the IDSDR enemble with m; = 0.001. The addi-
tional ensembles listed in this table are used in the determination
of the IDSDR lattice spacing and physical quark masses.

Lattice 15} amp, am; | number of trajectories
IDSDR (323 x 64) | 1.75 | 0.045 | 0.001 146
1.75 | 0.045 | 0.0042 148
Iwasaki (323 x 64) | 2.25 | 0.03 | 0.004 300
2.25 | 0.03 | 0.006 312
2.25 | 0.03 | 0.008 252
Iwasaki (243 x 64) | 2.13 | 0.04 | 0.005 202
2.13 | 0.04 | 0.01 178

time direction relative to the previous configuration prior to measuring the quark

propagators.

The d-quark propagators are computed with antiperiodic boundary conditions in
either 0 or 2 spatial directions, corresponding to pions with ground-state momenta
|p] = 0 and |p] = v/27/L. This choice is motivated by the expectation that, with
the simulated quark masses, |p| = v/27/L corresponds to on-shell kinematics, i.e.
that the energy of the two-pion state is (almost) equal to my. Gauge fixed wall
sources are used for the case p = 0, while cosine wall sources are used when the
d-quark has non-zero momentum. The u and s quarks are generated with periodic

spatial boundary conditions and Coulomb gauge-fixed wall sources.

Quark propagators with periodic and antiperiodic boundary conditions in the time
direction were computed on each configuration with a source at t = 0. They were
then combined so as to effectively double the time extent of the lattice. Meson
correlation functions formed using the sum of the propagators with periodic and
antiperiodic boundary conditions can be interpreted as containing forward
propagating mesons originating at time ¢ = 0, whereas those calculated with the
difference can be interpreted as containing backward propagating mesons
originating from a source at ¢ = 64. The purpose of this procedure is to suppress
the around the world effects. The leading around the world effects in two-pion and
K — 7mm correlation functions have been described in previous chapters.
Strange-quark propagators with periodic + antiperiodic combinations were

generated with sources at tx = 20, 24, 28, 32, 36, 40 and 44 in order to calculate
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(a) Effective mass plot for the pion (b) Effective mass plot for the kaon

Figure 8.1: Effective mass plots for the pion and kaon. Results
for m, and mg obtained from the fits of the correlation functions
to Eqns. (7.15a,7.15b) are shown as the horizontal lines in each
plot.

K — 7mm correlation functions with kaon sources at these times, while the two-pion
sources remained at either ¢t = 0 or ¢ = 64. Thus it was possible to achieve time
separations between the kaon and two pions of 20, 24, 28 and 32 lattice time units
in two different ways which increased the statistics. These separations were chosen
so that the signals from the kaon and two pions did not decay into noise before

reaching the four-quark operator @Q;.

8.1 Analysis

Results from the analysis of the correlation functions described in Chapter 7,
computed on the IDSDR lattices, are presented in this section. While the results
presented in Eq. (8.11) towards the end of this section contain estimates of the
uncertainties, detailed discussion of the determination of the systematic errors is

postponed until Sec. 8.3.

The pion and kaon two-point correlation functions at zero momentum are fit to the
form given in Eqns. (7.15a) and (7.15b), with 7" = 128 being the total effective time

extent of the lattice.

For both the pion and kaon, results for m,, mg, Z,, and Zx are obtained by fitting
between t = 5 and ¢t = 63. The masses extracted from these fits are superimposed
on the effective mass plots in Figs.8.1(a) and 8.1(b), and the numerical results are

given in Tab. 8.2.
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Table 8.2: Results for meson masses and energies. The subscripts
0, 2 denote p =0 and p = \/27/ L respectively, where p = |p].

units My M Ero Erro Err2 mi — Erro
lattice | 0.10421(22) | 0.37066(68) | 0.17386(91) | 0.21002(43) | 0.3560(23) | 0.0146(23)
MeV 142.11(94) 505.5(3.4) 237.1(1.8) 286.4(1.9) 485.5(4.2) 20.0(3.1)
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Figure 8.2: Effective energy plot for a pion with momentum p =
\/§7r/L. The horizontal line corresponds to value of E, obtained
from a fit to Eq. (8.1).

The pions in the final state for K — w7 decays have momentum |p] = v/27/L and
in Fig. 8.2 the effective energy for a pion with this momentum is plotted. Since the
correlation functions become noisier when the pion has a non-zero momentum, the
fit is over the time interval ¢t = [5,35] where the contribution from the backward

propagating pion can be ignored. The fit form is

Cr(t,p=2r/L) = |Zp(p = V21 L)[2e~ Ert | (8.1)

where p = |p] and E; is the corresponding energy. The value E; 2 = 0.17386(91)
obtained from the fit (see Tab.8.2) is nicely consistent with the (continuum)
dispersion relation for a pion with mass 0.10421(22). The subscript 2 in E; o
indicates that the momentum of the pion is v/27/L, i.e. that anti-periodic

boundary conditions have been imposed on the d quark in two directions.

The expected behaviour of the two-pion correlation functions is described in

Eq. (7.4). The effects of pions propagating around the world are expected to be
small after doubling the effective time extent of the lattice. An effective technique
to reduce the statistical errors in the fit to the two-pion correlation function is to

calculate the quotient of two-pion and single-pion correlators and fit the ratio to the
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form

Cont) o —ap
Gy =T

where AE = (B, — 2E,) and R? = Znwel® e energy difference AE is not

T 2ntw ‘Zﬂ.|4 .

(8.2)

equal to zero because of the repulsive interaction between the two pions with
isospin 2 in a finite volume. The two-pion energy FE,, is then given by

Err = AE+2FE;, and Z,, . is found from
Zame = (2789)Z2R. (8.3)

Eq. (8.2) can be used for values of ¢ which are sufficiently large to neglect excited
states and sufficiently smaller than 7'/2 so that the backward propagating states
(and the around-the-world effects) can also be neglected. In practice, in order to
improve the statistical precision, the correlation functions are folded, averaging the
equivalent results at ¢t and 7' — ¢. The ratio in Eq. (8.2) is calculated for p = 0, in
which case Z,; and E, are just the normalisation factor and pion mass found from
the fit to Eq. (7.15a) and for p = /27/L in which case Z, and FE, are taken from
the fit to Eq. (8.1). The fit regions for the quotients are t = [5,48] for p = 0 and
[5,22] for p = v/2/L. Plots of the quotients at the two values of p are shown in
Fig. 8.3. The results for all the meson masses and energies are presented in Tab. 8.2.
The difference between the kaon mass and two-pion energy, mx — E ., is also

calculated to demonstrate that the kinematics are close to being energy conserving.

The momentum k, of each pion in the two-pion state is defined from the two-pion
energy using the dispersion relation E,, = 21/m2 + k2. The interactions between

the two pions lead to k, being different from 0 or v/27/L.

In the calculation of the K — w7 matrix elements, the two-pion source is placed at
time tr = 0 (or equivalently at 64) and the position of the kaon source ¢y is varied
using the different s-quark sources described in the previous section. In total, the
analysis is performed for four separations J; between the kaon and two-pions
sources, d; = 20,24, 28 and 32. The operators of the weak Hamiltonian are inserted

between ¢, and tx. The symmetries of lattice QCD (including translation

96



1.64$ 1 18

| P
. (A S
i ol !
152 HIHII 1 04l [

1.5t 1 0.2- I
1'480 10 20 30t 40 50 60 GO 10 20 ¢ 30 - 40
(8) Con(1)/C2(1),p = 0 (b) Cun(t)/C2(t),p = V2r/ L

Figure 8.3: The ratios Crr(t)/(Cr(t))? defined in Eq. (8.2) at
p = 0 (left-hand plot) and at p = /2w /L (right-hand plot). The
minimum seen in the left-hand panel around t = 52 results from
the different large-time behavior of the numerator and denomina-
tor. While the denominator decreases exponentially as t increases
from 0 to 64, the numerator contains a small t-independent con-
stant (caused by one backward propagating pion) which lessens its
decrease at large time. If ezamined for 0 <t < 128 the ratio shown
in the left-hand panel is symmetrical about the point t = 64.

invariance and time-reversal) allow the translation of the results into K — 7w

matrix elements.

For each of the three operators @; in Eq. (3.12), where i labels the operator, the
corresponding K — 7w matrix element M; = (777" | Q; |K™) is extracted by

calculating the ratios

}(Wﬂ(t) o MZ
CK(tK - t)Cmr(t) B ZKZ7T7T,€ (84)

R(tq)

and fitting to a constant in time ¢t. The quantity C}}m is the K — mm correlator
with the operator (); inserted at ¢t and the kaon and two-pion interpolating
operators placed at fixed times 5 and 0 respectively. Zx and Zr, . are determined
from the kaon and two-pion correlation functions using Eqns. (7.15b) and (8.2). For
illustration, the left-hand side of Eq. (8.4) is plotted in Fig. 8.4 for each of the three
operators for the choice §; = 24. The two-pion source is shown at ¢ = 0 on this plot,
and the kaon source is located at ¢ = 24. The x-axis is labelled g and illustrates
the insertion of the weak-operator. The figure demonstrates that sufficiently far

from the kaon and two-pion sources the data is indeed consistent with the expected
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Table 8.3: The two-pion energy F.r, kr, qz and s-wave phase

shift
D Eqr (MeV) | kz (MeV) On d (degrees)
0 286.4(1.9) | 17.63(36) | 0.0659(13) | -0.311(18)
V2r/L | 485.5(4.2) | 196.8(2.2) | 0.7350(72) | -7.96(2.07)

constant behavior. The matrix elements are determined by fitting the data between
t =5 and t = txg — 5, where ¢ denotes the time distance from the two-pion source.
The results for M; /(Zx Zrr ) obtained from the fits are indicated on the plot
together with their errors. Additional plots showing the quotient R(tg) for

separations §; = 20,28 and 32 are included in Appendix B.

The finite-volume matrix elements computed in the lattice simulations M; are
related to the corresponding infinite-volume ones A4; by the Lellouch-Liischer factor

given in Eq. (6.39),

2
—L3/2 vV mKEﬂWMi )

£/ 2Ntw

P =

["2mw 9 % ] (8.5)

27¢r \| 0gx  Ogr
where the quantity in square brackets (denoted by LL in Tab.8.4) contains the
effects of the Lellouch-Liischer factor beyond the free-field normalisation. J is the
s-wave phase shift, ¢, is a dimensionless quantity related to the pion momentum k,
by ¢r = kzL/2m and ¢ is a kinematic function defined in [59]. Once E,, has been
measured and ¢, determined, § can be calculated using the Liischer quantisation
condition [53]:

n = 8(kx) + d(gr). (8.6)

Results for Fir, kr, g and ¢ are presented in Tab. 8.3.

Since 0¢/0q, can be calculated analytically the only unknown in Eq. (8.5) is
06/0q,. The results for the phase shift are plotted against k, and compared with
experimental results [60, 61] in Fig. 8.5; the results show good agreement. Near

p =0, ¢ is assumed to be linear in k, in order to calculate 95/9q, (see Fig. 8.5).
For p = v/27/L the phenomenological curve [62] shown in Fig. 8.5 is used to
calculate the derivative of the phase shift at the corresponding value of ¢,. The

derivative of the phase shift is found to be a small term in comparison with 9¢/9q;.
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Table 8.4: Contributions to Lellouch-Lischer factor. The second
and third columns provide numerical values for two of the quan-
tities entering the Lellouch-Liischer factor given within the square
brackets in Eq. (8.5), while the fourth column gives the value of the
complete factor.

P 0¢/0qx 00/0¢x LL
0 0.2413(90) | -0.0824(32) | 0.9632(14)
V2r/L | 5.014(21) | -0.2911(23) | 0.9411(71)

Results for 0¢/dq, and 06/0q, are presented in Tab. 8.4.

The physical decay amplitude A, is given in terms of the matrix elements A; by

V3Gr
2 V2

Ay =a”? Vs Y Cil ) Zij(na) A3 (8.7)
i3
where the label §t has been added to indicate the K — 7w separation being used
and the labels ¢ and j run over the three operators in Eq. (3.12). C; are the Wilson
coefficients, which have been calculated in the MS-NDR scheme. The Z;j are the
renormalisation constants which relate the bare weak operators defined in the
lattice theory (where the lattice spacing a acts as a cut-off) to those in the
MS-NDR scheme at scale . The (27, 1) operator renormalises multiplicatively,
whereas the (8,8) and (8, 8)mix operators mix under renormalisation. The
calculation of the Z;; is described in detail in Chapter 5 and involves a
non-perturbative calculation of the renormalisation constants in RI-SMOM
schemes, step-scaling to run the results to 4 = 3 GeV and matching perturbatively
to the MS-NDR scheme. As explained in Chapter 5, four possible choices for the
intermediate RI-SMOM schemes are considered. The results presented in Tab. 8.5

are calculated using the renormalisation constants with the intermediate scheme

(Iy,1q) = (¢, ¢) (see Chapter5).

Results for ReAs and ImAs for the four different separations 4t are shown in
Tab. 8.5 for the (almost) physical choice p = v/27/L. Our final result for A, is an

error weighted average (EWA) over the four separations, defined by

ot est 2
A = S 5
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where eg; is the statistical error in the evaluation of Agt.

Table 8.5: Final results for As. The errors on each Agt and the
first error in the EWA(b) (error weighted average) are the statisti-
cal errors only. In the EWA(b) result the second error is that due
from the statistical uncertainty in the renormalisation constants
given in Eq. (5.26).

ot ReAs (units of 1078 GeV) | ImA(units of 10713 GeV)
20 1.411(56) 76.59(19)
24 1.346(64) -6.67(22)
28 1.427(73) -6.28(25)
32 1.295(94) -6.56(33)
EWA (a) 1.331(38) 76.54(15)
EWA (b) 1.381(44)(12) 76.54(19)(42)

The errors in the results labelled by EWA (a) in Tab. 8.5 are due to the statistical
fluctuations on the A; calculated using Eq. (8.5). In the row marked EWA(b) the
first error combines the uncertainty due to these fluctuations with the statistical
uncertainty in the value of the lattice spacing and the second error is Az, which
arises from the statistical uncertainty in the evaluation of the renormalisation

constants Z;;. This is calculated using:

2 2 2
A% = [Ciar1) 6 Zr 1) Awrn)) + 3 [CZ- 87 Aj} , (8.9)
i7j
where ¢, j run over (8,8) and (8, 8)mix and the §Z are the statistical uncertainties in
the corresponding renormalisation constants given by the first error in Eq. (5.26).
The presence of the four terms in the sum over ¢ and j reflects the mixing of Qg g)

and Q(gg),;. under renormalisation. A7 1), Agg) and A(gg) . on the right-hand

side of Eq. (8.9) are obtained from the corresponding bare matrix elements using
Eq. (8.5). The numerical results presented here were obtained by using the

statistical errors eg; in the evaluation of Ay so that for example:

25t A((S§7,1)/(65t)2

A = TS e 10

and similarly for the remaining operators. We have checked that performing the
error weighted average on each operator using the statistical error corresponding to

the operator makes only a negligible difference to the estimate of the final errors.
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Using the procedures described above along with the Wilson coefficients given in

Tab. 3.2, the final results for the complex amplitude Ay are:

ReAy = 1.381(46)stat (258)syst 1072 GeV,  TmAy = —6.54(46)sat (120) sys6 107 GeV .
(8.11)
The result for ReAs agrees well with the experimental value of 1.479(4) x 1078 GeV
obtained from Kt decays and 1.573(57) x 10~® GeV obtained from Kg decays (the
small difference arises from the unequal u and d quark masses and from
electromagnetism, two small effects not included in our calculation). ImAj is
unknown so that the result in Eq. (8.11) provides its first direct determination

(updating the value quoted in [6]).

A detailed discussion of the determination of the systematic errors will be presented
in the following sections. As explained earlier, the statistical error was obtained by
analysing configurations each separated by 8 molecular dynamics time units, and
the gauge fields were shifted by 16 lattice spacings in the time direction prior to
successive measurements. In order to check that shifting the gauge fields is
sufficient to overcome potential autocorrelations, the entire analysis has been
repeated, including the determination of the physical quark masses and lattice
spacings, by binning all quantities over four successive measurements (32 molecular
dynamics time units). This is a natural choice as it matches the periodicity of the
quark propagator measurements. The effects of the binning are completely
negligible. For illustration Tab. 8.6 shows a comparison of the results for A,

obtained with and without the binning.

8.2 Reweighting the light sea quarks

The technique of reweighting was introduced in Chapter 4.4.1. In this section the
light quark mass is reweighted in order to investigate the effects of its partial

quenching.

The reweighting is performed in 30 increments from the simulated mass

am;*® = 0.001 down to a value of am;** = 0.0001 which corresponds to the valence
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Table 8.6: Final results for ReAs in units of 1078 GeV and
ImAy in units of 10713 GeV. The table shows a comparison be-
tween the results obtained as in Tab. 8.5 (146 bins each with a

single configurations) and those with bin-size 4 (36 bins each with
4 configurations). The error on EWA (a) was defined in Tab. 8.5.

RGAQ ImAQ
ot 146 bins 36 bins 146 bins | 36 bins
20 1.411(56) | 1.418(52) || -6.59(19)
24 1.345(64) | 1.344(57) || -6.67(22)
28 1.427(73) | 1.411(83) || -6.28(25) | -6.23
(94) (33)
(38) (15)

32 | 1.295(94) | 1.28(10) | -6.56(33
EWA(a) | 1.381 1.386(34) || -6.54(15

Table 8.7: Ay before and after reweighting. The quoted errors
correspond to the statistical fluctuations in the correlation func-
tions only. The statistical uncertainties in the determination of
the lattice spacing and non-perturbative renormalisation have been
omitted here.

am; = 0.001 am; = 0.0001 (reweighted)
Reds | 1.381(38) x 1078 GeV 1.367(65) x 1078 GeV
ImAy | —6.54(15) x 10713 GeV | —6.91(23) x 10713 GeV

light-quark mass and the results are shown in Fig. 8.6. For a more accurate
indication of the relative decrease of the masses from 0.001 to 0.0001, note that
am; + amyes decreases from 0.0028 to 0.0019. The rightmost point in Fig. 8.6(a)
shows the result for ReAs before reweighting, while the remaining points show the
results after reweighting to the mass indicated on the z-axis, ending with

amj®® = 0.0001 for the leftmost point. Similarly Fig. 8.6(b) shows the effects of
reweighting on ImAy. The final results after reweighting are shown in Tab. 8.7 where
they are compared with the results before reweighting. In this table, for illustration
of the effects of reweighting, only the statistical error from the correlation functions
themselves is included; the statistical errors from the determination of the lattice

spacing and renormalisation are not included, nor are any of the systematic errors.

Examining the figures, it can be seen that, as expected, the statistical errors on
ReAs and ImAs grow. Table 8.7 shows that, within errors, the real part of As does
not change after reweighting. By contrast, the imaginary part of Ay decreases by

5.7%. After including all of the statistical and systematic errors, the reweighted
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Table 8.8: Systematic error budget for ReAs and ImAs;.

R6A2 ImA2

lattice artefacts 15% 15%
finite-volume corrections 6.0% | 6.5%
partial quenching 3.5% | 1.7%
renormalisation 1.8% | 5.6%
unphysical kinematics 0.4% | 0.8%
derivative of the phase shift | 0.97% | 0.97%
Wilson coefficients 6.6% | 6.6%
Total 18% 19%

result for for the complex amplitude A, is:

ReAy = 1.367(70)stat (246)syst 107° GeV,  TmAy = —6.91(51)spat (131) sys6 107 GeV .

(8.12)
The results of Eq. (8.12) should be compared with Eq. (8.11), and it is clear that the
differences due to reweighting are well within the total error. The conclusion is that
partial quenching has a negligible effect on the final answer for the decay

amplitudes.

8.3 Error Budget

The sources of systematic error in the calculation of ReAs and ImAs include those

from lattice artefacts, finite-volume effects, partial quenching, the uncertainty in the
non-perturbative renormalisation, the unphysical kinematics used in the calculation,
the determination of the derivative of the phase shift and the Wilson coefficients. A
brief discussion of each of the sources of systematic error is included in this section.

Each contribution to the total systematic error can be found in Tab. 8.8.

8.3.1 Estimating the Error due to Lattice Artefacts

The calculation of the complex K — 7w amplitude was performed at a single,
rather large, value of the lattice spacing, a=! = 1.364(9) GeV. This value of the
lattice spacing was obtained in Ref. [58] by using the mass of the Q-baryon to set

the scale and the masses of the pion and kaon to determine the physical quark
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Table 8.9: Values of the inverse lattice spacing obtained using
different physical quantities to set the scale. The value rog =
2.433(50)(18)(13) GeV ™ = 0.4795(99)(35)(26) fm, taken from a
detailed analysis in [58], is used for the Sommer scale. The two
columns of results correspond to the use of finite-volume SU(2)
chiral perturbation theory or the analytic ansatz for the light-quark
mass dependence.

Quantity ChPTFV Analytic
me 1.364(8) GeV | 1.362(11) GeV
fr 1.410(27) GeV | 1.386(19) GeV
I 1.413(29) GeV | 1.392(28) GeV
ro 1.357(4) GeV | 1.362(7) GeV

masses. With the IDSDR action, all other computed physical quantities have errors
of O(a?), but without a simulation at a second lattice spacing it is not possible to
determine these lattice artefacts directly. In this section an indirect estimate of the
O(a?) effects, which represent the largest single contribution to the systematic

uncertainty, is described.

Two related methods are used to estimate the artefacts. In the first of these,
quantities other than mgq are used to set the scale and the corresponding variation
is ascribed to the artefacts. The results are presented in Tab. 8.9. The difference
between the largest and smallest entry in the table is about 4%. Recalling that the
K — 77 matrix elements are of dimension 3, the corresponding uncertainty in the
amplitudes is estimated to be 10-15%. On the other hand, it could be argued that
the physical value of rq is not very well known, and that a more suitable criteria is
to impose that the same value of rg is obtained on both the Iwasaki and IDSDR
lattices. This fixes the ratio of lattice spacings on the two ensembles. Combining
this ratio with the well determined lattice spacing on the Iwasaki ensembles from
mgq leads to the IDSDR value a~! = 1.363(22) GeV, closer to those obtained from
mgq and the decay constants. Although this may suggest that the 10-15% estimate
is conservative, because of the indirect nature of these estimates, it is better to be

conservative when quoting the uncertainties.

As a second approach the scale is set from mgq and the matrix element
MAS=2 = (KO|(5y*(1 — 4°)d) (59"(1 — 4°)d)| KP) is studied on both the Iwasaki

and IDSDR lattices. This matrix element gives the dominant contribution to the
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indirect CP-violation parameter € and is in the same representation of the chiral
symmetry as Q(27,1). The next step is to perform a global chiral and continuum fit

using the form
MAS=2 = CO(l + CtIiIDSDR a2) +cmy + Ch(mh - mho) +cmg + Cy(my - mho) ’ (8'13)

where m; and m, are the sea and valence light-quark masses, mj, and m, the
corresponding strange-quark masses and 7, is the physical bare strange quark
mass. The coefficient ¢, depends on the action as indicated. By performing the
global fits, clPSPR can be determined and the size of the lattice artefacts can be
determined. Using all of the available data the artefacts are found to be 12% in the
SU(2) chiral limit and 18% at the physical quark masses. If the data are restricted
to pions with masses less than 350 MeV, the artefacts are found to be 10% in the

chiral limit and 14% for physical quark masses.

Based on these calculations, the uncertainty due to the lattice artefacts is estimated
as being 15%, which will be combined with the remaining uncertainties in
quadrature. This estimate of the discretization error includes possible artefacts in
the conversion of the renormalisation constants from the IDSDR to the Iwasaki
lattices. Comparing this error with the other errors in Tab. 8.8, it is clear that
lattice artefacts are the dominant source of systematic error. However, they will be

reliably reduced when the calculations are repeated at a second lattice spacing.

8.3.2 Finite-Volume Corrections

In order to estimate the systematic error due to the finite volume of the lattice,
SU(3) finite-volume chiral perturbation theory is used, in which the loop-integrals
in Feynman diagrams are replaced by discrete sums over the allowed momenta.
Expressions for the Al =3/2 K — 77 matrix elements,

Mz iy = (7177 |Qar,1y | K?) and Mg g) = (777 |Q(s.5)| K”) are known to
next-to-leading order in SU(3) chiral perturbation theory. Since in chiral
perturbation theory to leading order there is a single Al = 3/2 operator

constructed from the Goldstone boson fields which transforms as the (8,8)
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representation, the estimates derived below are the same for Qgg) and Qgg), . -
There is also a single operator at lowest order which transforms as the (27,1)
representation. We will be considering the leading order terms (labelled by “LO”)
and leading (one-loop) logarithmic terms (labelled by “log”). The LO expressions

are well known and can be found in [64] and [65]. For ./\/ll(gg7 1y we use Eq. (C5) in

[64], (where we have added logarithmic terms from (m?% — m2)ijo0p by hand as

necessitated by Eq. (25) of [64] and corrected a factor of 1/f? in equation (A2)),

and for ./\/ll((fg) we use Eq. (E3) in [65].

We denote the finite-volume corrections to the logarithmic terms in M7 1) and

M s.8) by A./\/ll((;?l) and AM'8

(8.8) respectively. We estimate the relative size of these

corrections, by using the pion and kaon masses in our lattice calculation finding,

AMGE AME
o = 00597 and —r G = 0.0649 (8.14)
(27,1) (8,8)

if we normalise to the leading order expressions of the matrix elements, and

AM9E AMO8
— L~ 00352 and 0 —0.0438  (8.15)
M(27,1) + M(27,1) M(&S) + M(&S)

if we normalise to the leading order plus leading logarithmic expressions. More

details can be found in [5].

Evidently the leading logarithmic terms make significant corrections to the leading
order terms. To have confidence that the chiral perturbation theory is converging
we should check the size of the next-to-leading-order terms, but as these have
unknown coefficients we are unable to make a numerical estimate. We therefore
make a conservative estimate by taking the larger relative finite-volume correction
of Eq. (8.14) and conclude that the (27,1) operator carries a 6.0% finite-volume
correction and that the (8,8) operator carries a 6.5% finite-volume correction. Since
ReAs is dominated by the (27,1) operator and ImAs is dominated by the (8, 8)pix
operator, these are the percentage errors due to finite-volume effects we assign to

ReAs and ImAs respectively.
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Table 8.10: The amplitude As, computed on the Iwasaki ensem-
bles, after extrapolation to physical kaon and pion masses. The
two pions in the final state are at rest (up to finite-volume effects)
and energy is not conserved in these amplitudes (see text).

my = 0.004 | m; = 0.006 | m; = 0.008
Re(A2)x10% GeV | 0.697(44) | 0.748(41) | 0.719(38)
Im(A,) x 10'3 GeV | -14.73(37) | -14.99(35) | -15.23(34)

8.3.3 Partial Quenching

The calculations described in this chapter were designed to have almost physical
kinematics, i.e. the kaon and pions have masses which are close to their physical
values. This is achieved however, by the sea and valence quark masses being
different; the sea-quark masses are mj** = 0.001 and mj}*™ = 0.045 and the valence
masses are mz’alence = 0.0001 and m}’f‘lence = 0.049. The dependence on the
sea-quark mass is not expected to be very significant, and this was demonstrated in
Sec. 8.2. This section collects the results of a previous investigation of the sea-quark

mass dependence performed with 323 Twasaki lattice [5].

Sea-quark mass dependence on the 323 Iwasaki lattices

K — 7 correlation functions were also computed on the 323 x 64, L, = 16 Iwasaki
lattices (a=! = 2.285(29) GeV) with three different light sea-quark masses

mj®® = 0.004, 0.006,0.008 [5, 66]. For each of the sea-quark masses, the correlation
functions were calculated using several valence masses:

mYalence — ().002, 0.004, 0.006, 0.008, 0.025,0.03. Periodic boundary conditions were
used, so the pions have zero momentum, resulting in a decay which does not
conserve energy. For each of the three sea-quark masses, a chiral extrapolation was
performed over the valence masses to determine the K — 7w amplitudes
corresponding to physical kaon and pion masses (for the strange quark in the kaon

this was an interpolation). The results are summarised in Tab. 8.10.

From the table it can be seen that any dependence on the light sea-quark mass is
small, and generally within the statistical uncertainties. The standard deviation of

the results obtained with the different sea light-quark masses is used as an estimate
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of the uncertainty; 3.5% for Re(Az) and 1.7% for Im(As). Although the kinematics
are different from those for the physical decay on the IDSDR lattice, this result is
still taken to be an estimate of the error due to partial quenching. The range of
sea-quark masses on the Iwasaki lattices and the long length of the extrapolation
suggest that this may be a conservative estimate. No attempt is made to estimate
the error due to the partial quenching of the strange quark, but note that the
deviation from unitarity in the strange-quark mass is relatively small (m}®* = 0.045

compared to mYaence = (.049) .

8.3.4 Uncertainties due to the Renormalisation

Two main sources of systematic error from the calculation of the renormalisation
constants are discussed in this section. The first is designed to take into account
lattice artefacts of higher order than O(a?) in the continuum extrapolation of the
step-scaling function using the Iwasaki lattices, as described in Sec. 5.1.1, and
corresponds to the second error in Eq. (5.25). This systematic error is estimated in
the same way that the statistical NPR error on A, is calculated, i.e. Eq.(8.9) is
used, but in this case §Z denotes the systematic errors on the Z-factors. The
resulting error is displayed in Tab.8.11 and is labelled NPR-sys. This is found to be

a 1.1% effect for ReAs and a 5.0% effect for ImAy (see the second row of the table).

The second source of systematic error in the renormalisation constants is due to the
truncation error in the perturbative matching to the MS scheme and to O(a?)
scaling errors since only one lattice spacing is available and the Z-factors in the
different schemes need not approach the continuum limit along the same scaling
trajectory. Following conversion to the MS scheme, the four intermediate NPR
schemes described in Chapter 5 should give equivalent answers. An estimate of the
resulting systematic error is made by considering the spread in results when As is

calculated in the RI-SMOM(,,,7,) scheme and in the RI-SMOM(¢, ¢) scheme.

The results for Ay in the RI-SMOM(v,,,) and RI-SMOM(¢, ¢) schemes are
presented in Tab.8.11. A spread of 1.4% is observed for ReAs and a 2.5% spread is

observed for ImAy. Combining the two sources of error in quadrature, the result is
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Table 8.11: ReAs and ImAs calculated in the two different
schemes.

ReAs x10% GeV ImAs x1013 GeV ‘
RI—SMOM(q, q) 1.381(46)stat (15)(NPR—sys) —6.54(46)stat (33)(NPR—sys)
RI—SMOM(’)/”, Wu) 1'362(44)Stat (03)(NPR—sys) _6'35(34)81:&1: (42)(NPR—sys)

a 1.8% error for ReAs and a 5.6% error for ImAs,.

8.3.5 Uncertainties due to the Unphysical Kinematics

When choosing the parameters of the simulation, including the quark masses, the
coupling constant and even the volume, the aim was to obtain physical kaon and
pion masses and E., = mg. Once the simulation has been performed, it is natural
to find that this is not quite the case (see Tab.8.2) and in this section an attempt is
made to estimate the systematic error that these non-physical kinematics

contribute to the calculation.

In addition to the results from the current simulation, a large collection of K — 77w
amplitudes has been calculated on quenched lattices with a variety of light and
strange quark masses and pion momenta. The observed dependence of the
amplitudes with the quark masses is used to estimate the uncertainty due to the
unphysical kinematics. A total of 60 values for the K — 7w amplitudes has been
collected on the quenched lattices, obtained with all combinations of

am; = 0.0023, 0.0047, 0.0071, ams = 0.046, 0.062, 0.078, 0.094, 0.110 and with

n =20, 1, 2 and 3, where n is the number of spatial directions in which antiperiodic
boundary conditions are imposed. The allowed momentum of a each pion with
antiperiodic boundary conditions in n directions is y/nmw/L, so n parameterises the

pion momenta.

The procedure for estimating the systematic error due to non-physical kinematics
uses these quenched amplitudes, extrapolating the results in am; and interpolating
them in amg and n, first to physical kinematics, and then to the kinematics
simulated on the IDSDR lattices. This procedure is described in detail in [5], and is
very similar to the extrapolation procedure described in Sec. 8.3.3 when computing

the error due to partial quenching. The difference here is that it is now possible to
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interpolate to the correct pion-momenta. This is achieved by fitting the two-pion
energy as a function of n, and interpolating to find nP™*, the value of n which
corresponds to the desired two-pion energy. This in turn allows the decay

amplitude to be interpolated and evaluated at nPhs,

After extrapolation to physical kinematics, the results from the quenched lattices

are:

Reds = 2.25 x 1078 GeV, ImAy; = —13.45 x 1073 GeV, (8.16)

while the extrapolation to m,, mg and E,, simulated in this chapter gives

Redy = 2.26 x 1078 GeV, ImAy = —13.56 x 1073 GeV . (8.17)

The percentage differences between the two extrapolations is taken as a measure of
the systematic error due to simulating at non-physical kinematics, with results of

0.4% for ReAs and 0.8% for ImAs,.

8.3.6 Uncertainty in the Derivative of the Phase Shift

The derivative of the s-wave phase shift 95/0k appearing in the Lellouch-Liischer
factor was found by evaluating the derivative of the phenomenological curve at the
momentum simulated in our lattice calculation. This was discussed in Sec. 8.1 and
illustrated in Fig. 8.5. Alternatively the slope of the straight line between the phase
shift at 17.63 MeV and 196.8 MeV could have been used to make a crude estimate
of the derivative of the phase shift. (c.f. the results of Tab8.3). The systematic
error is estimated to be 0.97%, which is found by calculating the percentage
difference between the final results as obtained by the two different approaches.
Since the derivative of the phase-shift only contributes a small fraction to the
Lellouch-Liischer factor (see Tab.8.4) it is not surprising that the corresponding
error is negligible. The derivative of the phase-shift can also be calculated directly

using the method proposed in [67].
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Table 8.12: ReAs and ImAs as calculated with LO Wilson co-
efficients and NLO Wilson coefficients. The errors quoted here
represent the total statistical uncertainty.

LO NLO
ReAy | 1.289(42)x107% GeV | 1.381(46)x 108 GeV
ImAy | -6.11(36)x 10713 GeV | -6.54(46) x10713 GeV

8.3.7 Uncertainties in the evaluation of the Wilson coefficients

The Wilson coefficients, which are calculated in perturbation theory and hence are
not part of the lattice computations, are a necessary ingredient in the
determination of the amplitude As. The values presented in Tab. 3.2 were
calculated at next-to-leading order (NLO) following the procedure outlined in
Chapter 3. In this section as estimate is made of the systematic error due to the
truncation of perturbation theory. To this end the LO Wilson coefficeints, given in
Tab. 3.3, are used instead of the NLO values and the effect this has on the final

results for ReAs and ImAs are measured.

Table. 8.12 shows how the decay amplitude varies when the LO Wilson coefficients
are used instead of the NLO Wilson coefficients. The error in Ay due to the
truncation in the perturbative calculation of the Wilson coefficients is very
conservatively estimated by taking the difference between the NLO result and the
LO result, and calculating this as a percentage of the LO result. The resulting

estimate of the systematic error is 7.1% for ReAs and 8.1% for ImAs.

8.4 Results

The main result of this thesis is the final value for the complex amplitude As,

ReAy = 1.381(46)stat (258)syst 1072 GeV,  TmAy = —6.54(46)sat (120) sys6 107 GeV .
(8.18)
This result was obtained with nearly-physical kinematics and a full consideration of

all sources of systematic error.
In the remainder of this chapter the results are presented for each of the three
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matrix elements which contribute to As (Sec.8.4.1) and the value of the unknown
quantity Im Ag is also deduced by combining the result obtained for ImAs with the

experimental values of €' /e and other quantities (Sec. 8.4.3).

8.4.1 Results for the matrix elements

Equation (8.11) contains the final results for Ay within the Standard Model. In
order to facilitate detailed comparisons with results from future computations and
to enable these results to be used in extensions of the Standard Model for which the
Wilson coefficient functions are different, results for the K — 7w matrix elements
are now presented. The results are presented for operators renormalised in the

MS-NDR scheme at a renormalisation scale of 3 GeV.

KT — 777t matrix elements

The amplitude As is given in terms of the K — 777" matrix elements of the

operators defined in Eq. (3.12) by

_Gry oy V3

A2 ﬁ u us?

37 Ci(3 GeV) AMSNPR(3 Gev), (8.19)

where AMS-NDR — (7474 | 9, |[KT) and the label i runs over (27,1), (8,8) and

(8,8)mix - The A; take the values

AMENDR(3 GeV) = 0.03071(97) GeV® (8.20a)

AMSNDR(3 Gey) = 0.583(33) GeV? 8.20b
(8.8)

AMENDR(3 GeV) = 2.64(15) GeV?. (8.20¢)
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Kt — 7179 matrix elements

Alternatively Ay may be expressed in terms of the matrix elements for the physical

Kt — 7770 decay. In this case

1 MS-
Ay = %Vudvgsﬁ > Ci(3 GeV) AR Gev). (8.21)

where the two-pion final state is symmetrised (% (r T (D)0 (=p)| + (xt (=p)7°(p)])-

The results are

APINPR(3 GeV) = 0.0461(14) GeV? (8.222)
APENPR(3 GeV) = 0.874(49) GeV? (8.22D)
AENPR(3 GeV) = 3.96(23) GeV?. (8.22¢)

8.4.2 Contributions to A, from the Matrix Elements

The separate contributions to Ag in Eq. (8.11) from the matrix elements of the

three different operators are now given:

(27,1) | ReAy = (1.398 +0.044) 107% GeV; ImAs = (1.55 £ 0.36) 10712 GeV
(8,8) | ReAy = (4.29+0.24)10"" GeV;  ImAjy = (4.47 £0.25) 1071 GeV

(8,8)mx | ReAy = (—2.14 £ 0.12) 10719 GeV; ImAy = (—8.14 +0.47) 10713 GeV .
(8.23)

Since the (8,8) and (8, 8)mx operators mix under renormalisation, these exact
figures are only valid at the renormalisation scale 3 GeV. Nevertheless, they
demonstrate that the largest contribution to ReA; is from the (27, 1) operator while

the largest contribution to ImA, is from the (8, 8)mnx operator Qs.
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8.4.3 Prediction for Im A,

Having calculated As, and recalling that ReAg is known from experiment, the
unknown quantity Im Ay may be determined by combining the lattice result for
ImAy/ReAs from Tab. 8.5 with the experimental values of Re (¢//¢) defined in
Eq. (2.22), € and w = ReAy/ReA,.

The numerical values which are used for these quantities are given in Tab.8.13. The
systematic error on ImAy/ReAs is found by combining in quadrature the
systematic error on ReAs and ImAs with the error due to lattice artefacts excluded.
A single estimate of 5% systematic error on ImAy/ReAy due to lattice artefacts is
then added in quadrature. This estimate is based on the Symanzik theory of
improvement which implies that the artefacts are proportional to a? and in the
absence of any knowledge of the constant of proportionality, the spread of the
derived values of the lattice spacing in Tab 8.9 below is used as a guide. The result

and error for ImAy/ReA are very insensitive to the estimate of the artefacts in

ImAQ /RGAQ .

Rearranging Eq. (2.22), the imaginary part of Ag is found within the Standard
Model to be

TmAg = —5.34(62)stat (68)syst x 1071 GeV. (8.24)

The error on ImA is obtained by combining the errors on the quantities in
Tab. 8.13 in quadrature. In Eq. (8.25) below we compare the relative contribution to

ImAy/ReAj from ImAs /ReAy and the term containing the experimentally known

contributions:
ImA, B ImA, V2 |e| €
ReAg N ReAs w €
—1.61(19)stat (20)syst X 1074 = —4.42(31)5ar (89)syst x 1077 — 1.16(18) x 107 .

(8.25)
After studying Eq. (8.25) it is apparent that the contribution of ImAs/ReAs to
ImAy/ReA is significant at approximately 25%. A direct calculation of Im(Ag) will

be presented in Chapter 9. However, the unphysical kinematics that are used in
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Table 8.13: FEzperimental values of the components of Eq.(2.22)
used in the determination of Im Ay, together with the result for
ImAs/ReAs from this chapter.

/e (1.65 4 0.26) x 103
w 0.04454(12)
le] (2.228 £ 0.011) x 103
ReAy 3.3201(18) x 1077 GeV
ImAs/ReAs (lattice) | —4.42(31)stat (89)syst x 107°

Chapter 9 mean that it is unfortunately not meaningful to compare this

determination of ImAg with the result of the direct calculation given in Eq. (9.15).

The ratio ImAp/ReAy features in the parametrisation of the effect of direct
CP-violation in K — 7w on €, customarily denoted by k. [68]. If the result for
ImAy/ReAq given in Eq. (8.25) is used as input, the result is

(Ke)abs = 0.924 4+ 0.006. The subscript “abs” denotes that at present only the
absorptive long-distance contribution (Im I'12) is included [69] (the error is now
dominated by the experimental uncertainty in € /e). The analogous contribution
from the dispersive part (Im Mjs) [69] is yet to be determined in lattice QCD, but

progress towards being able to do this described in [70].

Using the lattice result for ImAy in Eq. (8.11) and taking the experimental value
given above for ReAs from KT decays gives the electroweak penguin (EWP)
contribution to € /e, Re(¢'/e)pwp = —(6.25 & 0.44g4at £ 1.19555t) x 1074 (the
experimental value for the complete Re(¢’/e) is 1.65(26) x 1072 [3]). Even though
this contribution has been labelled EWP, and indeed it is dominated by the matrix
element of the EWP operator Qsg), . , the result contains contributions from all
three components to ImAs in Eq. (8.23). The contribution from the two EWP

operators Qg g) and Q(sg),... is —(7.34 £ 0.525tar & 1.39y5) x 1072,

This chapter ends with a brief comparison of an earlier result obtained using
finite-energy sum rules [71], where the contribution to € /e from the operator

Q(8,8)ms. (renormalised at 2 GeV) was found to be —(11.0 + 3.6) x 107,
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Figure 8.4: The ratios defined in Eq. (8.4) for p=+/2w/L. The

two-pion source is at t = 0 while the kaon source is at tx = 24.
The dashed line shows the error on the fit
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Chapter 9

Evaluation of K — nmm decay

amplitudes on Iwasaki lattices

The main objective of this chapter is to calculate the Al = 1/2 decay amplitude
Ap. Recognising the difficulty of this problem, this calculation is performed on a
lattice which is relatively small compared to the one used in the previous chapter,
and a somewhat heavy pion mass (m, =~ 421 MeV) is chosen so that large statistics
can more easily be collected. The calculation is performed at threshold, where the
kaon mass is approximately equal to the two-pion energy and the two final state
pions are at rest. A complete evaluation of the K — 77 matrix elements in the

I = 0 channel has never been done before, and the results presented in this chapter
represent a major breakthrough. A calculation of the Al = 3/2 decay amplitude is

included for comparison and completeness.

Although physical kinematics are not employed in this calculation, the final results
for the complex amplitudes Ay and A, are otherwise physical. The matrix elements
are renormalised at 2.15 GeV in the MS scheme using the techniques described in

Chapter 5. Specifically, the renormalisation constants which are used can be found

in Tab. 5.2.

Because of the unphysical, threshold kinematics and focus on controlling the

statistical errors associated with the disconnected diagrams, no attempt is made to
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Table 9.1: Ensemble details. The analysis of this chapter is per-
formed using a single Twasaki enemble with = 2.13.

Lattice I5] amy, | amy | number of trajectories
Iwasaki (163 x 32) | 2.13 | 0.032 | 0.01 800

estimate the size of possible systematic errors. The quoted errors on the results are
statistical only. Similarly the systematic and statistical errors associated with the
Rome-Southampton renormalisation factors have not been included. Both these
sources of error could be made substantially smaller than the statistical errors when

required.

9.1 Computational Details

This calculation uses the Iwasaki gauge action with g = 2.13 and 2+1 flavours of
domain wall fermions (DWF'). While the computational costs of DWF are much
greater than those of Wilson or staggered fermions, as has been shown in earlier
papers [72, 73, 20, 21], accurate chiral symmetry at short distances is critical to
avoid extensive operator mixing, which would make the lattice treatment of AS =1

processes much more difficult.

The analysis of this chapter is performed on a single lattice ensemble with
space-time volume 163 x 32, a fifth-dimensional extent of L, = 16 and light and
strange quark masses of am; = 0.01, am, = 0.032, respectively. This ensemble is
similar to the am; = 0.01 ensemble reported in Ref. [74] except for the use of the
improved RHMC-II algorithm of Ref. [50] and a more physical value for the strange
quark mass. The inverse lattice spacing for these input parameters was determined
to be 1.73(3) GeV resulting in a lattice volume of (1.83 fm)3 and the residual mass
is amyes = 0.00308(4) [50]. The total number of configurations analysed is 800, each
separated by 10 molecular dynamics time units. The Dirac operator is computed
with anti-periodic boundary conditions in the time direction, and periodic
boundary conditions in the space directions. The propagators are calculated using a
Coulomb gauge fixed wall source (used for meson propagators) and a random wall

source (used to calculate the loops in the type3 and typed graphs shown in Figs. 7.5
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and 7.6). The large statistics that are needed for a successful calculation are
obtained by placing propagator sources on each of the 32 time slices in the lattice
volume. These propagators are then used to create two-pion sources on every
timeslice. The two-pion correlation functions are averaged over the common
separations between the two-pion source and two-pion sink. This was made explicit
in Eq. (7.10) for the type-V diagram in Sec. 7.1. Similarly in the case of K — 7w
correlation functions, the kaon source is created on all time slices, the time
separation between the kaon and two pions is fixed and labelled A, and the
correlation functions are averaged over all common separations between the kaon
source and insertion of the weak operator at fixed A. For each time slice and source
type, twelve inversions are required corresponding to the possible 3 colour and 4
spin choices for the source. Thus, a total of 768 inversions are performed for each
quark mass on a given configuration. As will be shown below, this large number of
inversions, performed on 800 configurations, provides the substantial statistics

needed to resolve the real part of the I = 0 amplitude Ay with 25% accuracy.

In order to obtain energy-conserving KV — mm decay amplitudes, the mass of the
valence strange quark in the kaon is assigned a value different from that appearing
in the fermion determinant used to generate the ensembles, i.e. the strange quark is
partially quenched. Since the mass of the dynamical strange quark is expected to
have a small effect on amplitudes of the sort considered here [50, 66], this use of
partial quenching is appropriate for the purposes of this calculation. Valence
strange quark masses are chosen to be amg = 0.066, 0.099 and 0.165, which are

labeled s0, s1 and s2 respectively.

9.2 Analysis
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Figure 9.1: Pion effective mass plot. The fitted mass is superim-
posed on the data.

The simulated pion and kaon masses are measured by fitting the data to

31

CK(t)z3i22<oK(t+t')o}((t')> = 72 <e_mKt—|—e_mK(T_t)> (9.1)
t'=0

Cw(t)z?)%i<0ﬂ(t+t’)01r(t’)> = 72 (awwe*mK(T*ﬂ) (9.2)
t'=0

where the average over different source positions for the propagators has been made
explicit. This fit form is easy to understand based on Eq. (4.57). The results of the
fits are shown in tables 9.2-9.3, and the corresponding effective mass plots are
presented Figs. 9.1-9.2. Fit regions for all the fits in this chapter are shown in table
9.4. The simulated kaon masses can be used to interpolate to energy-conserving

decay kinematics for both the I = 2 and I = 0 channels.

The two-pion correlation functions for isospin I and I, = 0, defined in Eq. (7.8), are

fit with the functional form
1 31
5 IO+t t) =22, <e—Ez”t te BT 4 A) . (9.3)
#=0

In this equation, the correlation function has been computed with two-pion sources

on every time slice and averaged over common separations between source and sink.
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Figure 9.2: Kaon effective masses, with fitted masses superim-
posed on the data. The legend indicates if valence strange-quark
mass is ams = 0.066 (s0),ams = 0.099 (s1) or ams = 0.165 (s2).

The fitted energies are summarized in Tab. 9.2. In order to see clearly the effect of
the disconnected graph, the calculation is also performed for the I = 0 channel
without the disconnected graphs. This result is given in Tab. 9.2 with a label with
an additional prime (/) symbol. The resulting effective mass plots for each case are
shown in the right panel of Fig. 9.3. For comparison, a plot of twice the fitted pion
mass is also shown. This figure clearly demonstrates that the two-pion interaction
is attractive in the I = 0 channel with the finite volume, I = 0 m — 7 energy Ej™
lower than 2my. In contrast, the I = 2 channel is repulsive with EJ™ larger than
2m,. The fitted parameters ng ; and E7™ will be used to extract weak matrix
elements from the K — 77 correlation functions discussed below in which these

same operators O7"(t) are used to construct the two-pion states.

Table 9.2: Mass of pion and energies of the two-pion states. Here
the subscript I =0 or 2 on the m—m energy, ET™, labels the isospin
of the state and Ef™ represents the isospin zero, two-pion energy
obtained when the disconnected graph V is ignored. The error in
MeV is dominated by the lattice spacing.

M ET™ ET™ ExT
lattice units 0.24373(47) 0.443(13) 0.4393(41) 0.5066(11)
MeV 422(30)  766(38)  760(31)  876(30)
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Figure 9.3: Left: Results for the four types of contractions, direct
D, C, R and V represented by the graphs in Fig. 7.1. Right: Ejf-
fective mass plots for correlation functions for states with isospin
two (I2), isospin zero (ly), isospin zero without the disconnected
graph ((Ip)’) and twice the fitted pion mass (2ma).

Table 9.3: Masses of the kaons. The superscript (s0), (s1) or (s2)
on the kaon mass distinguishes our three choices of valence strange
quark mass, mg = 0.066, 0.099 and 0.165 respectively. The error
i MeV is entirely dominated by the error on the lattice spacing.

m (50) mts) mts2)
K K K
lattice units 0.42571(44) 0.50688(46) 0.64470(51)
MeV 736(30) 877(30)  1115(30)

9.2.1 K°— mr Al = 3/2 amplitude

As Eq. (7.16) and the first column of Eq. (7.18) show, the AT =3/2 K° — 7r
decay amplitude includes only typel contractions and four of the correlation

functions are related:

3 3
A =A9g==A91 = =As.
2,10 2,9 9 2,1 2 2,2

Table 9.4: Fit regions on the Iwasaki lattices.

pseudoscalar meson  fit region

kaon 7-15

pion 6-15
two-pion, 10 5-9
two-pion, (10)’ 6-15
two-pion, 12 6-15
K—=ar, A=12 5-7
K—7rr, A=16 5-11
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Table 9.5: Results for the lattice AI = 3/2, K — 7w transition
amplitudes obtained from fitting the 3-point correlation functions
to the functional form given in Eq. (9.6) for the siz operators with
AL = 3/2 components. The second column gives the lattice matrix

elements ME’/Q’lat(xlo_Q) while the third and fourth column give

their contributions to the real and imaginary parts of As. These
results are for A =12 and amg = 0.099.

MY (%1072)  Redy(GeV)  ImAy(GeV)

1

1 0.4892(16) “1.724(9)e-08 0

2 =M 6.613(36)e-08 0

7 6.080(18) 2.677(15)e-11  4.498(25)e-14
8 21.26(6) -2.148(12)e-10  -1.042(57)e-12
9 =1.5M, ~4.974(27)e-15  5.133(28)e-13

10 =1.5M 6.055(33)e-12  -1.433(7)e-13

Total - 4871(31)e-08  -5.502(40)e-13

Therefore, it is sufficient to calculate Ay 1, Az 7 and Asg only. The corresponding
three correlation functions, Cq;(A,t) for i =1, 7 and 8, with the choice of m%) for
the kaon mass, are shown in Fig. 9.4. The calculation of propagators with sources

on each of the 32 time slices is exploited to compute Cy;(A,t) from an average over

all 32 source positions:
1 31
Coi(Ast) = o5 tZOAM(z;r =t + Aty =t + 1t =1). (9.5)

In Figs. 9.4(a)-9.4(c), Ca,(A,t) for 0 <t < A are plotted at fixed A = 12 or 16.
Tables 9.2 and 9.3 show that m(;l) is almost equal to the energy of I = 2, two-pion
state, so the 3-point correlation function Cs;(A,t) should be approximately
independent of ¢ in the central region where the time coordinate of the operator is

far from both the kaon and the two-pion sources, 0 < t < A.

The correlators Cy;(A,t) are fit using a single free parameter M, 23 /2 lat,

Coi(At) = M?/zlathZKe—EmAe—(mK—Em)t, (9.6)

7

where Zg, mg and Zrr, Err are determined from the fits in Eqns. (9.1) and (9.3).
The fit regions for Cy;(A,t) are 5 — 7 for A =12 and 5 — 11 for A = 16. The fitted
results for the matrix elements Mf/2’lat with A = 12 and amg = 0.099 are listed in

Tab. 9.5 in lattice units.
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Fits to the K — 7w, I = 2 correlators, Cy;(A,t) for i =1,7,8 and A = 12 and 16
are compared in Figs 9.4(a)-9.4(c). In each plot the data are multiplied by a factor

of eFmm8 5o that the results for A =12 and A = 16 may be compared.

Figure 9.4 shows that for the operators Q7 and Qg the larger separation, A = 16,
between the kaon source and two-pion sink gives a much shorter plateau region
than the case A = 12. This behavior is inconsistent with the usual expectation that
it is the contributions from excited states of the kaon and pion, contributions which
should be suppressed for larger A, that cause the poor plateau. An alternative,
consistent explanation attributes the shortened plateau region seen for A = 16 to
the ‘around-the-world’ effect. This is the contribution to the correlation function in
which the two-pion interpolating operator at the sink annihilates one pion and
creates another (instead of annihilating two pions as in the K — 77 contribution
we are seeking) and the process at the weak operator is Km — 7 (instead of

K — mmr). While one pion travels from the weak operator to the m — 7 sink the
second is created at the sink and travels forward in time, passing through the
periodic boundary to reach the weak operator together with the kaon. The
corresponding dominant path is shown in Fig. 9.10. The time dependence of the

leading around-the-world behavior can be estimated as
~ M 72 71 oo T o= (Bign—ma)t (9.7)

which is A independent but suppressed by the factor exp(—m,T'), where Z, is the
analogue of Zx for the case of single pion production and 7" = 32 is the temporal
extent of the lattice. In contrast, the physical contribution in Eq. (9.6) is
suppressed by exp(—FE;A). Thus, the second, standard term falls with increasing
A and the two factors are of similar size when A = T'/2. The expectation is that
there will be a large contamination from such around-the-world effects in the

A = 16 case, consistent with Fig. 9.4.

The conclusion is that it is important to increase the lattice extent in the time
direction both to suppress this around-the-world effect and to permit the use of a

larger source-sink separation giving a longer plateau. Around-the-world effects will
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Table 9.6: The calculated quantities which appear in the Lellouch-
Liischer factor ' for I = 2. The corresponding factor for the case
of non-interacting particles is Fiee = 31.42. The difference reflects
the final two-pion scattering in a boz.

¢ 5 (k
k q aff’ koo F

0.0690(13) 0.221(10) -0.0849(43) 26.01(18)

be discussed again in the next section for the Al = 1/2 kaon decay.

A good approximation to the infinite volume decay amplitude can be obtained by

including the Lellouch-Liischer factor, which was discussed in Chapter 6. The letter

o o O ()

will be used when quoting the results. Here k is defined through

Err =2m2 + k?, ¢ = kL/27 and d2(k) is the s-wave, I = 2, m — 7 scattering
phase shift for pion relative momentum k. The I = 2 phase shift d2(k) is
determined from the measured two-pion energy E.,. = 0.5066(11) given in Tab. 9.2

and the finite volume quantization condition given in Eq. (6.1),

#(q) + 02(p) = nm. (9.8)

For this threshold case the integer n is set to zero which gives d2(k) = —0.0849(43).
At small momentum k, the phase shift d5(k) is assumed to be a linear homogenous

function of k. This allows the derivative of the phase shift to be evaluated by
writing 52(k) = /{?({952(]{)/8/{?

In the limit of non-interacting pions, the factor F' becomes Fgee = 2(2m)?my L3,
which reflects the different normalization of states in a box and plane wave states in
infinite volume. Results for /' in this I = 2 case and the quantities used to
determine it are given in Tab. 9.6. Applying the finite volume correction F' gives a
finite-volume corrected amplitude for a AT = 3/2, K — n decay that is slightly

above threshold by the amount EJ™ — 2m, = 33(1) MeV.
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Table 9.7: The complez, K° — nr, AI = 3/2 decay amplitudes
in units of GeV.

mg R6A2 IrnA2

m$? 4.234(23)(x1078) GeV  -0.6386(39) (x10~12)
m$Y 4.871(26)(x1078) GeV  -0.6268(39) (x1012)
m$?  5.935(33)(x108) GeV  -0.6087(39) (x1012)

The final expression for the K° — 77 decay amplitudes is,

10 7
Aago = FEEVaVn 30 3 | (i) + ) 25501240 o)
i=1 j=1
where the matrix of renormalisation constants, Z;; is given in Tab. 5.2 and the
Wilson coefficients are given in Tab. 3.1. The results for the complex Al = 3/2
decay amplitude Ay are summarized in Tab. 9.7, including those for the other two,
energy-non-conserving choices of kaon mass. Since mgl) differs from the isospin-2
m — m energy by only 0.2 percent, this case is quoted as the energy-conserving kaon
decay amplitude. Therefore, in physical units, the energy-conserving AI = 3/2,
K° — 77 complex, threshold decay amplitude for mg = 877 MeV and m, = 422

MeV is given by:

Redy; = 4.871(26) x 107 %GeV (9.10)

ImA; = —0.6268(39) x 10712GeV. (9.11)

This result for ReAs can be compared with the experimental value of
1.479(3) x 1078 GeV given in Eq. (2.8). The larger result found in this calculation

is likely explained by the unphysically heavy kaon and pions.

9.2.2 K — mr AI = 1/2 amplitude

Following the prescription given by Eq. (7.17), the AI = 1/2 K — 7w correlation

functions,

31

> Apilte =t + Aoy =t + 1t = 1), (9.12)

C(],Z‘(A, t) = 3—2
t'=0
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have been calculated for each of the ten effective weak operators. In the calculation
each of these ten operators are treated as independent and the identities shown in

Eq. (7.19) are then verified.

The calculation is also performed without the disconnected, typed diagrams of

Fig. 7.6, and these results are labeled with an additional prime symbol, as was the
case for the two-pion correlation function without the disconnected V diagrams.
Figures 9.5(a)- 9.7(d) show the resulting correlation functions for the operators @,
to Q1o, in the case of the lightest kaon m(;o) and a separation between the kaon and
pions of A = 16. Each figure compares the full calculation with the calculation
where disconnected diagrams are not included. Tables 9.2 and 9.3 show that the
mass of this kaon is very close to the energy of the I=0 two-pion state. Therefore,

the plots are expected to show a reasonably flat plateau when the operator is far

from both the source and sink.

Given this good agreement between the energies of the kaon and two-pion states,
the unphysical, dimension three operator, 3y°d which mixes with the (8, 1)
operators in Eq. (3.2) and is itself a total divergence, might be expected to also give
a negligible contribution to such an energy and momentum conserving matrix
element. However, as can be seen from Figs. 9.8(a) and 9.9(a), the matrix element

of this term is large and the explicit subtraction described in Sec. 7.3 is necessary.

This difficulty is created by the combination of two phenomena. First the mixing
coefficient which multiplies the 5y°d operator when it appears in our weak (8,1)
operators is large, of order (ms — m;)/a?. Second, in this lattice calculation the
necessary energy conserving kinematics (needed to ensure that this total divergence
does not contribute) is only approximately valid. The required equality of the
spatial momenta of the kaon and m — 7 states is assured by our summing the
location of the weak vertex over a complete temporal hyperplane. On the other
hand, the equality of the energies of the initial and final states results only if we
have adjusted the kaon mass to approximately that of the two-pion state and
chosen the time extents sufficiently large that other states with different energies

have been suppressed. However, as can be seen in Figs. 9.8(a) and 9.9(a) the
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subtraction term miz3 shows strong dependence on the time at which it is
evaluated. This implies that there are important contributions coming from initial
and final states which have significantly different energies. One or both of these
states is then not the intended K or m — 7 state but instead an unwanted
contribution which has been insufficiently suppressed by the time separations

between source, weak operator and sink.

Thus, instead of relying on large time extents and energy conserving kinematics to
suppress this unphysical, O(1/a?) term, it must explicitly be removed. As explained
in Sec. 7.3 this can be done by including an explicit subtraction which is fixed by
the requirement that the kaon to vacuum matrix element of the complete
subtracted operator vanishes as in Eq. (7.23). Thus, the divergent coefficient of this
mixing term is determined from the ratio a; = (0|Q;|K)/{0[37°d|K) and then
perform the explicit subtraction of the resulting terms, labeled «; - mix3 and

«; - mizd in Figs. 9.8 and 9.9. Imposing the condition that the kaon to vacuum
matrix element of the complete subtracted operator vanishes also has the effect of

removing the unwanted vacuum contribution to the type4 diagrams.

Of course, the finite part of such a subtraction is not determined from first
principles and our choice, specified by Eq. (7.23) is arbitrary. Thus, we must rely on
our identification of a plateau and the approximate energy conservation of our
kinematics to make the arbitrary part of this subtraction small, along with the
other errors associated with evaluating the decay matrix element of interest

between initial and final states with slightly different energies.

The very visible time dependence in Figs. 9.8(a) and 9.9(a) for both the original
matrix elements and the subtraction terms is now examined in greater detail. As
discussed above one might expect these divergent subtraction terms to contribute
to excited state matrix elements in which the energies of the initial and final states
are very different. Typical terms should be exponentially suppressed as the
separation between the weak operator and the source or sink is increased, with the
time behavior exp{—(mj, — mg)t} or exp{—(E%, — E;r)(A —t)}, which ever is

larger. (The * denotes an excited state.) However, by carefully examining the time
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behavior of the miz3 amplitude, we find that the time dependence, at least in the
vicinity of the central region, is less rapid than might be expected from such excited
states suggesting that it is probably not due primarily to contamination from

excited states.

The most likely explanation is that the dominant, energy-nonconserving matrix
elements which cause the significant time dependence in Figs. 9.8(a) and 9.9(a)
arise from the around-the-world effects identified and discussed in the previous

AT = 3/2 section. In fact, for the reasons just discussed associated with divergent
operator mixing, such around-the-world effects are a more serious problem in the
ATl =1/2 case. The dominant around-the-world graphs are shown in Fig. 9.11. An

estimate of the time dependence of these graphs gives,

(K7 |Qi|r) Zn Zyc Zpe ™ T e~ (Brcn—mn)t

+ <0|QZ|KO7T7T> Zﬂ_ZKzﬂ_eme((TfA)+(A7t)) , (913)

where the first term comes from the graphs in Figs. 9.11(a), 9.11(b), while the
second term comes from Fig. 9.11(c). (Recall that ¢t =t,, —tg and A =t —tx).
Notice that these two terms involve amplitudes which are far from energy
conserving and therefore contain large divergent contributions from mixing with the
operator sy5d which will be removed only when combined with the corresponding

around-the-world paths occuring in the miz3 contraction.

Thus the conclusion is that it is these around-the-world matrix elements which are
the reason for the observed large divergent subtraction in the type3 graph. The
largest divergent contribution is thus not the subtraction for the matrix element
this calculation aims to evaluate, <7T7T\Qi]K 0>; rather, it is the divergent subtraction
for the matrix elements (K%7|Q;|7) and (0|Q;|K%w7) which arise from the
around-the-world paths which are not sufficiently suppressed by the small lattice
size. T'wo important lessons can be learned from this analysis. First, it is important
to perform an explicit subtraction of the divergent mixing with the operator svysd.
While this term will not contribute to the energy conserving matrix element of

interest, in a Euclidean space lattice calculation there are in general, other,
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unwanted, energy non-conserving terms which may be uncomfortably large if this
subtraction is not performed. Second it would be wise to work on a lattice with a
much larger size T in time direction in order to suppress further the
around-the-world terms which give such a large contribution in the present
calculation. Using the average of propagators computed with periodic plus
anti-periodic boundary conditions to effectively double the length in the time

direction would be a good solution.

It should be emphasised that these divergent, around-the-world contributions do
not pose a fundamental difficulty. The largest part of these amplitudes are removed
by the corresponding subtraction terms constructed from the operator sysd. The
remaining finite contributions from this and other around-the-world terms are
suppressed by the factor exp(—m,T') or exp(—my(T — A)). The results suggest
that the separation of A = 16 gives a relatively longer plateau region, and so this is

the K — mm time separation that is used in the analysis below.

The lattice matrix elements are determined by fitting the I = 1/2 correlators

Ci(A,t) given in Eq. (9.12) using the fitting form:
COJ(A, t) — Mi1/271atZﬂ-/TrZKe_Eﬂ'ﬂ'Ae_(mK_Eﬂ'ﬂ')t. (914)

The fitted results for the weak, AT = 1/2 matrix elements of all ten operators for
A = 16 are summarized in Tab. 9.8-9.10. To see the effects of the disconnected
graph clearly, a second fit is performed to the amplitude from which the
disconnected, typed graphs have been omitted and the calculated results are shown

with an additional / label, as in the earlier two-pion scattering section.

The calculation of the AT = 1/2 decay amplitude Aj from the lattice matrix

1/2,lat
elements MZ./ e

given in Tab. 9.8-9.10 is very similar to the AI = 3/2 case: the
values of Mil/ 2l are simply substituted in Eq. (9.9). However, the attractive

character of the I = 0, 7 — 7 interaction and resulting negative value of p? makes
the Lellouch-Liischer treatment of finite volume corrections inapplicable. For the

repulsive I = 2 case, it was possible to apply this treatment to obtain the decay

amplitude for a two-pion final state which was slightly above threshold
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Table 9.8: Fitted results for the weak, AI = 1/2 kaon decay

matriz elements using the kaon mass m(lio). The column M}

shows the complete result from each operator. The column M]1*
shows the result when the disconnected graphs are omitted while
the 4th and 5th columns show the contributions of each operator
the real and imaginary parts of the physical decay amplitude Ag.

and a fit range 5 <t < 11.

These results are obtained using a source-sink separation A = 16,

i Mil/ 2lat ReAo(GeV) ImAy(GeV)

1 -0.0015(15)  (7.6+6.4)x10~% 0

2 0.00148(59)  (2.86=0. 97)><10 7 0

3 -0.0003(41)  (2.0£13.6)x1071 (1.147.6)x 10712

4 0.0027(32)  (4.244.4)x107% (1.441.4)x10~ 1

5 -0.0032(37)  ( 3.1+£5.3)x107! (1.6+2.8)x10712

6 -0.0076(47)  (-5.6+3. 3)><10—09 (-3.342.0)x 10711

7 0.0106(14)  (5.241.2)x107 1! (8.842.0)x 10~

8 0.0348(27)  (-3.66+0.28)x 107! (-1.784:0.14) x 10712
9 -0.0021(11)  (1.9440. 93)><10—14 (-2.00£0.96) x 10712
10 0.0009(12)  (1.2+1.1)x107 1! (-2.742.7)x10713
Total - (3.60+£0.78) x10~7 (2.1 £2.1) x107H
i lel/Q’lat ReA((GeV) ImA{(GeV)

1 -0.00107(36)  (6.1£1.5) x10~8 0

2 0.00187(15)  (3.7040.24) x10~7 0

3 0.00029(95)  (0.1£3.2) x10~1° (5.6+£178) x10~14

4 0.00324(76)  (5.5+1.1) x107° (1.8040.34) x10~!
5 -0.00664(84)  (5.741.2) x10710 (3.04£6.4) x10712

6 -0.01911(92)  (-1.376+0.067) x10~8 (-8.2740.40) x10~!!
7 0.01483(41) (7.7140.31) x10~*  (1.29640.053) x10~13
8 0.04613(99)  (-4.85+0.11) x10719  (-2.35940.052) x10~!2
9 -0.00175(28)  (1.7640.23) x10~ 4 (-1.8140.24) x10~12
10 0.00121(28)  (1.5540.27) x10~1! (3.6740.63) x10~13
Total - (4.234£0.20) x10~7 (-6.60+£0.43) x10~!
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Table 9.9: Fitted results for the weak, AI = 1/2 kaon decay

matriz elements using the kaon mass m(lil). The column M}

shows the complete result from each operator. The column M]1*
shows the result when the disconnected graphs are omitted while
the 4th and 5th columns show the contributions of each operator
the real and imaginary parts of the physical decay amplitude Ag.
These results are obtained using a source-sink separation A = 16,
and a fit range 5 <t < 11.

i Mil/ 2 lat ReAo(GeV) ImAy(GeV)

1 -0.0015(15)  (9.848.4)x10~% 0

2 0.00148(59) (3.5+1.3)x10~" 0

3 -0.0003(41)  (0.7£1.7)x107! (3.749.6) x 10712

4 0.0027(32)  (3.845.5)x107% (1.241.8)x10~ 1

5 -0.0032(37)  (5.946.8)x107! (3.143.5)x 10712

6 -0.0076(47)  (-9.3+4. 2)><10 09 (-5.642.6)x 10711

7 0.0106(14)  (5.941.4)x10~ 1! (9.942.4)x 1071

8 0.0348(27)  (-4.07£0.36)x 107! (-1.9740.17)x 10712
9 -0.0021(11)  (2.0+£1. 2)><10—14 (-2.141.2) x10712

10 0.0009(12)  (2.0+£1.3)x10~1! (-4.743.2)x10713
Total - (4.5+1.0) x1077 (-4.1 £ 2.6) x10~ 1
i lel/Q’lat ReA((GeV) ImA{(GeV)

1 -0.00107(36)  (7.0£1.8) x10~8 0

2 0.00187(15)  (4.2740.29) x10~7 0

3 0.00029(95)  (-2.0£3.8) x10~10 (-1.1£2.1) x10~14

4 0.00324(76) (7.14£1.2) x107° (2.34+0.41) x10~
5 -0.00664(84) (6.141.5) x10710 (3.224:0.76) x10~12
6 -0.01911(92)  (-1.51040.074) x10%  (-9.4940.44) x10~1!
7 0.01483(41)  (8.1440.37) x10~*  (1.36740.062) x10~13
8 0.04613(99)  (-5.1940.12) x10719  (-2.51740.056) x10~!?
9 -0.00175(28)  (2.2440.28) x107™  (-2.3140.29) x 10712
10 0.00121(28)  (1.5040.31) x10~1! (3.5740.74) x10~13
Total - (4.87+0.24) x10~7 (-7.4540.47) x10~ 1
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Table 9.10: Fitted results for the weak, AI = 1/2 kaon decay

matriz elements using the kaon mass m

(s2
K-

The column M ilat

shows the complete result from each operator. The column M]3
shows the result when the disconnected graphs are omitted while
the 4th and 5th columns show the contributions of each operator
the real and imaginary parts of the physical decay amplitude Ag.
These results are obtained using a source-sink separation A = 16,
and a fit range 5 <t < 11.

i M; 1/2lat ReAy(GeV) ImAy(GeV)

1 -0. 0019(25) (1.2£1.3)x10~7 0

2 0.00225(93)  (5.44+1.9)x10~7 0

3 -0.0011(63)  (0.642.6)x10~? (0.3+£1.4)x1012

4 0.0031(50)  (6.5+8.4)x107° (2.142.8)x 10~

5 -0.0065(59)  (0.741.0)x107? (3.945.4)x 10712

6 -0.0170(71)  (-1.5240.62)x 107 (-9.1+3. 7)><10—11

7 0.0108(20)  (6.142.2)x10~ ! (1.0340.37) x 107!

8 0.0371(36)  (-4.81+0.46)x 107! (-2.3440.23) x 10712

9 -0.0023(18)  (4.4=+2. 8)><10—14 (-2.941.9)x10712

10 0.0018(18)  (2.7+2.1)x10~ 1! (-6.444.9)x 10713
Total - (6.5+1.5) x10~7 (-6.8 £ 3.9) x10~ 1

i M;UQ’lat ReA((GeV) ImA{(GeV)

1 -0.00117(50)  (8.3+2.6) x10~8 0

2 0.00213(20)  (5.134:0.40) x10~7 0

3 0.0003(13)  (0.245.4) x10~10 (0.14£3.0) x10712

4 0.0036(10)  (7.5+1.8) x107° (2.4640.58) x10~!

5 -0.0076(12)  (8.3+£2.1) x10~ 10 (4.341.1) x10712

6 -0.0213(11)  (-1.87940.095) x10~%  (-1.12840.057) x10~!*
7 0.01430(47)  (9.2140.47) x10~*  (1.54740.080) x10~13
8 0.04415(99)  (-5.6940.13) x10710  (-2.77140.064) x10~12
9 -0.00194(37)  (3.7340.58) x10~4 (-2.4440.38) x10~12
10 0.00137(37)  (2.1940.44) x10~ (5.241.0) x10713
Total - (5.84+0.32) x10~7 (-8.94+0.47) x10~ 1
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corresponding to the actual finite volume kinematics. In the present case there is no
corresponding infinite-volume decay into two pions below threshold and an
unphysical increase of m, to compensate for the finite volume m — 7 attraction will
introduce an O(1/L3) error in the decay amplitude of the same size as that which
the Lellouch-Liischer treatment corrects. Thus, for this AT = 1/2 decay amplitude,
the finite volume corrections are not included, and instead the free-field value for

the factor F' is used in Eq. (9.9).

Although it is not possible to consistently apply the Lellouch-Liischer finite volume
correction factor to improve the result for the I = 0, K — 7w decay amplitude, it
might still be possible to use the quantisation condition of Eq. (9.8) to determine
the I =0 7 — 7 scattering phase shift dg(k). Even though Eq. (9.8) can be
analytically continued to imaginary values of the momentum £k, its application for
large negative k? is uncertain since the function ¢(k) becomes ill defined. In fact,
the value of k? sits very close to a singular point of ¢(q). We believe this happens
because the condition on the interaction range R < L/2 used to derive the
quantization condition in Eq. (9.8) is not well satisfied for our small volume. This
impediment to determining éo(p) will naturally disappear once we work with lighter

pions in a larger volume.

The results for ReAy and ImA( are summarized in Tab. 9.11 and the individual
contribution from each of the operators at amg; = 0.066 is detailed in the last two
columns of Tab. 9.8. Within a large uncertainty Tab. 9.8 shows that the largest
contribution to ReAy comes from operator (02, and that to ImAq from Qg as found,

for example, in Refs. [20, 21].

(s0)

Since the choice mj- for the kaon mass is not precisely equal to the energy of the
I =0 77 state, a simple linear interpolation between m(lg) and m&?l) is carried out
to obtain an energy conserving matrix element, which is shown in the last row of

Tab 9.11. In terms of physical units, therefore, our full calculation gives the energy

conserving, K* — 7rr, AI = 1/2, complex decay amplitude Aq for myx = 766 MeV
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Table 9.11: Amplitudes for AI = 1/2 K° — w1 decay in units of
GeV. The energy conserving amplitudes are obtained by a simple
linear interpolation between mﬁ?o) =0.42599 and mgl):0.50729 to
the energy of two-pion state. As in the previous tables, the I indi-
cates results from which the disconnected graphs have been omitted.

my Redo(x1078) ReA{(x1078) ImAg(x1072) ImA)(x10712)
M (50) 36.0(78) 12.3(20) 21(21) 766.1(43)
mi(s1) 45(10) 48.8(24) ~41(26) 74.6(47)
m(s2) 65(15) 58.4(32) -68(39) -89.4(63)
Energy conserving 38.0(82) 43.4(21) -25(22) -67.5(44)

Table 9.12: Comparison of results between 400 and 800 configu-
rations.

# of configurations ReAg(x107%) ReAj(x107%) ImAg(x1072) ImAH(x10712)

400 27.2(72) 36.5(20) 17(17) -52.2(46)
800 36.0(78) 42.3(20) -21(21) -66.1(43)

and m, = 422 MeV:

Redy = 3.80(82) x 107 "GeV (9.15)

ImA;, = —2.5(2.2) x 107'1GeV. (9.16)

These complete results can be compared with those obtained when the disconnected
graphs are neglected given in Tab. 9.11 and the experimental value for
ReAg = 3.3201(14) x 10~7 GeV. As in the case of ReAy, the larger value obtained

in this calculation is likely the result of the unphysically heavy kaon and pion.

9.3 Discussion and Conclusions

Comparing the results of ReAs in Tab. 9.7 and ReAq in Tab. 9.11, the Al = 1/2
enhancement ratio ReAy/ReA; is found to be roughly 7-9. This comparison is
degraded by the threshold kinematics which, since the I = 0 and I = 2 two-pion
states have different energies in a finite volume, causes this calculation to use a
different kaon mass in the calculations of Ay and Ag in order to have energy
conserving decays in each case. These two energy conserving amplitudes have a

(1)

ratio of 38.0/4.911 = 7.7, while if energy conservation is ignored and the same m

value for kaon mass are used, the ratio becomes 45.0/4.911 = 9.2. Of course, both
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estimates are far from the experimental ratio of 22.5 suggesting that the 422 MeV
pion mass, 736 and 877 MeV kaon masses and small lattice volume are far from

physical.

For completeness, the measure of direct CP violation € /e defined in Eq. (2.22) is
evaluated. Using the threshold kinematics, the kaon mass m(lp and substituting the
experimental value for €, the result is Re(€’/e) = (2.7 £ 2.6) x 1073. If the

experimental value of w = ReAy/ReAy is used instead, the result is

Re(e'/e) = (1.11 £ 0.91) x 1073.

This calculation is sufficiently far from physical kinematics that it is not
appropriate to compare these results with experiment.! Instead, the objective of
this calculation is to show how well the method performs. ReAy, the key element
needed to explain the AT = 1/2 rule, has been calculated successfully, with a 25%
statistical error. Table 9.12 compares the results for ReAy obtained on a
sub-sample of 400 and all 800 configurations and shows that the statistical errors on
the quantities measured scale approximately as 1/ V/N. Therefore, we believe that
the non-zero signal for ReAy is real and that this statistical error could be reduced
to 10 percent by quadrupling the size of our sample to 3200 configurations. It is
interesting to note the results for primed (disconnected graphs omitted) and
unprimed (all graphs included) quantities contributing to ReAj have similar values
suggesting that the disconnected graphs, while contributing significantly to the

statistical error, have an effect on the final result for ReAq at or below 25%.

In contrast, the result for ImAgy has an 80% error. Thus, it is not clear whether the
size of the result will survive a quadrupling of the sample with its statistical error
reducing to a 40% error or whether the result itself will shrink, remaining
statistically consistent with zero. Considering the substantial systematic errors
associated with the small volume and the fact that the kinematics are far from the
physical, this trial calculation is presented as a guideline for future work and a

proof of method rather than giving accurate numbers to compare with experiment.

LA further unphysical aspect of these kinematics is the inequality of the strange quark mass used
in the fermion determinant and the self contractions appearing in the eye graphs (ms = 0.032) and
strange quark masses used in the valence propagator of the K meson (ms = 0.066, 0.99 and 0.165).
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From the observation of the around-the-world effect, the conclusion is that it is
important to use the average of quark propagators obeying periodic and
anti-periodic boundary conditions to extend the lattice size in the time direction. In
addition, explicit subtraction of the divergent mixing term 5v°d is necessary even
for kinematics which are literally energy conserving because the around-the-world
path and possibly other excited state matrix elements are far off shell and can be
substantially enhanced by such a divergent contribution. Finally, future work
should be done using a much larger lattice which can contain two pions without any

worry about finite size effects.

The focus of this chapter is on developing techniques capable of yielding
statistically meaningful results from the challenging lattice correlation functions
involved in the amplitude Ag. However, there are other important problems that
will also require careful attention if physically meaningful results are to be obtained
for this amplitude with an accuracy of better than 20%. Two important issues are
associated with operator mixing. As discussed in Chapter 5.2, a proper treatment
of the non-perturbative renormalisation of the four independent (8,1) four-quark
operators requires that additional operators containing gluonic variables (some of
which are not gauge invariant) be included. While including such operators is in
principle possible and the subject of active research, controlling such mixing using

RI/MOM methods offers significant challenges.

A second problem is operator mixing induced by the residual chiral symmetry
breaking of the DWF formulation. The mixing of such wrong-chirality operators
should be suppressed by a factor of order m,.s. However, the K — 77 matrix
elements of the important (8, 1) four-quark operators are themselves suppressed by
at least one power of m%(, a suppression that is absent from similar matrix elements
of the induced, wrong-chirality operators. Therefore, such mixing has been ignored
in this study because its effect on the matrix elements of interest are expected to be
of order myes/ms &= 0.08, suggesting that these effects will be smaller than the 25%
statistical errors. To perform a more accurate calculation in the future, these
mixing effects may be further suppressed by adopting a gauge action with smaller

residual chiral symmetry breaking. For example, this ratio reduces to 0.04 for the
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IDSDR gauge action used in Chapter 8 and to 0.023 for those ensembles with the
smallest lattice spacing created to date using the Iwasaki gauge action [51]. When
greater accuracy is required either an improved fermion action, larger Ly or explicit

subtraction of wrong-chirality mixing must be employed.

As lattice calculations move closer to the physical pion mass a further important
difficulty must be overcome: giving physical relative momentum to the two pions.
This can be accomplished while keeping the two-pion state in which we are
interested as the ground state, if the kaon is given non-zero spatial momentum
relative to the lattice. In this case the lowest energy final state can be arranged to
have one pion at rest while the other pion carries the kaon momentum, as in the
Al = 3/2 calculation of Ref. [75]. However, this requires the momentum carried by
the initial kaon and final pion to be 739 MeV, which is 5.4 times larger than the
physical pion mass. Such a large spatial momentum will likely make the calculation
extremely noisy. For the AT = 3/2 calculation, it is possible to use anti-periodic
boundary conditions in one or more spatial directions for one of the light quarks so
that each pion necessarily carries the physical, 206 MeV momentum present in the
actual decay while the kaon can be at rest [8, 76]. This is the strategy which was
adopted in the previous chapter. However, this approach cannot be used in the case
of the I = 0 final state being studied in this chapter. Instead, the use of G-parity

boundary conditions [77] may be the solution to this problem.
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Figure 9.11: Leading around the world diagrams for type3 K —

T decays.
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Chapter 10

Conclusions

This final chapter draws together the main conclusions from chapters 8 and 9.

In chapter 9, a first direct calculation of ReAy was made, albeit at unphysical
kinematics. The result, obtained at threshold and with a pion mass of ~ 420 MeV is
ReAg = 3.80(82) x 10~7 GeV. The imaginary part of the AI = 1/2 decay amplitude
was found to be ImAg = —2.5(2.2) x 107! GeV. It has been demonstrated that it
is possible to successfully evaluate the real part of the AT =1/2 decay amplitude.
The unphysical kinematics mean, however, that it is not meaningful to compare
this result with experiment. Improved statistical techniques, such as those proposed
in [78] are needed in order to evaluate the imaginary part of ImA( successfully.
Further advancements, such as G-parity boundary conditions, must still be made

before a calculation of Ay may be made at physical kinematics.

The main result of this thesis was presented in chapter 8, where the Al = 3/2
decay amplitude was evaluated at nearly-physical kinematics. All aspects of this
calculation, including the operator renormalisation, finite volume corrections using
the Lellouch-Liischer and the momentum of the final-state pions is understood, and
a full account of the remaining systematic errors was given. This calculation

representes a major breakthrough. It is the first time that a direct determination of
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ImAs had been made. The final result, evaluated at the simulated quark masses, is

ReAy = 1.381(46)stat (258)syst 1075 GeV,  TmAy = —6.54(46)stat (120) syt 10712 GeV .
(10.1)

With further advances in super-computing capabilities and continued research into
G-parity boundary conditions, it should soon be possible to make a calculation of

Ap with a similar degree of precision and control over systematic uncertainties.
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Appendix A

Expr

essions for K — 7

contractions

A.1 K™ — ntnt Contractions

+
DLx,l

Jr
DLXQ_

DZFRJ = <Trc {Trs ['YLS(I:os(fom ZL/op§ tw)S%/(tKQ tﬂ)TVSSS(fop7 ZL/op§ tK)T'YB X

= <TT {7553(50p>t0p5 tre)! VLSéos(fOpat0p§t7r)S€/V(tK§ tw)T} X

Tt { S (Foptops tx) 157 Stos (Fop topi t) } )

<TT {7553(5010’ top; tK)T VLSéos(fOpa top;t )SW(tKa )T V5 Vx X

Séos(fom opi t )Sl( Top Op’tﬂ)f}>

Try [ScOs(momtop’ ) Sl(xOPt"p’ )TVBP}/R]}>

+
DLR 2

<Trs {Trc ['YLSéos(fopJopa )Sl(xoptopa )T 75}

Tre [VR Séos(fomtop;tw)S%/V(tKEtw)T%Ss(fomtop;tK)T%} }>
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A.2 KY— nmr Contractions
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DLL,Qa DLR,2 ==+ <TI“ {7}1(1 - 75)Sl(fopa top§ tw)sl(fopa top§ tw)T'ﬁL(l + 75)Sl(fopa top§ tw)

75*9%/1/@75 75K)SS(fopa 75op§ tK)Jr }>

(A7)
Diro,D —i<T{T [Sl* 1) Fop, top: L)
LL2,VLR2 — Is Ie (xop7topat7r) (x0p7t0p7t7'() 'Yu(l:':75) X (A )
.8
Tr. [Sl(fopa top§ tﬂ)fYSS%/V(tW; tK)SS(fopa top; tK)T7u(1 - 75)] }>
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Appendix B

Quotient Plots for Al =3/2

K — 7w Matrix Elements

The quotient defined in Eq. (8.4) is plotted for tx — trr = 20,28 and 32. These

plots are intended to supplement those shown in Fig. 8.4.
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Figure B.1: The ratios defined in Eq. (8.4) for p = /2w /L. The

two-pion source is at t = 0 while the kaon source is at tx = 20.
The dashed line shows the error on the fit
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Figure B.2: The ratios defined in Eq. (8.4) for p = /2w /L. The

two-pion source is at t = 0 while the kaon source is at tx = 28.
The dashed line shows the error on the fit
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Figure B.3: The ratios defined in Eq. (8.4) for p = /2w /L. The

two-pion source is at t = 0 while the kaon source is at tx = 32.
The dashed line shows the error on the fit
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